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ABSTRACT

This report discusses the integration of the vector differential equation
x = f(x, t) from time t; to t,;. where only the values of x; are available for
the integration. No previous values of x or x are used. Using an orbit inte-
gration problem, comparisons are made between Taylor series integrators and
various types and orders of Runge-Kutta integrators. A very outstanding fourth
order Runge-Kutta type integrator for orbital work is presented. Approximate
(there may be no exact) fifth order Runge-Kutta integrators are discussed. Also
discussed and compared is a self starting integrator using af/ax. A numerical
method for controlling the accuracy of integration is given. And, the special
equations for accurately integrating accelerometer data are shown.



1. INTRODUCTION

Within recent years, the increasing use of sequential data processors
(e.g. Kalman filters) has increased the need for high quality, self-starting
integrators. A self-starting integrator is one which takes a current estimate
of the state vector, Xy and, using the equation §_= f(x, t), propagates this
estimate ahead AT seconds to obtain x4,,- Non se]f—starting integrators (e.g.
Adams-Moulten integrators) need the previous values of ii' X510 gj_z. etc. in
order to obtair an estimate of x, ..

This report will discuss several self-starting integrators. An empirical
evaluation of these integrators will then be made with regard to their efficacy
in an orbit determination problem. A numerical method of determining the ac-
curacy of these integrators over each integration step is shown. This determina-
tion is quite useful in such areas as calculating interplanetary trajectories,
where equal accuracy integration step sizes may vary from a few seconds (close
to a planet) to as long as several hours.

A section has been included which shows how to accurat:ly integrate ac-
celerometer data. This data generally comes into the integrator as tne integral
of sensed acceleration, not -ensed acceleration itself.

To my knowledge, no one has ever developed a fifth order Runge-Kutta in-
tegrator for the vector differential equation x = f(x, t). We will show that
6 evaluations of f(x, t) are needed, not 5 as one might expect. Further, even
with 6 evaluations there may be no exact set of integrator constants. Two ap-
proximate sets of fifth order integrator constants are shown and evaluated.



2. INTEGRATION BY TAYLOR SERIES

One of the oldest and best known methods of numerically integrating is the
Taylor series expansion. It is the standard of{ comparison against which all
other methods are evaluated. Despite the fact that the method is old, doesn't
mean that it is obsolete. Indeed it is frequently and efficiently used in digital
computer programs. Integration of the vector differential equation, g_= fix, t),
is accomplished by

? 3 4

_ - ATC | .o AT 8T, .

Ko =X ¢ % AT+ K S Ky S+ K e (1)
where

x = f(x, t)

ax . ax of of
£=g£+;{=5z.f.*ﬁ
.. 93X . 3K
X=x2'3
e X 03X
£=§££+5¥ etc.

The partial derivative of a v.ctor, g, with respect to a vector, z, is defined
tv be the matrix
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32, 3z, 9z, ot aZ

¥ X% M T ]

32, 3z, 3z, 3z,
Ad_| 7 3z, 3z, iz,
2z

22, 3z, 32, a2,

where the subscripts indicate the particular element of the vector in question.
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3. SECOND ORDER RUNGE-KUTTA TYPE INTEGRATOR

A second order integrator is one that gives a solution which agrees with
a Taylor series expansion up through the AT2 terms. Such an integrator is

ky = aTf(xy» t; + 6,4T) (2)

52 = ATi(l{ + a]l_(.]’ ti + GZAT) (3)
- 3

Xi4] = % * biky + bok, + 0(aT”) (4)

The integration constants in the above equation are not arbitrary. In order
to achieve an error of order AT3, the following constraint equations must be
satisfied

bya; = 1/2 (5)
by + by =1 (6)
by8y + bys, = 1/2 (7)

Note that there are only three equations in five unknowns. The constraint
equations could be rewritten as

by = 2[5, - 5,) b, = 2067 - 5,) L Tl Z,

TABLE 1: SECOND ORDER CONSTRAINT EQUATIONS
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§; and &, can be experimentally chosen to reduce the 0(AT3) truncation error.
A special case arises when 8 = 6. The constraint equations for this case are
shown in Table 2. Here, b2 is chosen to reduce the truncation error.

] |
3 523 Yt B, by =1 -0,

TABLE 2: 2ND ORDER CONSTRAINTS WHEN §1 = &

It is interesting to note that fourth order integration of é_: f(t) can
be achieved by adding the two additional constraint equations

2 2 _
3 3 _
by&) + bysy = 1/4 (9)

There are two solutions of the five constraini equations (equations (5) tnrough
(9)). These solutions are shown in Tables 3 and 4.

5, = (3 -\3)/6 = .2113 2486 5405 1888

5, = (3+43)/6 = .7886 7513 4594 8112

ay = 1 b] =1/2 b2 = 1/2

TABLE 3: 2/4 ORDER INTEGRATOR CONSTANTS, SET #1
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5, = (3+y/3)/6 = 7885 7513 4594 8112

6, = (3-43)/6 = .2113 2435 5405 1888

a = 1 b.I = 1/2 b2 = 1/2

TABLE 4: 2/4 ORDER INTEGRATOR CONSTANTS, SET #2

When x = f(t), the constants in Tables 3 and 4 will cause the solution

to be
% y v AT2 - AT3 coee AT4 35 dsﬁi AT5
iy = X Y X7+ X ST X RS B A S 1

§4+] means approximate value of X541 A similar equation also applies to any
element of f(x, t) which is a function of time alone. Note that the general
solution of x = f(x, t) is still only second order, hence the terminology 2/4
order.

If, instead of using equation (9) as an additional constraint equation,

we use the equation
8 = 0 (10)

then we obtain a third order solution when g_= f(t). The 2/3 order integrator
constants are shown in Table 5.

-
8 = 0 6y = 2/3 a = 2/3 b.| = 1/4 b2 = 3/4

TABLE 5: 2/3 ORDER INTEGRATOR CONSTANTS
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4. THIRD ORDER RUNGE-KUTTA TYPE INTEGRATOR

Third order integration of x = f(x, t) can be achieved by

Ky = AT f(x,, b, + 6,7)
ky = oT £{x; + agky, ty + 6,07

_ 4
Xipp = Xj * Cky * cgkp + c3kg + 0(aTT)

The constraint equations for the integration constants are

;=0
ay = 5,
b] + b2 = 83
byCas, = 1/6

¢ + c2 + c3 =1
°262 + c363 = 1/2

2 2
c262 + C363 = 1/3

4-1

(1)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)



Here again there are two more unknowns than there are equations. Thus all the
integrator constants can be expressed as functions of 8, and 53, as shown in
Table 6.* 8y and 55 can be experimentally adjusted to reduce the 0(AT4) trunca-
tion error in equation (14).

5y =0 2 = & by = 83 - b, P27 %, 7%,
2 6378, 3%3°- 5

TABLE 6: THIRD ORDER CONSTRAINT EQUATIONS

Twn special cases arise when 8y = 83 and when 83 = 0. The constraint
equations for these cases are shown in Tables 7 and 8. In both cases Cq is
emperically deternined to reduce truncation error.

i _ 2 _ 2 _
5y =0 8,=63°73 a =3 by =

TABLE 7: THIRD ORDER CONSTRAINTS WHEN 8§y =6

¥ Note from equation (18) that by, 3, 8, = 0 are not allowable solutions.

