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M‘NM‘ P% Torrance, California
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ABSTRACT

('} This paper presents some test results of the Acrothermodyns mic .
Integration Model (AIM) which was built under Hypersonic Rescarch Eng
Contract NASI-06666, NASA Langley Nescarch Center, A propran wias
initiated in February 1967 to develop a hydrogon-fucled resverch-criente ]
scramjel for operation between Mach 3 and 3, The prim avy abjuctives voere
to investipate the internal aerothermaodynamic characteristies of the enpine
to provide realistic design parameters for futurc hy personic engine develr e
meni as well as to evaluate the ground test fecility and testing technines.
The engine was tested at the NASA Hypersonic Tunnel Facility (IITF) at the
Plum Brook Station of the l.ewis Research Center with synthehc air at Macl
5, 6, and 7. The hydregen fucl was heated up to 1500°R prior to injection to
simulatc a repencratively cooled system,

(C) Of the numerous investigations conductead, this paper presents only the
engine and component performance at Mach 6. Inlet performance compared
very well both with theory and with subscale model tests. Combustor cffi-
ciencies up to 95 percent were attained at an equivalence ratia of unity,
Nozzle performance was lower than expected. The overall engine perfor-
mance was computed using {wo different methods. The performance was
also compared with test data from other sources.

INTRODUCTION

(U) This paper presents some test results at Mach 6 of the NASA
Aerothermodynamic Integration Model (AIM)., The AIM was designes,
developed and built by AiResearch Manufacturing Company of California,
under the Hypersonic Rescarch Engine Contract with the NASA Langley
Research Center. Work was initiated on the contract in February 1967,

The basic objectives were to conduct ground-based and flight experiments
which would provide realistic and useful information needed to advance the
technology of hypersonic propulsion systems, and to evaluate requiremecuts
for future ground test facilities and experimental techniques. The AIM

is a hydrogen-fueled rescarch-oriented I‘"IMJEL engmc designed for operatios
at flight Mach numbers from 3 to 8. The engine size was sclected primarily
from the constraints imposed by the X-15 airplane which was originally

‘scheduled as the flipht test vehicle. The AIM was designed to operate

with supersonic combustion at freestream Mach nwubers from 6 to 8, and
with subsonic combustion from Mach 3 to 6,
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(L) A total of 6-1/2 months of engine tooting Las becn completed sith 1o
minutes of running time accumulated.  Amony pumerous investigations ¢ ne
A

ducted, the following topics pertinent to a propalsicn system al Mach £
reported herein,

i, Subsconic and supersoric curabmstion
2. Component performance
3. Engine cycle and cfficiencies
4,  Overall engine performance
TIEST FACILITY

(U) The engine was tested at the NASA Mypersonic Tunnel Facility (1 1)
at the Plum Brook Station of the Lewis Research Center. This facility was
designed to be capable of true aerothermodynamic simulation of the flight
environment at Mach 5, 6, and 7. The HTI incorporated a blowdown
enclosed free-jet test section. The facility used an induction-heated,
drilled-core graphite storage bed to raise the lemperature of nitrogen

to a nominal 4500°F at a maximum design pressurc of 1200 psia. The
nitrogen was mixed with ambient-temperature oxygen to produce synthetic
air#®, Ambient~temperature nitrogen was added alvng with the oxygen

in the mixer at tunnel Mach numbers below 7 to control freestream total
temperature and to supply the correct weight flow to the 42-inch exit-
diameter free-jet nozzles. Altitude simulation was provided by a diffuser
and a single-stage steam ejector as shown in Figure 1. The total length
of this exbhaust system was 183 {t,

