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1.0 INTRODUCTION
 

This task is the fourteenth in the series accomplished within the
 
scope of the Work Statement, Attachment A, Item S of Contract
 
NAS5-23185.
 

2.0 SCOPE
 

This task was issued to perform the following analysis and asso­
ciated effort:
 

Perform suitable analysis, assuming Lambertian sutface, to deter­
mine required sensor offset in a lunar tracking rocket flight.

The offset is defined as the angular difference, in arc minutes,
 
between the geometrical center of the Moon and the sensor null.
 
The following shall be furnished:
 

* 	A computer program which will provide the offset, in arc
 
minutes, as a function of the following lunar variables.
 

a) Fraction illuminated
 

b) Apparent size of Moon
 

* 	A technical note documenting the analysis and describing
 
the computer program.
 

3.0 FINANCIAL SUMMARY
 

The following is the final manhour and cost totals for this
 
assignment.
 

Labor Dollars MODC Total Costs
 
Manhours (Unburdened) (Unburdened) W/O Fee
 

:al 	Budget 295 2,120 459 6,482
 

ual Total 361 2,654 433 	 8,549
 

4.0 CONCLUSIONS
 

The analysis and results are summarized in the Final Technical
 
Report F74-13 dated 31 December 1974 attached as Appendix A.
 

The overrun in the manhours and total cost were primarily due to
 
more than estimated time to complete the final report and the tests
 
requested by GSFC that were not included in the original scope of
 



the program. The tests consisted of moon intensity measurements
 
made using the lunar sensor to observe the moon. This data was
 
used to calibrate the sensor for the actual launch.
 



UBALL BROTHERS RESEARCH CORPORATION 

BOULDER, COLORADO 

Final Report
 

F 74-13
 
31 December 1974
 

Determination
 
of the
 

Center of Brightness
 

of the
 

Lunar Crescent
 

Contract NASS-23185 Task 014
 

Prepared for:
 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
 

Goddard Space Flight Center
 

Greenbelt, Maryland
 

Prepared by:
 

Rocket and Balloon Pointing Systems
 

Ball Brothers Research Corporation
 

Boulder, Colorado
 

Charlie Rose (Author) 1'arv Greeb
 
Systems Analyst roject Manager
 

Marda Barthuli (Author)
 
Programmer
 

FORM BR-72A 



w 

Table of Contents
 

Page
 

INTRODUCTION 	 1-1
 

DESCRIPTION OF THE PROBLEM 	 2-1
 

MATHEMATICAL MODEL 	 3-1
 

Assumptions 3-1
 

Basic Concepts 3-1
 

Coordinate Systems 3-2
 

Construction of the Mathematical Model 3-6
 

The "Reflectance Function", f(y,E) 3-23
 

Computation of Sun Position 3-28
 

Computation of Sensor Offset Angle 3-34
 

COMPUTER PROGRAM DESCRIPTIONS 	 4-1
 

General Notes 4-2
 

Program Descriptions 4-4
 

Program Listings 4-15
 

SYNOPSIS OF OPERATIONS 	 5-1
 

APPENDICES
 

A. 	Mathematical Notation
 

B. 	Something to Read if the Mathematics get Dull
 

C. 	Evaluation of Lambertian and Lommel-Seeliger
 

Reflectance Functions
 

D. 	Predicted Sensor Offsets for Kauai and White
 

sands Launches
 



W 

Section I
 

INTRODUCTION
 

This final report is submitted to Goddard Space Flight Center
 

in fulfillment of a task intended to allow the center of
 

brightness of the lunar crescent to be computed. This capa­

bility was required to support sounding rocket launches from
 

Kauai, Hawaii (3 November 1974) and White Sands Missile Range
 

(28 December 1974).
 

This paper discusses, briefly, the operational characteristics
 

of the lunar sensor which was used to point the sounding
 

rocket, develops the associated mathematical model of the
 

system, describes the computer programs which were written
 

to implement the model, and presents data pertinent to the
 

two launches.
 

The work was performed under NASA Contract NASS-23185, Task
 

Assignment 014.
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Section II
 

DESCRIPTION OF THE PROBLEM
 

An angular error sensor has been built by Ball Brothers Research
 

Corporation for the purpose of pointing a sounding rocket pay­

load at the moon. The sensor has an essentially linear trans­

fer characteristic in the vicinity of null and angular position­

errors of the vehicle are manifested as proportional error sig­

nals which can be used by the rocket control system to reduce
 

these errors to zero.
 

The application for which the sensor was designed necessitated
 

pointing the payload at the center of the moon; that is, the
 

center of the disk which would be visible from the-earth at
 

full moon.
 

The sensor is an electro-optical device of the "energy-balance"
 

variety. Such sensors split their fields of view into two parts
 

and generate error signals which are proportional to the dif­

ference of energies gathered by each half. Thus, such a sensor
 

produces a zero error signal when it is pointed at the center
 

of intensity of the source.
 

For the case at hand the source is, of course, the moon and for
 

conditions other than full moon, the center of intensity will
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not coincide with the selenographic center. It is necessary
 

to know just where the sensor will be pointing when it is nulled
 

so appropriate biases can be applied to correct the situation.
 

The problem, then, is to determine where the center of intensity
 

of the visible crescent of the moon is with respect to the
 

selenographic center. In order to compute this quantity, it
 

is necessary to know the realtive positions of the sun, moon,
 

and sensor, the reflective characteristics of the lunar surface,
 

and the optic-operational basis of the sensor.
 

This report is devoted to constructing a mathematical model of
 

the situation, discussing the computer program which implements
 

the model, and presenting results applicable to actual flights-.
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Section III
 

MATHEMATICAL MODEL
 

3.0 ASSUMPTIONS
 

The simplifying assumptions upon which the mathematical model
 

is based are as follows:
 

I., The moon's albedo is not a function of wavelength.
 

That is, the incident and reflected energies have
 

the same spectral distribution.
 

2: 	 The moon's albedo is not a function of seleno­

graphic latitude and longitude.
 

3. 	The sun is considered, for illumination purposes,
 

to be an infinitely distant point source. Thus,
 

the radiant energy is constant in the vicinity of
 

the moon an&, since there is no penumbra, the
 

terminator is sharply defined.
 

3.1 Basic Concepts
 

The lunar sensor is a two axis device and, as such, produces
 

error signals about its yaw and pitch axes. To see how these
 

signals are generated, consider the operation of just one of
 

the channels; e.g., yaw.
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3.2 

M 

A plane may be associated, ficticiously, with the yaw channel.
 

This plane is defined by the yaw axis and optical axis of the
 

sensor and it contains these axes. For want of a better term,
 

we can call it the "yaw-null plane". When the sensor is pointed
 

at a source of radiant energy, this plane effectively divides
 

the source into two parts. The part lying on the "left" side
 

of the plane is converted into one proportional voltage while
 

the part lying on the "right" side of the plane is converted
 

into another proportional voltage. These voltages are dif­

ferenced to produce the final error signal which is used by
 

the control system.
 

Exactly the same situation applies to the orthogonal pitch axis
 

and the origin of the term "energy balance sensor" becomes ob­

vious. This concept of the sensor's operation is essential
 

to understanding why the mathematical model is constructed the
 

way it-is.
 

Coordinate Systems
 

Figure 3-1 shows the basic elements of the system; the sensor
 

together with its yaw-null plane, the moon, a coordinate system
 

(with axes labeled 1, 2, 3) with its origin at the center of
 

the moon, and a vector, S, pointing towards the sun.
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Figure 3-1
 

Pictorial View of Sensor-Moon Coordinate System
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The sensor is located on the 2-axis and the sun lies in the
 

2-3 plane. These two facts serve to define the orientation
 

of the coordinate system. Although it will be convenient to
 

refer to the 2-3 plane as the "equator" and the 1-axis as the
 

"north pole", it must be clearly understood that the true
 

lunar equator and pole are something else entirely and are
 

of no concern in the present development due to assumption
 

2 (Section 3.0). Thus we shall use the terms equator and pole
 

freely in the context just described.
 

Figure 3-2 is a top view of Figure 3-1, includes no additional
 

information, and is included only to clarify the situation.
 

The sensor's optical axis lies in the 2-3 plane at all times
 

and, as shown in Figure 3-1, the yaw-null plane intersects the
 

moon somewhere between the pole and its eastern limb. This
 

line of intersection, which lies on the moon's surface, is
 

called M.
 

Nestled within the positive 1, 2, and 3 axes is octant 1 of
 

the lunar sphere; it is outlined in Figure 3-1. This octant,
 

the coordinate system, and some quantitative terms are shown
 

in Figure 3-3. For instance, there is the vector S again, still
 

lying in the 2-3 plane, and pointing at the sun. Note that
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Top View of Sensor-Moon Coordinate System
 



3.3 

it is displaced an angle a from the 2-axis. As shown, a is
 

positive, as are all the angles shown in Figure 3-3.
 

The intersection line, M, also appeareth. It intersects the
 

equator an angle o from the 2-axis. It is drawn so that M
 

is parallel to the 1-2 plane and this is a departure from
 

reality in that it results from a plane which makes a small
 

non-zero angle with the 1-2 plane. This angle is never greater
 

than 16 arc-minutes however (or the yaw-null plane would fail
 

to intersect the moon at all) so it has been ignored. The
 

resultant errors are' very small compared to those introduced
 

by the assumptions discussed earlier.
 

Construction of the Mathematical Model
 

Our ultimate goal is to determine just where the lunar sensor
 

will attain a null condition. This is equivalent to calculat­

ing, for a given value of u (sun position) where the intersec­

tion line, M, must be located so that the energies reaching
 

the sensor from both sides of it are equal.
 

To this end, we subdivide the portion of the moon visible from
 

the sensor into differential areas, dA, compute the relative
 

energy reaching the sensor from each of them, and then sum
 

these differential energies to obtain the net effect. By com­
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paring the energy contributed by the area to the west of M to
 

the total energy, we can determine the value of e0 which makes
 

this ratio equal one-half. This, then, will be the location
 

on the equator where the sensor will be nulled.
 

It is now time to get down to specifics. If you are not in­

terested in getting involved in the mathematics, this is the
 

time to read elsewhere. Appendix B comes highly recommended.
 

Figures 3-4a and 3-4b are somewhat more detailed versions of
 

Figure 3-3 in that they locate a typical differential area,
 

dA, on the lunar surface. The manner in which dA is defined
 

in each case is different and two figures are presented to un­

clutter the artwork.
 

In Figure 3-4a, dA is defined in terms of its normal vector,
 

N. This vector is situated an angle above the equatorial
 

plane and its projection in that plane makes an angle e with
 

the 2-axis. Thus, N can be written1 as
 

N = ceco 3.1 

[sec] 

1For an exposition of the perhaps unfamiliar notation used in
 

this paper, see Appendix A.
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Note that the moon is assumed to be spherical and for now, of
 

radius 1. 

Since the sensor responds to energies which are distributed
 

symmetrically about the line M, we must also locate dA in a
 

way that will mathematically reflect this symmetry. This is
 

done in Figure 3-4b. Our differential area is now defined by
 

the vector V which has its "tail" located on the 3-axis, lies
 

in the sensor's yaw-null plane, and is an angle a above the
 

equatorial plane. It is written as
 

3.2
 

Note that V is not, in general, a unit vector. V and N are
 

related by the following equation:
 

N 0 + V 3.35K 
Some of the sunlight incident upon dA will ultimately be re­

ceived by the lunar sensor. Let us now compute just what the
 

intensity of this reflected sunlight will be.
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Figure 3-4b
 

Definition of dlA in Terms of a Symet-ric Distribution of Area
 



Toward this end we let:
 

B = Power density of sunlight in the vicinity of the
 

moon. (watts-cm-2).
 

B = Power density of the reflected sunlight at the
 

point of observation.
 

y = Angle between the solar vector, S, and N.
 

= Angle between the 2-axis (also called E), and N.
 

R = Distance from dA to the point of observation.
 

f(y,) = 	a "bidirectional reflectance function" which is 

the ratio of reflected-to-incident power den­

sities at dA. The following two attributes of 

f should be noted: 

1. 	It is a function of the incident angle y,
 

and the reflectance angle, E, only and does
 

not depend on the location of dA. This is
 

a result of assumption 2, Section 3.0.
 

2. 	The reflectance angle is taken to be E rather
 

than the angle between N and the line con­
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necting dA and the observation point. This
 

will produce, at worst, a 16 arc-minute error
 

in the reflectance angle, the implications
 

of which are so small so as to make the
 

simplification more than reasonable.
 

The differential power density of sunlight, dB, which emanates
 

from dA and is received by the sensor is then
 

dB = kB f(yC) dA 3.40 R ?
 

where k is simply a proportionality constant that will disap­

pear shortly when we come to compare energies reciived from
 

two areas on the moon.
 

The problem now is to find, for a given value of a, the 0 0
 

which causes line M to divide the total energy received from
 

the moon into two equal parts. That is, if B(8O) is defined
 

to be the result of sunlight reflected from the visible region
 

of the moon to the west of N, then we seek that particular
 
, 

B0 , Bo, that will give
 

B(e0 )
 

B(r/2) 
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To accomplish this, we will have to integrate dB over a and
 

Go.
 

From Figure 3-4b, we see that
 

dA = r 2 ceo da do0 3.6
 

where r is the radius of the moon.
 

Let d be the distance from the center of the moon to the ob­m 

servation point. It ismeasured along the 2-axis. From the
 

law of cosines we have
 

R2 d2
= r2 + - 2rd cg 3.7 
m m 

Now 

cE = N.E 3.8 

= c4 c@ 3.9 

so 3.7 becomes
 

R2 2 + d2 
= - 2rd c cQ 3.10 
m m 
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Combining 3.4, 3.6, and 3.10 together with the definition 

q = r/dm 3.11 

we have 

dB = kB q2 0 f(y,)ceo1-2q c4 cO + q2 dcdeo 3.12 

To actually perform the calculations, we must have y, 

and e in terms of a and 60 . By expanding 3.3 we get

F [ceoasc 
c~ce = ce0ca 

cc6j [ Sao j 

, 4, 

3.13 

so 

= sin-' {co sa 3.14 

and 

e = tan -1 Itan 8o } 3.15 
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The reflectance angle, , can be obtained by combining 3.9,
 

3.14, and 3.15. Finally, we get the incidence angle, y, by
 

noting that
 

cy = N.S 3.16 

Now
 ro] 
S = lc 3.17 

s 

so
 

N'S = ca cO c4 + so s6 c4 3.18 

and
 

cy = c4 c(e-) 3.19 

which, when combined with 3.14 and 3.15 will yield y.
 

