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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
 

THE EFFECT OF
 

MEASUREMENT ERRORS AND COMPUTATIONAL APPROXIMATIONS
 

ON A PERSPECTIVE ILM RADAR IMAGE
 

By W. Thomas Bundick
 

SUMMARY
 

A forward looking imaging radar which displays the runway and its surround­

ings in a perspective format is one of the systems under consideration for use
 

as an Independent Landing Monitor in transport aircraft. In this report
 

computer drawn images are used to demonstrate how the size, shape, and relative
 

position of radar perspective images of the runway and hor zon are affected 1) by
 

changes in aircraft attitude and position wLth respect to the runway, 2) by
 

errors in the imaging radar measurements and in the measurements of aircraft
 

attitude and altitude which are provided to the radar, and 3) by mathematical
 

approximations in the computations which transform the radar data to a per­

spective format.
 

The computer generated images show that flight path errors equal in
 

magnitude to the errors allowable in the Mi(rowave Landing System can be
 

detected on the perspective display when the correct runway outline is avail­

able for reference. However, it cannot be concluded that a real-world radar
 

image without the reference runway is sufficient for an ILM. It is also shown
 

that some errors in the radar range and angle measurements and in aircraft
 

attitude measurements distort the radar image to look like changes in aircraft
 

position or attitude. From the computer images it appears that the use of
 



small angle approximations in generating the perspective format might be
 

acceptable.
 

INTRODUCTION
 

In recent years much has been said about the need for an Independent Land­

ing Monitor, or ILM, to provide the pilot of transport aircraft with the capa­

bility to assess the progress of an automatic landing and the aircraft's
 

situation with respect to the runway. While no agreement has been reached con­

cerning the type of display to be used as part of an IM, there are many,
 

particularly pilots, who advocate some type of perspective image, either real
 

or symbolic, of the runway and its surroundings, perhaps with the addition of
 

aiding symbology. One type of potential sensor for producing a perspective ILM
 

image is a forward looking imaging radar.
 

A perspective image is a natural output of such imaging sensors as tele­

vision and infrared. However, a forward looking radar naturally images the
 

target in range-angle coordinates, and a coordinate transformation to angle­

angle coordinates must be accomplished in the radar electronics to generate a
 

perspective image. In order to exactly accomplish this transformation, it is
 

necessary that aircraft attitude and altitude be measured and provided to the
 

radar.
 

The purpose of the research described in this report is to investigate
 

how the size, shape, and relative position of radar generated perspective
 

images of the runway and horizon are affected 1) by changes in aircraft
 

attitude and position with respect to the runway, 2) by errors in the imaging
 

radar measurements and in the measurements of aircraft attitude and altitude
 

which are provided to the radar, and 3) by mathematical approximations in the
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computations which transform the radar data to a perspective format.
 

It should be emphasized that this research was not a human factors
 

experiment. The ability of a pilot to use the information presented by a
 

perspective image was in no way measured.
 

DISCUSSION OF ThE INVESTIGATION
 

The technique used in the investigation was to draw images of the runway 

and horizon which demonstrated one of the three effects being investigated. 

These images were then examined visually and compared wth other images when 

appropriate to determine what conclusions could be reached.
 

A computer program was written to generate the outline of a perspective
 

radar image of the runway and the horizon as a function of aircraft position
 

and attitude, which were read into the computer as input data. The mathematics
 

of the problem are discussed in detail in Appendices A,,and C and the details
 

of the computer program are described in Appendix D. The approximations that
 

could be used by the radar in transforming from radar coordinates to a
 

perspective image are described in Appendix B.
 

The radar horizon corresponds to the maximum range of the radar beyond
 

which the ground image is obscured by radar receiver noise and cannot be
 

distinguished from sky. The actual horizon is shown by a dashed line for com­

parison. It is recognized that the transition from ground image to noise
 

'occurs gradually and not abruptly as implied by the radar horizon line shown 

'onthe computer generated images. Thus, thd computer generated radar horizon
 

!should be used as an indication of the area on the image where the terrain is
 

'ibecomingobscured by noise. The maximum radar range used in the investigation

I 
'was 5 Mi. 
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The computer drawn images were produced with a magnification ratio of one
 

at a viewing distance of 20 in. The images in figures 3 through 35 have been
 

reduced in size by approximately 60 percent and must be viewed at a distance
 

of 12 in. for a unity magnification ratio. Most images were produced with a
 

CRT screen size of 8.37 in. square, which corresponds to a field-of-view
 

of 250 x 250.
 

Images were normally produced for aircraft ranges to touchdown (measured
 

along the extended runway centerline) of 2 mi., 1 mi., and 0.5 mi. and for
 

aircraft altitudes of 100 ft. and 50 ft. Examples of the computer produced
 

images are shown in figures 1 and 2. In figure 1 the aircraft is in level
 

flight on a 3' glide slope. In figure 2 the aircraft is off the glide path and
 

in a yaw right, pitch up, roll right attitude. The alpha-numeric code in
 

the upper right corner of all images is for identification only.
 

