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1.0 INTRODUCTION

This task is the fourteenth in the series accomplished within the
scope of the Work Statement, Attachment A, Item 5 of Contract
NAS5-23185.

2.0 SCOPE

This task was issued to perform the following analysis and asso-
ciated effort:

Perform suitable analysis, assumlng Lambertian sutrface, to deter-
mine required sensor offset in a lunar tracking rocket flight.

The offset is defined as the angular difference, in arc minutes,
between the geometrical center of the Moon and the sensor null.
The following shall be furnished:

e A computer program which will provide the offset, in arc
minutes, as a function of the following lunar variables.

a) Fraction illuminated
b} Apparent size of Moon
® A technical note documenting the analysis and describing
the computer program.
3.0 FINANCIAL SUMMARY

The following is the final manhour and cost totals for this

assignment.
Labor Dollars MODC Total Costs
Manhours (Unburdened) {Unburdened) W/0 Tee
:al Budget 295 2,120 459 6,482
:ual Total 361 2,654 433 8,549

4.0 CONCLUSIONS

The analysis and results are summarized in the Final Technical
Report F74-13 dated 31 December 1974 attached as Appendix A.

The overrun in the manhours and total cost were primarily due to
more than estimated time to complete the final report and the tests
requested by GSFC that were not included in the original scope of
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the program. The tests consisted of moon intensity measurements
made using the lunar sensor to observe the moon. This data was
used to calibrate the sensor for the actual launch.
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Section T

INTRODUCTION

This final report is submitted to Goddard Space Flight Center
in fulfillment of a task intended to allow the center of
brightness of the lunar crescent to be computed. This capa-
bility was required to support sounding rocket launches from
Kauai, Hawaii (3 November 1974) and White Sands Missile Range

(28 December 1974).

This paper discusses, briefly, the operational characteristics
of the lunar sensor which was used to point the sounding
rocket, develops the associated mathematical model of the
system, describes the computer programs which were written

to implement the model, and presents data pertinent to the

two launches,

The work was performed under NASA Contract NAS5-23185, Task

Assignment 014.

1-1
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Section 1I

DESCRIPTION OF THE PROBLEM

An angular error sensor has been built by Bali Brothers Research
Corporation for the purpose of pointing a sounding rocket pay-
load at the moon. The sensor has an essentially linear trans-
fer characteristic in the vicinity of null and angular position-
errors of the vehicle are manifested as proportional error sig-
nals which can be used by the rocket control system to reduce

these errors to zero.

The application for which the sensor was designed necessitated
pointing the payload at the center of the moon; that is, the
center of the disk which would be visible from the earth at

full moon.

The sensor is an electro-optical device of the '"energy-balance™
variety. Such sensors split their fields of view into two parts
and generate error signals which are proportional to the dif-
ference of energies gathered by each half., Thus, such a sensor
produces a zero error signal when it is pointed at the center

of intensity of the source.

For the case at hand the source is, of course, the moon and for

conditions other than full moon, the center of intensity will

2-1
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not coincide with the selenographic center. It is necessary
to know just where the sensor will be pointing when it is nulled

L

so appropriate biases can be applied to correct the situation.

The problem, then, is to determine where the center of intensity
of the visible crescent of the moon is with respect to the
selenographic center. In order to compute this quantity, it

is necessary to know the realtive positions of the sun, moon,
and sensor, the reflective characteristics of the lunar surface,

and the optic-operational basis of the sensor.
This report is devoted to constructing a mathematical model of

the situation, discussing the computer program which implements

the model, and presenting results applicable to actual flights.

2-2
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Section ITI

MATHEMATICAL MODEL

3.0 ASSUMPTIONS

The simplifying assumptions upon which the mathematical model

is based are as follows:

1. The moon's albedo is not a function of wavelength.
That is, the incident and reflected energies have

the same spectral distribution.

2. The moon's albedeo is not a function of seleno-

graphic latitude and longitude.

3. The sun is considered, for illumination purposes,
to be an infinitely distant point source. Thus,
the radiant energy is constant in the vicinity of
the moon and, since there is no penumbra, the

terminator is sharply defined.

3.1 Basic Concepts

The lunar sensor is a two axis device and, as such, produces
error signals about its yaw and pitch axes. To see how these
signals are generated, consider the operation of just one of

the channels; e.g., vaw.

3-1
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A plane may be associated, ficticiously, with the yaw channel.
This plane is defined by the yaw axis and optical axis of the
sensor and it contains these axes. For want of a better term,
we can call it the "yaw-null plane'". When the sensor 1is pointed
at a source of radiant energy, this plane effectively divides
the source into two parts. The part lying on the "left' side

of the plane is converted into one proportional voltage while
the part lying on the "right'" side of the plane is converted
into another proportional voltage. These voltages are dif-
ferenced to produce the final error signal which is used by

the control system.

Exactly the same situation applies to the orthogomal pitch axis
and the origin of the term "energy balance sensor" becomes ob-
vious. This concept of the sensor's operation is essential

to understanding why the mathematical model is constructed the

way it-is.

3.2 Coordinate Systems

Figure 3-~1 shows the basic elements of the system; the sensor
together with its yaw-null plane, the moon, a coordinate system
(with axes labeled 1, 2, 3) with its origin at the center of

the moon, and a vector, S, pointing towards the sun.

3-2
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SENSOR'S TO THE SUN

YAW-NULL
PLANE

SENSOR
Figure 3-1

Pictorial View of Sensor-Moon Coordinate System




@z

The sensor is located on the 2-axis and the sun lies in the
2-3 plane. These two facts serve to define the orientation
of the coordinate system, Although it will be convenient to
refer to the 2-3 plane as the "equator" and the l-axis as the
"north pole'", it must be clearly understood that the true
lunar equator and pole are something else entirely and are

of no concern in the present development due to assumption

2 (Section 3.0). Thus we shall use the terms equator and pole

freely in the context just described.

Figure 3-2 is a top view of Figure 3-1, includes no additional

information, and is included only to clarify the situation.

The sensor's optical axis lies in the 2-3 plane at all times
and, as shown in Figure 3-1, the yaw-null plane intersects the
moon somewhere between the pole and its eastern limb. This
line of intersection, which lies on the moon's surface, is

called M.

Nestled within the positive 1, 2, and 3 axes is octant 1 of

the lunar sphere; it is outlined in Figure 3-1. This octant,
the coordinate system, and some quantitative terms are shown

in Figure 3-3. For instance, there is the vector S again, still

lying in the 2-3 plane, and pointing at the sun. Note that

3-4
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Figure 3-2

Top View of Sensor-Moon Coordinate System
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it is displaced an angle ¢ from the Z-axis. As shown, ¢ is

positive, as are all the angles shown in Figure 3-3.

The intersection line, M, also appeareth. It intersects the
equator an angle 0, from the 2-axis. It is drawn so that M

is parallel to the 1-2 plane and this is a departure from
reality in that it results from a plane which makes a small
non-zero angle with the 1-2 plane. This angle is never greater
than 16 arc-minutes however (or the yaw-null plane would fail
to intersect the moon at all) so it has been ignored. The
resultant errors are very small compared to those introduced

by the assumptions discussed earliier.

3.3 Construction of the Mathematical Model

Our ultimate goal is to determine just where the lunar sensor
will attain a null condition. This is equivalent to calculat-
ing, for a given value of ¢ (sun position) where the intersec-
tion line, M, must be located so that the energies reaching

the sensor from both sides of it are equal.

To this end, we subdivide the portion of the moon visible from
the sensor into differential areas, dA, compute the relative
energy reaching the sensor from each of them, and then sum

these differential energies to obtain the net effect. By com-

3-6
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paring the energy contributed by the area to the west of M to
the total energy, we can determine the value of 6, which makes
this ratio equal one-half., This, then, will be the location

on the equator where the sensor will be nulled.

It is now time to get down to specifics. If you are not in-
‘terested in getting involved in the mathematics, this is the

time to read elsewhere. Appendix B comes highly recommended.

Figures 3-4a and 3-4b are somewhat more detailed versions of
Figure 3-3 in that they locate a typical differential area,
dA, on the lunar surface. The manner in which dA is defined
in each case is different and two figures are presented to un-

clutter the artwork.

In Figure 3-4a, dA is defined in terms of its normal vector,
N. This vector is situated an angle ¢ above the equatorial
plane and its projection in that plane makes an angle 8 with

the 2-axis. Thus, N can be w:rit‘[:en1 as

s¢
N = | cBco
s@cd

lFor an exposition of the perhaps unfamiliar notation used in

this paper, see Appendix A.

3-8
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Figure 3-4a

Definition of dA in Terms of its Normal Vector
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Note that the moon is assumed to be spherical and for now, of

radius 1.

Since the sensor responds to energies which are distributed
symmetrically about the line M, we must also locate dA in a
way that will mathematically reflect this symmetry. This is
done in Figure 3-4b. OQur differential area is now defined by
the vector V which has its "tail" located on the 3-axis, lies
in the sensor's yvaw-null plane, and is an angle o above the

equatorial plane. It is written as

closa
V =% coca

0

Note that V is not, in general, a unit vector. V and N are

related by the following equation:

Some of the sunlight incident upon dA will ultimately be re-
ceived by the lunar sensor. Let us now compute just what the

intensity of this reflilected sunlight will be.

3-10
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Definition of dA in Terms of a Symetric Distribution of Area
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Toward this end we let:

fev)
]

Power density of sunlight in the vicinity of the

!
moon. (watts-cm -).

B = Power density of the reflected sunlight at the
point of observation.

Y = Angle between the solar vector, S, and N.

£ = Angle between the Z-axls (also cailed E), and N.

R = Distance from dA to the point of observation.

-

£f({vy,&) a "bidirectional reflectance function" which is
the ratio of reflected-to-incident power den-
sities at dA. The following two attributes of

f should be noted:

1. It is a function of the incident angle v,
and the reflectance angle, £, only and does
not depend on the location of dA. This is

a result of assumption 2, Section 3.0.

2. The reflectance angle is taken to be & rather

than the angle between N and the line con-

3-12
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necting dA and the observation point. This
will produce, at worst, a 16 arc-minute error
in the reflectance angle, the implications

of which are so small so as to make the

simplification more than reasonable.

The differential power density of sunlight, dB, which emanates

from dA and is received by the sensor is then

dB = kB £(v,€) dA
(o] Rp_

where k is simply a proportionality constant that will disap-
pear shortly when we come to compare energies reciived from

two areas on the moon.

The problem now is to find, for a given value of o, the 8y
which causes line M to divide the total energy received from
the moon into two equal parts. That is, if B(6,) 1is defined
to be the result of sunlight reflected from the visible region
of the moon to the west of M, then we seek that particular

%
Bo, Bo, that will give

F3
B(6e)
Bin/z) - /2

3-13
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To accomplish this, we will have to integrate dB over a and
8o.

From Figure 3-4b, we see that

dA = I‘z cBo da ng

where r is the radius of the moon.
Let dm be the distance from the center of the moon to the ob-

servation point. It is'measured along the 2Z-axis. From the

law of cosines we have

2 _ .2 2 _
R = r= + dm Zrdm cg

Now

1l
=
tTi

ck

n
0
=3
g]
D

sc 3.7 becomes
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Combining 3.4, 3.6, and 3.10 together with the definition

=

q r/dm 3.11
we have

dB = kB _q? —L(¥,5)CH0 dod8, 3,12
O 1-2q c¢ co + g2

To actually perform the calculations, we must have v, &, ¢,

and 8 in terms of o and 8,. By expanding 3.3 we get

s5¢ COgs0
chch = cOgyco 3,13
cheh S8y
S0
.o =1
b = sin {cBg sa} 3.14
and
B = tan_lgtﬂ{_e—”} 3.15
co

3-15
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The reflectance angle, &, can be obtained by combining 3.9,
3.14, and 3.15. Finally, we get the incidence angle, Yy, by

noting that

cy = N+*S 3.16
Now
4]
S =]co 3.17
sa
S0
N+S = cog cb c¢ + so s8 co 3.18
and
cy = ¢¢ c(6-0) 3.18

which, when combined with 3.14 and 3.15 will yield .

We now have only to settle on what the limits of integration

shall be. We can choose between two approaches.



#
1. Integrate over the region

-n/2

A

c < + w/2

-m/2

A
[an)
[}
A
(el
o

and construct f so it will be zero in those

regions not illuminated by the sun; or

2. Integrate only over the region which is visible
from the observation point and illuminated by

the sun.

The latter approach is definately preferable because it in-
volves significantly less computation time; an important con-
sideration since numercial integration on a digital computer

is the only reasonable way to integrate 3.12.

Before proceeding, we should note that because of the inherent
symmetry of the problem, we can confine our calculations to
the northéfn hemisphere and then simply double the results.
Even the doubling can be omitted because of the ratioing

(equation 3.5) that will eventually be done.

3
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In order to integrate only over the illuminated protion of the
moon's surface, we must be able to mathematically define the
terminator in terms of 84 and a. Assumption 3 permits us to

do this with a minimum of fuss,

The terminator is defined to be the locus of points on the
surface of the moon where S is tangent to the surface; equi-
valently, where S and N are perpendicular. From 3.19, we see

that this condition is met when

cp c(b-a) = 0

Now this equation is satisfied when either

or
8 =0 % 7w/2

All 3.21a states is that the terminator passes through the

north and south poles; a true thing but of no particular

3-18
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interest. It 1s equation 3.Z1b that will provide a useful

relationship.

Before developing 3.21b, let us agree to restrict the analysis

to values of ¢ in the range

This will cover the range from full moon to eclipse but will
always procuce a center of brightness in the sastern half of
the moon. This does not cause a problem, however, since the
basic symmetry of the problem allows us to simply negate our
result (placing the center of brightness in the western half)

1f the original ¢ should happen to lie in the range

Now, with ¢ restricted according to 3.22, we can remove the

amgiguity of 3.21b and rewrite it as

B =0 - 7/2

3-19
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Combining 3.24 and 3.15 gives

-1 tan 6y

tan t—-——} = og-m/2
co

Solving 3.25 for ¢ gives the particular value of o which will

place V on the terminator for the specified 6,. This special

value of o will be called o,. Thus

g = cos * { -tan ¢ tan 90}

Notice that 3.26 is not defined for some combinations of o
and 6¢. This does not worry us, however, since those cases

for which

[tan o tan 6, | > 1

are precisely those for which V is in the dark portion of the
moon regardless of o and we will not be integrating over those

Tegions anyway.