We now have only to settle on what the limits of integration
 

shall be. We can choose between two approaches.
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1. 	Integrate over the region
 

- 1/2 < a < + T/2 

-7/2 < Oo < Oo 

and construct f so it will be zero in those
 

regions not illuminated by the sun; or
 

2. 	Integrate only over the region which is visible
 

from the observation point and illuminated by
 

the sun.
 

The latter approach is definately preferable because it in­

volves significantly less computation time; an important con­

sideration since numercial integration on a digital computer
 

is the only reasonable way to integrate 3.12.
 

Before proceeding, we should note that because of the inherent
 

symmetry of the problem, we can confine our calculations to
 

the northern hemisphere and then simply double the results.
 

Even the doubling can be omitted because of the ratioing
 

(equation 3.5) that will eventually be done.
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In order to integrate only over the illuminated protion of the 

moon's surface, we must be able to mathematically define the 

terminator in terms of e0 and a. Assumption 3 permits us to 

do this with a minimum of fuss. 

The terminator is defined to be the locus of points on the 

surface of the moon where S is tangent to the surface; equi­

valently, where S and N are perpendicular. From 3.19, we see 

that this condition is met when 

c4 c(O-)= 0 3.20 

Now this equation is satisfied when either 

± /2 3.21a 

or 

= a ± i/2 3.21b 

All 3.21a states is that the terminator passes through the 

north and south poles; a true thing but of no particular 
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interest. It is 

relationship. 

equation 3.21b that will provide a useful 

Before developing 3.21b, let us 

to values of o in the range 

agree to restrict the analysis 

0 < a < i 3.22 

This will cover the range from full moon to eclipse but will 

always produce a center of brightness in the eastern half of 

the moon. This does not cause a problem, however, since the 

basic symmetry of the problem allows us to simply negate our 

result (placing the center of brightness in the western half) 

if the original a should happen to lie in the range 

-7T < G < 0 3.23 

Now, with a restricted according to 3.22, 

amgiguity of 3.21b and rewrite it as 

we can remove the 

6 = a ­ r/2 3.24 
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Combining 3.24 and 3.15 gives
 

tan1I j tan0 - a-r/2 3.25 
ca 

Solving 3.25 for a gives the particular value of a which will
 

place V on the terminator for the specified 80. This special
 

value of a will be called a0 . Thus
 

= cos 1 -tan a tan 0 3.26a0 


Notice that 3.26 is not defined for some combinations of a
 

and 00. This does not worry us, however, since those cases
 

for which
 

0
Itan a tan o I > 1 3.27
 

are precisely those for which V is in the dark portion of the
 

moon regardless of a and we will not be integrating over those
 

regions anyway. 

The problem must now be separated into two basic cases depend­

ing on the location of the sun;
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Case 1 0 < a < u/2 

Case II r/2 < <r
 

The reason for this can be best understood by referring to
 

Figures 3-Sa and 3-5b which depict typical situations for
 

Case I and Case II respectively.
 

1 1
 

TERMINATOR TERMINATOR 

o a 

3 3 

3-5A 3-5b 

i- 7r/4 4 31r/40 O-

Figure 3-5
 

Views of the Moon as Seen From the Sensor
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First consider 3-5a which corresponds to Case I. The sketch 

is drawn for a a of approximately 7/4. The terminator inter­

sects the equator at eo = a-r/2 so we begin integrating there 

and let 0 cover the range 

a-Tr/2 < 00 < g/2 3.28 

Now, over the semi-range a-7/2 < 60 < 0, the terminator is 

visible so a will take on values 0 < a < co where a0 is cal­

culated from 3.26. However, for positive values of @o (O in 

the eastern hemisphere) the terminator disappears onto the back 

side of the moon so a must cover the region from equator to 

limb; i.e., 0 < a < f/2. 

For Case II (Figure 3-5b) the range of 60 is constant and 

independent of a; 0 < 00 < r/2. Again we have two subcases 

for the a interval. From Figure 3-Sb they can be seen to be: 

for 0 < 60 < a-fr/2 , a0 < a < 7/2 3.29 

for a-r/2 < 0 0 < 7/2 0 < a < f/2 3.30 
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So there we have it. If we define the function A to mean
 

"the applicable range of...", then we can write our basic
 

integral as
 

B(a) = k ( f(y') -d deo
J f 1-2q c* ce + qz 

A(60J A(a)
 

where k is a factor of proportionality, and A(t) and A(Oo)
 

are defined in the preceding paragraphs.
 

We have yet to get specific about f(y,E) and come up with a
 

means of calculating u. Read on.
 

3.4 The "Reflectance Function", f(y, )
 

At the beginning of this study, the author (Rose) indicated
 

to GSFC his intent to model the reflective properties of the
 

lunar surface after a Lamertian reflector; that is
 

f(y,) = cy c 3.31 
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It was common "knowledge" by workers in the field that this
 

was a reasonable thing to do. Nevertheless, as it was decided
 

to perform some calculations using this model and compare the
 

results to empirical data, thereby verifying the model's ap­

plicability.
 

The inappropriateness of the model was demonstrated instead.
 

The analytical test which produced these disturbing results
 

was a computation of the ratio of half moon brightness to full
 

moon brightness. The Lambertian model produced (see Appendix
 

C) a value of 0.32 while actual measurementI of the ratio
 

gives of value of 0.089.
 

The wide discrepancy between theoretical and measured results
 

initiated a search for a better reflectance function. This
 

led to discussions with personnel at the Lunar and Planetary
 

Laboratory, University of Arizona, in Tucson. They suggested
 

that we model the lunar surface as a Lommel-Seeliger reflector;
 

that is, have
 

1C.W. Allen, 'Astrophsical Quantities', 2-nd Edition University 

of London, the Athlone Press 1964; Table of Moon's Phase Law -

Page 146 
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f(y') - cy 3.32 
cy + C 

This did not help the situation, however, for when the half­

to-full moon brightness ratio was computed, we obtained a
 

value of 0.5. This was worse than the Lambertian model! It
 

was then suspected that the University of Arizona information
 

was being misinterpreted and that equation 3.32 gave the ratio
 

of reflected to actual incident energies. If that were true,
 

3.32 would have to multiplied by cos y to account for the non-

I 

perpendicularity of dA and S. This would give
 

f(Y'o)= cy +cE 3.33
 

But alas. When the half-to-full moon brightness ratio was cal­

culated using 3.33 the situation became even worse; the value
 

was 0.62.
 

By now, the sounding rocket launch was becoming imminent and
 

a usable reflectance function had to be settled upon soon. We
 

therefore returned to the best function we had (the Lambertian
 

model, equation 3.31) in hopes that even though it produced
 

invalid brightness ratios, it might permit the significantly
 

different problem of locating sensor null points to be solved.
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To see that this might be possible, consider the following.
 

Suppose we sketch the lunar albedo energy falling to the west
 

of the sensor yaw null plane as the plane is scanned from west
 

to east across the moon. Two such plots are shown in Figure
 

3-6 and they correspond to two different values of a.
 

B(o)1 

1[0
 

0.089 

7f12 00 

Figure 3-6
 

Sketch of B(Oo) for Full and Half Moons
 

Poo' QUA-2 
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Let us now sketch another pair of simular curves only this time 

we hold a constant at r/2 (half moon) and plot the- real B(e0 ) 

and the B(eo) corresponding to a Lambertian moon. 

B(9o) 

LAM BERTVAN 
032
 

Figure 3-7
 

B(e0) Curves for Real and Lambertian Moons
 

The point is that the sensor will point to that value of 0 

where the B(So) curve has half its end point (eo = r/2) value 

and that even though the two curves shown in 3-7 differ in mag­

nitude by more than a factor of 3, their mid-points could occur
 

at almost identical places.
 

It was on the basis of such reasoning that the sensor offset
 

was measured one night (8h U.T., 8 September 1974) by using
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3.5 

the sensor itself and the results compared to theoretical pre­

dictions. There was agreement to within better than 11 arc­

seconds; much better than the goal of ±1 arc-minute for which
 

we were striving.
 

Thus, as a result of this very close agreement between theory
 

and experiment, it was decided to use the Lambertian model in
 

all subsequent calculations. It is nevertheless most annoying
 

that we cannot calculate absolute brightnesses and we plan to
 

continue the search for a good reflectance function. Someday
 

we may even do it.
 

Computation of Sun Position (a) From Ephemeris Data
 

In order to compute the sun's position angle, a, we must know:
 

1. where the sun is,
 

2. where the moon is,
 

3. where the sensor is,
 

all with respect to the center of the earth. To accomplish
 

this, we introduce another coordinate system, c , which is
 

tied to the celestial sphere and has its origin at the center
 

of the earth. Ec points to the north celestial pole and Ec 

is aligned to the First Point of Aries. Thus, the celestial 

and 6h 
sphere right ascension variable has 0h aligned to Ec 
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Relationship of Coordinate System
Bc to the Celestial Sphere 
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aligned to B3 ; ref. Figure 3-8. The earth rotates about Bc 

cc pl a h UT 
and Greenwich lies in the positive B1 - B2c plane at 0 U.T.
 

Suppose a point on the celestial sphere has a right ascension
 

and declination of p and 6 respectively. The unit vector
 

aligned to this point will have the form
 

s6]
 

c6cp 3.3 

c6sp J 

A point on the earth having an east longitude of X and a lati­

tude of 4 can be represented by 

c4cX 3.3 

Lc4sX J 

in an earth-based coordinate system. To compute its coordinates
 

in Bc we must account for the -fact that the vector is rotating
 
c 

about B1 at an angular rate w and has been doing so for some
 

time t. The transformation is performed as follows
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[i 0 0 s 

cmt -smt IccX 3.36
 

st cWt c~sx]
 

Note that this 3 x 3 matrix rotates vectors about the 1-axis
 

in a fixed coordinate frame.
 

Now we can proceed. Look at Figure 3-9. It depicts the per­

tinent elements of the analysis; earth, moon, lunar sensor,
 

and sun. The view is from above the plane defined by the
 

center of the moon, the center of the sun, and the lunar sensor.
 

Note that this plane is none other than the 2-3 plane used in
 

earlier sections; e.g., look at Figure 3-3. The vectors G,
 

L, and H extend from the center of the earth to the sensor,
 

the lunar center, and sun's center respectively. As such,
 

they do not necessarily lie in the plane defined by D and S*
 

(our familiar 2-3 plane). One point of clarification; the vec­

tor S*, appearing in Figure 3-9, differs from the vector S,
 

Figure 3-3, only in magnitude. S is a unit vector.
 

Our problem is to find a and we can do this if we know D and
 

S* for then
 

3-31
 



MOON
 

b 5 

D 

L 
ORIG t PAGE 18 
OF POOR QUALUy 

SUN 

N
SENSOR 

EARTH 
Figure 3-9
 

Orientation of Earth, Moon, Sensor and
 

Sun for Vector - Definition Purposes
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a = cos DI 3.37DI 1Sz~I 

To calculate D, we first need G and L. If h is the distance
 

from the center of the earth to the sensor, then
 

G = h cot -swt cX 3.38I 
o swt citI CCsxJ 

If dm is the earth-moon distance and pm and 6m are the moon's 

right ascension and declination, then 

s61 

L =dm j6cm cp m33 
Lc6m SP m _
 

From Figure 3-9 we see that
 

DI= G - L 3.40 
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Next, to compute S*, we need H in addition to L. Let ds be
 

the earth-sun distance; ps and 6s are the sun's right ascension
 

and declination. Then
 

S
 

H= dsc6 s cps 3.41 

[LCEs p5
 

Again, from Figure 3-9, we see that
 

S* 
= H - L 3.42
 

Thus, given the sensor's geographic position, the sun and moon's
 

celestial coordinates, and the time, equations 3.38 through
 

3.42 can be used to compute D and S* which in turn, via equa­

tion 3.37, produce a. The sun and moon data can be obtained
 

from an ephemeris and the particulars of doing so are discussed
 

in Section 4.
 

3.6 Computation of Sensor Offset Angle
 

Once we have computed all the pertinent quantities developed
 

in the preceding sections we will know where the sensor will
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point.. .in terms of a point on the lunar equator which is dis­

placed an angle O* from the 2-axis. All that is left is to
 a
 

convert this into an angular offset of the sensor about its
 

yaw axis.
 

Consider Figure 3-10. It is a top view of the 2-3 plane and
 

shows the moon, the vector D (ref. Section 3.S), and the edge­

view of the sensor's yaw-null plane. The sensor is nulled and,
 

as such, its yaw-null plane intersects the lunar equator at a
 

point which is displaced an angle e0 from the 2-axis.
 

-'
 ~~YAW-NULL PLANE
 
(EDGE VIEW)
 

Figure 3-10
 

Geometry for Calculating Sensor Offset Angles
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Recall; D is the vector from the center of the moon to the
 

sensor and has magnitude dm, r is the radius of the moon.
 

From Figure 3-10 we have
 

r s8O = z = (dm - r ce0 ) tan s 

or
 

tn-if r s3 
dm - r COO 

,This quantity, s, is the angle the sensor will be displaced
 

from the center of the lunar disk when the sensor is nulled.
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Section IV
 

COMPUTER PROGRAM DESCRIPTIONS
 

INTRODUCTION
 

The purpose of the computer programs written for the lunar
 

radiometric center problem was, in a nutshell, to evaluate
 

the predicted vehicle sensor offset angle when pointed pre­

cisely at the moon's center of brightness rather than its
 

physical center. The solution to the problem involved, pri­

marily, determination of required variables to evaluate the
 

integral of the power density function for a specified time
 

and location of launch, and from the results of that integra­

tion, to calculate the radiometric center of the moon and
 

thereby determine the predicted offset angle.
 

These calculations were accomplished in one mainline program,
 

assisted by three subroutines, written in FORTRAN IV language
 

for the BBRC engineering computer, a General Automation 18/30.
 