Three versions of the computer program were produced. The first generates
 

a perspective image from a set of input data (aircraft position and attitude)
 

as in figures 1 and 2. Each of the other two versions produce two images super­

imposed on the same plot frame, where one of these superimposed images is a
 

reference image. In one version of the program, the reference image is
 

drawn for the aircraft on glide path in level flight, while the second, or
 

comparison, image depicts the runway and radar horizon with the aircraft at
 

some other position and/or attitude for purposes of image comparison. In the
 

remaining version of the program, the reference image is drawn using the
 

exact mathematical transformations with no measurement errors, while the
 

comparison image is generated using an approximate transformation or using
 

measured data which include measurement errors. Throughout this report the
 

comparison image is denoted by arrows on the first page of each figure.
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RESULTS
 

Aircraft Position
 

Since an Independent Landing Monitor may be used to monitor the progress
 

of an automatic landing using the Microwave Landing System (MLS), radar images
 

were produced to demonstrate the change in the runway perspective produced by
 

aircraft displacements from a nominal 30 glide slope. These displacements were
 

selected to equal the bias plus noise (2a) accuracy requirements of the MLS as
 

quoted in reference 1, page F-l, and shown below in Table I.
 

TABLE I.- ACCURACY SPECIFICATIONS FOR
 

K CONFIGURATION MLS (ref. 1)
 

Angle
 

coordinate Bias error (20) Noise error (20)
 

Azimuth 0.072 0. h5
 

Elevation 0.1 0.0700
 

The resulting images for a localazer offset of 0.1170, for a glide slope
 

° 
offset of +0.17, and for a glide slope offset of -0.17 are shown in figures 3
 

through 5, respectively. In figures 6 and 7 are shown images with the aircraft
 

positions being linear, rather than angular, offsets from the nominal glide
 

path. In figure 6 the aircraft is 10 ft. to the left of the runway centerline,
 

and in figure 7 the aircraft is 5 ft. above the 3° glideslope.
 

In all of the above images the changes in aircraft position are detectable
 

on the computer generated radar image when the reference image is present. One
 

cannot conclude that these position changes could be detected and determined
 

with sufficient accuracy by the pilot without the reference image present
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or with a real world radar image even with the reference image superimposed. 

Aircraft Attitude
 

An ILM may be used also to indicate aircraft attitude. Figures 8, 9, and
 

10 show images with the aircraft on a 30 glide slope with attitudes of 0.10 yaw
 

right, 1.00 pitch up, and 1.00 roll right, respectively. The yaw angle of 0.10
 

was selected because one proposed function for the IEM is to determine heading 

(relative to the runway) within 0.10. The value of 1.00 for roll and pitch was 

chosen rather arbitrarily. 

Examination of figures 8 through 10 reveal that these changes in attitude 

are detectable on the computer produced images. Once again these changes may
 

not be detectable on a realistic radar display without the reference image.
 

Changes in pitch are detected more easily than changes in roll.
 

Effect of Measurement Errors
 

Figures 11 through 25 contain the images generated with errors in the 

measured data. The aircraft is either in level flight on a 3 glide slope or
 

is displaced 0.5 to the left of a 3 glide slope at an 9ttitude of 100 yaw
 

right, 50 pitch up, and 100 roll right.
 

Radar errors.- Figure 11 shows an image produced with an error of 5 ft + 1%
 

in the radar range measurement, and figure 12 shows an image with a range 

error of 25 ft. + 5%. 

Comparison of figure 12 with figures 4 and 5 reveals that the 25 ft. + 5% 

error in range produces a change in the image that is roughly comparable to the 

0.170 change in glide slope which the ILM is trying to detect. Therefore, it is
 

concluded that greater radar range accuracy is required.
 

Comparison of figure 11 with figures 4 and 5 reveals that the 5 ft. + 1% 

range error changes the image considerably less than does the 0.170 change in 
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glide slope. Comparison of figure 11 with figures 7 and 8 show that this range
 

error distorts the image less than the image change produced by ±5 ft. altitude
 

bias relative to the glide slope.
 

Figures 13 and 14 are images produced with errors in the measured radar
 

scan angle of 1 percent and of 10 + 5 percent, respectively.
 

From figure 13 it is evident that a 1 percent error produces almost no
 

detectable change in the display. However, the error of V° + 5 percent, as
 

in figure 14, distorts the image much like a heading (yaw) change of 10.
 

Figures 15 through 18 show comparable results with the aircraft off glide
 

path and in an attitude of 100 yaw, 5' pitch, and 106 roll. The results are
 

similar to those of the previous four figures, except that the 1 percent scan
 

angle error is now detectable (figure 17).
 

Altitude error.- Figures 19 and 20 are images generated with the aircraft on
 

glide path in level flight with errors of 2 ft + 2 percent and 5 ft + 5 percent,
 

respectively, in the measured altitude. Figures 21 and 22 are similar, but
 

the aircraft is off glide path in a non-level attitude.
 

Comparison of figures 20 and 22 with figures 4 and 5 reveal that the
 

altitude error of 5 ft + 5 percent distorts the image similarly to a glide slope
 

change of 0.17', and this error is probably unacceptable. The 2 ft + 2 percent
 

error in figures 19 and 21 produces a similar distortion of lesser magnitude.
 

Attitude errors.- Figures 23 and 25 illustrate the resulting images when the
 

pitch attitude measurement has an error of 0.212* + 0.5 percent, and figures
 

24 and 26 illustrate the results with roll attitude errors of 0.7070 +
 

0.5 percent. These error values were takne from reference 2 as being typical
 

values for gyro errors.
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The pitch error produces a distortion in the image which is similar to the
 

change in the image produced by the glide slope change that the ILM is trying
 

to detect, as can be seen by comparing figure 23 to figures 4 and 5. The
 

runway image distortion caused by the roll error is almost undetectable in
 

level flight on glide path (figure 24). There is some distortion, however,
 

in the radar horizon and in the runway in non-level flight (figure 26), This
 

distortion is similar to a change in roll attitude, as may be expected.
 

