General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
APPLICATION OF THE MOS C-V TECHNIQUE TO DETERMINE IMPURITY CONCENTRATIONS AND SURFACE PARAMETERS ON THE DIFFUSED FACE OF SILICON SOLAR CELLS

by I. Weinberg
Lewis Research Center
Cleveland, Ohio 44135

TECHNICAL PAPER to be presented at
Eleventh Photovoltaic Specialists Conference
sponsored by the Institute of Electrical and Electronics Engineers
Phoenix, Arizona, May 6-8, 1975
INTRODUCTION

Increases in solar cell efficiency can be affected through a reduction in surface recombination velocity (1). However, a scarcity of information exists concerning the diffused face of the silicon solar cell. This lack of information arises from the difficulties which occur when attempting to obtain experimental data regarding the surface of heavily doped semiconductors. The MOS capacitance-voltage technique is commonly used for determining the number and nature of surface states on silicon (2, 3, 4). Much of the work in this area has been concerned with thermally oxidized SiO$_2$ on silicon and has been limited to silicon carrier concentrations below 1018 cm$^{-3}$. This limitation arises from the fact that the sensitivity of the technique decreases with increasing carrier concentration. However, concentrations in the 1019 cm$^{-3}$ range (5) are the usual case for the diffused silicon solar cell face. Hence it becomes necessary to extend use of the technique outside the limits of current usage. This can be done if a method, independent of bulk semiconductor concentration variation, can be utilized to obtain increased sensitivity. In this respect, it is known that sensitivity increases with increased dielectric permittivity of the oxide used in the MOS capacitor (2).

Silicon monoxide, a widely used antireflection coating on silicon solar cells, has a dielectric permittivity slightly higher than SiO$_2$. However, Ta$_2$O$_5$, a coating used on improved solar cells (6) has a dielectric permittivity considerably greater than either SiO or SiO$_2$. Hence use of Ta$_2$O$_5$ affords the advantage of increased sensitivity. Numerical calculations will be presented later in this paper to support this assertion.

APPLICATION OF THE NOS C-V TECHNIQUE TO DETERMINE IMPURITY CONCENTRATIONS AND SURFACE PARAMETERS ON THE DIFFUSED FACE OF SILICON SOLAR CELLS

by I. Weinberg

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio

ABSTRACT

The MOS C-V technique has been widely used, with SiO$_2$ as the oxide, to determine surface state parameters on silicon with carrier concentrations less than 1018 cm$^{-3}$. However, at higher impurity concentrations, especially those encountered on the n$^+$ solar cell surface (N \sim 1020 cm$^{-3}$), the MOS technique using SiO$_2$ is relatively insensitive. Increased sensitivity is expected for oxides with higher dielectric permittivity. In this respect, Ta$_2$O$_5$ with a dielectric permittivity considerably larger than SiO$_2$ affords a distinct advantage. It is also in use as the antireflection coating on improved solar cells. Hence, an experimental and theoretical investigation has been conducted into the feasibility of using the MOS C-V technique to obtain information regarding impurity and surface state concentrations on the diffused face of silicon solar cells with Ta$_2$O$_5$ coatings.

The current data yield the result that the impurity concentration, approximately 109 A from the diffused surface, has the value 2.9x1010 cm$^{-3}$. In addition, it is found that N$_P$, the density of charge in surface and oxide states has the value 2.1x1013 cm$^{-2}$. The C-V data are found to be in reasonable agreement with theoretical predictions. Based on these results it is concluded that the MOS C-V technique yields useful information concerning surface parameters which contribute to the high, efficiency limiting, surface recombination velocities on the n$^+$ surface of silicon solar cells.

THEORETICAL RELATIONS

The purpose of this section is to introduce the mathematical formulas used in extracting surface parameters from the experimental data. Prior to this, however, a calculation is carried out to show the enhancement in sensitivity which results from increased oxide dielectric permittivity.

