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1. B STUDY SCOPf: 

'B'llc biisclil~c Space 'I'ransportation System (STS), which inclueies shuttle booster and orbiter and 

tlnc baselilac orbit-to-orbit stage, (citller IUS or f~111-capability tug) will have achievcd an initial level 

of definition by the end of 1074. A nurnber of f~rture space programs, wllicli can be candic1;ltes for 

operotiorts in the post-1 985 em, would exceed tlle expectcrl cap~bility, inclutling any llori~i~lill 

upn~tiiig, of tlie baseline STS perfonnance. Tlzc Pt~.iltl~re Sy,ncv Trcznsy,ortczbio~~ Systcrtn AIZ(JIJ~S~,S 

Srutiv is an analysis of candidate future space progra~ns to determine trclnsl~ortation needs, togetlur 

with a comparative evaluation of alternative ways of evolving future space triinsl~ortation systerns 

froin tlie boseline ST'S to meet thcse needs. 

'I'lie study includes potential future spilce programs and rnissions that coultl occur in the 1985-1995 

timeframe, and are expectetl to require space transportation capability beyond that of tlie 

operatioi~al space shuttle, ancl interim upper stage (ITJS). It tliercfore goes beyond missions incl~~tldd 

in the space shuttle payloads data bank; sucb missions generally fall witliin shuttle/!US capabilities. 

'I'his report tlescribes tlie results of tlie Pliase I study effort, including space program options and 

transportation requirements analyses and mission modes and operations analyses. These analyses 

characterizeel tlie requirements of the program options and derived ii nwnber of alternative systellls 

approaches to meeting their transportation needs. Al. this point in the study no altcmpt llas been 

rnade to select preferred trallsportation systems approaches or development strategies. Additional 

study efforts, presently in tlie ,~lnnning stnge, will cllaraclerize in more detail the tecllnical and 

programmatic aspects of the transportation systems described herein, and sylitllesize optimum 

transportation systerns and cievelopment strategies for various future program evolulion scenarios. 

1.2 STUDY OBJECTIVES AND SCHEDULE 

141e o1)jectives of the study are to define potential trllllsportation requirements and transportation 
r+. 

modes for a spectrum of potential transl~ortation activities during tlie 1985-1995 time period to be 

used in subsequent definition of an evolutionary space transportation system to satisfy these 

requirements. Objectives and outputs of lIle entire study are summarized in Table 1-1. Figure 1-1 

shows the schedule, including ~ l a n n i l ~ g  schedules for the phase 1 extensioil and pliase 2 activities. 
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1.9 GENERAL 6;IFII)ELINES AN11 ILSSU~II'TIONS 

I:ivc !:~11~'r;t1 ~ ~ ~ i e l ~ ~ l i t i r ~ : ;  tn:er~ appliecl ~111rilij: OBic cuttr~e of tilo sti~tly: 

1 'I 'ii'lnc P1a:icBinc :;pace tri1~n!;p3tartatiol1 system (STS; inult~dcs space sliuttlc nnrl orbit~to~orhit stnpc, 

tlail lattcr F ~ c i n ~  cittacr IKJS or fi~P1-cupat~ility tug) wils ;is:;umctl opcmtioiial with ca1,shilitics as 

prei;cnEly clcfisaed I7y JMC PIo~.umualt No. 07700, Vol. XIV, tlic Sliuttlo I'aylond Accommod;l- 

tiosi:; 13rlc~1111~nt. Ilcrie~itivt's of the SI'S ;tnd new systenls were analyzer! for cncb progritm 

optitm to tilo cs tc i~t  tllat adelitiotanl oill~ahilities v9ew required 

21 Drr)gri.ian optiaarlm+i were :lmalyzetl sepiir;~tely i111d inrlepctitIt.iitly. This ~lieiil-ts tliilt s y ~ t ~ i ~ l s  froni 

crnc pmfinlrn option, t ' .~. ,  low Lnrtll orbit space station, werc not assumcrl il~ailahle to sul~port 

 notli lie^ option, emf:., lunar bilso, Further, iau attempt was rilade to force co~lliiio~i 

tninsportatiun solutions ikcross programs although after-the-fact coiillnoiiality connl?arisons 

WCfC 1113~1~. 

