General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



NASA CR-132644

STUDY OF THE MODIFICATIONS NEEDED
FOR EFFICIENT OPERATION OF NASTRAN ON
THE CONTROL DATA CORPORATION
STAR-100 COMPUTER

By Aerospace Division of
Control Data Corporation

(NASA-CR-132644) STUDY OF THE MODIFICATIONS N75-24382

NEEDED FOR EFFICIENT OPERATION OF NASTRAN oN

THE CONTROL DATA CORPORATION STAR=-100
ta Corp. 85 HC $4.75 Unclas
CONMPUTER (Control Data P.). P B s oos G3/61 20732

Prepared Under Contract No. 6-74-490-H by
CONTROL DATA CORPCRATION
Arden Hillse, Minnesota

Subcontractor to Contract NASI-12436
NASA SYSIEM DESIGN. STUDIES PRUGRAM OFTICE
McDQSNELL DOUGLAS ASTRONAUTICS COMPANY



CONTENTE
SUMMARY

CINTRODLCTION

FEASIBILITY
Machine~Indopendent ¢od.
FORTRAN Compitor
FORTRAN Library
Veotor DProcessing
Machine=Depandout, ¢ o
Lowding and Execution
STAR Static Louder
MNASTRAN Controllen sl Dreop files
Redcetion of ke @ 50 Srgeeag
NAST AN Luput/Oulgng o SVAL
STAR Opevallyy Svsten, 1/
SSTAR FORTHAN LO
'NAWTRAN Genara'ived 170 10 INOY
Twinsition Mothod
STAR TRCHNOLOGY
Virtual Memory
VCetor Procoessing
PMagirsg
Estimate of NASTHAN/FVAR-100 Puging Rate
Virtunl Space Mansgor _
Non-1/0 NASTRAMN/OS Mtewfice
Virtual Space Mapping
Virtual Subfile Striuctos-
I/0 Connectur Mampemoat
Lxception Pruvessing ‘
IMPROVED EFPICIENCY
Matriv File Structurse
Sparse Matrix Indcdng Sehenios
General OQutline of Usc «f Double Matris File
Ordering Matrix Coofficiems
Statement of AMagnitde of Unprovement
Modes of Operation ) .
NASTRAN Stand-Alone (ption
_The "Froent~-End" Concept
+Interactive NASTRAN

omGINAL PAGE B
OF POOR §

iif

T e

28

28
30
30
32
33
a3
33
34
36



IExtendded Fentures Toe Bificient Processing
Hulf~Word Operands
Veetor Macro Instructions
String OUperationy
 Alternate linrdware Configuration
Limitations of Size of Problem
MAINTENANCE CONSIDERATIONS
Conversion Handling
Maiitenance Hundling
Inter-Machine Handling
Oporationil Reliabilily
MANPOWER ESTIMATES
Operating System: Modiffeuations
Bateh Processor
Loader
Dehugging Aids
Compiler Modifications hud Fxilensicas
Non-Standurd Relurns Lahel
FORTRAN [V Library Routines
Program Card
Hall=Word FORTRAN
Pseudo-Oparating Sy stem YFeaturos
Virtual Space Manager (VSM)
Oulexed Soquentind Record Manigement
Physical Spuce Allventin/Deallocation
Machine~Independent Coth: Conversion
Machine-Dependent Code Conversion
NASTRAN Opthnization
Roecord Manogement
Muatrix File Structurve
Half-Word Operands
Maintehance
Cost Dreakdown
Basie Convergion
Muadrix File Structure and Veclor Processing
CONCLUSIONS ‘
GLOSSARY OF STAR QS TERMS .
APPENDIX A SCALAR CPI TIMING COMPARISON BETWEEN
6600 AND STAR~100 ’
APPENDIX B STIFEFNESS MA'TRIX DECOMPOSITION TIMING
BIBLIOGRAPHY

37
a7
39
39
39
40
41
42
44
44
46
46
a1
47
A7
a7
47
48
48
48
48
49
49
49
49
50
50
50
50
51
51
52
52
52

52

L

H8

G3
67
91



FIGURES

Figure 1. Symbolic Breakdown of Virtual Space for NASTRAN 3
Figure 2. Structure of NASTIRAN Controllee File 10
Figure 3. Typical Flow of "Block of File Open for Implicit I/O" 13
Figure 4, Assocfiative Word Format 17
Figure 5. Schematic of Vector Operand Processing Units 19
Figure 6. Register Mode - Sparse Linear Form (C=A+©B) 24
Figure 17, Schematic of Sparse Matrix ERT Step 31
Figure 8. Half- and Full-Word Operand Formats 38
Figure 8, General Flow of NASTRAN Subsystem Build 43
Figure 10. Time Frame Necessary for Basic NASTRAN

Conversion (Scalar NASTRAN) 56
Figure 11, Vector Processing 57
Figure B-1. Structural Finite Element Analysis 70
Figure B=-2,  Algorithms 71
Figure B-3. Programming Precedures Used 72
Figure B-4, Control Data 6600 CPU Timing 73
Figure B-5. CPU Time = CDC 6600 Full Machine 74
Figure B-6. Formula Validation Comparisons with CDC 6600

Benchmarks 75
Figure B-7. STAR-100 CPU Timing 16
Figure B-8. Full Machine Utilization - CPU Time of STAR-100 vs.

CDC 6600 (Variable Band Algorithm) 7
Figure B-9. Partial Machine Utilization - CPU Time of STAR-100

v8, CDC 6600 (Variable Band Algorithm) 78
Figure B-10, Full Machine Utilizatlon - CPU Time of STAR-100

ve. CDC 6600 {Constant Band Algorithm) 79
Figure B-11. Partial Machiie Dtilization - CPU Time of STAR-100

ve, CDC 6600 (Constant Band Algorithm) . 80

TABLES

Table 1. Modules Requiring Prefaces for File Size Determination 16
Table 2, Order Vector Sizes 30
Table 3. NASTRAN=-STAR~-100 Adaptation 54

Table A-1. 6600/STAR-100 Semlar CPU Comparison 63



SIUDY OF "Il MODIFICATIONS NEEDED
FOR EFFICIENT OPERATION OF NASTRAN ON
THE CONTROL DATA CORPORATION STAR-100 COMPUTER |

By Aerospace Division of Control Data Corporation

SUMMALY

- NASA Structural Anslysis (NASTRAN) computer program is operational on

thri:e series of third gencrativn computers,

This study was conducted to detormine the magnitude of the problem and dif-
ficulties involved in adapting NASTRAN to a fourth generation computer, namely,
the Control Dat: STAR-100, The salicnt features which distinguish Control Data
STAR=100 from third genevatton compuiers are hardware vector processing

L'apabillty and virtual memory,

This study reveals a fensible method of transferring NASTRAN to Control
Data STAR-100 system while retaining much of the machinc-independent code.
Further, hasic matrix operaticns ave noted for optimization for vector processing.

INTRODUCTION

This report presents un unbinsed investigation of the feasibility of modifying
NASTRAN to execute efficiently on the Control Data STAR computer. The objec=

tives of this study were ns fallows:

1. Identify rreas in NASTRAXN which eusily lend themselves to conversion to
STAR or which could causv prohlems in conversion to the STAR computer,

and describe the areas in each of these categories.

n

3. Determine the areas of NASTRAN which will be affected by efther (or both)
virtual storage or thu pireline processor, describe these areas, and discuss

any improveroents thal nipht be made,

" ORIGINAL PAGE IS
OF POOR QUALITY



3,

4.

5s

Determin: the areas of NASTRAN where modifications ure needed to im-
prove efficiency and where significant benefits could be expected from
using new strategles or algorithms, and describe these areas and their
benefits.

Determine if the above changes can be accamplished so that the efficlency
of NASTRAN can be improved with little or no increase in the number of

computer-dependent subroutines, and explain the purpose of all needed new
coamputer-dependent subroutines.

Estimate the time and cost involved in designing, coding, and lmplementlug
each of the modifications identified above,

At the outset, several assumptions aml cholces were made that did not un-neces-

sarily resirict the scope of the study, but did allow a fruitful concentration of

effort, These guidelines were:

Begin with level 15.7.8 NASTRAN

Convert all of NASTRAN to STAR

Assume batch processing mode

Assume multiprogramming STAR enviroament
Use standard STAR software

Assume paging drun station in configuration

These guidelines underlie all of the analysis and recommendations presented

in this report. The interesting alternatives to these assumptions and their con-

~ sequences are mentioned throughout the report as exceptions or as alternate de-

sign strategies in the section describing Improved Efficiency.

DRIGTIAL L PAGE 1B
Bp POOR. QUALITH!



Based on the stated conclusions and the recommendations in later sections,
the initial conversion of NASTRAN cnn be described. The design retains NASTRAN's
exlisting modularity to allow for luter efficlency improvements. NASTRAN will be

executed as a subsystem out of one virtual space, Figure 1 shows the functional
breakdown of this virtual space. )

Reserved by STAR Operating System

Virtual Files

Dynamice $pace

I/0_Buffers -~

Open Core ;

Bluuk Comm on

Error Processing Information

Labeled Common

NASTRAN Modules and Dala Dases Internal to
Modules

Indexed Sequentiul with Actual Key Option I/O
Packape

Epilqgue for E‘u,h Module)

Virtua! Space Munager (i.e., Job Mode Monitor)

Page Zero (Register File)

;. Figure 1.
i

Virtuai B‘!la
Address 2

Virtual Bi&,z
Address 2

Virtual Bit
Address 0

Symbolic Breakdown of Virtual Space-for NASTRAN



All of NASTRAN wlill be esccuted as a single controllee file. This greatly
simplifies the STAR OS/NASTRAN interfaces and allows the natural modular
sBtructure of NASTRAN to predominate. In other words, we will dispense with
the link structure of the present NASTRAN systems. :

To centralize the direction of the orderly use of virtual space, a virtunl
space manager (VSM) will be developed, The primary responsibility of VSM
will be to control and record the association of virtual space and disk space and
to ensure that virtual space is not used in conflicting ways, e.g., that debugging
information does not destroy a virtnal file,

A fundamental precept of the STAR Operating Sjateln is that all used
virtual space has real disk space associated with it; and furthermore, this

disk space must be assigned at file creation time.

There is a system imposed limit of 18 open files for a given task. Soame
of these {files are ded_muted to special uses, e.g., controllee file, drop file,
standard input file., This limitation will require development of a technique to
distribute the 19 permanent files and 35 scratch files in current NASTRAN '
usage among the available STAR files, A prolog and/or epilog to each module
is necessary to perform this association and disassociation of data blocks and
disk file space. Clearly, all duia set sizes cannot be exactly specified but
reasonable bounds can fnvariably be determined for them with some specified
degree of confidence, A recovery procedure can be defined so that occasionally
when data set sizes do exceed the specified sizes, the NASTRAN run can
continue with only time devoted to stacking and unstacking {pooling) of various
data sets.

The existing concepts concerning input/output within NASTRAN remain valid
and shall be retained and extended. This gives enormous flexibility in tuning
the subsystem, e.g., the existing GINO calling sequence can be retained and



yet allow the module devcloper the choice of using virtual I/0 or explicit 1/0.
" The concept of open core shall be applied to virtual space. By experimenting
with the size of open core, the effects of ranning NASTRAN fn a mode as~
suming essentially infinite core may be compared with the effects of running
NASTRAN In a more traditional way with a smaller fixed amount of real

niemory,

All NASTRAN files {or data hlocks) will be assigned virtual space. This
“allaws the NASTRAN subsystem to be checked out very early in the develop-
ment stage, because of the case of handling virtuai files. The responsibility
for the management of virtual files rests, in large part, with the STAR
Operating System. For most types of files, virtual 1/0 cannot compete
with explicit 1/0, so an option will be made for the module writer to declare
whether a file should be used explicitly or implicitly.

On the othér hand, for fairly small (l.e., fits within core/drum system)
truly randomly accessed files, virtual 1/0 is far superior to explicit I/0 in
the STAR system, Aside from the usual sequentfal file manipulation, the
module writer shall have the following 1/0 options:

a) In~core files (always virtual)
b) Indexed sequentinl subset (efither virtual or explicit)

Proceeding this way allows one to take maximum advantage of preceding
work while retaining modularity and transportabflity. One's resources may
be concentrated on areas of potentinlly high payoff and one has real flexibility
in attacking these areas.



FEASIBILITY

The objéctive of Study Phase 1 was to identify areas in NASTRAN which
easily lend themaselves to conversicii to STAR or could cause prohlems {n
conversion to the STAR camputer and to describe the areas in each of these
categories. The study concludes that the conversion of NASTRAN to the
STAR cumputer is feasible. STAR FORTRAN contains FORTRAN IV as a

subsgt with only minor excuptions.

The major conversion effort is concentrated in the design and coding of
machine-dependent routines. The load and execution process will be easier
to use and maintain with standard software instend of the cumbersame linkage
editor. The execution time 1/0 and system interface routines pose the most

challenge to the conversion process.