(U) The test chamber was 25 {t in diametler. The facility nozzle and the
diffuser duct penetrated the chamber wall through inflatable seals, A
schematic of the engine and the test section is shown in Figure 2. The
engine had a maximum cross-sectional area of approximately 50 percont

of the facility nozzle, The shroud and the annular injector were installed
to improve the tunnel starting and operational characteristics. The shroud
channelled the tunnel flow around the model in order to lower the test
chamber pressure. The annular ejector was used to inject cold nitrogen

at the nozzle exit to increase the stream momentum in the tunnel nozzle
boundary layer thereby preventing flow separal.mn. The ring attached at the
shroud entrance was used to restrict the reverse flow caused by the incident
shock from the engine cowl lip, In the earlier runs the tunnel diffuser was
choked, This situation was circumvented by reducing the diffuser cone
angle. The back pressure in some test conditions was still high enough to
form a shock between the engine and shroud, making the calculation of
engine external drag extremely difficult. In severe cases, the shock would
cause tunnel unstart,

#*Small carbon particles were observed during tests, No attempt was miadle
to assess the effect of tm. carbon particles on lgmiwn or engine per-
formance
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(\1)  The data recording system consisted of an analog to digital converter
coprble of recording 4006 channels of data on mapnetie tape,  The over e
sampling rate per channel wiag 5 {imes per scecond, Secondary duta record-
ing capability was provided by multi-channel oscillographs and sirip-chart
recorders. In addition, cchlieren pictures between facility nozzle exit and
shroud were displayed providing real time visual observation of tunoel
operation. Molion pictures were alao recorded during the run to assist

in post-run analysis.

DESCRIPTION OI" AIM

{U) The AIM is axisyvmmetric, water~conled and waer hiydropen fucl, Fig-
ure 3 shows the engine when it was installed in the test cell. The engine
consists basically of a two-shell welded struclure. The shell adjacent

to the hot gas was fabricated from nickel, and the cold side was febricated
from steel. The tips of the spike and the cowl leading cdge were made
from zirconium copper. The AIM weighs approximately 2200 pounds,
Figure 4 shows the aerndynamic contours of the engine. The AIM has

an inlet diamecter of 18 inches, and the exit nozzle arca is twice the

inlet capture arca. The overall length with the translating spike in the
full-forward position is 9} inches., The engine contour was based on
results from the subscale component tests (Rel, 1, 2, 3).

(U} In order to minimize the cerrection on the internal thrust measure-
ment, the external cowl and leg fairings are supportcd separately {rom
the thrust measuring system. Purge nitrogen was used in the cavity
between the engine shroud and-the outerbody. Because of unbalanced areas
and flow restrictions inside the cavity, a large tare force was produced
from the purge flow, This tare force was calibrated and correlated to
determine the internal engine thrust.

{U) Inlet, The engine uses a mixed-compression inlet with a variable
contraction ratio. Translation of the centerbody and a five-degree up-
sloping throat design were used to control the mass flow and to vary the
contraction ratio.

(C) Most of the compression was accomplished by means of the spike
which uses an initial 10-degree half-angle cone followed by an isentropic
compression surface which turns the flow to a maximum angle of 20 deg.
This design concept resulted in a low internal contraction ratio inlet which
minimized the starting problem, The leading edge radii of the spike and
cowl were 0,125 and 0, 030 inches, respectively. The inlet design pro-
duced mass flow ratios of unity {rom Mach 6 to 8, and 0, 86 and 0. 70

for Mach 5 and 4, respectively, Figure 5 shews a portion of the copper
cowl leading cdge after the tests. The'dented surface was caused by
impingement of carbon particles from the induction heater.
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Fig. 5. Copper Cowl Leading Edge After Completion of Tests ;
Title (U), Figure (U) "

(C) Combustor., The combustor has an overall useful length of 25,5 inches
with an area ratio of 3. 6. The combustor consists of three stages. The
first two stages, a near constant area section followed by a diverging
section, were used for supersonic combustion at higher flight Mach num-
bers and also for subsonic diffusion at lower Mach numbers. The third
stage was used for subsonic combustion.