The problem must now be separated into two basic cases depend-

ing on the location of the sun;

3.
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Case 1T 0 <o < w/2

Case 11 /2 <o <7

The reason for this can be best understeood by referring to
Figures 3-5a and 3-5b which depict typical situations for

Case 1 and Case II respectively.

1 1
TERMINATOR TERMINATOR
)
—p 3
0
3-5A 3-5b
c=n/4 c=3T/4
CE‘pOQgﬁg-AGEIS
Lity
Figure 3-5

Views of the Moon as Seen From the Sensor

3-21
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First consider 3-5a which corresponds to Case I. The sketch
is drawn for a o of approximately w/4. The terminator inter-
sects the equator at 8, = o-7/2 so we begin integrating there

and let B4 cover the range
o-w/2 < 8y < 7/2

Now, over the semi-range o-7/2 < 8¢ < 0, the terminator is
visible so o will take on values 0 < o < oo where oo is cal-

culated from 3.26. However, for positive values of 6, (6 in

the eastern hemisphere) the terminator disappears onto the back

side of the moon so o must cover the region from equator to

limb; i.e., 0 < a < 7w/2.
For Case II (Figure 3-5b) the range of 6, is constant and

independent of o; 0 < 8p < m/2. Again we have two subcases

for the a interval. From Figure 3-5b they can be seen to be:

for 0 < 6 < o-1/2 , o < a < /2

“for o-m/2 < 8y < W2, 0 <o < w2

3-22
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So there we have it. If we define the function A to mean

""the applicable range of...", then we can write our basic

B(o) = k] f GRS do e,
1-2q c$ c& + q?

A(Bo) A(a)

integral as

where k 1is a factor of proportionality, and A(w) and A(8,)

are defined in the preceding paragraphs.

We have yet to get specific about f(y,£) and come up with a

means of calculating ¢. Read on.

3.4 The "Reflectance Function', f(y,&)

At the beginning of this study, the author (Rose) indicated
to GSFC his intent to model the reflective properties of the

lunar surface after a Lamertian reflector; that is

f(y,8) = ¢y c§

3-23
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It was common "knowledge'" by workers in the field that this
was a reascnable thing to do. Nevertheless, as it was decided
to perform some calculations using this model and compare the
results to empirical data, thereby verifying the model's ap-

plicability.
The inappropriateness of the model was demonstrated instead.

The analytical test which produced these disturbing results
was a computation of the ratio of half moon brightness to full
moon brightness. The Lambertian model produced (see Appendix
C) a value of (.32 while actual measurementl of the ratio

gives of value of 0.089.

The wide discrepancy between theoretical and measured results
initiated a search for a better reflectance function. This
led to discussions with personnel at the Lunar and Planetary
Laboratory, University of Arizona, in Tucson. They suggested
that we model the lunar surface as a Lommel-Seeliger reflector;

that is, have

lC.W. Allen, 'Astrophsical Quantities', 2-nd Edition University

of London, the Athlone Press 1964; Table of Moon's Phase Law -

Page 146
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£(y,8) = EYE%“EE

This did not help the situation, however, for when the half-
to-full moon brightness ratio was computed, we obtained a
value of 0.5. This was worse than the Lambertian model! It
was then suspected that the University of Arizona information
was being misinterpreted and that equation 3.32 gave the ratio
of reflected to actual incident energies. If that were true,
3.32 would have to multiplied by cos vy to account for the non-

!
perpendicularity of dA and S. This would give

2
£(y,8) = E7E:lgg

But alas. When the half-to-full moon brightness ratio was cal-
culated using 3.33 the situation became even worse; the value

was 0.62.

By now, the sounding rocket launch was becoming imminent and
a usable reflectance function had to be settled upon soon. We
therefore returned to the best function we had (the Lambertian
model, equation 3.31) in hopes that even though it produced
invalid brightness ratios, it might permit the significantly

different problem of locating sensor null points to be solved.

3-25
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To see that this might be possible, consider the following.
Suppose we sketch the lunar albedo emergy falling to the west
of the sensor yaw null plane as the plane is scanned from west
to east across the moon. Two such plots are shown in Figure

3-6 and they correspond to two different values of o©.

oonfz 0089

T/2 8o

Figure 3-6

Sketch of B(6e) for Full and Half Moons

3-26
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Let us now sketch another pair of simular curves only this time
we hold o constant at n/2 (half moon) and plot the real B(8,)

and the B(6,) corresponding to a Lambertian moon.

B(Qo)

LAMBERTIAN
032

REAL
0.089

Figure 3-7

B(8,) Curves for Real and Lambertian Moons

The point is that the sensor will point to that value of 6y
where the B(6,) curve has half its end point (8, = m/2) value
and that even though the two curves shown in 3-7 differ in mag-
nitude by more than a factor of 3, their mid-points could occur

at almost identical places.

It was on the basis of such reasoning that the sensor offset

was measured one night (8" U.T., 8 September 1974) by using

3-27



the sensor itself and the results compared to theoretical pre-
dictions. There was agreement to within better than 11 arc-

seconds; much better than the goal of %1 arc-minute for which

we were striving.

Thus, as a result of this very close agreement between theory
and experiment, it was decided to use the Lambertian model in
all subsequent calculations. It is nevertheless most annoying
that we cannot calculate absolute brightnesses and we plan to
continue the search for a good reflectance function. Someday

we may even do it.

3.5 Computation of Sun Position (o) From Ephemeris Data
In order to compute the sun's position angle, o, we must know:

1. where the sun is,
2. where the moon is,

3. where the sensor is,

all with respect to the center of the earth. To accomplish
this, we introduce another coordinate system, EC, which is
tied to the celestial sphere and has its origin at the center
of the earth. Ei points to the north celestial pole and Eg
is aligned to the First Point of Aries. Thus, the celestial

sphere right ascension variable has 0h aligned to Eg and 6h

3-28
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Relationship of Coordinate System
E® to the Celestial Sphere
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aligned to ES; ref. Figure 3-8. The earth rotates about ES
3 1

h U.T.

and Greenwich lies in the positive Ei - Eg plane at O
Suppose a point on the celestial sphere has a right ascension
and declination of p and § respectively. The unit vector

aligned to this point will have the form

cécp

césp

A point on the earth having an east longitude of A and a lati-

tude of ¢ can be represented by

CoHCA

chsA

in an earth-based coordinate system. To compute its coordinates
in E® we must account for the fact that the vector is rotating
about ES at an angular rate w and has been doing so for some

1
time t. The transformation is performed as follows

.34



1 0 0 s
0 cwt -swt CPCh
0 swt cwt ChPsSh

Note that this 3 x 3 matrix rotates vectors about the l-axis

in a fixed coordinate frame.

Now we can proceed, Look at Figure 3-9. It depicts the per-
tinent elements of the analysis; earth, moon, lunar sensor,

and sun. The view is from above the plane defined by the

center of the moon, the center of the sun, and the lunar sensor.

Note that this plane is none other than the 2-3 plane used in
earlier sections; e.g., look at Figure 3-3. The vectors G,

L., and H extend from the center of the earth to the sensor,

the lunar center, and sun's center respectively. As such,

they do not necessarily lie in the plane defined by D and S%
(our familiar 2-3 plane)}. One point of clarification; the vec-
tor S¥*, appearing in Figure 3-9, differs from the wvector S,

Figure 3-3, only in magnitude. S is a unit vector.

Our problem is to find ¢ and we can do this if we know D and

8% for then

3-31



SENSOR

%E??%

AGE
OF PooR QUALITIYS

EARTH

Figure 3-9

Orientation of Earth, Moon, Sensor and
Sun for Vector - Definition Purposes
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D-S*%
o = CO0s IDl ]S*l 3,37

To calculate D, we first need G and L. If h is the distance

from the center of the earth to the sensor, then

1 0 0 s¢
G =nh 0 cwt ~swt chpch 3.38
0 swt cwt cHsA

If dm is the earth-moon distance and P and Gm are the moon's

right ascension and declination, then

sém
L = dm cém cP 3.39
c6m spm
From Figure 3-9 we see that
D=G-1L 3.40
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Next, to compute S%, we need H in addition to L. Let dS be
the earth-sun distance; Pg and 65 are the sun's right ascension

and declination. Then

sé
H=4d cGS Cog

cE_ sp

Again, from Figure 3-9, we see that

Thus, given the sensor's geographic position, the sun and moon's

celestial coordinates, and the time, equations 3.38 through
3.42 can be used to compute D and S% which in turn, via equa-
tion 3.37, produce o. The sun and moon data can be obtained
from an ephemeris and the particulars of doing so are discussed

in Section 4.

3.6 Computation of Sensor Offset Angle

Once we have computed all the pertinent quantities developed

in the preceding sections we will know where the sensor will
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point...in terms of a point on the lunar equator which is dis-
placed an angle 6§ from the Z-axis. ALl that is left is to
convert this into an angular offset of the sensor about its

yaw axis.

Consider Figure 3-10, It is a top view of the 2-3 plane and
shows the moon, the vector D (ref. Section 3.5), and the edge-
view of the sensor's yaw-null plane. The sensor is nulled and,
as such, its yaw-null plane intersects the lunar equator at a

*
point which is displaced an angle 6, from the 2-axis.

MOON

SENSOR

SENSOR
YAW-NULL PLANE
(EDGE VIEW)

Figure 3-10

Geometry for Calculating Sensor Offset Angles



Recall; D is the vector from the center of the moon to the
sensor and has magnitude dm, r is the radius of the moon.

From Figure 3-10 we have

% %
T S8 = 7 = (dm - T cBg) tan e

or

®
T 58y

- =%
d - r cy

g = tan_l(
l m

+This quantity, e, is the angle the sensor will be displaced

from the center of the lunar disk when the sensor is nulled.

3.43
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Section IV

COMPUTER PROGRAM DESCRIPTIONS

4.0 INTRODUCTION

The purpose of the computer programs written for the lunar
radiometric center problem was, in a nutshell, to evaluate
the predicted vehicle sensor offset angle when pointed pre-
cisely at the moon's center of brightness rather than its
physical center. The solution to the problem involved, pri-
marily, determination of required variables to evaluate the
integral of the power density function for a specified time
and location of launch, and from the results of that integra-
tion, to calculate the radiometric center of the moon and

thereby determine the predicted offset angle.

These calculations were accomplished in one mainline program,
assisted by three subroutines, written in FORTRAN IV language
for the BBRC engineering computer, a General Automation 18/30.
Descriptions of the general logic flow of each of the programs
constitute Section 4.2 and are preceeded by some explanation
of features common to all of the programs in Section 4.1.
Section 4.3 provides listings and examples of output for each

of the programs.
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4.1 General Notes

4.1.1 Accuracy of Calculations and 18/30 Computer Precision

Because of the relatively complex nature of and the many itera-
tive calculations required by the lunar radiometric center pro-
blem, the computer programs were very susceptible to error
propagation. The use of the extended precision feature signi-
ficantly reduced error build-up problems, but a substantial
effort was also made through coding and numerical analysis
techniques to avoid inaccurate results due to error pitfalls.
This effort was particularly applied in the task of incre-
menting loop variables when the increment values were frac-
tions which could not be exactly represented in binary. In
this case simple accumulation of the variable value (x = x +
Ax) also results in accumulated error, but the problem was
avoided completely by always returning the variable to a base

value before adjusting it for the next iteratiomn.

All the programs performing the lunar radiometric center cal-
culations were run in G.A. 18/30 Extended Precision, which
utilizes 3 16-bit words to represent real variables. Mention
is made of this fact to differentiate it from the more commonly
known "double precision' which uses four-word floating point

representation. The 18/30 is not provided with the double
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precision feature, but the use of extended precision yields
between nine and ten significant digits of accuracy which was

adequate for these calculations.

4.1,2 Computer Program Execution Time

Again because of the iterative nature of these calculations,

it was necessary to reduce, as much as possible, the computer
run time required to complete the computations. The problem
was aggrevated by the fact that the 18/30 is not supplied

with floating point hardware, but rather must rely entirely

on software subroutines to perform all floating point opera-
tions. The use of extended precision intensifies the run

time problem even further. The resulting calls to floating
point subroutines, especially in the long integration loops,
greatly increased run time requirements. As a result, exten-
sive efforts were made in the programming of the lunar radio-
metric center calculations to simplify equations in loops in
such a way as to reduce the number of redundant subroutine
calls and thereby decrease program execution time. Another
solution was to integrate only over half of Symmetricallregions.
Because the majority of program calculations were involved with
the integration of the power density function, use of this

technique reduced execution time by a factor of two. (See
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Subroutine BIGNT description for further discussion of this

integration technique).

4,2 Program Descriptions

4,2.1 Mainline Program, JAKD

The primary function of the mainline program, named JAKE, was
to initialize parameters required by the power density func-
tion integration subroutines. Upon return from those sub-

routines, JAKE operated on the integration results to calcu-

late the anticipated sensor offset angle.

4.2.1.1 Parameter Initialization

Five parameters were required as input to the integration sub-
routines: the lunar phase angle, earth-moon distance for the
specified launch time, radius of the moon, and increment values
for the two variables of integration. The lunar radius was con-
stant and so was initialized as data. The two integration
variable increments values were constant throughout the cal-
culations and were read from card input. The other two para-
meters were calculated using ephemeris data for the launch time

and latitude and longitude of the launch site.

a. Calculation of Earth-Moon Distance

The American Ephemeris provides the necessary equa-
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tion for calculation of the true geocentric distance

for given time of day:

- 2 3
D = (ao + alP + azP + aSP 16378.16

P is a number between zero and one representing the

fractional part of the half-day in which the GMT lies.

8y @1 a,, ag are polynomial coefficients for true
geocentric distance, tabulated in the ephemeris for
each half day of the year (expressed in units of

Earth's equatorial radius).