Machine-Independent Code
This section identifies problems with conversion of NASTRAN machine-inde-
pendent code. The areas of concern are the FORTRAN compiler per se, the
FORTRAN library, and vector processing.

FORTRAN Compiler
The STAR FORTRAN compiler encompasses the NASTRAN defined subset of
FORTRAN IV with one exception: the use of the ampersand symbol (&) in a
calling sequence to signify a nonstandard return label. FORTRAN IV specifies
the symbol ig to be a dollar sign ($). Specifically, the nonstandard returns and
multiple entry features of STAR FORTRAN are compatible with IBM/UNIVAC
format. Thus the use of multiple~entry point driver decks can be eliminated.

._. FORTRAN Library
Mathematical subroutines defined in FORTRAN IV which do not appear in

STAR FORTRAN are:

ERF (apparently unused in NASTRAN)
GAMMA (apparently unused in NASTRAN)



ALGAMMA (apparently unused in NASTRAN)
COTAN

Machine indicator tests defined in FORTRAN IV which do not appear in
STAR FORTRAN are: SLITE, SLITET, SSWITCH, OVERFL, and DVC!!K.

Other subroutines which do not appear in STAR FORTRAN are: EXIT,
DUMP, and PDUMP,

Vector Procossing __
There are a nwnber of routines which are presently machine independent,

which should be modified to take advantage of the vector processing capabilities
of STAR-100. These routines ave:

DMPY
FBS1

I'B83
SDCOM1
ShcoM3
MPY3T
MPYL
MPLLT
MPYLZZ?Z

The machine-independent routines FB‘Sz. FBS4, SDCOM2, and SDCOM4
are probably nct necessary to convert to machine~dependent code. These are
the double~=precisioiy counter parts of FBS1, FBS3, SDCOM]1, and SDCOM3,
respectively, This is based on the assumption that 47 bits of mantissa is ade-
quate for arithmetic computation in NASTRAN.



Machine-Dopendont Code
Converting machine-dependent code i8 less related to language compatibility
and more to system interface compatibility, Thus routinos like MAPFNS,
PAKUNPK, and MPYQ should convert readily to STAR.' However, GINO end
loader packages which interface to the operating system present some technical
compatibility problems. These ureas of NASTRAN require not only rewriting,

but redesign for a different environment.

Loading and Execution

It 18 grossly estimated that all of NASTRAN executable code and labeled
common areag could be contained in a controllee file consisting of 250,000 to
500,000 54-bit words. In this case, the option of running NASTRAN as one
long controllec file, as opposed to a series of controller=controllees, in analogy
with the present NASTRAN link structure would be superior fer two reasons:
less dependence on STAR OS and the fundamental substructure of NASTRAN be~
comes the natural oase, i.e., the functional module rather than the artificial

link structure.

Investigation into the possibility of executing as a serles of controller-

controllces uncovered a number of problems with this concept. First of all

the controller-controllee relationship i8 a linear one; that is, it is not capable
of handling a tree structure. Furthermore, the chain of controller-controllees
is lmited to four (this limitation could In principle be removed fairly easy’T).
The operating system limitation of 18 open files per controllee requires that a
subfile structure be imposed upon the operating system file structure. Each
controllee is executed 6ut of Its own virtual space. This reduces intercontrollee

communication to messages via operating systiem calls and pool files.

i There is no assembly level compatability between Control Data 6600 COMPASS
assembler and STAR-100 META Assembler; these routines must be completely
recoded.

L The muaximum number of conirollees permitted in a chain i{s not a parameterized
system constant.



STAR Statle Loader
The mechanics exist for much flexibility in arrangement of code and ceriimon
blocks within the STAR loader. However, there are some limitaticns on tho
quantity of such options, For example, one can usc only 12 private library
files. For smaller systems, this appears to be adequate. For NASTRAN
this will enforce a less than natural arrangumsnt of libraries for the genera-
tion of a controllee file.

Another limitation i{s the present LOAD card buffer of 2048 64~bit words,
which is probably insufficient for NASTRAN. The options GRSP, GRLP,
GROS, GROL for arrangement of subroutines and common blocks are very
powerful; and heavy use of them will be made to ensure minimum working
set :sizess.t However, these options are very wordy and alternate methods for
fillinz, - enlarged LOAD card Luifer must be made avatilable,

‘Fhere is an additional overhead which affects the size of a controllee file
which should be recognized; this is error processing l:iformatlon. Except in
unusual conditions it will not cause NASTRAN execution interferences. How-
ever, it will occupy a sizable portion of disk space. 'The number of 64-bit
words which are devoted to this for each subroutine are 8 + 3 times the length
of the external/entry table. Assuming a nominal one entry point and two ex~
ternals per subroutine the length of the external/entry takie i{s nine words and
the number of error processing information words for the subroutine becomes 35.
Further assuming, we have 1000 subroutines in a controllee file, the space de-
voted to error processing information is 35,000 64-bit words.

T Initially the method of grouping subroutines will take advantage of present
analysis by examining the LINK tree structure of the various NASTRAN
systems,



NASTRAN Controliee and Drop Files
A comparison of Figures 1 and 2 lllustrates there is not a one-to~one cor-

respondence betwecn virtual space used (or to be used) and disk space for the
controllee file. ‘This results because information that is as yet unapecified
(e.g., blank common) may be carried in a canpact way simply as an address
range. This address range becomes a "map" entry in the "minus" page.

The minus page saves information pertinent to the execution of the con-
trollee:ﬂle for the operating system. 'The disk copy of the controllee file is
unaltered. Pages which must be changed during the course of execution,
such as mims page, labeled common, or data bases, are recorded on the
"drop file." The drop file is also used to hold modified vyirtual pages which
are not associated with any other virtual file, Thus the concopt that all used
virturl space must have real disk space associated with it remains intact.

Error Processing Information

Labeled Common Areas

Datu Basesa for Subroutines

Relocated Code

Page Zero

Minus Page
(O8 (ontrol and Virtual Space Maps)

Figure 2. Structure of NASTRAN Controllee File

10



Rejection_of Linkage Editor Corcept

The concept of a linkage editor was developed to overcome disadvantages
assoclated with an early version of the londer for the Control Data ¢400/6600
systems. These disadvantages were:

Only two levels of overlay provided beyond the root segment.

e An explicitly called overlay segment, consequently requiring a inown
overlay structure when the program is coded.

e Overlay segment entered ut only one point thus li:.nlflr.g downward calls.

e No facility to explicitly position named common blocks.

e Loading of overlay segments accomplished from a sequential file, thus
causing unnecessary search time,

These disadvantages do not exist with.-the STAR Loader; specifically:

1, There is eséentlally an unlimited mumber of overlay levels (or wﬁys of ar-
ranging the executable code) available within a controllee file,

2, The programmer describes i‘the controllee file structure to the loader after
the program is coded, The loader builds a linked executable file which can
be executed many times without going through the loader. The system pro-
vides the virtual I/O to get the necessary pages into main memory on a de-
mand basis. i

3. Camplete communication throughout the controllee file is maintained,

4, Loader directives may be used to explicitly position subprograms and named
“common blocks,

5. Map entries in the minus page of the controllee file provide rapid correlation

"between virtual addresses and logical disk addresses. Consequently, pages
of the controllee file residing on disk are immediately available to the system
paging algorithm. F

11



NASTRAN Input/Output on STAR
This section explains the standard STAR software supported 1/0 methods,
the methods necessary for NASTRAN operation, and a transition method between
them,

STAR rat atem I/O
The operating system allows for four basic types of 1/0: user-managed
implicit, system-managed implicit, buffered explicit, and unbuifered explicit.

User-managed implicit means implicit 1/0 which goes to/from a user~
defined file. System-managed fmplicit means 1/0 activity to/from the drop
file (which includes the recording of all used virtual space that does not cor-
respond to virtual apace recorded in a user-defined implicit 1/0 file). Buffered/
unbuffered explicit 1/0 is simply the traditionarl method of directly ordering
I/0 to take place between specific central memory and peripheral addresses.

The operating system supports three basic peripheral storage devicea:
drum, disk, and magnetic tape. '

The operating system supports the two basic hardware defined page sizes:
sma_.ll pages (512 64~bit words) and large page (65,536 64~bit words).

Full generality between the four 1/0 types, the three peripheral device
types, and the two page sizes is neither desirable nor supported.

The rules governing the viable combinations and the major ramifications are

stated as follows:

1. Euffer sizes for explicit /0 may be either 1 through 24 small pages or.
one large page.

2. Only explicit I/O may be used for reading/writing magnetic tape,

3. The drum may only be used for implicit I/O of small pages.

12



4. Tor large pages, implelt 170 occurs only betwoen e sk aml
central memiory, l.e., the puging drum is not used with lurge pages.

5. Disk files cannot be exiented, f.e., spuce for a disk tHie must be als
located at file creation time. (The dick file space muv be reduced bu!
not increased.)

6. ‘There is a Hmit of 18 active (l.e., open) files,

A typleal usage pattern [or a block of wn existing read/write file is depicted

ll’l Figul'ﬂ‘ 3-

Ceatral Memory

Disk

[}

Figure 3. Typica! Flow of "Block of File Open for lmpticit 1/0V

Paths such as b - ¢ - d in "Figurc 3 muay be repeated mam tBnes-and are
essentinlly beyond the control of the programmer, This figure -huwa the extra
systen- overhead path e - f which oceurs when using the paging Jrun for bn-=

plicit /O of small pages.

ORIGINAL PA( ST



STAR_FORTRAN 1/O

FORTRAN uses sequential record manager (SRM) alr}the interface with STAR
Operating System. S

When using unformatted 1/0, the STAR record structure is vsed In blucking/
unblocking the file.

STAR FORTRAN conventions require that all flles using FORTRAN 1/0 be
defined at compile time on a program card. This definition includes whether it
iz a tape or disk file.

BUFFER IN/OUT statements always use explicit 1/0 whether or not the file
is to reside on tape or disk.

READ/WRITE statements (cither formatted or unformatted) which refer to
tape files always use explicit 1/0.

READ/WRITE statements (either formatted or unformaited) which refer to
disk files always use implicit /0. An examination of Figure 2 again shows that
for large sequential files this method of I/0 is extremely inefficient.

FORTRAN (via SRM) places each defined tmplicit file in increments of
10,000,000 (hexadecimal) starting at virtual bit address 100,000,000 thexadecimal).

NASTRAN Generalized_I/0 _(GINO)
Besides the usual sequential /0, NASTRAN requires random access to two

£

husic structures: tables and matrices.

Although direct access 1/0 is referred to in some of the NASTRAN mainte-
nance literature, an examination of GINO documentation and code indicates that
only indexed sequential 1/0 is presently used in NASTRAN.

Furthermore, it is stated that all GINO files may be accessed by record.
Additionally, matrices may be accessad by subrecords of arbitrary length calfled‘
strings. The purpose of the string manipulation is to allow the processing of
matrices directly from GINO buffers. |

14



A timely and cost effective conversion of NASTRAN to STAR requires that
initially the calls to GINO fram the functional module level remain the same.,

Transition Method

There are several important differences batween NASTRAN and STAR 1/0
techniques. M In NASTRAN there are hundreds of data blocks allocated for over
50 files, while-the STAR Operating System provides less than 15 files for such
allocation. ' In NASTRAN, files are open-ended while STAR Operating System re-
quires allocation of file space at open time. In NASTRAN there are provisions
(GINO) for random access methods employing indexed - nequqntiali files with
actual key processing options (SAVPOS, FILPOS), while STAR Operating System
employs a simple sequential record manager. Thus, the significant I/O problems
to overcome are briefly stated as:

The preallocation of optimal space for NASTRAN files

The many~-to~one assoclation of NASTRAN data blocks to STAR Operating
System files

The provision for randam access of NAsrRAN data block substructures

The firat two problems are handied by a preface to each NASTRAN module which
analyzes the requirements for file apace., Refer to Table 1 for modules requiring
prefaces. Precise limits on space generally will not be possible, but with
fairly simple loglc one can develop estimates with a high degree of curfidence
which should be sufficient for most cases. It is suggested that the m;thod of
random 1/0 processing implemented be indexed-sequential (integer key) with
option for actual key processing., This would initially be implemented for
virtual files only. This allows a good versijon of NASTRAN to be implemented
quickly without any "throw=-away" code being necessary. Expliéit I/O on random
physical flles will almost certainly improve performance and {s considered
hecessary in any optimization effort.

