
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR-132644

STUDY OF THE MODIFICATIONS NEEDED
FOR EFFICIENT OPERATION OF NASTRAN ON

THE CONTROL DATA CORPORATION
STAR-100 COMPUTER

I
By Aerospace Division of
Control Data Corporation

I	 {

(NASA-CR-1326 44) STUDY OF THE MODIFICATIONS	
N75-24382

NEEDED FOR EFFICIENT OPERATION OF NASTRAN ON
THE CONTROL DATA CORPORATION ST85-pOHC $4.75

	 Uncles
COMPUTER (Control Data Corp.).	

CSCL 09B G3/61 20732

Prepared Under Contract No. 6-74-490-H by
CONTROL DATA CORPORATION
Arden Hills, Minnesota

Subcontractor to Contract NAS1-12436
NASA SYSTEM DESIGN STUDIES PROGRAM OFFICE
McDO.QNELL DOUGLAS ASTRONAUTICS COMPANY

n

CON'rt:NTS

SC!ATAIA 11Y
IN'l ROP.CCTU)N
FEASIBILin

Alachine-inclopendent urxl•-
FORTRAN Conipil-r
FORTRAN Whrary
\'cctor Proc.o:sAm,

'	 AlachAtc-Pcp^snticnt r. "txhD
Letl(Vil; Intl Executi•m

nAll Shtl:ic Lcxul(v•
NASTRAN Cbntrollw• ;::H Drop Pile,
16-4,dion of I ittk,a.j	 ::1.Y 6.. r tr•,,t

NAS'I RAN lipul "hd.i .n^ tr •;'!',^.!:
STAR Oporntl,µ;' StsL.^:, 1,"t"r
STAII FORT 1.aN 1."0
NASTRAN Grm•ara r iratl ;!U t(I)NO)
Transition Method

STAR 1'R 1101 iLOGY
Virtual Alcinor%
Victor Proeessfig

Pagirt;
Estimate of NAS'L • l4r NA;'I'AI1-100 Paging Rate

Virtual Space Alawgor
Nun-1/0 NASTRAN/08 :r itetiv•e
Virtual Spnee Alapping
Virtual Subfile Strm.-Mir.°
I/0 Connector Alrutalrcnit at
Exception Pvuc"eo tiq^

IMPROVED EFPICIEW"i
Matrle File Structure

SP:WSe Nlatri% lnd %!Mlle S he rtt(r)
General (Aithric of Utw r Double \later: Fit.-
Ordering WIN:,, f tnl'ftrrr.ut:,
Stali:ment of AIag))KIUJC, >f hnga'rrVram1ut

Almles of Operation
NASTRAN Stand-Alone Option
The "Frant-End" _ Concept
Interactive NASTRAN

oMINAL PAM IB
of Poox..QUAiM.

ml

t
I.
6
6
6
6
7
8
8
J
10
11
12
12
14
14
16
16
17
is
20
23
26
26
26
27
27
28

28
28
30
30
32
33
33
33
34
36

M

w

HAtt tided Foulures. for Efficient Pvucesalt&g 37 {
Ilulf-Word Olxorands 37 ^I

Vector Marro Instruc'lium 39
String uperailon 39

,Alternate Hardware Configuration 39 E
Limitations of Size of Problem 40

MAINTENANCE C'ONSWERATIONS 41 If
Conversion Handling 42
Maintennnco Ilundlino; 44

Into r-Machine Handling 44
Operational Reliability 40

MANPOWER ESTIMATES 46
Operating Sy, stent Modifications 47

Batch Processor 47 d

Loader 47

Debugging Aids 47
Compiler Mmlifteations and Extems[LAS 47

Non-Standard Returns Label 48
FORTRAN IV Library Routines 48
Program cta.rd '18
ilalf-Word FORTRAN 48

Pseudu-Opp rating Sy tc n Feature:; 49
virtual Spare ivianager (VSiVI) 49
ltndexod Scquentiai RCOUI'd Management 49
Physical Space Allucutiont/Deallocation 49

Machine-Independent Cudo Conversion 50 q

Machine-Depoudent Code conversion 50
NAS'I'HAN OPihuizatiun 50

Record Management 50
Matrix File Structure 51
Half-Word Operands 51

Maintenance 52

Cost breakdown 52 {i

Basic Conversion 52

Matt ix FIle Structuro and Vector p rocessing 52
-	 CONCLOSIONB 58

GLOSSARY OF STAR OS TLRAIS 59 {
APPENDIX A SCALAR C AIIJ TIMING COMPARISON BETWEEN

11000 AND STAR-100 03
APPENDIX B S'11 ('NESS 1)IATIUX DECOMPOSITION TIMING 07
BIBLIOGRAPHY ^1

0
ji.
i

OWMAWPAMIS
IVQLTAUM

r

FIGURES

Figure 1. Symbolic! Breakdown of Virtual Space for NASTRAN 3
Figure 2. Structure of NASTRAN Controllee File 10
Figure 3. Typical Flow of "Block of File Open for Implicit 1/0" 13
Figure 4. Associative Word Format 17
Figure 5. Schematic of Vector Operand Processing Units 19
Figure 6. Register Mode - Sparse Linear Form (C=A+eB) 24
Figure 7. Schematic of Sparse Matrix ERT Step 31
Figure 8. Half- and Fill-Word Operand Formats 38
Figure 9. General Flow of NASTRAN Subsystem Build 43
Figure 10. Time Frame Necessary for Basle NASTRAN

Conversion (Scalar NASTRAN) 56
Figure 11. Vector Processing 57
Figure B-1. Structural Finite Element Analysis 70
Figure B-2. Algorithms 71
Figure B-3. Programming Procedures Used 72
Figure B-4. Control Data 6600 CPU Timing 73
Figure B-5. CPU Time - CDC 6600 Full Machin 74
Figure B-6. Formula Validation Comparisons with CDC 6600

Benchmarks 75
Figure B-7. STAR-100 CPU Timing 76
Figure B-8. Full Machine Utilization - CPU Time of STAR-100 vs.

CDC 6600 (Variable Band Algorithm) 77
Figure B-9. Partial Machine Utilization - CPU Time of STAR-100

vs. CDC 6600 (Variable Band Algorithm) 78
Figure B-10. Full Machine Utilization - CPU Time of STAR-100

vs. CDC 6600 (Constant Band Algorithm) 79
Figure B-11. Partial Machine Utilization - CPU Time of STAR-100

vs. CDC 6600 (Constant Band Algorithm) 80

TABLES

Table 1. Modules Requiring Prefaces for File Size Determination 16
Table 2. Order Vector Sizes 30
Table 3. NASTRAN-STAR-100 Adaptation 54
Table A-1. 6600/STAR-100 Senlar CPU Comparison 63

v

STUDY OY THE MODIFICATIONS NEEDED

FOR EFFICIENT OPERATION OF NASTRAN ON

THE CONTROL DATA CORPORATION STAR-100 COMPUTER

By Aerospace Division of Control Data Corporation

SUMMARY

NASA Structural Analysis iNASTRAN) computer program is operational on

thrgbe series of third generatiou cmiputors.

This study was conducted to de+turmine the magnitude of the problem and dif-

ficulties involved in adapting NASTRAN to a fourth generation computer, namely,

the Control Data STAR-100. 'rhe salient features which distinguish Control Data

STAR-100 from third generation cornfraters are hardware vector processing

capability and virtual memory.

This study reveals it feasaible method of transferring NASTRAN to Control

Data STAR-100 system while retaining much of the machine-independent code.

Further, basic matrix operations are noted for optimization for ,vector processing.

INTRODUCTION

This report presents an unbiased investigation of the feasibility of modifying

NASTRAN to execute efficiently on the Cuntrol Data STAR computer. The objec-

tives of this study wore :;s [c;ilnw:;:

1. Identify F,rens in NASTItAN whL;h easily lend themselves to conversion to

STAR or which could cau::j prohlems In conversion to the STAR computer,

and describe the areas in each of these categories.

2. Determine the areas of NASTRAN which will be affected by either (or both)

virtual storage or thu piroline processor, describe these areas, and discuss

any improvements that tr.;&t Ijo made.

i

ORMINAL PAGE 18
or POOR IWA—L -1

3. DetermUu the areas of NASTRAN where modifications are needed to im-

prove efficiency and where significant benefits could be expected from

using new strategies or algorithms, and describe these areas and their

benefits.

4. Determine if the above changes can be accomplished so that the efficiency

of NASTRAN can be improved with little or no increase in the number of

computer-dependent subroutines, and explain the purpose of all needed new

computer-dependent subroutines.

5. Estimate the time and cost involved in designing, coding, and implementing

each of the modifications Identified above.

At the outset, several assumptions and enoices were made that did not urrueces-

sartly restrict the scope of the study, but did allow a fruitful concentration at

effort. These guidelines were.

Begin with level 15.7.8 NASTRAN

Convert all of NASTRAN to STAR

Assume batch processing mode

Assume multiprogramming STAR environment

Use standard STAR software

Assume paging drum station in configuration

These guidelines underlie all of the analysis and recommendations presented

in this report. The interesting alternatives to these assumptions and their con-

sequences are mentioned throughout the report as exceptions or as alternate de-

sign strategies in the section describing Improved Efficiency.

oRIGP.IAL PAN 1
OF POOR QAALwo	

2

Based on the stated conclusions and the recommendations in later sections,

the Initial conversion of NASTRAN can be described. The design retains NASTRAN's

existing modularity to allow for later efficiency improvements. NASTRAN will be

executed as a subsystem out of one virtual space. Figure 1 shows the functional 	 j

breakdown of this virtual space.

Virtual B16
Address 2 -1

Reserved by STAR Operating System

Virtual Files

Dynamic Space

VO Buffers

Open Core

Bl:udt Common

Error Processing Information

Labeled Common

NASTRAN Modules and Data Bases Internal to
Modules

Indexed Sequential with Actual Key Option VO
Package

Disk Space Allocation/Deal location (Prologue and/or
Epilogue for Each Module
Virtual Space Manager i.e. Job Mode Monitor

Page Zero (Register File)

Virtual Bit,
Address 2 -1

Virtual Bit
Address 0

Figure 1. Symbolic Breakdown of Virtual Space-for NASTRAN

3

I	 I	 I	 I	 ^ ^i
All of NASTRAN will be executed as a single controllee file. This greatly

simplifies the STAR OS/NASTRAN Interfaces and allays the natural modular

structure of NASTRAN to predominate. In other words, we will dispense with

the link structure of the present NASTRAN systems.

To centralize the direction of the orderly use of virtual space, a virtual

space manager (VSM) will be developed. The primary responsibility of VSM

will be to control and record the association of virtual space and disk space and

to ensure that virtual space is not used in conflicting ways, e.g., that debugging

information does not destroy a virtual file.

A fundamental precept of the STAR Operating System is that all used

virtual space has real disk space associated with It; and furthermore, this

disk spare must be assigned at file creation time.

There is a (system imposed limit of 18 open flies for a given task. Seine

of these files are dedicated to special uses, e.g., controllee file, drop file,

standard input file. This limitation will require development of a technique to

distribute the 19 permanent files and 35 scratch files In current NASTRAN

usage among the available STAR files. A prolog and/or epilog to each module

is necessary to perform this association and disassociation of data blocks and

disk file space. Clearly, all data set sizes cannot be exactly specified but

reasonable bounds can invariably be determined for them with some specified

degree of confidence. A recovery procedure can be defined so that occasionally

when data set sizes do exceed the specified sizes, the NASTRAN run can

continue with only time devoted to stacking and unstacking (pooling) of various

data sets.

The existing concepts concerning input/output within NASTRAN remain valid

and shall be retained and extended. This gives enormous flexibility in tuning

the subsystem, e.g., the existing GINO calling sequence can be retained and

4

I	 I	 I	 I	 i	 1

yet allow the module developer the choice'' of using virtual 1/0 or explicit 1/0.

The concept of open core shall be applied to virtual space. By experimenting

with the size of open core, the effects of running NASTRAN In a mode as-

suming essentially infinite core may be compared with the effects of running

NASTRAN in a more traditional way with a smaller fixed amount of real

memory.

All NASTRAN files (or data blocks) will be assigned virtual space. This

allows the NASTRAN subsystem to be chocked out very early in the develop-

ment stage, because of the ease of handling virtual files. The responsibility

for the management of virtual files rests, in large part, with the STAR

Operating System. For most types of files, virtual I/O cannot compete

with explicit I/O, so an option will be made for the module writer to declare

whether a file should be used explicitly or implicitly.

