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Difference Equation for Superradiance*
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We study the evolution of a completely excited system of N two-level
is

atoms, distributed over a large region, interacting with all modes of

radiation field. We pay special attention to the distinction between r-,
ii

conserving (RC) and r-nonconserving (RNC) processes. Considering the
i,

number of photons emitted as the discrete independent variable, the evo-

lution is described by a partial difference equation. Numerical solution

of this equation shows the transition from RNC dominance at the beginning

to RC dominance later. This is also a transition from incoherent to cohe-

rent emiss_ •-, of radiation.
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In 1954 R. H. Dickel discussed the spontaneous emission of radiation

fron in excited system of N identical two-level atoms. By considering the

entire collection of atoms as a single quantum mechanical system, he found

that under certain conditions the individual atoms cooperate to emit radia-

tion at a rate proportional to N2 which is much greater than their incohe-

rent emission rate. This phenomenon is called super;adiance. The quantum

number that plays the central role in the description of such system is the

so-called cooperation number r which can be any integer between 0 and N/2,

assuming N to be an even number.

In the vast literature on superradiance2 , most of the investigation

have been limited to cases in which the emiting atoms either are confined

to-a region smaller than the wavelength of emitted radiation or are able to

couple with only one radiation mode. In these situations r is conserved;

which permits important mathematical simplifications. Current attention in

this field is being focused on the more difficult, but more realistic,

problem of N two-level atoms, distributed over a space of dimension greater

than the radiation wavelength, interacting with all the modes of radiation

field. 3 In this situation r is no longer conserved. 4 However, the effects

of r-nonconserving processes have not received sufficient attention in the

literature.

Recently, we  have developed a simple and systematic diagrammatic

technique for calculating the matrix elements of collective operators; which

gives the transition probabilities of both r-conserving (RC) and r-noncon-

serving (RNC) processes as follows:

Tk (r,m) _ (r+m)(r-m+l) r(k-kl) , 	 (1)

1k C (r,m) = 
(r+m)2r+m-1) 

[I - r(k--k1)) _,	 (2)
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where k is the wavevector of the photon emitted and k l is a specific mode

which may be the wavevector of the exciting pulse or the end -fire mode; m

is 1/2 of the difference of the numbers of atoms in the excited state and

the ground state. r (k kl) is independent of r as long as r is very close

to N/2; but it depends on the geometry of the sample. For a circular

cylinder of length R and radius a, it is known to be

sin2 [(k k 

1)

	

1

	

z 
R/2)	 4J2[(k--k 

1 ) 

a)
f(k-kl)	 + +	 ^ —+ +	

0	
,	 (3)

	[(k-kl) Zi/2 ) 2	[(k-k1)pa)2

where(k-kl) E 'p are the transversal and axial components of (k4k 1) and J 

is the Bessel function of order 1. Rehler and Eberly6 have carried out

+
the numerical calculation of r(k-k

+ 
l) which shows a very sharp peak along

the direction of kl . This implies that a photon emitted through RC process

will be predominantly along the direction of kl ; while RNC process will

give radiation along all other random directions.

When (1) and (2) are integrated over all possible directions, we obtain

	

TRC(r,m) a (r+m)(r-m+l)N 	 ,	 (4)

T 
RNC (r,m) a [(r+m)(r+m-1)/2r](1 - u) 	 ,	 (5)

where u has the sums meaning as given by Ref. 6 and can have values much

smaller than 1.

Suppose we start with a completely excited system %Ath r - m - N/2.

Then at the beginning photons will be emitted predominantly through RNC

processes and, therefore, along random directions. For each photon emitted
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through RNC process, both r and m decrease by 1; which does not improve the

chance of RC processes. On the other hand, for each photon emitted through

RC process, r remains the same while m decreases by 1; which will improve

the chance of RC processes. Hence, the more photons emitted along kl

direction, the higher the probability of additional photons emitted along

this direction. The RC and RNC processes will be about equally important

when (r-m)u is of the order of 1.

In this article, we are most interested in studying the transition

from RNC dominance to RC dominance. To study the evolution of a system of N

two-level atoms from a completely excited state, we will replace the time

as the continuos independent variable by the number of photons emitted as

the discrete independent variable. Then our "dynamic equation" will be a

difference equation.