15



TABLE 1. MODULES REQUIRING PREFACE FOR FILE SIZE DETERMINATION

BMG GP4 PLTTRA BMA3
CASE GPWG PRTMSG SMPYAD
CEAD MCE1 RANDOM SMP1
DDR1 MCE2 RBMG1 SMF2
DDR2 MERGE RBMG2 SOLVE
DECOMP MPYAD RBMG3 §8G1
DPD MTRXIN RBMG4 | 55G2
DSMG1 OFP REIG | B5G3
DSMG2 PARTN SADD 8SG4
FBS PLAL SCE1 TAL
FRRD - PLA2 SDR1 TRD
GKAD PLA3 SDR2 TRNSP
GKAM PLA4 SDR3 VDR
GP1 PLOT SMA1 XY PLOT
GP2 PLTSET SMA2 XYTRAN
GP3

STAR TECHNOLOGY

In Phase 2 of the study the impact of fourth generation computer technology
on NASTRAN operation was analyzed. The two primary features studied were:
virtual storage and its hardware/software implementation on STAR-100 and pipe-

line processing as ¢ affects scalar and vector instructions on STAR-100,

The limited memory of third generation computers gave rise to many
techniques for executing large problems with large data areas. One of the most
successﬁnl applications of these techniques was the NASTRAN program which used
extensive overlay structures to m&uce the core requirements for executable code:
and used open core concepts along with packing/unpacking and spill to secondiry
storage devices for handling of large quantities of matrix data. From this
perspective, virtual memory i8 just an extension and it_xcorporation of third
generation applications technology Into fourth generation hardware and operating
systems software, '

16



Virtual

Memory

The method of mapping virtual memory into real memory in STAR-100 is
accomplished by a combination of hardware/software features.

A collection of associative words provide the necessary linkage between
real and virtual memory as shown in Figure 4 which is a functiona. diagram of
an associative word. This collection of associative words Is referred to as the

page tablc,
bsolute Usage Virtual Page
Page Code Lock Identifier
ddress

The usage code is defined as follows:

Usage Code

0
1
2

Definition
End of Page Table
Null associative word

512 - word page has not been referenced
by the CPU

65K -~ word page has not heen referenced
by the CPU

512 - word page has been referenced by

the CPU

65K - word page has been referenced
by the CPU

512 - word page has been altered by

the CPU

60K - word page has been altered by
the CPU

Figure 4, Assoclative Word Form-zit

17




The page table physically consists of a 18-register assoclative memory
and the space table. The space table {s a part of main core memory. The
principal ramification of this ia that "hidden" memory confllcts may occur during
the course of execution of a progran;‘ due to space table searches.

The page table is maintained as a push-down list (with the 16 assoclative
registers at the top) by the hardware. If a hit is made, the referenced page
address ts automatically placed in the first assoclative register and the rest
of the addresses moved down with the contents of associative register 16 be-
coming the first word in the space table. If a hit s not made (l.e., the
referenced page is not in memory) the other addresses are again rippled down-
ward and a null word 18 placed in the first assoclative register and an access

interrupt Is generated.

Rather than maintaining a page table for each active user, the STAR
Operating System has adopted a global paging policy, whlch-;lin effect removes
the least recently used page in memory when a page replacement must be

made,

Vector Processing
Figure 5 is a schematic drawing of the four main vector processing units.

They are:

e Plpe1l Processes most arithmetic operations

e Pipe 2 Processes divides, square roots, binary-to-BCD
conversion and supports Pipe 1 with sane¢ vector
and vector macro operations

e String Processes bit, bytes, and decimal operations

e Logical Processes insert, extract, and logical operations.

The term vector processing Includes more than the process of transforming
data as it passes through the processing unit. 'The other major function in vector

processing includes the storage and retrieval of data to/from main memory.

18



Central
Memory

Storage
N Access

Control

/0

[ contra

1

l_)lta
Stream
Control

Data
Inter-
change

Pipe 1

Plpe 2

String 7

Logical

Figure 5. Schematic of Vector Operand Processing Units

19




This process (streaming) is made feasible by the phased banks of maln memory
which allows the overlap of storage and retrieval functions, such that average
storage/retrieval time for a group of consecutively stored items is much lesa
than the actual time for one ltem.

In general, due to the arhitrary position of the relevant operands, there
is a phase misalignment. ‘The misalignment must be corrected before operands
are Qent to vector processing units to ensure correct results. This is handled
by a complex method of buffering input and resultant operands.

This process can add significantly to the overhead of a vector instruction.
(Overhead is commonly called vector start-up time,)

Paging
In STAR, paging is a method used for assovlating virtual memory with
real memory. Therefore, paging strategies and techniques are inextricably
tied to consideration of virtual etorage.

Few direct user controls over paging policy decisions are allowed. How-
ever, the user can influence paging policy by:

Group option in controllee file construction

Choice of explicit 1/0 for data files

ADVISE command to attempt to override demand paging
— - Cholce of page size

The first two controls have been previcusly discussed.

In a stand-alone environment the ADVISE canmand provided by the STAR
operating system to provide for prepaging and dispensing of old pages is a power~
ful tool for virtual file management. However, in a multiprogramming environ-
ment its use has been Ineffective. Choice of page eize I8 notable, because of
the inherent conflict between the ideal page size for general purpose processing
as opposed to psge size for heavy vector processing. As an aid to understanding
the problem and appreciating some of the difficulties involved, it Is well to take

20



a closer look at a typleal vector Instruction on STAR-100. Consider the fol-
lowing restricted vector operation:

A =B + C where A, B, C are vectors conformable for vector addition in
the usual mathematical sense: i.e., the ith element of A, Al =B + (:l for
i = l,....,n; 1 .s n <65.m-

The length of time this operation takes 8 dependent upon at least the
following items:

Stream rate; l.e., memory bhandwidth in bits/cycle

Operand size; L.e¢., 32 or 64 bits per word

Length of vectors A, B, C

Relative bank position of A, B, C

Length of time operands are in plie

Small overhead for instruction initiate or relnitiate

Bank phase relative to A, B, C upon initlation or reinitiation
Number of pages that A, B, C occupy

Distribution of A, B, C over occupied pages

Page size of occupled pages (small page = 512 64-bit words,
large page = 65,536 64-bit words

Position of associative words within page table
In assoclate register
In space table

Not In page table (page itself on drum)
Not in page table (page itself on disk)

Paging policy -
External interrupts

If we attempt to maximize vector throughput over purely virtual time, we
will choose page size of 65,536 to the detriment of everything else.

21



L]

In trying to maximize vector throughput we must assume pag'ag takes
place and that there is a stiff penalty {nvolved in ocoupying mair memory
when not In control of the CPU, "

Appareatly the only real freedom we have is in choice of page size,
distribution of A, B, C over pages, and paging algorithm.

In summary, several major factors influence the payge size determina-
tion problem in a scalar virtual machine, namaly:

Code organisation
Compression

Transport time

Page replacement algorithm

The Introduotion of the vector capability (via pipeline processing) lato
the hardware architecture oreates additional factors which influencs page sise,
namely:

Cost of halting a vector inatruction to replace a page
Cost of restarting a vector instruction after a page fault
Vaotor length

‘These considerations lead to the seemingly strange choloe of page sizes
in STAR-100 of B12 64=bit words or 65,536 64=bii words and demoastrate an
inherent conflict in cholce of page size for soalar and vector processing.

Little praotioal experisnce has besn cbiained with large page sizes,
Fortunatsly, the page size cholces are flexible and easily modified since page
size anc-placement are LOADER options.

With our assumption of NASTRAN executing in & multiprogramming en-
vironment, it is recommended that all NASTRAN oode, data blocks, and
buffers Initially he small pages with open core fixed at ons large page.



Undoubtedly experience will show a more nearly optimal arrangement which
may be dependent upon problem size.

Estimate of NASTRAN/STAR-100 Paging Rate
In an attempt to estimate paging rates which will be encountered during
mathematical manipulation of data, we have chosen a sparse linear form opem!'-
tion as n composite representative of NASTRAN operations, The particular im-
plementation we have chosen has the following characteristics  (refer to’ Figure 6
for functional flowchart):
1.  Given two sets of compressed values and two sets of cor-
responding indices and a multiplier, we form one set of
- compressed values and one set of corresponding indices, )
lhe.y C= A + 6B where A, B, C are sparse vectors, @ I8

a scalar, and IA' ]B' 1. are the vectors of 16-bit indices
corresponding to A, B, % respectively,

2, We assume a register mode implementation.
3. Each and every non-zero elemoent requires a 16-bit index.
4, We use fuil-word arithmetic.

This method was chosen because it gives some estimate, however crude, of

overhead involved in packing and un—acking vectors.

This method is only weakly dependent upon the number of vectors being used
(. e., initialization overhead is low). Therefore, extrapolation of the expected
value of execution tupe used per iteration to the expected value of execution
time per page of data can be made,

There are essentially three paths through this routine:

1. IA“A)< IB(IB)
2. IA“A) = IB(IB)
3. IA(iA) > IB(IB)

where { A refers to the { Ath component of vectors A and I " and IB refers to

the tBth component of vectors B and |

B

23



G el A — i i S R

coane AR TR RS T

Initialization:
Isolate counts,

lengths, etc.,
zero counters,

make first loads.

@

PATH 1

IA“A’ < IB“B)

Iteration detup:;
Perform shifts and
masks to align indices.

I

) (

@
PATH 2

PATH 3
[AaA) > IB(iB)

L,d AIglp

Pack I ()1

Aly)

Store C(lc)o- Ad A)

Pack I () 1,0,) |
Store C(i ) A(l,)}+6B(l5)

If necessary:
Store Ic(ic)
Reload I A 11 A+1)i

Load next
Al A+l )

Bump Tounters

Store re-
maining
C(i)~-OBd

remaining
Ic—1gtp)

B

Pack & store

If necessary
Reload I, (1, +1)
Load ne:ﬁ
Bump counters

A+

Figure 6. Regisl;er Mode-Sparse Linear Form (C=A+6B)

@

If necessary:

Load next
B(lB+1)

Reload I (i _+1)
Store IClB([gﬂ )

' Bump Counters

@
wr

24

Pack 1,0 )15 (L)
Store C(i)-©B(ip)

Store re-
malning
C(ic)-
A A)

Pack &
store re~-

maining

1., )
cht
1,00

If necessary:

Store I (1)
C

Reload 'IB?iB)

Load next
Bl B)

Bump
Counters

‘Exit'

S




Hand timing of roughed-in code for these three paths yleld:

Path 1 - 155 cycles
Path 2 - 167 cycles
Path 3 - 169 cycles

Within the limits of accuracy of our hand timing, we may assume that each
path takes a nominal 160 cycles. At 40 nanoseconds per cycle this yields 6.4
mlcroseconda per iteration (i.e., per resultant C(i ) and Ic(i ) values). There-
fore, for 512 iterations we have 0,0033 seconds of expected compute time.

Let us further assume that path 2 .8 taken with a probabi!ity of 2/3, and
paths 1 and 3 each with probability of 1/6.T This assumption means that the
expected number of resultani elements (and indices) grow by 1/3. ‘Thus, when
processing 512 iterations we have used 3 1/3 pages for values and 3/4 +
(1/4 * 1/3 pages) for indices for a total of 4 1/6 pages of data in 0.0033

seconds.

This ylelds a nominal paging rate of 1250 pages/second. The random paging
rates which can be sustalned are on the order of 175 pages/second on the paging
statfon (Control Data 865 drum) and 20 pages/second on the storage station
(Control Datn 844 disks). Explicit I/0 and double buffering with large pages will
alleviate this imbalance somewhat with respect to sequential files and the storage -
statton. Using large pages from an 844 disk, one could rea;sonably expect a paging
i‘.‘ate of 1.6 large-pages/second or approximately 100,000 64-bit words/second.
This 1s equivalent to 195 small (but not random) pages/second.

T These assumptions seem reasonable as one does not typically deal with
randomly scattered matrix elements but with strongly interacting rows and
columns, most notably the banded matrices.



Virtual Space Manager

. The foregoing information leads to a proposal to develop a virtual space
ménmger (VSM) to provide for the ordoi*ly transition of execution states in the
NASTRAN subsystem. As such, tﬁe VEM functions more as a message switch
and data trafilc control than as an executive. It ensures, for example, that
files do not inadvertently destroy one another, but it does not decide which
module should be executed next. VSM Is a single routine with many entry
points and a collection of tables., There are five principal functions for which |
VEM is responsible:

Provide the non-1/0 NASTRAN/OS interface

Maintain a map of virtual space _

Assign logical disk address to virtual files and maintain the
minus page of the virtual files

Manage 1/0 connectors

Y Process oxceptions

Nor- 1/0 NASTRAN/OS Interface
VSM provides a convenient location for centralizing and simplifying calls
to system functions which are not provided via FORTRAN, These calls facili~

tate debugging and allow for the collaction of performance measurement data.

Typlcal of these calls are:

Send message to controller
Get message from controller
Miscellaneoua system functions (number of page faults and 1/0 times)

Virtual Space Ma {
VSM has the responsibility to provide a valid virtual address for NASTRAN

files (operating system subfiles) when they are requested. In order to do this '
and to. provide useful debugging information, s map of virtual space is malntained .
which includes all NASTRAN data blocks, dynamic space, code. data base, and

the sequential record manager (SRM) provided locations.

