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ABSTRACT 

This report discusses the integration o f  the vector d i f ferent ia l  equation 

x = f(x, t) from tin, ti to ti+l, where only the values o f  are available f o r  - -- 
the integration. No previous values o f  x or are used. Using an o r b i t  in te-  

gration problem, comparisons are made between Taylor series integrators and 

various types and orders of Runge-Kutk integrators. A very outstanding fourth 

order Runge-Kutta type integrator for o rb i ta l  work i s  presented. Approximate 

(there may be no exact) f i f th order Runge-Kutta integrators are discussed. Also 

discussed and cornpared i s  a s e l f  s tar t ing integrator using afJax. A numerical 

method f o r  control l ing the accuracy o f  integration i s  given. And, the special 

equations f o r  accurately i ntegratlng accelerometer data are shown. 



1 . INTRODUCTION 

Within recent years, the increasing use o f  sequential data processors 

(e.g. Kalman f i l t e r s )  has increased the need f o r  high qual i ty ,  se l f - s ta r t ing  

integrators. A se l f - s ta r t ing  in tegrator  i s  one which takes a current estimate 

o f  the s ta te  vector, zi, and, using the equation - ; = f(&, t )  , propagates t h i s  

estimate ahead AT seconds t o  obtain . Non s e l f  -s tar t ing integrators (e .g . 
Adams-lbul ten integrators)  need the previous val ues o f  ii, ii ii -2, etc. i n  
order t o  ob ta l r  an estimate o f  IC~+~.  

  his repor t  w i  11 discuss several se l f - s ta r t ing  integrators. An empirical 

evaluation o f  these integrators w i l l  then be made w i t h  regard t o  t h e i r  e f f icacy 

i n  an o r b i t  determination problem. A numerical method o f  determining the ac- 

curacy o f  these integrators over each in tegrat ion step i s  shown. This determina- 

t i o n  i s  qu i te  useful i n  such areas as calculat ing interplanetary t ra jec to r ies  , 
where equal accuracy in tegrat ion step sizes may vary from a few seconds (close 

t o  a planet) to as long as several hours. 

A section has been included which shows how t o  a c c u r a t ~ l y  integrate ac- 

celerometer data. This data generally comes i n t o  the integrator  as the in tegra l  

o f  sensed acceleration, not  ensed acceleration i t s e l f .  

To my knowledge, no one has ever developed a f i f t h  order Runge-Kutta i n -  

tegrator  f o r  the vector d i f fe ren t ia l  equation - = f (5, t )  . We w i  11 s h w  tha t  

6 evaluations of f(z, t )  are needed, not  5 as one might expect. Further, even 

w i th  6 evaluations there may be no exact se t  o f  integrator  constants. Two ap- 

proximate sets of f i f t h  order in tegrator  constants are shown and evaluated. 



2. INTEGRATIOH BY TAYL09 SERIES 

One o f  the oldest and best known methods o f  numerically integrat ing i s  the 

Taylor series expansion. It i s  the standard of comparison against which a l l  

other methods are evaluated. Despite the f a c t  tha t  the method i s  old, doesn't 

mean tha t  i t  i s  obsolete. Indeed i t  i s  frequently and e f f i c i e n t l y  used i n  d i g i t a l  

computer programs. Integrat ion o f  the vector d i f f e ren t i a l  equation, k = t(5, t )  , 
i s  accomplished by 

where 

.. ax _ .  a& af 
x = - x + - =  - a x -  a t  F ~ + X  - - 

. .. ax. a% - 
x = -  - x + -  ax- a t  

ax .... - ax 
x r -  - x + -  a x -  - a t  etc. 

The pa r t i a l  derivative o f  a v,ctor, g, wi th  respect t o  a vector-, g, i s  defined 

tt, be the matrix 



where the subscripts i n e i c a t e  the par t icu lar  element o f  the vector i n  question. 



3. SECOND ORDER RUNGE-KUTTA TYPE INTEGRATOR 

A second order in tegrator  i s  one t ha t  gives a solut ion which agrees wi th  

a Taylor series expansion up through tho AT* terms. Such an integrator i s  

The integrat ion constants i n  the above equation are not arbi t rary.  I n  order 
to achieve an er ror  o f  order  AT^, the fo l lowing constraint equations must be 

sa t i s f ied  

Note t ha t  there are only three equations i n  f i v e  unknowns. The constraint  

equations could be rewr i t ten as 

TABLE 1 : SECOND ORDER CONSTRAINT EQUATIONS 
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3 61 and 62 can be experimentally chosen to  reduce the O(AT ) truncation error. 
A speclal case arlses when al  = 62. The constraint equations for this case are 
shown in Table 2. Here, b2 ls  chosen to reduce the truncation error. 