4-2



= =—2- =2 8-]
§y=83=0 =3 233 b LI

0

1 ] i
by %, =7 ¢3 ¢y =

TABLE 8: THIRD ORDER CONSTRAINTS WHEN 8y = 0

Fifth order integration of x = f(t) can be achieved by adding the two
additional constraint equations

3 3

Cp3 + Cg83 = 1/ (22)
czsg + c3sg = /5 (23)

There are twc solutions of the nine constraint equations (equations (15)
through (23)). These solutions are shown in Tables 9 and 10.

5 = 0
5, = (6 -\/6)/10 = .3550 5102 5721 6822
55 = (6+V6)/10 = .8449 4897 4278 3178
ay = (6 -4[6)/10 = .3550 5102 5721 6822

= -(54 + 194/6)/250

o
-~
}

- .4021 6122 0451 5215

o
"

o = 2(51 + 114/6)/125 = 1.247 1101 9472 98393

¢; = 1/9 = .11 1M1 N1 1M
¢, = (16 +4/6)/36 = .5124 8582 6188 4216

.3764 0306 2700 4673

¢ = (16 -[6)/36
TABLE 9: 3/5 ORDER INTEGRATOR CONSTANTS, SET NO. I
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6, =0
6, = (6 +4J6)/10 = .8449 4807 4278 3178

65 = (6 -4/6)/10 = .3550 5102 5721 6822

a, = (6 +\6)/10 = .8449 4897 4278 3178

by = -(54 - 19/6)/250 = -.02983 €779 5484 7846
b, = 2(51 - 11y/6)/125 = .3848 8980 5270 1607
¢ =19= 1M NN UM NN

¢, = (16 -\/6)/36 = .3764 0306 2700 4673

c3 = (16 +\6)/36

.5124 8582 6188 4216

TABLE 10: 3/5 ORDER INTEGRATOR CONSTANTS, SET NO. 2

When x = f(t), the constants in the two tables above give a solution of

5 6
2 d %, .5 d'x, .46
4 AT oo = 2§ AT

_ y -~ i AT
Xja1 =X x0T * X S MY LW S



5. FOURTH ORDER RUAGE-KUTTA TYPE INTEGRATOR

Fourth order integration of x = f(x, t) can be achieved by

ky = aT fx;, t; + 8,aT) (24)
ky = 2T f(gi +agky, t; + 8,8T) (25)
kg = aT j(ii + biky *+ boky, it 53AT) (26)
Ky = 2T fx. + Ciky + Coky + Cokq, b+ 5,2T) (27)
Kie1 = X+ diky T dgky + dokg + dgky + 0(2T) (28)

Tne constraint equations for the integration corstants are

W =0 (29)
3y = iy (30)
by + b, = 3, (31)
cpte,tceg=4, (32)
02d352 + (cze2 + c3£3)d4 = 1/6 (33)
b2d36263 + (czs2 + c3a3)d454 = 1/8 (34)
b,dyss + (c,85 + c435)d, = 1/12 (35)

b,Cadpe, = 1/24 (36)

5-1



= )
d] + dZ + d3 + d4 1 (37)

dyby + dyby + dgs, = 172 (38)
2 2 2 .
dz‘z + d363 + d4c4 =1/3 (37)

3 3 3_
dy6y + d3s3 + dy8y = 1/4 (40)

It is interesting to note that equations (34) and (35) cannot be derived from
consideration of the scalar equation x = f(x), as can most of the other con-
straint equations. Consideration of only the scalar equation leads to a con-
straint equation which is a linear combination of equations (34) and (35).

It can be shown that the only value of 84 which satisfies the constraint
equations is 64 = 1. As before, the constraint equations can be rewritten as
shown in Table 11. 8o and §4 can be emperically determined to reduce the O(ATS)
truncation error in equation (28).

6

8§, - &
- i ] . _ %3855
6 =0 =1 (% byoyby bytm Tom,
2

¢y = 1-¢,-c c, =

(1-8,) (1-85) (26,-1)

C, = = d, =1-d, -d, - d
3 05(82-637(-462 - 453 + 56263 + 3) 1 2 3 4
263 - ] d = 262 - ]
IR P13 (U | (R )| 3 T2a5083 - &,)e3 - 1)
2'\ 2 372

47 TIAT - 6,0 - 550

TABLE 11: FOURTH ORDER CONSTRAINT EQUATIONS
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There is an interesting array of nonacceptable solutions of the constraint
equaticas. Some of these are

§,# 0

83 ¢ 1

—4&2 - 455 + 65,85 + 3 # 0 unless §p =1

262 - 1 # 0 unless 85 = 85 0Or unless 63 = 0

b, # 0

c3# 0

d; # ¢

dg # 0

These unacceptable solutions give rise to the three special forms of the

constraint equations shown in Tables 12, 13, and 14. If d3 is set to 1/3 in
Table 12, it wi') be seen that the standard, fourth-order, Runge-Kutta integra-

«ion constants will be obtained. If d, is set equal to (1 +1/4J2)/3 the
Kunge-Kutta-Gill integration constants will be obtained.

§4=0 6y = 1/2 84 = 1/2 4 =1 a = 1/2

1 i
MTEtbh Bptg; a0 el-g
¢, = 3 dy =1 d,=%-4 d, =
3 3 1° 0% 2 3773 40

TABLE 12: 4th ORDER CONSTRALWT EQUATIONS FOR &, = 83
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y B 1 2
37 34, d =3 dy =g -9 d3 = 3

TABLE 13: 4th CRDER CONSTRAINT “QUATIONS FOR 8, = 1

=] - - -
Glgo '2 63—0 64'] 61-1/2

_ 1 _ _ _
by = "1, Y27 T ¢y = l-cpe3 ¢y =32

]
o
a.

w
o
ot
"
o
]
o
(79
a
~N
"
win
a
r-3
0
O =

TABLE 14: 4th ORDER CONSTRAINT EQUATIONS FOR 63 =0

Sixth order integration of x = f(t) can be accomplished by adding the
two additional constraint equations

4 4

dyéy + dysy + dy = 1/5 (41)
5 5 _

There are two solutions of the 14 constraint equations (equations (29) through
(42)). These solutions are shown in Tables 15 and 16.



8 =0
5, = (5 -4f5)/10 = .2763 9320 2250 0210

53 = (5 +4/5)/10 = .7236 0679 7749 9790

5= 1
ay = (5 -/5)/10 = .2763 9320 2250 0210

by = -(5 + 3y/5)/20 = -.5854 1019 6624 9685
b, = (3+/5)/4 = 1.309 0169 437 49475

¢y = -(1 - 5¢/5)/4 = 2.545 0849 7187 4737
¢, = -(5+ 3\[5)/4 = -2.927 0509 8312 4842
c3 = (5 -y5)/2 = 1.381 9660 1125 0105

d, = 1/12 = .08333 333 3333 3333

d, = 5/12 = .4166 6666 6666 66667

dy = 5/12 = .4166 6666 6666 66667

dy = 1/12 = .08333 3333 3333 3333

TABLE 15: 4/6 ORDER INTEGRATOR CONSTANTS, SET NO. 1
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5 = 0
5, = (5 +y/5)/10 = .723 0679 7749 9790