26



Virtual Subfile Structure

As previously mentioned, there are only a limited number of disk files
available to a task (sBuch us the execution of NASTRAN subsystem), Further-
more, a virtual file may contain no more than 40 noncontiguous pieces of
virtual space. This leads to the subfile concept where each noncontiguous
plece of virtual space becomes associated with a NASTRAN file or data
block. For several reasons virtual files cannot be totally preallocated to
data blocks; or conversely, data blocks cannot be assigned to virtual flles.
The reasons are:

1.  Each tape is a file and the number of tapes may vary; therefore,
number of files may vary.

2. There are too many data blocks even with 40 per virtual file
with 13 available virtual files.

3. Reasonable size estimate on many data blocks may only be made
at module execution time,
VSM, when informed of the data block requirements by a module prologue/
epilogue (or disk space allocation/deallocation), will update the virtual files' bit
maps and the records of data blocks and disk space.

I/Q Connector Management
I/0 connectors provide the crucial link between physical file space, whether

on dtsk or tape/or whether virtual or physical type flles, and the executing pro-
gram. A number of these connectors may be pre-empted for the life of the
NASTRAN task. VSM notes these in “order to avoid them, Others are con-
stantly being created and destroyed while procceding from one module to another
module. It is these which are allocated and released by VSM.

27



Exception Processing
A unified and flexible approach to the handling of abnormal conditions such

as those indicated by the hardware data-flag register must be developed. Th!s
will require close coordination with the techniques used in the STAR FORTRAN
lfbrary and the STAR operating system debug"'package. Data-flag register
indicated conditions include:

Job internal timer

Breakpoint

Arithmetlc faults ‘

Some logical conditions (e.g., no true condition on vector logical "and")
Some search conditions (e.g., element not found)

IMPROVED EFFICIENCY

Study Phase 3 was concerned with determining where modifications are
needed to improve efficiency, and where siginlffcant benefits could be expected
from using new strategies or algorithms, |

As with third generation systems, a most important consideration for ef-
fective operation is keeping the CPU busy, This can be Interpreted as getting
extremelsf compact representation for the data base and managing and manipu-
lating this data base in a manner which tends to localize references to
specific portions of the data base. That is, locality must be exploited in data

reference strings as well as in execution reference strings.

Matrix File Structure
For the initial conversion effort a file structure similar to that used for
matrices as described for IBM System/360 should be used. This enables one
to quickly adapt the present NASTRAN to STAR-~100 in a reasdnably effective
way. A better structure would be obtained by dividing the maif.j_!x files into
two separate files. One file would contain all the control int’orr;liatilon such

as column, row position, number of ioefﬂ?:ignts in a string, etc. The other

28



file would contain only matrix coefficlents. ‘This often enables one to operate
directly on the coefficlents without intermediate reorganization of the coefficients
for efficlent pipe-line processing. To see this, it is necessary to look closer
at some of the hardware organizational constraints on streaming.

In central memory we have the following significant boundaries:

Bit boundary

Byte boundary
Half-word boundary
Full-word boundary
Small page boundary
Large page boundary

These boundaries are increasingly exclusive. By this {s meant that a full-
word boundary is also a half-word boundary and a small page boundary 18 also
a full-word boundary but a half-word boundary Is-not necessarily a full-word
boundary, etc. With one exeeption these boundaries must be rigorously ad-
hered to. The exception is that for instructions only, full-word instructions
may start on half-word boundaries, This is not true for data or in any other

case.

When using vector instructions on STAR-100, the coefficient of each
vector must be contiguous fn memory and on appropriate half- or full-word
boundaries, -

A

When using the sparse vec.:tor instructions 6n STAR-;,OO, the non-zero co-
efftcient must be contiguous and on appropriate houndaries as with vector in-
structions. Additionally a sparse ‘vector has associated with it an order vector
which contains one bit for each element= gwilether zero or non-zero) of the

sparse vector.

29



Table 2 shows thn;.t{"tor a sparse mati‘ﬁt without discernable structure the
order vectors alone could tnke an inordinate amount of space. Indeed, for a
16K x 16K matrix about 4 miilion 64-bit words would be required for order

vectors alone,

Table 2. ORDER VECTOR SIZES

| _Row Size Full Words for Each Order Vector
16K = 2'* 256
8K = 213 128
4K = 23 64
2K = 21! 32
1K = 2f 18

§ggrsm= Matrix Indexing Schemes
The Indexing scheme (l.e., the method of associating a specific coefficient

of a set with a particular coordinate) should attempt to take advantage of matrix
structure. If the elements are truly randomly scattered, then a 16-bit index
per element is efficlent on STAR until the matrix density increases to about
6.25%. At that pplnt the order vector scheme becomes more efficient.

General OQutline of Use of Double Matrix File
In principle the use of two files for matrix reduction is quite simple.
The many considerations, which can be taken into account, make the details of
implementation very complex. For example, suppose cne has a primary
representation of a sparse matrix by columns and it is desired to make an
elementary row transformation (ERT) on this matrix which results in a
second sparse mntrix. A step of forward transformation or elimination is

shown in Figure 7.

30



lmm

Index

File
Crack Perform Pack
Column ﬁ ERT w3 . Column >
Indices 1 2 Indices 3

Figure 7, Schematic of Sparse Matrix ERT Step

Whether we consider this as a step In L-U Decamposition or Gauss-Jordan

is immaterial at this level of discussion,

Mathematically we have EAP = As where E is the “identity matrix except
for une column, Ap is the primary matrix and A&l is the transformed or
secondary matrix. Represented {n Figure 7 is just one step of this total
transformation, i.e., we are performing the commonly used vector nperation

often referred to as "lineur form™;
vsj ='Vh} + ek, where V’pj is the jth

column of the matrix Ap except that one clement has been set to zero, © is the
scalar formed by making use of the element of Vpj before it was set to zero, and
E, is the column of E which differs frc?n the identity matrix. Now, because
the vectors Vsj, Vp}, Ec are assumed smrse. we have much flexibility in de~

tails of executing the linear form. For example:

31



a) If vpj and Eg are very sparase, we may choose to make the computa=~
tion in scalar mode,

b} We may elect to perform the computation in sparse vector form,

c) We may hold the vector £, in expanded form and perform the
camputation with Vpj in compact form,

d) U Vpj and E; are relatively dense, we may elect to expand both
Vp} and E, and perform the computation over full vectors.

Ordering Matrix Coefficients

In essence, one has four alternative ways of holding the campact co-

efficiente of a matrix: randomly, by submatrix, by rows, or by columns,

Of course, it is possible to have variations and combinations of these
four hasic methods. '

It may appear strange that random ordering would ever be useful. This
method Is used when there is a high percentage of common coefficients in a
matrix. In this case the index file assigns the same value to different matrix
coordinates.

Submatrix storage can be useful for matrix multiplication, but is not the
best for equation solving. |

It makes little difference, in the general case, whether we store matrices
by rows or by columns. In cases where specific matrices are consistently
used a8 premultipliers or as post-multipliers, it may be advisable to use row

storage In the first case and column storage in the second case.

Fov the general case, it is recommended that the coefficient be stored by

columns, hecause of the following reasons:

No other method has a clearcut advantage A
It has closer compatibility with existing NASTRAN storage technigues

It is the commonly assumed method in the literature

32



Statement on Magnitude of Improvement
Performance comparisons with other machines were not undertaken for

this study.

Appendix A compares scalar CPU performances on STAR-100 with CPU
performances of a Control Data 6600,

Appendix B compares positive=definite, symmetric matrix decomposition
CPU performance hetween Control Data 6600 and STAR-100. Full use of
vector operations on STAR-100 was made in this comparison.

Modes of Operation
Several alternate modes of operavion provide some interesting options for
the development of NASTRAN on the STAR computer. )

NASTRAN Stand-Alone Option
A hasic design consideration is whether NASTRAN should be run "stand-

alone'" on STAR-100 or run in a multiprogramming environment. In order to
run stand-alone, an attempt must be made to make full use of the drum/core
system. In order to use demand paging (and depend upon multiprogramming
to make efficient use of the system) then enough resources must be left

over so that multiprogramming can occur usefully.

STAR Operating System is a multlprogrr:anmlng operating system. “This
implies that STAR Operating System carries many overhead ftems that are
unnecessary in uni-programming. It also uses more management of virtual
resources than is desirable for stand-alone operations. In a stand-alone en-
vironment, the ADVISE command of STAR Operating System provides for
prepaging and releasing old pages which {s a powerful tool for virtual file
management, (In a multiprogramming environment its use has not been ef-
foctive). But the ADVISE command alone is not enough control over the core/drum
system for uni-programming, The addition of explicit I/0 to the drum would
improve this situation,

33



In a= previous section a reasonable estimate for a paging rate when running
NASTRAN wis given. This number was 1,250 pages/second, When conparing
this number with the estimated paging rates for the storage station und poging
station, (20 and 175 respectively), one concludes that the STAR-100 CPU
would remain idle moat of the time when running NASTRAM "stand-alone'. The
theoretical maximum paging rate attainable with the 865 drum is #60 pages/
secon,

If the STAR operating system were modified to support large pages and
expllcit 1/0 on the drum, then cffective paging rates on the order of 500 small
pages/second could be obtained,

The "Front-End" Concept
Another method of implementation of NASTRAN would involved transferring

something less than the whole of NASTRAN from Control Data 6600 to STAR-100,
That is, let STAR do what STAR does besi and leave the rest on the 6600,

The operations transferred to STAR could range all the way from selected
matrix operations to selected functional modules,

A link between STAR-100 and the 6600 is currently planned to have the
following churacteristics: powerful physicul connections (5 megabit lines) and

unit record station functionul software gapnbillty.

This implies that the operations selected for STAR should have modest input
requirements, heavy. compute and/or internal 1/0 requirements, and again modest

output requircments.

__ Further, it seems that to be effective, a running program (NASTRAN) on
the 6600 must be able to direct that a file be sent to STAR and either contimue
processing or go into RECALL untfl a file 18 received from STAR and then continue

processing.

34



The STAR-100 System is a general purpose system which is capable of
Iﬂ!zh performance on scalar as well as vector ope}atlons. I a significant
functional feature such as dynamic analysis is to be converted to STAR, many
of the basic tools, features and extensions to Incorporate the rest of NASTRAN
should be developed. These features and extensions include:

Virtual space map maintenance
Virtual file address a‘anigﬁment
Minua page maintenance

1/0 connector managoment
Exception processing

Random access record management
Space allocation/deallocation
Symbolic debug capability

Program card changes

® & & & o & & o o

The nnminal expected performance of the presently envisioned Control Data
6600-STAR link (which does not include double buffering) is as follows:

80 msec CIO read of one page

50 msec Five data link transfer per page

50 msec svice Station write of one page

180 msec Transfer of one page of data fram Control Data 6000
to STAR

This is equivalent to a transfer rate of six pages/second. -

Now suppose it is desired to solve a 20,000 row problem with structural
matrix characteristics as follows: real, symmetric, and banded of semi-band-
width of 1000,

This results in a matrix file of approximately 20 million 60~bit floating
poiat numbers or 37,000 small pages. At a transfer rate of six pages/second

thlé“requires an elapsed time of 6,150 seconds or 103 minutes to cross the link.

35



A problom has been encountered in attempting to transfer the 20 milllon
word file to STAR; mmely, the transfer {8 to the STAR service station which
is presently planned to be configured at the Langley Research Center with two
844 disk drives. STAR operating system does not support files extending
across pack boundaries. BSo we are limited to a file containing at most
23,000 pages which is considerably less than the 37,000 pages required for
the supposed 20 million word fite, In order to solve this problem, provisions
must be made for dividing the large file into more manageable segments.

Before this file 1s usable by an equation solver on STAR, two more pro-
cesses must take place on the file:

It must be transferred (via central memory) to the STAR
storage station.

The 60-bit floating point numbers in Controt Data 6000 format
must be converted into the 64-bit STAR equivalent.

If large data files are to be transferred, specialized techniques using double
buffering, lirge buffers, automatic substructuring, and floating point conversions
should be developed.

Therefore, the remajning conversion effort, to get all of NASTRAN on STAR-100,
while involving significant volumes of code, would not require further system type

extensjons, L '
Interactive NASTRAN

Interactive NASTRAN means 1 NASTRAN system which gives the structural
uhalyst the ability (‘4 .". direct the problem solution while at the interactive console.

This could be lmpléi‘nented by making commands analogous to DMAP and rigid
formats available to the analyst at the console. Also it would be highly .le-
sirable to interact with graphics terminals in order to quickly and convenlently
analyze graphical output. Graphics interactives would require a new set of
commands to be added to NASTRAN,

36



This approach will almost certainly be taken in any major new structural
analysis program, Whether or not this is a reasonable goal for the NASTRAN
conversion effort is dnclenr: The usefulness of interaction of the user with
DMAP sequences without corresponding interactive graphic capability is doubtful,
The interactive graphics capability represents a significant hardware/software
cost outlay which is not in present system plans. Therefore, this true inter-
active mode for NASTRAN execution is currently unrealistic.

For development and maintenance work on NASTRAN, the Interactive mode
of operation will be used almost exclusively fur controlling task execution, That
I»> 0 say a user may gain flexibility in initinlizing NASTRAN execution by using
the interactive mode of operation. It does not mean that a user without know-
ledge of the Internal workings of NASTRAN could usefully and successfutly in-
teract with NASTRAN once it is In execution.