The constant 6378.16 is the earth's equatorial radius
in kilometers and is used to convert the earth-moon
distance into kilometers for consistency with the

other calculations.

Calculation of the Lunar Phase Angle

The vector equations required to calculate the
lunar phase angle were described in Section 3.5 of
this report. Parameters required for these calcu-

lations are:

4-5
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Sidereal time for 0 hours universal time of the launch
date; right ascension, declination, and geocentric dis-
tance of the sun; right ascension, declination, and geo-
centric distance of the moon; and latitude and longitude

on the launch site.

Latitude and longitude of the launch site and sidereal
time were read as card input requiring no further adjust-
ment and the calculation of lunar geocentric distance was
described above. Right ascension, declination, and geo-
centric distance of the sun were obtained from the Ameri-
can Ephemeris for 0 hours Ephemeris Time of the days pre-
ceeding and succeeding the launch, and right ascension
and declination of the moon were obtained from the same
source for the hours of Ephemeris Time preceeding and suc-
ceeding the launch. These values then needed to be ad-
justed to reflect the exact time of the launch, which was
accomplished via the following equation for general linear

interpolation:

~q
1t

(x(y, - ¥1) + X, ¥, - Xq¥,)/(x, - xq)
2 1 271 172 2 1

where y the interpolated right ascension, declination

or distance

4-6
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x = the Universal Time of the launch (hours and
minutes for solar variables, minutes for lunar

varlables)

x, and X 0 and 24 hours, respectively for solar variables,
and 0 and 60 minutes, respectively, for lunar

variables.

¥y and Y, = right ascensions, declinations, or distances
as obtained from the ephemeris for the times

bracketing the time of launch.

See Figure 4-1 for a graphic illustration of lunar inter-

polation.

Once these interpolated values were computed, calculation
of the lunar phase angle was accomplished as described in

Section 3.5.

4.2.1.2 Calculation of the Sensor Offset Angle

The calculation of the sensor offset angle is described in Sec-
tion 3.6 of this report, and of necessity, some of the variable

names mentioned there will also be used here. In order to
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TO INTERPOLATE , ASSUMING Y= f(x) IS LINEAR .
Y= {X{ Yo=Y )Xo Y =X Y2 ) / (X2 =Xy}

Figure 4-1

Generalized Linear Interpolation
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determine the Sensor Error Angle, it was first necessary to
#
determine the value for 6, which would correspond to the lunar

radiometric center, as shown by the following ratio:

The power density function integration subroutine returns to
the mainline an array of tabulated integration values (B(8;)'s)
corresponding to the range of 6, angles. Dividing the end
point of this array (B(w/2)) by two yields the center of bright-
ness [B(G?) value. By finding the two elements in the array
which bracketed that point, it was then only necessary to inter-
polate between the two corresponding 6, values to determine

the required 6? angle. This interpolation was accomplished
using the linear equation described above. Having found e?,

the Sensor Offset Angle was calculated as shown in Section 3.6€.

4.2.2 Subroutine BIGNT

The purpose of subroutine BIGNT was to perform the required
integration of the power demsity function, given the necessary
parameters provided by mainline program JAKE. BIGNT's first
task was to determine the limits of the integration variables,

o and 8y5. The criteria for this determination are described in

4-9
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Section 3.3 of this report. Initially, the incremental values
of integration, Ao and AB,, were fixed at 1°, and since the
upper and lower bounds of 6, were always integral amounts of
degrees, the 1° rvestriction on A6, was sufficient. The inte-
gration limits of o, however, often included fractional parts
of degrees, so the Ao value was subsequently adjusted slightly

to fit exactly within the range of integration.

It is also necessary to note that the initial values for the
variables of integration were not set exactly to their respective
lower limits, but rather were set a half increment above those
values (i.e., lower limit + Aa/2 or +A8,/2). The reason for
this initialization was twofold: 1) Since only half of the
full symmetrical region was being integrated. (See Section
3.3), the variables of integration were set up a half step to
fully cover the illuminated region of the moon and to avoid
duplication of the region's mid-area; and 2} the most meaning-
ful result of the point-wise integration could be obtained by
evaluating the integrand at the mid-point, rather than an end-
point, of the differential area. See Figure 4-2 for an,illu-

stration of this method of area mid-point integrand evaluation.

Having accomplished all of this initialization, BIGNT was then

free to attack the problem at hand, the evaluation and integra-
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Pigure 4-2

Illustration of Mid-Point Integrand Evaluation
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tion of the lunar power density function. The task was accom-
plished in two nested DO loops, the outer loop being concerned
with 8y, and the inner loop with a. For each value of 64, the
power density function was evaluated for every value in the
range of o and the resultant function was then integrated over
o. The actual integration was performed by an 18/30 Scientific
Subroutine Library program, QSF, which uses a combination of
Simpson's Rule and Newton's 3/8 Rule. QSF operates on a tabu-
lated array of function values, and returns a tabulated array
of step-wise integration values, the endpoint of which is the

final result of the integration.

As each o loop is completed for each ©4 value, the endpoint

of the resulting integration vectcr was used to form an ele-
ment of the array which, when the 6, loop was complete, would
again be integrated by the QSF subroutine, this time over 0.
The final array of integration values, thus obtained by BIGNT,
was then returned to the mainline program along with an integer
variable indicating the number of elements in the array. Hav-
ing completed its appointed rounds, BIGNT then goes to sleep
awaiting another call from the mainline program and a new set

of parameters.
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4.,2.3 Function Subprograms FLUX and RDFCN

The actual evaluation of the power density function at a single -
point was performed by two small function subprograms, FLUX

and RDFCN. Subprogram FLUX was responsible for evaluating the
entire power density function, and it calls RDFCN for defini-
tion of the Iumnar reflectance function. During the development
of the math model, when experimentation with Lambertian, Lommel-
Seeliger, and other radiance functions was going on, it was

most convenlent to have the function evaluation and reflectance
function itself separated from the larger programs so that small
changes to the equations could be easily and quickly incorporated.
Since that experimentation continued up to the very last calcu-
lations, RDFCN and FLUX remained in existance and were never

merged with BIGNT.

4,2.4 Additional Programs

Using BIGNT, FLUX and RDFCN as a calculating base for the lunar
radiometric center problem, several other mainline programs,
besides JAKE, were written. Since these programs did not con-
stitute part of the final product, but only contributed to its
formulation, they will not be described in any detail here.
They should, however, be mentioned because of the functions

they provided as constructive tools.
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Primarily, the other mainline programs differed from JAKE in
that they did not actually calculate the lunar phase angle and
earth-moon distance parameters required for the integration of
the power density function. Instead, they operated on constant
values for these variables. Neither were those programs con-
cerned with the determination of the sensor offset angle, but
rather centered around the calculation of power density ratios
for different lunar phase conditions. No consideration was given
to an actual launch situation, but instead hypothetical, and
therefore somewhat predictable, circumstances were assumed.

In this sense, these programs provided a valuable tool for
evaluating the performance of different lunar reflectance func-
tions when compering, for instance, full to half-moon bright-
nesses. These programs also provided a wealth of plotted out-
put which served as a visual aid in the trouble-shooting of
both the programs and the math model. So although these pro-
grams did not constitute a part of the final calculations re-
quired by the lunar radiometric center problem, their contri-
bution to the end item cannot be overlooked. The listing for
mainline program HERB is included in the next section to serve
as an example of the type of function provided by these inter-

mediate mainline programs.
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4,3 Program Listings and Sample Output

Included in this section are listings and sample output, where
applicable, for each of the programs and subroutines which con-
tributed to the solution of the lunar radiometric center pro-
blem. The order of appearance is as follows:

1. Mainline Program JAKE

Sample teletype output
Sample printer output

2, Subroutine BIGNT

Sample teletype output
3. Function Subprograms FLUX and RDFCN

4, Intermediate Mainline Program HERB

Sample plotted output.

1
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BBRC

CERRS ¢ 0 s STNOvCona e

PROGRAM JAKEs EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE SIGMA

FORTRAN

SOURCGCE

ST ATEeEMEMNMTS

IDENTFCN FRCOMPILER MELLAGESH*

c . . . U
ccceCCCCeCLLCoCCecceCCcCeCocceaccceeeccececcecceocececececeCccecceeececcoceccecece

- c - . e em e e e S - s
C PROGHAM NAME = JAKE €
[ (¥
¢ UTILIZATION - DETERMINES LUNAR PHASE ANGLE, SIGMA, FRUM LUNAR C
L € AND. SOLAR RIGHT ASCENSIONS. DECLINATIONS: EARTH c o o
¢ UISTANCES, ETC, FpR TeFE SPECIFIED TIimE AND LOCA- €
c . TION OF THE LAUNC.H SIGMa IS THEN DUTPUT Tg sUs. ¢ e e e et —— st e s . = e
c ROUTINE '"BIGNT'y WHERE THt LUNAR BRRIGHTNESS FUNC- ¢
U S, Tion IS EVALUATED, UPON RETURN Fo *JAKE'y THE C
¢ " LUNaR cENTER OF BRIGHTNESS ANGLE, THETA-0 IS DE- C
R C _ TERMINEQs FROM WHIcH THE TRACKER OFFSET aNGLEt EP- ¢ . ___ . el o e e e
c SILON IS CALCULATED, c 'yg
— . I o O o c —
c SUgROUTINES REGBUIRED « +BIGNTY, pRIGHTNESS FUNCTION INTEGRATOR ¢ ) 8’53‘
e 'ROT', THREE-DIMENSIONAL COORDINATE SYS= ¢ _ S5
c TEM ROTATION SUBROUTINE c wﬁ
¢ tDMS2RY AND *HMS2Rt, CONVERSION ROUTINES C_ B o e
c FOR EPHEMERIS HOURS AND DEGREES TGO C S
U, c — e e e . _RADIANS —— S ST A - S e
c c 52
c CARD INPUT = LaUNCH DESCRIPTION HEADER caRD c fa- il So]
T DAY OF YEAR AND TIME IN HOURS AND MINUTES OF LAUNCH € wd
= c RIGHT ASCENSIONS, DECLINATIONS AND EaRTH OIS~ ¢ —— - ‘t/:"' e e el
M c TANCES OF SUN FOR DOY AND DOY+1 c o
_— ¢ _SIDEREAL TIME FOR 0 HOURS on OOY SR - e o e -
c RIGHYT ASCENSIONS, DECLINATIONS AND EARTH DIS- c
C TANCES OF MOON FUR _HOURS AND HOURS+1 c
C MOON-EARTH DISTANCE POLYNUMIAL COEFFILIENTS [
. € o . __ _LATITUDE AND_LONGITUDE OF LAUNCH SITE c
¢ DELTA ALFHA AND DELTA THETA FDR BRIGHTNESS FUNC~ c
. c e _ TION INTEGRATION I
C c
c MARDA BARTHUL I c
[ BALL BROTHERS RESEARCH CORFORATION €
_C___ BOULDERs COLORADO SEPTEMBER+ 1974 c
¢ c
CCLCCCLCCCLECCCLCCOCCLCCCCCCCCCCeCCCCCeCCCCCCCeeCCCeeceCeCCCcrececeecee
c [
COMMON SIGMA, RABs DM
REAL INTRP LAMDA
- o .o _ _INTEGER DOY o
. DATA AU/1.496E8/, SF/1.0E-~6/ ’
DATA OMEGA/15.04107/
DATA PI/3.,141592654/
Cc
. _ DIMENSION ISTUF{3B)lvA(4}.pM(3}+nS{3}sBY(3}+8D¢311E0¢3}+BE(S)
DIMENSYON 8(186)
c
R2D(X) = X*186.0/P1 - - -
D2R{X} = XMPI/180.0
] TeAZ20Y1T 2 3 2=T1 1 - X3 7 il
. ... ROUND(X) = YIFIX(X*100G,0 + 0,5)/10040 . _ B
t C
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pBaRC PROGRAM JAKE, EXERCISES LUNAR BRIGHTMESS FUNcTIONS FOR ONE SIGMA

*%COMPILER MESSAGE Sk

SOCURCE STATEMENTS .esevsees IDENTFCN

CCCCCLCLCCLCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCLLCCCLLCCCC

c c
c DO SOME INITIALYZING c
c c .
. cccccgccctggccCCCCCQQCCLCccccqcccccaccchggccggccgggcccECCCCCCCCCCLCCCCL
c A - o T e T ToTT s moTmTe
CALL TIMEX(D.LLKK) X
c
RAD = 1738.0 .
c
C _ ) . . I,
5 READ{2+4000END=500) ISTUF - Tt - e T T
READ(2,4001) DOY, IHy M ) .
WRITE{1,8000)
WRITE(5.8001) ) .
WRITE(S 4007} ISTUF -
WRITE(1+4000) ISTUF . . X
WRITE(5.4100) DOYs IH+ M - ’ - T T
C
UT = TH + M/6040
P = UT/12.0 . ) .
IF(IH ,GTs 12} P = P~=1.0
t
= € - o - T ) e o - Tv oo -
o CCCCCCCCeLLECCCCCECCCrCLCeceeceececereeeeecececceccteeececccrcLeeceeceece
oo C [
c DO SUN'S Reper OECes AND DEISTANCE INTERPOLATIONS...READ THETO C
C N ¢ _
o gccccccccqgggccccccccccccgggpccccccugccccccccccccccccccccCCCCCLcccnccccc
I C -
N 1 READ(2,4002) IDAY,IRH1,IRM1,RS1,IDH1,IUM1,051,5081 ) ) ) }
READ(244002) LUAY+IRH2+IRM21RS2¢ IDH2 v IUM2410S218D82 ) o - o
c
IF(IDAY ,EQ, DDUY ,AND, LOAY ,EG, DOY+3) GO TO 2 Tt T
e WRITE (S5.4003) . . . — o e o
PAUSE 1234 T ”
- . 60 T0 1 - - . e - - - - . o R ——— o
c
N 2 READL2+4009) ITHeITMTS | e e e wma— e e e . .
THETO = (ITH & (ITM + TS/60,0)/60,0)%15,0
c )
WRITE(S5.4200)
WRITE(5,4300) IRH1,IRM1+RS1,IDH1,IDM1.051,5081 _ | . .
WRITE(S5,4300) IRH2.IRM2.RS2,10H2,10M2,052,5052
WRITE(5,4%00) ITHeITMTS . . . _ _ ) L o
c
SRA = INTRP{0,0,2%,0,HMS2R(IRH1,IRM1,RS1),HMS2R(IRH2,IRM2,RS2),UT)
c
SDEC = INTRP{0e0 424, yDMS2R ( IDHL + TOM140S1) +DMS2R (I0HR 4 IDM2+DS2) 4 UTY A o
. R