Sensitivity

The sensitivity of the MOS C-V technique varies inversely with C_{min}/C_{max} the ratio between minimum and maximum capacitance observed as the applied dc voltage is varied through the measurement range. At high frequencies, numerical estimates of this ratio can be obtained from the relation (2, 7),

$$C_{min} = \frac{1}{1 + \frac{2qN_{t}N_{i}^{1/2}}{kd(C_{s}N_{i}^{1/2} + N_{t})}}$$

where c_{s} is the oxide dielectric permittivity, d is oxide thickness, q is the electronic charge, k is Boltzmann's constant, T the temperature, N the donor concentration, N_{t} the intrinsic carrier concentration, and c_{s} is the dielectric permittivity of silicon. Equation (1) clearly illustrates that for given values of d, N_{t}, N_{i}, and T, the sensitivity increases for increased values of c_{s}. The results for $N = 10^{20}$ cm$^{-3}$ are shown in figure 1. Since the curves in figure 1 were computed for a high impurity concentration, the effects of heavy doping were included in the calculation. With respect to heavy doping, it has been shown (8) that for concentrations greater than 1017 cm$^{-3}$, N_{t} must be replaced by an equivalent intrinsic concentration, N_{i}, which is larger than N_{t} and varies with impurity concentration. For $N = 10^{20}$ cm$^{-3}$, it is found that $N_{i} = 12.96 N_{t}$ (8). Using the value $1.4x10^{10}$ cm$^{-3}$ for N_{t} it follows that $N_{i} = 1.81x10^{11}$ cm$^{-3}$. It is clear, from the results of this computation, that Ta$_2$O$_5$ offers the advantage of greatly increased sensitivity in use of the MOS C-V technique.

Impurity Concentration

In the present case it will be seen that the impurity concentration N is determined at a depth approximately 10 A from the diffused surface of the n/p silicon solar cell. This is sufficiently close that N is considered to be a surface parameter.
The impurity concentration is determined from the relation (9, 10),

\[N = \frac{2}{\varepsilon e_0 A} \left(\frac{1}{d(C_{ac} + C_{oa})} \right) \]

(2)

A is the area of the MOS capacitor, V the applied voltage and \(C_{ac} \) is the MOS high frequency capacitance where

\[C_{ac} = C_{so} + C_{oa} \]

(3)

\(C_{oa} \) is the capacitance of the semiconductor space charge layer and \(C_{so} \) the oxide capacitance is given by

\[C_{so} = \frac{e_0 A}{d} \]

(4)

Equation (2) is obtained using the depletion approximation (9, 10). In addition, the measurement frequency should be high enough so that interface states do not respond appreciably to the ac signal (9, 10).

In order to obtain numerical values of \(C_{ac} \) from equation (3) \(C_{so} \) must first be obtained from the C-V data. If there were no losses in the MOS capacitor, then the measured capacitance would simply be a series combination of \(C_{so} \) and \(C_{ac} \). However, in the present case, it is necessary to consider losses in the oxide and in the bulk semiconductor. The oxide losses are represented by a resistance \(R_s \) in parallel with \(C_{so} \) and bulk semiconductor losses by a resistance in series with \(C_{ac} \). The high frequency equivalent circuit for the MOS capacitor, including these loss elements, is shown in figure 2. From the equivalent circuit, \(C_{ac} \), the measured capacitance is given by

\[C \approx \frac{C_{ac} \left(1 + \omega^2 \left(C_{oa} C_{so} + C_{so}^2 \right) \right)}{\left(1 - \omega^2 C_{ac} C_{oa} R_s \right)^2 + \left(\omega C_{ac} R_s + \omega^3 C_{so} R_s \right)^2} \]

(5)