53 = (5 -y/5)/10 = .2763 9320 2250 0210

6g = 1
ay = (5 +4f5)/10 = .7236 0679 7749 9790
by = -(5 - 3y/5)/20 = .08541 0196 6249 6845

by = (3 -5)/4 = .1909 8300 5625 05256

-3.045 0849 7187 47373

¢y = -(1 + 5/5)/4

c, = -(5 - 3\5)/4 = .4270 5098 3124 8423

c3= (5 +\5)/2 = 3.618 0339 8874 98950

d-l = 1/12 = .08333 3333 3333 3333
d2 = 5/12 = .4166 6666 6666 66667
d3 = 5/12 = .4166 6666 6666 66667

dg = 1/12 = .08333 3333 3333 3333

TABLE 16: 4/6 ORDER INTEGRATOR CONSTANTS, SET NO. 2




When x = f(t), the constants in the two above tables give a sol.:ion of

6 7
PGIRRRRLE T ) Bt W7\ LA

A M o =
B S h P QAT Xy Sy U Tt W T Tt

A 4/5 order irtegrator can be obtained from Table 11 if we set

5y = 1} (3 - 56,)/(1 - 26,)

52 is then adjusted to give optimum performance. There are, however, several
nonallowable values of 8,. They are

5, # 0, .4, .5, .6, 1, 1 (6 +\/6)

It is sometimes of value to have an estimate of x at t, + 6aT. From the
equations shown in Appendix A, it is easily seen that

- 4
Xivg = X5 ¥ By + Boky + Byky + 8k, + 0(aT7) (43)
where
. - EE (cza2 + c363)(26 - 352) -1 - 62)6 ()
3 6 63(63 - sZI(czaz + c3657'- bzcz(l - 52)

. - 52 53(53 - §,) & - byg, (26 - 362) (45)
4 & 55085 - §,) (6,8, + C383) - Bod (1 - &,
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1 41 .2
82-32-(2-5 - 8485 - By) (46)
3‘ s § - 52 - 83 - 34 (47)

The k's are the same as those used to obtain x,.,. Thus no new derivative
evaluations are necessary.
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6. FIFTH ORUER RUNGE-KUTTA TYPE INTEGRATOR
WITH FIVE DERIVATIVE EVALUATIOKS

Fifth order integration of x = f(x, t) can be attempted by

ky o TR(xg, by 4 8geT) (48)
Ky = aTf(x; + ajkys ty + 8,2T) (49)
Ky o TR P byky + boky, ty 4 £4T) (50)
kg = TE(xG + Cky +coky +cgkgs by ¥ 2T (51)
kg = sTE(x, + diky + doky + dgkg + djky, t; + 5saT) (52)
Kiey T Ep eyt ey * eyt egky + egks + OLT) (53)

The constraint cyuations for the integration constants are

iy = 0 (54)
a = oy (55)
by + b, = 5, (56)
¢y ¥ ¢y + Cy3 = % (57)
d] + d2 + d3 + d4 = o (58)
ey te,+teste, te = 1 (59)
i + eglq + epd, + egip = 1/2 (60)
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2 2 2 2 .
ezcz + e363 + e464 + e565 1/3

3 3 3 3,

4 4 4 4 -
ezaz + e363 + e464 + e555 1/5
b262e3 + (czs2 + c363)e4 + (d262 + d363 + d464)e5 = 1/6
b262e363 + (czc2 + c363)e454 + (dzc2 + d363 + d454)e555 =1/8
b,s.,e 52 + (€8, + Co8,)e 52 + (d,8, + d.6., + d,6,)e 62 = 1/10
2°273"3 22 3°377474 2’2 3°3 4°4/75"5
(b, )ze + (c,8, + €6 )ze + (d, 8, + da6, + d,6 )2e = 1/20
272" *3 2°2 3°3/ 74 22 3°3 474’ 75
2 2 2 2 2 2
b262e3 + (C262 + c363)e4 + (dzc2 + d363 + d464)e5 = 1/12
2 2 2 2 2 2 -
b262e363 + (cza2 + c363)e464 + (dza2 + d3c3 + d464)e565 = 1/15

3

3
batsy

eq + (czeg + c3ag)e4 + (dzsg +dysy + d4cg)e5 = 1/20
b262c3e464 + [b252d3 + (cze2 + c3s3)d4]e555 = 1/30
b262c3e4 + [bzczd3 + (czc2 + c363)d4]e5 = 1/24
b262c3e463 + [b252d363 + (cza2 + c363)d464]e5 = 1/40
by83cae, + [bys2dy + (cp83 + c562)d,Teg = 1/60

b2&2c3d4e5 = 1/120

6-2

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)

74)

(75)



Since the above equations are so difficult to derive, we mention the
fact that they have been triple checked for accuracy and may be used with
confidence by the reader. There are 22 equations in 20 unknowns, leading one
to suspect that there may be no exact solution of these equations. However,
the equations are nonlinear and there may be a possibility of a solution. In
Appendix B we explore this possibility and arrive at the conclusion that there
is no exact solution of these equations. Thus it appears that a fifth order
Runge-Kutta integrator will require at least 6 derivative evaluations, not 5
as one would expect.

We have made though an approximate solution of the above equations.
Equations (54) through (59) are solved exactly. Equations (60) through (75)
were solved to an average 1o error of 3_1.6-]0'6. The constants are shown in
Table 17.

8 = 0 8, = .0013290 82957 6y = .37046 68626

84 = .74985 56689 §g = 1.0000 07268

ay = .0013290 82957

b} = -51.257 65184 b2 = 51.628 11870

G = 165.34 07125 €y = -165.94 52689 €y = 1.3544 12081

d] = -598.90 49520 d2 = 601.87 06163 ds = -3.0940 32895
l

d4 = 1.1283 75862

e, = -7.8256 11091 e, = 8.0068 96701 ey = .38071 98964

e = .35851 70449 eg = .079477 4487

TABLE 17: FIFTH ORDER INTEGRATION CONSTANTS FOR 5 DERIVATIVE
EVALUATIONS [AFPROXIMATE SOLUTTON]

6-3



7. FIFTH ORDER RUNGE-KUTTA TYPE INTEGRATOR
WITH SIX DERIVATIVE EVALUATIONS

As we saw in the previous section, we need more than five derivative
evaluations to obtain a fifth order Runge-Kutta type integrator. In this
section we attempt to obtain the fifth order integrator using six derivative
evaluations, as shown below.

ky = ATf_(_)gi, t+ 6.|AT) (76)
ky = aTE(x; + aykys t; + 6,8T) (77)
kg = Atf(gi * biky + boky, ty + 338T) (78)
ky = ATj(gi * ok tcoky tcgkg, t 4 64AT) (79)
kg = Arﬁ(gi +diky +doky +dgka * dgk,, bt GSAT) (80)
kg = aTE(x; + e\ky + ek, * egks + ek, +oegky, ty + 82T) (81)
Xiny = X+ kg foky + foky ¥ fly ¥ fokg + Fokg + 0(T') (82)

The constraint equations that the integration constants must satisfy are

8 = 0 (83)
3 = 4, (84)
by + b2 =3, (85)
Cpte,teg= 4y (86)
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dy +dy +dy v dy =5

e te,tegtetey =y
fr+fy+fatf+fosfoml

f,6

1
28p + F3bg * Fady + Fbg * Fedg = 3

f,6, +

2

n
Wi~

6
52 2 2 2
303 * fady + T5ou + fibg
\ g f3 3 3.
f363 + Fady + fis T

4

3

8 + feor

2
2
2
3 3
252 ° 5
4 4 4 4 1
Flog + F363 + fydq + Fb5 * fedg = 5

bpsafa + (cpfp + c383)f + (dpsy * d3d3 + dg8y)fy

B
+ (g8, + o385 + g8, + egig)fe = ¢

bpdafaly + (Cpby + 38308y + (dpby + dgsy + dgsy)fyls

—

+ (o8, + eg83 + €48, + eg8c)fese = g

b252 36 + (c2 o * c353)f4 at (d 5, + d.s
* (ey6y + €385 + €48, + e555”656 = Tﬁ

2 2 -
(b252) f3 + (c252 + c363) f4 + (d252 *+dqi_

+ (eg8y + e85 + @48, + e5‘55)2f5 = %6

2
b,65f5 + (c2 5 * C38 3)f + (d2 5+ dgs

2 2 N
+ (e85 + o383 + €485 * e52)fs = 12
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(87)