(U) At Mach 8, all fuel up to an equivalence ratio of one may be injected
into the first stage., Because of spike franslation, combustion occurs in a
constant area section., For operation below Mach 8, fuel was to be injected
into the first two stages in order to prevent thermal choking and inlet
unstart, '

(C) The step formed between the spike assembly and the inner shell is used
as the flame stabilizer for subsonic combustion in the third stage, The
maximum cross-section of the struts forms a gcometric throat for subsonic
combustion with an area reduction of five percent. The throat arca was
chosen to provide the best performance considering both subsonic and super-
sonic combustion, During subsonic combustion at Mach 4, the engine was
designed so that the normal shock would stabilize near the inlet throat,

while at Mach 6 the shock would move downstream near the step.
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(U) The size and location of fue) injectors were selected to obtain optimum
mixing through fuel penetration and jet spreading. The detailed injector
design procedures were reported in Reference 2,

(U) In order to increase the mixing efficiency, the injectors in each stage
were interdigitized in order to capture the maximum mixing area. In the
final configuration, however, the injectors in th_ first stage were in line,
i.e. opposed to each other., Consequently, mixing efficiency of the first
stage was reduced. The consequence of this arrangement could not be
assessed quantitatively, Figure 6 shows the injector impingement on the

opposite walls,

(C) Nozzle. The AIM uses a fixed geometry annular ancxzzle which was
selected as the configuration most compatible with the annular cormbustor
design to provide best performance [or flight Mach numbers from 3 to 8
(Ref. 4). It has an innerbody plug combined with an outerbody shroud to
obtain the maximum permissible exit area. The shroud was an optimized
contour with an exit angle of approximately 10 degrees. The plug was a
21.75 degree half-angle . 1e truncated at a radius of 2,5 inches., The
nozzle area ratio was 5.5 with a pressure ratio of 110 at Mach 6, The
constraint imposed on the exit area of the nozzle resulted in under-expanded
operation above Mach 6.

Fig. 6. Heat Patterns Showing Injector Impingement
Title (U), figure (U)
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(Y Test Lovelupe,  The engine was orininally desipned to opeyate within
the altit.ede-Mach nuwnber envelope of the X-15-¢2 sirplare,  The contun:
dynamic pressare line of 1800 psf in Iigure 7 represceated the design
altitudes at which the flight tests were planned,  The Line with a dyniasic
pressure of 900 psf represents the upper aperating linmsits of this ensine
whick ip approximately 15, 000 {t. above the design line. The points in
Figure 7 were the flight conditions sirnulated in this program. Decause of
facility problems and time lmitations, true temperature simalition of Mach
T was not achieved.
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- Fig. 7. Altitude Mach Number Envelope
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SURSONIC AWND SUPEKRGONIC COMPUSTICN
.

(CY  The ALM wns dee ip.‘lud Lo aperale with s b cale condetion froo gy Wlhe s
8 to tand with svpernonic cmabustion trar Mach v b de A the traaeitio,
Maceh ramber of §, ne sipniiicant difieryee 3 egeage 1hy o0t Lervesn the b
combustion modes was expecied, The test yornits sbown in Pieare
verified the orviginal desipn concept, The top cacves roepresent the prersare
distribmtion on the ouler-combustor surface mad the Hottan curves on the
inner ~-combustor surfaco,

(C} Tuel was injected from the fir et eod second '«1:1;-_-- mincine: foe 1l
supersonic combuastion test and from cnly tne thivd ctape injector. gor de
subsonic combustivn test, I is intercstiag tu nde L“..t evel thenrpl thice
pressure distribution in the combustar varied betvween the two modes, the
static pressures at the combustor exit were ainmost identical, With npproo
mately the same combustor efficiency, the flow Mach number ot the oxit oond
thrust producing capability of the combustor were abont the vame.  “ihas weais
substantiated by the net thrust caleunlaticn fadiceted by the har chart in the
upper left corner of Figure #,

COMPONENT PERFORMANCE

{Uy Inlet. The inlet performance was compared with component Ltest duia
and theoretical values in Figure 9. The static presgure rise showed excel-
lent agreement on the inlet spike. The inlet cowl distribulion showed that
there was a steep pressure drop near the inlet throat., This [avorable
pressurc gradient may have contribuied to the lack of auto-ignition in the
first stage during tests.