Effect of Mathematical Approximations
 

Small angle approximations.- Images generated using the small angle approxima­

tions as described in Appendix B are shown in figures 27 through 30. In
 

figure 27 the aircraft is flying level on a 3° glide slope but displaced
 

0.1170 left of the runway centerline. In figure 28 the aircrt is again in
 

level flight but 0.17' above the 36 glide slope. The difference between the
 

exact and approximate images is undetectable in these cases.
 

In figures 29 the aircraft is on glide path (3' glide slope), but the
 

aircraft is in a 100 yaw, 5' pitch, 100 roll attitude. In this case there
 

is a difference, though not large, in the exact and approximate images.
 

Figure 30 shows the displayed image when the aircraft is 25 ft to the
 

left and 10 ft below the 30 glide path and in a 50 yaw, 3' pitch, 50 roll
 

attitude. In this case the distortion caused by the approximation is very
 

small.
 

Comparison of figures 28, 29, and 30 show that the distortion is not
 

large for attitude angles up to 100 and that the approximate image improves as
 

the attitude approaches Y = P = R = 0 and the aircraft nears the glide path.
 

Unstabilized display.- The unstabilized displays generated without using
 

knowledge of the aircraft's attitude are shown in figures 31 through 35.
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In figure 31 the aircraft is in level flight on a 30 glide slope, and there is
 

almost no difference in the exact and approximate images. This result was
 

expected, since the unstabilized display assumes an aircraft attitude of
 

Y = P = R = 0, which was the actual attitude in this case. The very slight
 

difference in the exact and approximate radar horizon images is caused by
 

the small angle approximation for the radar scan angle, not by the approximation
 

for aircraft attitude.
 

The aircraft sitbation in figure 32 is the same as in figure 31 except
 

for a l0* yaw right. It can be seen from figure 32 that the unstabilized 

image is a good approximation to the exact image in this case. 

In figure 33 the aircraft situation is the same as in figure 31 except 

for a pitch up to 50. Similarly in figure 34 the aircraft is in a 100 roll 

right. It is obvious from these two figures that the unstabilized display 

cannot be used for determining aircraft attitude.
 

In figure 35 the aircraft is 25 ft left of and 10 ft below the glide
 

path in a 50 yaw, 30 pitch, 50 roll attitude. The shape and position of the
 

runway correctly indicate that the aircraft is left of centerline and yawed
 

right. However, the usefulness of the unstabilized display for determining
 

position relative to the glide slope cannot be determined from this'
 

investigation.
 

SUMMARY OF RESULTS
 

1. Aircraft displacements from a 30 glide path equal to the bias + noise 

(2a) requirements for the Microwave Landing System Configuration K are 

1Configuration K is one of the most sophisticated and accurate configura­
tions defined for the MLS and is designed to provide guidance signals suitable
 
for landing in Category III weather conditions. (See ref. 1, Part Three,­
p. IIA-3, for accuracy requirements.)
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detectable on the computer generated outline of a perspective radar image with
 

the reference image present. The reference image is the image obtained when
 

the aircraft is on glide path.
 

2. Aircraft heading changes of 0.1' and roll and pitch changes of lV are
 

detectable on the computer generated images when the reference image (Y = P 

R= 0) is present. 

3. A radar range error of 25 ft + 5% distorts the image to look like a
 

glide slope change. This distortion is sufficient to make the error intolerable.
 

A radar range error of 5 ft + 1% produces similar distortion, but of a magni­

tude thatmight be acceptable.
 

4. The distortion produced by a 1% scan angle error is probably accept­

able, A bias error in scan angle looks like a heading (yaw) change on the
 

image. 

5. Altitude measurement errors affect the image in a manner similar to 

glide slope changes. An altitude measurement error of 5 ft + 5% produces an 

image distortion roughly comparable to a change in glide slope of 0.170. 

6. Pitch attitude measurement errors distort the image somewhat like
 

glide slope changes with the image changes due to a pitch error of 0.2120 +
 

0.5% and the changes due to a 0.170 glide slope error being roughly comparable.
 

7. The effects of an error in roll attitude measurement are most
 

noticeable in the radar horizon image, where they appear like roll attitude
 

changes. This effect would be less noticeable in a noisy real-world radar
 

image, since the horizon would not be as distinct as in the computer-generated
 

image.
 

OP?' .4 P 
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8. The effects of using small angle approximations in the radar 

coordinate - image coordinate transformation are almost undetectable with the 

aircraft on glide path and with Y = P = R = 00. 

9. Some distortion is produced by the small angle approximations with 

the aircraft in a non-zero attitude. However, since the distortion is small 

and the approximate image converges toward the exact image as attitude and 

position displacement go to zero, the small angle approximation might be
 

acceptable.
 

10. The unstabilized display cannot be used to determine pitch and roll
 

attitude., Aircraft heading can be approximately determined using the
 

unstabilized display, but with unknown accuracy. 

CONCLUDING REMARKS 

The changes in the size, shape, and position of a perspective radar
 

image of the runway that are produced by changes in aircraft position with
 

respect to the glide path and by changes in aircraft attitude have been demon­

strated. Whether or not these changes in the image can be used by the pilot
 

to monitor aircraft position and landing progress with sufficient accuracy 

must yet be proven through piloted simulations and flight tests.
 