Let P(r,m) be the probability that our system has cooperation number

r after N/2-m photons have been emitted. Then (4) and (5) gives the follow-

ing partial difference equation for P(r,m)

P(r,m)	
2r(r-m)a	 P(r,m+l) +	

(rfn±I	 P(r+l,m+l)
2r(r-m)a + (rl	 (2r+2) (1	 + (r+m+l)

(6)

with the initial condition P(N/2,N/2) - 1 and the obvious restrictions:

0 S r S N/2 and -r S m S r. We have defined a- u/(1 -u) which is essentially

the same as p whek P is a'^zch less than 1. In obtaining (6), we have ignored

the possibility that a photon may be absorbed by the atomic system and the

possibility that r may increase. The latter is justified in Ref. 5.

It is convenient to define two new variables

s	 =_	 N/2 - r. , t =_	 r - m (7)

and let Q(s,t) a P(r,m).	 Assuming that both s and t are much less than N,
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(6) becomes

Q(s,t) - [to/(i+to)]q(s,t-1) + 11 + (t+l)a]-1Q(s-1,t) 	 (8)

with initial condition Q(0,0) - 1.

By direct observation, the solution to (8) can be seen to be

t+l
8 	t	 1	 t

Q(s,t) -	 II (1+io) it II (l+ia) 1 t! a	 ,	 (9)
s i-1 	 it	 J

where 61 - 0, 1, 2, •-•; and the summation is over all possible choices of

Si such that

t+l
61 - s	 (10)

i-1

The result of t':is summation can be expressed as a contour integral as follows:

t+1
Z	 n (1 + io)-St

s i-1

f
z-s-lt+1

2ai
	 n [l + (l+ia) -lz + (l+ia) -2z2 + ••• ] dz . (11)

 i-1

A good approximation for Z can be obtained by integrating through a saddle

point on the real axis, the so-called steepest descent method , as follows:

 s t+1 (1 + ia) 1 t+l ( 1 + ia)A	
8

Z = (27r) -'F A	 II	 , (12)
i=1 (1 - A + ia)J i=1 (1 - A + io) 2 ]

where z = A is the location of the saddle point to be determined by the

equation

t+1
A	 (1 - A + io)

-1
	s+1	 (13)

i=1
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	Substituting (12) into (9) and using Stirling ' s formula for tl, we obtain 	 (;

	

rt+l	 t+l ^- 1/2
Q(s,t) = A s[1+(t+l ) o]I 11 (1-A+ia)-

11	 l+ia A 1-

	

i-1	 J i-1 (1-A+io)2 J

x	 t tt+1/2 at	
(14)'

Replacing s and t by the original variables r and m, we have a good

approximation for P (r,m). We want to know what cooperation number has the

highest probability after a certain number of photons have been emitted;

i.e., we want to locate the maximum of P(r,m) with respect to r for fixed m.

We will defined

x e (N/2 - m) o	 ,	 y =_ (N/2 - r ) o	 ,	 (15)

consider x and y as continuos variables, and replace all summations encoun-

tered by integrations.- Then, from (13) and (14), we have

	

A ln[l + (x-y)/(1-A)] - y	 (16)

1nP(y,x) - ln(l+x-y) - (y/a+1 /2)lnA + (1/2)ln[(x-y)/a]

+ [ (1-A+x-y ) ln(1-A+x-y) + (1-A)ln (1-A) + (x-y ) ln(x-y)]/a

(( 
rY1 lnSll + _!. -	 A	 1 + 1 ^	 (17)

2 (o LLA 1^-A 1-A+x-yJ	 A

Letting alnP (y,x)/ay - 0 and using (16), we obtain

1/(l+x-y) + 1/[2(x-y)] + (1/a)ln[A (x-y)/(1-A+x-y)]

+ (1+x-y)[A2 (x-y) - (1-A) 2 (l+x-y)y 1/2[A2 (x-y) + (1-A) (1-A+x-y)12

0	 (18)
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Simultaneous numerical solution of (16) and (18) gives y as a function

of x which, in turn, gives the most probable cooperation number as a function

of the number of photons emitted. The results for five different values of

U are presented in Fig. 1. A slop of l of these curves indicates pure RNC

processes and a slop of 0 indicates pure RC processes.

The author is grateful to Mr. T. L. Kuo for his help with the numerical

calculation.
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FIGURE CAPTIONS

Fig. 1. Drop in cooperation number (N/2-r) as a function of the number of

photons emitted (N/2-m) with a as a parameter.
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