A lator pliase of study (Phase 111, will adrlress tliese cluestions. Tliey arc to be arldrcsscd as n 

d ~ ~ ~ i ~ r t l ~ r e  from tailored solutions in onicr that tire true iml~act air1 cost of commonality cilll 

be assessed agaiilst its 1~encfits. 

3) Tcchtiologies assumed for prograin optiolls alicl for transportation syste~lls devclopmcnts wew 

liniitoil to tliosc tliat could be forecast , finn tecliilical extmpoIntion or  prcserlt knewlcdgc. 

Tlais is considered appropriate for tlic ti~rie Diune of lsriilcipal interest, 1985-1095 mlrt for the 

purposes of the study. Systems ogeriltioilnl in 1985 are likely to i~~corporate only aclvmiccs in 

the state of the art founded on base technology firmly in liaild today. Tlicsc, of coursc, tail 

result In sigr~ificont ~~erformunce improverncnts over curreiltly o~erlitio~lal systems. I3y 1005, 

systerns may become opcratioilal witli major, even tml'oresecn teclinicnl aclvmlces. No atteailjts 

were 111ade to forecast these and no depcnrlence on such breakthroughs was utilixod in 

pretlicting system performance. 

4) Prognlm options selected for study were consiclered to be tcchnicaliy feasible ill t l ~ e  1985-1095 

time frame. These selectiotls were not inte~ldcd as preclictions. 

5) New systerns capabilities wc1.t. analyzed ollly to l'lle extent that a need or potential need could 

be perceived from the Taslc 1 (program options and t r a n ~ p o r t ~ ~ t i o ~ ~  requirements analysis) 

results. The lack of discussiotl of garlicular types of advanced systcins docs not signify a 

judgement by this study activity regarding tlleir feasibilily, but ratlner that a neecl for tliat 

capability was not perceived within the scope and level of detail of the potestial future 

programs ailalyzed. 4 



lI~,~ccDqaaine~~t i$ii the ru!;aaltu prc:;cntctl lacrehi tuoli place it1 fo rr c1il;tinct dcpr;: 

l is B)el;cnil~aic~~~~; of cocEn pro:vram elation wcrc clcvslopctl fm~a ~e[;ult!j of prior NASA studies, otlier 

!~OL~TPICO, tt~3d fi'olil IPOW work ~11cr.c rc'~'(~ttirctl. ?liese c l ~ s ~ r i p t i ~ ~ i ~ ~  S ~ I P S ~ S C ~ ~ ~  i3 S C ~ ~ ~ I ~ ~ C I ~ I C ' Z I ~  for 

trara:;jac~n tation, i.u., ii set of P T O ~ ~ I C I M ! ~  ~ieetlitlc soft~tion~. 

2 Itctluircstlemits ;mdyties clcvelopoci i t  set of pny1o;itl tlelivery options onct ~.cquircmctlt!;, tllat is, 

r o q u i r t  011 t~ : tn~l t~r t i l t i~ l l  as a bilskj for dcvclopmcnt of isolutioii:~ 

31 'I'~inri~~s~rtaEio1t/1~1i!.j!jiof1 rllotles ant1 ol?er;ltions analyses aicvclopecl ;z tlumbcr of transportation 

!sy!iOe;l~ optiotls tlnd scqalence:; for cacli psogram/mission option. 

4 1  [Jtsalitativc cornporisons and evalu;~tions ~levclopcd pro" i;lutl eon's and assesslncnts of 

pr:tctic;llity for e o d  option. 

IErsultss of r:acli of thcse steps are descri1)ctl for each proy,ro~,-,rnission sptioli it1 tlic rilaiii borly 

this; documet~t. Supps)rting analyses ilnd data ;ire presentect in tlio appcndix (volume 2). 

2.1 POTENTIAL FUTURE SPACE PROGRAM OPTIONS 

Nine program options were spccifi ed by the NASA Stntellieilt of Work, atlcl ilnotlicr was atltlccl early 

in the study. '1-hey ;rro sumrnat.izct1 in 'I'tible 2-1. All of these options 11ilve l)ccti sttitlietl by prior 

NASA studies some qidtct ~3xte1isively. Task 1 of tliis stutly utilized the results from tflesc prior 

studic~, us ilpplic~hfe. IZcferullsbt docurnentation is itlcntifietl t1irout:llout tile Ijotly of this rcporf. A 

completc list of referk311c~6 ;1plx3iirs at the end of the report. New ancllyses and concept stutlics were 

cotiducteci iis necessary t o  ch;nractcrize tmnsgortalion rerluircments not available Srom the 

referunces. kfissiotis chilracterizcd by tiew analyses are untlcrllncd in the t:ihle. 