DS
Ds

INTRPL0,0+24400¢S051+8SDS244T) . i i
DS*AU

"ot

C

C
c

c
CCCCCCCCCCLCCCCCCCCCCfCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCECCCCCCCCCCCCC

. - o . c
DO INTERPOLATIONS FOR MOON+*S R,A, AND DEC,.s AND CcOMPUTE DISTANCE C


http:ITH.ITM.TS
http:ITN,ITM.TS
http:TIMEX(OLL.KK

PROGRAM JAKE+ EXERCISES LUNAR BRIGHTNESS FUNCTIQNS Fpor oMNE SIGRA

RAGE &4 B8BRC
o C-ERRS+++5TNOCuyses FOR TR AN SOURCE sSTATEMENTS +vesvees [DENTFCH #xCOMpPILER MELLAGES*
c FROM MOON TO EARTH USING A~COEFFICIENTS aANp P c
c c
CCCccCCCoCLCCeCcCCocctccccoCeccCcCccocccceCcccoccccocecCccoccccccccceccocccocLLccooe
c c
- e -..83 . READ(2.%002) IM, IRH3, IRM1, RS1, IDH1, IDM1, DS1 __ _ ___ _ —_ e e o me e v e e am ——— 1 ormm
READ(2e8gp2) LMe IRH2» IRM24 RS2y IDH2y IDM24 OS2
c .
IFtIM EQ, IH +AND. LM ,EQ, IH+1)} GO TO 4
WRITE(S+4005) . -
PAUSE 234%
GO TUO 3 - . e - R . . e
c
4 READ(24,400U) A —_—
c
WRITE(S,4500) _ —— e ————
WRITE (544600} IRHL«+IRMLI+RS14IDHL+IOMLepSL
WRITE(S,4600) IpH24IRMZ¢RE2¢IDH2,IDN2,D52 e e B _ e
WRITE(S,4700) A
c
RAM &= INTRP(D+0+60eC0+HMSZRIIRHI+IRMLI+RSI) +HMSZRI{IRH2 IRM2+RSE2} ¢FLO
LAT(M)) .
c
. DECM = INTRP (0046040 nMS2R(I0HLIDMIv0S1} 4 gMS2R(IOHR\IOMRYuS2} vFL o . .
= 10AT(M))
= c :
00 10 J=244
A = A(JI%RSF B
10 CONTINUE
T T T DM = T((ATYHYEP ¥ ACBTIRP FTAL2TI%P ¥ A(11Y#GETB.16 -
c
WRITE(5,4006) SRAe SDECs DSy RAM, DEcM, DR T - T - - o Ttttk T/, T T
c C R e e
CCCCCLCCCCLLCTCCCECEtCCetCCCCCtLCCLCCCCCCLCLCCCCCCLCCOCCCCCCCCLCoCLCLee T
- c . : _ »
C CACCUCATE VECTUHS W2 "8y €0y Ev V AND O [ - - T
_ c . -__‘E .. —_ — e —— — - e
(o] of of of o o] of o o o Y o o o] d o o of 1 of st X oA of o a2 WL o i s of o o o] s LT ] W] W o A L] A S UM A A WA A Ao A Ao o - T
C c

BM(1) = SINipDECM) %DM~
BM{2) = COS({DECM)*COS(RAM)*DM

TBNCAY E COSTOECM T *SIN(RAN T ¥DM

c —

BS(1) = SIN(SDEC)*DS T T ’ ) T o o
BS(2) = COS{SDEC)*COS (SRA}*DS — .. - —_—
BS({3) = COS(SDEC)*SIN(SRA)*DS - } T T

C
READ(2,4008) LAMDAy PRI

[ ettt
EO(1} = SIN{N2R{PHI)} -omotT o - T T
EQ(2) = COS(D2K(PHI) )*COS{D2RILAMDAY) . . - —
EO(3) = COS(D2R(PHI) }#SIN(DZR(LANDA})

c
THETA = DBRIOMEEGARUT ¥ THETO)

CALL ROT(~THETA, 1+ EO+ BEs+ IER)
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PAGE 5 gBRC PROGRAM JAKE, EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE SIGMA
C-ERRS,,.5TN0.Coyees FORTRAN SOURCE_ STA Te MENTS ,e0seeee IDENTFCN #%COMPILER MESSAGESH*
Do 30 Jz=143 . e -
BD{J) = 8M(J) - BE{D)
BY(J) = BM(J} = BS(H)
30 CONTINUE
. C._ L - _ N i e e S * R e e e
CCcccecectLtecooeceeceeccceeccecceccécceceeeccecceceeecccecceceecececceececccec
c c ) .
c CALCULATE PHASE ANGLE SIGMA C
c C A R
CCCCCECCOCLECCECCCCCCCCLEOCOCEECecacrcecrceccLcceceLcrececceccoecceeeeeccet
In [
DENL = 0.0 ) - moTT o T . i o -
DEM2 = 0,0 - -
PROD = 0,0 on
c . -3 . . R
00 40 J=1+3 o 6
DEN1 = DEN1 + By(J)*x2 oL i} e . _ S e e
DENZ = DEN2 + BD{J)}%%2 =) E
PROD = PROD + BV(J)*BD(U) '56?
49 CONTINUE o
DENDM = SQRT(DENL*DEN2) e B ~ .
c
_ __ _SIGMA_= R2D(EACOS(PROD/DENOM)} . o e, e -%;é e
C [ i
E CCCCCUCCCOLECCeeeeeerceeeeceecceececLeceeceeceeLceceeeccecccceocccereeccece % _
o c C
C PRINT aiL THIS STUFF OQUT ON THE LINE PRINTER c i i
c C
o gccccccccct_.g:cr:q_:_ct;ccc_ccccccccccccccccccg_cccccccccccccccccccccccccccccccc .
c c
WRITE(S545004) PHI+ LAMDA } . - . . e e e
WRITE(5,5000) BM(1}, BS(1)s EO{1}
WRITE(S,5001) BM{2), BS(2), EOQ{2}, BM(3), BS(3}, EOI3) L. e
WRITE(S,.5002) BE(1)s BV(1)s BO(1)
. WRITE(5,50031) BE(2), BV(2)s BO(2), BE(31, BV(3), BO{3) I, -
c
WRITE(5,5003) SIGMA _ i ) P . . _ _ . e
c C
CCCCGGGCQC‘:CCCGCCGCCQCCCC_CQCCCCGECCQQGFCQCE-CQCQC_QGQ?CQ_QCC.QE,GQCGFQ£QCE - _ . - - - . —
c c
e, c. 00 THE INTEGRATING OF THE BRIGHTNESS FUNCTION FOR THIS SIGMA c
c T o
i CCCCCCLCCCLECCOCoeceeceLcecececceceeeeeeceeeccocececcccecccecccecLceccececcee } i o
c c
READ{Z+4008) DALPHs DTHET . N L _ _ L _ ) B e
c
CALL BIGNT(DALPH, DTHET, By J) -
881 = B(J)
N c L i i . .. _C . e
ceeecececetucécceccececeecccéocccccecceccecoccfcoccicoeccceceeccococrcecececce
c c
¢ CALCULATE THE EPSILON ANGLE FROM THE HALF BRIGHTNEES ANGLE THETO C - -
C c
Pl W M AR WA R AR R e A A R K Aef ool of o o o ol L L o e of {il o] Wl oL o] n{ o1 &
c C

HALF B(J)/2,0
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c

500

c

son o« —GALL_EXIT

C . ol e .
ccceceececteccecccccecectceccececceccceccceecicccccoccciccccocccececeLcoecceoce

-0 105

FORTRAN SOU_I}(;HE_

THET = DTHET/2.0

IF(sIGma ,LE, 90,0) THET = THET + SIGMA - S0.0

THETA = THET

DO 60 TI=lad
IF(BLI} = HALF) 11.,22,23

STATEMENTS ees

Al = THETA

THETA = THET + I*DTHET

CONTINUE

A = THETA i

G0 TO 70

A2 = THETA

A0 = (HALFx(A2-A1) + B(I)*A1 =~ B(I=-1)%A2)/(B(I) ~ B{I=1})
EPS = ATAN(RAD*SINID2R(A0VI/{OM = RAD*COS{D2RI{AD))))

EPS = R2RO(EPSYI*60.0

EPSI = ROUNDI(EPS)

WRITE({S,6200) AQ
WRITE(S5.6300) EPS  _
WRITE(1+6900) DOYe IHe M
WRITE(1,6800) PHI+ LAMDA
WRITE(L,3000} SIGMA
WRITE{(146000} EPSI

CALL TIMEX(1.LL4+KK}
XK = KK/100,0
WRITE(S+6100) LL. XK

PROGRAM JAKE+ EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR ONE SIGMa

rasae _EDE@_TFCN

xkCOMPILER MEOLHAGES*®¥

- c _ ] e R

c FORMAT STATEMENTS [
— e & e c

cceeelLeeccLcceccecceccocccec CCCCCCCcLCcCeCcCccecccocececcecoccoccocLccLccececcececce
. c c

c

C — - — s -

3000 FORMAT(//'LUNAR PHASE ANGLE = "+F8.4+' DEGREES')

C

4p0p FORMAT(36A2)

Cc

4001 FORMATE(IZ«+2{(1X+I2))

c .

4002 FORMAT(IZ1X,21144I3,1X+F6,3)+FL0.7)

S — .
G60% FORMATIVOSCREW UP ON DOY FOR SUN DATAss«TRY AGAIN.')

c
kooy

FORMAT(4F10.0)



PAGE 7 BBRC PROGRAM JAKE+ EXERCISES LUNAR BRIGHTNESS FunCTIonS FOR ONE SIGMA

C-ERRS...SINO-C-.--- FORTRARMN Sog URZC Q 87 fmr & ﬁ E N,F.§._"""" IDE@{fgﬁ_ "{*QQMEE}EN.M§3§Ath**

c
. 4005 FORMAT(+0oSCREW UP ON HOURS FOR MOON DATA, ., ., TRY AGAINY)

c

4008 FORMATI/Z'00,'SUN"/Y "45Xe"ReAs = "+E18.7¢* DEC, = "+E1H.Te® AND E
__LARTH DISTANCE = '|F14.?£ﬁ0'l'MUON'{' *e5X+'ReA. EﬁjiElﬂgli' DEC, =

2 Y.EL¥,7,' AND EARTH DISTANCE = ',E14,7/)

(o

4007 FORMAT(r1v. 3542}

C

4008 FORMATIZ2F10.5)

c
4009 FORMAT(I44X3,1XF6,3)

c
4100 FORMAT{'0*+"pOY*' I3+¢5X+* TIME = "+IZ2¢"H'+2X+ 12+ "My UNIVERSAL TIME
2') N e

[

4200 FORMAT[//vo+,*EPHEMERIS DATA, SUNt'}

c

47300 FORMAT('0%s5Xs "RIGHT ASCENSION = *eI4eI3+1X¢F6e3+92Xe*r DECLENATION
1 = ¢ T4, I341%«F6,3+* AND DISTANCE = *,F10,95)

c
4400 FORMAT(//'0*"EPHEMERIS THETA=0 ANGLE = *+IHsX3+1IXF643)

- . v - e m— - .. e T ———t—a—— - e e e w—

c
4500 FORMAT(//v0v,*EPHERERIS DATA, MOONY) ™ 7~

c
4600 FORMATIYO® 55X+ "RIGHT ASCENSION = "+I4+I341XeF64342Xe? AND DECLINAT
1ION = v, I4.+13+1X.F6,.3)

ZZ-¥

c
4700 FORMAT(70%+5X+"MOON DISTANCE POLYNOMIAL COEFFICIENTS = '1F3.643(2X
iFgBedlyy T T T T T T

C .
5000 FORMAT(//707"5XstM VECTOR = *+ELH. 745X+ 'S VECTOR = '+E14.Te 53X 'ED
LVECTOR = *+E147)

09

FORMAT(2(07 416X sE14, 716X ELeT1TXELGT/Y)

1

|

|

!
;oo

002 FORMAT(//v0¢,5X,tE VECTOR = v,E14,745X,*V VECTOR = o E14, 76X 0V
1ECTOR = t4El4.7)

c . X N e

5003 FORMAT{//*0v,'SIGHA = *,E14,7)

c

SO0 FORMATU77 YU Y CATITUGE AND LUONGITTORE UF LAUNCH SITE = T+EIZ T T

1AND '4E1447+'y RESPECTIVELY'}

c

6000 FORMAT(*TRACKER OFFSET ANGLE = 'sF542+' ARC-MINUTES®}
c

6100 FORMAT(//%0%, *EXECUTION TIME = ¢,13+1X,F5.2)

[
6200 FORMAT('O'+*THETOv CENTER OF INTENSITY ANGLE = t4EL1H.7)