The distortion in a perspective radar image produced by errors in the
 

radar measurement of range and scan angle and by errors in the measurement of 

aircraft attitude and altitude has been demonstrated, In some cases this 

distortion appears similar to a change in aircraft position or attitude. In
 

these cases the measurement accuracy must be sufficient to keep image distor­

tion less than the image changes caused by the aircraft position or attitude 

deviations which must be detected.
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The effects of using small angle approximations in the radar coordinate
 

transformation also have been demonstrated. These effects are small for small
 

Y, P, and R, and the small angle approximations will probably be satisfactory
 

for an imaging radar 124.
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(a)Distance to D = 2 m.
 

Flgure I.- Basic display with aircraft on 30 glide slope, Y = P B = 00.
 



IF
 

(b) Distane to TD = mi. 

Figure 1 - Continued. 

ORIGINAL PAGE IS
OF POop OUALITy 



S(c) Dltance to TD= 1/2 M. 
IFI_e 
1 - Continued
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(d)Altitude =100 ft., 

Figure I.- Continzued. 
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50 ft.
(e)Altitude = 

- ConcludedFigure.1 
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(oa)Distance to TDl I.m 

Figure 2 - Basic display with aircraft displaced 0.50 + 25 ft to left of 
localizer, 25 ft. above glide slope, Y = R = 100, P a 50. 
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(b) Distance to TD = mli 

Figure 2.- Continued 
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(C)Distance to TD 1/2 mi. 

FDige 2.- Cont,.nued 
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(a)Altitude = 100 ft 

Flgvxa P.- Continued. 
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Ce) Altitude 50 ft. 

Figure 2.- Concluded
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23 
20-1-A 

(a) Distance to TD = 2 mi.
 

Figure 3.- Aircraft 0.1170 to left of localizer.
 



24 
20-1-B 

(b) Distance to TD mi.
 

Figure 3i- Continued.
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20-1-G 

/ 

/ 

(c) Distance to TD 1/2 mi. 

Figure 3.- Continued. 



26 
20-1-D 

(d) Altitude = 100 ft. 

Figuie 3.- Continued. 
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(e) Altitude = 50 ft. 

Figure 3.- Conclude&.
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20-2-A 

(a)Distance to TD = 2 ml,. 

Figure 4.- Aircraft on glide slope of 3.17% 
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20-2-B 

(b) Dlistance to TD = im. 

Figure 4.- Continued. 



S 
20-2-C, 

(a) Distance to TD 1/2 mi. 

Figure 4.- Continued. 
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_____ _ 20-2-D 

(a)Altitude = 100 ft. 

Figure 4- Continued. 
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32 20-2-E 

(e), Altitude = 50 ft. 

Figure 4.- Concludedc­



33 
3320-3 -A 

(a) Distance to TD = 2 ml. 

° 
Figure 5.- Aircraft on 2.83 glide slope. 



34 
20-3-C 

(b) Distance to TD = 1/2 m. 

Figure 5.- Continued. 



35 20-3-E 

(cl Alttude = 50 ft. 

Figure 5.- Concluded.
 



36 

20-4-A 

(a)Distance to TD 2P mi. 

FigUre 6.- Aircraft 10 ft. to left of centerline. 
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20-4-C
 

(b) Distance to TD = 1/2 m. 

Figure 6.- Continued. 



38 20-4-E 

(c) Altitude = $0 ft. 

Figure 6.- Concluded. 



39 
... . __21-1-A 

(a) Distance to TD = 2 mi.
 

Figure 7- Aircraft 5 ft. above 30 gli&de slope.
 



21-1-C 
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(b) Distance to TD 1/2 mi. 

Figure 7,- Continued. 
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21-1-B
 

(c) Altitude = 50 ft. 

Figure 7,- Concluded. 
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(a) Distance to TD = 2 mi. 

° Figure 8,- Aircraft on glide path, Y = 0. l , P = R = 0". 
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(b) Distance to TD = lmi. 

Figure 8.- Continued.
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(e) Distance to TD 1/2 mi.
 

Figure 8.- Continued. 
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(d)Altitude 100 ft.
 

Figure 8.- Continued. 
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46~ 

2 4-1--. 

N 

N 

Ce) Altitude = 50 ft. 

Figure 8.- Conclbded, 
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214-2-A 

.. . . .. .. . . .. . _ I 


(a) Distance to TD = 2 m
 

Figure 9 - Aircraft on glide path, P = I, Y = R = 0.
 



48 2 - ­

(b) Altitude 50 ft. 

Figure 9- Concluded.
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49 
24-3-A 

(a) Distance to TD = 2 mi.
 

Figure 10.- Aircraft on gliae path, R = 1° , Y P= 0.
 



50 
,24-3­

b) Distance to TD 1/2 fl. 

Fi re 10.- Continued. 
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-524-3-E 

(c) Altitude ft. -50 


Figure 10- Concluded.
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!_17-1-A 

(a) Distance to TD = 2 m.
 

Figure 11.- Range error of 5 ft + 1%, aircraft on gllde path.
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17-1-B
 

(b) Distance to TD = 1 mi.
 

Figure 11.- Continued.
 



17-1-C 
54 

F"
 

(c) Distance to touchdown = 1/2 mi. 

Figure 11.- Contmnued. 
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17-1-D 

/ 

(d) Altitude 1100 ft.
 

Figure ll.- Continued.
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17-1-E56 

= Ce) Altitude 50 ft 

Figure ll.- Concluaed. 



57 
17-2-A 

(a) Distance to TD = 2 m. 

Figure 12.- Range error of 25 ft. * 5%, aircraft on glide path. 



58 1-1 - ­

/ ) )'A 

(b) Distance to TD 1/2 mi.
 

Figure 12.- Continued.
 