Otau of tllc elenleiits of task 1 !v;w;ls a settroll for new 13rogr;11ii opt i~l ls  to be ctsarsidered for ;ulalysis by 

tile study. Seven optiotis were investigated; five were retained. Tlic two ~ro~:r;~ala optioiis not 

ilaclaatletl (space colot~ization: iriterstellar proltcs) wcrc coiisidercd to represent techsiical tlcvelop- 

nlemts most liliely to occur later tfl;iii tlle timeframe ( 1985-1 995) under stutly. Fom' of dlle five rlcw 

trptions wlv fot~xld to 19e hest treated as optional fcatttrcs oS tlic progrim optio~ls specified by tlic 

Stadonicnt of Work; threc? of tliese required concept analyses to achieve sufficient definition for 

pearposes of this study. 



Table 2- I- Program 0. f h s  
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rn Broad specfmm e;rrfE~ abssnatory 
$6 Deref ;op space z11a11r~f3c~rbsg i /  

I/ 

ScienEiGc i~r~esf  iga~ons I/ I] 

I! 

(a EaeBa o'fiservagior-rs I1 

11 * C O ~ ~ ~ ~ Z ~ ~ ~ ~ C Z ~ I ~ I E ~ P I B V ~ " ~ ~ ~  fan 11 

* FrTa&~lten;rrrce 3318 repair of 1; I 
/i g auftosnaf ed spacecraft 5) 

CI 

CT, 
4 
5 

In-depth r.wplorztiun af seIeded ze 
.s. 

areas 

1.1 Brmd specfmm surf'ce &sen-af'ion 

la 4-1rrnn, 28nd;iy sorties 

5 Lrrnnr Surface Base 6-man, 6-monfh KsironomicaT absemaf ism 
e 12-mar1, semipermanent Surface expfosatiarr, 



* Orbitag obseE~a$ory 
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PPC)~Y;~III c)pfi0~1 ~iC!j~r ip t i~~l! i  in tPii!i ciocrrmsac~nt izre r~l3r~::etiatittivc of tila pro:lrnnj optirrn!; in terms cjt 

trrtnsl~ortation reogk~iroalcut!,. 'I tn~~y uro ;rot reca~mmeneD;atit~t~~ or C O ~ C ~ ! ~ ; ~ O I P ! ~  rcparrlil~g objective:, or 

:iy:jtom dcsil?n ;qaproacElen. A vitrict!; of iil~~~lornetnt;~tD~~t~*i c0111tI 110 i\pl~lietl to tllcse pro~~r:im rqjtitrn!,. 

'riiis io p3;irticttlarly trrw of the automatscl plat~c-'t;ary op th~n .  It was; ilnpr;ietic;ll t o  trei~t 

comprc"lnenl;ivclyvoly tllc Iitrgc na~mhcr of ptrtcnltial dcotiantitrt~!; arttl mis!,bs type:, for arttotnaturl 

p1;irzctory oxploriltitrn. ?he tllrce rni!sjic~n!; <?lltcted are intlicntive of tlzc riInpC of tranepsrtel:\t~ 

capability tloottcd. 

2.2 TRANSI'CIIYTATIQN SYSTEMS INVESTIGATEIZ 

'Ikulsport;ltion systoms of tllreo peticriil opcrotionol a\pi~hilitiosi were analyasd: Ilurth Irtunch 

systemq, 64r[)it trafll;f~?r (orbit-to-orhit 1 BYstL'ill~, ilf~d ~ ~ l ~ i l ~ / ~ l ~ l l l ( ? ~ i l Q '  tf31t:;Port sy!jtcnns. Opsrotional 

rel;~tionsliips ;ire sclicmitticully ciepicteri in I:il:t~re 2-1. 'I'liisj t'iuirttia~~~al division tnoximixes cfficia1cy 

of tlie c13sses i111d types of trnnsportation systcms considered in this !itudy. 

Tlie space shuttle presently iltldcr 11~velop111~1it Ijy tlira NASA (12iflatre 2-21 Wits consiciere~l tine 

baseline Earth laiulcli vehicle in this study. Its clailnzoteri.jtics and c, p~;il>ilities were ol)t;~it~cd fro111 

JSC 07700, Vol. XIV, the payload acoo~ntnotiittio~~s dosurtlcnt. 