Extended Features for Efficlent Processing
The STAR-100 has an extensive repertoire of instructions and options to
instructions which give the software designer ample opportunity to enhance per-
formance. In particular, some areas which have great potential are: 32-bit

word operand size, vector macro inst'ructions. and string operations.

Half-Word Operands
For every floating point arithmetic operation on STAR, whether scalar,

vector, sparse vector, or vector macro, there is an option to use half-word
(32-bit) operands or full-word (64~bit) operands, Furthermore there are in-
structions which convert half-word operands to full-word operands and other
instructions which conveﬂ: full-word operands to half-word operands, Flgurie 8
shows that a half-word carries 23 significant bits while a full-word carries 47
significant bits.

a7



0 78 31

Half-word Signed -
Opearand Exponent Signed Mantissa

0 15 16 63
Full-word Signed
Operand Exponent Signed Mantissa

Filgure 8. Half- and Full-Word Operand Formats

The stroam rate for half-word vector operands is twice that of full-word
voctor operands. More importantly, but not as easily quantified, i{s the savings
in core memory and auxilliary storage and the Increased transfer rate between
them when dealing with half-words instead of full-words,

Thus, for performance it becomes extremely important to analyze the
amount of significance required at various states of computation, Most raw
engineering data can be accurately represénted in 23 bits, It is recognized
that 23 hits of significance ig not universally acceptable in stiffness matrix
generation, However for many problems it is acceptable.

Error monitoring is relatively inexpensive and very accurate in the solution
of special systems of linear equations. For real, symmetric, positive-definite
matrices an attempt should be made to do both the decomposition and back sub-
stitute in half-word arithmetic. Automatic procedures could be invoked to re-
solve the system using full-word arfthmetic when it becomes apparent that half-

word accuracy is Insufficient.

Again, on the output side, 23 bité of significance would normally suffice

for graphical devices and reports.

This leads to the conclusion that the following important areas be Investi~
gated for possible optional use of half-word operands for representation of matrix

coefficients;

38



Matrix generation modules
Report generation modules

Data recording functions (checkpoint/restart)

Dense matrix operations for small matrices

Matrix operations on well-conditloned matrices

Vector Macro Instructions
SI‘AR has an unusual set of powerful instructions which manipulate operands
in a complex manner. Among these are the following types of operations:

Dot products
Sums
Products

Transmit lists

Matrix transpose

If used with care, these operations have potential in simplifying and
clarifying coding sequences. This has great usefulness in program maintenance.
Presently it 1s unclear whether their use will improve performance. -As the
timing information becomes more stable and if some of the instruction micro-
code sequences are changed, their utility may be more accurately assessed
with respect to improved code performance.

String Operations
Included in these instructions are the generalized binary and decimal arith-

metic 6paratlons. search operations and logical operations on bit strings. These
operations have particular utllity in data conversion, editing, and sorting
operatlons. ’

Alternate Hardware Configuration
Throughout this report a drum paging station has been assumed to.be pre-
sent in the STAR-100 system,

39



It 1s not neceasary to explicitly have a paging statlion in the configuration.
A storage station with Controt Data 844 or 819 disk drives may fulfill the
paging functions completely. As was noted previously, this is always the
case for large pages even with a paging drum station.

A storage station made up of 819 disks Is referred to as a high capacity
disk (HCD) station. 'The random paging rate which can be sustained on the
HCD station is on the order of 100 pages/second.

For the processing of large sequentfal virtual files, efficiency is Im-
proved by having a storage station take on the paging station function. This
Is due to the elimination of the extra overhead paths of getting pages of the
virtual file in and out of the core/drum system.

Lim{tations on Size of Problem
The question of how large a problem can be solved with NASTRAN on
STAR-100 is a formidable one.

There are many dimensions to this question which include:
Theoretical vs. pr"actlcal llmits
Maximum file size

Mean-time between failures and recovery procedures

Available secondary storage space
In principle, the limitations may be eitended almost indefinitely.

STAP, operating system allocates a 16-bit field for cofinition of maw- -
storage file length in sermall pages. This limits a single operating system file
to 34.5 million 64-bit words.

STAR operating system does not allow files to reside on more than one
disk pack. This restriction further limits the maximum file size to 12,5 mitlion
64-bit words on an 844 disk, Similarly this limits a file size to 30 ;hlllton
64-bit words on an 819 disk.

40



Treating an adaption of the existing real-symmetric matrix decomposition
within NASTRAN as representative of limiting conditions allows one to examine
another dimension of the problem. To be technically operable, there need only
be enough real memory data area available to contain two rows of terms of
length B where B ls the semi-band width of the banded portion of the real-
symmetric matrix and B terms-for each of the currently active columns; i.e.,

in +2) B < real memory dat area’

!

where n is the maximum number of active columns. As this inequality ap-

proaches equality, the paging rate Is high, For low paging rates and the

corresponding high performance, the following inequality should be limiting:
(n + B) < real memory data area

2
As an example, assume the real memory dats area available is 400,000

words. Further assume that n is approximately equal to B. To remain in
the low paging reglon, the semi-band width B should be less than 632.

MAINTENANCE CONSIDERATIONS

The sheer size of NASTRAN presents a problem above and beyond the
correctness of theory and engineering technology. The logistics of physical
and mechanical control over one quarter of a million lines of source code in
over 1300 source decks, object decks, and an executable file are formidable,
Carefully integrated methods have evolved from experience with current NASTRAN
operation that define the format of deliverable ffles and specify utility programs
and procedures for handling them, This question of how to "handle" NASTRAN
on STAR will be analyzed during the conversion, maintenance, and excha'nge_
stages,



Conversion Handling

The initial conversion task will be tn géet the NASTRAN machine~-inde-
pendent source code onto STAR., A small modification to the NASTRAN
utility source conversion program will convert Control Data 6000 source
to IBM 360 source with an ampersand (&) instead of a dollar sign (3) in
nonstandard refurn calling sequences. This converted a:)uwe can then be
placed on a STAR update program library in a format compatible with STAR
FORTRAN input, Changes to this library would be hand-coded and applled
using the UPDATE utility program, No significant modifications to this
file are envisioned except for renaming of open-core common blocks and
data block/file assoclation and disassociation,

Machine-dependent source code must be written from scratch and also
maintained on an update library, Aside fram the c_lifflcult task of generating
technically correct and error free code, there shmild be no major "handling"
problem with the machine-dependent code.

The decisfon to execufe NASTRAN as one controllee file climinates many
handling problems associated with Control Data 6000 versions. There is no
necessity to maintain or execute the linkage editor or the XBOOT routines on
the front of the absolute file. There i8 no more LINKLIB or SUBSYS decks
to maintain, The STAR loader will handle input from several librarfes and
ap object library editor (OLE) can perform the functions of the NASTRAN
utility MERGEX. “

Thus during conversion of NASTRAN to run on the Control Data STAR
‘computer, most of the "handling'" problems will be in the source code area with
the object library editing and loading being accomplished with standard STAR
software. The general flow for this procedure is depicted in Figure 9,

42



Souzoe Decks

] | 1

PL | (META FORTRAN
Binary Decks || Binary Deoks | | Binary Decks

__ atrolleé File
T It 18 not anttotpated that IMPL will be used in NASTRAN subsystem but the
poasibility exists none the less.

Figure 9. General Flow of NASTRAN Subsystem Build

43



Maintenance landling
Maintenance lnvq!"vés debuggim of error conditions and checking out cor~

rective code on STAR ’lltself with problems of compatibility and swapping of
fixes betwocn dlffereni} NASTRAN machines left to the next section on trans-
portability. In this phase, indeed in all aspects of operation except actual
execution, the interactive mode of STAR operation will be a boon to the
NASTRAN systems programmer. Each step In code check procedure can be
initlated and completed as a separate task, and debugging will no longer be

the time consuming proéo:.lure it now s with overnight hatch turnaround.

The usual maintenance tnsks would generally be handled much as they
are an current levels of NASTRAN, Changes can be made to the source code by
way of update alters, the changed decks recompiled and reloaded to produce
a checkout version of the system against which test problems can be run to
verify the corrcctness of tho code fixes, Update, object libravy cditor, and

loader are all standard STAR software ihat can he employed in these procedures.

The NASTRAN utility program COMPARE ie FORTRAN coded and easily
converted to STAR, It would be of general use to compare and verify the
implemeniation of alters or to discover what has changed when one is presented

with a clean new version of un old deck.

Thus routine maintenance of the STAR version of NASTRAN on the STAR
machine presents no significantly new or additlonhl problems in handling pro-
cedures, and Indeed may be casler with the use of Interactive procedures and
the tack of link edit/SUBSYS tasks,

Inter-Machine Handling )
The problem of intermachine cbmpatibility hinges on the degree of sameness
in the machine-independent code., If the code can be made to look exactly alike,
it would be convenient to number the source statements alike and have a univer-

sal update program to update the source code from the same alters on all four



NASTRAN machines (IBM System/360, UNIVAC 1108, Conirol Data-G000,
Control Data STAR-100), Such an ldeal situation does not cxit, but the
current situation of slight differences in the machine-independent source

- code is manageable,

In this case, If one sticks to the initial conversion with only slight
modifications to existing machine-independent code, then one can apply many
of the same techniques and procedures used to handle inter-machine maintenance
that are in existence on current third gencration NASTRAN machines, For
short SPR fixes Involving few changes in code, alters from any of the NASTRAN
machines can be hand punched and visunlly vevified into a format for updating
on any other NASTRAN machine. For morve extensive changes, both new decks
and the alters that produced them are desirable. Then with the help of the
compare utility, the user can decide whether to {nstall alters Into his decks
or reinstnll his alters in the new decks. Of course there is no simple,
mechanistic approach to the machine~dependent routines since the source code
varies so radically on each of the NASTRAN machines, A bug found and fixed
on one machine needs to be tested and troced on the others. Any major
improvements or additions to machine-dependent code Involves additiona! re-

writing of code on all machines,

Progressing beyond the initial conversion to where future versions of
NASTRAN might have a redesigned and radically different machine~independent
source code to take special advantage of STAR architecture, one arrives at a
contradiction in terms., If the code is different, then it isn't machine~independent.
What one has §s8 two versions of NASTRAN with more mnch_iﬁ'e-rdependent code
than Independent code. One has really returned to the pre-NASTRAN mode of
maintaining separate versions of a program on separate systems. Eventually
a decision must be made as to whether compatibility between third and fourth

generation systems is as fmportant as cxploiting fourth generation technology.

AL PAGE I3
OF POOR QUALITY 45



Operational Reliability
A large conversion effort to a new and radically different enviromment
i8 hound to reduce the relinbility of NASTRAN for some time in relatlon to
the reliability now enjoyed on the Contiol NData 6000,

On the STAR=100 System, with its speed and an interactive debugging
capabllity, the turn around time for lmg fixes should be very much less than
that experienced on Control Data 6000 series with comparable level of

personnel competence,

An estimate of the mean-time-between=fallure for the STAR-100 System

18 unavailable,
MANPOWER ESTIMATES

The estimates and suggestions contained herein are in no way to be in-
terpreted as commitments on the part of Control Data Corporation to produce
within these guidelines or even to develop them at all. They are simply
frank assessments of what might be done and at what cost as seen within the
limited confines of this study.

The effort to convert NASTRAN to STAR-100 may be grouped according
to the following categories:

Operating system modifications
Compiler maodifications and extensions
Pseudo-operating system features
Machine~independent corde conversion
Machine-dependent code conversion
NASTRAN optimization

Maintenance

46



Operating System Modifications
Operating system modifications should be made by the standard
operating system group to ensure continual support and muintenance of these
modificationa.

Batch Drocessor
The batch processor should be extended to recognize files which exist
for the duration of a job (l.e., across several taaks). The names of the
files are unique only to that job, and the files are automatically purged
upon job termination unless overt action Is taken to prevent purging. This
greatly simplifies batch control card sequences and prevents unintended flle

proliferation,

Loader
- The loader must be extended such that it is possible and relatively con-
venlent to group by various arrangements, more than 1000 routines and

common blocks. This constitutes no basic new features for the lcader.

Debugping Aids
Symbol table output from FORTRAN is provided for the purpose of

symbolic debugging, The debug features of STAR operating system should give
the user the capability of symbolic debugging.

A memory dump utility which allows the user to conveniently dump the
controllee and/or drop files is a basic requirement lacking from the presently

defined debugging alds.

Compiler Modifications and Extensions
Modifications and extensions to the STAR FORTRAN compiler per se should
be made by the standard compiler group to ensure continual support and
maintenance. STAR FORTRAN library routines could came from a variety

of sources.

47



Nau=-Standard Returns Lahel
Elther the compiler could be modified to accept "$" as well as "&" to
gignify a non-standard return label or the NASTRAN source code could be
preprocessed to accommodate this minor discrepancy. it is recommended
here that the existing NASTRAN utility source conversjon program he changed
to modify the machine~-independent code rather than modifying the compiler,

FORTRAN IV_Library Routines
These rautines may be divided into thiee classes:

Those which have an exact equivalent in STAR FORTRAN
Those which are umised {n NASTRAN

Those without an c¢xact equivalent

Those routinee which have an exact equivalent with exception of routine
name should have the name changed in the outhoard preprocessor or cataloged
in the llbrary with new names. Those unused in NASTRAN may be
ignored in the conversion effort. Those without an exact equivalent {n STAR
FORTRAN must be provided.

