General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



* e
] /\ |
- - 7
+ L
Pl
5 4
v ' %
‘ .
.
'
t . *
( } ' -
.
- £
¥ o . .
- %
- , »
‘
.
N
™ -
P . .
= v
N ' - } '$
.
.
%
“
-
.
P
-
b X3 .
t

(NASA=-CR-1U42759) THE INVESTIGATION OF O AND NT75-24644
N2 DENSITIES FROM THE 050-7 EXTREME GV DATA
Final Report (Wolf Research and Development

Corp.) 36 p HC $3.75 CSCL 03B Unclas
G3/92 17689

. . —_-4—— v q
AN
. . :_‘ - » )
«
‘. 4 &
2 N . -
. . 9 "\
B - : L
1) -
1] ! . Lo
' b
-’ L
“' ‘%‘ » !
. \ . S .
' - 4
N v
{ . o

o PR T e

SR

R

5

e

Pl

7S R

oBAT

i

B e

gt

G R

Lo

e A

el .
i .

SN e Syl 1 e .
R R e A A e T i

kN

e R

RS R




Submitted To:

Submitted By:

Date Submitted:

Reference:

THE INVESTIGATION OF 0 A¥D N,
DENSITIES FROM THE 0S0-7
EXTREME UV DATA

FINAL REPORT

NASA
Code PY

- Headquarters

Washington, D.C.

Wolf Research and Development Group
6801 Kenilworth Avenue
Riverdale, Maryland 20840

February 3, 1975

WOLF No. 00079

e T AN mr i S e A 4 e s e ARt e, A i . i o

R T P TRt AT S




1.0

2.0

3.0

4.0

5.0

TABLE OF CONTENTS

INTRODUCTION

ANALYSIS DESCRIPTION

OREITAL AND GEOMETRICAL ANALYSIS

RESULTS OF THE ANALYSIS

DISCUSSIONS

REFERENCES

ii

10

17

29

32

K e e Fr v e - ‘_ Lo e



SUMMARY

This report presents the results of a study of solar
radiation observaticns in the extreme ultra violet spectrum
£rom 200 to 600 A made by the 0S0-7 satellite. The results
of special interest in this work were those made under the
influence of attenuation by the atmosphere in the 250 to
500 km. altitude range.

gsing publgshed molecular absorption cross-sections
at 304 A zv.d 256 A, we were able to validate the Jacchia
atmospheric model (1971) and showed that a mean exospheric
of 1050°K was appropriate for the sunset data. The cross-
sections obtained by Hinteregger andOHall (1969) were
shown to be most appropriate at 256 A, whereas those of
Knight, Uribe and Woodgate (1973) were employed for 304 R.
Employing the validated atmospheric model we were then able
to derive values of 6.3 + 0.6 Barns and 6.9 + 3.0 Bermms
for the cross-sections of 0 and NZ’ respectively at 285 R
and 7.6 + 0.8 Bawii and 4.8 + 3.9 Be=ws for the respective
cross-scctions at 355 R.

iid




SECTION 1.0
INTRODUCTION

Wolf Research and Development Corporation is pleased

to submit this final report on project NAS W-2595 to NASA
Headquarters. The report describes the final results ob-
tained in analyzing 0S0-7 data to evaluate atmospheric
absorption cgoss-sections in 300-500 Km. altitude range and
the 200-400 A wavelength range.

All the analysis and results pertinent to the con-
clusions are presented in this report. In Section 2.0 the
basic intensity analysis is given, followed by the geo-
metrical and orbital analysis in Section 3,0. Section 1.0
gives a discussion of the results analysis and conclusions
are presented in Section 5.0. |
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SECTION 2.0
ANALYSIS DESCRIPTION

The 050-7 experimental tapes contain information

on the date of acquisition of solar intensity data, orbital

characteristic information and the observed intensities at
one or two lines in the spectrum. The experimental data
files are organized into pages or frames, there being 96
intensities collected over 15.36 seconds for each line

being studied presented within each frame. The fundamental
sampling interval was 160 milliseconds and the data appeared

as photon counts.