(88)

(89)

(90)

(91)

(92)

(93)

(34)

(96)

(97)

(98)



2 2, . .2 2 2 2
bp82f383 * (6287 * 2383048y + (583 * dysy + dgey)feés
z 2 2 2 21
3 3 3 Ja &3 3 3
3 3 3 e o] .
+ (eza2 *egby t g5yt esss)f6 U] (i00)

bysplcafysy + dafsds + efgdg) + (8, + c383)(dgfysy + e4fgsq)

+ (dzs2 + dgbg ¥ d4s4)a5f666 = %6 (101)
bysalegfy + dafs + egfg) + (c6y + c383)(dyfy + egfy)

+ (d?_c2 *da8qt d454)e5f6 = %I’ (102)

bysy(cafy + dyfy * e3f)sg + (cy8, + €383)(dyfg + e4f¢)s,

2 ) ,
b 52( o+ df. +ef.)+ (c 62 +c 62)(d f. +e,f.)
2°2\C3'4 ¥ 935 T ©3%¢ 202 T C303/1G5T5 T €4Tg
2 P 2 _ 1
+ (dysy + dgs3 + dpsylesfe = &5 (104)
. < 1

There are 23 constraint equations in 27 unknowns. This apparentiv allows
us to supply 4 more constraint equations of our own choice. 1 picked the
following 4 additional constraint equations.



5 5 5 5 5_1
6 6 6 6 _1
7 7 7 7 7 _1
8 3 8 8

(109)

\DI—‘

f22”‘*3"f454“‘°5‘55‘”‘°ss

These additional constraint equations will cause x = f(t) to be integrated
to ninth order accuracy, giving us a 5/9 order integrator.

We now have 27 equations in 27 unknowns. We tried ciligently to find a
solution to these equations. We used three different computer programs, each
with a different method, but were only able to obtain an approximate solution
of the 27 equations. Equations (83) through (89) were solved exactly. Equations
(90) through (109) were solved to an average lo accuracy of 1_1.2'10'6. The
integration constants that we obtained are shown in Table 18. We then made a
brief attempt to find any solution of the original 23 equations in 27 unknowns.
We were unsuccessful in that attempt, but the effort that we expended was not
as great as it might have been. Thus we are reasonably sure that the 27 equa-
tions in 27 unknowns has «0 exact solution. However, we can only say that we
suspect that the 23 equations in 27 unknowns has no solution.

One final comment concerning a sixth order Runge-Kutta type integrator.
We have ascertained tnat the sixth order integration of x = f(x, t) requires 9
derivative evaluations, giving 38 constraint equations in 45 unknowns, a truly
formidable problem whi¢h again may have no exact solution.
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64 =0
64 = -71385 17583
a = 0015763 74117

by = -29.265 36037
¢ = 19.658 98673

d] = -18.777 16241

d, = .30148 96548

e; = 13.387 20508

e, = .12617 48124

fy = -3.8372 73077

-17209 54083

-h
o>
]

§, = .0015763 74117

6g = .61937 61366

b, = 29.570 50411

¢, = -19.883 49164

d2 = 19.272 14754

e, = -13.325 28099

ey = .44371 94067

f 3.6754 69584

2

fg = .18162 04139

69 = .30514 37420

6g = -93389 85460

¢3 = .93835 66728

dy = -.17709 86412

e; = .30208 02382

fq = .34296 07771

fg = 16512 68939

l

TABLE 18: 5/9 ORDER INTEGRATION CONSTANTS FOR 6 DERIVATIVE
| P
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8. A SELF-STARTING INTEGRATOR USING af/ax

In conjunction with integrating g_s j(g, t), the equations defining the
matrix, 3f/ax, are frequently available. A self-starting integrator making
use of this matrix is shown below.

. . of of
Given x = f(x, t) X=g(x, t) =5z f+ 5
4 = AT @ 1[1aTY
tet TN B R *7(‘2 X
A 2 .
Then Xogp =% 0T X 3- AT X, + -§AT g(& 5oty + .5 4T)
A ! 5
Where Xi4) = X0 Y 0/aTY)
the proof is
A _ 13
Xip 5 = X4y 5 ¢ 8T
Therefore
"9 3, 3
g_( 450 byt .5aT) = alx;, s ty + .58T) + o= ;M %, 5t 0(aT”)
So

A

2 - 2. 5
Xipp = %5 * ATx + E-AT X; + §-AT g + 0(aT”)
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But

2
. .“ AT ... 1[ATY" ... 3
Y5 =Xt TXt ‘2) X + 0(aT")
SO

AT2 s AT4

A * ATa ‘75
Xig = % * AT Xp + S Xy + S X + Ty %y + 00aT)

The integration coefficients in a self-starting integrator utilizing
3f/ax, are unique. Thus there is no opportunity to adjust integrator constants
to reduce truncation error, as there is with the Runge-Kutta type of integrators.
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9. ESTIMATION OF TRUNCATION ERROR

It i{s frequently desirable to be able to estimate integrator accuracy
over the integration intervai. This information might then be used to contro!
the integration step size. A logical approach to this problem would to be
make one extra derivative evaluation (generate one more k), and then use this
extra value of k, combined with the other k's, to estimate the truncation
error. This would be equivalent to tzking a, say, third order integrator,
making one more derivative evaluation {evaluate 54), and obtaining a fourth
order integration. This would then be compared with the third order answer
*0 determine the truncation error. Unfortunately it is not possible to do
this, From Table 6 it is seen that a third order integrator must have

b :6_3.53-62

From Table 11 it is seen that a fourth order integrator must have

b :6_3_63-62

It is clearly seen that the two values of b2 can never equal one another.
Thus a third order integrator can not be made into 2 fourth order integrator.
In other words, you can't make a silk purse out of a sow's ear.

In the following estimation of truncation error, we will assume that
three integrations are made when integrating from t; to t.+]: one integration

1

from ti to ti+.5; the result being integrated from ti+.5 to ti+1; and one

integration from ti to ti+1 directly.
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Integration from ti to t1+ 5 for nth order integrator, may be repre-

sented by
ntl nt+]
Al AT
R, 5= hix;.t;) + EG{) *X, 5t e ‘2’)

where AT = tia b and where g(AT/Z)"+] is the truncation error associated with
the particular integration scheme being used.

Assuming e remains relatively constant, integration from ti+.5 to t.
is given by

A n+l 1
£i+'| _m1+.5+e-2—) . ti + .5 AT]+e_2.'

or

A s3h fAMT 7 o\ne]
L Thatux8z) Y42 (1o)

.

A single integration from T to t:*} wouid yield
X + e aT™! {111)

Linn "X T &

Subtracting equation (110) from (111) gives

n+] 3h A
(%) (™) 1-—Je=4%.. - &

Thus

n+1 ah] " A
Q‘(z%) Eznﬂ']) I- 5(_: (.x_i+] - 5_14.]) (112)
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As a first approximation. sh/ax = I, so

1 2 n+] A §
&= m, (rr) (X441 - Z4aq)

For ahfax=1

| >

i
In situations where x =| _ | , a better approximation is
X.
—‘

o | ! m/z_|
E -
0 I

In this case

11
1 [2\™ 2(2™71_2) n

e~ T ot X
- 0 I

1
]

For X= only.