On the other hand, for fairly small (i.e., fits within core/drum system)

truly randomly accessed files, virtual I/O is far superior to explicit I/O in

the STAR system. Aside from the usual sequential file manipulation, the

module writer shall have the following 1/0 options:

a) In-core files (always virtual)

b) Indexed sequential subset (either virtual or explicit)

Proceeding this way allows one to take maximum advantage of preceding

work while retaining modularity and transportability. One's resources may

be concentrated on areas of potentially high payoff and one has real flexibility

in attacking these areas.

5

FEASIBILITY

The objective of Study Phase 1 was to identify areas In NASTRAN which

easily lend themselves to conversicli to STAR or could cause problems in

conversion to the STAR computer and to describe the areas in each of these

categories. The study concludes that the conversion of NASTRAN to the

STAR computer is feasible. STAR FORTRAN contains FORTRAN IV as a

subset with only minor exceptions.

The major conversion effort is concentrated in the design and coding of

machine-dependent routines. The load and execution process will be easier

to use and maintain with standard software instead of the cumbersome linkage

editor. The execution time I/O and system interface routines pose the most

challenge to the conversion process.

Machine-Indepondent Code

This section Identifies problems with conversion of NASTRAN machine-inde-

pendent code. The areas of concern are the FORTRAN compiler per se, the

FORTRAN library, and vector processing.

FORTRAN Compiler

The STAR FORTRAN compiler encompasses the NASTRAN defined subset of

FORTRAN IV with one exception: the use of the ampersand symbol (&) in a

calling sequence to signify a nonstandard return label. FORTRAN N 1peeifles

the symbol is to be a dollar sign ($). Specifically, the nonstandard returns and

multiple entry features of STAR FORTRAN are compatible with IBM/UNIVAC

format. Thus the use of multiple-entry point driver decks can be eliminated.

FORTRAN Library

Mathematical subroutines defined in FORTRAN IV which do not appear in

SCAR FORTRAN are:

ERF (apparently unused in NASTRAN)

GAMMA (apparently unused in NASTRAN)

6

ALGADfMA (apparently unused In NASTRAN)

COTAN

Machine indicator tests defined in FORTRAN IV which do not appear In

STAR FORTRAN are: SLUE, SLITET, SSWITCH, OVERFL, and DVCHK.

Other subroutines which do not appear In STAR FORTRAN are: EXIT,

DUMP, and PDUMP.

Vector Processltur

There are a number of routines which are presently machine independent,

which should be modified to take advantage of the vector processing capabilities

of STAR-100. These routh: es are:

DMPY

FBSI

FBS3

SDCOMI

SDCOM3

MPY3T

MPYL

MPLLT

MPYLZZZ

The machine-independent routines FBS2, FBS4, SDCOM2, and SDCOM4

are probably not necessary to convert to machine-dependent code. These are

the double-precision counter parts of FBS1, FBS3, SDCOMI, and SDCOM3,

respectively. This is based on the assumption that 47 bits of mantissa Is ade-

quate for arithmetic computation in NASTRAN.

7

Machine-Depondent Code

Converting machine-dependent code is less related to language compatibility

and more to system interface compatibility. Thus routines like MANFNS,

PAKUNPK, and MPYQ should convert readily to STAR. t However, GINO end

loader packages which interface to the operating system present some technical

compatibility problems. These areas of NASTRAN require not only rewriting,

but redesign for a different environment.

Loading and Execution

It is grossly estimated that all of NASTRAN executable code and labeled

common areas could be contained in n controllee file consisting of 260,000 to

500 0 000 64-bit words. In this case, the option of running NASTRAN as one

long eontrolloo file, as opposed to a series of controller-controllees, in analogy

with the present NASTRAN link structure would be superior for two reasons:

less dependence on STAR OS and the fundamental substructure of NASTRAN be-

comes the natural oae, i.e., the functional module rather than the artificial

link structure.

Investigation into the possibility of execut!ng as a series of controller-

cuntrollees uncovered a number of problems with this concept. First of all

the controller-controllee relationship is a linear one; that is, it is not capable

of handling a tree structure. Furthermore, the chain of controller-control lees

is limited to four (this limitation could in principle be removed fairly easyff).

The operating system limitation of 18 open files per controllee requires that a

subfile structure be imported upon the operating system file structure. Each

controllee is executed out of its own virtual space. This reduces intercontroltee

communication to messages via operating system calls and pool files.

t There is no assembly level computability between Control Data 6600 COMPASS
assembler and STAR-100 META Assembler; these routines must be completely
recoiled.

ff The maximum number of controllees permitted in a chain is not a parameterized
system constant.

8

STAR Statio Loader

The mechanics exist for much flexibility in arrangement of code and contmoa

blocks within the STAR loader. However, there are some limitations on thL

quantity of such options. For example, one can use only 12 private library

files. For smaller systemFis this appears to be adequate. For NASTRAN

this will enforce a less than natural arrangement of libraries for the genera-

tion of a controllee file.

Another limitation is the present LOAD card buffer of 2048 64-bit words,

which is probably insufficient for NASTRAN. The options GRSP, GRLP,

GROS, GROL for arrangement of subroutines and common blocks are very

powerful; and heavy use of them will be made to ensure minimum working

set sizes, t However, these options are very wordy and alternate methods for

filling -,k enlarged LOAD card buffer must be made available.

,hero is an additional overhead which affects the size of a eontrollee file

which should be recognized, this is error processing information. Except in

unusual conditions it will not cause NASTRAN execution interferences. How-

ever, it will occupy a sizable portion of disk space. The number of 64-bit

words which are devoted to this for each subroutine are 8 + 3 times the length

of the external/entry table. Assuming a nominal one entry point and two ex-

ternals per subroutine the length of the external/entry table is nine words and

the number of error processing information words for the subroutine becomes 35.

,lather assuming, we have 1000 subroutines in a controlled file, the space de-

voted to error processing Information is 35,000 64-bit words.

t Initially the method of grouping subroutines will take advantage of present
analysis by examining the LINK tree structure of the various NASTRAN
systems,

9

NASTRAN Controllee and Drop Files

A comparison of Figures 1 and 2 Illustrates there is not a one-to-one cor-

respondence between virtual space used (or to be used) and disk space for the

controllse file. This results because information that is as yet unspecified

(e.g., blank common) may be carried In a compact way simply as an address

range. This address range becomes a "map" entry in the "minus" page.

The minus page saves Information pertinent to the execution of the con-

trollee file for the operating system. The disk copy of the controttee file is

unaltered. Pages which must be ebanged during the course of execution,

such as minis page, labeled common, or data bases, are recorded on the

"drop file. " The drop file Is also used to hold modified virtual pages which

are not associated with any other virtual file. Titus the concept that all used

virtual space must have real disk apace associated with it remains intact.

Error Processing Information

Labeled Common Areas

Data Bases for Subroutines

Relocated Code

Page Zero

Minus Page
(OS Control and Virtual Space Maps)

Figure 2. Structure of NASTRAN Controllee File

10

Rejection of Linkage Editor Co0j2 t

The concept of a linkage editor was developed to overcome disadvantages

associated with an early version of the loader for the Control Data 6460%800

systems. These disadvantages were:

• Only two levels of overlay provided beyond the root negmem.

• An explicitly called overlay segment, consequently requiring a 'mown

overlay structure when the program is coded.

• Overlay segment entered at only one point thus I fwiting downward- calls.

• No facility to explicitly position named common blocks.

• Loading of overlay segments accomplished from a sequential file, thus

causing unnecessary search time.

These disadvantages do not exist with -the STAR Loader; specifically;

1. There is essentially an unlimited number of overlay levels (or ways of ar-

ranging the executable code) available within a controllee file..

2. The programmer describes the controllee file structure to the loader after

the program is coded. The loader builds a linked executable file which can

be executed many times without going through the loader. The system pro-

vides the virtual 1/0 to get the necessary pages into main memory on a de-

mand basis.

3. Complete communication throughout the controllee file is maintained.

4. Loader directives may be used to explicitly position subprograms and named

common blocks.

5. Map entries in the minus page of the controllee file provide rapid correlation

between virtual addresses and logical disk addresses. Consequently, pages

of the controllee file residing on disk are immediately available to the system

paging algorithm.

11

NASTRAN Input/Output on STAR

This section explains the standard STAR software supported 1/O methods,

the methods necessary for NASTRAN operation, and a transition method between

them.

STAR Operating System 1/0

The operating system allows for four basic types of 1/0: user-managed

Implicit, system-managed implicit, buffered explicit, and unbuffered explicit.

User-managed implicit means implicit 1/0 which goes to/from a user-

defined file. System-managed Implicit means 1/0 activity to/from the drop

file (which includes the recording of all used virtual space that does not cor-

respond to virtual apace recorded In a user-defined implicit 1/0 file). Buffered/

unbuffered explicit 1/0 is simply the traditional method of directly ordering

1/0 to take place between specific central memory and peripheral addresses.

The operating system supports three basi n, peripheral storage devices:

drum, disk, and magnetic tape.

The operating system supports the two baste hardware defined page sizes:

small pages (512 64-bit words) and large page (65,536 64-bit words).

Full generality between the four 1/0 types, the three peripheral device

types, and the two page sizes is neither desirable nor supported.

The rules governing the viable combinations and the major ramifications are

stated as follows:

1. Suffer sizes for explicit 1/0 may be-either 1'through 24 smallipages or

ono large page.

2. Only explicit I/O may be used for reading/writing magnetic tape.

3. The drum may only be used for implicit 1/0 of small pages.

12

A. For large pages, implicit l/O occurs only between [he y usk and

central memory, i.e., the puging driun is not used with large pages.

5. Disk files cannot be exfondo,l, i.e., spaee for a dok 1 111 10 must be al-

located at file creation time. Cfhc disk file Apace maw be reduced bui

not increased.)

6. There is a limit of 18 ael Ive (i. e. , open) files.

A typical usage pattern for a block of au existing readAvrito file Is depleted

in Figure 3.

Figure 3. Typical Flow ul "Block of File Open for Inra.bwit 1/0"

Paths such as b - c - d in Figure 3 may be repeated mane times-and are

essentially beyond the control of the progrcunmer. This fil irr -how.+ the extra

system- overhead path e f which occurs when using the paging, drtul, for bn-

plicit t/O of small pages.

D PIA
PA011 ^	

iE

RUAYdT

i^

STAR FORTRAN 1/O

FORTRAN uses sequential record manager (SRM) as the Interface with STAR

Operating System.

When using unformatted 1/O, the STAR record structure is used in blocking/

unblocking the file.

STAR FORTRAN conventions require that all files using FORTRAN 1/0 be

defined at compile time on a program card. This definition includes whether it

is a tape or disk file.

BUFFER IN/OUT statements always use explicit 1/0 whether or not the file

Is to reside on tape or disk.

READ/WRrrE statements (either formatted or unformatted) which refer to

tape files always use explicit I/O.

READ/WRITE statements (either formatted or unformatted) which refer to

disk files always use implicit I/O. An examination of Figure 2 again shows that

for large sequential files this method of I/O is extremely inefficient.

FORTRAN (via SRM) places each defined implicit file in increments of

10,000,000 (hexadecimal) starting at virtual bit address 100,000,000 (hexadecimal).
t

NASTRAN Generalized 1/0 (GINO)

Besides the usual sequential I/O, NASTRAN requires random access to two

basic structures: tables and matrices.

Although direct access I/O is referred to in some of the NASTRAN matnte-

trance literature, an examination of GINO documentation and code indicates that

only indexed sequential 1/0 is presently used in NASTRAN.

Furthermore, it is stated that all GINO files may be accessed by record.

Additionally, matrices may be accessed by subrecords of arbitrary length called

strings. The purpose of the string manipulation is to allow the processing of

matrices directly from GINO buffers.

14

A timely and cost effective conversion of NASTRAN to STAR requires thlt

initially the calls to GINO from the functional module level remain the same.

Transition Method

There are several important differences between NASTRAN and STAR 1/0

techniques. In NASTRAN there are hundreds of data blocks allocated for over

50 files, while-£he ' STAR Operating System provides less than 15 files for such

allocation. in NASTRAN, files are open-ended while STAR Operating System re-

quires allocation of file space at open time. In NASTRAN there are provisions

(GINO) for random access methods employing indexed - sequential files with

actual key processing options (SAVPOS, FILPOS), while STAR Operating System

employs a simple sequential record manager. Thus, the significant 1/0 problems

to overcome are briefly stated as:

The preallocation of optimal space for NASTRAN files

The many-to-one association of NASTRAN data blocks to STAR Operating

System files

The provision for random access of NASTRAN data block substructures

The first two problems are handled by a preface to each NASTRAN module which

analyzes the requirements for file space. Refer to Table 1 for modules requiring

prefaces. Precise limits on space generally will not be possible, but with

fairly simple logic one can develop estimates with a high degree of corfidenee

which should be sufficient for most cases. it is suggested that the method of

random I/O processing implemented be indexed-sequential (integer key) with

option for actual key processing. This would initially be implemented for

virtual files only. This allows a good version of NASTRAN to be Implemented

quickly without any "throw-away" code being necessary. Explicit 1/0 on random

physical files will almost certainly improve performance and is considered

necessary in any optimization effort.