For the purposes of our analysis the section of the
quantity of data to average before applying an inversion
analysis is indicated by the requirement for a suitable
compromise between minimizing random errors and systematic
errors., . The greater the averaging time, the smaller the
random error, but the larger the systematic error intro-

duced by non-linearities in the model. In the work re-
ported here we assumed that the average intensity at the
midtime of a 5 second data span is sufficient. Thus we
have averaged the intensity for three sections, each 32
points long, within each of the frames and printed out as
shown in PFigure 2.1. In the Figure 2.1, the various

columns are as

follows:

Frame: Experimental Frame Number

Midtime: Middle time of the experimental frame (seconds
from start of day, Universal Time).

AVEUV1: Average intensity in the medium wavelength
of the frame.

AVEUVZ: Average intencity in the long wavelength of

the frame.
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FIGURE 2.1. COMPUTER OUTPUT SHOWING AVERAGED INTENSITY AND ORBITAL DATA "




j

X Satellite geocentric coordinates in km. at

the midtime of the experimental frame,
Z

Altitude: Altitude of the satellite from the Earth's
surface in km. at the midtime of the ex-
perimental frame.

Sun Angle: Cosine of the angle between the lines
joining the satellite and solar center
to the geocenter.

The calculation of the position, altitude and the Sun
angle of the satellite will be discussed in detail in
Section 3.0,

The intensity data at a given wavelength A is meas-
ured by the satellite instrument. We assumed that when
the path from the satellite to the Sun did not pass through
any layer below 480 kms. there was no significant attenua-
tion. Thus this data was accumulated and averaged to give
the mean intensity per observation ‘for zero attenuation,

IOA'

When the path from the satellite to the Sun fell
below 480 kms. the mean intensity per observation I, gen-
erally fell below I,; indicating attenuation. The total
optical thickness along the path through tae atmosphere
could be estimated as:

I

0A
oo, (12) e

A
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When the Sun-satellite line fell below the 300 km. alticude
it was found that no significant signal was received, Thus
the intensity yields information about attenuation in the
260 to 480 km. altitude ranga.

where

We divided the atmosphere in this altitude range into
22 layers each 10 kms., thick. This was considered to be the
greatest degree of detail we could reasonably consider when
using one file of data (one orbit) only.

The equation used for analyzing the data was

TAJ- b

Cix

Zi Fij %ix (2.2)

is the jth observation of optical thickness at

~ wavelength A.

is the path length in kms. through the jth

layer
for the jth observation (see next section).

is the mean absorption cross-section in the ith

layer (km'l).

0,y is made up of two parts, one for absorption by 0 and the
other for absorption by NZ' If (noi,nNi) are the mean den-
sities of 0 and N,, respectively in the it layer and 904
and oy, are the respective cross-sections at wavelength A

we have that

.

oia = Poi %0 * PNi ONA ‘ (2.3)
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Thus the values of A; contain information about both the

0 and N, densities, as well as their cross-sections. Clearly,
we necd to know at lecast 3 of the 4 unknowns in each layer
before the other parameter can be determined. Therefore,

even if the cross-sections are known it is impossible to

unambiguously derive both the N, and O densities independ-
ently.

The procedure we employed in our analysis was to use
the standard atmospheres of Jacchia (1971) to determine the
appropriate range of exospherlc temperatures where the cross-
sections were known (256 A and 304 A) and then to employ a
least squares analysis to derive the cross-sections Iy and
%01 gt the wavelengths where they were not known (285 ﬁ and
355 A). The details of the results will be considered in
Section 4,0 of this report.

In deriving the values of T using equations of the
form of (2.2), it was necessary to determine the appropriate
weighting factor to be used with each equation. The objec-
tive was to evaluate the variance, cz, in Ty and then divide
the corresponding equation by o.