59 
17-2-S 

(c) .Alttude - 50 ft. 

Faguie 12.- Concluded. 



60 
17-3-A 

(a) istance to TD = 2 m.
 

Figure 13.- Scan angle error of 1%, aircraft on glide path.
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61 
17-3-C 

/ \,
 

(b) Distance to TD 1/2 mi.
 

Figure 13.- Continued.
 



62 17-3-E 

(c)Altitude = 50 ft. 

Figure 13.- Concluded. 
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17-4-A 

(a)Distance to Tl = mm.
 

Figure 14.- Scan angle error of 10 + 5%, aircraft on glide path.
 

ORIGINAL PAGE IS
 
OF POOR QUALITY
 



64 

17-4-0 

_77\
 

(b)Distance to TD 1/2 mi.
 

Figure 14. Continued.
 



-17-4-E 

;5 5 

(c) Altitude =50 ft. 

Figure 14., Concluded. 
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19-1-A
 

(a) Distance to TD = m. 

Figure 15 - Iange error of 5 fn. + 1%, aircraft off glide path, 
Y = R = 100, P = 5 . 
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f-C Altitu e 5o ft. 

: Figure 15.- Concluded. 



68 19-2_-A
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(a) Distance to TD = 2 mi. 

Figure 16.- Range error of 25 ft, + 5%, aircraft off glide path, 

Y = R = 100, p = 50 . 



69 19---E 

II
 
I 	 (b) Alttude- 50 ft. 

Figure 1&.- Concluded. 



70 19-3-A 

oF PooR QUA~djA
 

(a) Distance to TD = 2 mi. 

Figure 	17.- Scan angle error of 1%, aircraft off glide path, 
Y = R = 100, F = 50. 



71 19-3--E 

(b) Altitude = 50 ft. 

Figure 1i- Concluded. 



72 	 19-4-A
 

Ca) Distance to TD 2 mi. 

Figure 18.-	 Scan angle error of I' + 5%, aircraft off glide path, 

Y = R = 100, P = 5O. 



(b) Altitude = 50 ft. 

Figure 18.- Concluded. 
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(a) Distance to TD, 2 mi. 

Figure 19.- Altitude error of 2 ft. + 2%, aircraft on glide path. 



75 16-3-C 

(b) Distance to TD 1/2 m3.. 

Figure 19.- Continued. 
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(e)Altitude = 50 ft. 

Figure 19.- Concluded. 
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(a) Distance to TD - 2 mi.
 

Figure 20.- Altitude error of 5 ft. + 5%, aircraft on glide path.
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j-­

(b) Altitude = 50 ft. 

Figure 20.- Concluded. 
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18-3-A 

(a)Distance toTh = 2 mi. 

Figure 21 - Altitude error of 2 ft. + 2%, aircraft off glide path,
Y = R = 100, P = 50. 
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(b) Altitude = 50 ft. 

Figure 21.- Concluded. 



Figure 22.- A)titude error of 5 ft + 5%, aircraft off glide path, 

.y = R = 0 0, P =5 
i L
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18-4-E 
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(b) Altitude = 50 ft. 

Figure 21.- Concluded.
 



83 

16-1-A 

(a)Distance to TD 2 mi.
 

Figure Z3.- Pitch error of 0.-120 + 0.5%, aircraft on glide path.
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__________16--C 

(b)Distance to TD = 1/2 mi. 

Figure 23.- Continued. 
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(c) Altitude = 50 ft. 

Figure z3.- Concluded. 
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/N­

(a)Distance to TD = 2 mi. 

Figure R.-
Boll error of 0.7070 + 0.5%, aircraft on glide path,
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(b) Altitude = 50 ft. 

Figure 24.- Concluded. 
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(a) Distance to TD = 2 mi. 

Figure 25.- Pitch error of 0.2120 + 0.5%, aircraft off glide path, 
.Y = R = 100, P = 50 
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(b) Altitude = 50 ft. 

Figure 25.- Concluded. 
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I-1 
-­

(a) DiLstance to TD =2 mi. 

° 

Figure 25.-	 Roll error of 0.707 + 0.5%, aircraft off glide path, 

Y = R = ±0, P = 50. 
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(b) Alt tude = 50 ft. 

Figure 26, Concluded. 
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22-1-=A_
 

(a) Distance to TD = 2 ml. 

Figure 26.- Small angle approximation vith aircraft of 0.117O left 
of centerline, Y = P = R 00. 
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(b) Distance to TD = 112 ml. 

Figure 27.- Continued. 
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(c) Altitude 50 ft. 

Figure 27.- Concluded. 



(a) Distance to TD = 2 mi. 

Figure 26-- Small angle approximation with aircraft of 0.170 above 
30 glide slope, Y = P = R = 00. 
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(b) Distance to TD = 1/2 ml. 

Figure 28"- Continued. 
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(c) Altitude = 50 ft, 

Figure 28.- Concluded, 
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.Poo. r 

=
 
(a) Distance to TD 2 mi.
 

Figure 29.- Small angle approximation wnth aircraft on glide path,
 

° Y = R = 100, P = 5 • 
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(b) Distance to TD = 1/2 m. 

Fi ure 29.- Continued. 
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(c) Altitude = 50 ft. 

Figure 29,.- Concluded. 



lot 25---A 

(a)Distance to TD = 2 m . 

Figure 30 .-- Small angle approximation with aircraft 25 ft. left of 
°
 and 10 ft. below glide path, Y = R = 50, P=3 ­
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(b) Distance to TD = 1/2 mi. 