15

TABLE 1. MODULES REQUIRING PREFACE FOR FILE SIZE DETERMINATION

BMG GP4 PLTTRA SMA3
CASE GPWG PRTMSG SMPYAD
CEAD MCEL RANDOM SMPl
DDRI MCE2 RBMG1 SMP2
DDR2 MERGE RBMO2 SOLVE
DECOMP MPYAD RBMG3 SSG1
DPD MTRXIN RBMG4 SSG2
DSMG1 OFP REIG SSG3
DSMG2 PARTN SADD SSG4
FBS PLAT. SCSI TA1
FRRD PLA2 SDR1 TRD
GKAD PLA3 SDR2 TRNSP
GKAM PLA4 SDR3 VDR
GPI PLOT SMA1 XYPLOT
GP2 PLTSET SMA2 XYTRAN
GP3

STAR TECHNOLOGY

In Phase 2 of the study the impact of fourth generation computer technology

on NASTRAN operation was analyzed. The two primary features studied were:

virtual storage and its hardware/software implementation on STAR-100 and pipe-

line processing as Ct affects scalar and vector instructions on STAR-100.

The limited memory of third generation computers gave rise to many

techniques for executing large problems with large data areas. One of the most

successful applications of these techniques was the NASTRAN program which used

extensive overlay structures to reduce the core requirements for executable code

and used open core concepts along with packing/unpacking and spill to secondary

storage devices for handling of large quantities of matrix data. From this

perspective, virtual memory Is just an extension and Incorporation of third

generation applications technology into fourth generation hardware and operating

systems software.

a

16

Virtual Memory

The method of mapping virtual memory into real memory in STAR-100 is

accomplished by a combination of hardware /software features.

A collection of associative words provide the necessary linkage between
real and virtual memory as shown in Figure 4 which is a functions.. diagram of

an associative word. This collection of associative words is referred to as the

page table.

bsolutc Usage Virtual Page
Page Code Lock Identifier

ddress

The usage code is defined as follows:

I lsa¢e C()^k Definition

0 End of Page Table

1 Null associative word

2 512 - word page has not been referenced
by the C PU

3 65K - word page has not been referenced
by the CPU

4 512 - word page has been referenced by
the C PU

5 65K - word page has been referenced
by the CPU

6 512 - word page has been altered by
the CPU

7 65K - word page has been altered by
the C PU

Figure 4. Associative Word Forant

17

—I J-J I
The page table physically consists of a 16-register associative memory

and the space table. The space table is a part of main core memory. The

principal ramification of this Is that "hidden" memory conflicts may occur during

the course of execution of a program due to space table searches.

no page table to maintained as 'a push-down list (with the 16 associative

registers at the top) by the hardware. If a hit is made, the referenced page

address Is automatically placed in the first associative register and the rest

of the addresses moved down with the contents of associative register 16 be-

coming the first word in the space table. If a hit is not made (Le., the

referenced page is not in memory) the other addresses are again rippled down-

ward and a null word is placed in the first associative register and an access

interrupt is generated.

Rather than maintaining a page table for each active user, the S'T'AR

Operating System has adopted a global paging policy, which in effect removes

the least recently used page in memory when a page replacement must be

made.

Vector Processing

Figure 5 is a schematic drawing of the four main vector processing units.

They are:

0 Pipe 1	 Processes most arithmetic operations

e Pipe 2	 Processes divides, square roots, binary-to-BCD
conversion and supports Pipe 1 with some vector
and vector macro operations

e String	 Processes bit, bytes, and decimal operations

e Logical Processes Insert, extract, and logical operations.

The term vector processing Includes more than the process of transforming

data as it passes through the processing unit. The other major function in vector

processing includes the storage and retrieval of data to/from main memory.

18

Figure 5. Schematic of Vector Operand Processing Units

19

This process (streaming) is made feasible by the phased banks of main memory

which allows the overlap of storage and retrieval functions, such that average

storage/retrieval time for a group of consecutiveiy stored items is much less

than the actual time for one item.

in general, due to the arbitrary position of the relevant operands, there

is a phase misalignment. The misalignment must be corrected before operands

are sent to vector processing units to ensure correct results. This is handled

by a complex mot„hod of buffering input and resultant operands.

This process can add significantly to the overhead of a vector instruction.

(Overhead is commonly called vector start-up time.)

Paging

In STAR, paging is a method used for associating virtual memory with

real memory. Therefore, paging strategies and techniques are inextricably

tied to consideration of virtual storage.

Few direct user controls over paging policy decisions are allowed. How-

ever, the user can influence paging policy by:

• Group option In controllee file construction

• Choice of exp!icit I/O for data files

• ADVISE command to attempt to override demand paging

• - Choice of page size

The first two controls have been previously discussed.

In a stand-alone environment the ADVISE command provided by the STAR

operating system to provide for prepaging and dispensing of old pages is a power-

ful tool for virtual file management. However, in a multiprogramming environ-

meat its use has been ineffective. choice of page size is notable, because of

the inherent conflict between the ideal page size for general purpose processing

as opposed to page size for heavy vector processing. As an aid to understanding

the problem and appreciating some of the difficulties involved, it is well to take

20

a closer look at a typical vector instruction on STAR-100. Consider the fol-

lowing restricted vector operation:

A a B + C whore A. B, C are vectors conformable for vector addition In

the usual mathematical sense: I.e., the ith element of A. A I = BI + CI for

1 0 1,....,n; 11 a < 6505366

The length of time this operation takes W dependent upon at least the

following items:

Stream rate; i.e., memory bandwidth in bits/cycle

Operand size; i.e., 32 or 64 bits per word

Length of vectors A, B, C

Relative bank position of A, B, C

Length of time operands are in ple

Small overhead for instruction initiate or reinitiate

Bank phase relative to A, B, C upon initiation or reinitiatlon

Number of pages that A, B, C occupy

Distribution of A t no C over occupied pages

Page size of occupied pages (small page - 512 64-bit words,
large page 65,536 64-bit words

Position of associative words within page table

In associate register
In space table
Not in page table (page itself on drum)
Not in page table (page itself on disk)

Paging policy

External interrupts

U we attempt to maximize vector throughput over purely virtual time, we

will choose page size of 65,536 to the detriment of everything else.

21

In trying to maximise vector dwouhbput we must assume pagl2g takes

place and that *Are to a stiff penalty involved In occupying multi memory

when mat In control of the CPO.

Apparently lbe only real freedom we haw In In obolce of pap aiseq

distribution of A l 8r C over paps, and paging algorithm.

In summary, several major factors influence the page size determfns-

d= prblem In a scalar virtual machine, namely:

Cale orpsinstlon

e Compression

• Transport time

e pap replaosment algorltbm

The latroduotlon at the Vector capability (via pipeline processing) into

the hardware arobllecture creates additional factors which Influence pap slu,

namely:

Cost of baltbg a Vector instruction to replace a page

Cost of reabw tag a Vector instruction after a page fault

vector length

no" considerations lead to the seemingly straage choice of pap sties

in BTAR• 100 of 512 e4-bit words or 65 1 61 e4-bat words and demonstrate an

inherent conflict In choice of page site for nosier mad vector processing.

Little practical expert nce has been obtafaed with large pap rises.

Fortunately, the pap site choices are flexible and sully modified since pep

site mad -ptsoemen t are LOADER options.

With our assumption of NAbTRAN executing in a multiprogramming on-

virosnent, it Is recommended that all NASTRAN code. data blookss and

buffers initially be small paps with open core fixed at cas large
.A	 ,

^
-A --A

1

Undoubtedly experience will show a more nearly optlmnl arrangement which

may be dependent upon problem size.

Estimate of NASTRAN/STAR-100 Paging Rate

In an attempt to estimate paging rates which will be encountered during

mathematical, manipulation of data, we have chosen a sparse linear form opera-

tion as a composite representative of NASTRAN operations. The particular Im-

plementation we have chosen has the following characteristics • (refer to" Figure 6

for functional flowchart):

1. Given two sets of compressed values and two sets of cor-
responding indices and a multiplier, we form one set of
compressed values and one set of corresponding indices,
i.e., C - A + 9B where A, S, C are sparse vectors, a is
a scalar, and IA , IB , Ic_ are the vectors of 16-bit indices
corresponding to A, B, c respectively.

2. We assume a regLuter mode implementation.

3. Each and every non-zero element requires a 16-bit Index.

4. We use full-word arithmetic.

This method was chosen because It gives some estimate, however crude, of

overhead involved in packing and u p-3cking vectors.

This method Is only weakly dependent upon the number of vectors being used

(i.e., initialization overhead is low). Therefore, extrapolation of the expected

value of execution time used per Iteration to the expected value of execution

time per page of data can be made.

There are essentially three paths through this routine:

1. IA (IA) < iB(IB)

2. IA(IA) = IB(IB)

3. IA (IA) > IB(IB)

where to refers to the
'Ath

component of vectors A and IA nntl I refers to

the IBS component of vectors B and IB.

23

PATH 1
IA(W < IBOB)

I_	 IAOA):IBOI1)

PATH 2
IA (lA) > IB"B)

____	 I	 1	 - 1	 1_7	1	 1.
Initialization:

Isolate Counts,
lengths, etc.,

zero counters,
make first loads.

Loon

Perform shifts and
masks to align indices.

I	 PATH 21
IA (1A)=IB0B)

IC0C). IA OA)	 IPack IC(iC)+ IA OA)

C(iC)-- A(1A)	 Store C(iC)^ A(1A)+ea(iB)
Pack IC0C)^ IB(iB)

Store C(iC)• eB(iB)

T	 Y	 Y T
iA°tA \	 iAdA

If necessary: Store re- If necessary
Store IC 0C) maining

C(l)--eB(i)
Reload 1A 0A +1)
Load ne	 A(i +1)

Reload IA(iA+1) Pack & store Bump counters

Load next remaining
A(iA+1) IC.--[(LB)

B

tT_t	 Y
B BBump Counters

Loop	 Exit	 If necessary:
Reload I130B+1)
Store IC (iC+l)

Load next
B (iB+1)

Bump Counters

Loop
i

Figure G. Register Mode-Sparse Linear Form (C=A+eB)

24

Y

iB
T
=i

N

Store re- If necessary:
maining Store I (iC)

Reloadct (i)C(i)_ BA(iA)
Load next

Pack it B(I)
store re- B
maining Bump

Counters

^a

Hand timing of roughed-in code for these three paths yield:
i

Path 1 - 155 cycles
j

Path'2 - 157 cycles

Path 3 - 158 cycles

Within the limits of accuracy of our hand timing, we may assume that each

path takes a nominal 166 cycles. At 40 nanoseconds per cycle this yields 6.4

microseconds per iteration (i.e., per resultant C(iC) and IC ocC values). There-

fore, for 512 iterations we have 0.0033 seconds of expected compute time.

Let us further assume that path 2 .,s taken with a probabYlity of 2/3, and

paths 1 and 3 each with probabilitiy of 1/0 This assumption means that the

expected number of resultant; elements (and indices) grow by 1/3. Thus, when

processing 512 iterations we have used 3 1/3 pages for values and 3/4 +

(1/4 " 1/3 pages) for indices for a total of 4 1/6 pages of data in 0.0033

second3.

This yields a nominal paging rate of 1250 pages/second. The random paging

rates which can be sustained are on the order of 175 pages /second on the paging

station (Control Data 865 drum) and 20 pages /second on the storage station

(Control Data 844 disks). Explicit I /O and double buffering with large pages will

alleviate this Imbalance somewhat with respect to sequential files and the storage

station. Using large pages from an 844 disk, one could reasonably expect a pagit,

rate of 1.6 large-pages/second or approximately 100,000 64-bit words /second.

This is equivalent to 185 small (but not random) pages/second.

t These assumptions seem reasonable as one does not typically deal with
randomly scattered matrix elements but with strongly interacting rows and
columns, most notably the banded matrices.

25

Virtual Space Manager

The foregoing Information leads to a proposal to develop a virtual space

manager (VSM) to provfde'for the orderly transition of execution states in the

NASTRAN subsystem. As such, the VSM functions more as a message switch

and data traffic control than as an executive. It ensures, for example, that

files do not inadvertently destroy one another, but It does not decide which

module should be executed next. VSM is a single routine with many entry

points and a collection of tables. There are five principal functions for which

VSM is responsible:

•	 Provide the non-1/0 NASTRAN/OS Interface

•	 Maintain a map of virtual space

•	 Assign logical disk address to virtual files and maintain the

minus page of the fArtual files

•	 Manage 1/0 connectors

•	 Process exceptions

Non-1/0 NASTRAN/OS Interface

VSM provides a convenient location for centralizing and simplifying calls

to system functions which are not provided via FORTRAN. These calls facili-

tate debugging and allow for the collection of performance measurement data.