Suppose that I,, was derived from a total of Npy counts

over a time TOA and IA was derived from a total of NA counts
over a time TA' Then

-
I
=
1
[

0r ~
-1 (2.4)

—
>
I
=
o
-3
e

e e i aae e

m il

=

R e T
I

b g e e

e auetos
R L

e



Then
-2
V(Igy)) = Noy Tox

V(I) =N, Tiz

give the variances lIn IOA and IA' respectively, since NOA
and N, are Poisson counts. ’

It follows that
“2e -1
LoxV(Tga) = Noj
-2 -1
1;%v(1,) =N

and

2..
I I 1 1
: IA IA NOA, N

A

Using (2.1) we then obtain the simple result,

which is the required variance, 02.

(2.5)

(2.6)

(2.7}

(2.8)
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A series of experiments we performed on the inversion
of overdetermined linear equations indicated that the best
combination of accuracy and computer time rcquiremént would
be yielded by the IBM systems subroutines package inversion
programs LLSQ and DLLSQ. In practical applications, however,
these solution procedures failed to successfully invert (2.1)
consistently. The reason for this failure is not clear but
we believe it relates to the substantial random errors
occurring in the Tj estimates. The program was carefully
checked to eliminate any possible dimensioning or other
errors and the fact that the routine successfully inverted
some data sets, supports the hypothesis that the routines
were being employed correctly.

The lack of consistency in producing successful
inversions seriously slowed our production analysis activity,
As a consequence we developed a new procedure which has
proved to be very stable and reliable, while producing
sensible answers consistent with those generated by success-
ful LLSQ runs. The procedure is based on the summation of
sets of equatlons of the form (2.1) to generate a right
upper trlangular matrix on the left-hand side. This proved
to be particularly easy to accomplish since the altitude of
the grazing incidence increased monotonically during sunrise
and decreased monotonically during sunset, (This altitude
establishes the number of leading zero Fij values jin (2.1).)
Thus the procedure required merely the summing of sets of
adjacent model equations. Non-singularity was assured in
all practical cases by the stipulation that there should be

at least one grazing incidence in each layer of the atmospheric

“model., This is discussed more fully in Section 3.1,

Once the left-hand side matrix is right upper tri-
angular, the cross-section in the top layer can be solved
for immediately and successive back substitution employed

3
T T

i oot i
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St

to secctions within all other layers. In practice, we have
found that the solution can be generated in much less time

than by LLSQ since the procedure requires Nz multiplications
compared to N“(N+n) for the standard least squares procedure.

(N is the number of coefficients and n the number of equations.)
The results generated by the application of the new Youtine to
the data analyzed in the previous report gave cross-section
profiles very similar to those yielded in LLSQ.
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SECTION 3.0
ORBITAL INTERPOLATION AND GEOMETRIC ANALYSIS

3.1 ORBITAL INTERPOLATION

The data tapes contain orbital data in geocentric
coordinates at one minute intervals as illustrated in Figure 3.1
of the first quarterly progress report on this project. The
problem that we considered was that of obtaining the geocentric
coordinates at the mid points of the experinental frames using,
the given data at one minute intervals.

The first step was to compute the nearest given orbital
data point to the frame mid point., Clearly this could not be
more than 30 seconds away. We thus knew the orbital elements
including velocity components at an epoch t and wished to com-
pute the elements at a time t + At where At was in the range
-30 seconds to +30 scconds. Let Xi(t) be the ith coordinate
at time t. Cowell's equations for two body motion is

. X : J (3.1)
x- = - —— ’ 3-1
1 RS »

where u 1s the gravifational constant = 3.986013x105 kﬁs

sec
and R 1is the geocentric radius
"3 2 1/2
= (3= X537

In making the analysis we neglected the time variation of R
since the 0SO-7 orbit is not far from circular (eccentricity
around 0.0165). Thus we obtained from equation (3.1)