2.2.1.2 IIcavy Lift Yel~iclcs -- 
IIeavy lift vcliiclr; systems were cl~asiicterined for delivery, to  the I'iirth orbit interface, of poylonds 

too rl~assive or  too litrge in vol~unc for the s!lttttlc puyloritl bay. 11o;lvy lift vehiclss inoy lje 

expendal~le, partially reusable, or reusable, and single or lnllltiple stage. Two cl:lsscs of lleovy lift 

vellicles were considered: those derived from Space Shuttle elements an:] tlrose Iitr~ely or  etitiscly 

new systcrtls. Tlic sha~ttli: derivatives art. applic~~ble to all progrilllls except tllose (e.g., satellite power 

stations) requiring low sccu.-pint: costs ncRic.vclblc only tln'oug11 total reusnltility. Two sliutrle 

derivative optiorls were considered: nil all-solid roclret booster (SRI3) configuration anti n 

configuratiotl using either two or four SRE's clustered a ro i~~*d  a modified shuttle extert~rrl tank (ET) 

 lade into a stclpc, fitted with tliree space slluttle main engines (SSMIYs) ill a recovcrablc propi~lsioti 
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Figure 2- f-  Missfon Transportatfnn Opratiolis 
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pacE;ap. '1 lac SItD/E:T !jy!itcnJ tvaa [qotleraily t'rlore suited to thc missiou!s studied, due to  its grcntcr 

payRoac8 ~ipahility. A nopres:cntotivu low cost Plciivy lift veliicle was i~t lo~tel l  fro111 a I)ocing IRrkD 

:,teaeBy oh' poevcs ~otullibo Duutach !;y!;fclns. It is oale of miiny potential wily6 to aclii~ve very low cost 

tlln,usln eo&d rct:us:ibiPi$y. 

' t h ~  li:arth BttunacP~ options ;ire compared in Eigure 2-3. 

Eiiirtlt D~~ean~ll systenla were not tailorcd to c:i& pro~:runi/missio option; tlie al)plicnblc ones from 

ti16 foregoing optio~is tvcrc utilizcd ;is appropriate. 

2.2.2 Orbit Tmnsfsr Systems 

Orbit transfer systems provide the nccessnry propulsive iml~ulse to transport paylonds Trom a low 

Il;irth orbit operntional interfi~cc to tratlsfer aiid mission orbits. 111 some cases the ~nissio~l orbit 

itself is an interface between orbit transfer operations ancl Iunar or pla~ietary surface tral~sl~ortstion. 

Orbit t ~ i l t l ~ f ~ ~  Y Y S ~ ~ I I I S  iriclude be high thrust and low tl~rust systems. 

IIigli thrust systems utilize (as propellant) tlie worki~lg fluid of tlie thermoclynamic cycle that 

coiiverts source eiiergy (chemical or nuclear) into tlirust power. Tliis study considererl liquid 

oxygen wit11 licluid hydrogen (LB7/LI12) e and liquid oxygen with mo~lometliyl liyrlrazine 

(I,O+JMMEi) as cliemical propellants, and nuclear reactor heated LI-I2 as propulsio~l systems. Many 
4 

alternative diemical propellants could be employed. L07/LI-I, u - provides high perCor~nance at low 

bulk cle~lsity. A represe~ltative specific impulse is 4 SO0 m/sec (459 seconds) in a11 orbit transfer 

iipplicotiot~. (The specific ilnnpa~lse in SI units is tlie effective jet velocity). The high performance of 

LQ2/LPIT h minimizes the mass that must be transported to the low orbit ol~eratio~lal interface b ~ ~ t  

the low density of LH7 results, in many cases, in trallsportation stages too large for the shuttle &. 
payload bay (4.57 x 18.29m; 15 x 60 ft). L02/MMI-I provides less specific impulse performance; 

il representative value is 3 630 rn/sec (370 sec). Its comparatively high de~isity results in stages that 

can be fit within the shuttle payload bay for launch or recovery. The mass of propellant requised is 

much greater than sfiuttle capability; on-orbit fueling is required. Nuclear reactor Ilealed LI-I2 

provides steady-state specific inlpulse on the order of 8 090 m/sec (825 sec) but at the vely low 

propellant density of LEI2. Propellant losses for start-up and afterlieat removal result in all effective 