C
6300 FORMAT{*Q* 'EPSILONy LOS ANGLE = '+E14,7+* ARC=MINUTES®)

c
6800 FORMAT(//'LATITUDE OF THE LAUNCH SITE = *(F7,3+* DEGREES' /*LONGIT
T0DE UF THE LAUNCH SITE = TeF&8¢3¢° EES¥]

c
6900 FORMAT(//'DOY = 413! AND LAUNCH TIME = ¥+I2+"H*'«1Xe12¢'Msr UNIVER



PAGE 8 BBRC

c-EﬁRS,,,STNp.C..... FORTRA N

SOURCE_

ST t EMENTS

PROGRAM JAKEes EXERCISES LUNAR BRIGHTNESS FUNCTIONS FOR OME SIGMA

R EL R IE_ENTFCN *KRCOMPILER MESSAGESHkK

REAL CONSTANTS

,180000000E 03=053¢0
~IZ0800000E 02=093F LYOGU00000E 0I=7
.B37816000E o4=p5HE

»100008000E 030533

,200000000E ol=gp551

.500000000F 00=0536

oI=H 42 L XS 00gn000

=0

L FU0Y000LUCE p2=0354

1SAL TINME®)
c
BOOO FORMAT(/////) 2o
¢ N
8003 FORMAT(*1") . . . o Y~ ¥ - A
: S
; S
END E:
VARIABLE ALLOCATIONS o
BLANK COMMON SLOCK ]
SIGMAtR*6 C)=TFFD RAD(R*E C)=TFFA DM{R*& CI=TEFT ) = g o
EQUIVALENCES & INTERNAL VARIABLES t
LAMDA (R¥g )=0200 DOY{I%¥» 1=0203 PI(R¥g 1=0p04 LL{I*2 )=0207 KK({Ll*p 1=0208 r:? 531
IH(Ix2 )=p209 M{I*2 )=020A UT(R¥S 1=p208 P(R*6 )=020E ILAYy (12 )=0411
IRH1(Ix2 j=p212 IRM1 Ix2 )=0213 RS1(Rx6 y=p21% IDHY (I#2 y=p217 IOML(Ixe  3=0218
pS1l(r*6 )=0219 s0St(r*6 1=021c LDAY(I*2 )=021iF IRH2 (I%2 )=0220 IHM2({1*2 )=0221
RS2 (Rx6 )=g222 I0H2 (Ix2 y=p225 IDM2 (Ix2 ~ )=p226 DSz (Rx& y=p227 SUS2(Rx& )=022A - - —
ITH(I*2 1}=g220 ITM(L*z )=pp2E TS{H*6 Y=po2F THETO(R*6 }=pz3ze SRA{K*B }=02385
SDEC(R*6 }=0238 Dg¢r¥6 )=0238 AU(R*E )=023E IMN(I%2  )=02%) LM(L1%2 )=0242
RAM(Rx6 )=g2u3 DECM{Rx& }=0246 JiIx2z y=p249 SF{Rx6 )=024%A PHI (Rxb )=024D
THETA(R*6 )=g250 OMEGLA{R*6e )=p253 IER(Ex2 Y=(ppe56 DENg (R*6 1=p257 DENp (R¥*& ) =pRSA
pPROD(R*6_ 1=0250 OpnNGM(R®E6 ) =0260 DALPHIR*6 )=0263 DTHET(R¥E )=0266 BB1(K%xd )I=0269
- HALF(Rx& )=p26C THET (Rx6  )=026F T Y(Te2 )=0272 T RI(R%E TYRGETS S T TRG(R¥E T ) Foeve T T T
\ A2 {R%g 26279 . EPS(R*& =q27C EPSI(RA%g )=q27F XK{R*s }=p2b2 ISTUR (1*%2  }=gaUg=g2AD
o A(px6 y=020A~p201 Byir*¥6 1=02E3.0200 Bs(r*6 )1=02EC-02E& By(r*6 )=02F5-02EF BD(r*6& )=02FE~02F8 :
EO(Rx6 3}=0307~0301 BE(R%6 )=0310-030A B(R¥6 )=052C-0313
STATEMENT ALLOLATIONS
3000=08862 gpizU578e ~ E00l=0579 TWool=05VE T T HO005=058Y T UUOW=Z0SA0 BHGSS05A3 Hi06=05B8 G007=0609 T #008=G60Y
4go9=p60C 41000611 4pp0=p62E 43pp=g63E 4490=0668 y5q0=067F 46gg=gp68F 4Tgo=0681 Sgou=0eCf Hp0l1=p6EF
5o02=g6FB  50p3=071B  Spp4=0726  60p0=074F 610070765 ~ 620020777 63p0=078E  6Bpu=g7AS  6%00=07U6  BuugEg7FE T T T T T
8001=07FE R2D=0801 D2R=0BOE INTRP=0813 ROUND=084C 5=0883 1=0806 2z0916 3=0946 4=09£2
10=0ASA 30=gB38 4p=gB72 11=0C21 60=0C2E 22=0C37 24=9gC3D 70=QCBF Spg=qLC8 ~ T T
FEATURES 8UPPORTED” -~ ~~~—~ — —~— T mmomoTmTT o peanta
_ ONE WORp INTEGERS . ; . _ )
EXTENDED PRECISION T T B T e
_ _ORIGIN L . e e e . .
10CS- B - T
PLOTTER . . _
1403 PRINTER
TYPEWRITER o i
CARD ) il o TTTT
CALLED SUBPROGRAMS - ) - T o st oTT
EIFIX TIMgX HMS2R pgMS2R  EFLOT  ESIN ECOS ROT ESGRT EACOS BIGNT  taTaN  INITS  EaADU ESUB
ESUSX EmRpY FREYX “EDTV FCY " ELHY T TEETO EST0%X  ESBR EDVH EAXI " TWRYYZ  CARUZ " VCHRI ™ "SRED
SWRT ScomP  SFIO S1oal  SI0AF  SIOF 5101 StpSc  PRNZ PAUSE  SNR SUgIN  SEOF FLOAT  1SUB
LRBT LRLE LREG T ” ‘ ) T T

+173800000E 04=D539 +600UBUDUDE UZ22053¢C
. U = R TUOE " TaXyswe




LAUNCH AT XAUAI., HAWAII, 3 NOV. 1974, 10H 38M U.T.

D@y = 307 AND LAUNCH TIME = [0H 38M, UNIVERSAL TIME

LATITUDE @F THE LAUNCH SITE = 22.065 DEGREES
LENGITUDE @F THE LAUNCH SITE = -15%9.781 DEGREES

LUNAR PHASE ANGLE = 42.1534 DEGREES
TRACKER @FFSET ANGLE = 4.88 ARC-MINUTELS

EXAMPLE OF FINAL TELETYPE OUTPUT
FROM MAINLINE PROGRAM JAKE

4-24



EXAMPLE OF PRINTED CUTPUT

FROM MAINLINE PROGRAM JAKE
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LAUNCH AT KAUAI, HAWAII, 3 NOV, 2974, 10H 38M U,T.

DOY3ap7Y

TIME = 10H 38

EPHEMERYIS DATAy SUN

UNIVERSAL TIME

—— s -— -

RIGHT ASCENSION = 1% 31 4,990 4+ UECLINATION = ~14 52 24,700 AND DISTANCE = 0,99203
=t 7T RTEHT ASCENSION = T 14 35 1,370 T, DECCYNATION = D15 11 1o0,800 AND DISTANCE =27~ o,%91ve ™ 77
EPHEMERIS THETA-Q ANGLE = 2 47 29,308
EPHEMERIS DATA+ MOON
RIGHT ASCENSTOW = 5 a7 36,739  AND DECLINATION = 22 8 15,320 -
- RIGHT aASceEnSIOon = 5 30 6,930 AND DECLINATION = 22 7 2.450 7 o - -
MOON DISTANCE POLYNOMIAL COEFFICIENTS = 58,992645  -196552,0 10632,0 -39,0

SUN
., = 0,3808433E pl DEC,

9z-v }
I

hree )

>

1

MOON

Refe = 0,1436349g 01 DEC, =

. sy = A mimes = emes  mee o ———

LATITUDE AND LONGITTUpgE OF LpUNCH SITE =

M VECTOR =

0.3861500¢ 00 AND EARTH DISTANCE

-0,2620108E op AND EARTH DISTANCE =

0,1483921E (9

G.3752067E 06

NID1E0

i
i
i
i
i

H00d I0

v ad

X

qf #OVd TV

i
H
.
|

0.2206553 02 aNp ~0.1597818E 034 RESPECTIVELY

02413121 06 S VECTOR = _»0,3843702E 08 EQ VECTOR = 0,3756667¢ 00 S _ ———
- D.4659012E 9, . __=0.31126239% 9% .. .=0,8626515E 00 - o e
0. 3444420E pb »0,8864911E g8 -0,3202821E oo
E VECTOR = ©B.3756667E 00 YV VECTOR = "0,3B57833E 08~ O VEETOR = 0.19131ivE 06~ R
0.6884210E 00 0.1126705E 09 U,46568943E 05
0.620444%0E oU ) ~ "0,B6B99F56E 08 0, 3444419E 06 T Tt
T - - - - —_ - o m——— - - —  mgmes oo P
. -
SIGMA = 0.4219347E 02

- e

LA S e L al



B MATRIX BEFORE INTEGRATION

0,52741F.01 0,2911%9E gy o0,54657E on 0,10990F 01 0,16805E 01 ¢,22639E o1 g, 29669E 1 ¢,37448E o1  o,4098YE p1  (,55229E pi
0,65169E 01 0, 75TEPE p1~ a_87068BE pf h‘aassﬁt“‘r“‘ﬁ“rrfﬁaE‘uz“‘"“rznsrﬁ“ﬁz“'ﬁ“‘sﬂzsﬁ“ﬁz““““rszvse 02'“v”rs721t“v2““v‘r82¢at“ﬁz*“"““
0.19809E 02 0,21417€ p2 p,23064E 02 p,24746E g2 p.26461E g2 9,28211E p2 0,299B81E g2 y,31772E 02 0.335981L g2 ,354g4E g2
0,37237E g2 0,39077E p2 o0,%0%10E p2 0.427578 02 a.#459oE 02 o, ‘46413E p2 g,48222E g2 y,5p013E y2  y.5178ik g2 ¢, 53522E g2
0,359233E g2 v, 569105 02 u_stqBE vz g¢,6p14%4E g2 0,61687E g2 o, 531&7E w2 u.susssE p2 p,e5p26E p2  v,67363L g2 0’585315 02

o, 698335 g2 0 709635 02 0,72032g 02 0,73023 02 0,.7393% 02 o, ‘7477% 02 0,75540g 02 ¢,T76221g 02 U,76820r g2 o 77337 02

0, 77770E 02 o0, *78119E 02 0,78382E g2 p,7B8559E g2 ¢,78651E p2 ¢, "78657E g2 0,78577E p2 g,78411E g2 o,78160€ g2 L 17825E g2

a9, T TE 02 o, 76%7E y2 g 753258F p2 "y,75685F y2 g, 749255-52"*9 fTUTIRET B2 g, ‘732338 g2 0'72263E i 0 71233t'ga“"u MISTETE T
0, 168976E g2 0.67753E p2 0,66471E 02 0,65134E g2 0,63744E p2 o, '623p5E w2  0,6p820E vz u,59292E vz 9,5/72dt g2 0,56122E o2
o.5u487E 02 0,52824E p2 0.51167E 02 0,49428E p2 0.477025 v2 g, *459e3F g2 9.44215E u2 u,uzusoE vz u.4u704t 02 0.38949E 02
0,37199F g2z w, ‘35459E g2 0,3373pE p2 p,32018E p2 0p,30325E 92 o, *28655E 02 v,27011E p2  ,25396E p2 o,28813& g2 g,22265E 92 |
0.20755E o2 ¢, '19285E g2 0,17858E p2 g¢,16476E g2 0,15142F g2 o, *13857E g2 0,12623E p2  0,11643E g2 u,1udlTE G2 0,92476E 51
0,82348E 01 U, 172841E g1 o,63B44E p1 ,55482E g1 0,47720E 01 U, ‘4g560E 01 U,3%uudE Ul  y,2B048E g1  y,22691k g1 U,1792%E g1
0,13754E pl1 U.10157E p1 0,71282€ uo 0,46557E Go 0,27255E 00 O *13224€ gp 0,%2946E.B1 0,2B8029E.02 U,QUUCOOE UOTS0,I5I6GECFE T

B MATRIX AFTER INTEGRATION o

0,00000¢ U0 ¢,16091 00 ©0,62135¢ DO 0,14864 01 0,28491p 01 047948 01 0,74036¢ 01 U,10753g 02 0.1%918y g2 0,199T4e 02
0_25987F 02 v, 33031E p2 o, %1167E 02 0,5046%5E 02 0,60980E v2 o, '72782E (2 5.85920E ¢2° U, TOUYSE 03  0,1L643E I TYTITZILE §I
n.15292F 43 0, 17354€ p3 o,19577E ¢3 ¢,21968E g3 g, 24528E p3 p, '27261E 03 p,3p171E u3  y,33298E g3 p,36b26E g3, 39975E §3
0, 4%607E 03 0, 47423E g3 g, b1422E 03 0,55607E 03 ¢,59974€ 03 ¢,64524E §3  0,69256E g3 ¢,74168E p3  ,79238E o3  B4524E 3
p,89961E 03 0,95569E s 0,2013%4E 0% 0,19727E g4 0,11336E 0% o, '11961E o4 p,126005 u4 ¢,13293E 0% 0,18920E o 0,14600E o4
0,15293F 0% 0, 15997E g4 g,16712E g% g,17437E p4 p,18172F g4 g, '18916E g4 0,19667€ 0¥ “y,20426E g4 .21192E §U4 p,21963E ot
0,22736F o4 19,23518E g4 g, 203g¢E 0% 0,25085E o4 0,25871E o4 o, '26658E g4 0.,27u44€ g4 y,28229E g8 p,2901E o4 0,29792E g4
0,3056BF 04  §,31380F g% 0, 3P106E g¥ 0,32866E §4” "6:‘5361% "% ¢, 3UEEFETOU Y ”3‘51'011‘3"01? u,35829E~F " ¢, 36S4EETgE —p, STISIEGE T
0,3794°E o4 ©p,38632E p4¥ 0,39304E u4 p,39962E o4 o0,40606E ut o, 41236E 04 p,41852E g4y, 424853E o4 g.45058F o4 0, 43607E o4
0,24160E o4 u 4LEPTE g4 p 45217E o 0.45719E o4 0.46205E vy 0,466735 o4 u,47124E V¥ U, 4TSH8E g4  g.,4797sE gy g 4BZ72E b
0, 48752E o4 0, 49116FE g4 p 4%462E o4 0,49790E o4 o0,50102E 08 g, 59397E g4 o ,50675E p4  u,50947E 04  u,5r18sE g8 g, S1414E o4
p,51629E uu 0,5182%9€E p4 ¢,92015E g4 p,S52186E 04 0,52344E p4 o, 521;8'312 o4 p,52622E o4  ¢,52742E g4 yg.52891t g4” ¢, S52949E g4

Li-¥

0 53036E 04 0,53113E g# 0,53182E p4 (,53241E 08 0,53293€ 04 o, "53337E 04 (,53374E g% Uy DI4YSE p4  g,58450E p4  0,53451E o4
. DZHEEE 6‘4’" 4,53478E ol 0‘5313"57? uﬁ 0.53‘4‘9"35" ‘I WBE"”&"‘"‘%ESBE 0% 0,53099E % 0,55500F 0¥ U, 0TV 00 -0, LFSEELLEE

THETO, CENTER OF INTENSITY ANGLE = 0.,1777014€ 02

EPSILON. LOS ANGLE = 0,48B1530g 01 ARC~MINUTES

EXECUTION TIME = 10 31,91

Ze.-. - B o e e ame—m e e




LISTING OF SUBROUTINE BIGNT
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C"’EBRSc e s STNDQsCeoaver

62-¥
COo000OO000O0NO00NO0nNAaNNa00NN00

BBRC

FORTRAN SOURgE STATEMENTS

C

ccececrooLeececcrccecoecceececctreceeececceceecceecccececocccecceccecceeeecoece

SUBROUTINE NAML = BIGNT

UTTLLZATION . DETERMINES INTEGRATION RANGES AND EVALUATES
pDOUBLE INTEGRAL FOR LUNAR RADIOMETRIC CENTER FUNCTION

PRINTED QUTPUT =~ paTa SWITCH 13 ON PRINTS THETa=O0. DELTA ALPHA
AND DELTA THETA VALUES.
DaATA SWITCH 14 ON PRINTS ALPHA VALYES,
paTa SWITCH O ON PRINTS INTEGRATLON ARRAYS gE-
FORE AnD AFTER FIRST AND SECOmND INTEGRATIQNS.