10
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FIGURE 3.1. COMPUTER OUTPUT OF ORBITAL DATA
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alx, " ai -2y,
—_— - 1 (3.2)
de) RS atd?
and then employed the truncated Taylor series
y 1 &y j
xi(t+At) = Xi(t) + szI —=(t) At (3.3)

jioatd

The computed elements were employed to evaluate the appro-
priate altitude and sun angle. In computing the altitude
we allowed for the earth's flatness, f, using the relationship

Ry = Ry (1-£(1 + 1.56) sin’¢ (1 - sin?/(1 + % £%)))

(3.4)

where RE is the distance from the geocenter to the earth's
surface at latitude ¢ and R, is the equatorial radius,

. f was taken to be 75%75 « Rg changed by about 5 kms. over
the orbit,.

In Figure 3.2 we present the computed altitude as a func-
tion of time for three orders of interpolation (2, 3 and 4).
(It should be pointed out that the lack of continuity seen
in the N=2 data whs“the worst of any data analyzed to date.)
On the basis of these data we have elected to use fourth order
near circular-orbit interpolation for all future runs,

The sun angle was computed using geocentric solar
position coordinates obtained by linear interpolation betwecen
the one rinute valucs extracted from the data tape. " A plot of
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the geocentric solar position coordinates against time indi-
cated that the errors arising from this procedurc would be
negligible,

3.2 GEOMETRIC ANALYSIS

In order to analyze the optical thickness data we
needed to compute the distance covered through each atmospheric
layer of our model. The philosophy employed here was that the
earth was spherical, the radius being that appropriate for
the latitude of the satellite at the time of data acquisition,
This was assumed to give a reasonable representation of the
atmospheric layer structure while reducing the computer time
for the analysis to a minimum,

Figure 3.3 presents the geometry of the problem in the
plane of the geocenter, the satellite and the Sun. P repre-
sents the satellite, the solar angle, ¢, of the satellite
being as shown. On the path to the Sun from P, A is.the point
of closest approach, distant R sin ¢ from the geocenter, where,
R is the geocentrlc radius to the satellite. Using
Pythagorus's theorem the distance covered between the Jth and
(J+1) the layer beneath the satellite altitﬁde is

2[‘/RJ+12 - R sinfy - fR,% - R2 sin2_¢]

whereas the corresponding value for layers above the satellite
altitude is the same, but with the 2 replaced by unity.
is the geocentric radius of the Jth atmospheric layer.

Ry
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Clearly, if R sin ¢ is less than RB+hmin where Rg is
the (local) earth radius and hmin the lowest altitude con-
sidered and ¢ is greater than % then no signal can be received,
and the data point is ignored.

Suppose that Ry is the radius of the lowest layer
boundary crossed by the path., In this case¢, the distance
covered by the path in the Kth layer is just

2 {EKZ - w8 sinch

If P is in the m th layer then the total distance covered in
this layer in the case shown is

2 2

JRmz - R% sin2¢ - 2¢R_ 4,7 - R sinzq - R cos¢

The formulae given here were sufficient to evaluate the dis-

tance parameters Fi' of equation 2.2.

J
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SECTICON 4.0
RESULTS OF THE ANALYSIS

The cross-sections per km, were calculated from the
data in each layer of the atmosphere from 260 km. to 480 ku.
The thickness of each layer was 10 km. The total cross-
sections from each file for the wavelength of interest
are plotted. These are shown in Figures 4.1 to 4,8.

We have fitted the data for 304 and 256 R models
with different exospheric temperatures. The three solid
curves shown in the Figures 4.1 to 4.4 are from these models
and we see that exospheric temperature 1050°°models fits
well with the data at sunset at 304 and 256 A. The total
cross~-sections obtained from Jacchia models used Knight et al
(1973) 256 A and Hinteregger and Hall (1969) 304 A absolute
cross-sections, We see that the data at’ lower level layers
at sunrise is consistent with sunset data; however, at
higher altitudes the sunrise data has large scatter. This
scatter possibly can be attributed to some interlocking
problems and possibly atmospheric instabilities while heat-
ing. Due to lack of knowledge of the cross-sections as a
function of temperature and the temperature change itself at
the different altitudes, we elected at present to look at
the sunset data only.