Typical of these calls are:

Send message to controller

Get message from controller

Miscellaneous system functions (number of page faults and 1/0 times)

Virtual Space Mappinir

VSM has the responsibility to provide a valid virtual address for NASTRAN

files (operating system subfiles) when they are requested. In order to do this

and to-provide useful debugging information, a map of virtual space is maintained

which includes all NASTRAN data blocks, dynamic space, code, data base, and

the sequential record manager (SRM) provided locations.

26

.

Virtual Subflle Structure

As previously mentioned, there are only a limited number of disk files

available to a task (such as the execution of NASTRAN subsystem). Further-

more, a virtual file may contain no more than 40 noncontiguous pieces of

virtual space. This leads to the subfile concept where-each noncontiguous

piece of virtual space becomes associated with a NASTRAN file or data

block. For several reasons virtual files cannot be totally preallocated to

data blocks; or conversely, data blocks cannot be assigned to virtual files.

The reasons are:

1. Each tape is a_file and the number of tapes may vary; therefore,
number of filch may vary.

2. There are too many data blocks even with 40 per virtual file
with 13 available virtual files.

3. Reasonable size estimate on many data blocks may only be made
at module execution time.

VSM, when informed of. the data block requirements by a module prologue/

epilogue (or disk space allocation/deallocation), will update the virtual files' bit

maps and the records of data blocks and disk space.

I/O Connector Management

1/0 connectors provide the crucial link between physical file space, whether

on disk or tape/or whether virtual or physical type files, and the executing pro-

gram. A number of these connectors may be pre-empted for the life of the

NASTRAN task. VSM notes these in order to avoid them. Others are con-

stantly being created and destroyed while proceeding from one module to another

module. It is these which are allocated and released by VSM.

Exception Processtaa

A unified and flexible approach to the handling of abnormal conditions such

as those indicated by the hardware data-flag register must be developed. Th.'s

will require close coordination with the techniques used in the STAR FORTRAN

library and the STAR operating system debug package. Data-flag register

Indicated conditions include:

Job internal timer

Breakpoint

Arithmetic faults

Some logical conditions (e.g. , no true condition of vector logical "and")

Some search conditions (e.g., element not found)

IMPROVED EFFICIENCY

Study Phase 3 was concerned with determining where modifications are

needed to improve efficiency, and where significant benefits could be expected

from using new strategies or algorithms.

As with third generation systems, a most important consideration for ef-

fective operation is keeping the CPU busy. This can be interpreted as getting

extremely compact representation for the data base and managing and manipu-

lating this data base in a manner which tends to localize references to

specific portions of the data base. That is, locality must be exploited in data

reference strings as well as in execution reference strings.

Matrix File Structure

For the initial conversion effort a file structure similar to that used for

matrices as described for IBM System/360 should be used. This enables one

to quickly adapt the present NASTRAN to STAR-100 in a reasonably effective

way. A better structure would be obtained by dividing the matrix files into

two separate files. One file would contain all the control information such

as column, row position, number of coefficients in a string, etc. The other

28

file would contain only matrix coefficients. 'This often enables one to operate

directly on the coefficients without intermediate reorganization of the coefficients

for efficient pipe-line processing. To see this, it is necessary to look closer

at some of the hardware organizational constraints on streaming.

In central memory we have the following significant boundaries:

Bit boundary

Byte boundary

Half-word boundary

Futl-word boundary

Small page boundary

Large page boundary

These boundaries are increasingly exclusive. By this is meant that a full-

word boundary is also a half-word boundary and a small page boundary is also

a full-word boundary but a batf-word boundary is- not necessarily a full-word

boundary, etc. With one exception these boundaries must be rigorously ad-

hered to. The exception is that for instructions only, full-word instructions

may start on half-word boundaries. This is not true for data or in any other

case.

When using vector instructions on STAR-100, the coefficient of each

vector must be contiguous in memory and on appropriate half- or full-word

boundaries.

When using the sparse vector instructions on STAR-100, the non-zero co-

efficient must be contiguous and on appropriate boundaries as with vector in-

structions. Additionally a sparse ''vector has associated with it an order vector

which contains one bit for each element (whether zero or non-zero) of the
sparse vector.	 y,

29

Table 2 shows that for a sparse matrix without discernable structure the

order vectors alone could take an Inordinate amount of„space. Indeed, for a

16K x 16K matrix about 4 million 64-bit words would be required for order

vectors alone.

Table 2. ORDER VECTOR SIZES

Row Size Full Words for Each Order Vector

16K = 214 256

8K = 213 128

4K = 213 64

2K = 211 32

1K = 210 16

roe Matrix Indexing Schemes

The indexing scheme (i.e.. the method of associating a specific coefficient

of a set with a particular coordinate) should attempt to take advantage of matrix

structure. If the elements are truly randomly scattered, then a 16-bit index

per element is efficient on STAR until the matrix density increases to about

6.25%. At that point the order vector scheme becomes more efficient.

General Outline of Use of Double Matrix File

In principle the use of two flies for matrix reduction is quite simple.

The many considerations, which can be taken into account, make the details of

implementation very complex. For example, suppose one has a primary

representation of a sparse matrix by columns and it is desired to make an

elementary row transformation (ERT) on this matrix which results In a

second sparse matrix. A step of forward transformation or elimination is

shown in Figure 7.

.

30

Primary
	 Primary

Index
	 ;oefficient	 Index

File
	 File	 File	 File

Crack
	

Perform
	 Pack

Column
	 ERT

	
Column

Indices	 1
	 Indices

Figure 7. Schematic of Sparse Matrix ERT Step

Whether we consider this as a step in L-U Decomposition or Gauss-Jordan

Is immaterial at this level of discussion.

Mathematically we have EA p = As where E is the -identity matrix except

for une column, A is the primary matrix and A is the transformed or

secondary matrix. Represented in Figure 7 is just one step of this total

transformation, i.e., we are performing the commonly used vector operation

often referred to as "linear form's

Vsj =` Vpj + OE 	 where V pj is the jth

column of the matrix A except that one element has beer: set to zero, 8 is the

scalar formed by making use of the element of Vpj before it was set to zero, and

Ec is the column of E which differs from the identity matrix. Now, because

the vectors Vaj, Vpj, E are assumed s;,.nrse, we have much flexibility in de-

tails of executing the linear form. For example:

31

_I	 _I_	 I	 I	 I	 ^	 1

a) If Vpj and Ee are very sparse, we may choose to make the computa-

tion in scalar mode,

W We may elect to perform the computation in sparse vector form,

c) We may hold the vector E. in expanded form and perform the

computation with VpJ in compact form,

d) II VpJ and E. are relatively dense, we may elect to expand both

VpJ and Ec and perform the computation over full vectors.

Ordering Matrix Coefficients

In essence, one has four alternative ways of holding the compact co-

efficients of a matrix: randomly, by submatrix, by rows, or by columns.

Of course, it is possible to have variations and combinations of these

four basic methods.

It may appear strange that random ordering would ever be useful. This

method is used when there is a high percentage of common coefficients in a

matrix. In this case the index file assigns the same value to different matrix

coordinates.

Submatrix storage can be useful for matrix multiplication, but is not the

best for equation solving.

It makes little difference, in the general case, whether we store matrices

by rows or by columns. In cases where specific matrices are consistently

used as premultipliers or as post-multipliers, it may be advisable to use row

storage In the first case and column storage in the second case.

FGr the general case, it is recommended that the coefficient be stored by

columns, because of the following reasons:

No other method has a clearcut advantage

It has closer compatibility with existing NASTRAN storage techniques

It is the commonly assumed method in the literature

32

I

Statement on Magnitude of lmprovemen:

Performance comparisons with other machines were not undertaken for

this study.

Appendix A compares scalar CPU performances on STAR-100 with CPU

performances of a Control Data 6600.

Appendix B compares positive-definite, symmetric matrix decomposition

CPU performance between Control Data 6600 and STAR-100. Full use of

vector operations on SPAR-100 was made In this comparison.

Modes of Operation

Several alternate modes of operation provide some interesting options for

the development of NASTRAN on the STAR computer.

NASTRAN Stand-Alone Option

A basic design consideration is whether NASTRAN should be run "stand-

alone" on STAR-100 or run in a multiprogramming environment. In order to

run stand-alone, an attempt must be made to make full use of the drum/core

system. In order to use demand paging (and depend upon multiprogramming

to make efficient use of the system) then enough resources must be left

over so that multiprogramming can occur usefully.

STAR Operating System is a multiprogramming operating system. This

implies that STAR Operating System carries many overhead items that are

i
	 unnecessary in unl-programming. It also uses more management of virtual

resources than is desirable for stand-alone operations. In a stand-alone an-

I4•
	 vironment, the ADVISE command of STAR Operating System provides for

prepaging and releasing old pages which is a powerful tool for virtual file

management. (In a multiprogramming environment its use has not been ef-

fective). But the ADVISE command alone is not enough control over the core/drum

system for uni-programming. The addition of explicit I/O to the drum would

improve this situation.

33

1

In a previous section a reasonable estimate for it paging rate when running

NASTRAN was given. This number was 1,250 pages/second. When cwnparing

this number with the estimated paging rates for the storage station and paging

station, (20 and 175 respectively), one concludes that the STAR-100 CPU

would remain idle most of the time when running NASTRAN "stand-alone". The

theoretical maximum paging rate attainable with the 865 drum is 660 pages/

secowl.

If the STAR operating system were modified to support large pages and

explicit 1/0 on the drum, then affective paging rates on the order of 500 small

pages/second could be obtained.

The "Front-End" Concept

Another method of implementation of NASTRAN would involved transferring

something less than the whole of NASTRAN from Control Data 6600 to STAR-100.

That is, lot STAR do what STAR does best and leave the rest on the 6600.

The operations transferred to STAR could range all the way from selected

matrix operations to selected functional modules.

A link between STAR-100 and the 6600 is currently planned to have the

following characteristics, powerful physical connections (5 megabit lines) and

unit record station functional software capability.

This implies that the operations selected for STAR should have modest Input

requirements, heavy, compute and/or internal I/O requirements, and again modest

output requirements.

Further, it seems that to be effective, a running program (NASTRAN) on

the 6600 must be able to direct that a file be sent to STAR and either continue

processing or go Into RECALL until a file is received from STAR and then continue

processing.
I

34

The STAR-100 System is a general purpose ,system which is capable of

Rlgh performance on scalar as well as vector operations. If a significant

functional feature such as dynamic analysis is to be converted to STAR, many

of the basic tools, features and extensions to incorporate the rest of NASTRAN

should be developed. These features and extensions include:

• Virtual space map maintonance

• Virtual file address assignment

• Minus page maintenance

• 1/0 connector management

• Exception processing

• Random &cocoa record management

• Space allocation/deallocation

• Symbolic debug capability

• Program card changes

The nnminal expected performance of the presently envisioned Control Data

6600-STAR link (which does not Include double buffering) is an follows:

	

80 msec	 CIO read of one page

	

50 msec	 Five data link transfer per page

	

50 msec	 Se: vice Station write of one page

	180 msec	 Transfer of one page of data from Control Data 6000
to STAR

This is equivalent to a transfer rate of six pages/second.

Now suppose it is desired to solve a 20,000 raw problem with structural

matrix characteristics as follows: real, symmetric, and banded of semi-band-

width of 1000.

This results in a matrix file of approximately 20 million 60-bit floating

point numbers or 37,000 small pages. At a transfer rate of six pages/second

this - requires an elapsed time of 6,150 seconds or 103 minutes to cross the link.

35

A problem has been encountered In attempting to transfer the 20 million

word file to STAR; namely, the transfer to to the MR service station which

Is presently planned to be configured at the Ungloy Research Confer with two

844 disk drives. STAR operating system does not support files extending

across pack boundaries, So we are limited to a file containing at most

23 0 000 pages which is considerably less than the 37,000 pages required for

the supposed 20 million word tile. In order to solve this problem, provisions

must be made for dividing the large file into more manageable segments.

Before this file is usable by an equation solver on STAR, two more pro-

cosies must take place on the file:

It must be transferred (via central memory) to the STAR

storage station.

,rho 00-bit floating point numbers in Control Data 6000 format

must be converted into the 64-bit STAR equivalent.
If large data files are to be transferred, specialized techniques using double

buffering, large buffers, automatic substructuring, and floating point conversions

should be developed.

Therefore, the remaining conversion effort, to get all of NASTRAN on STAR-100,

while Involving significant volumes of code, would not require further system type

extensions.
Interactive NASTRAN

Interactive NASTRAN means a NASTRAN system which gives the structural

analyst the ability 1 direct the problem solution while at the interactive console.