Figure 30.- Continued. 
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(c)Altitude 50 ft. 

Figure 30.- Concluded. 



104 13-1-A 

(a) Distance to TD = 2 mm. 

Figure 31.- Unstablized display with aircraft on glide path, 
Y=p R= 00. 
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/< 

(b) Distance to TD = 1/2 m. 

Figure 31- Continued. 
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13 -1-E 
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(e) Altitude --50 :ft.
 

Figure 31 .- Concluded. 



1.07 
10_
_13-2-A 

(--F)D-istance to TD =2m 

Figure 32-	 Unstabilazed display with aircraft on glide path, 
Y = 100, P = R = 0 ° . 
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(b) Distance to TD = 1/2 mi. 

Figure 32,.- Continued. 
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(c) Alt3tudeC50 ft.
 

Figure 32.- Concluded.
 



110 13-5-A
 

(a) Distance to TD = 2 mi. 

Pigure 33,- Unstabilized display with aircraft on glide path,
p = 50, y = R = 00. 



,ill 13-5­

(b) Altitude - 50 ft.
 

Figure 33.- Concluded..
 



112 14-2-A 

(a) Distance to TD =2 mi. 

Figure 34--	Unstabilized display with aircraft on glide path,
Y = P = 00, R = 100, 
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(b) Altitude = 50 ft. 

Figure 34- Concluded. 
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114 26-1-A 

.. ­..... 


byDitn to D 2mm. 
of and 

Figure 35K- Unstablized display wth 
aircraft 25ft. left 

= 3.
0 ft. below glde pth, Y = R 5 , P = 



(b) Dlistanee to TD = 1/2 mi. 

Figure 35.- Continued. 
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. ­// - - -a- --...... : --- .. 

/ "N. - - . - - . 

(c) Altitude = 50 ft. 

Figure 35- Concluded. 
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APPENDIX A
 

INTRODUCTION
 

The problem of drawing the radar image of the target (horizon and runway
 

outline) will be solved by transforming a set of points in target space to the
 

corresponding set of points in image space and appropriately connecting the
 

image points by straight line segments.
 

The transformation of a point in target space to a point in image space 

will be accomplished through the following series of computations: 1) locate 

the target point in a set of earth fixed coordinates x, y, z centered in the 

aircraft; 2) transform from earth coordinates to aircraft fixed coordinates 

x3 ' Y3' z3; 3) transform from aircraft to radar coordinates R, g; 4) introduce 

measurement errors in the radar coordinates and transform to aircraft coordi­

nates using approximations in the computed transformation; and 5) transform 

from aircraft to image coordinates yi, zi. 

Derivation of Transformations
 

Target space.- Let x, y, z be a Cartesian coordinate system centered in the
 

aircraft with the x-axis parallel to the runway centerline, the z-axis vertically
 

dowmward, and the y-axis oriented to form a right-handed coordinate system.
 

This coordinate system and the aircraft-runvay geometry are shown an figure Al.
 

Let the aircraft location be specified by the glide slope s, the azimuth
 

angle 8, the distance y to the left of the glide path, the distance z0
 

above the glide path, and the projected distance x of the aircraft from the
a 

touchdown point. Then the coordinates of any point P(x,y,z) along the outline
 

of the runway are
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x=xa -L +pa 

y ya +w/2 (Al) 

z =z h 
a 

where 

Ya = Xa tan 6 + y (A2) 

z = x sec d tan s + z (A3)a a o 

Earth coordinates to aircraft coordinates transformation.- In transforming from 

earth to aircraft coordinates it will be assumed that aircraft attitude angles 

Y (yaw), P (pitch), and R (roll) are measured in the sequence Y, P, R. 

Let XI Yl, z1 be a set of aircraft fixed coordinates, originally alined 

with x, y,. z, after a yaw maneuver of angle Y as in figure A2. Then the 

transformation T1 : (x,y,z) - (x1 ,Y1 ,Z1 ) is defined by 

x Cos Y sin Y 0xI
 

,Yl '-sin Y Cos Y 0 y (AU) 

Zl1 0 0 1 z 

Now, let x y2' z2 be a set of aircraft fixed coordinates, originally 

alined with x1l, yl, Z1 , after a pitch maneuver P as in figure A3. Then 

the transformation T2: (xlylZl ) + (x2 ,y2,z2) is defined by 

-ll8 



x2 Cos P 
 0 -sin P - x
 
Y2 0 1 0 yi (A5) 

sin P 0 cos 7z2 


Let x3V Y3, z3 be a set of aircraft fixed coordinates, originally 

alined with x2 2 Y2, z2' after a maneuver through an angle R as in figure 

A4. Then the transformation T3: (x2, Y2 . z2 ) (x3, Y3' z3 ) is defined by
 

x3 F1 
 o 0 2 

Y3 0 cos R sin R Y2 (A6)
 

z3 0 -sin R cos R z2
 

The transformation T from earth coordinates to aircraft coordinates is
 

then given by
 

T = T3T2T1
 

or
 

x3 Cos P Cos Y cos P sin Y
 

y 3 (-cos R sin Y + sin R sin P cos Y) (cos B cos Y + sin R sin P sin Y)
 

Z3 (sin R sin Y + cos R sin P cos Y) (-sin R cos Y + cos R sin P sin Y) 

sin P x 

sin R cos P I (AY) 

cos R cos P zI 
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Aircraft coordinates to radar coordinates.- Assume that the forward looking
 

radar scans the target using a phased array antenna with the array axis colinear 

with the aircraft y 3 axis and centered at the origin of the x3 ' y3 ' z3 

coordinate system. When the array is scanned at an angle E, the radar is 

pointed at a target (point P(x3 Y3 z 3) in figure A6) defined by the inter­

section of the ground and a right cone, whose axis is the y 3 axis, with half 

apex angle C. 