(C} The mass-momenturmn-encrgy method was used to defermine inlet
performance. The cumulative pressure integral and friction forces were
added algebraically to the freestream momentium Lo obtain the momentwm

at the inlet throat. The following was the mass-momentwm-energy average.l
values obtained at Mach 6:

Component
AIM Test 2/2 Scale Test Theory (ref.
Inlet Total Pressure 0.38 - 0,40 0.36-0,44 0,47
Recovery - S
Reynolds Number 1.4 - 2.8x100 1.4 - 4x;u{' 1, 4x100

Reynolds number was based on inlef cowl cliameter. AIM test data agrecd
fals1ly well with both the 2/3 scale model tests and theovry.
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(C) Combugtar. Detailed combustor performance for the AR ferte vas
presented in Relerence 5. Combustor efficiencics up te b pe 1'L‘unt Wi
ohtained, The combustor efficiency is defined ax the me =8 traction of
injected fuel reacted in equilibriurg to satisfy the cie-diinensioag 1 e
servation equations, Combustar cfficiency for all of the injectore testyr
vorsds equivalence ratio is shown in Figure 10, The efficiency was higl
and as anticipated, varied with the particular injectors ared, The care-
bustion procees in the AIM (tolal pressure recovery of 14 percent) is
better than that of a constant pressurce process of an equivalence ratio

of unity as shown in Figure 11,

(U) Nozzle, A c:onvc:mont parameier userl to define (e performan, ¢ o oo
nozzle is the vacuwm stream thrust coefficient, Cg, defined ay:

c = Actual nozzle oxit momentam
s Ideal nozzle exit momentum

ldeal nozzle exit momentum was caleulated from an isentropic ()\pJnleﬁd wit
the combiustor exit flow in chemical egquilibirium,

(U) Two methords were used to oblain the actual nozzle exit momentum,
The first method used the pressure integral on the nozzle surfaces and the
calculated friction force. The second method used thrust measurements
with actual exit momentum (I'4) equal to:

F4 = l‘c + Fext+ IT\czw. * ’Fo
‘where Fc = Corrccted load cell force
cht = Total external pressure and [riction forces
) = Cavity force
cay
Fo = Freestream momentum '

(U) A correlation of the nozzle performance was obtained as shown in
Figure 12, The two methods gave a range of stream thrust coefficients,
Considering the errors involved in the calculations, the average of the
upper and lower values appears as the maost probable nozzle stream thrust
coefficient. :

{(U) Table Igives a comparison of actual and predicted nozzle perform-
ance including a loss breakdown, The divergence and kinetics losses
were based on theoretical caleulations {Ref. 4, 6). The {riction and heat
losses were obtained frorn the test data.
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| TABLE I
- | _ NCZZLE LOSSES (PERCENT) (C)
Measured " Predicted
c]) =0 d) =1 ¢| = ]
Cs Avg. (Fig., 12) 0. 985 0.940 . 0.970
Loss Breakdpwn:
Divergence and Friction . 0.012 0.012 0. 01
Configuration 0.005 0.005 0.005
) Heat Loss : 0.005 0,012 0. 005
Kinetics Effects -—— | 0,010 - 0,010 .
; Total l.oss : ' ' 0,022 0.039 0. 030
Cs (from breakdown) 0.978 - 0.961 0.97
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(C) There was a trend of decreasing performince with increasing equivas
lance ratio, At an equivalence ratio of zero, the measured ¢y nf 11, 15
agrecs closely with the caleulated value of 0, 978 [rowm the nozzle 1oss
breakdown. At an equivalance ratio of unity, both the predicted €, and
that calculated from a lonas breakdown are higher than the measured valuce
of U.94, Of the difference in performance of about 4. 5 percent between
an equivalence ratio of zero and unily, approximately 2 percent can be
accounted for by increaserd heat loss and kinetics effects. The remainder
may be attributable to flow swirl. Swirl was evident in three different
locations, The metal surface in the wake downstream of several siruts
showed a noticeable swirl (from the colored heat patterns) as much as
10 deprees. Swirl was also evident fremn the heat patterns on the leading
edge of the struts and from the shock patterns on the surface of the instru-
mentalion rig just upstream of the sampling probe tubes, A typical view of
the unsymmetrical shock pattern is shown in Figure 13. Further investipa-
tion is necded in order to verify the qualitative findings of swirl which can
seriously impair the overall engine performance.