Descriptions of the general logic flow of each of the programs
 

constitute Section 4.2 and are preceeded by some explanation
 

of features common to all of the programs in Section 4.1.
 

Section 4.3 provides listings and examples of output for each
 

of the programs.
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4.1 General Notes
 

4.1.1 Accuracy of Calculations and 18/30 Computer Precision
 

Because of the relatively complex nature of and the many itera­

tive calculations required by the lunar radiometric center pro­

blem, the computer programs were very susceptible to error
 

propagation. The use of the extended precision feature signi­

ficantly reduced error build-up problems, but a substantial
 

effort was also made through coding and numerical analysis
 

techniques to avoid inaccurate results due to error pitfalls.
 

This effort was particularly applied in the task of incre­

menting loop variables when the increment values were frac­

tions which could not be exactly represented in binary. In
 

this case simple accumulation of the variable value (x = x +
 

Ax) also results in accumulated error, but the problem was
 

avoided completely by always returning the variable to a base
 

value before adjusting it for the next iteration.
 

All the programs performing the lunar radiometric center cal­

culations were run in G.A. 18/30 Extended Precision, which
 

utilizes 3 16-bit words to represent real variables. Mention
 

is made of this fact to differentiate it from the more commonly
 

known "double precision" which uses four-word floating point
 

representation. The 18/30 is not provided with the double
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precision feature, but the use of extended precision yields
 

between nine and ten significant digits of accuracy which was
 

adequate for these calculations.
 

4.1.2 Computer Program Execution Time
 

Again because of the iterative nature of these calculations,
 

it was necessary to reduce, as much as possible, the computer
 

run time required to complete the computations. The problem
 

was aggrevated by the fact that the 18/30 is not supplied
 

with floating point hardware, but rather must rely entirely
 

on software subroutines to perform all floating point opera­

tions. The use of extended precision intensifies the run
 

time problem even further. The resulting calls to floating
 

point subroutines, especially in the long integration loops,
 

greatly increased run time requirements. As a result, exten­

sive efforts were made in the programming of the lunar radio­

metric center calculations to simplify equations in loops in
 

such a way as to reduce the number of redundant subroutine
 

calls and thereby decrease program execution time. Another
 

solution was to integrate only over half of symmetrical regions.
 

Because the majority of program calculations were involved with
 

the integration of the power density function, use of this
 

technique reduced execution time by a factor of two. (See
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4.2 

Subroutine BIGNT description for further discussion of this
 

integration technique).
 

Program Descriptions
 

4.2.1 Mainline Program, JAKE
 

The primary function of the mainline program, named JAKE, was
 

to initialize parameters required by the power density func­

tion integration subroutines. Upon return from those sub­

routines, JAKE operated on the integration results to calcu­

late the anticipated sensor offset angle.
 

4.2.1.1 Parameter Initialization
 

Five parameters were required as input to the integration sub­

routines: the lunar phase angle, earth-moon distance for the
 

specified launch time, radius of the moon, and increment values
 

for the two variables of integration. The lunar radius was con­

stant and so was initialized as data. The two integration
 

variable increments values were constant throughout the cal­

culations and were read from card input. The other two para­

meters were calculated using ephemeris data for the launch time
 

and latitude and longitude of the launch site.
 

a. Calculation of Earth-Moon Distance
 

The American Ephemeris provides the necessary equa­
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tion for calculation of the true geocentric distance
 

for given time of day:
 

D = (a + a1P + a2P2 + a3P3)6378.16 4.1
 

where
 

p is a number between zero and one representing the
 

fractional part of the half-day in which the GMT lies.
 

a., a1 a2 , a3 are polynomial coefficients for true
 

geocentric distance, tabulated in the ephemeris for
 

each half day of the year (expressed in units of
 

Earth's equatorial radius).
 

The constant 6378.16 is the earth's equatorial radius
 

in kilometers and is used to convert the earth-moon
 

distance into kilometers for consistency with the
 

other calculations.
 

b. Calculation of the Lunar Phase Angle
 

The vector equations required to calculate the
 

lunar phase angle were described in Section 3.5 of
 

this report. Parameters required for these calcu­

lations are:
 

4-5
 



Sidereal time for 0 hours universal time of the launch
 

date; right ascension, declination, and geocentric dis­

tance of the sun; right ascension, declination, and geo­

centric distance of the moon; and latitude and longitude
 

on the launch site.
 

Latitude and longitude of the launch site and sidereal
 

time were read as card input requiring no further adjust­

ment and the calculation of lunar geocentric distance was
 

described above. Right ascension, declination, and geo­

centric distance of the sun were obtained from the Ameri­

can Ephemeris for 0 hours Ephemeris Time of the days pre­

ceeding and succeeding the launch, and right ascension
 

and declination of the moon were obtained from the same
 

source for the hours of Ephemeris Time preceeding and suc­

ceeding the launch. These values then needed to be ad­

justed to reflect the exact time of the launch, which was
 

accomplished via the following equation for general linear
 

interpolation:
 

y = (x(y2 - yl) + x2y1 - xly 2)/(x2 - xI ) 


where y = the interpolated right ascension, declination
 

or distance
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x 

x = the Universal Time of the launch (hours and
 

minutes for solar variables, minutes for lunar
 

variables)
 

and x2 = 0 and 24 hours, respectively for solar variables,
 

and 0 and 60 minutes, respectively, for lunar
 

variables.
 

Yl and Y2 = 	right ascensions, declinations, or distances 

as obtained from the ephemeris for the times 

bracketing the time of launch. 

See Figure 4-1 for a graphic illustration of lunar inter­

polation.
 

Once these interpolated values were computed, calculation
 

of the lunar phase angle was accomplished as described in
 

Section 3.5.
 

4.2.1.2 Calculation of the Sensor Offset Angle
 

The calculation of the sensor offset angle is described in Sec­

tion 3.6 of this report, and of necessity, some of the variable
 

names mentioned there will also be used here. In order to
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Figure 4-1
 

Generalized Linear Interpolation
 



determine the Sensor Error Angle, it was first necessary to
 

determine the value for 00 which would correspond to the lunar
 

radiometric center, as shown by the following ratio:
 

B(e0 ) -1/2 4.3
B(Tr2 

The power density function integration subroutine returns to
 

the mainline an array of tabulated integration values (B(00 )'s)
 

corresponding to the range of 6o angles. Dividing the end
 

point of this array (B(r/2)) by two yields the center of bright­

ness CB(Oo) value. By finding the two elements in the array
 

which bracketed that point, it was then only necessary to inter­

polate between the two corresponding 60 values to determine
 

the required 0o angle. This interpolation was accomplished
 

using the linear equation described above. Having found 6o,
 

the Sensor Offset Angle was calculated as shown in Section 3.6.
 

4.2.2 Subroutine BIGNT
 

The purpose of subroutine BIGNT was to perform the required
 

integration of the power density function, given the necessary
 

parameters provided by mainline program JAKE. BIGNT's first
 

task was to determine the limits of the integration variables,
 

a and 0 . The criteria for this determination are described in
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Section 3.3 of this report. Initially, the incremental values
 

of integration, Ac and AG0 , were fixed at 10, and since the
 

upper and lower bounds of 00 were always integral amounts of
 

degrees, the 1' restriction on A~o was sufficient. The inte­

gration limits of a, however, often included fractional parts
 

of degrees, so the Aa value was subsequently adjusted slightly
 

to fit exactly within the range of integration.
 

It is also necessary to note that the initial values for the
 

variables of integration were not set exactly to their respective
 

lower limits, but rather were set a half increment above those
 

values (i.e., lower limit + Aa/2 or +Ae0 /2). The reason for
 

this initialization was twofold: 1) Since only half of the
 

full symmetrical region was being integrated. (See Section
 

3.3), the variables of integration were set up a half step to
 

fully cover the illuminated region of the moon and to avoid
 

duplication of the region's mid-area; and 2) the most meaning­

ful result of the point-wise integration could be obtained by
 

evaluating the integrand at the mid-point, rather than an end­

point, of the differential area. See Figure 4-2 for an,illu­

stration of this method of area mid-point integrand evaluation.
 

Having accomplished all of this initialization, BIGNT was then
 

free to attack the problem at hand, the evaluation and integra­
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tion of the lunar power density function. The task was accom­

plished in two nested DO loops, the outer loop being concerned
 

with eo, and the inner loop with a. For each value of 0o, the
 

power density function was evaluated for every value in the
 

range of a and the resultant function was then integrated over
 

a. The actual integration was performed by an 18/30 Scientific
 

Subroutine Library program, QSF, which uses a combination of
 

Simpson's Rule and Newton's 3/8 Rule. QSF operates on a tabu­

lated array of function values, and returns a tabulated array
 

of step-wise integration values, the endpoint of which is the
 

final result of the integration.
 

As each a loop is completed for each e0 value, the endpoint
 

of the resulting integration vector was used to form an ele­

ment of the array which, when the 00 loop was complete, would
 

again be integrated by the QSF subroutine, this time over OD.
 

The final array of integration values, thus obtained by BIGNT,
 

was then returned to the mainline program along with an integer
 

variable indicating the number of elements in the array. Hav­

ing completed its appointed rounds, BIGNT then goes to sleep
 

awaiting another call from the mainline program and a new set
 

of parameters.
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4.2.3 Function Subprograms FLUX and RDFCN
 

The actual evaluation of the power density function at a single
 

point was performed by two small function subprograms, FLUX
 

and RDFCN. Subprogram FLUX was responsible for evaluating the
 

entire power density function, and it calls RDFCN for defini­

tion of the lunar reflectance function. During the development
 

of the math model, when experimentation with Lambertian, Lommel-


Seeliger, and other radiance functions was going on, it was
 

most convenient to have the function evaluation and reflectance
 

function itself separated from the larger programs so that small
 

changes to the equations could be easily and quickly incorporated.
 

Since that experimentation continued up to the very last calcu­

lations, RDFCN and FLUX remained in existance and were never
 

merged with BIGNT.
 

4.2.4 Additional Programs
 

Using BIGNT, FLUX and RDFCN as a calculating base for the lunar
 

radiometric center problem, several other mainline programs,
 

besides JAKE, were written. Since these programs did not con­

stitute part of the final product, but only contributed to its
 

formulation, they will not be described in any detail here.
 

They should, however, be mentioned because of the functions
 

they provided as constructive tools.
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Primarily, the other mainline programs differed from JAKE in
 

that they did not actually calculate the lunar phase angle and
 

earth-moon distance parameters required for the integration of
 

the power density function. Instead, they operated on constant
 

values for these variables. Neither were those programs con­

cerned with the determination of the sensor offset angle, but
 

rather centered around the calculation of power density ratios
 

for different lunar phase conditions. No consideration was given
 

to an actual launch situation, but instead hypothetical, and
 

therefore somewhat predictable, circumstances were assumed.
 

In this sense, these programs provided a valuable tool for
 

evaluating the performance of different lunar reflectance func­

tions when comparing, for instance, full to half-moon bright­

nesses. These programs also provided a wealth of plotted out­

put which served as a visual aid in the trouble-shooting of
 

both the programs and the math model. So although these pro­

grams did not constitute a part of the final calculations re­

quired by the lunar radiometric center problem, their contri­

bution to the end item cannot be overlooked. The listing for
 

mainline program HERB is included in the next section to serve
 

as an example of the type of function provided by these inter­

mediate mainline programs.
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4.3 Program 	Listings and Sample Output
 

Included in this section are listings and sample output, where
 

applicable, for each of the programs and subroutines which con­

tributed to the solution of the lunar radiometric center pro­

blem. The order of appearance is as follows:
 

1. Mainline Program JAKE
 

Sample teletype output
 

Sample printer output
 

2. 	Subroutine BIGNT
 

Sample teletype output
 

3. Function Subprograms FLUX and RDFCN
 

4. 	Intermediate Mainline Program HERB
 

Sample plotted output.
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LISTING OF
 

MAINLINE PROGRAM JAKE
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* PAGE 2 BBRC PROGRAM JAKE9 EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE SIGMA 

C-ERRS...STNOC...... F 0 R T R A N S 0 U R C E S T A I L M E N T S ........ IOENTFCN **COMPILLH MESbAGLS** 

C C _ _ 

CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCC C 
C .... .. C. 

C PROGRAM NAME - JAKE C 
C C 

C UTILiZATION - DETERMINES LUNAR PHASE ANGLE, SIGMA-, FROM LUNAR C 

- C 
C 

AND SOLAR RIGHT ASCENSIONS, DECLINATIONS,_EARTH 
DISTANCES. ETC. FOR THE SPECIFIED TIME AND LOCA-

C 
C 

C TION OF THE LAU.H SIGMA IS-THEN OUTPUT TO SUB. C -.-

C ROUTINE 'BIGNT'I WIERE TlH. LUNAR BRIGHTNESS FUNC- C 

C TION IS EVALUATED. UPON RETURN TO OJAKE't THE C 
C LUNAR CENTER OF BRIGHTNESS ANGLE. THETA-O IS OE- C 

------ C- TERMINED, FROQM WHICH THEgTRACK.EOFpSETNGEE- - .-------
C SILOr4 IS CALCULATE0. C 

C C ____ 
C SUBROUTINES REQUIRED 8--IONT-,,B-RIGHTNESS FUNCTION INIEGRATOR C 
___c 'ROTI, THREE-DIMENSIONAL COORDINATE SYS- C _ _ - _ __. 

C TEM ROTATION SUBROUTINE C 

C *DMS2R' AND *HMS2R',_CONVERSION ROUTINES C .. . 