TABLE 2: 2ND ORDER CONSTRAINTS WHEN 6i = 62 

I t  is interesting t o  note t h a t  fourth order integration of - ; = - f ( t )  can 
be achieved by adding the two additional constraint equations 

There are two solutions of the five constraint equations (equations (5) tnrough 

(9) ) .  These solutions are shown i n  Tables 3 and 4. 

TABLE 3: 214 ORDER INTEGRATOR CONSTANTS, SET #1 
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TABLE 4: 214 ORDER INTEGRATOR CONSTANTS, SET #2 

When = f ( t ) ,  the constants i n  Tables 3 and 4 w i l l  cause the solut ion 
t o  be 

A 
x means approximate value o f  zi+l. A s im i la r  equation also applies t o  any - i+l 
element of f(5, t )  which i s  a function o f  time alone. Note tha t  the general 
solut ion o f  h = r(x, t )  i s  s t i l l  only second order, hence the terminology 214 
order. 

If, instead o f  using equation (9) as an addit ional constra int  equation, 

we use the equation 

then we obtain a t h i r d  order solut ion when - ; - - f ( t ) .  The 2/3 order in tegrator  
constants arc shown i n  Table 5. 

TABLE 5: 213 ORDER INTEGRATOR CONSTANTS 



4. THIRD ORDER RUNGE-KUTTA TYPE INTEGRATOR 

Third order integrat ion o f  = f(&, t) can be achieved by 

The constraint equations f o r  the integrat ion constants are 

dl  = 0 



Here again there are two more unknowns than there are equations. Thus a l l  the 

integrator  constants can be expressed as functions o f  62 and 63, as shown i n  
4 Table 6.* 62 and 63 can be experimentally adjusted t o  reduce the O(AT ) trunca- 

t i o n  e r ro r  i n  equation (14). 

TABLE 6: THIRD ORDER CONSTRAINT EQUATIONS 

Two special cases a r i se  when 62 = 63 and when s3 = 0. The constraint 

equations f o r  these cases are shown i n  Tables 7 and 8. I n  both cases c3 i s  
emperi cal l y  deternined t o  reduce truncation error .  

TABLE 7: THIRD ORDER CONSTRAINTS WHEN 6* = 63 - 

't Note from equation (18) t h a t  b2, c3, 62 = 0 are not allowable solutions. 
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TABLE 8: THIRD ORDER CONSTRAINTS WEN 6, = 0 

F i f t h  order in tegrat ion  o f  = f(t) can be achieved by adding the two 
addit ional constraint equations 

There are  two s ~ l u t i o n s  o f  the nine constraint  equations (equations (15) 

through (23) ) .  These solutions are  shown i n  Tables 9 and 10. 

TABLE 9: 315 ORDER INTEGRATOR CONSTANTS, SET NO. 1 



TABLE IS:  3/5 ORDER INTEGRATOR CONSTANTS, SET NO. 2 

When = - f (t) , the constants i n  the two tables above give a solut ion o f  



5 .  FOURTH ORDER RUIiGE-KUTTA TYPE INTEGRATOR 

Fourth order integrat ion of - x = - -  f (x ,  t )  can be achieved by 

The constraint equations for  the integrat ion copstants are 



It i s  interesting t o  note tha t  equations (34) and (35) cannot be derived from 
consideration o f  the scalar equation ; = f (x) , as can msr o f  the other con- 

s t ra in t  equations. Consideration o f  only the scalar equation leads t o  a con- 

s t ra in t  equation which i s  a 1 inear cornbination o f  equations (34) and (35). 

It can be shown that  the only value of which sat is f ies the constraint 
equations i s  6) = 1. As before. ;he constraint equations can be rewritten as 

5 shown i n  Table 11. 62 and s3 can be emperically determined t o  reduce the O(AT ) 

truncation error i n  equation (28). 