Isp for the LEIl nuclear rocltet of about 7 650 m/sec(780 sec). " 

High-tlirust systems ran be operated in a variety of staging modes to improve perfornla~;ce, 

:ransportability, or operational flexibility. The staging modes considered iri this study are illustratecl 

in Figure 2-4. They have the following principal features: 
11 
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Tliu wiiit.1~~ stage ~tintle is operationally tlic simpleat. 'I'llc single orbit tr;tiisCcr sti~ge executes tlie 

cntire aainsion from low Iiilrtll orbit to i1estiii;ttion (;tlld retr~rii if a~~ l i cab l e ) .  It is norlnally 

reus;~hlc.; the s t i i ~ ~  returns itself to tlle Iow h r t h  orbit interktce even if tlic 11iissioll ftmction 

rcquircs paylond delivery only. Tllc single-stage vcliicles that resulted I'rolll nnaIyscs in this 

stucly were too iari:c? for rctuni to Iiirr tli by tlie slauttlc; accordingly tlicy must be refuclcrl alrd 

serviced :rt the low Llrtli orbit intcrfitcc. 

Tlie I-113, stage mode augments the gropellant capacity of t11c proltrrlsive stage with artxilit~ry 

colitaiaers (drop tanlrs). ?he drop t;uiks are jettisolied wlleli tlieir propellant (usecl rirst) is 

expenclerl; they arc not recoverecl. Tliis mode reduces initial mass by virtrie of the efficiency 

i~nl,rovcmont resulting from staging. Furtlier, the division of requircd lsropellal~t between two 

or more coataincrs allows each i;;J;vidual container to be size-compatible wit11 the shuttle. 

Tlic collveiltional two-stage mode provicie an cxpei~dable stage for clelivery and a reusable stage 

for return wllere return is needed. The two s . des are mucl: clifferent ill size, the cxgenclablc 

stage being tlie largest. 

The common stage mode, sometimes called tandem or slingshot, derit~es tllc two stages as 

having equal propellant capacity and rlivides tlle transportatioil taslc accorclingly. The first 

stage, expellding about 90%) of its propellai~t, is able to boost tlie seconcl stage and laayload to 

an elliptic Earth orbit. It then ret~arns lo the low Eartli orbit for reuse, using its remaining 

propellatlt. This boost reduces tlie delta V requirecl or the upper stage by typia,illy 2,000 m/sec 

(6,562 ftlsec). The actual delta V split clepeilds on tlie mission and payload. This staging mocle 

is about as efficient as the otllers mentioned because the upper stage is large and thererose lias 

a higher propellant fraction than is otllerwise possible. Both stages are norlnally reused. 

L02/MMI-I orbit transfer vellicles (OTV's) were exa~ninecl only in this mode. 

Multistage inodes were examined for inissioils requiring very high total clelta V, such as 

planetary missions. One of the options exaininecl for the Inclepenclent Ltullar Surface Sortie 

mission was a multistage mods. 

The baseline STS includcs two OTV options; the interim upper stage (IUS) for wllicll several 

potential configurations are under study, and the f~tll capability tug (FCT) clelined by MSPC as 

illustrated in Figure 2-5. Tlle FCT is quite similar to some of the smaller OTV olstioils considered in 

this study. 



/-- AVIONIC COMPONENTS. 

Figure 2-5. Full Gapabiljfy Tug l'h!SFCP 



2.2.2.2 Low TIir~nst Systems - 
Low tlirust rsysteiiis examined in this stutly consisted of power geiicmtion systeiiis (solar 

pl~otovoltaic, solm thermal, or nuclear rl.r:ictor tliermal) drivii~p, tlirust prot1ucin.g systems (eIectric 

thmsterss) that produce 3 jet fro111 a propellant iiot iiivolved in the power ~rocluction or transmission 

processes. These systems are low tlirust I~eciiuse the specific masses of power gcnemtion systems, i.e. 

in let: or lb per lcilowntt, are large in coinpiiri~oii wit11 fPie tlirust that c:un be protlucecl by their 

output, i.c., in newtons or Ib per ki10w;ltt. AcceIer;iti~ii levels are typicnlly Iiii~itetl to less tlla~i 
9 3 lo-? mlsec- ( 10. c's) and tlirust is typically spl~lied coiitinuously tlirougliout tlie orllit transfer. 