VaLULS INPUT BY MAINLINE « DELTA VALUES FOR ALPHA AND THETA+
DALP AND DTHET,

ValleS RETURNED TO MAINLINE « ARRAY OF STEP.WISE SECOND INTEGRA-
TION RESULTSes B+ AND NUMBER OF LLEMENTS IN ARRAY+ Je

ANGLES INPUT YO THIS SUBROUTINE ARE EXPECTED TO gE 7O BE IN DE~
GREESe. VALUES INPUT TO FUNCTION 'FLUX®' ARE IN RADIANS.

SUBRODUTINES RERUIRED - *FLUX¢, INTEGRAND EVALUATOR
'GSE'y SIMPSON'S RULE INTEGRATOR
tLOGSWTe DATA SWITCH FESTER

MARDA BARTHULI

nn[nnnnnn;nnnnnnnnnn ocooOOocOOoOonOo

SUBROUTINE BIGNTs INTEGHAL EVALUATOR FOR LUNAR RADIOMETRIC CENTER.

IDENTFCN A OMPILER MESOAGES**

_— .L.e gaLL BROTHERS RESEARCH CORPORATION e . 1 - .
BOULDERs COLORADO SEFTEMBER 1974
¢ , L = -
cCcecceeoecLcecrececcectoececeeccececceoecccceccccetecccccecceccccecceececcceec
c c _ L
SUBROUTINE BIGNT(DALPy DTHET, B, J)
w— e e m LOGICAL LOGSU ) . — s S R e e e e e - R
COMMON SIGMAy RADe DIAM
DIMENSION B(181)1, X{(20) . R .
DATA PI/3,141592654/, DELT/1,0E~06/
c ) . ] . ) o
SIND(X) = SIN(X*P1/180,0}
L e _COosD{x) = COS(X*PI/180.,0} i
TANOTXT = S3INOUXY/7COSDUX)™ T
c . ¢ - e e
ccceccececLceeeceeceececcececececeecceceeccceeceeececccecececccecceccoceccecc
c c i e 3
. c DETERMINE INTEGRATION RANGE FOR THETpeg DEPENDENT 0N LUNAR ¢ - T Tt -
. PHASE ANGLEs« SIGMa. THEN SET UP MAIN THETA LOOP TEST VALUE, J. €
— gkl - : o e o e
gccececeeeccLeccccecLececcccecccececcetecccLecececLeececceecececceeceegeccoeccecceece X . . o o
c c
SIG = SIGMA*P1/180,0 i )
IF(SLGMA = 90.,U) 10+10+11
o 10 THET = {SIGHMA-90,0) + DTHET/2,0 _ _
GO 10 12
c

11

THEY = OTHET/2.0



PAGE 2 BBRC SUBROUTINE BIGNT, INTEGRAL EVALUATOR FOR LUNAR RADIOMETRIC CENTER,

C-ERRS,,,STNOyCoypes FORTRAN SOURCE STATEMENTS ceioegen IDENTFON  weCOMPILER MESSASESR
c
12 THETO = THET
J = (90.0-THET}/DTHET +1
c
DO 500 K=led . . L. e e
IF(LOGSW(13)) WRITE(1,1000} THETO
THEC = THETO%PI/180,0
BALPH = DALP
c C
CCCCCCCCECCLECCOCCLCLCCCCCCCCECCCleCECCtCCLCCCCCteecCCeeecceoeeccesriccet
[ C
c DETERMINE INTEGRATION RANGE FOR pLPHay pEPENDENT ON SIGMa aND c - T
c THETA=0, THEN SET UP INNER ALPHA LOOFP TEST VALUE, I. ALSO c
c ADJUST DELTA ALPHA TO FLT WITHIN THE RANGEL EVENLY, C
C c
CCCCECCCECLCCCCEELCCCCCLCCCCCCCCCCCCCCCCCCCCCLECCCCCCCCCCCrCCCicrcceeed
c o
A= ~TANDISIGMA)*TAND(THETO) - T
IFCABS(A)Y = 1,0) 13,13414
c
13 A = EACOS(A)
IF(CALDELT) = PI/Z2.0) 1541%,14
C
14 ALPH = 0,0 T - T . - - -
- a = 90,0
oy . GO TO 18
15 IF(SIND(SIGMA)*SIND(THETO)) 16417+17
e e e c — — i vmr e et s tom o araen e e et s e % 4 = s
16 ALPH = 0,0 T
& = A%180,0/P1 i .. .
G0 TU 18
c PR,
17 ALPH = A%180,0/P1
@ = 90,0 L — L L
c — e 2 -
18 ALPHA = ALPH _ ) .
I = (8=ALPHA+2%DELT)/DALPH - - -
DALPH = (QuALPHA)/I .. - . < - -
ALPH = ALPH + DALPH/2.0
e .. .. __ALPHA = ALPH e e
TFILUGSWIISYY WrITE(E 1100 GALPR; DTHEY
c cee L R -
cccecceccccLcceccccccocrccceccececcececcecccoceccececcecceocceceeeeccceececeececececce )
o c
c EVALUATE INTEGRAND FOR THE RANGE OF aLPHa, THEN INTEGRATE c ) e -
oo, € USING "QSF"e SIMPSON'S RULE SUBROUTINE. — c -
c
c

CCLCCTCCCCCLECCCCCECCCCCECCCECCCCCCELCCCCCCCCCCCCCCECECLECCCCCCCCCCeCeee
c Cc
00 100 L=1+3 N
PHL = EASIN(COSD{THETO)xSIND(ALPHA))
THETA = ATAN{TAND(THETO)/COSD(ALPHA)Y)

X(LY = FLOXTPHIZ TRETA 516+ THEO)
IFILOGSW(14)) WRITE(L43000) ALPHA
ALPHR = ALPH + DALPH=L



PAGE 4 pefc SUYROUTINE gISNTe INTEGRAL £VALUATOR FOR LUNAR RADICMETRIC CENTER.

C-ERRsouosTNO0C0|o|¢ FORTRANRN S'OUR‘C‘_E_:_ S.TRTLHENTS sesesve ID[EH{IE_CN

e g - - e

100 CONTINUE
c
CALL QSFY{DALPHiX X1}
B(K} = X(I)%2,0
THETO = THET + K#DTHET
500 CONTINUE
C

IF («NOTe LOGSWIO)} GO TO 650
WRITE(S,4000)
DO 640 KKI1,4410

MM = KK+9 —_— - - - e

WRITE(S,4100) (B(LL)y LL=KK,MM)
=] CONTINUE
c c
tccecreoccoucecoececoceeecccoceccececoeetocccecceccecectececeecccecceccecceLcecec
c

(1]

PEREDRM SECOND INTEGRATION ON DELTA THETA« BUBMP THETA=0 aND 60 ¢
Do IT AGAIN., RETURN TO mAIngINE AFTER COMPLETING RANGE OF c -
THETA=O, c

(o]

c
50 CALL GSF{DTHETBsBsJ}

C
C
c
Cc
ceccectecceciccecececececcceccecececcociccceccecccecteccoceocecccececcececceccecece
c
[
c

IF (+NOT, LOGSW(D)) RETURN
WRITL{5,5000)

DO 700 KK=1,J410

MM = KK+9

WRITE(5+4100) (B(LL)y LL=KK MM)

€7

RXCOMPILER MELSAGE Sk*

b p———r—— i r—

og CONTINUE

RETURN

1000 FORMAT(YTHETO = '4+EL14,7)

1100 FORMAT(*DALPH = 1,E14,7+% AND OTRET = v E14,7) ~ - - - - e -
2000 FORMAT(*I = *,I4, ' AND J = v",14)

3060 FORMAT(S5X+"ALPHA = *,E14,T}) ' o
4poap FORMAT(*1t.*g MATRIX BEFORE INTEGRATIONY//)

T TTTRINE  FORMAT (Y VW IATEIZSEVINTYY T
5000 FORMAT('0'+'B MATRIX AFTER INTEGRATION'//)
o
c
c
c

EnD
VARIABLE ALLOCATIONS
BLANK COMMON BLOCK

SIGMA(R*E CI=TFFD RAD(R%& CI=TFFA DIAM(R%6 ci:?gf? L i ) ] A
EQUIVALENCES & INTERNAL VARIABLES
— PYTR*E™ 1=0000 T SIGIR¥E  J=0003% TREYTR*& —T=U006 THETOTR®6  T=0009 RTI¥Z TEU0TL
THEQ(R*6 =0000 DALPH(R*6 )=0010 A(R*6 )=0013 DELT(R*6 )=001l6 ApLpHi{R®6 )=0U019

Q¢Rx6 y=001C ALPHA (Rx6 )=001F I(Ix2 y=pg22” ™ L(Xx2 7130023 ) PHI(R%6 =002y


http:LL=RK.MM
http:KK=1,J.10
http:QSF(DTHETB.UJ

Ze-¥

PAGE 5 BBRC SUBROUTINE BIGNT, INTEGRAL EVALUATUR FOR LUNAR RADIOMETRIC CENTER,
THETA (gRx6 )=0027 KK(Ix2 1=002A Mm(lx2 3=pp28 LLiIx2 )=gaaC X(K*E )S0152-0047
UNREEERENCED STATEMLNTS T T T T - ThsEmr eTTE T R
2000
STATEMENT ALLOCATIONS
1ppo=016D lipo=0174 2000-0184% 3p00=01%0 4000=p1°8 41gp=p1AC Sgpgop=plB3 SIND=g1€e COS0=pg1bB TANO=giEA
100223 11=0233 12.0239 13-027p }4;@29-1 ‘252_2.93 12._._.02;.8 ....._...1.'.7':0256 }_5.=0352 10.%9347
500=0371 600=03A5 650=03AF 7To0=¢3E2
FEATURES SUPPORTED
ONE WORp INTEGERS
EXTENDED PRECISION
CALLED SUBPROGRAMS e e
LOGSH ESIN ECOS EARS E£ACOS EASIN EATAN FLUX QsF EADD ESUp EMPY EpIV [y ELDX
ESTO ESToX  ESBR EDVR SWRT ScomP  SIOFX  SIOF sUpSc  SNR stgIn  IFIX FLOAT  LNOT
REAL CONSTANTS ! .
.180000000E 03=0156 .200000000E 02z0109 +2000000V0E 01=015¢ .1000000U0E 0Ll=z015¢ +U00U0L0UBE UU=0162
INTEGER CONSTANTS
1=p165 13=01646 2=0167 14=0p168 B=0169 5=016A 10=0168 9-016C
CORE REQUIREMENTS FOR = BIGNT
BiLANK ComMmon- 10, VARIABLES AnD TEMPOBARIE§:w‘.232. qu§Iﬁﬂls.&ND PBOQBAMT "m§§4

RELATIVE ENTRY POINT ADDRESS IS 01FC (HEX)
END OF sUCCESSFUL COMPILATLION
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LAUNCH AT KAUAI, HAWAII, 3 NgV. 1
-0.4734652E 02
0.1069554E 01 AND DTHET

THET®
DALPH

ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
_.0.
O

ALPHA.

ALPHA

ALPHA
THET® -0,
DALPH = 0.

ALPHA

ALPHA

ALPHA

ALPHA
_0.
0.
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
...0.
0.
ALPHA
...0,
0!
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA
ALPHA

THETE
DaLPH

THET®
DALPH

THET®
DALPH

THET®
DALPH

LI L T ¢ B | B 1 2 T}

463

1022502E 01 AND DTHET

L I}

453

I'026583E 0! AND DTHET

goHonn

2

i}

0.5347773E
0.1604332E
0.2673886E
D.3743441E
D.4812996E
0.5882550E
0.6952105E
4652E 02

00
01
01
01
o0l
01
01

0.5112513E 00
0.1533754E 01
0.2556256E 01
46S2E 02

0.5132916E 00
0.1339874E 01
0.2566458E 01
0.3593041E 01

4434652E 02

1028412E 01

nmow o mwa

433
100
423
101

U T2 T A T Y [T O I ||

AND DTHET
0.5142060E 00
0.1542618E 01
0.2571030E 01
0.2108244E 02
0.221108S8E 02
4652E Q2

9642E 01 AND DTHET
0.5048214E 0O
4652E 02

I 884E 01 AND DTHET
0.5059420E 00
0.1517826E 0!
0.2529710E 01
0.1264855E 02
0.1366043E 02
0.14567231E 02
0.2074362E 02
0.2175550E 02
0.2276T739E 02
D.3187434E 02
0.3288623E 02

274,

0.1000000K

0.1000000E

0.1000000E

0.1000000E

0.1000000E

0.1000000E

EXAMPLE OF INTERMEDIATE TELETYPE OUTPUT

FROM SUBROUTINE BIGNT

10H 38M U.T.