TABLE 11 : FOURTH ORDER CONSTRAINT EQUATIONS 



There Is an interesting array of nonacceptable solutions of the constraint 
equaticils. Some of these a re  

62 # 0 

63 # 1 

- 4s3 + 66263 + 3 # 0 unless 62 = 1 

2tS2 - 1 # 0 unless 62 = 63 o r  unless s3 = 0 

b2 f 0 

c3 # 0 

These unacceptable solutions give rise to the three special forms o f  the 

constraint equations shown in  Tables 12, 13, and 14. I f  d3 is s e t  to 113 in 
Table 12, it nil! be seen t i ~ a t  the standard, fourth-order, Runge-Kutta integra- 
;ion constants w i l l  be obtained. If dl is ie t  equal to  (1 + l / f l / 3  the 
kunge-Kutta-Gi 11 integration constants w i l l  be obtained. 

TABLE 12: 4th ORDER CONSTRALiiT EQUATIOfJS FOR a2 a s3 



TABLE 13: 4th ORDER CONSTRAINT 'QUATIOELS FOR 62 = 1 

TAME 14: 4th ORDER CONSTRAINT EQUATIONS FOR 63 = 0 

Six th  order integration of = f ( t )  can be accomplished by adding the 
two additional constraint equations 

There are two solutions of the 14 constraint equations (equations (29) through 
(42)). These solutions are shown in Tables 15 and 16. 



TABLE 15: 4/6 ORDER INTEGRATOR CONSTANTS, SET NO. 1 



TABLE 16: 4 1 6  ORDER INTEGRATOR CONSTANTS, SET No. 2 

5 -6 



When k = f(t), the constants i n  the two above tables give a sc?.:lon of  

A 4/5 order iritegrator can be obtained from Table 11 i f  we set 

62 i s  then adjusted t o  give optimum performance. There are. however, several 
nonallarable values o f  s p .  They are 

It is sometimes o f  valcs to have an estimate o f  x a t  ti + &AT. From the - 
equations shown i n  Appendix A, i t  i s  easily seen t h a t  

where 



The h's are the same as those used to obtain I$+~. Thus no new derivative 

evaluations are necessary. 



6 .  FIFTH ORbER RUlGE-KIJTTA TYPE IiJTEGRATOH 

WITH FIVE DERIVATIVE EVALUATIONS 

Fifth order integration o f  = f(5, t) can be attempted by 

The con:, tt-ai nt  equations f o r  the integration constants are 





Stnce the above equatio,ls are so d i f f i c u l  t t o  derive, we mention the 
fac t  that they have been t r i p l e  checked f o r  accuracy and may be used with 
confidence by the reader. There are 22 equations i n  20 unknowns, leading one 
t o  suspect that  there may be no exact solution of these equations. However, 
the equations are nonlinear and there may be a poss ib i l i t y  o f  a so lu t lm.  I n  
Appendix B we explore th ts  poss ibt l i  t y  and arr ive a t  the conclusion that there 
i s  no exact solution of these equations. Thus i t  appears that  a f i f t h  order 
Runge-Kutta integrator w i l l  require a t  least  6 derivative evaluations, not 5 
as one would expect. 

We have made though an approximate solution o f  the above equattons. 
Equations (54) through (59) a r e  solved exactly. Equations (60) through (75) 
were solved t o  an average l a  error o f  2 1.601 og6. The constants are shown i n  
Table 17. 

TABLE 17: FIFTH ORDER INTEGRATION CONSTANTS FOR 5 DERIVATIVE 
EVALUXITBNS (AF- SOL- 



7. F l  FTH ORDER RUNGE-KUTTA TYPE INTEGRATOR 
blITH S I X  DERIVATIVE EVAIIIATIONS 

As we saw i n  the previous section, we need more than f i v e  der ivat ive  
evaluations t o  obtain a f i f t h  order Runge-Kutta type integrator. I n  t h i s  
section we attempt t o  obtain the f i f t h  order in tegrator  using s i x  der ivat ive 
evaluations , as shown be1 ow. 

The constraint  equations t ha t  the in tegrat ion constants must sa t i s f y  are 





There are 23 constraint  equations i n  27 unknowns. This apparentiy allows 

us t o  supply 4 more constraint  equations o f  our awn choice. I picked the 

fol lowing 4 addi t tona l  constraint  equations. 



These additional constraint equations w i l l  cause i = f (  t) to be integrated 

t o  n in t !  order accuracy, g iv ing us a 519 order integrator. 

We now have 27 equations i n  27 unknowns. We t r i e d  d i l igent ly  to f i n d  a 

solut ion t o  these equations. He used 'Lhree df f f e ren t  computer programs, each 

with a dif ferent mthod, but were only able to obtain an approximate solut ion 

of the 27 equations. Equations (83) through (89) were solved exactly. Equations 

(90) through (109) were solved t o  an average 10 accuracy o f  2 1.2-10-~. The 

integrat ion constants tha t  we obtained are shown i n  Table 18. We then made a 

b r i e f  attempt t o  f i n d  any solut ion o f  the o r ig ina l  23 equations i n  27 unitnowns. 