(U) Engine Cycle and Efficiencies, The engine cycle may be illustrated hy
a temperature-entropy diagram as shown in Figure 14 [or a typical super-
sonic combustion case. The air was decelerated in the inlet along path
0-2, 'The combustion process occurred along path 2-3. The saw-tooth-
shaped curve indicates the fuel injection and heat release processes.
Expansion of hot gas occurred through the nozzle (path 3-4) with a further
increase in entropy. .

(U) Itis interesting to note that the entropy increase after each fuel injec-
tion is quite significant even before the total temperature rise. This indi-
cates that large losses were associated with fuel-air mixing, flow shocks,
mass addition and momentum change (upstream fuel injection}. The flow
velocities at different stations are also shown. The minimum velocity of
3900 ft/sec was noted at the combustor exit. The calculated total flow res-
idence time is approximately 1/2 millisecond which makes the mixing and
combustion a very difficult problem in a hypersonic ramjet system. The
ratio of the kinetic energy produced to the theoretical energy addition is
defined as the thermal efficiency, Tith.

Nep = AKX B cffective
2
v
L2
- . ' W =
. _ air £1,,2 2
where M. E. o000 T win [(] + a)vef - Vm]
H. V. = heating value of fuel,
I-If = fuel enthalpy QLOSS = total engine heat loss

-
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Figure 13. Unsymmetrical Shock Pattern at Combustor Exit
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AL,
and Vg = Vo +—
T w1+ 3)
air a
v?
The term -Zg in the denominator of 1, accounts for the kinetic enerpy of

fuel carried aboard the airplane.

(1}) The ratio of the useful internal propulsive work to the increase in kinctic
energy is defined as the propulsive efficiency, T

T.V
0, = —
p o KUK,

T. = internal thrust
. i
effective

The overall efficieney T, is defined as the ratio of propulsive work to the
theoretical ideal energy addition,

Tivco.

“o - T]pnth - VZ

0

WI(H. V, 4 X + Hf) - Qloss

The efficiencies at various fuel-air ratios are tabulated in Table II,
TABLE 11

ENGINE EFFICIENCIES (C)

f/a ¢ 'Tlp Tith Mo
0.0311 1.06 0.85 0.39 '0.33
0.0250 0.850 - 0,86 0.36 0.31
0.0164 0.491 0. 86 (.30 0.26

OVERALL ENGINE INTERNAL PERFORMANCE

(U) Determination of Internal Thrust, - The internal thrust, Ti, is
defined as the net sum (in a direction parallel with and opposed {o the
entering airstream) of the absolute pressure and {riction imposed by

the fluids passing through the engine on the physical parts of the engine
(Ref, 7). The engine internal thrust was determined by two independent
methods, The first method used the thrust measurements corrected with
the external drag force and cavity force, Both of these forces were in

NIRFSEARCH MANUFACTLIRING COMPANY _
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the samie order of mapnitide as the internal thrust force. The external
dray {orce was large because of the steep ouler cowl angle, and & high
pressure zone which existed between the outer cowl and the tunnel shroud
when fuel was injected, The cavity force was caused by the unbalanced
forces {rom purge nitrogen flow in the AIM cavity bhetween the engine
shroud and the outerbody. The second methad used a direct calculation
({PdA) and the calculated friction force {Ref. 8) and {fuel momentum. The
équations used were:

F +F + I

L]

(1) T,

i c oext, cav,
and
(2.) Ti - deA ) Ffuel " ¥ Iriciion
with
{ c internal thrust .
FooF corrected load cell force
cht = total pressure and {riction external force
F o = cavity force
cav
deA = internal engine surface pressure integral
r = fuel momentum
fuel

e s = internal friction force

friction .