0l

01l

0t

01

01

01



LISTINGS OF FUNCTION SUBPROGRAMS
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PAGE 2 BBREC FUNCTTON SUBPROGRAM FLUXs LUNAR gSRIGHTNESS FUNCTION EVALUATOR

C=ERRS. . ¢ STNQeCrenser

FORTR AN

SOURCE

,CE ST aleM ENTS

[ R R RE N N

€
(g og o oL oL I o 0 od o o o ot o o o4 1 ot i o i o o o] o 9 o s of o o o s ol o o o i o o o o o ol o o Y o o o0 i o o o DL AL AL L L LY

[}

SUBROUTINE NAME ~ FLUX

UTILLZATION . EVALUATES LUNAR BRIGHTNESS FUNECTION AT A SINGLE
POINT

SUBROUTINES REGUIRED =~ °'RDFCN't LUNAR alpEDO FUNCTION
MAROA BARTHULY

galLL BROTHERS RESEARCH CORPORATION
BOULUERy COLORADO SEPTEMBER 1974

c
C
c
C
c
c
c
c
C
C
c
geceeceeetLcecccccecceccecceceeceecocectccececcececceccececccetcccecccecececce
C

FUNCTION FLUX(PHI+THETA1SIGTHEO)

COMMON SIGMA. RADs DIAM

[} (e} o000 nOnN O0o00

-

CPHI = COS{PHI)

CTHET = COS(THLTA)

CXI = CPHI*CTHET .
CGAM = CPHI#COS(THETASSIG)
@ = RAD/DIAM

FLUX (ROFCMN(CGAMACXIV*COSITHED) 1/ (1.0 + Q**2~240*CPHI¥CTHET*Q}
c

RETURN_

c
END
YARIABLE ALLOCATIONS
BLANK COMMON BLOCK
SIGMA(R*6 C}=TFFO

RAD{R*¥& CI=TFFA DIAM(R*E CY=TFF7

——— g e

CXI(R*g

)=0003

T

CTHET(R*g 1=000g

EGQUIVALENCES 2 INTERNAL VARIABLELS
FLUX{R*g 1=0008 CPHI (R*g
Q({R*6 I=000F

FEATURES SUPPORTED
ONE_WORD INTEGERS

}=000%9

S P

CGAM(R*g

_IDENTFGN _ *COMPILEX MESSAGESKS

}=0060¢C

EXTENOER PRECISION

CALLED SUBPROGRAMS

EcOs RpF¢N EaUD £SUB EMPY ED;V ELD ESTO E§gR EDVR EaXI

REAL CONSTANTS

sSugln

,100000000€ OY=001f = ~~,200¢U0000E 0I=g0e1 ~

INTEGER CONSTANTS
2=002%

CORE REQUIREMENTS FOR = FLUX

BLANK COPMON= LUy VARTABIES AND TERFORARIES= " ~30% —~ CONSTANTS AND PROGRAN=



PAGE 2 BBRC FUNCTION SUBPROGRAM RPDFCN, LUNAR ALBEDO FUNCTION - LAMBERTIAN

C-ERRS,,,STNO,Cuuvee FORTR AN SOURCE STATEMENTS oeeeesee IOENTECH #xCOMPILER MESSAGLSyx

[» c
[t o3 00 of 0 % L o8 04 00 o od o o o 4 o1 oL % 6 0 4 o ol i o 1 01 ] 0 of of o o of o] o o o of o2 of W o o{ s o o o s o] o o e o Al o L W A { L AL el o 4
c c
o SUBROUTINE NAME - RDFCN c
c - ~ C - - e e e e
c UTILLZATION ~ SETS UP LUNAR ALBEDO FUNcTION. THIS FUNCTION maY ¢
c ASSUME THE Mooy TO BE ANY kIND oF RADIATOR DESIRED C
c SUcH AS LAMBERTIAN, LOMMEL-SEELIGER, CR COMBI- c
c NATIONS OF THE TWO. c
c c
c MAROA BARTHULI c - e e e ees—
€ BALL BROTHERS RESEARCH CORPORATION c
c BOULUERY COLORADO SEPTEMBER 1974 ¢
c C
E s of o4 of o o f o OF o of o o4 o4 of o o 5% o of o3 i i o o Lo o 2 o S 20 A0 oL 53 ot o o o {6 o o ol o o o ] ) o L ek ol o o o o o ] e m o
c c
FUNCTION RDFCN{CGAM+CXI) - . S
c
COMMUN SIGMA: RAD+ DIARM
+ C
RDFCN = CGAM*CXI
RETUKN
c - - e - - —_— . e - e e = 2o
- END
"  VARIABLE ALLOCATIONS -
@ BLANK COMMON BLOCK
SIGMA{R*6 ¢)=TFFD RAD{R*6 CY=TFFp DIAM(R%E CI=TFF7?

__EGQUIVALENCES & INTERNAL VARIABLES
ROFCN(R*6 )=0000

- - v i an—— - - o

FEATURES SUPPCORTED
ONE WORD INTEGEFRS .
EXTENNEN PRECISION

TTEALLED EUBPROGRAMS
EMPY ELD ESTO SUBIN . e

CORE REQUIREMENTS FOR - ROFCN ~ . e
BLANK COMMON- 10, VARTABLES AND TEWMPORARIES=- §he ConSTANTS ApnD PROGRAM- 18

RELATIVE ENTRY POINT ppoRESS IS Goo4 (HEX) —
END OF SUCCESSFUL COMPILATiON COFYRIGHT UNp SYSTEMb, INC,




LISTING OF

INTERMEDIATE MAINLINE PROGRAM HERB
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PAGE 2 RBRC PROGRAM HERBs SIGMA INCREMENTER FOR LUNAR CENTER PROBLEM
C'ERRS.-.ST_'!DO_C..O . FORTRA AN SO0oOURC E__ STa :rHE".M ENTS i IDENTFLN ExCOMPILENR NEbbAGLS**_
o C
CCCCCCCLCLLCCCCCECCCCOCCCCECCcoetococecefceececececeeeecceeecrececececcececcLcecee
c c
c PROGRAM NAME - HERS C
c ) o c . . . ——
T C PROGRAM UTILIZATION - MAINLINE FOR LUNaR RADIOMETRIC™ CENTER c e -
c PROBLEM, C
c c
c AFTER READING IN a4 DELTA SIGMA VALUE (SIGMA = PHASE ANGLE), C .
¢ HERg RUNS SIGMa FROM O Y0 180 DEGREESe INTEGRATING THE [
c BRIGHTNESS FUNCTION Fop SACH VALUE AnD PLOTTING THE RE=- c
c SULTING cURVE IN TERMS 0F aNALYTICAL aNGLEPSI AND BRIGHT- C T T Tt T o T
c NESS. c
C c < >
c THE CENTER OF BRIGHTNESS ANGLE IS CALCULATED FOR pacH VALUE OF C 5y
c SIGMA AND PRINTED ALONG WITH THE sRIGHTNESS RATIO oF sULLTTO b = B
c HALF MOON. B _c _"ng L
c ¢ ) T
c MARDA BARTHULI (o gu?
c BaLL BROTHERS RESEARCH CORPORATION c o
c BOULDER+ COLORRADUC 1¢ SEPTEMBER 1974 c S } i
c ¢ N
~ RN o o1 oo o o] v of oL ¥ of of o o] of o of o oy o ] ] of of o o] f o o o of sk o] T o s ] f o of o o u{ o { o o o] o o{ o o o o S L o o] s 4 ] o] { o o] o fop)
[« h - - Tt T oS T T T
T COMMON SIGMA, RADs DIAM b
o~ DIMENSION B{180). BB1(19) .
DATA PI/3.141592654/ .
t
c . L o c
CCCCCCCCCCLCECEECCecCEcCeCEceCecEccceEEcCeLeoettecceccocectececoccececececce
c
e c INITLALIZATION SEcTION - T T - i 2
c INITIALYZE LOOP VALUES AND SET UP PLOTTING FORMAT c . e
c c ’ ceTT T T T
SR -1 o1 o] = 1 o1 ol of L & of ol o1 o] o ol of odofs{ e ad of of ol of of o o of o] o o o o] o] of o o o of o] o] of o] o] ] f oo o{ o] of s m{ oy of o 3o s of o o{ o o] oy L
' (o [
. c . . - e e e - . N e e e e -
RAD = 1738,0 .
- JDIAM = 364403,0 e —— - - - - .
READ(2,1100) DALPH, DTHET, DSIG
€
KK = 180,0/0816 + 1
Jdd = (180,0/DS1G)/2,0 + 1 .. U
c
WRITE(1,4100) o . i B o . e i
CALL SCALE(.0%519,04=90,0,0,0)
CALL EGRID{0,=90,040.0410,0,18)
CALL EGRID(3¢0s0tdebrel4¢10) r
c . T L . - e e e e e
ceeecececoLececceecteoecocoeecctetecececoceceefececéeecceeeceacceececeeecccet
< C
c MAIN SIGMA LOOP , , , DO INTEGRATIONS ) T -
c c
(oo o X o ST o o o S L o o o L o o of o of W o o o o o S oL ol o ot of sy od of oL of o o o o o o o o il o ol i o o o o i of o o o L o W o {1 ] .- -
c o4

SIGMA = 0,0



PAGE

- grEMB§’1-STNp!EJLA&A FORTRA N"“,S QUE“EME,E”

G-

3

[ R = N e
cecctUCCEtLCTECCCCLCctLcecceCciecececceticcceccccececceceeceeececce
C

2

gBRC PROGRAM HERB+ SIGMA INCREFENTER FOX LUNAR CENTER PROBLEM

DO 300 Iiz=l.KK

calLL BIGNT(DALPH OTHET«Byd}

BB1(II) = B(J}

IF(II Q. JJ)y RATIO = (BBI{II)/BBLI(1))%100.0

c . e = i . Q.
cocecCoeotLeerocceceercerccccecceccteteeccceeeeecececceecceceecececcecccccecce
c C
c EVALUATE CENTER OF BRIGHTNLSS ANGLE FOR ONE VALUE OF SIGMA c
c o
CCCECCOLECLELECCCCCOLCCECCCCCCCCereccecettcCococcoectececteeeteccecceeccece
c - c

HALF = B{J)/2.0

THET = SIGMA = 90.0

IF(SiGMp .GT, S0,0) THET = 0,0

THETA = THET + DTHET/2.0
C

D0 200 I1=1+J B}

IF(B(I) = HALF) 101+202+203
c
101 AL = THETA

THETA = THET + DTHET/240 + I%DTHET
S Y
200 _CONTINUE e e e e i e e e e st s st = maaeni e i i
c
202 AD = THETA

G0 TO 210
c
203 Az = THETA

__Ap_= (HALF#(A2-A1) + B(I)xA1 ~ B(I-11%A2)/(B(T) = B(I-1))
c o . . . L PO
cccecteoeooLeeeceecoceteccoceeetecoeecoccteeceeecceecccecceecececceeoccoccec
c . . c
c PLOT ONE CURVE FOR ONE VALUE OF SIGMA c
C

e et e

Fel
O
At
Pl
[xl
O
[z
a
[#)

e NeH

1
H

10  WRITE(1,%200) SIGMA+ EBL{II}, HALF+ A0
THET = SIGMA = 90,0 _
1F(S1GMA 6T, 90,0) T
THETA = THET + DTHEY/

HET = 0,0
20

i
!
(
%

00 250 JJJ = 140 . ) ]

CALL EPLOT{(w2,THETA, B{JJJ)/BBL(1})

THETA = THET + DTHET/2.0 + JUJPTHET
250  CONTINUE

CALL UP

C
cecccceecLeccceteeececceccceccececcececécceeceecceceteecteeceeteetteicect
G0 DO INTEGRATIONS FOR ANOTHER VaALUE OF sSicha )

C
. c
c

WHEN DONE WITH abl THE SIGMAS EXCEPT SIGMaA = 180+ WRITE THE HALF C _

i

oo OOoOnn

TUFULL FUOKN BRIGHYNESS RATIU ARD PRETTY THE PLOT, T
AWAY . c
S ¥




PAGE

C-ERRS,,,5TNO.C,, .0

y

gBRC PROGRAM HERB, SIGMA INCREMENTER FOR LUNAR cENTER PROBLEM

FORTRAN SOURCE STATEMENTS

cecceteeoocLccceetLececcceccectecegececceeccLeecceeeececcocceeccceccceecceccec

soeesers IDENTFCN

*xCOMPILER Mtﬁs&g&ﬁ*f_

T e ]

[
5100

FORMAT(*PSI")

c c
SIGMA = 0.0 + USIE*II
IF(5iGMA EQ. 180,0) GO TO 400
Znn  CONTINUE ~ ) . . . .
c
400 WRITE(1.4300) RATIC
c
CALL ECHAR(=D04040,64414+2,40,0}
WRITE(7+5000}
CALL ECHAR(=3404melselyele040) ) X
WRITE(T,5300}
c
XX = =90,0
Y = »,086
X = =B%9,0
DO 205 X=1+3
CALL ECHAR(X,Yy,1¢.1,P1/2,0) " Eg gg
WRITE(7,5200) XX Y
XX = XX + 90,0 =R
X = X + 90,0 s &
205  CONTINUE 2]
- ——— c - - — = —— —— - - ————an - —— - B - mr———— - s mmpr— - - e A N —
CALL ECHAR(5,01.99,.1,.1,0.0) & g
- WRITE{7,5300) [ N
g X = _?IO ? q}
¥ = 1,0 =
XX = 1.0 Eg
e . __ DO 208 122 & _
CALL ECHAR(X  ¥s,10+1,0.0%
~ WREITE(7+5400) XX e L N
XX = XX = 0,5
Y =T - 0.5 R o .
206  CONTINUE
c P I
cALL EXIT
c. . X o e C . . ..
cccecoooectocceececcecececcecececececceeeeccececcccceececcecececcecoececcecceccccecccec
- c . N * D -
c FORMAT STATEMENTS c
C c
CCCLCCECCCLLELECLECLCLLCLCCCCLCLLLECLLECCCCCCCLCErCeeeeeeceerceccccccoeece
c . L
c
1100 FORMAT(3FL0.5) L o L L. )
c
4100 FORMAT(5X,1SIGMA¢,9X, Y"ENDPOINT 149X+ *CENTERY 410X *CENTER1 /34X, tBRIG
THTNESS Y 49X FANGLE ")
c N - . .
4200 FORMAT{/4(E1l4%,7+2X))
c
4300 FORMAT('BRIGHTNESS RATIOs FULL TO HALF MOON = *4E14.,7)
c
000 FORMAT('PLOT OF BRIGHTNESS FUNCTION VERSUS ANGLE PSI'1