A
-3 )
LIFS RSP |

l

9-3
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Knowing e, and assuming e remains relatively constant from one cycle to
the next, a value of AT for the next cycle may be chosen to give any desired
intggration accuracy. For example, suppose that x = [5} EI]T and the error
in 21 (tne position error)is to be controlled. From equation (110), and as-
suming 3h/3x = I, the position error in the next cycle is seen to be

n+l
2e ATi+]
=1\ 2

Let the magnitude of the allowable position error vector be

_ Units of position (feet, radians, etc.)
p Units of integration time {secs, days, etc.)

é

Then

T AT
5ptTiny = 218 |(—2_)

Substituting equation (113) into the above, and solving for ATi+] gives

1
(2"-1) s AT._|n
- P 1
ATiiq = — AT, (115)
1%y - X1

The above equation has been used very successfully with a fourth order integra-
tion of an earth to Mars trajectory. Here the position vector consisted of the
positions of the earth, moon, sun, and Mars with respect to the spacecraft.
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It was interesting to note that the motiorn of the earth-moon system was the
dominant factor in controlling AT during most of the voyage. This is something
that many peopie might overlook, yet it was readily detected using equation
(115).

When operating with very small values of & (and small integration step
sizei). there may be a very large loss of significant figures in the quantity
g_-‘g. Generally, integrator equations can be written in the form

.+
X1 =% T X

Thus the loss of significant figures is dimished if we let g - § = Ag_- A§,

The reader may object that, in these cases, computer roundoff error is the
dominant error source - not truncation error. He is correct. In these situa-
tions 5_ will not have absolute control over the integrator accuracy. Howev .r,
the AT generated by the preceding equations will be an indicator of the "dynamic
activity" of the sysfém.

We are now led to the interesting question of what is the best AT to use
to obtain maximum integration accuracy. Theoretically, integration accuracy
improves as AT - 0. However, as 2 practical matter, computer roundoff error
will, at some point, cause the integration error to start increasing again as
AT ~ 0. Suppose that the computer stores Eosition accurate to ep (feet,
radians, km, etc.). Again we will assume X is “eing used as the output of the
1ntegration. As before, the truncation error in position for one integration, for

£, is

n+]l
. ATi+]
=1 2

Now let the truncation error be the same size as the computer roundoff error.
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Thus
n+)
e | T L .
_q z p

Using equation (113) and solving ATgyq gives

]
(ZM]-Z)E =T
ATi+] = -—:T—-—?EJQ ATi (116)
li} - ..]l

A
Had we been saving g_instead of g_as the output of the integrator, then we

would have obtained the equation

1
n+
. (2ﬂ+]_2)
1%y - i]l

A A
Note that af, - aX, should be used in place of %, - X, in the above equations.
=] = =2



10. COMPUTER ALGORITHM FOR RUNGE-KUTTA TYPE INTEGRATORS

The computing algorithm for Runge-Kutta type integrators is particularly
simple. For convenience of notation, let

a; = Ay
bys by = Ayys Ay
Cys €5 €3 = Agps Agas Ags

etc.

Then, in engineering notation, Nth order integration of 5 = f(x) is accomplished
by

%44 T Y

ky = 8TE(x449)

a2 % Ak
ky = ATE(x44y)

X4 = Xt Agky * Agpky

EN = ATﬂ-’-‘—'i‘v’l)

Xis1 = 25 * Aypky ¥ Agky oo+ Ay
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In order to express the preceding equations in FORTRAN notation, let
(for 1 =1,2,..,Mand J = 1,2,...,N)

X(1) = _‘:_(_,H] XX(1) = _{1 F(I) = f DT = AT |
A(1,J) = Ai,j K(I,1) = l(_] K(1,2) = Ez K(I,N) = EN
T=t =T, b(1) = ¢, D(2) = 8, -..D(N) = &

Then the FORTRAN equations for integrating x = f(x) are

DOV I=1,M
1 XX(I) = x(I)
D02 J=1,N

comment EVALUATE F(I) = FUNCTION OF X(I)
D02 I=1,M
K(I,d) = DT*F(I)
X(I) = Xx(I)
D02 L=1,
2 X(I) = X(I) + A(J,L)*K(I,L)

T=T+0T

NP Order Integrator for x = f{x)
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The FORTRAN equations for integrating x = f(x, t) are

Tl =T
D01 I=1,M
1 XX(I) = X(I)
DO 2 J=1,N
T =TI + D(3)*DT
comment EVALUATE F(I) = FUNCTION OF X(I),T
D02 I=1,M
K(I,d) = DT*F(I)
X(I) = XX(I)
DO 2 L =1,J
2 X(I) = X(I) + A(J,L)*K(I,L)

TI =TI + DT

N Order Integratcr for x = f(x, t)

Though the above algorithms have the advantage of simplicity, the reader
shouvld be aware that if maximum speed of computing is desired, then the algo-
rithms should Le rewritten so that the doubly subscripted variables, A(I,J)
and K(I,J), are replaced by singly subscripted variables. Singly subscripted
variables require less timz to lecate in core than do doubly subscripted
variables.
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11. SOME EMPERICAL EVALUATIONS

The truncation error terms, in the previously discussed integrators, are
extremely complicatea. The only practical way to investigate integrator ac-
curacy is by emperical methods. One way to do this is to pick an i,= f(x, t)
equation whose 3olution is known and whose form is similar to the actual equa-
tion of interest. We have done this here in this section for an orbit determina-
tion problem. Another way is to use Eq. (116) (or similar equation) to obtain
the most accurate solution of g_= f(x, t) that the computer can give. Other
solutions would then be compared with this one.

In order to provide an illustrative example of some of the integrators
discussed in this report, a satellite orbit determination problem was run for 10
orbits. The dynamical equation of motion, for a spherica’® gravitational field,
is given by the nonlinear, vector differential equation

R is the vector from the center of mass of the attracting body to the satellite.
uis the gravitational parameter. The eleaments or the state vector were taken to
be X, ¥, Z, X, y, z. The state vector equation of motion, % = f(x, t), is then

A i

y y

z z

X ) -uX/[X2 + yz + 22]].5

y /Dl s P e 22
| 2 _‘“Z/[XZ +yt zz]] X



The initial conditions were precisely set to give a circular orbit, inclined at
45°, and with a period of exact'y 6144 seconds. The accuracies of the various
integrators with the above equation are shown in Tables 20 and 21. The term

"2.5 order Taylor series" needs explaining. If x and x are elements of the state
vector, then a second order Taylor series solution of the vector differential
equation is '

. v 22
Xie7 = %5 * xiAT + xiAT /2

. 5 . w22

Xga) = X4 ¥ X307 + X,aT /2

However, one would rarely use the equations in a computer program in this form.
As long as i} is being computed, one would also use it to "improve" the estimate

cf X541 Thus we define a 2.5 order Taylor series solution to be

X, + iiAT + iiaTz/Z + RgaT3/6

Xin i

Xip) = X5 + X AT + i}ATZ/Z
Similarly a 3.5 order Taylor serie, solution goes out to fourth order in posi-
tion and thiru order in velocity. Likewise for 4.5 and 5.5 solutions.