Program Card
The STAR FORTRAN compiler should be modified to provide some file

device flexibility without necessitating recompilation, i.e., the user should
have device destination as a run-time option to decide which files are to
physically exist on tape und which files arc to he assigned to disk., The
user presently does not have this option.

Half-Word FORTRAN
As a convenience in exploiting the 32-bit arithmetic capability of STAR,
it is desirable to allow the definition of 32-bit ‘operands to be analogous to
64-bit operand usage presently used in STAR FOR"I'RAN'. There have heen

two different proposals made for this implementation, namely:

48



e 'ntegrate a half-word TYPE into the present compiler.
e Build another compiler analogous to the prescnt one, but using
32-bit as the hasic operand.

Pseudo-Operating System Features
These three features, virtual space manager, indexed sequential record
manngement, and physical space allocation/denllocation are classified as pseudo-
operating system features, because with carcful design they would have universal

utility for large general purpose programs,

Virtual Space Manager (VSM)

The virtual space manager Is responsible for the following six functions;

Non-1/0 NASTRAN/OS interface

Virtual space map maintenance

Virtual file address assignment to fogleal disk space
Minus page maintenance

1/0 connector manragement

Exception processing

Indexed Sequentinl Record Management

A subset of indexed sequential record manngement is recomrended to

simplify the conversion effort and yet run efficiently. This subset is:

e Indexed sequential (integer keys, actual keys) for virtual flles

e Indexed sequential (integer keys, actual keys) for physical files

Physical Space Allocation/Deallocation
Upon entry to a module, it is necessary (as is presently done in NASTRAN

via DMAP at least) to declaré which files are needed and whether they are input,
scratch, or output files. This information must now be augmented with direc-

tions for determining a reasonable size for ail scratch and output files.

Thus, each of the approximately 85 modules must have a speclally tailored

prologue to supply reasonable data block sizes.

49



Machine~Independent Code Conversion
~ The conversion of machine~independent vode involves editing over 1200
NASTRAN source decks written in n subset of FORTRAN IV, This includes:

e Modification to Source Conversion Program to convert from
Contro} Data source code to IBM source code with ampersand
(&) instead of dollar sign ($).

o Processing of Control Data NASTRAN source files to produce
pseudo=-IBM scurce file.

e Processing of pseudo-IBM source file to produce tape filo
physically written and blocked for STAR compatibility.

e Creation of an UPDATE tape of STAR machine~-independent
NASTRAN source codes.

Machine-Dependent Code Conversion
Several routines associated wv/ith linking and loading have been eliminated.
New routines associated with pseudo-operating system modules have already
been mentioned. The remaining current machinn-dependent routines require
a straightforward translation of the language or the function.

NASTRAN Optimization
Optimization opportunities exist throughout most of NASTRAN, however,
the areas of greatest potential are:

Record'management
Matrix file structure und the primitive matrix operations
Selective use of half-word operands.

Record Management
The- indexed sequentfal record management scheme presently used in

NASTRAN, but extended to include virtual and physical flles, s belleved to ‘be
effective for STAR-100, An optimization effort would involve choosing a file



type (physical or virtual), buffer sizes, and NASTRAN flle distribution over
STAR operating system files. If there is a significant usage of random filies
on the order of 800,000 to one million words in size, it would be advisable
to investigate the implementation of hashing techniques [or random access
such as the direct access method.

Matrix File Structure
With careful attention to design, the matrix file structure can be changed
to a dual-file concept with only minimal impact outside of the primitive matrix
operations themselves., Assuming an adaptation of existing algorithms without
significant new mathematical development, the routines which should be com=
pletely recoded are as follows: |

BLDPK GFBS PARTN
cDCcoMP GMMATS PLAMAT
DECOMP INTPK SADD
DMPY INVERS SDCOMP
ELIM MERGE SOLVER
FACTOR MPYAD TRANSP
FBS PACK UNPACK
UPART

Half-Word Operands

Within the present software structure there are two options for implementa~
tion of half-word operand processing, namely through STAR FORTRAN special
calls or through assembly language subprograms. Although much more fncon-
venient than coding in FORTRAN IV, the cost of implementation this way may
be less than the cost of explicitly adding this feature to FORTRAN. However,
it should be possible to amortize the FORTRAN extensions over several pro-
jects, Specific areas which, without doubt, could be implemented using half-
word operands have not been identified.



Maintenance
Maintenance tasks can be split between the conversion phase and the
ongoing mainternance phase as follows:

e Preparation of initial libraries and development of procedures
for use during conversion

e Procedures for development of new and corrective code on
STAR and its distribution to other NASTRAN machines

e Integration of new and corrective code developed on other
NASTRAN machines.

) Cost Breakdown ;
Table 3 Hlustrates the effort involved and alternatives possible in de-
veloping NASTRAN for STAR-100 as described in this study. This precenta-
tion is based on features rather than specific routines, Estimates of the
effort involved are displayed, It is unrealistic to present a routine Ly routine
breakdown at this time. This could come only after considerable detailed
design effort is expended.

Basic Conversion
Figure 10 is a graphic representation of a reasonable work allotment for
the basic NASTRAN conversion effort. This corresponds to the i{tems labeled
"Vital" in Table 3 and refers to a scaler version of NASTRAN on STAR-100,
This figure shows that the conversion could be done In an elapsed time of

nine months with a peak manpower losiﬁing of eight people.

__ Matrix File Structure and Vector Processing
There are four basic families of matrix operaticns which are effected by
matrix file structure and which may be vectorized in varying degrees:

52 -



Matrix conposition

Matrix Decomposition

Matrix Multlpty - add and transpose
String utllitles

These operations should be valid for eilther single-precision real or com~

plex values of the coefficlents.

The graphs In Figure 11 show a reasonable manpower loading and elapsed
time for vectorizing these time-consuming operations.in NASTRAN. .The volume
of code involved in vectorizing the important operations appears moderate.

The difficulty involved in interfacing with other more casual users of matrix
files is unexplored and accounts for the large manpower difference In the
graphs. It should be noted that system checkout of vectorizing code can not

begin until the basic conversion is complete.

53



HOT y ¥ SOVSWIOJIA] SO opnasq 1e2184q4 [EImuanbag-xopu]
18 =A SO opnasq 1ERIIA Tepuanbog-xapuj
net =iA SO opnasq Auyssasoag uwopdsaxy
ue =iA SO opunasg JwowRleuel J0303uu0). O/1
uv eNA SO opnasg " sourueympely ofeq snumy
uv 1ENA SO opnasd Woum3[SSY €83IPPY SIId JEMAIA
ys 112171 SO opnasq adueudulely depy aoeds [emaiA
18 30WITUIAVO)) SO opnasq SO/NVHISVN O/I-uoN

*3d0 NVHISYN
i) S0UITAATO) /¥d aspdun) (2) NYHIMOZI paom-iEH
P 20UAIIABOD w“wm MMM%MM (D NVHINOL pIom-JieH
b.m 3JUIUIAUG)) polX Jofrdwo) “ | pae) uwreaSoig
A90) 2poD pul .
9 T OEA /PO 33duw) AxeIqiT Al NVHLHOL
__ ~ auo) apo) prj _
T 0TIATWIAUO)) " /PSR Japidwo) 19QET SUINJ9Y PIEPUEISUON
1 0UdEIAW D) PO SO sdum@ AJowsl [EMIIA
4ot Suamuasu0) POl SO 3nqaq onoquiss
.mu ENA PON SO Iapeo]
._.w . SOUSERALIOD PO SO JoSsax01d Yoyed
sSpooly UOSESY AJo3a1e) aamecd
el

NOILLVIAVAV (0I-HVIS - NVHISYN

‘€ JTdVYL

54



*200p 3q }SNW ISaY) JO WO JSEI] JY  IUOp S} ~u3u_>u_muﬁo=mmmnxmvﬁ ey} soumsse SIYL JIT] .

*aseD Jey)

apnpul 10U op 319y swvwsd ~ Jmwmueld NJaaed WM PazijeIouad aq pInod saanjeay SO Opnasg i
-vopjeaodio) BjEQ 10IWOD JO woISIAY] Juswdo]aArd@ 001-HVIS Aq 2uop aq pinoys sSaanjesj asayl i

SOOI UEN L9 SHSEL 1ENA 30 Te0L
T ®HA 2oUBUUIBH] §3xNpadoIg pue wopeaedarg Livaqiy
Apmg spaaN souemIo}Ied -1d0 NVHISVN spugaado pIom-HeH
09-0¢ ANMUeULOJINd *3d0 NYHISYN aanonaig o1 XIIEN
Apms spaaN aouEWLIo}IAd NVHISVN/SO opnasg juawaleuely pi0d2y
¥ EHA *aw0) 3poD -dog | woisiaAu0) apo) JuapEICI-UIPEN
8 1ENA -Au0) apoD pul [uoisaaauc) apo)-,uspuadopul-ouIyOE
401 rEnA SO opnasg UO11EO0]{Ea( /U0 TRIO| Y
SUJOOW "GOSEaY AJOSSICy EXTGLER |

55



{(NVUISYN JE[EIS) UOISIAUCD NVAISVYN Jiseq 10) Emw&uwz ey sun] “91 Q.uﬂwm.m

~dunsy
aouRINSSE Ljenb aapsuaxs 0 WONE)
~I2UWNXOp JEIXIIXD IpNjou] jou £20p SWY AXON

wonpessdaxd Areaqry
‘001813AW00 apod juspuadap-UTYOEW ‘IapEROY

~Jafeuew oy Jemaa jeyuanbos paxapu

*BOJEJAAUCD Ip0d JuIpTAdapul puUE SIRICIIEIP/IFEIO Y

*(30%J13001 YVIS/NVHISVN O/I-wou pue Jujssod -

-02d wopndaoxa jnoqua) Jafwuem soeds JemaiA

*Baisgadoxd wondaoxs pue Areiqn Al NVHINOA

B

€ ¥ £ 21 0

A
Jamoduely
squo

b6



Batssaooag uc,auwb *11 2anhgy

NCNOYD _ apoo _ udisap.
1
A
‘ €
_ v
Jamoduely
BT 2@ ST ST #¥1 €1 2T 11 Ol 6 8 &L 9 € %# € 2.1 O “ STHUON
eunisy onsiunssag
MOYOIYD | 3pod udysop
1
4
R’
b4
Jamoduep
6L 6 8 L 9 S ¥ € Z2 1 0 sYuoN

ajeunyysy oNstwndp

57



CONCLUSIONS

This study concludes that NASTRAN can be converted to run on the
Control Data STAR computer. The findings are that:

NASTRAN machine-independent source statements are
readily convertible

FORTRAN compller anxl library are compatible

NASTRAN can execute as one controllee flle with module
groupings
File allocation and {nput/output activity must operate under

control of a virtual space manager

1

The basic conversion’ effort is estimated to be six man-years

L The basic conversion effort produces only scalar code for NASTRAN.

58



GLOSSARY OF STAR 08 TERMS

Controllee file = The file which contains NASTRAN executable code and
initlalized data areas. This file is nover tnodified during execution.

Drop file = The file which contains all modified controllee file pages and all
used pages which were not assigned by the user to a virtual file,

Explicit 1/0 = Input/output which occurs under the direction of the user
| ‘through the use of virtual memory buffers which are "locked-down"

‘in g:ea\ memory.

GRLP - A STAR loader directive which allows the user to group routines
and/or common areas in a user defined arrangement on a large page

boundary.

GROL - A STAR loader directive which allows the uscr to group common
arcas in a user defined arrangement on a large page boundary. No
minus page map entries are gencrated. This {s the responsibility of

the user at execution time,

GROS - A STAR loader directive which allows the user to group common areas
in a user defined arrangement on a small page boundary. No minus page
map entries are generated. This is the rosponsibility of the user at

execution time.

GRSP - A STAR loader directive which allows the user to group routine and/or

common areae in a user defined arrangement or a small page boundary.

IMPL - The implementation language in which the central operating system is

written.

59



1/0 Connector = An input/output coanector Is a four-word nlock used by the
operating system to establish a link between the program and its 1/0
dévice. The operating system uses an 1/0O connector to keep track of
a apecific file's activity and a program's use of that file. Each time
a program ilasues a create or open file request, an I/0 connector
is created,

LINK - Collection of one or more segments which comprise a logical sub-
division of the program.

LINKLIB - Collection of subprograms which are used to satiafy unresolved
externals In NASTRAN.

META - The assembly language used in coding STAR-100 central memory
programs, |

Minus Page - All virtual files bave a minus page preface; it consists of
512 word segment (small page containing information to control pro-
gram execution and data acoeas).