C FOR EPHEMERIS HOURS AND DEGREES TO C 

C - CUAN 

C CARD INPUT - LAUNCH DESCRIPTION HEADER CARD C _.._ _ 

C 
C 

DAY OF YEAR AND TIM IN HOURS AND MINUTES OF 
RIGHT ASCfNSIONS, DECLINATIONS AND ART1H p-

LAUNCH 
---

C 

C 
1--

C TANCES OF SUN FOR DOY AND DOY+1 C 
C SIDEREAL TIME FOR 0 HOURS ON OOY C 
C 
C 

RIGH9T ASCEtNSION-S, DECIfNATIONS AND 'EARTH-019-
TANCES OF MOON FUR HOURS AND HOURS+1 

_C-
C 

_--_ 

C MOON-EARTH DISTANCE POLYNOMIAL COEFFICIENTS C 
C LATITUDE AND LONGITUDE OF LAUNCH SITE C 
C . .ALPH.A AND DELTA THETA FOR BRIGHTNESS FUNC- C 
C
C 

TION INTEGRATION C 
C 

c MARDA BARTHULI C 
C BALL BROTHERS RESEARCH CORPORATION C 
C BOULDER, COLORADO SEPTEMBER* 1974 C 
C C 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 

COMMON SIGMA, RAD. Wm 
REAL INTRP. LAMDA 

C INTEGER DOY 

DATA AU/1.496E8/, SF/I.OE-6/ 
DATA OMEGA/±5.U4O07/ 
DATA PI/3.141592654/ 

C 
DIMENSION ISTUF(36)hA(4).BM(3).BS(5)BV(3)_D(3)_EO(3)BE(3) 
DIMENSIO-N B(18O) 

R2D(X) = X*18O.0/PI 
D2R(X) = X*PI/1BO.O 
INTRP(XIX2TYI9T2tX) IX*tY2-TI1 + X2*T1 - XI*Y2)/IX2-XI ) 

ROUNO(X) = IFIX(X*100.O + O.5)/tOO.O 
... .. . C -



_____

PROGRAM JAKE, EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE 
SIGMA
 

PAGE 3 8 BRC 


S T A 	T E M E N T S ........ IDENTFCN
S O U R C E
C-ERRS...STNO.C...... F 0 R T R A N 


CCCCCCCCCC CCC OCCCCCCC
 
C


CCCCCLC CCLCCCCCCC CCCCCCcCCCCCCLCCCCCCCCCCC 

C 
 C
 
C 	 DO SOME INITIALIZING 
 C

C 

CCCCCCCCCLCCCCCCCCCCCCCLCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCL 
C 

CALL TIMEX(OLL.KK) 
C 

RAD = 1738.0 
C 
C 0 0
 
5 	 READ(2,000,EN=5 ) ISTUF
 

READ(2,4001) DOy. IH, M
 
WRITE(1,8000)
 
WRITE(580G01)
 
WRITE(5,007) ISTUF
 

ISTUF
WRITL(1,4000) 

WRITE(5,q100) DOy. IH' M
 

C
 
UT IH + M/60.0
 
P UT/12.O
 
IF(IH .GT. 12) P = P-1.O
 

C
 

CCCCCCCCCLLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCCCCLCCCCLCCCC

C 

c 

C 	 DO SUN'S R.A., DEC.' AND DISTANCE INTERPOLATIONS...READ THETO C
 

C
 c 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCLCC

C C
 

1 READ(20C2) IOAYIRHlIRM1,RSIIOHIIUMIUS1,SDS1
 
REAU(2,40 02 ) LUAYIRH2tIRM2,RS

29IB1H2,IUM2tUS2,SDS2-

C
 

IF(IUAY *EQ. COY *AND. LOAY ,EQ. DOY+2) GO TO 2
 
WRITE(5.4003)
 
PAUSE 1234
 
GO TOA1 

C
 
2 	 READ(2,4009 ) ITN,ITM.TS- -


THETO = (ITH + (ITM + TS/6O.O)/
6 0.O)SBO-­

_______C 

WRITE(5-200)
 
WR!TE(5,'f300) IRH1,IRM1,FtSlIDH1_,IDMX.DSI.SDSl­
WRITE(5,4300) IRH2,IRM2,RS2,10H2,IUM2.0S2,SDS2 
WRITE(5,4400) ITH.ITM.TS 

C SRA = INTRPCO.D,24.O,HMS2R(IRHIIRMIRS1),HMS2R(IRH2,IRM2,RS2 ,UT) 
2 ),UT)
SDEC INTRP(ODO24.,DMS2R(IDH1,IoM.OS1),DMS2R(10H2.IDM2tDS
 

C
 

OS = INTRP(OOq24.DOSDS1,SDS2,UT)
 
DS = DS*AU
 C
 

C 

C CCCCC CC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCL 


c

C 


AND COMPUTE DISTANCE C
C 	 DO INTERPOLATIONS FOR MOONS R.A. AND DEC., 


**COMPILEN MESSAGLS**
 

http:ITH.ITM.TS
http:ITN,ITM.TS
http:TIMEX(OLL.KK


pAGE 4 BBRC PROGRAM JAKE, EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE SIGMA
 

STk',C.,,, F 0 RT H A.N S 0 U 1kCE S T AT E M E N T S ........ IDENTFCN **COMPILLK MEbbA"S*
 

C FROM MOON TO EARTH USING A-COEFFICIENTS AND P C
 
C C
 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCC
 
C C
 

-__ fEAPA(2.40102) IM, IRH±, IRMi, R52J, Iljfhl, IOMt,1 Q --- -- ­

READ(24O02) LM, IRH2, IRM2, RS, IDH2, 10M2, OS2
 
C
 

IF(IM .EQ. IH .AND. LM *EQ. IH+I) GO TO 4
 
WRITE(54005)
 
PAUSE 2355
 
GO TU 3
 

C 
4 READ(2,4004) A
 
C 

WRITE(5,4500)
 
WRITE(514600) IRH1.IRM1.RS1,ODH,IMiUS..
 
WRITE(5,4600) IRH2,IRM2,RS2,1DH2,IDM2#DS2 -..
 
WRITE(5,4700) A
 

C
 
RAM = INTRP(O.O,60.O,HMS2R(IRHI,IRMI,RSIJHMS2R(IRH2,IRM2,RS2),FLO
 
IAT(M))
 

C 
.. ECM = INTRP(O.O,60.O,DMS2R(IUHIIDMIUS1)UOMS2R(IDH2.IuM2,US21,FL
 
1OATIM)) . .. ....
 

C
 

00 10 =2,94
 
A(J1 = A(J)*SF
 

10 CONTINUE
 

+(2f)*P_ 


C
 

______C ti- (U(Q*i_:A+O (3-))*0p - +AA(1)*6378.16 

OM.
WRITL(54006) SPA, SOEC, DS, RAM, OECM. OM ..
 
C C
 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCUCCCCCCC
 
C C 
o AJcE~lWPT.C.V4J C 

cctcccccccc~ccccccccttcccccFcctcccccc-ccc -d ~ "ccctcc-cfcCE- -cc'dtcdd
C C 

BM(2) = COS(DECM)*COS(RAM)*DM
 

C 
BS(1) = SIN(SOEC)*DS
 

- ~ - - ~ - --sTicO6Vottr4F*MN(SRA*ffM 
BS(2) = COS(SDEC)*COS(SRA)*DS
 

C 

EO(1) = SIN(D2RCPH))
 
EO(2) = COS(O2(pH))*COS(D2RLAMOA­
EO(dI = COS(O2R(HIC)*SN(2R(LAbA-


C _ 

THETA = O2R(OMLGA*UT + THETO)
CALL ROT(THETA I, EO, BE, IR)
 
C
 

http:A(1)*6378.16


PROGRAM JAKE, EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE SIGMA
 PAGE 5 SBRC 


C.ERRS ...STNO.C..... F 0 R T R A N S 0 U R C E S T A T L M E N T S............. IDENTFCN ,COMPILER MESSAGLS**._
 

no 30 J=105
 
BD(J) = BM(J) - BE(J)
 
BV(J) = BMJ) - BS(J)
 

30 CONTINUE C
 

cccCCCCC cccCCC ccc cCcccccccccccccc c dCccCCC CCCCCCCCCCCCCCCCCCCCCCc 

C 
 C
 
C CALCULATE PHASE ANGLE SIGMA 
 C
 
C 
 C
 
CCCCCCCCC CC CCCCCCCCCLCC CCCCCCCCCCCCCCCCCCLCCCCCCCLCCCCCCCCCCCCCCLCCCCC
 
C C
 

DENI = 0.0
 
DEN2 = 0.0
 00-0PROD = 0.0 


00 40 J=193
 
DENI = DENi + BV(J)**2
 
DENa = OEN2 + D(J)**2
 
PROD = PROD + BV(J)*BD(J)
 

40 CONTINUE
 
DENOM = SQRT(DENI*OEN2)
 

C SIGMA = R2D(EACOS(PROD/DENOM))
 
C
 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCLCCCCC


C
 

PRINT ALL THIS STUFF OUT ON THE LINE PRINTER C
C 
 C
C 

CCCCCCCCC CLCCC CCCC C CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 

WRITE(5.5004) PHI, LAMDA
 
WRITE(5,5000) bM(l), BS(l)i EOi)
 
WRITE(5,500l) BM(2), BS(2), EO(2), BM(W), BS(5), EO(3)
 
WRITE(5,5002) BE(1), BV(1)q B(1)
 
WRITL(5,5O01)BE(2), BV(2), 8O(2). BE(3), BV(3), BO(3)
 

... . .
 
W R ITE (5,5003 ) S I GMA 


C
 

c
C 


C OGEFC
 
CCCCCCCCCCLCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCI


C
C 

.. . ..
READ(2,4008) OALPH, OTHET 


C
 
CALL BIGNT(OALPH, OTHET, B, J)
 
81 = B(J)
 

C
C 

CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 

CALCULATE THE EPSILON ANGLE FROM THE HALF BRIGHTNESS--ANGLE THETO C
C 

C
C 


CCCCCCCCL"CCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 
L =C
 -. HALF = B(.J)/2.O 



_ _ 

BBRC PROGRAM JAKE, EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE SIGMA
PAGE 6 


S T A 	T t M E N T S ........ IOENTFCN **COMPILEt MLbbAGLS**
 
C-ERRS .. STNO.C..... F 0 R T R A N S 0 U R C E 


C 
THET = OTHET/2.0 
IF(SIGMA *LL, 90.0) THET = THET + SIGMA - 90.0 

THETA = THEY
 

C
 
DO 60 I=1,d
 
IF(B(I) - HALF) 11,22,23
 

11 Al = THETA
 
THETA = THET + I*DTHET
 

60 CONTINUE
 
C
 
22 AO = THETA
 

GO TO 70
 
C
 
23 A2 = THETA
 

Ao = (HALF*(A2-A1) + B(I)*A1 - B(I-)*A2)/(B(I) - B(I-1)) 

C 
70 EPS = ATAN(RAD*SIN(O2R(AO))/(OM " RAD*COS(02R(AO)))) 

= EPS R20(EPS)*60.0
 
EPSI = ROUNO(EPS)
 

C
 
WRITE(5,6200) AO
 
WRITE(5,6300) EPS
 
WRITE(1,6900) bOy, IHR M
 

WRITE(1,68001 PHI, LAMDA
 
WRIT:(1,3000) SIGMA
 
WRITE(I,6000) EPSI
 

C 

500 	 CALL TIMEX(1,LLKK)
 
XK = KK/1O0.0
 
WRITL(5,6100) LL, XK
 

C 

C 
C
CCCCCCEccc 	 CeCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCC
C ccccccc CctccCCt 	 -

C
C 	 FORMAT STATEMENTS 
 _____C 	 _ _ _ _ _ _ _C 

CLCCCCtcCC CCCCCC CCC CCCCCCC CLCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCC
CCCLCC 

CC 


C 
C 

= ',F.40'DEGREES')
3000 	 FORMAT(//'LUNAR PHASE ANGLE 

C
 

4000 	 FORMATC36A2)
 
C
 
4001 	 FORMAT(132(IXvl2))
 
C
 
4002 	 FORMAT(13,IX,2114,I3,1XF6.5),F1O.7)

C
 

403 FORMAT(UOSCREW Up ON DOY FOR SUN DATA...TRY AGAIN.')
 
C
 

4004 	FORMAT(4FI,0.)
 



BBRC PROGRAM JAKE, EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE SIGMA
pAGE 7 


S T A T L M E N T S ........ IDENTFCN **CoMpILEK MEsSAGtS**
F 0 K T R A N S 0 U K C E
CERRS...STNOC ..... 


C 
4005 FORMAT(,OSCREW UP ON HOURS FOR MOON DATA...TRY AGAIN') 

C 
4006 FORMAT(//'Oq,'SUN'/ ',5X,'R.A. = 9E14.7,' DEC. =,E14.7' AND E 

.1 ARTH DISTANCE = ,F14.7/10,tMOONI/9 ',5X,'R.A. = 9,E14.7,' DEC.-­

2 *,El4.7,' AND EARTH DISTANCE = ',E14.7/) 

C 
4007 FORMAT('I', 36A2) 
C 
4008 FORMATC2F1O.5) 
C 
4009 FORMAT(I4,13,IXF6.3) 
C 
4100 FORMAT('O'.'DOY' IS,5Xl' TIME ,12q'H#,

2 X.I 2 'M9 UNIVERSAL TIME 
2') 

C 
4200 FORMAT(//IO','EPHEMERIS DATA, SUN') 
C 
4300 FORMATC'0,5X,'RIGHT ASCENSION = 'lI4lIIX.F

6 .3.2X,'t DECLINATION 

I = ,14,13,1xF6.3,, AND DISTANCE = ',F1O.5) 

C4400 FORMAT(//'''EPHEMERIS THETA-C ANGLE = ,14,,1wXF6.3) 

4500 FORMAT(//,O,,'EPHEMERIS DATA, MOONi)" " 
C 

4600 FORMAT(t'0'5XW'RIGHT ASCENSION = I414,I3,1X,F6.3,2X,' AND DECLINAT 

LION = *,14,13, X,F6.3) 
C 

4700 FORMAT('O'.5X,'MOON DISTANCE POLYNOMIAL COEFFICIENTS = ',F9.6,3(2X 
1,F1O.1)) 

5000 FORMAT(//O',5X.'M VECTOR = c14.7.5k,'S VECTOR ,E14.75X-EO 
IVECTOR = ',E14.7) 

- -

C
~5001. FORMAT(2p0o,1X, E14.7 1

6 
X E14.?*1?XvEl'4tZL.7/_ ------.---- - - -- _ _ -

5002 FORMAT(//Wo9,5X,,E VECTOR = ,E14.7,XvV VECTOR = *,E147,6XO V .. . 

LECTOR = *,E1.7) 

C5003 FORMAT(/NDO'OSIGMA',E14.7) 

CbOD-uFORMAAT77RTU RtTTTDEAN-Eto =IFUDE OF LAUNCH- ITE -1 1 

LAND %,E1'.7,', RESPECTIVELY*) ---

C 
6000 FORMATC'TRACKER OFFSET ANGLE = ',FS.2' ARC-MINUTES')-

C 
6100 FORMAT(//'0,EXECUTION TIME = 9,13,IX,F5.2) _ _E_ __T) 

C 
6200 FORMAT('0'THETO CENTER OF INTENSITY ANGLA ',E14 . 7 ) -

C 
6300 FORMAT(//''EPSILON, LOS ANGLE = '9E14.7,' ARC-MINUTES') 
C 
6800 FORMAT(//'LATITUDE OF THE LAUNCH SITE = ',F7.3, DEGREES' /LONGIT 

6900 FQRMAT(//'DOY = l13q' AND LAUNCH TIME v,12,'H',lX,I2,'M# UNIVER 



C 

PRObRAM JAKL, EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE SIGMA
PAGE 8 BBRC 


S T A T L M E N T S ........ IOENTFCN **COMPILLK MLSSAGLS**

F 0 R T R A N S 0 U R C E
C-ERRS...STNO.C..... 