This could be Implemented by making commands analogous to DMAP and rigid

formats available to the analyst at the console. Also it would be highly 'Jc

sirable to interact with graphics terminals in order to quickly and conveniently

analyze graphical output. Graphics Interactives would require a new set of

commands to be added to NASTRAN.

36

This approach will abnost certainly be taken in any major now structural

analysis program. Whether or not this Is a reasonable goal for the NASTRAN

conversion effort in unclear; The usefulness of interaction of the user with

DUAP sequences without corresponding Interactive graphic capability Is doubtful.

The interactive graphics capability represents a significant hardware/software

cost outlay which is not in present system plans. Therefore, this true Inter-

active mode for NASTRAN execution is currently unrealistic.

For development and maintenance work on NASTRAN, the Interactive mode

of operation will be used almost exclusively for controlling task execution. That

It, to say a user may gain flexibility In Initializing NASTRAN execution by using

the interactive mode of operation. it does not mean that a user without know-

ledge of the internal workings of NASTRAN could usefully and successfully in-

teract with NASTRAN once it is in execution.

Extended Features for Efficient Processing

The STAR-100 has an extensive repertoire of instructions and options to

instructions which give the software designer ample opportunity to enhance per-

formance. In particular, some areas which have great potential are: 32-bit

word operand size, vector macro instructions, and string operations.

half-Word Operands

For every floating point arithmetic operation on STAR, whether scalar,

vector, sparse vector, or vector macro, there is an option to use half-word

(32-bit) operands or full-word (84-bit) operands. Furthermore there are in-

structions which convert half-word q ►erands to full-word operands and other

instructions which convert full-word operands to half-word operands. Figure 8

shows that a halt-word carries 23 significant bits while a full-word carries 47

significant bits.

37

I	 I -I- 1	 I ^ _F_7
0	 78	 31

Half-word Signed
Opatrand Exponent	 Signed Mantissa

0	 16 16

Full-word Signed
IOperand Exponent Signed Mantissa

Figure S. Half- and Full-Word Operand Formats

The stream rate for half-word vector operands is twice that of full-word

vector operands. More Importantly, but not as easily quantified, is the savings

In core memury and auxiiliary storage and the Increased transfer rate between

them when dealing with half-words Instead of full-words.

Thus, for performance it becomes extremely important to analyze the

amount of significance required at various states of computation. Most raw

engineering data can be accurately repres 6nted in 23 bits, It is recognized

that 23 bits of significance is not universally acceptable in stiffness matrix

generation. However for many problems it is acceptable.

Error monitoring is relatively inexpensive and very accurate in the solution

of special systems of linear equations. For real, symmetric, positive-definite

matrices an attempt should be made to do both the decomposition and back sub-

stitute in half-word arithmetic. Automatic procedures could be Invoked to re-

solve the system using full-word arithmetic when it becomes apparent that half-

word accuracy is Insufficient.

Again, on the output side, 23 bits of significance would normally suffice

for graphical devices and reports.

This leads to the conclusion that the following important areas be investi-

gated for possible optional use of half-word operands for representation of matrix

coefficients:

38

• Matrix generation modutos

• Report generation modules

• Data recording functions (checkpoint/restart)

• Dense matrix operations for small matrices

• Matrix operations on well-conditioned matrices

Vector Macro Instructions

STAR has an unusual set of powerful instructions which manipulate operands

in a complex manner. Among these are the following types of operations-

e Dot products

• Sums

• Products

• Transmit lists

is Matrix transpose

If used with care, these operations have potential In simplifying and

clarifying coding sequences. This has great usefulness in program maintenance.

Presently it Is unclear whether their use will improve performance. As the

timing information becomes more stable and if some of the instruction micro-

code sequences are changed, their utility may be more accurately assessed

with respect to improved code performance.

String Operations

Included in these instructions are the generalized binary and decimal arith-

metic operations, search operations and logical operations on bit strings. These

operations have particular utility in data conversion, edittag, and sorting

operations.

Alternate Hardware Configuration

Throughout this report a drum paging station has been assumed to-be pre-

sent in the STAR-100 system.

38

It Is not necessary to explicitly have a paging station In the configuration.

A storage station with Control Data 844 or 8111 disk drives may fulfill the

paging functions completely. As was noted previously, this is always the

case for large pages even with a paging drum station.

A storage station made up of 818 disks in referred to as a high capacity

disk (HCD) station. The random paging rate which can be sustained on the

HCD station is on the order of 100 pages/second.

For the processing of large sequential virtual files, efficiency is Im-

proved by having a storage station take on the paging station function. This

Is due to the elimination of the extra overhead paths of getting pages of the

virtual file in and out of the core/drum system.

Limitations on Size of Problem

The question of how large a problem can be solved with NASTRAN on

STAR-100 to a formudable one.

There are many dimensions to this question which include:

• Theoretical vs. practical limits

• Maximum file size

• Mean-time between failures and recovery procedures

• Available secondary storage space

In principle, the limitations may be extended almost Indefinitely.

STAR operating system allocates a 16-bit field for 6 1finition of raa:r.

storage file length in sriall pages. This limits a single operating system file

to 33.5 million 64-bit words.

STAR operating system does not allow files to reside on more than one

disk pack. This restriction further limits the maximum file size to 12.5 million

64-bit words on an 844 disk. Similarly this limits a file size to 30_ million

64-bit words on an 818 disk.

40

Treating an adoption of the existing real-symmetric matrix decomposition

within NASTRAN as representative of limiting conditions allows one to examine

another dimension of the problem. To be technically operable, there need only

be enough real memory data area available to contain two rows of terms of

length B where B is the semi-band width of the banded portion of the real-

symmetric matrix and B terms for each of the currently' active columns; i.e.,

(n + 2) B < real memory data area
o

where n Is the maximum number of active columns. As this Inequality ap-

preaches equality, the paging rate is high. For low paging rates and the

corresponding high performance, the following inequality should be limiting:

(n + B) < real memory data area
2

As an example, assume the real memory data area available is 400,000

words. Further assume that n is approximately equal to B. To remain in

the low paging region, the semi-band width B should be less than 632.

MAINTENANCE CONSIDERATIONS

The sheer size of NASTRAN presents a problem above and beyond the

correctness of theory and engineering technology. The logistics of physical

and mechanical control over one quarter of a million lines of source code in

over 1300 source decks, object decks, and an executable file are formidable.

Carefully Integrated methods have evolved from experience with current NASTRAN

operation that define the format of deliverable files and specify utility programs

and procedures for handling them. This question of how to "handle" NASTRAN

on STAR will be analyzed during the conversion, maintenance, and exchange

stages.

41

Conversion Handling

The Initial conversion task will be to got the NASTRAN machine-inde-

pendent source code onto STAR. A small modification to the NASTRAN

utility source conversion program will convert Control Data 6000 source

to IBM 360 source with an ampersand %) Instead of a dollar sign ($) in

nonstandard return calling sequences. This converted source can then be

placed on a STAR update program library in a format compatible with STAR

FORTRAN input. Changes to this library would be hand-coded and applied

using the UPDATE utility program. No significant modifications to this

file are envisioned except for renaming of open-core common blocks and

data block/file association and disassociation.

Machin-dependent source code must be written from scratch and also

maintained on an update library. Aside from the difficult task of generating

technically correct and error free code, there should be no major "handling"

problem with the machine-dependent code.

Thu decision to execute NASTRAN as one controllee file eliminates many

handling problems associated with Control Data 6000 versions. There is no

necessity to maintain or execute the linkage editor or theXBOOT routines on

the front of the absolute file. There is no more LINKLIB or SUBSYS decks

to maintain. The STAR loader will handle input from several libraries and

an object library editor (OLE) can perform the functions of the NASTRAN

utility MERGEX.

Thus during conversion of NASTRAN to run on the Control Data STAR

computer, most of the "handling" problems will be in the source code area with

the object library editing and loading being accomplished with standard STAR

software. The general flow for this procedure is depicted In Figure 8.

42

Nods

Update	 Nt{VVPL

IMPL	 META	 FORTRAN
/oases Decks	 souroe Decks	 source Decks

t
IMPL	 META	 FORTRAN

IMPL	 META	 FORTRAN
Mary Decks	 Binary Decks I [Binary Decks

OLE

Object Libraries

soars Decks

IMPL)(META)(FORTRAN

8YSLiB I I LWI 1 1 LI32 1 a. LIBM
atury Decks Bleary Decks Bleary Decks

to a
Loader

Executsb
cwiltojt 0 Fite

t It is not anticipated that IMPL will be used in NASTRAN subsystem but foe
possibility Wrists Wane the lees.

Mere 9. General Flow of NAbTRAN subsystem Build

43

Maintenance Handling

Maintenance involves debugging of error conditions and chocking out cor-

rective code on STAR,itsetf with problems of compatibility and swapping of

fixes between different" NASTRAN machines left to the next section on trans-

portability. In this phase, indeed in all aspects of operation except actual

execution, the interactive mode of STAR operation will be a boon to the

NASTRAN systems programmer. Each step In code check procedure can be

initiated and completed as a separate task, and debugging will no longer be

the time consuming procedure It now is with overnight batch turnaround.

The usual maintenance tasks would generally be handled much as they

are an current levels of NASTRAN. Changes can be made to the source code by

way of update alters, the changed decks recompiled and reloaded to produce

a checkout version of the system against which test problems can be run to

verify the correctness of the code fixes. Update, object library editor, and

loader are all standard STAR software that can be employed in these procedures.

The NASTRAN utility program COMPARE Is FORTRAN coded and easily

converted to STAR. It would be of general use to compare and verify the

implementation of alters or to discover what has changed when one is presented

with a clean new version of an old clock.

Thus routine maintenance of the STAR version of NASTRAN on the STAR

machine presents no significantly now or additional problems in handling pro-

cedures, and indeed may be easier with the use of interactive procedures and

the lack of link edit/SUBSYS tasks.

inter-Machine Handling

The problem of intermachine compatibility hinges on the degree of sameness

in the machine-independent code. If the code can be made to look exactly alike,

it would be convenient to number the source statements alike and have a univer-

sal update program to update the source code from the same alters on all four

44

NASTRAN machines (IBM System /300, UNIVAC 1108, Control Data-00009

Control Data STAR-100). Such an ideal situation does not exit, but the

current situation of slight differences in the machine-independent source

- code is manapable.

In this case, if one sticks to the initial conversion with only slight

modifications to existing machine-independent code, then one can apply many

of the same techniques and procedures used to handle inter-machine maintenance

that are in existence on current third goneratioa NASTRAN machines. For

short SPR fixes Involving few changes in code, alters from any of the NASTRAN

machines can be hand punched and visually verified into a format for updating

on any other NASTRAN machine. For more extensive changes, both new decks

and the alters that produced them are desirable. Then with the help of the

compare utility, the user can decide whether to install alters into his decks

or reinstall his alters in the new decks. Of course there is no simple,

mechanistic approach to the machine-dependent routines since the source code

varies so radically on each of the NASTRAN machines. A bug found and fixed

on one machine needs to be tested anti traced on the others. Any major

improvements or additions to machine-dependent coda Involves additiona! re-

writing of code on all machines.

Progressing beyond the initial conversion to where future versions of

NASTRAN might have a redesigned and radically different machine-independent

source code to take special advantage of STAR architecture, one arrives at a

contradiction in terms. If the code is different, then it Isn't machine- independent.

What one has Is two versions of NASTRAN with more machine-dependent code

than independent code. One has really returned to the pre- NASTRAN mode of

maintaining separate versions of a program on separate systems. Eventually

a decision must be made as to whether compatibility between third and fourth

generation systems is as Important as exploiting fourth generation technology.

pJJWAL PAGE IS
in pWU QUALM	 45

Operational Reliability

A large conversion effort to a now and radically different environment

Is bound to reduce the reliability of NASTRAN for some time In relation to

the reliability now enjoyed on the Control Data 6000.

On the STAR-100 System, with its speed and an interactive debugging

capability, the turn around time for bug fixes should be very much less than

that experienced on Control Data 6000 series with comparable level of

personnel competence.

An estimate of the menn-time-between-failure for the STAR-100 System

is unavailable.

MANPOWER ESTIMATES

The estimates and suggestions contained herein are in no way to be in-

terpreted as commitments on the part of Control Data Corporation to produce

within these guidelines or even to develop them at all. They are simply

frank assessments of what might be done and at what cost as seen within the

limited confines of this study,

The effort to convert NASTRAN to STAR-100 may be grouped according

to the following categories:

Operating system modifications

Compiler modifications and extensions

Pseudo-operating system features

Machine-independent code conversion

Machine-dependent code conversion

NASTRAN optimization

Maintenance

46

Operating System Modifications

Operating system modifications should be made by the standard

operating system group to ensure continual support and maintenance of these

modifications.