We derived our estimates of nitrogen and oxygen densities

from the best figted Jacchia model and presented in TableOI
for 304 and 256 A. Using these densities in turn at 285 A
and 355 R » we derived the absolute cross-sections of oxygen
and nitrogen at these wavelengths as shown in Section 2.0,
The cross-sections thus derived are given in Table II. These
cross-sections are new in literature as far as we know. Weo

thus havg the_densities N2 and O and cross-sections at 285 A
and 355 A,
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FIGURE 4.3, TOTAL CROSS SECTION VS, ALTITUDE AT 304 A°
FOR SUNRISE 304 A°

ABSORPTION
CROSS SECTION

(Kms)~1

b
m
<

CAO631, F18
CAOG31, F8
CA0631, F65
CA0631, ©6
CA0631, F7
CA0629, F15
CAQ631, F27
CA0630, F16
JACCHIA MODEL,
HH CROSS SECTION

ORIGINAL PAGE IS
OI* POOR QUALITY

I-[]0r>0b+.

EXOSPHERIC
TEMPERATURE

11007K
1050°K
1000°K

260 300 340 380 420 460 500

ALTITUDE (KMS)
20

[
1
il ‘
o
i |
. 1
i :
H 3
i .
[ 4
QS

i

= gt e e, i
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In Figures 4.9 and 4.10 we present the oxygen and
molecular nitrogen densities versus altitude for different
exospheric temperatures of the Jacchia (1971) model that
was employed in our study. These graphs illustrate that
a significant change in the density and, therefore, the
attenuation characteristics of the atmosphere can be
expected with changing exospheric temperature, O becomes
more predominant with increasing altitude, so information
about N, must be obtained from attenuation through the
lower layers.
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SECTION 5.0
DISCUSSION

We have in this project arrived at the goal which
is to derive“the Nz, 0 densities as a function of altitude
from 260 km. to 500 km, above the surface of the Earth.
However, the data obtained at sunrise is very erratic and
showed no trend whatsoever thus giving us only sunset data
to deal with. However, the sunset data was adequateato
derive the absolute cross-sections at 285 A and 355 A of
0 and N2 which is an unexpected by-product.

There are a number’ of possible explanations for the
erratic data at sunrise. The sunrise data span was much
longer in duration than the sunset portion and therefore
promises much more information about the atmosphere. It
is likely that our description of the atmosphere as varying
only in the vertical direction is not valid and that varia-
tions in exospheric temperature aiound the globe become
important. There is ample data to justify an extensive
survey of this problem but we were unable to study this
problem in depth within the time and funding constraints ,
of the project. It is highly desirable to look at attenuation
data in this region from other spacecraft., This combining of
all the data available from many spacecraft will lead to a
high accuracy density profiles and atmospheric model valida-
tion.

We thank NASA Headquarters for giving us an opportunity
to participate in this program, We,; in consultation with the
Principal Investigator and the Technical Officer, propose to
publish this work in a scientific journal at a later date.
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Table 1.

Densities of Molecular Nitrogen and Atomic

Oxygen From the Best Fitted Jacchia Model

NO. ALTITUDE DENSITY/CM>
MOL. NITROGEN OXYGEN
1 260 3.591x108 1.676x10°
2 300 1.048x10° 8.204x10°
3 340 3.2 x107 4,153x108
4 380 1.02 x107 2.146x108
5 420 3,28 x10° 1.125x108
6 460 1.08 x10° 5.95 x107
7 500 3,61 x10° 3.18 x10’
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Table II.

CONSTITUENT

Cross~sections of N2 and 0 at

0 o
285 A and 355 A

. CROSS-SECTIONS
285 A

355 A

MOL. NITROGEN

OXYGEN

6.869+3.0

6.28240.6

UNIT = Megabarn = 10
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4,837+3.9
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