Using measured values of \(C_{ac} \), \(C_{oa} \) can be obtained from equation (5) if \(C_{so} \), \(R_s \), and \(R_o \) are known. \(C_{oa} \) and \(R_o \) are properties of the oxide and are obtained directly by measurement. To obtain \(R_s \) use is made of the fact that, at sufficiently high applied dc voltage, the semiconductor space charge region is in the strong accumulation condition. For an n-type semiconductor this implies a very high electron concentration near the surface and \(C_{ac} \) is effectively shorted out (11). This condition occurs at \(C_{ac} \) the maximum value of \(C_{ac} \) where

\[C_{max} = \frac{C_{so} R_o^2}{\left(R_o + \omega^2 C_{so} R_o \right)^2} \]

(6)

These relations yield the value of \(N \) at a distance \(W \) from the semiconductor surface, where

\[W = \frac{C_{ac} d}{C_{oa}} \]

(7)

\(W \) being the width of the semiconductor space charge depletion region.

Charge in Surface and Oxide States

From the present experiment one obtains the quantity \(N_o \), the density of charge, in both surface and oxide states, per unit surface area (12). \(N_o \) is determined from the well known technique (2) using the measured capacitance and voltage in the flat band condition.

\(N = \frac{C_0}{A} (V_{FB} - \Delta V) \)

(8)

where \(\Delta V \) is the difference in work function between the metal which forms one plate of the MOS capacitor and the semiconductor. \(V_{FB} \) is the value of the applied dc voltage at the flat band point, i.e., the voltage at which the flat band capacitance occurs. The latter is obtained from equation (5), using (2)

\[(C_{ac})_{FB} = \left(\frac{C_{so}}{R_s} \right)^{1/2} \]

(9)

\((C_{ac})_{FB} \) being the capacitance of the semiconductor space charge region in the flat band condition.

EXPERIMENTAL PROCEDURE

The MOS C-V data were obtained using a 2 x 2 cm \(n^+/p \) silicon solar cell of 10 ohm-cm base resistivity, obtained uncoated from the manufacturer. The Ta2O5 coating was deposited under a vacuum of 3 x 10-6 Torr. During vapor deposition, the Ta2O5 charge was contained in a water-cooled copper boat. The cell was mounted on a substrate which was heated to 300° C during deposition. The oxide deposition rate was 0.56 Å per second. Oxide thickness and index of refraction as determined by ellipsometry were 590 Å and 2.21, respectively.

After oxide deposition, the cell had an AMO short circuit current of 140 ma and an open circuit voltage of 0.555 volts. The MOS capacitor was formed by vacuum depositing circular gold dots, 2.54x10^-2 cm in diameter, with a thickness of 2000 Å, as shown in figure 3. Contact to the gold dot was made by a gold wire probe using a micropositioner. The remaining electrical connection to the MOS capacitor was made to the Au-Ti grid contact on the front face of the solar cell. This configuration was used in order to avoid the complicating effects of the p-n junction in the capacitance measurements. Capacitance as a function of applied dc voltage was determined with a Boonton 71 AK capacitance meter, with a thickness of 2000 Å, as shown in figure 3. Contact to the gold dot was made by a gold wire probe using a micropositioner. The remaining electrical connection to the MOS capacitor was made to the Au-Ti grid contact on the front face of the solar cell. This configuration was used in order to avoid the complicating effects of the p-n junction in the capacitance measurements. Capacitance as a function of applied dc voltage was determined with a Boonton 71 AK capacitance meter. Output of the capacitance meter was displayed on an x-y recorder. During measurement the solar cell was contained in a light-tight box into which an atmosphere of dry nitrogen gas was introduced.

RESULTS

The experimentally obtained C-V curve is shown in figure 4. Due to dielectric breakdown, applied dc voltages were limited to the range shown in the figure.