Batch Processor

The batch processor should be extended to recognize files which exist

for the duration of a Job (i.e., across several tasks). The names of the

files are unique only to that Job, and the files are automatically purged

upon Job termination unless overt action is taken to prevent purging. This

greatly simplifies batch control card sequences and prevents unintended file

proliferation.

Loader

The loader must be extended such that it Is possible and relatively con-

venient to group by various arrangements, more than 1000 routines and

common blocks. This constitutes no basic new features for the leader.

Aebueatng Aids

Symbol table output from FORTRAN is provided for the purpose of

symbolic debugging. The debug features of STAR operating system should give

the user the capability of symbolic debugging.

A memory dump utility which allows the user to conveniently dump the

controllee and/or drop files is a basic requirement lacking from the presently

defined debugging aids.

Compiler Modifications and Extensions

Modifications and extensions to the STAR FORTRAN compiler per se should

be made by the standard compiler group to ensure continual support and

maintenance. STAR FORTRAN library routines could come from a variety

of sources.

47

4	 I_	 I	 l
_ -^

Nou-Siandard Returns Label

Either the compiler could be modified to accept ";" as well no " V to

signify a non-standard return label or the NASTRAN source code could be

preprocessed to accommodate this minor discrepancy. R is recommended

here that the existing NASTRAN utility source conversion program be changed

to modify the machine-independent code rather than modifying the compiler.

FORTRAN IV Library Routines

These routines may be divided into three classes:

Those which have an exact equivalent In STAR FORTRAN

Those which are unused in NASTRAN

Those without an exact equivalent

Those routines which Nave an oxnet equivalent with exception of routine

tame should have the name changed in the outboard preprocessor or cataloged

In the library with new names. Those unused in NASTRAN may be

ignored in the conversion effort. Those without an exact equivalent in STAR

i,
	 FORTRAN must be provided.

'	 Program Card

The STAR FORTRAN ebmpiler should be modified to provide some file

device flexibility without necessitating recompilation, i.e., the user should

have device destination as a run -time option to decide which files are to

i

	 physically exist on tape and which files arc to be assigned to disk. The

user presently does not have this option.

Half-Word FORTRAN

As a convenience in exploiting the 32-bit arithmetic capability of STAR,

it is desirable to allow the definition of 32-bit loperands to be analogous to

64-bit operand usage presently used in STAR FORTRAN. There have been

two different proposals made for this implementation, namely:

48

• integrate a half-word TYPE Into the present compiler.

• Build another compiler analogous to the present one, but using

32-bit as the basic operand.

Pseudo-Operating System Features

These three features, virtual space manager, indexed sequential record

management, and physical space allocation/deallocation are classified as pseudo-

operating system features, because with careful design they would hnve universal

utility for large general purpose programs.

Virtual Space Manager (VSM)

The virtual space manager is responsible for the following six functions;

• Non-1/0 NASTRAN/OS interface

• Virtual space map maintenance

• Virtual file address assignment to logical disk space

• Minus page maintenance

• I/O connector management

• Exception processing

indexed Sequential Record Management

A subset of indexed sequential record management is recommended to

simplify the conversion effort and yet run efficiently. This subset is:

• Indexed sequential (integer keys, actual keys) for virtual files

• Indexed sequential (integer keys, actual keys) for physical files

Physical Space Allocation/Deallocation

Upon entry to a module, it Is necessary (as is presently done in NASTRAN

via DMAP at least) to declare which files are needed and whether they are input,

scratch, or output files. This information must now be augmented with direc-

tions for determining a reasonable size for all scratch and output files.

Thus, each of the approximately 85 modules must have a specially tailored

prologue to supply reasonable data block sizes.

49

Machine-Independent Code Conversion

The conversion of machine-Independent code Involves editing over 1200

NASTRAN source decks written In a subset of FORTRAN IV, This Includes:

• Modification to Source Conversion Program to convert from

Control Data source code to IBM source code with ampersand

(6) Instead of dollar sign ($).

• Processing of Control Data NASTRAN source flies to produce

pseudo-IBM source file.

• Processing of pseudo-IBM source file to produce tape file

physically written and blocked for STAR compatibility.

• Creation of an UPDATE tape of STAR machine-independent

NASTRAN source codes.

Machine-Dependent Code Conversion

Several routines associated with linking and loading have been eliminated.

New routines associated with pseudo-operating system modules have already

been mentioned. The remaining current machine-dependent routines require

a straightforward translation of the language or the function.

NASTRAN Optimization

Optimization opportunities exist throughout most of NASTRAN, however,

the areas of greatest potential are:

Record management

Matrix file structure and the primitive matrix operations

Selective use of half-word operands.

Record Management

The indexed sequential record management scheme presently used in

NASTRAN, but extended to include virtual and physical Ries, Is believed to'be

effective for STAR-100. An optimization effort would involve choosing a file

so

i

type (physical or virtual), buffer sizes, and NASTRAN file distribution over

STAR operating system files. If there is a significant usage of random files

on the order of 600,000 to one million words in size, it would be advisable

to investigate the Implementation of hashing techniques for random access

such as the direct access method.

Matrix File Structure

With careful attention to design, the matrix file structure can be changed

to a dual-file concept with only minimal impact outside of the primitive matrix

operations themselves. Assuming an adaptation of existing algorithms without

significant new mathematical development, the routines which should be com-

pletely receded are as follows:

BLDPK GFBS PARTN
CDCOMP GMMATS PLAMAT
DECOMP INTPK SADD
DMPY INVERS SDCOMP
SLIM MERGE SOLVER
FACTOR MPYAD TRANSP
FBS PACK UNPACK

UPART

Half-Word Operands

Within the present software structure there are two options for implementa-

tion of half-word operand processing, munely through STAR FORTRAN special

calls or through assembly language subprograms. Although much more Incon-

venient than coding in FORTRAN IV, the cost of implementation this way may

be less than the cost of explicitly adding this feature to FORTRAN. However,

it should be possible to amortize the FORTRAN extensions over several pro-

jects. Specific areas which, without doubt, could be implemented using half-

word operands have not been identified.

1	 I	 I	 ^	 ^

Maintenance

Maintenance tasks can be split between the conversion phase and the

ongoing maintenance phase: as follows:

0 Preparation of initial libraries and development of procedures

for use during conversion

0 Procedures for development of new and corrective code on

SPAR and its distribution to other NASTRAN machines

e Integration of new and corrective code developed on other

NASTRAN machines.

Cost Breakdown

Table 3 illustrates the effort involved and alternatives possible in de-

veloping NASTRAN for STAR-100 as described in this study. This pre i,enta-

tion is based on features rather than specific routines, Estimates of the

effort involved are displayed. It is unrealistic to present a routine by routine

breakdown at this time. This could cane only after considerable detailed

design effort is expanded.

Basic Conversion

Figure 10 is a graphic representation of a reasonable work allotment for

the basic NASTP.AN conversion effort. This corresponds to the Items labeled

"Vital" in 'Fable 3 and refers to a scaler version of NASTRAN on STAR-100.

This figure shows that the conversion could be done in an elapsed time of

nine months with a peak manpower loading of eight people.

Matrix File Structure and Vector Processing

There are four basic families of matrix operations which are effected by

matriA file structure and which may be vectorized in varying degrees:

52

• Matrix composition

• Matrix Decomposition

• Matrix Multiply - add and transpose

• String utilities

These operations should be valid for either single-precision real or com-

plex values of the coefficients.

The graph@ in Figure 11 show a reasonable manpower loading and elapsed

time for vectorizing these time-consuming operations.in NASTRAN. The volume

of code involved in vectorizing the important operations appears moderate.

The difficulty involved in Interfacing with other more casual users of matrix

files Is unexplored and accounts for the large!, manpower difference in the

graphs. It should be noted that system checkout of vectorizing code can not

begin until the basic conversion is complete.

53

1

t

|
A

a
U

p
>

n
U

2
J

n
U

a
a

n
u

n
v

2 >
v

^ ^
>

] ^
>)

2 J
2

§
^
^
$
@
§
#
ẑ
/
§
)
^

$§$§ ' o

J ^J
 z z B 8 S§ 8 S§ S

3 3 J 2 a
f k

«
k

a
f\

«
k\)

k k§§ k k
S§ S 8	 2 2 2 2 I a2

k ^
\.` n) \
§ ^ k § * ^ £
\ ^ \ ^ § ^ ^`/

49
\ / > k k 2 k

E § § @¢ * m
f k qa 2' k2 ^ J)

° • § w
{

n
^

.
§

A 2

§^
].. t » % \^.^ z 2 a n g

[

.	 ^

a

$^
B0 $

a ^
k n ^

kR ^

.]a ^. "̂
i ^

2
«

^ §
^

2 ^
§

p
n

k 7\ ALI^§
£ k

^
`
^a

a a I2^

§^ _

] n2

^
§2
/ \

&

k
^ t t

n̂

^

k
\
§0
2H

rr

FA

2 o s -
. $

n z

MCI))))

§
^
£

§	 §
§	 §

)

§ u$
k

k
k̂
S

£ox
£o
n

©§

£)12 ^) '& § #z tz k

©
kG

^
)J .

§
«|

.§ 2z, $̂ . ! $

a
a®

.^\
)).\

bJ
0

2)
2
k7

k\
f
d2 A

55

__
* ^

^

^^B
^ e§ §§§;^ A }^

I

2 § § n 	 ^ |
.^ s	 .°	 m E-4 § (.̂n

n as z ^ ^)

g ^)
§ })
\ })

k.	 . ^
^
E-1 `\}
1.4

.	
^.

^

^

_

#

n.^

f%̂^ n

I§

2
ng.
^

^f

§

§
§

%

^ .

^
^-

}
^
k
^̂

F

n

$
n
2
^
^
m
k
a
w

O	 ^

O d
t-	 u

M
^	 C7

M

N

.^	 y

O

92

W	 ti
w

^ ^ p W M N .1

O

H
H

^M
r•1

M

N

LL

N

N

O

ti

N

M

N

w

G

W	 rr
33^

^ ^ b

m	 ,^

y
gw^

W

57

i	 a

Y

4

V
	

I

a
4

s

D
u

M

Rp^i

60

W

OD

7

3

3

G

Y

Y
•

!_

CONCLUSIONS

This study concludes that NASTRAN can be converted to run an the

Control Data STAR computer. The findings are that:

• NASTRAN machine-Independent source statements are

readily convertible

• FORTRAN compiler and library are compatible

• NASTRAN can execute as one eontrollee file with module

groupings

• File allocation and input/output activity must operate under

control of a virtual space manager

• The basic conversiont effort is estimated to be six man-years

t The basic conversion effort produces only scalar code for NASTRAN.

58

GLOSSARY OF STAR OS TERM

Gontrollee file - The file which contains NASTRAN executable code and

initialized data areas. This file is never modified during execution.

Drop file - The file which contains all modified controllee file pages and all

used pages which were not assigned by the user to a virtual file.

Explicit I/O - Input/output which occurs under the direction of the user

through the use of virtual memory buffers which are "locked-down"

in teal memory.

GRLP - A STAR loader directive which allows the user to group routines

and/or common areas in a user defined arrangement on a large page

boundary.

GROL - A STAR loader directive which allows the user to group common

areas in a user defined arrangement on a large page boundary. No

minus page map entries are generated. This is the responsibility of

the user at execution time.

GROS - A STAR loader directive which allows the user to group common areas

in a user defined arrangement on a small page boundary. No minus page

map entries are generated. This is the responsibility of the user at

execution time.

GRSP - A STAR loader directive which allows the user to group routine and/or

common areas in a user defined arrangement or a small page boundary.

IMPL - The implementation language in which the central operating system is

written,

59

1/0 Connector - An laput/output connector Is a four-word 'block used by the

operating system to establish a link between the program and its 1/0

device. The operating system uses an 1/0 connector to keep track of

a specific file's activity and a program's use of that file. Each time

a program Issues a create or open file request, an 1/0 connector	
-J

Is created.

LINK - Collection of one or more segments which comprise a logical sub-

division of the program.

LINKLIB - Collection of subprograms which are used to satisfy unresolved

externals In NASTRAN.

META - The assembly language used in coding STAR-100 central memory

programs.

Minus Page - All virtual files have a minus page preface; it consists of

612 word segment (small page containing information to control pro-

gram execution and data access).

OLE - Object library editor. The STAR loader uses library files as a source

of modules to complete unsatisfied externals. OLE is used to create and
3

modify such libraries.

Pool Files - Files which are accessible to more than one user, but which are

not universally accessible.

RECALL - The state of a program when it has released control of the central

processor until a fixed time has elapsed or until a requested function is

complete.