OLE - Object library editor. The STAR loader uses ltbrary files as a source
of modules to complete unsatisfied externals. OLE is used to create and
modify such libraries.

Pool Files - Files which are accessible to more than one user, but which are

not universally accessible,

RECALL - The state of a program when it has released control of the central
processor until a fixed time has elapsed or until a requested function is

complete.
Sparse vector ~ A vector with a high incidence of zero elements.

* SUBSYS ~ Procedure for generation of functional links in NASTRAN.

60



Uni-programming - The exccution of only one program at a time.

virtual 1/0 - Input/output which occurs (perhaps unknown to the user) when
virtual memory referenced exceeds the available real memoxy or when

virtual memory rcferenced has not been associated with real memory.

XBOOT =~ A hootstrap program which writes subsequent programs as an
indexed file on disk and then passes control to an entry point which
initiates execution of the problem program.

61 .



APPENDIX A
SCALAR CPU TIMING COMPARISON BETWEEN 6600 AND STAR-100

The following information was extracted from the Control Data Corporation
Standard Benchmark Library, Several points are noteworthy:

6600 compiuter system timings are actual

STAR-100 timings are computed

STAR FORTRAN code i{s unoptimized

Only scalar code was generated by STAR FORTRAN
Virtual addressing was in effect on STAR-100

Table A.1 presents the results of a comparison of ten problems. Brief

descriptions of these problems follow tke table,

Table A.1. 6600/STAR-100 SCALAR CPU COMPARISON

6600 STAR-100 Ratio
Problem| CP Seconds CP Seconds
1 11, 507 6.050 1. 9020
2 13. 297 12.600 1.0553
3 10.058 5.353 1. 8790
4 7.465 4,000 1. 8663
5 7.065 3.600 1. 9625
6 6.721 4, 740 1. 4179
7 6.309 5.020 1. 2568
8 4. 726 3,200 1, 4769
9 12.531 4, 250 2, 9485
10 9,841 3.300 2.9821
Average Ratlo 1. 87470
Standard Deviation of Ratio 0.65047
Maximum Ratio 2,9821
Minimum Ratio 1, 0553

BRECEDING PAGE BLANK NoT pacy =~ ©°




1)

2)

3)

Name

Source Btatements
Language

Purpose
Description

NameJ

Source Stutements
Language

Purpose
Description

Name

Source Statements
Language
Purposoes

Description

ADVAN

68

FORTRAN

CPU Performance

Dynamics code which tests 3-dimensional subscripts.
This kernel! presenis significant opportunity for
subscript evaluation optimization, This kernel is
the solution of three simultaneous partial differ-

ential equations for a plane rectangular object.

BIG1LP

18

FORTRAN

CPU Performance

This kernel forma a dot product of two vectors
with a dimension of 200, It tests the efficiency
of small loops,

GIBSON

a2

FORTRAN

CPU Performarce

Written to produce code on the Control Data 3600
to approximate the Gibson Mix - an instruction
mix (I.e., values are calculated by multiplying
the execution times for selected instructions
based on their (supposed) frequency of use),
These products are summed to give the "GIBSON
VALUE" for that machine, The mix is for CPU only;

TThe word kernel throughout this appendix refers to the fact that the test was com-
pletely in core and no I/O was involved.

64



4)

3)

6)

Name

Source Statements
Language

Purpose
Description

Name

Source Statements
Language

Purpose

Description

Name

Source Statements
Language

Purpose
Description

no /0O is considered,
from actual problems on many computer systems

show the relative speeds as indicited by the Gihson
Mix are also valld for throughput.

However, timing comparisons

LINK

29
FORTRAN
CPU Perfocsmance

This kernel extracts elements fram a data array
via a function call and sums those clements. It

tests the efficlency of function iinkage.

SCI-1

7

FORTRAN

CPU Performance

This §{s a subroutine which generates a Hilbert
Matrix, Element (I,J) of the matrix is set to
1/(1+J=1),

8CI-2

19

FORTRAN

CPU Performance

This i{s a subroutine which inverts the Hilbert Matrix
generated by SCI-1,

65



7

8)

9)

10)

Name

Source Statements
Language

Purpose
Description

Name

Source Statements
Language
Purposes
Description

Name

Source Statements
Language

Purpose

Descriprion

Name

Source Statements
Languuge

Purpose
Description

8CI~3

9

FORTRAN

CPU Performance : :

This kernel forms the product of the Hilbert Matrix
generated by SCI-1 and the Inverse of the Matrix
generated by SCI-2.

SINCOS

40

FORTRAN

CPU Performance

This kernel converts a set of cocordinates from polar
to Cartesfan form. It evaluates the performance of

SIN and COS functions.

SORTEST

53

FORTRAN

CPU Performance

This kernel creates 10000 random integers and sorts
them in core using a shell sort. It tests random

branching.

TBLLNK

52

FORTRAN

CPU Performance

This kernel builds a series of chalned table entries.
It tests random branching.

66



APPENDIX B
STIFFNESS MATRIX DECOMPOSITION TIMING

The information contained ia this appendix was extracted fram a report by
the Advanced Software Research Department of Control Data Corporatfon,
December 1974.

Structural analysis consists of several steps as shown In Figure B-1. The
most complex (In terms of arithmetic and data: management) is the decomposition
of the stiffness matrix. This phase consumes nearly all of the computing re-
sources (memory, CPU time, 1/0 time) compared with the other steps as the
problem size increases. This is also {llustrated in Figure B-1l,

Algorithms

The stiffness matrix requiring decomposition is almost always a symmetric
poritive definite matrix (l.e. Q ‘ AQ > 0). The algorithms used are Gauss
eliminatict (in symmetric form) or one form of Cholesky decomposition (with
or without square roots) as shown in Figure B-2. The original ordering of
nodes in a structure is renumbered to reduce the matrix bandwidth. The
"effective bandwidth" (designated by the mnemonic NBAND) depends upon the
programming (numerical) algorithms used in implementing the mathematical
algorithm. 7Thc width of each row is the number of elements from the first
non-zerc position up to (but not including) the diagonal. A classical constant
band algorithm requires the effective bandwidth to be equal to the largest row
width., A variable band algorithm (often called profile method) sets“ the
effective bandwidth equal to the average row width. The effective bandwidth is
the kev to the computational assets required. We have broken the analysis into
two categories:

1. Variable Band Algorithms - The effective bandwidth has been set to 1.5 N

2, Constant Band Algorithm - The effective bandwidth has teen set to 4 { N

67



Where N is the number of equations to be solved. There are in-between cases
such as the active column approach of NASTRAN, Also for the two algorithms,
there is considerable deviation from the averages of 1.5 Y N and 4 ¥V N,

The specific programming procedures used are shown in Flgt;re B-3.

CPU Timing Analysis
The section explains the details involved in the calculation of CPU time re-
quirements for the Control Data 6600 and STAR. A formula i{s derived for
each computer and formula verification data via benchmarks 1s fllustrates.

The Control Data 6600 CPU timing formulas are shown in Figure B-4. The
6600 CPU time, unlike STAR, is contributed to by swapping and mapping factors
reflecting CPU time used for data mangement functions (since the entire problem
will not fit into 8600 central memory). Thé breakdown of the 6600 CPU time by
function is shown in a tabular form in Figura B-5. Figure B-6 shows the valida-
tion with IMPT benchmarks,

The STAR timing formulas are shown in Figure B-7, The formulas are de=
rived using a simulation program for the STAR-100. The base data for individual
inatruction timings come from the STAR Advanced Development Laboratory Report
of April, 1974, '"STAR-100 Timing Docunent" (through Revision 3). These
timings have been verified on STAR except for the micro-code type of complex .
instructions using bit patterns, etc.; none of these instructions were uséd in the
benchmark codes. The simulator accounts for memory conflicts, pipe conflicts,
register confliets, branches to various superword positions in and out of stack,

etc., in the timing analysis.

¥ IMP 1is a software system for the direct or iterative solution of large differential
and/or algebraic systems. Copyright D. M. Brandon, Jr., March 1972,

68



Figure B=8 shows STAR and 6600 CPU times fui the variable banded al-
gorithm based on full machine utilization, T The analysis for both constant
and variable banded algorithms was done for full utilization of both machines
(uni-programming) and pm'tialT utilization of both machines. Both Gauss
and Cholesky algorithms were evaluated for STAR and both FORTRAN and
COMPASS code were evaluated for the 6600, Figure B-9 shows the STAR and
the 6600 CPU time for the variable bandedf;lgoﬂthm bmsr;d on partial machine
utilization, Figure B-10 shows STAR and the 6600 CPU time for the constant
band aigorithm based on full machine uttlization. Figure B-11 shows STAR
and 6600 CPU time for the constant band algorithm bnsed on partial machine
utilization, |

1 Full or partfal utilization is defined as a real core memory data area of

the following sizes: y
STAR-100  Full utilization ' 920, 000 64=-bit words

STAR-100  Partial utilization 263,000 64~bit words
CDC 6600 Full utilization 60,000 60=bit words
CDC 6600  Partial utilization 12,000 60-bit words



STEPS (STATIC, LINEAR-ELASTIC)

o Data input

e Geometry check

e Cartesian coordinate transformation
o Global coordinate transformation

e Stiffness matrix generation

¢ Matrix decomposition

e Forward substitution

e Back substitution

e Stress recovery

e Data output

TIME REQUIRED (LARGE PROBLEM - FULL CDC 6600 MEMORY USED)

CPU TIME 1/0 TIME'
Decomposition 7,639 32,477
rotalTt 10,090 32, 654

¥ “Not actual 1/0 time, but SCOPE 3.3 accounting algorithm.
L Includes all steps above.

Figure B-1. Structural Finite Element Analysis

70



ORIGINAL PROBLEM

Ax = B
whel'"e:
u Stiffness matrix

= Load vector

| = >l

X = Displacement vector

DECOMPOSITION

A = LDOY

FORWARD AND BACK SUBSTITUTION

=1
N
]}

=

(i}
o’
H]
~N

where:

CHOLESKY DECOMPOSITION

e Dot products used to find 1

GAUSS DECOMPOSITION

e Row operations used to find rf'.?

Figure B-2 Algorithms

71



BOTH MACHINES

e Storage of original and decomposed stiffness matrix by rows only
in cummulative lists

® Variable banded (profllé) method used for timing
e Separate storage of dlagonal vector D (actually D-l)
e Full "shortcuts" code employed:

o Singleton diagonal elements

e One element in row prlor to diugonal

e Dot products and row operations performed with shortest

length on row camblinations
e Cummulative Indexing of A and U (or f..) with indices for:
e First non-zero position in row
e Diagonal position in cummulative list
e Full error monitor code

e No data packing (full word usage)
STAR

e Virtual memory used.
Control Data 6600

e ABDM (Arithmetic Block Data Manager of {MP) used

Figure B-3, Programming Procedures Used

72



w600 G600 6600 6600

Fepu ® Tate * Taar F Tswap
where:
8600
T ALG Time due to arithmetic or algorithm (If the algorithm were
written to operate entirely within corec memory, this would be the
6600
only factor In TCPU)'
6600 ,
TM AP Time due to mapping (finding page location for data on disk and
in core buffers).
6600
TSW AP CPU time due to execution of swap routines and FORTRAN, 6RM
and CIO calls,
00 .
'rgﬁm a, s N+a e NoNBAND + (&, / 2) ¢ N+ NBAND®
a4 = 4.0 o 10"5
ag = 2.7 1073
ag = 3.0 . 1076
6600 ,
TMAP a7 +«+ N + as ¢+ N « NBAND
FORTRAN COMPASS
a, = 4.0 ¢ 1078 2, = 4.0 o 103
_ -4 _ -4
RS—S-OOIO 38-200.10
6600 , - -2
1‘SWAP ag ¢ NSWAP ag = 2.1+ 10
where:
N = Number of equations
NBAND = Effective semi~bandwidth
NSWAP = Number of page swips
+ *

Fig;:fe B-4, Control Data 6600 CPU Timing

¥ Based on variable banded algorithm code (profile method) with full error recognition
{60~bit arithmetic).