The term "4/6 RK Set #1" refers to the Runge-Kutta integration constants
in Table 15. They provide fourth order integration of x = f(x) and
sixth order for x = f(t). The set of integration constants “4th RK: 8, = 83 = .5,
d3 = .5" are fourth order Runge-Kutta integration constants which came from
Table 12, where d3 was optimized to give the best average position error over 10
orbits of integration.

The set of integration constants "4th RK: §, = .15, 83 = .192" deserves
special mention. This set of fourth order Runge-Kutta constants was obtained
from Table 11 by optirizing the two free parameters, 8o and 84 The optimization
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was not done with the orbit determination problem studied here. They were opti-
mized with an entirely different orbit and with a different gravity field (equa-
tions of motion).* Yet they worked extremely well with our current problem, which
indicates that they probably would work very well with any general orbit determina-
tion problem. Their accuracy was even better than the 5th or 5.5 order Taylor
series solutions. This outstanding set of integration constants is shown in

Table 19 below. '

5 = 0 8, = A5 83 = 192 8y = 1
a = 15

b] = 1536 b2 = 0384

¢ = 6.745 2657 1119 01 c, = -38.77 8319 5429 47
Cqy = 33.03 3053 8317 57

d] = 1.414 3518 5185 20 d2 = -9,.586 0566 4488 03
d3 = 8.952 7181 8848 55 d4 = .2189 3660 4542 81

TABLE 19: OPTIMUM FOURTH ORDER RUNGE-KUTTA INTEGRATION
CONSTANTS FOR ORBIT DETERMINATION

¥ Wm. M. Lear, "Direct Integration of Orbital Equations Using a Fourth Order
Runge-Kutta Integrator", TRW Technical Report 20029-6013-T0-00, 31 August
1972.
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Table 20 shows the position error at the end of 10 orbits. Table 21 shows
the average position error during the 10 orbits. In general the results of the
two tables are in agreement as far as ranking the integrators for accuracy. How-
ever, there are a few cases of disagreement. For an integration step size of
256 seconds, the Runge-Kutta-Gill integration constants had a final position
error of 1274 meters, lower than with AT = 128 seconds which was 2193 meters.
However, the average position error in Table 21 gives a truer picture of the
overall accuracy. We see that for AT = 256 seconds, the Runge-Kutta-Gill con-
stants had a rather large average error and thus indicated that the absolute
position error was passing through an abnormally low minimum at the end of 10
orbits. In other words, the average position error is a better indication of
overall accuracy. We have not shown tables of velocity accuracy since, without
exception, all the velocity errcrs are approximately 1/1000 of the position
errors.

Figures 1 and 2 show how the integrator error "grows" with time for
several of the integrators. We see that the errors are not necessarily always
increasing with time, but may exhibit periods where the error may decrease with
time. Note particularly the excellent performance of the Table 19 integrator
constants shown in Figure 2.

Figure 3 shows the accuracy of various orders of Taylor series integrators
versus integration step size. The important thing shown in this figure is the
desirability of the fourth order integrator. Notice that for a constant inte-
grator accuracy of 100 meters, the fourth order integration step size can be 13
times larger than the third order integration step. Yet when we go from fourth
order to fifth order, we can increase our integration step by only a factor of
1.3, hardly worth the effort of evaluating the extra derivative term. Also if
one examines Tables 20 and 21, we also reach the conclusion that, at least for
orbit integration, the fourth order integrators are perhaps the most desirable
ali purpose integrators.
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12, INTEGRATION USING ACCELERQMETER DATA

12.1 INTRODUCTION
In aerospace work we frequently have the equation of motion

R = 2, * 2 (118)
where
X
R=1ly gg=gg(3,t)
z

gg is acceleration du= to gravity and is an analytic function of position and
time (if higner order gravitational harmonics are used). The function 2 is
sensed acceleration, sersed by accelerometers, and is due to external forces

3 itself,

but the integral of a.- Thus what we have available for integration of the equa-

other than gravity. However, the output of the accelerometers is not

tions of motion 1is

t
v(t) ft a(2)ds (119)

For "nordestruct” accelerometer data, to is the time at which the system was
turned cn. For "destruct" accelerometer data the integral is only aver small
time intervals, say from t. to toere We will assume nondestruct data here, the

resu’ting equations can be rasily modified for destruct data.
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12.2 ONE COMMON SOLUTIGK OF EQ. {118)
Solve (integrate) the free-flight equation

R = gg(g. t)

to obtain
Rivg = £Rys Ry by, aT) Rivp = 9(Rys By by, 8T)
Let
3a
p=—4
- 35

Note that P is a 3 by 3 matrix which is a function of R and t.
Then the solution of Eq. (118),

R=a_+ és(t)

—-g
is given by
+
. “i+]
E-“_] = _f_(_R_.ls B-’l’ t.is AT) + Q‘S(T)(tii’] - T)d'r
i
. . 5
1 4 .1 [3P.a_ .+ P.a JJaTY + -
v Pidg 8Tt T TS TS
. . J/li+1
314»] = S.(B_-l’ B_]’ t'i’ AT) + . ES(T)dT
1

+ %T P.a iAT3 R
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Let

i+
1 B'/t- _gs(t)(tiﬂ-r)dt (122)
i
and note that
ftm
: gs(r)dr = Vi T Y exactly (123)

Thus our solution of the equations of motion is given by

a
Ry = fRys Ryu ty, 8T) + 1 P 125,427
b g [3Pa, o+ Pya,  JaTo 4 0 (124)
tET i%s,1
; 1 3
Riyp = 9(Rys Rys ty0 8T) + vy - vy + 37 Pyag g7
1 ra
tgr DBPiag i + Piag, 1]AT ¥ (125)

Generally the last two t- .s . the above equations are ignored. Note however,
it is not particularly difficult to at least include the Pies i==Pi(!_1.+]-!q.)/ﬂ
term. Approximations for the integral, I, are shown below.
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aT

AT/2 . aT/2

t tin

A
1= gl 08y + Ay, g+ vy,

5
A
1-1-% ;%

=& i mm (Eq. is correct.)

aT/3 . AT/3 . AT/3

¥ ¥ v

ti t

4
1

i+l
I=él[-7v + 3v + 3v +v,..]
=~ 8 =i —-i+1/3 —i+2/3  —=i+]

5
A _ e AT
1-1=23 %m0
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AT/4 AT/4 AT/4 . AT/4

t. t

i+l

A AT
L= 5p [-83%; + 32040070 * 120470 * 324a3/0 * T4yd

A d52s i AT7

1-1=—p-

- = dtm
AT/S aT/5 aT/5 AT/5 aT/5

L " '
L T ¥ \j

t;

-l

t.
“i+l

o AT
T = 7gg (2694 + 7504, p * 50044 4 * S0Uy, g * 7504, g ¥ 194,

A dsés i N ar
I-1-—d
=TS T4 3780000

We have shown the higher order integrators above, not because of their accuracy,
put because the engineer doing the integration frequently has no ccntrol over
when the accelerometers are read out. ihe approximations of I shown above are
much preferred to those shown below because of such things as engine cutoff in
the middle of an integration step.
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AT AT

1
. t,

2 t,l--l | '|+]

(ad

1
i -t
i-

t

A _aT

A d4gs . €
1

_ i 3T
L-lsF e
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12.3 RUNGE-KUTTA INTEGRATION OF ACCELEROMETER DATA

Runge-Kutta integrators require the value of gs(t) at various times within
the integration interval from ti to ti+]‘ The equations below supply this in-
formation. Note that Runge-Kutta integration of accelerometer data is generally
preferable to the previous method since the Runge-Kutta method easily accounts
for the higher order terts, generally left out in the previous me -hod (Egs.
(124) and (125)).