1SAL TIME')
 

C 

8000 FORMAT(/////)
 
C 

8001 FORMAT('1') 

C
 

END
 

VARIABLE ALLOCATIONS
 
BLANK COMMON BLOCK =.
 
SIGMA(R*6 c)=7FFD RAD(R*6 C)&TFFA OM(R*6 C)=7FF7
 

EQUIVALENCES & INTERNAL VARIABLES
 )=0208

LAMDA(R*6 )=0200 DOY(I*2 )=0203 PI(R*6 )=0204 LL(I*2 )=0207 KK(I*2 


P(R*6 )=020E IUAY(1*2 )=0411
UT(R*6 )=0206
IH(I*2 )=0209 M(I*2 )=020A 

j=0217 IUMI(I*4 )=0218
RSI(R*6 )=0214 ID11I*2
IRH1(T*2 )=0212 IRMI(1*2 	)=0213 


LDAY(I* 2 )=021F IRH2(I* 2 	 )=0220 IKM2(1*a )=0221
OS1(R* 6 )=0219 SOSI(R*6 )=021C 

)=0226 OS2(R*6 )=0227 SOS2(R*6 )=022A


RS2(R*6 )=0222 10H2(I*2 )=0225 IDM2{1 *2 

)=022E TS(H*6 )=022F THETO(R*6 )=0252 bRA(R*b )=065
ITH(I*2 )=0220 ITM(i*2 


)=0242

sDEC(R*6 )=0238 DS(R*6 )=023B AU(R*6 )=023E IM(I*2 )=0241 LM(1* 2 

1=0240
)=0249 SF(R*6 )=g24A PHI(H*b
RAM(R*6 )=0243 DECM(R*6 )=0246 J(I*2 

)=0253 IER(Z*2 )=0256 DENI(R*6 )=0257 OLN 2 (R*6 )=U25A


THETA(R*6 )=0250 OMEbA(R*6 

)=0266 BB1(K*6 )=0269


PROO(R*6 )=025D OENOM(8* 6 	 )=0260 DALPH(H*6 )=0265 DTHET(R*6 

3=6 gp - !cT2 ) 027_2 -M(R~)w273' - - rU-(R*5 )Eez7&
HACr(R~gw )-OY6C THET(R*6 

EPS(R*6 )=op7C EPSI(R*6 )=027F XK(R*6 )=02b2 ISIU*CI*2 )=dUo02AD

A2(R*6 )=0279 


BV(R*6 )=02FS.02EF B(K*6 )=02FE-o2F8

A(R*6 )=020A-02DI BM(R*6 )=02E3-0200 BS(R*6 )=02EC-O2E6 


bE(R*6 )=0310-030A B(R*6 )=052C-0313
EO(R*6 )=0307-0301 


STATEMENT ALLOLATIONS 
3000o10_62 -46-b- =U576 qF0 171_57r Woo= o7C4a-6BW-43wIsr'0 

-5oo=067F
40 09=060C 4100=0611 4200=o62E 4300=065E 4400=0668 460 0=068F 4700=0681 5000 =ObC- bOOl=uEF
 

=06F8 oo=7lB 5004=0726 60 00 =0 74F 6oo=0765 6200=6777 630 0 0 78E 6800=67W5 690 0=070b buuoE78
 
50 02	 1=08D6 2=0916 3=0 9A6 4=09E2
INTRP=O 81B ROUND=084C 5=0883
8001=07FE R2D=0801 02R=OBOE 


i=oC21 60=OC2E 2 2=oC37 2AZ=0CFb 70= 6CF 500=0 LC8
 Io=oA5A 30=0B58 40=0B72 


FEfATUREfS SU-PpORTED_
 
ONE WORD INTEGERS
 
EXTENDED PRECISION
 
ORIGIN
 
ZOCS-


POTTER
 
1403 PRINTER
 
TYPEWRITER
 
CARD
 

CALLED SUBPROGRAMS
 
ROT ESORT EACOS BIGNT LATAN INIT$ EADU ESUB
 

EIFIX TIMEX HMS2R DMS2R EFLOT ESIN ECOS 

SUbX EV -- mpYX ErV L-"E-" -ELY--EtSTO 'lsTOX ESBR ODVR LAXE'- WRTT' LA -RZ tB -R 

PRNZ PAUSE SNR SUBIN _SEO FLOAT ISUS

SWRT SCOMP SFIO SIOAX SIOAF SIOF SI0I SUBSC 


LRGT LRLE LRLG
 

REAL CONSTANTS
 .600UOUOL U2=053C
a0000000E 03=0533 .500000000E 00=0536 .173800000E 0o4=059
.180000000E 03=050 .
 

*900UOOOOOE 02=0554
.6378160 00E 04=054E *200 000000E 01=0551 


-

" ....
 

_D, 




LAUNCH AT KAUAI, HAWAII, 3 NOV. 1974, 10H 38M U.T. 

DOY = 307 AND LAUNCH TIME = 10H 38M, UNIVERSAL TIME 

LATITUDE 0F THE LAUNCH SITE = 22.065 DEGREES 
LONGITUDE OF THE LAUNCH SITE = -159.781 DEGREES 

LUNAR PHASE ANGLE = 42.1534 DEGREES 
TRACKER OFFSET ANGLE = 4.88 ARC-MINUTES 

EXAMPLE OF FINAL TELETYPE OUTPUT
 

FROM MAINLINE PROGRAM JAKE
 

4-24
 



EXAMPLE OF PRINTED OUTPUT
 

FROM MAINLINE PROGRAM JAKE
 

4-25
 



LAUNCH AT KAUAI* HAWAII, 3 NOV. 1974, iOH 38M U.T.
 

DOY307 TIME = 10H 38M, UNIVERSAL TIME
 

EPHEMERIS DATAt SUN 

RIGHT ASCENSION 14 31 4.990 t DECLINATION = -14 52 24.700 AND DISTANCE 0.99203 

RY-IH ASCLNSION-= 14# 35 "i34-W E-ITW == -51.1 10,8O0 AN-D--STANrE 0.9.. .. 

EPHEMERIS THETA-0 ANGLE = 2 47 29.308 

EPHEMERIS DATA. MOON 

RIGHT ASCENSION = 5 27 56.739 AND DECLINATION = 22 8 15.320 

RIGHT ASCENSION = 5 30 5.930 ANO DECLINATION = 722T 2.4s0 -- C), 

MOON DISTANCF POLyNOMIAL COEFFICIENTS = 58.992645 -196552.0 10632.0 -39.0 

SUN
 
RA. = 0.3808433E ol DEC. = 0 .2620108E 00 AND EARTH DISTANCE = 0O.1483921E o9 

MOON 
36 5 4 9R.A. = 0.14
 E 01 DEC. = 0.3861500E 00 AND EARTH DISTANCE = D.3752067E 06
 

LATITUDE AND LONGITTUDE OF LAUNCH SITE = 0.2206 5 5 3E 02 AND -0.1597818E 05, RESPECTIVELY
 

M VECTOR = 	 O.141312
1 E 06 S VECTOR = -0.3843702E 08 EO VECTOR = 0.3756667E 00
 

0.659011E 05 -O.1126259 E 09 -0.8696515E 00
 

o.5444 2oE o6 o0 8864911E 08 -0.3202821E 00
 

E VECTOR 	 O.3756667E 00 V-VECTOR O-35857853E. VECTR- 7--


0.6884210E 00 0.1126705E 09 0.4658945E 05
 

0.62044'#E OU - - s889s9s556E W44414 
 06
 

SIGMA = 0.f21537E 02 



B MATRIX BEFOR INTLGRATION
 

0.52741E01 Uo29119E o 0.64657E 00 0*10990E 02 016405E O1 0.22639E U 0,29669E o1 u.37448E o1 0 .41'bf9L ol 0.55229E a2.
 
- Z 


0.65169E o o.75789E bl- 0 8t7 0 68r of --9895 1 -- I -2b E r _ 
0.19809E 02 0.21417E 02 0.23064E 02 0.24746E 02 0.26461E 02 0.28 2 11E 02 O.2 9981E 02 U.31772E 02 O.3db8lL 02 0*354 04E 02 

0 .37237E 02 O,39g77E 02 0,40918E 02 o.42757E 02 0 .44990E 02 o*46413E 02 a.48222E 02 uo50013E U2 U.5 1 781t 02 o.53522E u2 
u.66o26E u2 	 o.6/665L 02 u,68631E 02
a55235E 02 	 U.56910E o2 *b85'BE 02 0*6O144E 02 O.6C687E 02 0 631 87E 02 0 .64665E 02 


7 7 47 7 9 7 5 5 4 7 6 22 1
0.6983BE 02 	 0.70968E 02 0.72032E 02 0. 3U23E 02 0. 39 39 E 02 0.7 E 02 0. 0E 02 0, E 02 0.76820t 02 0. 7 7 33(E 02
 

o78119E 02 78382E U2 0 .78559E 02 78651E 02 78657E 02 0 ,78577E 02 u,78411E 02 0 .781 60E o2 0 77825E 02
 
0 77770 E 02 0 	 0 0 


o;76907E 02 ' EVf 02 	 0.2263E b2 -t2--

U,59292E u2 u.5/72 02 O.56122E o2
 

0 74o7E 02 0.76326E o2 0 .7565E '02 0 7q92-o62r-7 	 07T3223K=02 O.7T2 r0T5it-02
 

0 ,68976E 02 	 u*67753E 02 0.66471E 02 o.65134E U2 0.63744E 02 0 *62 30 5E u2 0,6082oE 02 
U,42460 E 02 U.40o7d4 02 0 ,38949E 02
 

0 :51l67E 02 	 0 .49428E 02 O.i77o0E U2 0 1f 5 963E 02 0 .442 1 5E u2

O:54487E 02 0:5 2 824E 02 


0*37199E 02 u03545E 02 a 63730 E 02 o0 32u18E o2 0.30 325E 02 028655E 02 0,27011E U2 U.25396E 02 0.26815L 02 022265E 02,
 

0. 1 9285E 02 	 o17858E 02 o*16476E 02 o.15142E 02 0 1 3857E U2 U.126231 02 U.11443E 02 o.lU617L 62 0.92476E 01
02o755E 02 

0°82348E 01 U°726U1E 01 0.63844E o1 o°55482E 01 o:47720E 01 u40560E 01 U.64UE U U.28o48E u1 U.22b6± 01 U.17929 E 01 
o.13754E 01 o.Iol57E 01 0.71282E 0o 0,46557E b0 0.27255E 00- 132 24E o0 Ot 2946E-u1 U,28029E-02 O.OOffOU- 1 o.3366E:1-3t...0
 

B MATRIX AFTER INTEbRATION
 

0.19 9 74 L 02
0.14 864E 01 	 o.10753E 02 U.14918L 02

0.O0000E 00 	 U.16U91E 00 0.62135L 00 0.284 91E 01 0.47948E 01 0.74036E 01 


0.72782E 02-T.85920f U-2 	 0.116+5L S-----3-391E r-­0rOLo45E 03 --
0,25987F 02 	 u.33031E 02 0.41167E 02 0.50465E o2 0.Go98E u2 61 

0 1 5292F 03 	 0.17354E 03 1 95 77E 03 o.21968E 03 o.24528E 03 0 27261E 03 U317lE 03 U.632b8 E 0S I.3bb2 03 0.39975E 03
 

0
 
0.69256E U3 	 U,74168E 03 U.792581 05 U84524E 03
0 43607E 03 	 U.47425E 05 ob1422E u3 0.55607E 03 0.59974E 03 064524E 03 


0.89961E 03 0:95569E u6 0,1013aE o4 0.10727E 04 0.11536E O4 0.11961E o+ 0126o0 U4 o.132bSE 04 0.1692U o 0:14600 E o4 

0.15293E 04 a 15997E 04 o.16712E o 0.17437E 94 0.18172E O4 0.1891GE 04 0.19667E 04 'U.20426E o4 0.212521 U4 b.21963E o4 --

0.2273tF o4 0.23518E 04 0.2'1500 E u4 0.25085E o4 0.25871E 04 0 .26658E L4 0.27444E u4 u.28229E 04 0.29U121 o4 0.29792E q4 

0 .3056 F 64 	 b.3134oE o 0.3P106E UW- 0 .Z8&6F 04 533619E-.- O4 E-U9W3--6h.- r-OW u.u.3829EU-w-O 365 4-O-u,725 - --

o.3794-E 04 0.38632E 04 0.39304E 04 0.39962E 04 0.40606E U" 0.41236E 04 0.41852E U4 U,42453E 04 0.430 8 04 o.436o7E 04
 
q41976L 04 0.48372E 04
0.44160E 04 U,44697E o4 0.45217E 04 0.45719E 04 0.46205E u4 0:46673C 04 0.47124E U4 U.47558E 054 


0.48752E 04 O49116E 04 0.49462E 04 0.49790E 04 0.50102E 04 050397E 04 u.5o675E u4 U.50967E 04 U.51186L o04 051414E 04
 
0.51629E 04 0 51829E 04 0.52o15E O4 0.52186E 04 0.52344E 04 0 52489E 04 0.52622E O4 U.52742E 04 U.528bL 04- U.52949E o4
 
0.53036E 04 053113E o4 0.53182E 04 0.53241E 04 0.55293E o4 0,53337E 04 0,53374E v U*b34 0 E 04 0,56460L 04 0.56451E 04
 

onS5ToE b 4 -ff.o uootf U10. 166bbL;7*5 U53478ro4 	 0 53 4V 0 4 S39-W4O,34OL01 6753 99rT-&V -6. 0 7-53W87r-T----