Bewuse the tllrust is getiemlly produced by e1cctric;il or inagiletic body forccs on the propellant 

ratlaer than a tcmp~mturefimlitcd t l ~ e r ~ ~ o c l y i i i c  expansion, very liigli specific impuse can be 

attaiiicd. 25 QOO m/sec (2,5SQ sec) is a representative value, but specific impulse can be selected 

over il relatively wide mnge to  suit particular mission tr;ideoffs between trip time, inert mass, and 

propellant mass requiren~wlts. ?his tradeoff is ~articularly iinportant in the power satellite missions, 

Low thrust systems were geaierally examined in single-stage modes. Staging of a sort was considered 

for tlie power satellite niissioii. Tliernial-engine power sntellites are capable or providing the power 

for the electric propulsion system on ascent. In tliis case, tlie low tlirust veliicle may consist only of 

poix~!:r conditioning, control, tlimsters, and propellant tankage. A potelltlally clesirable iliission 

mode involves retun1 of the high-cost elements to low ol.l,it with a liiglltlirust stilgc (i,Q2/LEZ9) u and 

disposal of the ascent propellant tniilcs, leaving them in tlle liigli orbit. Tliese alter~latives are 

discussed ila more detail in Section 3.1 0. 

The low thrust systems required for missions ill this study are much lligller in power but otherwise 

similar to the SBPS concept depicted in Figure 2-6. 

2.2.3 L ~ ~ n a r  Transport Vehicles ( LTV9s) 

Lunar transport vehicles operate between the lu~~rtr  orbit interface and the lunar surface. They ;ire 

similar to high-thrust chemical OTV's and are eq~lipped with landing equipment inclucling landing 

legs, landing and targeting avionics including the required guidance and navigation software and 

radar, throttleable eilgines, and crew aids including ladders and/or elevators, etc. Co~nmonality 

between LTVYs and OTV's may be inore apparent than real since Innding/ascent operatioils impose a 

number of unique design requirements. This issue will be addressed in a later phase of study. Single 

stage, 1-1 /2 stage, aiid two s t a g  options were exanzined for L07/LI-I2 b and a single stage L02/MME1 

veliicle was considered. Low thrust vehicles are not capable of Iutlar or plailetary landing. 
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An :t~~;iloyr~t: , scq~t i sd l~ le~~t  t'or pI; i i~~t;~ry l i ~ l ~ d i ~ ~ ~ ,  exists Iwt tv~r3s given sel;ttiv~ly little cmph;at;is in tliis 

slurly. Auboau;itc'd blur:., latlders oxaal 3 Gamynnctlc l;t~ld~'r were ~ l ~ i ~ r ~ ~ t e r i ~ e ~ l  ;1s inission payloatls. 

M.illll~tS ~I;LG:s l~it~el~ss wccc ~ P : I W I ~  f r ~ i n  prior stutlies nnil also tretltett as mirjsion ~;ly103(Is. 

2.3 SIMMARY OF KEY H"ajisuLFrs 'ru DATE 

This stlmmary includes tan tuvorvietvof rcquircna, ts represcntetl by tlle profirom options ilntl of 

tnu~sportation :,ystesan optioti:j. I{tatphasis is placed on comparison. Each l.trogram/mission optioii is 

discussetl iiidiviii~.v~lly in tletail ina the body of the report. 

2.3.1 Rctluirena~onts Drivers ant1 1P:;aages 

I2erluisctmcnts clrivca include 

@ Mcs+ of itldivitlual payloatl itcms; 

@ Si~ts of intlividual p~ityloatl items 

II11ert:y requirad for payload delivery 

Total mass to bt dclivcrcd 

* Mass delivered per year rcquira3d to wrsti~in tlie programs 

Economic constraints oil systelns (such as power production) intender1 to provitle or 

contribute to a coliirilercial product. 

Masses and sizes of tlle largest individual payload ?terns for each program option are sllown in Figure 

2-7. Most of the payloaris from past studies were defiiled as cotlzpatible with space shuttle l a ~ u l d ,  at  

least in 11 modular option. 8111y the space base and some of tlle plianetnrgr ~ l ~ i s s i o ~ l  l~nyloads cculnot 

be trallsported to low Earth orbit by tlle shuttle. Tllc space base is a large low-orbit space station for 

a crew of 60 or more. It is assembled frotn modules rlcrived from the unitary space station. These 

modules are roughly '1 meters (30 f t )  in diameter by 20 meters (65 f t )  in length; vl\rious sizes in this 

range llave been studied. Assembly of a space base rrom shuttle-sizetl modules would require 

approximately SO modules; practicality of this llas nat been investigated. Propellant is included in 

the largest indivitiual masses for the manned l~ular missions. For shuttle-compatible launch, tlle 

p ro~e l l a~ l t  can be offloaded. 