Ue were unsuccessful i n  tha t  attempt, but  the e f f o r t  tha t  we expended was not 

as great as i t  might have been. Thus we are reabonably sure tha t  the 27 equa- 

t ions i n  27 unknowns has I,O exact solution. However, we can only say t ha t  we 

suspect that  the 23 equations i n  27 unknowns has no solution. 

One f i n a l  c o m n t  concerning a s i x t h  order Runge-Kutta type integrator. 

We have ascertained that the s i x t h  order in tegrat ion of k = f(x, t) requires 9 

derivat ive evaluations, g iv ing 38 constraint equations i n  45 unknowns, a t r u l y  

formidable problem which again may have no exact solution. 



TABLE 18: 519 ORDER INTEGRATION CONSTANTS FOR 6 DERIVATIVE 
EVALUATIONS (APPROXIMATE SOLUTION) 



8. A SELF-STARTIN INTEGRATOR USING af/ax 

I n  conjunction with integrating = t ( ~ ,  t) , the equations defining the 

matrix, afJa&, are frequently available. A self-starting integrator naki ng 

use o f  this matrix i s  shown below. 

Given 

Let 

Then 

Where 

the proof i s  

Therefore 



But 

The integration coefficients i n  a self-starting integrator u t i  1 i zing 

afJa5, are unique. nus there i s  no opportunfty trr adjust integrator constants 

to  reduce truncation error, as there i s  w i t h  the Runge-Kutta type of integrators. 



9. ESTIMION OF TRUNCATION ERROR 

I t  is frequently desirable to be able to estimnte integrator accuracy 
over the integration interval. This Infomation might then be used to control 
the integration step size. A logical approach to this problem would to be 
make ona extra derivative evaluation (generate one more us and then we thls  
extra value of  lc, colabined w i t h  the other k' s , to estlmatr the truncation 
error. This would be equivalent to tzking a, say, th i rd  order integrator, 
making one more derivative eval uation [eval wte s) , and obtaining a fourth 
order integration, This would then be compared w i t h  +h third order answer 
t o  determine the truncation error. Unfortunately it is not possible to do 

this. F m  Table 6 it is seen that  a t h i r d  order integrator slust have 

F m  Table 11 it is seen that a fourth order integrator must haw 

I t  is clearly seen that the t*o values of b2 can never equal one another. 
Thus a th i rd  order integrator can not be made into a fourth order integrator, 
In other words, you can't make a s i l k  purse out of a sow's ear. 

In the following estimation of truncation error, we w i l l  assune that 
three integrltions are a d e  when integrating f m  ti to ti+l: one integration 
from ti to ti+.5; the mult being integrated f r w  ti+.5 to ti+l ; and one 
integration fmn ti to ti+l directly. 



Integration from ti to tf+.5. for nth order integrator, may be repre- 

sented by 

-t , and where e ( ~ ~ / 2 ) m 1  i s  the truncation error associated with uhere AT = ti+l 
the particular integration scheme being used. 

Assuing g remaim relatively constant, integration fm ti+.5 to ti+l 
i s  given by 

A single integration fm ri tc t:,! m~ild yield 

A 

zi+l  = zi+l + c AT"+' 

Subtracting equation (110) from (111 ) gives 

Thus 



As a f i r s t  approximation. a&* = I, so 

For ahJ ax* I 

- 
1n situations *re 5 =[:I , a bet ter  appmximatton i s  

I n  th is  case 
d 

For I = r ] o n l y .  

-1 i 



Knowing q, and assuning g remains re l a t i ve l y  constant from one cycle to 

the next, a value of AT for the next cycle may be chosen to give any desired 
-T T in t fgra t ion accuracy. For example, suppose tha t  5 = bi ] and the er ror  

i n  $ (the posi t ion e r ro r ) i s  t o  be controlled. F n n  equation (110), and as- 

suming ahJax = I, the posi t ion er ror  i n  the next cycle i s  seen to be 

Let  the magnitude o f  the allowable pos i t lon er ror  vector be 

- Units o f  pos i t ion  (feet, radians, etc. - 
6p Units o f  integrat ion time (secs, days,)etc.) 