The radar coordinates r, E of the point P are found from
 

r = x2+ 3'23 +rx3 


(A8)
 

= cos - l (3}
r
 

Radar coordinates to aircraft coordinates.- Consider the point P in figure A7 

located on the ground at radar coordinates r, . The Y3 coordinate of P 

is
 

Y3 = r cos (A9) 

The altitude h, as measured by the aircraft's altimeter, is the distance to 

the subaircraft point (x3h' Y3h' z3h). From the right triangle OPQ
 

Ir-TI 2+ Ii 2 = j 2 

or
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3h)2 2 h2
(s3 3h)2+ (z3 -z r _ (Y3 - Y3h )2 (AI.) 

From right triangle OPU
 

S 

2 22 

3 _ 3 
(All) 

Substituting (All) into (A0)and rearranging produces 

2r- z2 2 Zz+yy-

3h 3 - Y3 Z 3 hZ3 +YhY 

h2 A2 

(A2) 

Square equation (A12) and rearrange to obtain a quadratic in z3. 

(xh + zh) 2 Z2 + 2z(y 3 Y3 - h2)z 

+x2 
S3h 

y2 
3 

r 2 ) + (y 
ShY 

2h2)2
) 

= 0 (A13) 

Then 

z3 = b 2a 

where 

2 
3h 3h 

(Al5a) 

= 2z3h(y3h3 - h ) (Al5b) 
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= xsh(y3 - r2 ) + (Y3hY3 - h )2 

The altitude h is known and Y3 is known from equation (A9). To 

find X3h' y3h' z3h consider that the earth coordinates of the subaircraft 

point Q are (0, 0, h). Applying the transformation T (eq. (AT)) to the 

coordinates of Q, we obtain 

X3h = -h sin P 

(AI6)
Y3h = h sin R cos P 


Z3h hcoscosP 

All of the quantities required to compute z3 are now known. 

The remaining aircraft coordinate x3 of the point P can now be 

calculated using equation (All). 

Aircraft coordinates to image coordinates.- Consider the CRT screen centered 

on and perpendicular to the x3 -axis at a distance d from the origin as shown 

in figure A8. For a magnification ratio of unity the location (y , zi) of the 

image P. of a target point P must lie at the intersection of the radius 
1 

vector r and the CRT screen. It is a simple problem in geometry to fLnd
 

that
 

(A77) 

z 
Z. - d1 x3 

122
 



rr 

z0 x 

a 1.YY 
(a)Elevation view. (b) Plan view. 

Figure Al.- Aircraft-runway geometry in earth coordinates. 
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F(x,y,z)
 
x
 

SXI-

Z, z 

Figure A2.- Coordinate geometry after yav maneuver.
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1l F
 

"X,
 

z
P(x,y ~z 

Yl' Y2 z2 

x 2
 

Figure AS.- Coordinate geometry after pitch maneuver. 

124 



y3
 r
 

P(x,y,z)
 

X2' x3
 

z2 z3
 

Figure Ai.- Coordinate geometry after roll maneuver.
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Yx
 

z, 

P(r, ,h) 

Figure A5.- Earth coordinate to aircraft coordinate seometry. 
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P(xy3'yz 33 

Figure A6.- Aircraft coordinate to radar 
transformation geometry. 
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X 
x3 

z3 

Figure A7.- Radar coordinate to aircraft 
transformation geometry. 

coordinate 
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zi 

Yi
 

r 

x3
 

z3 

Figure A8.- Radar coordinate-image coordinate geometry.
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APPENDIX B
 

APPROXIMATIONS TO THE RADAR TO
 

AIRCRAFT COORDINATES TRANSFORMATION
 

INTRODUCTION
 

In Appendix A we derived the transformation which converts the radar
 

coordinates of a point P to the aircraft coordinates for that point. To
 

perform this computation in the radar requires the knowledge (measurement) of
 

aircraft altitude and attitude and requires computer facilities capable of
 

performing square root and trigonometric computations. The attitude
 

measurement and computational requirements can be reduced by using certain
 

approximations in the transformation. Two such approximations are described
 

in this appendix.
 

Unstabilized Display
 

An unstabilized display is one on which the image is constructed without
 

knowledge of the aircraft's attitude. In other words, it is assumed that the
 

aircraft is flying straight and level with the result that
 

z3 = h (Bl)
 

A further approximation is that
 

cos= sin( ­
2
 

(B2)
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Then from equation (Ag)
 

y = r cos 

3B)
 

and from equation (All)
 

2
2
xx3 = r 3 - 3
 

2 
= r sin2 z2 

2 (B4
 

2
 

where sin2 1
 

It is obvious that the above approximations are good only when aircraft
 

roll and pitch are very small and when the radar is scanning close to forward
 

( ). Even then the image may not be adequate for some applications, such
 

as attitude determination.
 

Small Angle Approximations
 

Using small angle approximations to the trigonometric functions does not
 

eliminate the requirement to measure aircraft attitude, but it does reduce
 

the computational workload. The applicable approximations are
 

130 



sing =1 

Cosgj-g
2 

sin P = P (B5) 

sin R = R 

cos P = cos R = 1 

With these approximations the coefficients used in computing z3
 

(eqs. (A14) - (A16)) become
 

a = h2(p 2 + 1) 

b 2h2[r(!j- - h] (B6)Y 

c -r2h2P2 + h2 [rR(2- C) - h]2 

Equations (B3) and (B4) are used to calculate y3 and x3 , respectively. 
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APPENDIX C
 

COMPUTATION OF HORIZON IMAGE
 

Actual Horizon
 

In level flight (R = P = 0) the horizon is imaged along the yi-axis
 

(zi = 0)independent of altitude and yaw angle Y. (See line (1), fig. C1.)
 