73



VARIABLE BAND ALGORITHM
(NBAND = 1.5 V'N)

Time (Seconds)
Number 1 2
of Equa=| __ Algorithm Mapping Bwapping Total
tions FORTRAN COMPABS|FORTRAN COMPASS| FORTRAN COMPASS [FORTRAN COMPASS
100 07825 . 07825 1. 1500 0. 7000 0 0 1. 2282 . 77825

250 |.36362  .36362 |3.8750  2.1500 |.02100  ,02100 [4.7596  2.5346
500 |l.2822  1,2822 |10,250  5,3000 | .06300  ,06300 11,505  6.6452
750 |2.7514 27514 [18.375  9.1500 |0.1260  0,1260 |21.202 12,027
1000 [4.6225  4.6225 |27.500  13.400 |0.2100  0.2100 (32,332 18,232
3000 [37.020 37,020 [136.00 61,200 |1.1340  1.1340 173,15 99,354
5000 (98,780 98,780 265,00 126,00 | 2,4570  2.4570 386,24  227.74
10000 [378.40  878.40 [790,00 340,00 |111.28 111,28 [1279.7 829,68
20000 [1463.6  1463.6 |2200.0  928.00 | 1057.6 - 1057.6 (47212  3449.2

The FORTRAN code was written so as to complie into the optimal machine code,

“ The swapping CPU time is the same for FORTRAN and COMPASS since the same
COMPASS 170 mucros and 6RM/CIO calls are used (owever the swapping 1/0
time diifers),

Figure B-5. CPU Time - CDC 6600 Full Machine

74




FULL MEMORY UTILIZATION

ACTUAL FORMULA
6600 6600
EXAMPLE_ | N NepBAND? Tepy  nswaps | Tepy NSWAPS.
1 50 6.25010° 1.49 3 1.2 0
2 100 2.5.10° 3. 56 3 3.4 1
3 250 1.56e10° 14.0 3 13.8 4
1 500 6.25.10° 42.9 20 40.7 12
5 750 1.41410° 90, 1 93 78,9 63
PARTIAL MEMORY UTILIZATION
ACTUAL FORMULA
o| 4000 15600 -
EXAMPLE | N NeNBAND CPU____ NSWAPS | 'cPu NSWAPS
1 50 6.25010" 752 3 1.3 2
2 100 2.5010° 2. 26 6 3.5 6
3 250 1.56e10° 31.2 989 35.9 1053
4 500 6.25010° 152.9 4493 127.5 4144
5 750 1.41010° 281, 2 9457 273.2 9316
Prigure B-6. Formula Validation Comparisons with CDC 6600 Benchmarldcs)r

t

FORTRA code of IMP Version 2.0.




Tg‘:]"eul e N+a o No NBAND + (as /2) o N o NBAND?
VECTOR MODE

cavss® cHOLESKY!
ay = 1.89 o 1078 8, = 169 s 0%
n, = 2.0 o 105 a, = 1,50 o 1078
ag = 6.00 o 1078 a, = 1,60 o 1077
where;

N = Number of equations
NBANMD = Effective semi-bandwlidth
Figure B-7. STAR-100 CPU Timing' '

1.

Crossover point between Gauss and Cholesky is at an effective bandwidth

of about 100,
it

Based on variable banded algorithm code (profile method) with full error.
recognition code (64-bit arithmetic).

76



VARIABLE BAND ALGORITHM
(NBAND = 1.5 {N)

Number of
Equations

100
250
500
750
1000
aoro
5000
10000
20000

Tinme (seconds)

- STAR (FORTRAN) CDC 6600 (CHOLESKY)
GAUSS CHOLESKY FORTRAN COMPASS
0.032715 0,02619 1.2282 . 77825

0.12427 0, 19155 4.2596 2.5346
0, 35743 0. 30051 11.595 6.6452
0.67007 0, 57628 21.252 12.027
1.0299 0.90002 32.332 18,232
5.6065 5. 3605 173. 15 99,354
12.433 12,539 386,24 227.74
37.089 40,G89 1279, 7 829.68
112. 57 135. 89 4721.2 34190, 2

t The difference in these times is due to mapping, not the arithmetic in the

fnner loop.

Figure B-8,

Full Machine Utilization~CPU Time of STAR-100 vs. CDC (600

(Variable Band Algorithm)

77




VARIABLE BAND ALGORITHM

(NBAND = 1.5 ¥N)

Time (seconds
Number of STAR (FORTRAN; CDC 6600 (CHOLESKY)
Equations GAUSS CHOLESKY FORTRAN COMPASS
100 0.032716 0.02619 1.2702 0, 82025
250 0.12427 0.10155 4, 3856 2,6606
500 0, 35743 0. 30051 11,994 7.0442
750 0, 67007 0.57678 21,987 12,762
1000 1.0289 0; 90067 33. 424 19,324
3000 E. 6045 5.3605 457.87 384,07
5000 12.433 12,539 1177, 7 1187.4
10000 37.089 40.689 4339.4 3889.4
20000 112, 67 135. 89 16307. 15036,

Figure B-9, Partial Machine Utilization-CPU Time of
STAR-100 va, CDC 6600 (Variable Band Algorithm)

78




CONSTANT BANI) ALGORITHM
(NBAND = 4 ¥ N)

Time (seconds)
Number of STAR (FORTRAN) CDC 6600 (GHOLE;iKY)
Equations AUSS CHOLESKY FORTRAN COMPASS
100 « 08709 « 07469 2, 7602 1. 65620
250 . 35107 . 320356 10, 862 6. 1866
500 r |1 3634 1. 3345 31.601 15, 251
750 2, 6060 2.634¢6 9, 856 35,331
1000 4,0498 4. 2010 04, 44 07. 044
3000 24.392 8,236 743. 38 546. 28
5000 55.013 67.703 2035, 2 1612.2
10000 170.49 230,09 G839, 7 5639, 7
20000 537.25 798, 85 21914, 20524,

Figure B-10. Full Machine Utilizatiou-CPU Time of
STAR-100 vs, CDC 6600 (Constant Band Algorithm)

79



CONSTANT BAND ALGORITHM

(NBAND = ¢ Y'R)
Time {(seconds)

Number of S8TAR (FORTRAN) CDC 6600 (CHOLESKY) a
Equations GAUSS CHOLESKY FORTRAN COMPASS |

100 . 08709 . 07469 2, 8570 1.6570

260 35107 . 32035 14. 558 9, 8326

500 1.3034 1.3345 87,461 74.111

750 2.6060 2,6346 185, 37 140, 85
1000 4, 4098 4.2101 318,28 260,48
3000 24,392 28, 236 2697, 7 2400.%
5000 55,013 67,703 6946.1 6523, 1
10000 170.49 230,09 27004, 26804,
20000 6734.0 6995.6 105150, 101760.

Figure B-11, Partial Machine Utilization-CPU Timeé of
STAR-100 va. CDC 6600 (Constant Band Algorithm)



BIBLIOCGRAPHY

Coffimman, F. G.; and Denning, P, J.: Operating Systems ‘Theory.
Prentice - Hall, 1973,

Control Data Corporation: Control Data STAR Computer System FOIR'URAN
Language Reference Manual, Pub, No. 60386260, June 1974.

Control Data Corporation: Control Data STAR Computer Svstem Operating
System Reference Manual,  Pub. No. 60384400B, January 1974.

Control Data Corpovation: Control Datii STAR~100 Computer System Preliminary
[nstruction Exceution 'Thning Manual, Pub. No. 604400600, July 1974,

Control Data Corporation: M a Science Library. Pub. Nn. 603275004, Vol. 6,
March 1971,

Control Data Corporation: STAR=100 Computer System Hardware Reference
Manual, Pub. No. 60256000, May 1973,

Denning, P. J.: The Working Set Model for Program Behavior. Comm.,
ACM 11, May 1988, pp. 323-333.

Douglas, F. J., ed.: The NASTRAN Programmer's Manual. NASA SP- 223, |
1974,

Field. E, L.; Johnson, S. E.; and Stralberg, H.: Structural Mechanics Computer
Progvams. University Tress of Virginia, 1974, pp. 1019-1042,

Geurtin, R, L.: Programming in a Paging Fnvironment. Datamation,
Fehruary 1972, pp. 44-556.

Heuer, G. A.: Matrix Algebra and Related Problems., Control Data
Technical Report TR 53,

Hohn, W. C.; and Jones, P. IL: The Contzrol Data STAR-100 Paging Station,
National Computer Conference, 1973, pp. 421-426,

IBM Corporatioa: IbM 7090/7094 IBSYS Operating System Version 13
FORTZ2AN IV Languages. File No, 7090-25 GS28-639C~4, Novembher 1968.

Bl



Lambiotte, J. J., Jdr.s and Bolgt, R, G. : The Solution of Tridiagonal
Lincar Systems on the CDC STAR-100 Computer. Institute for Computer
Applications in Sclence and Englncering (JCASF), July 1974.

MucNeal, R. H., ed.: The NASTRAN Theoretical Manual, NASA SP-221(01),
1972,
.

MeCormick, C. W.; and Redner, K.H.: Study of the Modifications Needed for
Effective Operation of NASI'RAN on IBM Virtual Storage Computers. The
MaeNeal-Schewendler Corpovation, Los Angeles, October 1874,

MeCormick, €. W., ed.: The NASTRAN User's Manunl. NASA EP-222(01),
1972,

McKellar, A. C.; and Coffman, 1,G.: Organizing Matrices and Matrix
Operations for §aged Memory fystems. Comm. ACM 12, March 1969,
Ppe 163165,

o
Noor, A. K.; and Fulton, R.¥.: Impact of the CDC~STAR-100 Computer on
rinite~-Element Systems. Presented at Sixth Nationnl ASCE Conference on
Electronic Computations, August 1974,

Schnock, Paul B.: The Myth of Mualiiprograaning, Software - Practice
and Kxperience, Vol. 4, 1974, pp. 59-62.

H2



	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A01_.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A04_.pdf
	0001A05.pdf
	0001A05_.pdf
	0001A06.pdf
	0001A06_.pdf
	0001A07.pdf
	0001A07_.pdf
	0001A08.pdf
	0001A08_.pdf
	0001A09.pdf
	0001A09_.pdf
	0001A10.pdf
	0001A10_.pdf
	0001A11.pdf
	0001A11_.pdf
	0001A12.pdf
	0001A12_.pdf
	0001A13.pdf
	0001A13_.pdf
	0001B01.pdf
	0001B01_.pdf
	0001B02.pdf
	0001B02_.pdf
	0001B03.pdf
	0001B03_.pdf
	0001B04.pdf
	0001B04_.pdf
	0001B05.pdf
	0001B05_.pdf
	0001B06.pdf
	0001B06_.pdf
	0001B07.pdf
	0001B07_.pdf
	0001B08.pdf
	0001B08_.pdf
	0001B09.pdf
	0001B09_.pdf
	0001B10.pdf
	0001B10_.pdf
	0001B11.pdf
	0001B11_.pdf
	0001B12.pdf
	0001B12_.pdf
	0001B13.pdf
	0001B13_.pdf
	0001B14.pdf
	0001B14_.pdf
	0001C01.pdf
	0001C01_.pdf
	0001C02.pdf
	0001C02_.pdf
	0001C03.pdf
	0001C03_.pdf
	0001C04.pdf
	0001C04_.pdf
	0001C05.pdf
	0001C05_.pdf
	0001C06.pdf
	0001C06_.pdf
	0001C07.pdf
	0001C07_.pdf
	0001C08.pdf
	0001C08_.pdf
	0001C09.pdf
	0001C09_.pdf
	0001C10.pdf
	0001C10_.pdf
	0001C11.pdf
	0001C11_.pdf
	0001C12.pdf
	0001C12_.pdf
	0001C13.pdf
	0001C13_.pdf
	0001C14.pdf
	0001C14_.pdf
	0001D01.pdf
	0001D01_.pdf
	0001D02.pdf
	0001D02_.pdf
	0001D03.pdf
	0001D03_.pdf
	0001D04.pdf
	0001D04_.pdf
	0001D05.pdf
	0001D05_.pdf
	0001D06.pdf
	0001D06_.pdf
	0001D07.pdf
	0001D07_.pdf
	0001D08.pdf
	0001D08_.pdf
	0001D09.pdf
	0001D09_.pdf
	0001D10.pdf
	0001D10_.pdf
	0001D11.pdf
	0001D11_.pdf
	0001D12.pdf
	0001D12_.pdf
	0001D13.pdf
	0001D13_.pdf
	0001D14.pdf
	0001D14_.pdf
	0001E01.pdf
	0001E01_.pdf
	0001E02.pdf
	0001E02_.pdf
	0001E03.pdf
	0001E03_.pdf
	0001E04.pdf
	0001E04_.pdf
	0001E05.pdf
	0001E05_.pdf
	0001E06.pdf
	0001E06_.pdf
	0001E07.pdf
	0001E07_.pdf
	0001E08.pdf
	0001E08_.pdf
	0001E09.pdf
	0001E09_.pdf
	0001E10.pdf
	0001E10_.pdf
	0001E11.pdf
	0001E11_.pdf
	0001E12.pdf
	0001E12_.pdf
	0001E13.pdf
	0001E13_.pdf
	0001E14.pdf
	0001E14_.pdf
	0001F01.pdf
	0001F01_.pdf
	0001F02.pdf
	0001F02_.pdf
	0001F03.pdf
	0001F03_.pdf
	0001F04.pdf
	0001F04_.pdf
	0001F05.pdf
	0001F05_.pdf
	0001F06.pdf
	0001F06_.pdf
	0001F07.pdf
	0001F07_.pdf
	0001F08.pdf
	0001F08_.pdf
	0001F09.pdf
	0001F09_.pdf
	0001F10.pdf
	0001F10_.pdf
	0001F11.pdf
	0001F11_.pdf
	0001F12.pdf
	0001F12_.pdf
	0001F13.pdf
	0001F13_.pdf
	0001F14.pdf
	0001F14_.pdf
	0001G01.pdf
	0001G01_.pdf
	0001G02.pdf
	0001G02_.pdf