Impurity Concentration

The impurity concentration is evaluated from a plot of \(C_{ac}^2 \) vs \(V \). However, \(R_s \) must first be obtained using (6). A reasonable estimate of \(C_{max} \) is obtained by expanding the C-V data as shown in figure 5. The dotted line is an extrapolation based on previous experience with Ta2O5 coated-silicon MOS capacitors in this laboratory. \(C_{so} \) and \(R_o \) are obtained by measurement on a Ta2O5 coated - single crystal silicon, MOS capacitor in strong accumulation. With \(C_o = 226.6 \) pF, \(R_o = 1.818 \times 10^3 \) ohm, and \(C_{max} = 205.7 \) pF it is found that \(N_o = 7.9 \times 10^1 \) cm. Due to dielectric breakdown, applied dc voltage was limited to the range shown in the figure.

\[N = \frac{C_0}{A} (V_{FB} - \Delta V) \]

(8)

A plot of \(C_{ac}^2 \) vs applied dc voltage is shown in figure 6. From the linear portion of the figure, it is found that

\[N = 2.9 \times 10^4 \text{ cm}^{-2} \]

In addition it is found that \(W \) varies between 15.5 and 9.8 Å over the linear portion of figure 6. Hence the present work yields the impurity concentra-
tion at a minimum distance of 9.8 Å from the diffused surface.

Charge in Surface and Oxide States

Using the above value for \(N \), charge in the semiconductor surface charge capacitance, where

\[
Q_{sc} = (C_{ac})_T \left(\frac{v_{FB}}{2} \right)^{1/2} \left(1 - e^{U_s} \right)^{1/2}
\]

with

\[
U_s = \frac{v_{FB}}{KT}
\]

\(\phi_s \) is the semiconductor surface potential at the diffused face. The values of \((C_{ac})_T\) obtained from equation (10) are substituted into equation (5) to obtain a calculated value for \(Q_{ac} \). Since equation (10) does not include the response of interface rates to the dc frequency \((C_{ac})_T \) is independent of these effects. Hence, in the absence of such response, the measured C-V curve should have the same shape as the calculated curve. This is seen to be the case in figure 7. The displacement between the two curves is due to the dc response of fixed surface and oxide charge (2).

The validity of the method used to obtain \(N \) is dependent on the validity of the depletion approximation (9, 10). In order to test the depletion assumption, \(Q_{ac} \), the charge in the semiconductor space charge region is calculated using (14):

\[
Q_{ac} = \frac{1}{2}(2N\sigma_kT)^{1/2}
\]

\[
x \left(\frac{\sigma_{imp}}{N} \right)^{1/2} \left(2 e^{U_s} + U_s - 1 \right)^{1/2} \left(e^{U_s} - U_s - 1 \right)^{1/2}
\]

Where \(Q_{ac} \) is positive or negative depending on whether \(\phi_s \) is negative or positive, respectively. The calculated curve is shown in figure 8. Also shown is the range covered by the present C-V data, where use has been made of the standard relation between applied voltage and surface potential (12). Examination of figure 8 shows that \(Q_{ac} \) varies as \(\phi_s^{1/2} \) over the range covered by the C-V data. This is the behavior expected when the space charge region is in depletion and weak inversion (16). In the present case, the depletion region extends from \(\phi_s = 0 \) (Flat Band), to \(\phi_s = -0.52 \) volts. The latter surface potential corresponds to an applied voltage of -8.5 volts. Hence the linear portion of the C-V curve lies almost entirely in the depletion region. Thus, it is demonstrated that the measured C-V curve behavior in accordance with MOS C-V theory and that the assumptions necessary for the validity of equation (2) are satisfied.

Discussion

The configuration of figure 9 differs markedly from the geometry commonly utilized in MOS capacitors (2). Hence in showing feasibility it is necessary to calculate a theoretical C-V curve for comparison with the experimental data.