THETO, CENTER OF INTENSITY ANGLE = 0.1777014E 02
 

EPSILON, LOS 	ANGLE 0.4881530E 01 ARC-MINUTES
 

EXECUTION TIME = 10 31.91 



LISTING OF SUBROUTINE BIGNT
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INTEGRAL EVALUATOR FOR LUNAR RADIOMETRIC CENTER.
PAGE 2 BBRC SUBROUTINE BIGNT, 


S T A T L M E N T S ........ IDENTFCN **LOMPILEM MELbAGLS**
C-ERRS...STNOC .... F 0 H T R A N S 0 U H C E 


C C 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCC 

C C 

C SUBROUTINE NAME - BIGNT C 

CC 
UTILIZATION - DETERMINES INTEGRATION RANGESA&WD EVALUATES -

C DOUBLE INTEGRAL FOR LUNAR RADIOMETRIC CENTER FUNCTION C 

C C 
C PRINTED OUTPUT - DATA SWITCH 13 ON PRINTS THETA-O. DELTA ALPHA C 

C AND DELTA THETA VALUES. C 
C DATA SWITCH 14 ON PRINTS ALPHA VALUES. C 
C DATA SWITCH 0 ON PRINTS INTCGRATION ARRAYS BE- C 
C FORE AND AFTEH FIRST AND SECOND INTEGRATIONS. C 

C C 
C VALUES INPUT BY MAINLINE - DELTA VALUES FOR ALPHA AND THETA, C 
C DALP AND OTHET. C 
C C 
C VALULS RETURNEU TO MAINLINE - ARRAY OF STEP-WISE SECOND INTEGRA- C 
C TION RESULTS. Bt AND NUMBER OF ELEMENTS IN ARRAY, J1 C 

C C 
C ANGLES INPUT TO THIS SUBROUTINE ARE EXPECTED TO BE TO BE IN DE- C 

C GREES. VALUES INPUT TO FUNCTION 'FLUX' ARE IN RADIANS. C 
C)
0 

C C 
C SUBROUTINES REQUIRED ­ 'FLUX,, INTEGRAND CVALUATdR" --
C 'QS-', SIMPSON'S RULE INTEGRATOR C 
C 'LOGSW', DATA SWITCH FESTER C 

C C 
C MARDA BARTHULI C 

N 

C BALL BROTHERS RESEARCH CORPORATION C _ _ __ 

C. BOUtL tR, COLORAO0 'SEPTMBER 1974 .. - . ... .......... .... 

C 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 

SUBROUTINE BIGNT(DALP, DTHET, B, d) 
LOGICAL LOGSW .. ... . .. 
COMMON SIGMA, RAD, DIAM 
DIMENSION B(181), X(90) 
DATA PI/3.141592654/, DELT/1.OE-06/ 

CI 
SINO(X) = SIN(X*PI/180O.) 
COSD(X) = COS(X*PI/18O.O) 

_f-fd--) F= P ~IflF/CO0SD(R 
C C 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcc 
C - C 
C DETERMINE INTEGRATION RANGE FOR THETA-O DEPENDENT ON LUNAR C 

C PHASE ANGLE' SIGMA. THEN SET UP MAIN THETA LOOP TEST VALUE, J. C 

C C 
CCCCCCCCCC-CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC C-CCC-CCCCCCC 

C C 
SIG = SIGMA*PI/180. 
IF(SIGMA - 90.U) 10,10,11 

10 THET = (SIGMA-90.O) + DTHET/2,0 
GO TO 12 

C 
11 THET = OTHET/2.0 



PAGE 3 BBRC SUBROUTINE BIGNT. INTEGRAL EVALUATOR FOR LUNAR RADIOIETRIC CENTER.
 

C-ERRS...STNO.C..... F 0 R T R A N S 0 U R C E S T A T L M E N T S ........ IDENTFCN **LOMPILEK ML bAGLS**
 

C
 
12 THETO = THET
 

i = (90O-THET)/DTHET +1
 
C
 

DO 500 K=1,J
 
IF(LOSW(t3)) WRITE(1,10 0 0) THETO
 
THEO THETO*PI/180.O
 
DALPH DALP
 

C 	 C
 
CCCCCCCCCCLCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 
C C
 
C DETERMINE INTEbRATION RANGL FOR ALPHAV DEPENDENT ON SIGMA AND C
 
C THETA-0. THEN SET Up INNER ALPHA LOOP TEST VALUE, I. ALSO C
 

C ADdUST DELTA ALPHA TO FIT WITHIN THE RANGL EVENLY, C
 
C C
 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 
C C
 

A = -TAND(SIGMA)*TAND(THETO)
 
IF(AbSA) - 1.0) 13,13,14
 

C
 
13 A = LACOS{A)
 

IF((A+DELT) - PI/2.0) 15,14,14
 
C
 
14 ALPH = 0.0
 

Q = 90.0
 
Go TO 18
 

C
 
15 IF(SIND(SIGMA)*SINO(THETO)) 16,17,17
 

C
 
16 	 ALPH = 0.0
 

O = A*18O.0/PI
 
GO TO is
 

C
 
17 ALPH = A*180.0/PI
 

Q = 90.0
 
C
 
18 ALPHA = ALPH
 

I = (Q-ALPHA+2*DELT)/DALPH
 
DALPH = (Q-ALPHA)/I
 
ALPH = ALPH + OALPH/2.0
 
ALPHA = ALPH
 

-Co-wX(. - .~-O~ l- -- rtTT(-ii-i-- AL 

C C
 
CCCCCCCCCCLCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCrCC CCCCCCt
 
C 	 C
 

C EVALUATE INTEGRANO FOR THE RANGE OF ALPHA. THEN INTEGRATE C.
 
C USING 'QSF', SIMPSON'S RULE SUBROUTINE. C
 
C C
 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 
C C
 

00 100 L=I Z
 
PHI = EASIN(COSD(THETO)*SIND(ALPHA))
 
THETA = ATAN(TAND(THETO)/COSD(ALPHA))
 
X(Li = FLOX'WNflTHEAS'G,- tlJ
 
IF(LOGSW(14)) WRITE(1,3000) ALPHA
 
ALPHA = ALPH + DALPH*L
 



-- 

PAGE 4 BBRC SUBROUTINE tIGNT, INTEGRAL EVALUATOR FOR LUNAR RADIOMETRIC CENTER.
 

S T A T L M E N T S ...... ZUENTFCN **CONPILL{ MkbSABtS**
C-ERRS...STNO.C..... F 0 K T R A N S 0 U R C E 


100 CONTINUE
 
C
 

CALL QSP(DALPH,XXI)
 
B(K X(I)*2.0
 
THETO = THET + K*OTHET
 

500 CONTINUE
 
C
 

IF(.NOT. LOGSW(O)) GO TO 650 
WRITLE(B,4000) 
00 600 KK=J,10 
MM = KK+9 -­

WRITL(5,4100) (B(LL), LL=KK,MM) 
600 CONTINUE
 
C 
 C
 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCC
 
C C
 
C PERFORM SECOND INTEGRATION ON DELTA THETA. BUMP THETA-O AND GO C
 
C Do IT AGAIN. RETURN TO MAINLINE AFTER COMPLETING RANGE oF C,
 

C THETA-a. C
 
C C
 
CCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 
C C
 
650 CALL QSF(DTHETB.UJ)
 
C
 

IF(.NOT. LOGSW(O)) RETURN
 
WRITL(5,5000)
 
00 700 KK=1,J.10
 
MM = KK+9
 
WRITL(5,4100) (B(LL), LL=RK.MM)
 

700 CONTINUE. . . . . . .
 

C
 
RETURN
 

C
C 
C
C 
1000 FORMAT(OTHETO 'tEI.7)
 
1100 FORMAT(*DALPH fEl.7,t AND OTHET =,E14.7)
 
2000 FORMAT(VI = ,14, * AND J = ,141


°
 3060 FORMAT(5XOALPHA = %,El4.T)
 
4000 FORMAT('1'l.B MATRIX BEFORE INTEGRATIONI//)
 

5000 FORMAT(wO0.'B MATRIX AFTER INTEGRATION'//)
 
C 
C
C 

END
 

VARIABLE ALLOCATIONS
 
BLANK COMMON BLOCK
 
SIGMA(R*6 C)=7FF RAD(R*6 C)=TFFA DIAM(R*6 CI=TFF7
 

EQUIVALENCES & INTERNAL VARIABLES 
IHEI (K*6 I1=0006 IHEIO(H*6 IUUUV -KI1"Z± IUUDp 

THEO(R*6 )=0000 OALPH(K*6 )=0010 A(R*6 )=0013 OELT(R*6 )=0016 ALPH(H*6 )=OU19 
Q(R*6 )=OO1C ALPHA(R*6 )=OOIF 1(1*2 )=0622- L(t*2--T=0025 PHI(Ri6 )=0024 

http:LL=RK.MM
http:KK=1,J.10
http:QSF(DTHETB.UJ


SUBROUTINE BIGNT, INTEGRAL EVALUATOR FOR LUNAR RADIOMETRIC CENTER.
 PAGE 5 BBKC 

2 
 6 


)=002C X(R* )=0152-0047

THETA(R*6 )=0027 KK(I*2 )=002A MM(I*2 )=0028 LL(I*


UNREFERENCED STATEMLNTS
 
2000
 

STATEMENT ALLOCATIONS
 TANO=oIEA
 
looo=ol6D 11oo=174 200U=0o184 3000=0190 4000=0198 410 0 =01AC 5uoo=o103 

8 
SIND=01C6 COSO=ol1f 


14=0291 15=0298 16=02A 17=0286 -18-2C2 100=0347

10=0223 11=0233 12=0239 13-0270 


500 0371 60 0 03A5 6500AF 70 0=03E2
 

FEATURES SUPPORTED
 
ONE WORD INTEGERS
 
EXTENDED PRECISION
 

CALLED SUBPROGRAMS
 
EADD ESUB LMPT t.oIV LLD LLDX
EACOS LASIN EATAN FLUX QSF 

SNR SUBIN IFIX FLOAT LNOT
LOGSW ESIN EcOS EABS 


ESTO ESTOX ESUR EDVR SWRT ScOMP SIOFX SIOF SUBSC 


REAL CONSTANTS
 5

.9 00000000E 02=0159 .20000000E 01=01 C .100000000E 01=015F *UOOUOUUUL U0=0162
 

*180noo000E 03=0156 


INTEGER CONSTANTS
 
5=016A 10=016B 9=016C
1±0165 13=0166 2=0167 14=0168 0±0169 


CORE REQUIREMENTS FOR - BIGNT
 
BLANK COMMON- 10, VARIABLES AND TEMPORARIES- 3'2. CONSTANTS AND PROGRAM- 664
 

RELATIVE ENTRY POINT ADDRESS IS O1FC (HEX)
 

COPTRIGHT UNA SY TtbMS INC.

END OF SUCCESSFUL COMPILATION 


_ 

00_ 

tv
 



LAUNCH AT KAUAI, HAWAII, 3 NOV. 1974, 10H 38M U.T.
 
THET0 = -0.4734652E 02 
DALPH = 0.1069554E 01 AND DTHET = 0.1000000E 01 

ALPHA = 0.5347773E 00 
ALPHA = 0.1604332E 01 
ALPHA = 0.2673886E 01 
ALPHA = 0.3743441E 01 
ALPHA = 0.4812996E 01 
ALPHA = 0-5882550E 01 
ALPHA = 0.6952105E 01 

THET0 = -0.4634652E 02 
DALPH = 0.1022502E 01 AND DTHET = 0.1000000E 01 

ALPHA,= 0.5112513E 00 
ALPHA = 0.1533754E 01 
ALPHA = 0.2556256E 01 

THET0 = -0.4534652E 02 
DALPH = 0.1-026583E 01 AND DTHET = 0.1000000E 01 

ALPHA = 0.5132916E 00 
ALPHA = 0-1539874E 01 
ALPHA = 0.2566458E 01 
ALPHA = 0.3593041E 01 

THET0 = -0,4434652E 02 
DALPH = 0.02841PE 01 AND DTHET = 0.1000000E 01 

ALPHA = 0-5142060E 00 
ALPHA = 0,1542618E 01 
ALPHA = 0.2571030E 01 
ALPHA = 0.2108244E 02 
ALPHA = 0.2211085E 02 

THET0 = -0.4334652E 02 
DALPH = 0.1009642E 01 AND DTHET 0.1000000E 01 

ALPHA = 0.5048214E 00 
THET0 = -0.4234652E 02 
DALPH = 0.1011884E 01 AND DTHET = 01000000E 01 

ALPHA = 0,5059420E 00 
ALPHA = 0-1517826E 01 
ALPHA = 0.2529710E 01 
ALPHA = 0.1264855E 02 
ALPHA = 0.1366043E 02 
ALPHA = 0.1467231E 02 
ALPHA = 0.2074362E 02 
ALPHA = 0-2175550E 02 
ALPHA = 0.2276739E 02 
ALPHA = 0.3,187434E 02 
ALPHA = 0.3288623E 02 

EXAMPLE OF INTERMEDIATE TELETYPE OUTPUT
 

FROM SUBROUTINE BIGNT
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LISTINGS OF FUNCTION SUBPROGRAMS
 

FLUX AND RDFCN
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PAGE 2 BBRC FUNCTION SUBPROGRAM FLUX, LUNAR BRIGHTNESS FUNCTION EVALUATOR 

C-ERRS...STNO.C....... F0 R T R A N S 0 U R C E S I A T L M E N T S........... IDENTFCN **COMPILEX MLSSAGL**___ ___ 

-. 

C 
CCCCCCCLCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCLLLLC 
C C 

C SUBROUTINE NAML - FLUX C 
C C 
c UTILIZATION - EVALUATES LUNAR BRIGHTNESS FUNCTION AT A SINGLE C 

-- - - - - -

C POINT C 

C C 

C SUBROUTINES REQUIRED - 'RDFCN'. LUNAR ALBEO0 FUNCTION C 

C C 

C MAROA BARTHULI C 
C BALL BROTHERS RESEARCH CORPORATION C 

C BOULUER, COLORADO SEPTEMBER 1974 C 

C C 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c .. 