Then 

Substi tut ing equation (113) i n t o  the  above, and solving f o r  A T ~ + ~  gives 

The above equation has been used very successfully wi th  a fourth order integra- 

t i on  o f  an earth t o  Mars t ra jectory.  Here the posi t ion vector consisted o f  the 

y s i t i o n s  of the earth, moon, sun, and Mars with respect t o  the spacecraft. 



It was in terest ing to note tha t  the m o t i o ~  o f  the earth-moon system was the 

dominant fac tor  i n  control1 ing AT during most o f  the voyage. This I s  something 

tha t  many people might overlook, y e t  i t  was readf ly  detected using equation 

(115). 

When operating w i th  very small values o f  6 (and small in tegrat ion step 
P 

sizef), there may be a very large loss o f  s lgn i f lcant  figures i n  the quantl ty 

9 - 8. Generally, integrator  equations can be wr i t ten  i n  the form - 

A 
A A 

Thus the loss o f  s l gn i f i c sn t  f igures i s  dimished i f  we l e t  - : - ! - = bx - - n ~ .  
The reader may object  that, i n  these cases, computer roundoff er ror  i s  the 

dominant e r ro r  source - not  t runcat ion error. He i s  correct. I n  these situa- 

t ions 6 w i  11 not  have absolute control over the integrator  accuracy. Howev .r , 
P 

the AT generated by the preceding equations w i  11 be an indicator  o f  the "dynamic 

a c t i v i t y "  o f  the sys&. 

We are now led  to the in terest ing question o f  what i s  the best  AT t o  use 

t o  obtain maximum integrat ion accuracy. Theoretical l y  , integrat ion accuracy 

improves as AT + 0. However, as a pract ical  matter, computer roundoff error  

w i l l ,  a t  some point, cause the in tegrat ion e r ro r  to s t a r t  increasing again as 

AT -+ 0. Suppose tha t  the computer stores os i t i on  accurate t o  E ( feet ,  k P 
radians, km, etc.) . Again we w i l l  assilme - i s  being used as the output of the 

~n tegra t ion .  As before, the truncation e r ro r  i n  posi t fon f o r  one integrat ion,  for 

Now l e t  the truncation er ror  be the same size as the computer roundoff error. 



Thus 

Uslng equation (113) and solvlng  AT^+^ glves 

A 

Had r e  been saving 2 instead o f  as the output of  the integrator , then we 

would have obtained the equation 

A A 

Note that A$ - A!, should be used i n  place of tl - , i n  the above equations. 



10. COMPUTER ALGORITHM FOR RUNGE-KUTTA TYPE INTEGRATORS 

The computing algorithm for  Runge-Kutta type integrators i s  part icular ly 
simple. For convenience o f  notation, l e t  

etc. 

Then, i n  engineering notation, Nth order integration o f  h = f(g i s  accmplf shed 

by 

= x. Zi+l -1 

k = AT~(K~+~) -1 



(for 

Then 

In order to  express the preceding equations i n  FORTRAN 
I a 1.2 ,.., M and J = 1,2 ,..., N )  

the FORTRAN equations for integrating h = f(&) are 

notation, 1 et 

N~~ Order Integrator for 4 = f!x) 



The FORTRAN equatlons for  integrating = f(&, t) are 

T I  = T 

D O 1  I 4 , M  

1 XX(1) = X(1) 

DO2 J = l , N  

T = TI + D(J)*DT 

comnent EVALUATE F(1) = FUNCTION OF X(1) ,T 

DO2 I = l , M  

K(1,J) = DT*F(I) 

X(1) = XX(1) 

DO2 L = l , J  

2 X(I) = X(I) + A(J,L)*K(I,L) 

T I  = T! + DT - 

N~~ Order In teg ra tc r  for i = f(5. t )  

Th~ugh the above algorithms have the advantage o f  s imp l i c i t y ,  the reader 

should be aware t h a t  i f  mdximum speed o f  computing i s  desired, then the algo- 

r i thms should Le r e w r i t t e n  so t h a t  the doubly subscripted vaf iables, A(I,J) 

and K( I  ,J) , are replaced by s ing l y  subscripted variables. Singly subscripted 

variables require less tinxi? t o  locate i n  core than do doubly subscripted 

variables. 