Ma~l~led netary missiolls and some of the automated planetaiy options include a Mars landing 

vehicle too h g e  for the slluttle. The manned planetary mission also i~lcludes a large mission 

module. The mission module could presumably be assembled fsom modu1:lr space station elements. 

Modular construction is impractical for tlle Mars lander; it requires a large diameter to effectively 

accomplisl~ aerodynamic braking during entry into the tenuous Mars al~mospl~ere. 
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Pt>wes ~:,iecliitc:; uornld cannccivahly Pjo afic.mhlcd in :a 1 ~ 3 ~ 1  ortj3g frotu componcmts eomnpatit~l~ with 

!;Iirttttc. loesnch. iBlan.scves, a,rl,ital ~9l1t,211119ly ($2' 6110 powcrLi:10 ifi jl~~iitPy fi~e!FiEcabcel byy Itsr~racB~ in] Biiqvr, 

lotvcr t!cta:)ity p:ic!:~tpc:i. 

Pigtire 2-0 repre:~carts it L ' o ! I I ~ ~ : ~ P ~ ~ ~ ~ ~  of tot: U pLlyloarl ne;lbl; clelivcry rccluiren~i~nt~ Anlltli~l poyloat2s itre 

stateti only tvlnun ;a v:~lid P e c ~ ~ a n i i ~ ~ ~ ~  !);i!ji:i P!ib,tt> for co~tinl~ill[: d ~ l i v ~ r y  rc'(111ir~lll~1lt5. I2o3' C X ~ ~ I I I P ~ O ~  in1 

tile CiIBC ~ 3 f  fhl: ;~kl'ib31~1;!t~d 1lIlil;lb I' 7bt$811, ii!j tljiillly tar il!; t b t ~  mi!f;ion!i closimd lllily P ~ P  f lot~tl in ;uly 

five11 tii33~ & ) ~ l ' i ~ ~ i ;  lBP3 ;~111111;11 1'~'cgll , . '130 i!i f f ~ t  ~ f i l t ~ ~ l .  

The relatively Isst", odc'livcry rc , *i* leolt fur tllc orhitint? lutlar stittion (C)L,S) result!i i 3 0 ~ ' ~ 1 ! i ~  II~IC 

~il~rfnce sortie occur:-, after u;c 311 L-qaly fiillht (i.e., 3.35 !iortie!i per year), The 01,s ~ro:,nm rtl; 

tlotliied iolvolvcs more trips t6 1 fi , ~,rarPiics Ehan tllc lullor surfnuc 13izso propram (2.23 resupply atit1 

crow r~t;~$it)l l  fliyl~ts to tlic I? .:;IF sl!11';lC2 per y ~ i ~ f ) .  It !jholilrl be rcco{:llizcd tllilt tilt? fl'tquelN!y of 

~jitrfilce scwties for tlze BLS n~., . , l t b ~ ~  io .!of ;I rl~fiiiite i i~i~nI~es: llit~re or fewer tlknn 3.35 l ~ c r  year coulrl 

Ije condustod. 

r 3 Iwo of tho 11rogranl ~pFif\:~:j analyzcd must hc ccotlotlaic;tlly oo~nl~atible with tlie commsrcial 

productioi~ of  electric pajever. Pt is unvisiigcd t l ~ i t  tile power satcllito will produce commcrciill prawhtr. 

Nuclcar waste disposal ( a h  c,'l~rrclltly propos~d) will be i i ~ ~ ~ l l l p l i t i l ~ ~ d  by lii\~llcliillg 1116 rildio-~tctivc 

wastes from coai111crci;il power reactors to ti final tlisposal in space. C'osts for tliis would ii1111ei1~ as a 

~\i~chilrfic on power procluction costs. Ikonomic requircmctats Ciili tlit?roSc)rc hc al~proximatcal for 

the tnu~sporti~tion $1 oton~s for tlicso pro[?carn options. ?'he r~!jultillp, economic: rec]uircmcnts arc 

tlirectly related to tlie nature of proposcd t~ansportiition solutions 311~1 are tlisc11:~seil ill tllc body of 

the report under tile pertitrent proglnni options. 