-
-

FUNCTION FLUX(PMI,THETA.SIG,THEO) -- -

COMMON SIGMA. HAD, 1IAM 

CPHI = COS(PHII 

UFLUX 

C 

CTHET = COS(THLTA) 
CXI = CPHI*CTHLT 
CGAM = CPHI*COS(THETALSIG) 
0 = RAD/DIAM 

= (RDFCN(LGAMCXI)*COS(THEO))/(i.O + Q**2-2.*CPHI*CTHET*Q) 

- ""- _ 

RETUKN.......... 

END 
VARIABLE ALLOCATIONS 

BLANK COMMON BLOCK 
SIGMA(R*6 C)=7FFO RAD(R*6 C)=7FFA DIAM(R*6 C)7=FF7 

EQUIVALENCES A INTLRNAL-V4RIABLLS 
FLUX(R*6 )=0000 CPHI(R*6 

Q(R*6 )=O0OF 
)=0003 CTHET(R*6 )=O006 CXI(R*6 )=0009 CGAM(K*6 )=OODC 

FEATURES SUPPORTED 
ONE WORD INTEGERS 
EXTENDED PRECSION .. .. .... . . .. 

CALLED SIJBPRO6RAMS 
ECOS RDFCN EAUD ESUB EMPY EDIV ELD ESTO ESBR EDVR EAXI SUBIN 

REAL CONSTANTS 
.16-ib6-bfr=oal ;----M6o6-U-0 U-D o 

INTEGER CONSTANTS
B=024 -

CORE REQUIREMENTS FOR - FLUX 

SiNK COMMON" - rDTY*--ArALSA-rEMPORERYIESW- a0* LONSTANTb AND PROGrM----9I 



PAGE 2 BBRC FUNCTION SUBPROGRAM RDFCN, LUNAR ALBEDO FUNCTION - LAMBERTIAN
 

F 0 R T R A N S 0 U R C E S T A T L M E N T S ........ IDENTFCN **COMPILE" ME bALS**
CERRS...STNO.C..... 


C
C 

CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCLCCCCC
 

C
C 

C
C SUBROUTINE NAME - RDFCN 

C
C 

- SETS UP LUNAR ALBEDO FUNCTION. THIS FUNCTION MAY C
C UTILIZATION 

C ASSUME THE MOON TO BE ANY KIND OF RADIATOR DESIRED C
 

C SUCH AS LAMBERTIAN, LOMMEL.SELLIGER, OR COMBI- C
 
C NATIONS OF THE TWO. 
 C
 

C
 
C MARDA BARTHULI 

C 


C
 
C BALL BROTHERS RESEARCH CORPORATION C
 
C BOULUER, COLORADO SEPTEMBER 1974 C
 
C 
 C
 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCcc
 

C
 
FUNCTION RDFCN(CGAMCXI)
 

C
 

C 


COMMON SIGMA, RAO, DIAM
 
.C
 

RDFCN = CGAM*CXI
 
RETURN
 

C
 

END
 
VARIABLE ALLOCATIONS
 
SBLANK COMMON BLOCK
 

SIGMA(R*6 C)=7FFD RAD(R*6 CI=7FFA DIAM(R*6 C)=7FF7
 

... EQUIVALENCES 9 INTERNAL VARIABLES
 

RDFCN(R*g 
 )=0000
 

FEATURES SUPPORTED
 
ONE WORD INTEGEPS
 
EXTENPED PRECISION
 

C5ALLED S-UBPROGRAMS§
 
EMPY ELD ESTO SUBIN
 

CORE REOUIREMENTS FOR - ROFCN
 
BLANK COMMON- 10, VARIALES AND TEMPOAARIES- 4t CONSTANTS AND PR6GAAM-
 18
 

RELATIVE ENTRY POINT ADDRrSSI00O4(HrX3
 

COF'TRIGHT UNA bySTLMbS'CNC.
END OF SUCCESSFUL COMPILATiON 




LISTING OF
 

INTERMEDIATE MAINLINE PROGRAM HERB
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PAGE 2 £BRC PROGRAM HERB, SIGMA INCREMENTER FOR LUNAR CENTER PROBLEM
 

S T A T E M E N T S ..........IDENTFGN **COMPILEX MebSAGLS**
C-ERRS...STNo.C ...... F 0 R T R A N S 0 U R C E 


C C 
CCCCCCCLCLLCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCC 
C C 

C PROGRAM NAME - HERB C 

C C 
C PROGRAM UTiLIZATION - MAINLINE FOR LUNAR RADIOMURICCENTER C 

C PROBLEM. C 

C C 
C AFTER REAUING IN A DELTA SIGMA VALUE (SIGMA = PHASE ANGLE), C 

C HERB RUNS SIGMA FROM 0 TO 180 DEGREES, INTEGRATING THE C 
C BRIGHTNESS FUNCTION FOR EACH VALUE AND PLOTTING THE RE- C 

C SULTING CURVE IN TERMS OF ANALYTI-CAL ANCE-PSI AND slfl HT. C 

C NESS. C 
C C 
C THE CENTER OF BRIGHTNESS ANGLE IS CALCULATED FOR EACH VALUE OF C I 
C SIGMA AND PRINTED ALONG WITH THE BRIGHTNESS RWTIO OF FULC-TO z-

C HALF MOON. C 
C -- 0 
C MARCA BARTHULI C 
C BALL BROTHERS RESEARCH CORPORATION C 
C BOULDER, COLORRADO 10 SEPTEMBER 1974 C '-s 

C 
CCCCCC CCLCCCCCC CCCCC CCCCCCCCCCCCLCCCC C CCCCCCCCCCCCCCCCCCCCCCCC CCCC 

COMMON SIGMA, RAD, OIAM 
DIMENSION B(18O), 881(19) 
DATA PI/3.1Q1692654/ 

C 
C C 
CCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C INITIALIZATION SECTION C 
C INITIALIZE LOOP VALUES AND SET UP PLOTTING FORMAT c 
C -

CCCCCCCCCCLCCCCCC CCCCCCCCCCCCCCCCC CLCCCCC CCCCCCCCC CCCCCC CCCCCCCCCLC C CCCCC_____ ___ ____ 

C C 

C 
RAO 1738.0 
DIAM = 384403.0 
REA(2,1100) DALPH, DTHET, DSIG 

KK 18"7-s-' 
ii = (180.D/DSIG)/2.O + 1 

C 
WRITE(1.4100..-.....
CALL sCALE(.o5,9.O,.90.OO.0) 

.-.. 

CALL EGRIDO 0-9.0O, 28OO8) 
CALL EGRID(3O.O7 ,O,,O) r- -

C C 
CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
C C 
C MAIN SIGMA LOOP . . . DO INTEGRATIONS C 
C ______ C 
CCCC CCCCCCCCCCCCC CCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCC 
C C 

SIGMA = 0.0 



PROGRAM HERB, SIGMA INCRErENTER FOX LUNAR CENTER PROBLEM
PAGE 3 BBRC 


MLSSAbLS**
S T A T E M E N T S ........... IENTFCN **COMPILE

q-KRRS.. STNCPL.asq F 0 R T R A N S 0 U R C E 


DO 300 II=IKK
 
CALL BIGNT(OALPHOTHETBtJ)
 
OB8(II) = B(J)
 
IF(II *EQ. JJ) RATIO = (BBl(II)/BBl(l))*!l0.O
 

CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 
C
C 

C
C EVALUATE CENTER OF BRIGHTNLSS ANGLE FOR ONE VALUE OF SIGMA 

C
C 


CCCCCCCLCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 
C
C 


HALF = B(J)/2,0
 
THET = SIGMA - 90.0
 
IF(SIGMA ,GT. 90.0) THET = 0.0
 
THETA = THET + DTHET/2.0 

C
 
00 200 I=l,d
 
IF(B(I) - HALF) 1U1,202,203
 

C
 
101 Al = THETA Ca
 

THETA = THET + DTHET/2.0 + I*OTHET h
 
C
 
20p CONTINUE -

C
 
202 ADG= THETA
 

GO TO 210 
C 
203 A2 =THETA 
20-- AO (HALF(A2"A1) + B(I)*A1 - B(I-1)*A2)/(B(I) - BET-i)) .. C.... _-._--

CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CC 
C
C PLOT ONE CURVE FOR ONE VALUE OF SIGMA 

C
C 
....... ..CCCCCCCCCCLCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
 

C
C 

210 WRITE(tl0 2 00) SIGMAt-81(II). HALF. AO
 

THET= SIGMA - 90.0
 

IF SIGMA .GT. 90.0) THfET= 0.0
 
THETA = THET + DTHET/2.0


C
 

DO 250 JJ = 1,d
 
CALL EPLOT(-2.THETA, B(JJJ)/BBI(1))
 
THETA = THET + DTHET/2.0 + J.*DTHET
 

250 CONTINUE
 
CALL UP
 

C
 

CCCCCCCCCCLCCCCCtCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
CC 
C
C GO 00 INTEGRATIONS FOR ANOTHER VALUE OF SIGMA 

WHEN DONE WITH ALL THE SIGMAS EXCEPT SIGMA = 180, WRITE THE HALF CC - - T- F - G t- ­
-- - -ULL MuO'-gRI3HTNESS xATiUANUpRE E PT O . RtN


C
C AWAY. 

C
C 



PAGE 4 BBRC PROGRAM HERB, SIGMA INCREMENTER FOR LUNAR CENTER PROBLEM 

S ........ IOENTFCN **COMPILLK MLSSAGLS**C.ERRS...STNO.C...... F 0 R T R A N S 0 U R C E S T A T L M E N T 

CCCCCCCCCCLCCCCCCCCCCCC CCCCCCCCCCCCCCCCCLCCCCLCCCCCCCCCCCCCLCCCCCCCCCCCC 
c C 

SIGMA = 0.0 + USI(;*IL 
IF(SIGMA .EQ. 180.0) GO TO 400 

300 CONTINUE 
C 
400 WRITL(1.4300) RATIO 
C 

CALL ECHAR(-90.OO,.6,.1,.1,O.O) 
WRITE(7.5000) 
CALL ECHAR(-3.0-.1,.I,.I1,0.0) 
WRITE(7,5100) 

C 
XX -90.0 
y -.06 
X -89'0 
00 205 I=1,3 
CALL ECHAR(XYt.I,.1,PI/2,Ol I0 

_ 

WRITE(7,5200) XX 
XX XX + 90.0 
X x + 90.0 

205 CONTINUE I 

CLL tIC405 d; 99T. f, :ilO.o0) -- -- C5-

WRITE(7,5300) 
X -7.00 
XX 1.0 

DO 206 I=1,2 
- - -

WRITf(7,5O0) XX 
XX XX - 0.5 
Y Y - 0.5 

206 CONTINUE 
C 

C C 

CC FORMAT STATEMENTS C 
C 

CCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CcC 
C 

1100
C 

FORMAT(3FI0.5) . .... .. .. . . 

4100 FORMAT(5X,SIGMAO,9X,ENDPOINTI9X,CENTER 
O,10XICENTERI/ 5 4X t BRIG­

1HTNESS'i,9X'ANLE-) 
C 
4200 
C 

FORMAT(/4(EI4.7,2X)) 

4300 
C 

FORMAT(IBRIGHTNESS RATIO. FULL TO HALF MOON = ',E14.7) 

5 0 0 R -P0 --O-BR GHTNESS FUNCTION VER ANGLE PS1) 
C 
5100 FORMAT('PSI') 



PAGE 5 BBRC PROGRAM HERB, SIGMA INCREMENTER FOR LUNAR CENTER PROBLEM
 

C-ERRS...STNO.C..... F 0 R T R A N S 0 U R C E S I A T L M E N T S ........ IOENTFCN **COMPILER MSSAG&LS**
 

C
 
5200 FORMAT(F5.1)
 
C
 
5300 FORMAT(*BRIGHTNESS')

C _ _ 

5400 FORMAT(F3.1) ---
C 

END
 
VARIABLE ALLOCATIONS
 
BLANK COMMON BLOCK
 
SISMA(R*6 C)=?FFO RAD(R*6 C)=TFFA _ DIAM(R*6_C)=7FF7? --


EQUIVALENCES & INTERNAL VARIABLES
 
DALPH(R*6 )=0200 DTHLT(R*6 )=0203 OSIG(R*6 )=0206 KK(I* 2 )=0209 JJ(L*2 )=020A
 

ZIlr*2 ,=020B .(I*2 )=020C RATIO(R*6 )=0200 HALF(R*6 )=0210 THET(R*6 )=0213
 
THETA(R*6 )=o216 1((*2 )=0219 Ai(R*6 ) 02iA Ao(R*6 )_Ff2O A2cR*6 )_0d20" ­

)=0 2 2
jIJ(I*2 )=0223 XX(R*6 )=0224 Y(R*6 )=0227 X(R*6 A pI(m*6 )=02 20
 
_ _....
 .
E(R*6 )=045A-0241 8B1(R96 i=o493 .0456 

STATEMENT ALLOCATIONS
 
1100=40 9 4 1O0=O40c 4200=O4 FF 430o=05o5 5000=o51 500=0533 5200=0537 5300=0539 54oo=ob40 1UI=614
 
200=0629 202=0632 206=0638 210=366A 250=oBE 30 0=06D9 4O0=O6E2 0= 0 76F 2U6=07 70
 

- FEATURES SUPPORTED 
ONE WORD INTEGERS 
EXTENDED PRECISION
 
ORIGIN
 
IOCS-


PLOTTER 
1403 PRINTER
 
TYPEWRITER
 
CARD
 

CALLED SUBPROGRAMS
 
SCALE EGRID BI6NT EPLOT UP ECHAR INXTS EADD ESU ESUBX EMPY EUIV LLD EL0 X ESTO
 

-
ESTO -- ESbP--7DCR ---- -Cl-AR-Z VU--SR --- SWR o--S - O -SIOF---SpWRTYZ -PRNZ3NR
 
IFIX FLOAT ISUB LRGT LREO
 

REAL CONSTANTS
 
.5WOUT0UOdui-U1EO4­.17 38600000 i4=0496 -.3 844 0V-000E o6=6499- AonUEUff0-- UOUdOGdOE C2ffl049v 

9 0ooooooOOE .900000000E 0 2=04A8 *ouoOOOOOE oo0OA8 Ioo0000000E O2=oqAE *luouuuouuE ul=o*B101=04A5 
.TOOO000L o44B'- *± OUUO O O63' .600000006 00=04A a0o0000 -06 o _-=Oq 
,8900000UoE 02=04C3 *5000uOO0OE pl=OC6 .990000000E 00= 04C9 I .*7000000DE_ =O4CC *500UOUOUUL UUO=4CF 

INTEGER CONSTANTS
 
2o0402 1=0403 0=0404 18=0405 3=46-i76_d _'_7:40
 

CORE REQUIREMENTS F-pR-


BLANK COMMON- 10, VARIABLES AND TEMPORARIES- 662, CONSTANTS AND PROGRAM 754 ......
-


END OF SUCCESSFUL COMPILATION COPYRIGHT UNA SYbTLMS, INC.
 