1 1 . SOME EMPERICAL EVALUA'iIONS 

The truncation e r ro r  terms, l n  the previously discussed integrators, are 

extremely complicated. The only pract lca l  way t o  investigate integrator  ac- 

curacy i s  by emperical methods. One w a y  t o  do t h i s  i s  t o  p ick  an = t (~,  t )  
equdtion whose solut ion i s  known and whose form i s  s imi lar  t o  the actual equa- 

t i on  o f  interest .  We have done t h i s  here i n  t h i s  section f o r  an o r b i t  determina- 

t i on  problem. Another way i s  to use Eq. (116) (or  s imi lar  equation) 31 obtain 

the most accurate solut ion o f  - x = - f (5 ,  t )  tha t  the computer can give. Other 
solutions would then be compared w i th  t h i s  one. 

I n  order t o  provide an i l l u s t r a t i v e  example o f  some o f  the integrators 
discussed i n  t h i s  report, a sate1 li t e  o r b i t  determination problem was run f o r  10 

o rb i t s  . The dynamical equation o f  motion, f o r  a spherica7 grcvi  tat ional  f i e l d ,  

i s  given by the nonl lnear, vector d i f fe ren t ia l  equation 

R i s  the vector from the center o f  mass o f  thz a t t rac t ing body t o  the sate1 1 i te. - 
u i s  the gravi tat ional  parameter. The elaments o f  the s ts te  vector were taken t o  . . . 
be x, y, z, x, y, z. The state vector equation o f  motion, g =  f(;c, t), i s  then 



The i n i t i a l  conditions were precisely set t o  give a c i rcu lar  orbi t ,  incl ined a t  

45O, and with a period o f  exact'y 6144 seconds. The accuracies o f  the various 

integrators with the above equation are shown i n  Tables 20 and 21. The term 
"2.5 order Taylor series" needs explaining. If x and i are elements o f  the state 

vector, then a second order Taylor series solution o f  the vector d i f fe ren t ia l  

equation i s  

However, one lrsould rarely use the equations f n a computer program i n  th i s  farm. 

As long as xi i s  belng coqWed, one would also use i t  to "improve' the estimate 

c f  Thus WE define a 2.5 order Taylor series solution to be 

Similarly a 3.5 wder Taylor series solution goes out t o  fourth order i n  posi- 

t lon  and th i ro  order i n  veloclty . L i  kewtse fo r  4.5 and 5.5 solutions. 
The term "416 RK Set #I" refers t o  the Runge-Kutta integration constants 

i n  Table 15. They provide fourth order integration o f  = f (5) and 
s ix th  order fo r  - x = - f ( t ) .  The set o f  integration constants "4th RK: 62 = s3 = -5, 

d j  = .5" are fourth order Runge-Kutta integration constants which came f r o m  

Table 12, where d3 was optimized t o  give the best average posit ion error over 10 

orbi ts of  integration. 

The set o f  integration constaats "4th RK: 62 = . IS,  63 = .19211 deserves 

special mention. This set o f  fourth order Runge-Kutta constants was obtained 

from Table 11 by opt in i r ing the two free parameters, a2 and 63. The optimization 



was not done w i t h  the o r b i t  determination p d l e m  studied here. Thqy were opt i -  

mized with an ent i re ly  d i f ferent  o r b i t  and with a different gravity f i e l d  (equa- 

tions o f  motion).* Yet they worked extremely well wi th our current problem, which 

indicates that they probably would work very we1 1 w i t h  any general o r b i t  determina- 
t i on  problem. Their accuracy was even better than the 5th o r  5.5 order Taylor 
series solutions. This outstanding set o f  integration constants i s  shown !n 

Table 19 below. 

TABLE 19: OPTIMUM FOURTH ORDER RUNGE-KUTTA INTEGRATION 
CONSTANTS FOR ORBIT DETERMINATION 

Urn. M. Lear, "Direct Integration o f  Orbital Equations Using a Fourth Order 
Runge-Kutta Integrator", TRW Technical Report 20029-601 3-TO-00, 31 August 
1972. 



Table 20 shows the position error a t  the end of 10 orbits. Table 21 shows 
the average position error during the 10 orbfts. In general the results of the 
two tables are i n  agreement as far  as ranking the integrators for accuracy. How- 

ever, there are a few cases of disagreement. For an integration step size of 
256 seconds, the Runge-Kutta-Gi 1 I integration constants had a final posi tlon 
error of 1274 mtert, lower than with AT = 128 seconds which was 2193 meters. 
However, the average position error in Table 21 gives a truer picture of the 
o verall accuracy. We see that for AT = 256 seconds, the Runge-Kutta- Gill con- 
stants had a rather large average error and thus indicated that the absolute 
position error was passing through an abnorarally law m i n i m  a t  the end of 10 
orbits. In other words, the average position error is a better indication of 
overall accuracy. We have not shown tables of velocity accuracy since, without 
exception, a l l  the velocity errcrs are approxislately 1/1000 of the position 
errors. 