PAGE 5 BBRc PROGRAM HERBs SIGMA INCREMENTER FOR LUNAR CENTER PROBLEM
C-ERRS,,,STNO,C,peee FORTRAN SOURCE__STATEMNENTS ii0sesas JDENTFCN FECOMPILER MESHAGESHX
c
5200 FORMAT(FS.1)
¢
5300 FORMAT('BRIGHTNESS®)
—— c - e e e ot tmn % ettin nm v v mmmn m = e s mmmrmns o oonr et ara
5400 FORMAT{F3.1)
c
END -
VARIABLE ALLOCATIONS
SLANK COMMON BLOCK T
SIGMA(R*E C)=TFFD RAD(R*6 C)=TFFA _ DIAM{R%& CIz7FFT _ .
EQUIVALENCES % INTERNAL VARIABLES
DALPH{R*g }=0p00 DTHET (R*g =003 DSIG(R*g 1=020¢g KK{I*z )=020%9 JUtl®z  1=0z04 T
IX¢Ix2 )=p20B Jelx2 =p2pC RATIQ(R*6 )=020D HALF (r%6 }=0210 THEJ (R*6 )=0213
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Section V

SYNOPSIS OF OPERATIONS

The following steps gather, in logical order, the rather rambl-
ing developments of the preceding sections. By knowing the
location of the sensor (three space coordinates and the time)
one can; by following the steps given below, compute the
angular offset between the center of the moon and the lunar

sensor's optical axis.

These steps are, incidentally, precisely those performed by

the computer program which is discussed in Section 4.

1. Compute the right ascension and declination of the

sun and moon using ephemeris data and Equation 4.2.

2. Compute vectors G, H, and L (see Figure 3-9) using
Equations 3.38, 3.41, and 3.39. The magnitudes of
H and L are obtained from ephemeris data and the ap-

plication of Equations 4.1 and 4.2.

3. From G, H, and L, compute vector D using 3.40 and

vector S¥ using 3.42.

5-1
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Compute the phase angle, o, from D and S* using 3.37.
If 0<0, note that the center of brightness will be to
the west of the selenographic center and use the ab-

solute value of ¢ in all subsequent calculations.

Now compute limits of integration for 6,.

5a. If o<w/2, then o-u/2 < 8¢ < 7/2

5b. If o>w/2, then 0

A

Oq < 1T/2

Now compute limits of integration for o. Evaluate

3.20 to get ap. The range of integration over o

is as follows:

6a. If 5a (above) applies, then

® 0

1A

o < 0y if Bg < 0

. 0 <o <w/2 if 6, > 0
6b. If 5b (above) applies, then
° ge < o < mw/2 if 8, < g-1/2

) 0 <o <w/2 if 8¢ > o-u/2
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Evaluate the integral appearing on page 3-23 over the
ranges of 8o and o obtained in steps 5 and 6. The
result is a table of values of this integral as &,

spans its range.

Using this table of values, determine (using 4.2)
what value of 8, produces half the value produced by
*
B8o=n/2. Call this quantity 6,.
*
Compute the sensor offset angle, e, using 6, in
Equation 3.44, If the original phase angle, o,

(computed in step 4) was negative, negate €.

5-3



Appendix A

Mathematical Notation



Coordinate systems are designated by the letter B and are dis-
tinguished from each other by superscripts. Thus, a system
aligned to the celestial sphere could be called E% while one
attached to the earth could be E°. Base vectors of coordinate
systems are not termed x, y, and z but rather 1, 2, and 3 and
form a right-handed set in that orﬁer. If confﬁsion between
systems is likely to occur, base vectors are referred to by
subscripts on the designator of the system of which they are a
part. Thus, the 2-axis of the earth-based coordinate system is
termed Eg.

Vectors are invariably .represented as 3 x 1 matrices. Thus, a
vector which would, in the notation of elementary vector analy-

sis, be written as
V=31 - 45 + 7k

is now eXpressed as



@

The reason for this is that virtually all the vector operations
that will be performed are scalar products and orthonormal ro-

tations and the matrix formulation is just more coamvenient.

The scalar, or "dot'", product of two vectors (for example, A
and B) is written synonomously as A+B or ATB where T denotes

matrix transpose. Thus

A'B = b = a

3
b,
i

j=1 ‘

Since sines and cosines are used so extensively in the defini-
tion of vectors and rotation matrices, these functions have

been abbreviated to:

sine (Y)

s¥

cosine (¥) cY



Appendix B

Something to Read if the Mathematics are Dull



ANOTHER TIME, WE WENT TO MANNHEIM AND
ATTENDED A SHIVAREE — OTHERWISE AN OPERA -
THE ONE CALLED “LOHENGRIN”. THE BANGING AND
SLAMMING AND BOOMING AND CRASHING WERE
SOMETHING BEYOND BELIEF. THE RACKING AND
PITILESS PAIN OF IT REMAINS STORED UP IN

MY MEMORY ALONGSIDE THE MEMORY OF THE TIME
THAT [ HAD MY TEETH FIXED. “THERE WERE
CIRCUMSTANCES WHICH MADE 1T NECESSARY FOR
ME TO STAY THROUGH THE FOUR HOURS TG THE
END, AND | STAYED; BUT THE RECQLLECTION OF
THAT LONG, DRAGGING, RELENTLESS SEASON OF
SUFFERING IS INDESTRUCTIBLE, TO HAVE TO
ENDURE IT IN SILENCE, AND SITTING STILL,
MADE IT ALL THE HARDER. I WAS IN A RAILED
COMPARTMENT WITH EIGHT OR TEN STRANGERS, OF
THE TWO SEXES, AND THIS COMPELLED REPRESSION;
YET AT TIMES THE PAIN WAS SO EXQUISITE THAT
[ couLD HARDLY KEEP THE TEARS BACK. AT THOSE
TIMES, AS THE HOWLINGS AND WAILINGS AND
SHRIEKINGS OF THE SINGERS, AND THE RAGINGS
AND ROARINGS AND EXPLOSIONS OF THE VAST
ORCHESTRA ROSE HIGHER AND HIGHER, AND WILDER
AND WILDER, AND FIERCER AND FIERCER, |

COULD HAVE CRIED IF [ HAD BEEN ALONE, THOSE
STRANGERS WOULD NOT HAVE BEEN SURPRISED

TO SEE A MAN DO SUCH A THING WHO WAS BEING
GRADUALLY SKINNED, BUT THEY WOULD HAVE
MARVELLED AT IT HERE, AND MADE REMARKS ABOUT
IT NO DOUBT, WHEREAS THERE WAS NOTHING IN
THE PRESENT CASE WHICH WAS AN ADVANTAGE OVER
BEING SKINNED.

EACH SANG HIS INDICTIVE NARRATIVE IN TURN,
ACCOMPANIED BY THE WHOLE ORCHESTRA OF SIXTY
INSTRUMENTS; AND WHEN THIS HAD CONTINUED

FOR SOME TIME, AND ONE WAS HOPING THEY MIGHT
COME TO AN UNDERSTANDING AND MODIFY THE NOQISE,
A GREAT CHORUS COMPOSED ENTIRELY OF MANIACS
WOULD SUDDENLY BREAK FORTH, AND THEN DURING
TWO MINUTES, AND SOMETIMES THREE, | LIVED OVER
AGAIN ALL THAT I HAD SUFFERED THE TIME THE
ORPHAN ASYLUM BURNED DOWN.

[ HAVE SINCE FOUND OUT THAT THERE IS NOTHING
THE (GERMANS LIKE SO MUCH AS AN OPERA. THEY
LPKE IT, NOT IN A MILD AND MODERATE WAY, BUT
WITH THEIR WHOLE HEARTS., THIS IS A LEGITIMATE
RESULT OF HABIT AND EDUCATION, {JUR NATION
WILL LIKE THE OPERA, TO0, BY-AND-BY, NO DOUBT.
(INE IN FIFTY OF THOSE WHO ATTEND QUR OPERA
LIKES IT ALREADY, PERHAPS, BUT | THINK A 600D
MANY OF THE OTHER FORTY-NINE 60 IN ORDER TO
LEARN TO LIKE IT, AND THE REST IN ORDER TC BE

'ABLE TO TALK KNOWINGLY ABOUT IT. . THE LATTER

USUALLY HUM THE AIRS WHILE THEY ARE BEING
SUNG, SO THAT THEIR NEIGHBORS MAY PERCEIVE
THAT THEY HAVE BEEN TO OPERAS BEFORE, THE
FUNERALS OF THESE PO NOT OCCUR OFTEN ENQUGH.

Uiart doroee
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Appendix C

Evaluation of Lambertian and Lommel-Seeliger
Reflectance Functions



2
In this appendix, we wish to compute the half-moon to full-

moon brightness ratios for three reflectance functions.

The power density of the moon-reflected sunlight at some ob-

servation point is

where k a proportionality factor

R = distance from the observation point to dA

=
]

illuminated portion of the moon visible from the
observation point

f = lunar-surface reflectance function

vy = incidence angle of sunlight at dA

£ = reflectance angle of gunlight from dA to the ob-

servation point

If we make the assumption that the observation point to moon
distance is very large compared to the lunar radius, we can
treat R as constant and the visible region of the moon becomes

a complete hemisphere.



Under these simplified condition, equation C.l1 can be written

(in terms of normal spherical coordinates ¢ and 8) as

/2 /2
Zkrz
B(o) = =3 £(Y,E) s¢ d¢ de
c-1n/2 0

where r = lunar radius

¢ = lunar phase angle

Qur approach will be to evaluate C.2 for o = 0 (full moon)
and o = w/2 (haif moon) with a particular function f, ratio
the two terms and compare the result to the experimentally

obtained value of 0.089 (ref. "Astronomical Quantities'; Sec-

tion 3.4).

Lambertain Reflector

The reflectance function for a Lambertain reflector has the

form

£f(v,8) = cy c&

C-2

.2

.3
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Now equations 3.8 and 3.19 give as

ct = c¢ cb
¢y = co6 c{(6-0)
and C.2 becomes
/2 /2
B _ r \2 2
(o) = 2k R c“p ch c(6-0) s¢ do de
c-n/2 0
which can be separated into
/2 w/2
T 2 2
B(o) = 2k (ﬁ) 2o s6 do | co c(o-0) do
0 g-n/2

Since the ¢ - integral is simply a constant, it can be absorbed,

together with the Zk(r/R)2 term into a single super-constant,

C-3

C.4

C.5

C.6

C.7



@%,

K, which leaves

/2
B(o) = K.lnce c(6-0) do C.8

g-u/2

This can be integrated directly to give

B(o) = %- {(n—a]co + sc} C.9
Thus
B(m/2) _ 1 _
IO 0.32 C.10

Lommel-Seeliger Reflector

The reflectance function for a Lommel-Seeliger reflector has

the form

£(y,8) = E?E%"EE C.11

c-4
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which, by using C.4 and C.5, transform into

6- .
f(YJE) = aggc)g?‘_ cB C.l:
and
m/2 w/2
2
B(c) = 2k (%)f Cscg_§§e;g)ce d¢ de C.1:
og-m/2 0

As before, the ¢ - integral can be extracted and constant terms

combined. Doing so yields

/2

B(o) = Kf 6(352501 — de C. L

g-m/2

Rather than attempt to integrate C.13 as it stands, let us
instead perform the integration twice; once with o = 0 and

once with o = w/2.



Thus,

/2
B(0) = K[ §2 = xn/2
-u/2
w/2
s e
B(n/2) = X[ 557+ co

1
o =
%

3

{9 - In|co - so|

Kn/4

C-6

w/2

C.16

C.17

Cc.1
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Something Else

In the discussions of Section 3.4, it was stated that a '"modi-

fied Lommel-Seeliger" reflectance function was also investigated.

It had the form

2
f(y,g) = E?E?IEE C.20

Putting this in terms of ¢ and & gives

2
- _€¢c7(8-0)

and the resultant brightness function , B(o¢), becomes

w/2

2
- c”(6-9)

o-n/2



As, before, we compute B(0) and B(w/2) s;parately:

B(0)

i
|
n
@©
o,
@

The author spent his normal, self-imposed time allotment of 5
minutes trying to integrate C.25 before turning to his best
beloved table of integrals. After another 10 minute search,
he abandoned that approach as well in favor of a numerical
solution using Simpson's rule. The integrand was evaluated at

5

eleven points and an error of less than 10 ° was expected.

C.23

C.24

C.25
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2z
The result of this numerical integration gave

B(n/2) = 0.62 k C.26

SO
B(m/2) _
W - 0.62 C-Z?

C-9



Appendix D

Predicted Sensor Offsets
for

Kauai and White Sands Launches

Taken from the letter:

"Radiometric Center of the Moon Study"
Charlie Rose to Morris Gisser
20 September 1974
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The sensor offset angle, €, has been calculated for two launches;

Kauai, Hawaii and White Sands, New Mexico.

The offsets were

calculated for the opening, center, and closing of the launch

window in each case,

Location

Kauai, Hawaii
3 November 1974

WSMR
28 December 1974

Time (U.T.)

h

m

107 38

118 2™

h m

12 3

Offset Angle, €

4,88

4,92

4.98

arc minutes

1 "

arc minutes