aT
F 1
t i
2 ] 1
a(t, +8aT) = - V. + o3 Vi

. -8s+4 o 4s-1
M= A A

2
. aT 2
o (-66° + 65-1)

yo>

D il I o

For 2nd Order R-K Integration
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aT/3 . a7/3 AT/3

ti ti+l

]

(ti + §AT) =I\°!i + A]!i*]/3 + A21i+2/3 * A3!i*]

‘J‘ﬂl)

2 2

s - 8167 - 905 + 18 A o =Ble + 725 - 9
1 75T 2 7T
o 2088 - 185+ 2 A = Ao

3 7T o = “AjAA;

2 3 ﬂi(]&s?+2'2 s + 1

3, -a=a; 108 767 - 1§ + 1)

§3 For 3rd Order R-K Integration
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J.h»

J’ﬁ >

al/4

aT/4 AT/& £T/4
Y
(t; + 6aT) = A v, + Ave, o
3 2
- -5125” + 8645 - 4165 + 48
2T
_ 7685° - 11526% + 4565 - 36
BT
_ -51263 + 6725 - 2245 + 16
TN §
12887 - 1446% + 245 - 3
=T
= -A-AyAsA,
e AT 4 3
- ag~a; ; 3ppp (16087 + 32067 - 2106

2

tin

*AVis st A¥ie 75 7 Rg¥ing

+ 505 - 3)

A
!s For 4th Order R

-K Integration
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AT/S

AT/S aT/5 . AT/S \ AT/S

[

t;

4

tin

“ -
3 (ty + 8aT) = Avy + AWy, o+ AVa, gt Agve, o+ Rgva, o+ Ay,

A - 15 6256" - 35 000> + 26 6256% - 77005 + 600
1 LYY

o - =31 2505% + 65 000s> - 44 25052 + 10 7005 - 600
2 24aT

o - 31 2506% - 60 00083 + 36 75062 - 78005 + 400
3 FLING

A o 215 6258% + 27 5006 - 15 3756% + 30505 - 150
4 2887

31255 - 500063 + 262552 - 5005 + 24

A = - -
5 24a7

Ay = -Aq-AyAy-h-A

A a4 g8 5 4 3

_as - gsz —dtg-m (-37508~ + 937556 - 85005

+ 337562 - 5485 + 24)

§S For 5th Order R-K Integration
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Note that any of the previous approximations of a, may be used with any lower
or higher order integrator. The frequency with which the accelerometers are
read out may determine the approximation that is used. The approximations of a,
shown above are much preferred to those shown below because of such things as
engine cutoff in the middle of an integration step.

AT AT
i-1 t; tin

A
ag(ty + 8aT) = Ayv; ¢ + AN, + Ay

AL 21 p o 2841
AT ar 1° T
Ay =AM

2
A o AT 2
R AR

gs for 2nd Order R-K Integration
(Accelerometer Sample Interval = aT)
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AT AT LT

A
a(ty +oaT) = A vy o * AWy + A+ Ay

2 2

AL =23t AL = 128" + 68 -9
-2 6ot -1 6ot
A = 662 + 65 - 1 A = -A .-A .-A
1 o -2 -1 71
a -a=xa 13 (<463 - 562 + 26 + 1)
& " 4x34,i
§s for 3rd Order R-K Integration
(Accelerometer Sample Interval = .T)
. AT . AT . aT ) AT .
ti-3 ti2 tig Y tin

A
ag(ty + 80T) = A gvi g+ AoV o ¥ A v g * Ay * Ay

A o238 -5 A o863 -1862+ 45+ 6

-3 12T -2 1227

poo288 e 3668466 -18 288+ 968+ 6 + 3
-1 2T 1 AT

Ao = °A’3'A_2'A-]'A1

>
e
—

3 -axi ¢ (-156% - 8083 - 456% + 300 + i8)
& " 4=3 i 30

35 For 4th Order R-K Integration
(Accelerometer Sample Interval = aT)
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tia ti-3 ti-2 iy t i

A
a(ty + 60T) = A qvq g + A g¥; g+ A¥; o+ ANy + Ay * Ay,
o o 56t - 206% - 1562 + 105 + 6

-4 T120aT

A < 258° + 12067 + 10552 - 606 - 40

-3 TRl

a o -50s% - 2806° - 33067 + 1405 + 120

-2 20T

A .« 508* + 3206% + 51052 - 405 - 240

-1 T20aT

o - 5t + a0s® + 1055% + 1006 + 24

1 12041

Ay = -A_gA_gA_pmA A,

5 =
d7a_ ; ,-d
A 5,1 2% 5 4 3 _ acel p
a - _as..——s-*—dt yoy (66" - 4567 - 1006~ - 458" + 526 + 24)

gs For 5th Order R-K Integration
(Accelerometer Sample Interval = aT)
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APPENDIX A

THE k EXPANSIONS

.th
-th

Consider the vector differential equation, x = f(x). Let fi be the i
eiement of f. Let f'J be the partial derivative of ‘1 with respect to the j
element of x. Let

Al = £l 8 = £l ¢ = £ I o = frlek
El = f}ufjf"f‘ AR ¢ = iel oot

W = Flnleet R

3 - f;uf-‘f t i L ka £Lem

L' = £ flenete® ot e el rleteke

N - f}f,{mf Yot L L fJf'Jufnflfm

Q' = e R = flnlreke

where the repeated indices indicate summation.
Let the A vector be composed of the elements Ai; let the B vectar be com-
posed of the elements Bi. etc. Then it can be shown that
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1%
"
([~

X=C+

([~

KeE+ 3+ G+ H

el +6l+aK+ 3L +M+N+P+Q+R

Ve also note that

fi(_{ +¢)= ‘l"'I + f;.ej + _12'_ f;kejek + %‘r f;klejekeﬁ' +
Let*
5, = 3
63 = b] + b2

bg = dy + dy +dy+ dy

g =€ te,teyte teg

FT¥ t is an element of x, then t will get "bumped” by a,al, (b]+b2)aT,
(c]+cz+c3)LT, etc.



The fifth-order expansions of the k's are now shown below.

ky = aTE(x) = aTA

k, = 8TF(x + ak;) = aTA + aT%,8 + a1% 3 62¢ + a1*

o —
N
(gl

U 1

B+AT3B §g+ bzcz]

ky = 8TE(x + byky + bak,) = aTA + aT%s,8

a1 .3 1, .2 1 4] 2
*+aT [E 638 *+ bpdassf * 3 "2‘525] + o [’ﬂr S3L + 7 bpdp3d

1 1,22 ,1, .3
7 bp8p8gk * 3 bpsak + 5 byt z"]

= ATE(x + ciky + ck, + c3|33) = ATA + AT254§_ + aT3 I:JZ aig

L’!’