Sparse vector - A vector with a high incidence of zero elements.

SUBSYS - Procedure for generation of functional links in NASTRAN.

60

Uni-programming - The execution of only one program at a time.

Virtual 1/0 - Input/output which occurs (perhaps unknown to the riser) when

virtual memory referenced exceeds the available real memory or when

virtual memory referenced has not been associated with real memory.

XBOOT - A bootstrap program which writes subsequent programs as an

indexed file on disk and then passes control to an entry point which

Initiates execution of the problem program.

Gl

h

;r

APPENDIX A

SCALAR CPU TIMING COMPARISON BETWEEN 6600 AND STAR-100

The following information was extracted from the Control Data Corporation

Standard Benchmark Library. Several points are noteworthy:

• 6600 computer system timings are actual

• STAR-100 timings are computed

• STAR FORTRAN code is unoptimized

• Only scalar code was generated by STAR FORTRAN

• Virtual addressing was in effect on STAR-100

Table A.1 presents the results of a comparison of ton problems. Brief

descriptions of these problems follow the table.

Table A.1. 0600/STAR-100 SCALAR CPU COMPARISON

Problem
6600

CP Seconds
STAR-100

CP Seconds Ratio

1 11,507 6.050 1.9020
2 13.297 12.600 1.0553
3 10.058 5.353 1.8790
4 7.465 4.000 1.8663
5 7.065 3.600 1.9625
6 6.721 4.740 1.4179
7 6.309 5.020 1.2568
8 4.726 3.200 1.4769
9 12.531 4.250 2.9485

10 9.841 3.300 2.9821

Average Ratio	 1.87470

Standard Deviation of Ratio
	 0.65047

Maximum Ratio	 2.9821

Minimum Ratio	 1.0553

r '	 PAGZ DIAM IM IMUM 63

1) Name	 ADVAN

Source Statemattts	 68

Language	 FORTRAN

Purpose	 CPU Performance

Description	 Dynamics code which tests 3-dimenalonal subscripts.

This kernelt presents significant opportunity for

subscript evaluation optimization. This kernel is

the solution of three simultaneous partial differ-

ential equations for a plane rectangular object.

2) Nsme	 AIGILP

Source Statements	 18

Language	 FORTRAN

Purpose	 CPU Performance

Description This kernel forms a dot product of two vectors

with a dimension of 200. It tests the efficiency

of small loops.

3) Name	 GIBSON

Source Statements 	 32

Language	 FORTRAN

Purposes	 CPU Performance

Description	 Written to produce code on the Control Data 3600

to approximate the Gibson Mix - an instruction

mix (i.e., values are calculated by multiplying

the execution times for selected instructions

based on their (supposed) frequency of use).

These products are summed to give the "GIBSON

VALUE" for that machine. The mix is for CPU only;

Thee word kernel throughout this appendix refers to the fact that the test was com-
pletely in core and no I/O was involved.

J

i
ri

'i
i

64

no I/O is considered. However, timing comparisons

from actual problems on manly computer systems

show the relative speeds as indicated by the Gibson

Mix are also valid for throughput.

4) Name	 LINK

Source Statements 	 29

Language	 FORTRAN

Purpose	 CPU Performance

Description This kernel extracts elements from a data array

via a function call and owns those elements. it

tests the efficiency of function linkage.

5) Name	 SCI-1

Source Statements	 7

Language	 FORTRAN

Purpose	 CPU Performance

Description This Is a subroutine which generates a Hilbert

Matrix. Element (1,J) of the matrix is set to

1/(I+J-1).

6) Name

Source Statements

Language

Purpose

Description

SCI-2

19

FORTRAN

CPU Performance

This is a subroutine which inverts the Hilbert Matrix

generated by SCI-1.

65

a _

7) Name	 SCI-3

Source Statements	 8

Language	 FORTRAN

Purpose	 CPU Performance

Description	 This kernel forms the product of the Hilbert Matrix

generated by SCI-1 and the Inverse of the Matrix

generated by SCI-2.

8) Name	 SiNCOS

Source Statements 	 40

Language	 FORTRAN

Purposes	 CPU Performance

Description	 This kernel convects a set of coordinates from polar

to Cartesian form. It evaluates the performance of

SIN and COB functions.

0)	 Name SORTEST

Source Statements 53

Language FORTRAN

Purpose CPI) Performance

Description This kernel creates 10000 random Integers and sorts

them in core using a shell sort. 	 It tests random

branching.

10)	 Name T$LLNK

Source Statements 52

Language FORTRAN

Purpose CPU Performance

Description This kernel builds a series of chained table entries.

It tests random branching.

66

APPENDIX B

STIFFNESS MATRIX DECOMPOSITION TIMING

The Information contained is this appendix was extracted from a report by

the Advanced Software Research Department of Control Data Corporation,

December 1971.

Structural analysis consists of several steps as shown In Figure B-1. The

most complex (in terms of arithmetic and data management) is the decomposition

of the stiffness matrix. This phase consumes nearly all of the computing re-

sources (memory, CPU t(me, I/O time) compared with the other steps as the

problem size increases. This is also illustrated in Figure B-1.

Algorithms

The stiffness matrix requiring decomposition is almost always a symmetric

positive definite matrix (i.e. Q1 AQ > 0). The algorithms used are Gauss

eliminnticn (in symmetric form) or one form of Ghnlesky decomposition (with

or without square roots) as shown in Figure B-2. The original ordering of

nodes in a structure is renumbered to reduce the matrix bandwidth. The

"effective bandwidth" (designated by the mnemonic NBAND) depends upon the

programming (numerical) algorithms used in implementing the mathematical

algorithm. The width of each row is the number of elements from the first

non-zero position up to (but not Including) the diagonal. A classical constant

band algorithm requires the effective bandwidth to be equal to the largest row

width. A variable band algorithm (often called profile method) sets the

effective bandwidth equal to the average row width. The effective bandwidth is

the key to the computational assets required. We have broken the analysis into

two categories:

1. Variable Band Algorithms - The effective bandwidth has been set to 1.5 rF

2. Constant Band Algorithm - The effective bandwidth has been set to 4 4N

67

Where N is the number of equations to be solved. There are in-between eases

such as the active column approach of NASTRAN. Also for the two algorithms,

there is considerable deviation from the averages of 1.6 f Nand 4 4-W.

The specific programming procedures used are shown In Figure B-9.

CPU Timing Analysis

The section explains the details involved in the calculation of CPU time re-

quirements for the Control Data 6600 and STAR. A formula is derived for

each computer and formula verification data via benchmarks to illustrated.

The Control Data 6600 CPU ttming formulas are shown in Figure B-4. The

6600 CPU time, unlike STAR, to ountributed to by swapping and mapping factors

reflecting CPU time used for data mangement functions (since the entire problem

will not fit into 6600 central memory). The breakdown of the 6600 CPU time by

function is shown in a tabular form in Figura B-6. Figure B-6 shows the valida-

tion with IMPt benchmarks.

The STAR timing formulae are shown in Figure B-7, The formulae are de-

rived using a simulation program for the STAR-100. The base data for individual

Instruction timings cane from the STAR Advanced Development Laboratory Report

of April, 1974. ".STAR-100 Timing Document" (through Revision 3). These

timings have been verified on STAR except for the micro-code type of complex

instructions using bit patterns, etc.; none of these instructions were used in the

benchmark codes. The simulator accounts for memory conflicts, pipe conflicts,

register conflicts, branches to various superword positions in and out of stack,

etc., in the timing analysis.

t IMP Is a software system for the direct or iterative solution of large differential
and/or algebraic systems. Copyright D. M. Brandon, Jr., March 1972.

4
68

Figure B-6 shows STAR and 6600 CPU times bus the variable banded al-

gorithm based on full machine utilization) The analysis for both constant

and variable banded algorithms was done for full utilization of both machines

(unt-programming) and partialt utilization of both machines. Both Gauss

and Cholesky algorithms were evaluated for STAR and both FORTRAN and

COMPASS code were evaluated for the 6600. Figure B-9 shows the STAR and

the 6600 CPU time for the variable banded algorithm based on partial machine

utilization. Figure B-10 shows STAR and the 6600 CPU time for the constant

band algorithm based on full machine utilization. Figure B -11 shows STAR

and 6600 CPU time for the constant band algorithm based on partial machine

utilization.

t Full or partial utilization is defined as a real core memory data area of
the following sizes:

STAR-100	 Full utilization
STAR-100	 Partial utilization
CDC 6600	 Full utilization
CDC 6600	 Partial utilization

	

920,000	 64-bit words

	

200,000	 64-bit words

	

60,000	 60-bit words

	

12 0 000	 60-bit words

69

t^

B^FPS (STATIC. LINEAR•ELASTICI

• Data input

• Geometry check

• Cartesian coordinate transformation

• Global coordinate transformation

• Stiffness matrix generation

• Matrix decomposition

• Forward substitution

• Back substitution

• Stress recovery

• Data output

TIME REQUIRED (LARGE PROBLEM - FULL CDC 6600 MEMORY USED)

CPU TIME	 I/O TIMEt

Decomposition	 7,639	 32,477

Totaltt 	10,090	 32,654

t Not actual I/O time, but SCOPE 3.3 accounting algorithm.
tt Includes all steps above.-

Figure B-1. Structural Finite Element Analysis

70

ORIGINAL PROBLEM

Ax = B

where:

A s Stiffness matrix

B r. Load vector

X e: Displacement vector

DECOMPOSITION

A=LDUr

FORWARD AND BACK SUBSTITUTION

LZ = 9

H = Y'7.

where:

U = LT

CHOLESKY DECOMPOSITION

s Dot products used to find L

GAUSS DECOMPOSITION

How operations used to find U

Figure 13-2 Algorithms

71

BOTH MACHINES

• Storage of original and decomposed stiffness matrix by rows only

in eummulative lists

• Variable banded (profile) method used for timing

• Separate storage of diagonal vector D (actually D I)

• Full " Oortcuts" code employed:

• Singleton diagonal elements

• One element In row prior to diagonal

• Dot products and row operations performed with shortest

length on row combinations

• Cummulative indexing of A and U (or L) with indices for:

• First non-zero position in row

• Diagonal position in cummulative list

• Full error monitor code

• No data packing (full word usage)

STAR

• Virtual memory used.

Control Data 6600

• ABDM (Arithmetic Block Data Manager of IMP) used

Figure B-3. Programming Procedures Used

72(`

pp
I

r,60o	 16600	 6600	 6600
rCPU = 7 ALG + TMAP TSWAP

where:

TAB Time due to arithmetic or algorithm (if the algorithm were

written to operate entirely within core memory, this would be the

only factor In T600

TMA ^, Time due to mapp ing (findingng page location for data on disk and

in core buffers).

TRAP CPU time due to execution of swap routines and FORTRAN, 6RHf
and CIO calls.

,x6600
a4 • N + a5 • N . NBAND + (a6 	2) • N .

2
NBANDALG

a4 = 4.0 • 10-5

a5 = 2.7 • 10-5

a6 = 3.0 • 10-6

TMAP a7	 N + a6 • N . NBAND

FORTRAN COMPASS

a7 = 4.0 • 10 -3 27 = 4.0 • 10-3

aS = 5.0 • 10-4 = 2.0 • 10-4a6

T6600 a9 . NSWA P = 2.1 • 10-2a0

where:

N = Number of equations

NBAND = Effective semi-bandwidth

NSWAP a Number of page swaps

Figure B-4.	 Control Data 6600 CPU Timingt

t Based on variable banded algorithm code (profile method) with full error recognition
(60-bit arithmetic).

73

i'

jl

i

VARIABLE BAND ALGORITHM
(NBAND = 1.5 fA)

Time Seconds
Number 2
of Equa- Algorithm Ma Swapping Total
tions FORTRAN COMPASS FORTRAN COMPASS FORTRAN COMPASS FORTRAN COMPASS

100 .07825 .07825 1.1500 0.7000 0 0 1.2282 .77825

250 .36362 .36362 3.8750 2.1500 .02100 .02100 4.7596 2.5346

500 1.2822 1.2822 10.250 5.3000 .06300 1 06300 11.595 6.6452

750 2.7514 2.7514 18.375 9.1u00 0.1260 0.1260 21.252 12.027

1000 4.6225 4.6225 27.500 13.400 0.2100 0.2100 32.332 18.232

3000 37.020 37.020 135.00 61.200 1.1340 1.1340 173.15 99.354

5000 98.780 98.780 285.00 126.00 2.4570 2.4570 386.24 227.74

10000 378.40 378.40 790.00 340.00 111.28 111.28 1279.7 829.68

20000 1463.6 1463.6 2200.0 928.00 1057.6 1057.6 4721.2 3449.2

1 The FORTRAN code was written so as to compile into the optimal machine code.

2 The swapping CPU time is the same for FORTRAN and COMPASS since the same
COMPASS I/O macros and 6RM/CIO calls are used (however the swapping 1/0
time differs).