After a pitch up through an angle P, the equation for the horizon image is
 

z. = d tan P (cl) 

where d is the distance from the origin along the x3 -axis to the CRT screen
 

as in Appendix A, figure AS. (See line (2), fig. Cl.)
 

If the pitch up maneuver is followed by a roll through an angle R,
 

the horizon image intercepts the z.-axis (Yi = 0) at
 

z = d " tan P/cos R (C2)
 

and the slope of the image line is
 

dz.
 
m dy
 

= - tan R (3)
 

The equation describing the horizon image, as shown by line (3) in fig. Cl,
 

is then
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zi = -Yi tan R + d * tan P/cos R (c4) 

Radar Horizon
 

Assume that the maximmn range of the radar is rmax . The problem is to 

locate the locus of points on the ground (called the radar horizon) correspond­

ing to r = r and to find the image of this locus on the CRT screen. Themax 

problem will be solved by determining in earth coordinates the locus of points 

for r = r max . The image is then found by employing the series of coordinate 

transformations described in Appendix A. 

The locus of points for r = rmax is a circle centered on the sub­

aircraft point and described by 

2 2 2 h2 
x + y = r max -h (C5) 

However, only the segment of that circle whose image lies on the CRT screen is
 

of interest.
 

Let the segment of interest lie within an azimuth angle max about the
 

aircraft heading, where 4max is yet to be determined. Then the y-coordinate
 

of a point P on the radar horizon is
 

y = x tan (Y p) (c6) 

where I is the azimuth angle of P relative to the aircraft heading. (See 

fig. C2.) Combining equations (C5) and (C6), we find the x-coordinate to be 
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2 2 
r 
max 

-h (07) 

1 + tan (Y -

To determine max , consider that the maximum angle subtended by the image 

of the radar horizon would occur when the aircraft attitude is such that the 

image line is a diagonal of the screen. Then 

1 
(C2 + RT ) (C8)

ma 2 CRT ZCRT
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Screen
 

to 0© _ _ -- Yi 

Fm
 

Figure CI.- Geometry for determining horizon image position.
 



x 

A/C heading 

P(x,y,z) m 

z 

Figure C2.- Geometry for drawing radar horizon.
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APPENDIX D 

COMPUTER PROGRAM DISPLAY 

A computer program named DISPLAY was written to perform the calculations
 

described in Appendices A-C and to produce outline drawings of the radar image.
 

Three versions of the program were utilized. The first version produced a set
 

of radar images from a set of input data describing the aircraft position and
 

attitude. The second version produced two overlayed radar images from two sets
 

of input data. This program could be used to compare the images obtained from
 

slightly different aircraft positions or attitudes to determine what changes in
 

aircraft state could be detected on the images. The third version of the pro­

gram produced two overlayed radar images from one set of input data with one
 

image being exact and the other being distorted by computational approxima­

tions and/or by measurement errors. This program could be used to determine
 

the effect on the image of the approximations described in Appendix B and the
 

effect of measurement errors in the radar, attitude, and altitude data. It is
 

this third version that will be described in this appendix.
 

The general outline of the program operation can be obtained from
 

examination of the comment statements in the accompanying program printout.
 

A few specific items will be described in more detail.
 

Images of the radar horizon and the runway outline were obtained by
 

computing the position in earth coordinates of a number of points on the
 

target and then converting these points in image coordinates using the series
 

of transformations described in Appendices A and B. The image was then drawn
 

by connecting these points with straight line segments.
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Plots, or images, were normally produced on the Varian plotter, which has
 

a resolution of .01 inches. The frame size for each image (or overlayed pair)
 

was established at 8.87 in. square, and the plotting system automatically
 

suppressed any portion of the image which was outside the frame limits. The
 

outline of the CRT screen was drawn as a 8.85 in. square. Thus the frame size
 

essentially limited the image to the area on the CRT screen.
 

The radar horizon was drawn by computing image points at 100 equally 

spaced angular intervals between the azimuth angle limits of +a'max and 

connecting this point with straight line segments. 

Each side of the runway image was obtained by computing the image of 70
 

points along the side of the runway. The spacing between points was varied
 

as follows: the near one-fourth of the runway was divided into hO equally
 

spaced intervals, the next one-fourth of the runway was divided into 20 equal 

intervals, and the top half was divided into 10 equal intervals. This techni­

que was used to grossly approximate a constant angular spacing between the
 

points.
 

The transformation from radar coordinates to aircraft coordinates to
 

image coordinates was accomplished in a subroutine. This was done to allow
 

different approximations to the transformation, as described in Appendix B,
 

to be utilized by simply substituting subroutines. One of these subroutines
 

was used to introduce measurements errors into the computations. This was
 

done by replacing the measured variable, say h, by h' in the computations,
 

where
 

h' =h 
h
hmuZ + her
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and
 

hmuy = percentage error
 

h = bias error
 
er 

Other variables treated in this manner were: 

= radar range, ft. 

= radar scan angle, rad. 

Y = aircraft yaw, rad. 

P = aircraft pitch, rad. 

R = aircraft roll,rad. 
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