Figures 1 and 2 shw haw the integrator error "grom" with time for 
several of the integrators. We see that the errors are not necessarily always 
increasing w i t h  time, but  my exhibit periods where the error may decrease with  

time. Note particularly the excellent performance of the Table 19 integrator 
constants sham i n  Figure 2. 

Figure 3 shows the accuracy of various orders of Taylor series integrators 
versus integration s t e p  size. The tqor tant  th ing  shown i n  this figure is the 

desirability of the fourth order integrator. Notice that for a constant i nte- 
grator accuracy of 100 meters, the fourth order integration step size can be 13 
times larger than the t h i r d  order integration step. Yet when we go from fourth 
order to f i f th  order, we can increase our integration step by only a factor of 
1.3, hardly worth the effort of evaluating the extra derivative term. Also if  

one examines Tables 20 and 21, we also reach the conclusion that,  a t  least for 
orbit integration, the fourth order integrators are perhaps the most desirable 
a1 i purpose integrators . 
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12. INTEGRATIOI~ USING ACCELEROMETER DATA 

12.1 INTRODUCTION 
In aerospace work we frequently have the equation of motion 

where 

a i s  acceleration dlu? to gravity and i s  an anslytic function of position and 
-9 
t i r e  ( i f  higner order gravitational harmonics are used). The function 4 i s  
sensed acceleration, sensed by accc!lerometers, and i s  due to external forces 

other than gravity. However, the output of the accelerometers is  n o t  4 i t s e l f .  
b u t  the integral of 4. Thus what we have available for  integration of the equd- 
tions of notion i s  

For "nocaestruct" accelerometer data, to i s  the time a t  which the system was 
turned cn. For "destruct" accelerometer data the integral i s  only aver small 

time intervals, say from ti to t i+i. Ge will assume nondestruct data here, the 

resu?ting equations can be easily modified for destruct data. 



12.2 ONE COMMOl4 SOLUTIGi3 OF EQ. ( I  18) 

Solve (integrate) the f ree - f l igh t  equation 

to obtain 

= f(3, hi. ti, AT) -i A +I = gmii. ki. ti. AT) 

Let  

Note t h a t  P i s  a 3 by 3 matrix whtch i s  a function o f  & and t. 

Then the solution o f  Eq. (118)' 

i s  given by 
L 



and note that 

- v exactly %('Id' = Xj+l -1 

Thus our solution of the equations of motion is  given by 

Generally the last  two tc ,,a 1 2  tne above equations are ignored. Note however, 
i t  i s  not particularly difficult to a t  least Include the P i 4  - Pi (V++~-I~ ) /LT 

term. Approximations for the integral, I ,  are shown below. 



- 
AT12 AT12 

I 1 

I 

ti 'i +I 

A AT I = l-51~ + 4!i+.5 + E ~ + ~ I  

A  AT^ 
I ,  ,2880 (Eq. i s  correct.)  



We have shown the higher order integrators above, not  because o f  t h e i r  accuracy, 

but  because the engineer doing the in tegrat ion frequently has no ccntrol over 

when the accelerometers are read out. ine approximations o f  - I shown above are 

much preferred t o  those shown below because o f  such things as engine cu to f f  i n  

the middle o f  an in tegrat ion step. 





1 2.3 RUNE-KUTTA INTEGRATION OF ACCELEROMETER DATA 

itunge-Kutta integrators require the value o f  ( t )  a t  various times within 

the integration interval  froin ti t o  ti+l. The equations below supply th is  in-  

formation. Note that  Runge-Kutta integration o f  accelerometer data i s  generally 

preferable t o  the previous method since the Runge-Kutta method easi ly accounts 

f o r  the higher order tern&, ~ e n e r a l l y  l e f t  out i n  the previous =:hod (Eqs. 

(124) and (125)). 