Figure B-5. CPU Time - CDC 6600 Full Machine

74

lV	 l

FULL MEMORY UTILIZATION

EXAMPLE N N.BAND2
6600

TCPU

ACTUAL

NSWAPS

FORMULA
6600

1CPU	 NSWAPS.

1 50 6.25.104 1.49 3 1.2	 0

2 100 2.5.105 3.55 3 3.4	 1

3 250 1.56* 106 14.0 3 13.8	 4

4 500 6.25.106 42.9 20 40.7	 12

5 750 1.41* 10 7 90.1 93 78.9	 63

PARTIAL MEMORY UTILIZATION

EXAMPLE N NoNBAND2
6600

1CPU

ACTUAL

NSWAPS

FORMULA
6600

TCPU	 NSWAPS

1 50 6.25*104 .752 3 1.3 2

2 100 2.5#105 2.26 6 3.5 6

3 250 1.56.106 31.2 989 35.9 1053

4 500 6.25@106 152.9 4493 127.5 4144

5 750 1.41010 7 281.2 9457 273.2 9316

116rure B-6. Formula Validation Comparisons with CDC 6600 Benchmarkst

f FORTRAN code of IMP Version 2.0.

75

T STAR - a1 . N + a2 • N a NBAND + (ag /2) • N • NBAND2
CPU

VECTOR MODE

age
	

CHOLESKYt

a1 1.88 . 10 5
	

a1 -1.880 10 5

s^2 - 2.01 . 10-5
	

a2 - 1.50 . 105

a2 = 6.00 . 108
	

a2 -1.60. 107

where.

N v Number of equations

NBAND a Effective semi-bandwidth

Figure B-7. STAR-100 CPU Timingtt

t
Crossover point between Gauss and Cholesky Is at an effective bandwidth
of about 100.

^f
Based on variable banded algorithm code (profile method) with full error,
recognition code (64-bit arithmetic).

76

VARIABLE BAND AL0O121TIIM
(NBAND - 1.5 M)

,
Number of

Time	 seconds

FTAR (FORTRAN) CDC 6600 (CROLF.SKY)
Equations GAUSS CHOLESKY FORT1tANt COMPASS

100 0.032715 0,02619 1.2282 .77825

250 0.12427 0.10155 4.2596 2.5346

500 0.35743 0.30051 11.595 6.6452

750 0.67007 0.57628 21.252 12.027

1000 1.0299 0.90062 32.332 18.232

30p0 5.6065 5.3605 173.15 99.354

5000 12.433 12.539 386.24 227.74

10000 37.089 40.689 1279.7 829.668

20000 112.57 135.89 4721.2 3419.2

t The difference in these times is due to mapping, not the arithmetic in the
inner loop.

Figure B-8. Full Machine Utilization-CPU Time of STAR-100 vs. CDC 6600
(Variable Band Algorithm)

77

T ^i

VARIABLE BAND ALGORITHM
(NBAND R 1.5 4R)

Number OI

Time Iseconds

STAR (FORTRAN,, CDC 8800 (CHOLESKY)
Equations GAUSS CHOLESKY FORTRAN COMPASS

100 0.032715 0.02618 1.2702 0.82025

250 0.12427 0.10155 4.3856 2.6606

500 0.35743 0.30051 11.904 7.0442

750 0.67007 0.57678 21.987 12.762

1000 1.0299 0:90067 33.424 19.324

3000 5.6086 5.3605 457.87 384.07

5000 12.433 12.539 1177.7 1187.4

10000 37.089 40.689 4339.4 3889.4

20000 112.57 135.89 16307. 15035.

Figure B-9. Partial Machine Utilization-CPU Time of
STAR-100 vs, CDC 6600 (Variable Band Algorithm)

78

CONSTANT BAND ALGORmim
(NBAND - 4 % N)

Time Isecends)

Nu(nber of STAR (FORTRAN) CDC 6600 (; HOLE,)KY)
Equations GAUSS CHOLF:SKY FORTRAN COMPASS

100 .08709 .07469 2.7502 1..5520
250 .35107 .32035 10.802 6.1366
500 1.36134 1.3345 ;11.601 18.251
750 2.6060 2.6346 59.856 ;15.331

1000 4.0498 4.2010 94.844 57.04.1
3000 24.302 '18.236 743.38 546.28
5000 55.013 67.703 2035.2 1612.2

10000 170.49 230.09 6639.7 5639.7
20000 537.25 798.85 23914. 20524.

Figure B-10. Full Machine Utilization-CPU Time of
SCAR-100 vs. CDC 6600 (Constant Band Algorithm)

79

i

CONSTANT HAND ALGORITHM
(NHAND = 4 iN)

Number of

Time second

STAR (FORTRAN) CDC 0600 (CHOLESKY)
EQUItiora GAUSS CHOLESKY FORTRAN COMPASS

100 .08709 .07469 2.8570 1.6570

250 .35107 .32035 14.558 9.8326

500 1.3034 1.3345 87.461 74.111

750 2.6060 2.6346 185.37 1110.85

1000 4.4098 4.2101 318.28 Mo.48

3000 24.392 28.236 2597.7 2400.3

5000 55.013 67.703 6946.1 6523.1

10000 170.49 230.09 27004, 25804.

20000 6734.0 6995.6 105150. 101760.

Figure B-11, Partial Machine Utilization-CPU Time of
STAR-100 vs. CDC 6600 (Constant Hand Algorithm)

80

Control Data Corporation: Control Data SPAR Computer System FORTRAN
.Language Reference Manual,	 Pub. No. 60386200, June 1974.

Control Data Corporation: Control Data STAR Computer System Operating
%, stern Reference Manual, Pub. No, 603844008, January 1974.

Control Data Corporation: Control Data STAR-100 Computer S,y p tem Preliminary
Instruction Execution 'finning Manual,	 1"u)).	 No.	 60440600,	 July 1974.

Control Data Corporation: Mr.:A Science library.	 Pub. No, 60327500A, Vol. 6,
March 1971.

BIBLIOGRAPHY

Coffman, 17s. G.; and Denning, P. J.: Operating Systems 111wory.
Prentice - flaR, 1973.

Control Data Corporation: STAR-100 Computer System Hardware Reference
Manual. Pub. No. 60256000, May 1973.

Denning, P. J.: The Working Set Model for Program Behavior. Comm.
ACM 11, May 1968, pp. 323-333.

Douglas, F. J., ed.: The NASTRAN Programmer's Manual. NASA SP- 223,
1974.

Field. E. I.; Johnson, S. E.; and Stralberg, H.: Structural Mechanics Computer
Progvams. University Iress of Virginia, 1974, pp. 1019-1042.

Gcurtin, It. L.: Programming in a Paging Environment. Datamation,
February 1972, pp. 48-55.

lleuer, G. A.: Matrix Algebra and Related Problems. Control Data
Technical Report Tit 53.

ltohn, W. C.; and Jones, P. 1).: The Control Data STAR-100 Paging Station,
National Computer Conference, 1973, pp. 421-426.

IBM Corporation: 16M 7090/7094 IBSYS Operating System Ver.aion 13
FORTRAN IV Languages. File No. 7090-25 GS28-639(-4, November 1968.

81

Lambiotte, J. J. , Jr. ; and Dolgt, R. G. : The Solution of Tr. idiagonal
Linear Systems on the CDC STAR-100 Computer. Institute for Computer
Applications in Selene anti Engineering 11CASE), July 1974.

MucNeal, R. H., ed.: The NASTRAN Theureticul Manual, NASA SP-221(01),
1972.

McCormick, C. W.; and Retlnor, K.H.: Study of the Modifications Needed for
Effective Operation of NASTRAN on 113M Virtual Storage Computers. The
bfacNeal-Sehewendler Corporatism, I.os Angeles, October 1974.

McCormick, C. W., ed.: The NASTRAN User's illanunt. NASA W-222(01),
1972.

14leKellar, A. C.; anti Coffman, 1 .G.: Organizing Matrices and Matrix
Operations for Paged Memory aystems. Comm. ACM 1.2, March 1909,
pp. 103-165.

J

Noor, A. K. ; and Fulton, R. 17- : fmpact of the CDC-STAR-100 Computer on
Finite-Element Systems. Presenteti at Sixth National .ASCE Conference on
Electronic Computations, August 1974,

Schnook, Paul 11.: The Myth of Mtsltiprograwining, Software -. Practice
and Experience, Vol. 4, 1974, pp. 5942.

82

	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A01_.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A04_.pdf
	0001A05.pdf
	0001A05_.pdf
	0001A06.pdf
	0001A06_.pdf
	0001A07.pdf
	0001A07_.pdf
	0001A08.pdf
	0001A08_.pdf
	0001A09.pdf
	0001A09_.pdf
	0001A10.pdf
	0001A10_.pdf
	0001A11.pdf
	0001A11_.pdf
	0001A12.pdf
	0001A12_.pdf
	0001A13.pdf
	0001A13_.pdf
	0001B01.pdf
	0001B01_.pdf
	0001B02.pdf
	0001B02_.pdf
	0001B03.pdf
	0001B03_.pdf
	0001B04.pdf
	0001B04_.pdf
	0001B05.pdf
	0001B05_.pdf
	0001B06.pdf
	0001B06_.pdf
	0001B07.pdf
	0001B07_.pdf
	0001B08.pdf
	0001B08_.pdf
	0001B09.pdf
	0001B09_.pdf
	0001B10.pdf
	0001B10_.pdf
	0001B11.pdf
	0001B11_.pdf
	0001B12.pdf
	0001B12_.pdf
	0001B13.pdf
	0001B13_.pdf
	0001B14.pdf
	0001B14_.pdf
	0001C01.pdf
	0001C01_.pdf
	0001C02.pdf
	0001C02_.pdf
	0001C03.pdf
	0001C03_.pdf
	0001C04.pdf
	0001C04_.pdf
	0001C05.pdf
	0001C05_.pdf
	0001C06.pdf
	0001C06_.pdf
	0001C07.pdf
	0001C07_.pdf
	0001C08.pdf
	0001C08_.pdf
	0001C09.pdf
	0001C09_.pdf
	0001C10.pdf
	0001C10_.pdf
	0001C11.pdf
	0001C11_.pdf
	0001C12.pdf
	0001C12_.pdf
	0001C13.pdf
	0001C13_.pdf
	0001C14.pdf
	0001C14_.pdf
	0001D01.pdf
	0001D01_.pdf
	0001D02.pdf
	0001D02_.pdf
	0001D03.pdf
	0001D03_.pdf
	0001D04.pdf
	0001D04_.pdf
	0001D05.pdf
	0001D05_.pdf
	0001D06.pdf
	0001D06_.pdf
	0001D07.pdf
	0001D07_.pdf
	0001D08.pdf
	0001D08_.pdf
	0001D09.pdf
	0001D09_.pdf
	0001D10.pdf
	0001D10_.pdf
	0001D11.pdf
	0001D11_.pdf
	0001D12.pdf
	0001D12_.pdf
	0001D13.pdf
	0001D13_.pdf
	0001D14.pdf
	0001D14_.pdf
	0001E01.pdf
	0001E01_.pdf
	0001E02.pdf
	0001E02_.pdf
	0001E03.pdf
	0001E03_.pdf
	0001E04.pdf
	0001E04_.pdf
	0001E05.pdf
	0001E05_.pdf
	0001E06.pdf
	0001E06_.pdf
	0001E07.pdf
	0001E07_.pdf
	0001E08.pdf
	0001E08_.pdf
	0001E09.pdf
	0001E09_.pdf
	0001E10.pdf
	0001E10_.pdf
	0001E11.pdf
	0001E11_.pdf
	0001E12.pdf
	0001E12_.pdf
	0001E13.pdf
	0001E13_.pdf
	0001E14.pdf
	0001E14_.pdf
	0001F01.pdf
	0001F01_.pdf
	0001F02.pdf
	0001F02_.pdf
	0001F03.pdf
	0001F03_.pdf
	0001F04.pdf
	0001F04_.pdf
	0001F05.pdf
	0001F05_.pdf
	0001F06.pdf
	0001F06_.pdf
	0001F07.pdf
	0001F07_.pdf
	0001F08.pdf
	0001F08_.pdf
	0001F09.pdf
	0001F09_.pdf
	0001F10.pdf
	0001F10_.pdf
	0001F11.pdf
	0001F11_.pdf
	0001F12.pdf
	0001F12_.pdf
	0001F13.pdf
	0001F13_.pdf
	0001F14.pdf
	0001F14_.pdf
	0001G01.pdf
	0001G01_.pdf
	0001G02.pdf
	0001G02_.pdf