(U} The commonly used thrust differential method which determines the
thrust increment between hot and cold runs was not employed., This method
assumes that the external forces are invariant during the run and would
have caused serious errors if not carefully examined. :

(C) Thrust from Measurements and Momentum Consideration. The com-
parison of internal thrust calculated {rom these two methods for a typical
case is shown in Figure 15, The calculated total internal friction force

was 440 pounds~--about 25 percent of the internal thrust, Fuel injected at

.angles greater than 90 degrees to increase mixing efficiency caused a loss

in engine thrust of about 100 pounds or 5 percent of the internal thrust,

(U} For the data shown in Figure 15, the internal thrust calaculated by the
two methods agreced within 11 percent.

(U) The internal performancc. of the AIM engine in terms of thrust coeff1-
cient and SpClelC impulse was de{med as follows:

) = Internal thrust
T q, Ac

Thrust Coefficient (C

- -~ ! ) -
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_ Internal thrust
fuel flow

Fuel Specifie Impulse (Isp)

where = freestream dynamic pressure sia
o) y !

and

A
c

n

engine cowl area, 256.13 in.

(U} The dynamic pressure was calculated from frcesiream properties and
the fuel flow was measured during tests,

(U) The thrust coefficient and spc,cnﬁc impulse were calculated {rom the tw o
methods discussed above and plotted in Figure 16 over the range "of fuel air
ratios. Thrust coefficient was plotted versus fuel-air ratio rather than -
equivalence ratio because the composition of synthetic air was varied from
run to run. For the majority of tests, data calculated from the thrust
measurements agreed with that from surface pressure 1ntegrals within 10
percent.

{U) Thrust Distribution,- In Figure 17, the contribution of forces from the
AIM inlet, combustor and nozzle on engine thrust is illustrated at an equiva-
lence ratio near unity. The diverging area combustor contributed about the
same thrust as the nozzle, Engine internal thrust was determined {rom the
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diffe roeng between twad larp Jues
In thi case, the gross thrust |} PRYOX 1
thrust at Mach 6, Thus small errors in either of these values ¢
large errors in engine internal thrust

('Y Determining accurate component performance from engine tests

usually difficult, lowever, the close comparison of engine thrust from |
cell readings with that calculated from momentum considerations
has increased the confidence of calculated camponent performance,

L (U) Performance, The state-of-the-art for the hypersonic raunjet pe
ance 1s shown in Figure 18, The cross-hatched repions represent th
theoretically predicted performance for AIM, The closed ¢ lar syi
represents the AIM test results, The data was not corrected for the

reganeratively cooled system because a very small correction vas needs
with tuel heated up to 1500°R,

(U) Other symbols shown in this figure were obtained from other sources
(Ref. 9, 10, and 11). It should be noted that the basis for comparison
between AIM performance and that from the other sources may not be th
same., For a fair comparison differences such as fuel temperature, inlet
air enthalpy, composition, and wall surface temperature must be consglderod,
This chart, however, indicates the performance levels which have hee
demonstrated for hypersonic ramjets,
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Figure 18. Hypersonic Ramjet Performance
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CONCLYUSIONS (C)

. Stable subsonic and supersonic combustion and convertibility were
achieved over a range of equivalence ratios at Mach 6, No significart
performance difference was observed between these two modes of
operation,

2. Inlet total pressure recovery of 40 percent agreed very well with the
theoretical prediction. Combustor efficiency of 95 percent was achicved
in a length of 25,5 inches. Nozzle performance with Cg equal to 94 per-
cent is lower than predicted,

3. Specific impulse of 2250 seconds and a corresponding thrust cocflici
of 0.7 were demonsirated.

4., Internal engine thermal efficiency of 0,39, internal propulgive efficiency
of 0.85 and overall efficiency of 0. 33 were obtained at an equivalence
ratio of unity.

5. Further investigation of combustor ) w swirl problem is needed to
verify the qualitative findings from t! ' test, Significant performance
improvement may be achieved by alleviating this problem,
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