To compute a theoretical C-V curve one needs a value of \((C_{ac})_T\), the theoretical value of the semiconductor space charge capacitance, where

\[
(C_{ac})_T = \left(\frac{\sigma_{imp}}{N} \right)^{1/2} \left(1 - e^{U_s} \right)^{1/2}
\]

with

\[
U_s = \frac{v_{FB}}{KT}
\]

The validity of the method used to obtain \(N \) is dependent on the validity of the depletion approximation (9, 10). In order to test the depletion assumption, \(Q_{ac} \), the charge in the semiconductor space charge region is calculated using (14):

\[
Q_{ac} = \frac{1}{2}(2N\sigma_kT)^{1/2}
\]

\[
x \left(\frac{\sigma_{imp}}{N} \right)^{1/2} \left(2 e^{U_s} + U_s - 1 \right)^{1/2} \left(e^{U_s} - U_s - 1 \right)^{1/2}
\]

Where \(Q_{ac} \) is positive or negative depending on whether \(\phi_s \) is negative or positive, respectively. The calculated curve is shown in figure 8. Also shown is the range covered by the present C-V data, where use has been made of the standard relation between applied voltage and surface potential (12). Examination of figure 8 shows that \(Q_{ac} \) varies as \(\phi_s^{1/2} \) over the range covered by the C-V data. This is the behavior expected when the space charge region is in depletion and weak inversion (16). In the present case, the depletion region extends from \(\phi_s = 0 \) (Flat Band), to \(\phi_s = -0.52 \) volts. The latter surface potential corresponds to an applied voltage of -8.5 volts. Hence the linear portion of the C-V curve lies almost entirely in the depletion region. Thus, it is demonstrated that the measured C-V curve behavior in accordance with MOS C-V theory and that the assumptions necessary for the validity of equation (2) are satisfied.

Conclusion

Because of the unconventional configuration used, consideration has been given to showing that the data behaves in accordance with MOS C-V theory. In addition it is found that the observed data lie largely in the depletion region of the semiconductor space charge layer. Furthermore, it is concluded that despite the high dopant concentration in MOS C-V technique yields useful information regarding the diffused surface of the solar cell.

This research represents the first successful application of the MOS C-V technique in obtaining information regarding the heavily doped, diffused face, of a silicon solar cell. For the cell investigated, it is found that \(v_{FB} \), the density of charge in surface and oxide states has the value 2.1x10^13 cm^-2 and that the impurities concentration \(N \) has the value 2.9x10^20 cm^-3 at a minimum distance of 10 Å from the diffused surface. This is sufficiently close that \(N \) is considered a surface parameter. Additional experimentation is required in order to separate the surface and oxide components from \(N_s \). The surface component is directly related to the semiconductor recombination velocity (17) and would be useful when attempting to relate measurable surface parameters to solar cell efficiency.

References

The latter surface potential corresponds to an applied voltage of 8.5 volts. Hence the linear portion of the C-V curve lies almost entirely in the depletion region. Thus, it is demonstrated that the measured C-V curve behavior is consistent with MOS C-V theory and that the assumptions necessary for the validity of equation (2) are satisfied.

Figure 1. - \(C_{\text{MIN}} / C_{\text{MAX}} \) vs. oxide thickness. Numerical values used in Eq. (1) were: \(e_0 = 2.66 \times 10^{-13}, 3.64 \times 10^{-13} \), and \(5.3 \times 10^{-13} \) F/\(\text{cm} \), for \(\text{Ta}_2\text{O}_5, \text{SiO}_2 \), and \(\text{SiO} \) respectively. \(N = 10^{20} \text{cm}^{-3}, e_s = 1.06 \times 10^{12} \text{F/cm}^2 \).

Figure 2. - High frequency equivalent circuit of MOS configuration.

Figure 3. - MOS configuration used to obtain C-V data.

Figure 4. - C-V data obtained for diffused face.
Figure 5. - Expanded C-V curve. Dotted line is extrapolation from measured curve.

Figure 6. - $1/C_{HF}^2$ vs. applied d.c. voltage.
Figure 7. Experimental and theoretical curves. V_{FB} is the flat band voltage.

Figure 8. Charge in semiconductor space charge region vs. surface potential, Ψ_S. (VOLTS)