AT 

ti ti +I 

A 1 1 
a (t. + BAT) = - - v. + - v -s I A -  AT i + l  

A 
a For 1st  Order R-K Integration 
-5 

8 For 2nd Order R-K Integratfon 
3 

12-7 



r- 

611 3 AT/ 3 AT/ 3 
I L I 

I I I 

ti 

A 
a (t. + &AT) = hgi + A11i+1/3 + 
-5 1 %i+2/3 + *$i+l 

816* - 906 + 18 2 
A1 = A* = -816 + 726 - 9 

2AT 2AT 

A3 = 27h2 - 186 + 2 
 AT a = - A ~ - % - A ~  

A -.  AT^ a - (-186. + 27s2 - 116  + 1 )  % - %"%.i 108 

A a For 3rd Order R-K Integration -3 



A a For 4th 3rder R-K Integration 
3 



A 
a For 5th Ordev R-K Integration 
-5 



Note that  any o f  the previous approximations o f  4 may be used with any lower 

or higher order integrator . The frequency w i  th #hi ch the accel emmeters are 

read out may determine the approximation that  i s  used. The approximations o f  4 
shown above are much preferred to those s h m  below because o f  such things as 

engine cutof f  i n  the middle o f  an integration step. 

A 
a f o r  2nd Order R-K Integration 
3 

(Acaelerometer Sample Interval  = AT) 



A a for 3rd Order R-K Integration 
--S 

(Accelerometer Sample Inkrval = LT) 

- - - - 

& a For 4th Order R - K  Integration 
-5 

(Accelerometer Sample Interval = AT) 



8 For 5th Order R-K Integration * 
(Accelerometer Sample Interval = AT) 



APPENUIX A 

THE - k EXPANSIONS 

Consider the vector differentia? equation, - ; = -- f (x) .  Let fi be the ith 
element of f. Let f! be the part ial  derivative of fi with respect ro the jth 

J 
elemnt o f  - x. Let 

where the repeated i ndl ces indicate sumnati on. 

Let the 4 vector be composed o f  the elements A'; let ~e - B vector be c a  

posed o f  the elements B', etc. Then it can be shown that 



Me also note that 

Let* 

r7rf is an element o f  5, then t will get "bumped" by  AT, (bl+b2)dT. 

(c, f c2+c3)eT, etc . 



The fifth-order expansions of the k's are now shown below. 







APPENDIX B 

A FIFTH ORDER R-K INTEGRATOR WITH 
FIVE DERIVATIVE EVALUATIONS? 

Since one infrequently hears about a1 ' qsd f i f t h  order Runge-Kutta inte- 
grators using f i v e  derlvatlve evaluations, 3 appeared worthwhile t o  t r y  and 

shw that no such solutlon exists f o r  the vector d i f fe ren t ia l  equation 

i = f(3 or  = f(xs t ) .  - 
The integrator constant constraint equations are as shown below. 



(B- 13) 

(8-14) 

(9-1 5) 

(8-1 6) 

(8-1 7) 

(B-18) 

(B-19) 

(8-20) 

(0-21 ) 

22 equations i n  20 unknowns. Solv ing Eqs. (8-7) through (B-10) gives 



(Q + 65)(2062 Z' IS) + 6465(23 - W62) + 12 - 1562 
e3 = 6063i63 - 62)(63 - 64)(63 - 65) 

Equations (8-11) and (B-12) give 

Equations (8-12) and (B-13) give 

The above two equations yield 



Substituting Eq. (8-24). for e3. Into Eq. (0-29) glves 

How Eqs. (B-19) and (8-21) yield 

But from Eq. (8-22) 

Sett ing Eq. (8-31) equal to Eq. (8-32) gives  

- - 6 4  

b262 - 2 - 5s2 

Sett ing Eq. (8-30) equai tc Eq. (8-33) yields 



But frm Eq. (B-22). 62 + 0, therefore 

Nm Eqs. (B-19) and (8-20) give 

Substituting Eq. (B-33) Into the abvJe yields 

Equations (8-17) and (B-15) give 

Equations (8-17) and (B-11) give 



Coarbtning the above two equations yle lds  

Sett ing t h i s  equation equal to Eq. (B-36) results i n  

But fm Eq. (0-22) we see t h a t  62 # 0. Therefore 

Subst i tut ing t h i s  in to  Eq. (8-34) y ie lds  

Now comparing Eq. (8-18) w i t h  (8-19). we see t h a t  s4 = 65 = 1 can not be a 
solution. Thus we have a contradiction, and there appears to be no valid 
solution. Also i n  going back t o  inves t iga te  the singular  points of the  various 
equations, I sti 11 f ind contradictions. And subjecting the  above equations t o  
two d i f fe ren t  least-squares , computer solut ions,  I f ind  no exact  solut ions . 
Thus i t  appears t h a t  one more derivat ivz evaluation is needed f o r  a f i f t h  order 
Runge-Kutta type of in tegra tor  f o r  the vector d i f f e ren t i a l  equation, 5 = - f ( x ,  - t) . 