EXAMPLE OF PLOTTED OUTPUT
 

FROM MAINLINE PROGRAM HERB
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I 0 BRIGHTNESS 

PLOT OF BRIGHTNESS FUNCTON VERSUS ANGLE PSI 

0,5­

0 0 900 
PSI 
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W 

Section V
 

SYNOPSIS OF OPERATIONS
 

The following steps gather, in logical order, the rather rambl­

ing developments of the preceding sections. By knowing the
 

location of the sensor (three space coordinates and the time)
 

one can, by following the steps given below, compute the
 

angular offset between the center of the moon and the lunar
 

sensor's optical axis.
 

These steps are, incidentally, precisely those performed by
 

the computer program which is discussed in Section 4.
 

1. 	Compute the right ascension and declination of the
 

sun and moon using ephemeris data and Equation 4.2.
 

2. 	Compute vectors G, H, and L (see 'Figure 3-9) using
 

Equations 3.38, 3.41, and 3.39. The magnitudes of
 

H and L are obtained from ephemeris data and the ap­

plication of Equations 4.1 and 4.2.
 

3. 	From G, H, and L, compute vector D using 3.40 and
 

vector S* using 3.42.
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4. Compute the phase angle, a, from D and S* using 3.37.
 

If a<O, note that the center of brightness will be to
 

the west of the selenographic center and use the ab­

solute value of a in all subsequent calculations.
 

5. Now compute limits of integration for 0o.
 

Sa. If a<r/2, then a-n/2 < 00 < n/2
 

5b. If a>7r/2, then 0 < 80 < r/2
 

6. Now compute limits of integration for a. Evaluate
 

3.26 to get ac. The range of integration over a
 

is as follows:
 

6a. If Sa (above) applies, then
 

* 0 < a < ao if 60 < 0 

* 0 < a < f/2 if 80 > 0 

6b. If 5b (above) applies, then
 

* ao < a < ir/2 if O0 < a-7/2 

* 0 < a < f/2 if 0o > a-u/2 
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7. 	Evaluate the integral appearing on page 3-23 over the
 

ranges of Oa and a obtained in steps 5 and 6. The
 

result is a table of values of this integral as 60
 

spans its range.
 

8. 	Using this table of values, determine (using 4.2) 

what value of 0o produces half the value produced by 

8o=r/2. Call this quantity e0 . 

9. 	Compute the sensor offset angle, s, using e0 in
 

Equation 3.44. If the original phase angle, a,
 

(computed in step 4) was negative, negate s.
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Appendix A
 

Mathematical Notation
 



Coordinate systems are designated by the letter E and are dis­

tinguished from each other by superscripts. Thus, a system
 

aligned to the celestial sphere could be called B while one
-

attached to the earth could be Be. Base vectors of coordinate
 

systems are not termed x, y, and z but rather 1, 2, and 3 and
 

form a right-handed set in that order. If confusion between 

systems is likely to occur, base vectors are referred to by 

subscripts on the designator of the system of which they are a 

part. Thus, the 2-axis of the earth-based coordinate system is 

termed E.
c 

Vectors are invariably-represented as 3 x 1 matrices. Thus, a
 

vector which would, in the notation of elementary vector analy­

sis, be written as
 

V = 31- 4 + 71
 

is now expressed as
 

A-4]
 

A-1
 



The reason for this is that virtually all the vector operations
 

that will be performed are scalar products and orthonormal ro­

tations and the matrix formulation is just more convenient.
 

The scalar, or "dot", product of two vectors (for example, A
 

and B) is written synonomously as A-B or ATB where T denotes
 

matrix transpose. Thus
 

Ea1 a2 a3] -bl- 3 

ATB= b 2 E ab i 

j=lb 


Since sines and cosines are used so extensively in the defini­

tion of vectors and rotation matrices, these functions have
 

been abbreviated to:
 

sine (') = sP
 

cosine (T) = cT
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Appendix B
 

Something to Read if the Mathematics are Dull
 



ANOTHER TIME, WE WENT TO MANNHEIM AND 

ATTENDED A SHIVAREE - OTHERWISE AN OPERA -

THE ONE CALLED "LOHENGRIN". THE BANGING AND 

SLAMMING AND BOOMING AND CRASHING WERE 


SOMETHING BEYOND BELIEF, THE RACKING AND 


PITILESS PAIN OF IT REMAINS STORED UP IN 


MY MEMORY ALONGSIDE THE MEMORY OF THE TIME 


THAT I HAD MY TEETH FIXED, 'THERE WERE 

CIRCUMSTANCES WHICH MADE IT NECESSARY FOR 


ME TO STAY THROUGH THE FOUR HOURS TO THE 

END, AND I STAYED; BUT THE RECOLLECTION OF
 

THAT LONG, DRAGGING, RELENTLESS SEASON OF 


SUFFERING IS INDESTRUCTIBLE, To HAVE TO 

ENDURE IT IN SILENCE, AND SITTING STILL, 


MADE IT ALL THE HARDER, I WAS IN A RAILED 


COMPARTMENT WITH EIGHT OR TEN STRANGERS, OF 


THE TWO SEXES, AND THIS COMPELLED REPRESSIONi 


YET AT TIMES THE PAIN WAS SO EXOUISITE THAT 


I COULD HARDLY KEEP THE TEARS BACK, AT THOSE 


TIMES, AS THE HOWLINGS AND WAILINGS AND 


SHRIEKINGS OF THE SINGERS, AND THE RAGINGS 


AND ROARINGS AND EXPLOSIONS OF THE VAST 


ORCHESTRA ROSE HIGHER AND HIGHER, AND WILDER 


AND WILDER, AND FIERCER AND FIERCER, I 


COULD HAVE CRIED IF I HAD BEEN ALONE, THOSE 


STRANGERS WOULD NOT HAVE BEEN SURPRISED 


TO SEE A MAN DO SUCH A THING WHO WAS BEING
 

GRADUALLY SKINNED, BUT THEY WOULD HAVE
 

MARVELLED AT IT HERE, AND MADE REMARKS ABOUT
 

IT NO DOUBT, WHEREAS THERE WAS NOTHING IN
 

THE PRESENT CASE WHICH WAS AN ADVANTAGE OVER
 

BEING SKINNED.
 

EACH SANG HIS INDICTIVE NARRATIVE IN TURN)
 

ACCOMPANIED BY THE WHOLE ORCHESTRA OF SIXTY
 

INSTRUMENTSj AND WHEN THIS HAD CONTINUED
 

FOR SOME TIME, AND ONE WAS HOPING THEY MIGHT
 

COME TO AN UNDERSTANDING AND MODIFY THE NOISE
 

A GREAT CHORUS COMPOSED ENTIRELY OF MANIACS
 

WOULD SUDDENLY BREAK FORTH, AND THEN DURING
 

TWO MINUTES, AND SOMETIMES THREE, I LIVED OVER
 

AGAIN ALL THAT I HAD SUFFERED THE TIME THE
 

ORPHAN ASYLUM BURNED DOWN.
 

I HAVE SINCE FOUND OUT THAT THERE IS NOTHING
 
THE GERMANS LIKE SO MUCH AS AN OPERA, THEY
 

LIKE IT) NOT IN A MILD AND MODERATE WAY, BUT
 

WITH THEIR WHOLE HEARTS, THIS IS A LEGITIMATE
 

RESULT OF HABIT AND EDUCATION, OUR NATION
 

WILL LIKE THE OPERA, TOO, BY-AND-BY, NO DOUBT.
 

ONE IN FIFTY OF THOSE WHO ATTEND OUR OPERA
 

LIKES IT ALREADY, PERHAPS, BUT I THINK A GOOD
 

MANY OF THE OTHER FORTY-NINE GO IN ORDER TO
 

LEARN TO LIKE IT, AND THE REST IN ORDER TO BE
 

ABLE TO TALK KNOWINGLY ABOUT IT, THE LATTER
 

USUALLY HUM THE AIRS WHILE THEY ARE BEING
 

SUNG, SO THAT THEIR NEIGHBORS MAY PERCEIVE
 

THAT THEY HAVE BEEN TO OPERAS BEFORE, THE
 
FUNERALS OF THESE DO NOT OCCUR OFTEN ENOUGH,
 



Appendix C
 

Evaluation of Lambertian and Lommel-Seeliger
 
Reflectance Functions
 



In this appendix, we wish to compute the half-moon to full­

moon brightness ratios for three reflectance functions.
 

The power density of the moon-reflected sunlight at some ob­

servation point is
 

kff(Y') dA C. 

A 

where 	 k = a proportionality factor
 

R = distance from the observation point to dA
 

A = illuminated portion of the moon visible from the
 

observation point
 

f = lunar-surface reflectance function
 

y = incidence angle of sunlight at dA
 

= reflectance angle of sunlight from dA to the ob­

servation point
 

If we make the assumption that the observation point to moon
 

distance is very large compared to the lunar radius, we can
 

treat R as constant and the visible region of the moon becomes
 

a complete hemisphere.
 

UC-1
 



Under these simplified condition, equation C.1 can be written 

(in terms of normal spherical coordinates 4 and 8) as 

B(a) 

n/2 

- 2kr 2 f 

a-7r/2 

7/2 

ff(Y 

0 

0 dedo C.2 

where r = lunar radius 

a = lunar phase angle 

Our approach will be to evaluate C.2 for a = 0 (full moon) 

and a = i/2 (half moon) with a particular function f, ratio 

the two terms and compare the result to the experimentally 

obtained value of 0.089 (ref. "Astronomical Quantities"; Sec­

tion 3.4). 

Lambertain Reflector 

The reflectance function for 

form 

a Lambertain reflector has the 

f(y,E) = cy cC C.3 
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Now equations 3.8 and 3.19 give as
 

c= co ce C.4
 

cy = co c(6-o) C.5
 

and C.2 becomes
 

r/2 /2
 

B(c) = 2k()f 20 ce c(6-cr) so do' ad C.6 

O- /2 0 

f 

which can be separated into
 

/2 T/ 2 

B(a) C20s4'd cO c(O-c) dO 0.7=2k 


0 -T/2
 

Since the - integral is simply a constant, it can be absorbed,
 

together with the 2k(r/R)2 term into a single super-constant,
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K, which leaves
 

B(o) = 

T/ 2 

Kf ce 

o-ir/2 

:(e-o) de C.8 

This can be integrated directly to give 

B (a) K {i(r-o) ca + so C.9 

Thus 

B(7r/2) 1= -'I0 . 3 2 C . I O 

Lommel-Seeliger Reflector 

The reflectance function for 

the form 

a Lommel-Seeliger reflector has 

f(y,_) cy) cy + c 0.12 
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which, by using C.4 and C.5, transform into 

f(y'g = c(O- ) 

c(O-a) + cT 

C.i: 

and 

B(a) =2k 

u/2 

a-yr/2 

q/2 

J 
0 

c(O-+cO ) dO cCie 

As before, the 4 integral can be extracted-and constant terms 

combined. Doing so yields 

r/2 
f~)= c(e-G) do C.I 

Rather than attempt to integrate C.13 as it stands, let us 

instead perform the integration twice; once with ci = 0 and 

once with a = 7/2. 
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'it! 2 

B(oC = KK/2 c.15 

f 2 

T/2 

B(Tr/2) = K sO+ cO C. 16 

0 

= K.p - ce - sel '/2C.15 

0 

= KG/4 C.I 

Thus, 

B( f/2) - SC. 1! 
B(O) 
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Something Else
 

In the discussions of Section 3.4, it was stated that a "modi­

fied Lommel-Seeliger" reflectance function was also investigated.
 

It had the form
 

2
 

f(Y'Q) cyc+ c C.20
 

Putting this in terms of p and 0 gives 

=c4c 
2 (9-oj C.21
 

and the resultant brightness function , B(a), becomes
 

ir/2
 

B(c) = Kf c(0-U) COd C.22
 

a-C-/2
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As, before, we compute B(0) and B(r/2) separately:
 

B(O) = Kdo 

7T/2 

C.23 

= K C.24 

B(Tr/2) =K 

n/2 

0 

do C.25 

The author spent his normal, self-imposed time allotment of 5 

minutes trying to integrate C.25 before turning to his best 

beloved table of integrals. After another 10 minute search, 

he abandoned that approach as well in favor of a numerical 

solution using Simpson's rule. The integrand was evaluated at 

eleven points and an error of less than 10­5 was expected. 
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w 

The result of this numerical integration gave
 

B(7r/2) 0.62 k C.26 

so
 

B(r/2) 0.62 C.27
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Appendix D
 

Predicted Sensor Offsets 

for
 

Kauai and White Sands Launches
 

Taken from the letter:
 

"Radiometric Center of the Moon Study"
 
Charlie Rose to Morris Gisser
 

20 September 1974
 



The sensor offset angle, E, has been calculated for two launches;
 

Kauai, Hawaii and White Sands, New Mexico. The offsets were
 

calculated for the opening, center, and closing of the launch
 

window in each case.
 

Location Time (U.T.) Offset Angle, e 

Kauai, Hawaii 10h 38m 4.88 arc minutes 

3 November 1974 
11h 20m 4.92 " 

1 2h 3m 4.98 " 

WSMR 5h 3m 1.S5s arc minutes 

28 December 1974 
5h 41m 1.51 " 

6h 19 m 1.47 " 
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