+ (cp8, + c363)g] + a1t [%— cig + (CZGZ + C383)6,F

1, .2 s[1 .4
+ ?‘cz‘z + c353)6 + b262c3}_1] + AT r O ’Z(Cz‘s + cq8 3)54_
+ e85 + c383)84K + legsy + c38)L + byscys M

i 3
* legsy + B+ bysycysp 43 252°39]




2 311 .2
= ATf(x + d151 +d25_2+d3l_(_3+d4_l_<4)=ATﬁ+ AT 65§+ AT [-2 csg:_

411 .3
+ (dps, + dgsq + d4c4)g] + AT [g 8sE + (d8, + dysg + dgs,)scF

Vg (20 s 20 qe?
+gldysy + dgsy + dy8g)G + {bySpdy + o8y + c3“3)"4}ﬂ]

511 .4 ] 2 1 2 2 2
+al [‘ZT 8L + 3ldp8y + dgdy + dgsg)sgd + 3ldysy + dysy + dgfy)igk
1 3
+ 3(dy8, + dgéz + d464)q-_ + {bysydy + (cp8, + C383)d,166M
] 3 3 3
+ gldysy + dgsy + dysy)N + (by8,dy85 + (Co6, + €363)dy54IP

] 2 2 2
+ 3 {bzczd3 + (CZ‘SZ + c363)d4}g + b262c3d43_]
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= . 2
ATE(X + e.ky + ek, + ejky + epk, + egkp) = ATA + AT 8B

3
+ AT -zsc+(e25 +e363+e44+e565):|+AT [

1,2, 2 2 2
+legly + egfy + g8y + egSp)egh + 5 (ey8) + 363 + ey6y + egs5)S

+ {bysses + (Cp8, + Cabgley + (dysy + dysy + d454)es}z_‘

s[1 4, 1 2
+ AT [21 Sl + 5 (88, + €365 + €6, + eg6.)6gd

1 2 2 2
+ 5 (ey8, + eg83 + g8, + eps 5)5 ? (68, + ej85 + 48, + e565)2|_._

+ {byse, + (czs?_ + c363)e4 + (dz‘s2 +dys, + d464)e5}65§

3 3 3\n
+ g (egsy + egby + o6y + egg)N + {bospeqsy + (cp8, + c363)eys,

P 2, 2
+ (dgsy + dysy + dysylegssIP + 3 {bysyey + (cp85 + c383)ey

2. 2., .2
+ (dgsy + dgs3 + dyeyleglQ + {boscaey + bysydgeg + (cp8, + °353)d4°5}5:]
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APPENDIX B

A FIFTH ORDER R-K INTEGRATOR WITH
FIVE DERIVATIVE EVALUATIONS?

Since one infrequently hears about al” ~ed fifth order Runge-Kutta inte-
grators using five derivative evaluations, 1 appeared worthwhile to try and
show that no such solution exists for the vecior differential equation
x = f(x) or x = f(x, t}.

The integrator constant constraint equations are as shown below.

§y =0 (8-1)
ay = 8, (8-2)
by + by = &3 (8-3)
Cyt ey tey=éy (8-4)
dy +dy + dy + dy = 65 (8-5)
ey te,teyte, tes 1 (B-6)
ex8y + 363 + €484 + egbg = 1/2 (8-7)
ezag + e35§ + e45§ + esag =1/3 (B-8)
ezsg + e3sg + e462 + essg = i/4 (B-9)
ezsg + e35§ + e4s: + essg =1/5 (B-10)
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b262e3 + (czc2 + c363)e4 + (d252 + d353 + d4<s4)e5 = 1/6 (B-11)

b262e363 + (czc2 + c363)e464 + (dzs2 tdgsy t d464)e565 =1/8 (B-12)
b,é.e 62 + (c,8, + Co8.)e 62 + (d.6, + d.6., + d,6,)e 52 = 1/10 (B-13)
227373 272 3°3/74°4 22 373 4°4'75"5
(b.,s )ze + (C, 8, + Cad )2e + (d,6, + d.6. + d,8 )ze = 1/20 (B-14)
22’73 2°2 3°3/ "4 2°2 33 4°4’ =5
2 2 2 2 2 2 _
2 2 2 2 2 2 .
b25ge3 + (czsg + c3a§)e4 + (dzcg + d3sg + d452)e5 = 1. (B-17)
b262c3e454 + [bzdzd3 + (c262 + c363)d4]e555 =1/30 (B-18)
b262c3e4 + [b252d3 + (°252 + c363)d4]e5 = 1/24 (8-19)
b262c3e463 + [b262d363 + (cza2 + c363)d464]e5 = 1/40 (8-20)
b62c e, + [b,62ds + (€62 + co5%)dsJe. = 1/60 (B-21)
2°2°374 2°273 2°2 3737458

22 equations in 20 unknowns. Solving Eqs. (B-7) through (B-10) gives
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(64 + 65)(2063 - 15) + 6465(20 - 3053) +12 - 155,

(54 + 65)(2062 - 15) + 6465(20 - 3062) +12 - 1562

é; = 805,183 - 6,063 - 6,)(85 - 85)
. - (62 + 63)(2065 - 15) + 6263(20 - 3055) +12 - 1555
. . (az + 63)(2064 - 15) + 6253(20 - 3064) +12 - 1564

Eouations (B-11) and (B-12) give

3-45
_ 345
byszeslsy - 6,) + (c 8, + c383)e (5, - 8g) = —p—~

Equations (B-12) and (B-13) give

4-54
_ =%,
by8,e383(83 = 8g5) + (cpé; + cyo3)ey8,(8y - 85) = —g5—

The above two equations yield

3-3

(8-23)

(B-24)

(B-25)

(B-26)

(B-27)

(B-28)



-15(54 + 55) + 20 8485 * 12
P22 = Y20
22 3(63 - 64)(63 - 56)

Substituting Eq. (B-24), for ey, into Eq. (B-29) gives

63(63 - 52)[-15(64 + 65) +2 8485 * 12]
b,s, =
%2 11652 -‘30)(54 * 550 + (iﬁiaﬁkz) 8,85 + - 5652

Now Eqs. (B-19) and (B-21) yield

[of e = — ————

But from Eq. (B-22)

_ 1 1
©3%%5 ~ & b5,
Setting Eq. (B-31) equal to Eq. (B-32) gives

b,$ Rl I T

Setting Eq. (B-30) equai to Eq. (B-33) yields

52[(7 - 864)65 + 754 -6]=0

(8-29)

(8-30)

(B-31)

{B-32)

(8-33)



But from Eq. (B-22), 8, # 0, therefore

76‘ - 6
S, =
5 §4 - ’

Now Eqs. (B-19) and (B-20) give

C.e, + d.e, =
K o S i Tib‘bzaz 83 - 8,

Substituting Eq. (B-33) into the above yields

(2 - 562)(3 - 564)
c,e, + d.e, =
34 " Y35 T 120 55165 - §,)(63 - &

)

Equations (B-17) and (B-15) give

2 2 2 .
c363(63 - cz)e4 + d3c3(53 - cz)e5 + d454(64 - cz)e5

Equations (B-17) and (B-11) give

2 2 2 2 2 2 .
c383(83 - 65)ey + dyaglsg - s5)eg + dysylsy - 63)eg

B-5

3‘562
T—.

2

—

(B-34)

(8-35)

(B-36)

(8-37)

(B-38)



Combining the above two equations yields

-106, - 108, + 206,5, + 6
°3e4*dses"‘l’214 2 22
8383 - 651083 - 64}

(B-39)
Setting this equation equal to Eq. (B-36) results in

But from Eq. (o-22) we see that 8§, # 0. Therefore

Substituting this into Eq. (B-34) yields

8 = 1 (B-41)
Now comparing Eq. (B-18) with (B-19), we see that 8y = 85 = 1 can not be a
solution. Thus we have a contradiction, and there appears to be no valid
solution. Also in going back to investigate the singular peints of the various
equations, I still find contradictions. And subjecting the above equations to
two different least-squares, computer solutions, I find no exact solutions.

Thus it appears that one more derivative evaluation is needed for a fifth order
Runge-Kutta type of integrator for the vector differential equation, é_= fix, t).