2.3.2 Generic Transportation Needs and Tccilllology 

2.3.2.1 Sre11eric Needs 

Starting wit11 the current STS as a baseline, four generic tyttcs of  iitftliticwal accded tr;lnt;portati~~i 

capability were identified by 'raslc 1 : 

0 IIeavy Lift.-Thc capability to lituach, from Earth's siirfilct: to o low ISartIi orbit, paylonrls tlllcl 

trnnsportation stages too heavy or too large in volurtlc to bc o~.:ommodated in Lhc paylond lxly 

of tlae shuttle. 

Orbit-to-Orbit Transfer-The capability to deliver payloocls froti1 a low East11 orbit to a rllissio~~ 

or  destination orbit. In many cnses ii rctiirn capability is also required. 
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@ L~llnar or PI:~aactnrv Llncling '1'Pne capability to laltr! ~;p:te.e :iyr;tems and mni!,hicrn o'rcw!, t ~ n  the 

raiotrn or  tntl 111;ii:i ;111d to ~ ~ t l l F 9 l  ?lie C~C'W:I to or13if P ~ P F  ! I ~ I I ~ N P ~ ! L I ~ ~ ~  rctlnrn to  Iiorth. 

c, low Cost Bgcl'ntion 'I'ltc ealx~hility to  cotlcielct sp;lce tr:~nsportation opcratioll:; at very law 

ct~sts in ortlcr to !;upport llli!j'j~01l!j reqiljri~lg IIIOVCIIIC~I~ of p r ~ i ~ t  PIJ;l!jliC!j, 

'I'lne uxirstcnce of thew tylIe;j of neetl:; Wilt> confirmccl hy '1';a:;l; 2; no iodtlitionol typs!i of ficcrl!i were 

founcl. 

ISased on tho.!ic ~:oneric types, tltc alir;sion:s anolyred lltllily hc plilo~d into six oatci:oric~si a!; ttr tlneir 
* Ililsi~' fftlll~~~Ol'tiltj011 IICUC~S. ?'~~c'!Ic k'iltk?[:~fiO~ LlPk? !jllllllllilrilt'l! ill ?';lbk 2-2. If ~110111~1 I ~ c  f l f?f~d Pll;lt 

iiltlaouPh l ~ l i i t ~ / p l i ~ l i ~ t i ~ r y  1ain~2ing is ;i "category," tltllc cilarauteristiai of vcliiole~; in this category ;ire 

hiphly dependent oti tlic cl~oractc~i!itic.t;ctritics of tilt? ~ i ~ ~ t i ~ ' ~ t l ; i r  lwtilr or plnnetary llotly for whiclt they arc 

cIesi~nc.tl. Tile fc,llowint: ok:;ervitiol~e arc nl;ttlc: 

A11 hut t l l r c ~  of tllo mission!; aui  hc done e~sitlt! tlie !sliuttle as the Iiitrth launcli vehicle, hut 

;~dvanccd ort)it-tor~rljit t ~ i ~ t i ~ ~ ~ ~ t i l t i ~ ~ l  is rcqiiired ill iilost cilse~ due to the 1n;ignitudc of l~iiisscs 

t o  be trallsportecl. 

@ ?he 1ieil~y lift vel~icle is iI Icey decision. Its effects on otllcr systcin elements are tligllly 

significant: o) it frees tile nlission payloiitls, particularly alilnntld station elemciits, from tile 

size cot~ritr;iin ts of tlie shuttle pnyload bay (but the large modules cannot he returncd to 

Ij:~rtli); 1,) it iil10~" tlie use of I i I~f i~r ,  l)ote11tially Inore efficient orbit-to-orhit ~ t i t f i ~ ~ j  (hiit they 

31~0 canllot be refurlied to  1i;irtll): 1') prohiiljly ~iiost si~?iiific;tiit i:; its redt~ction ill the numbers 

of Ilartli la~mches ruquiretl to  accomplish tlie more cfcmanding missions. 

"Ihe three inissions (inanncd plilnct;iry, ni~clear total ~ ~ 1 s t ~  tlisposil, ant1 power satellites) tliat 

cannot be accommodated by the siiuttlc will recluire tailorint? of tratisportation. 'I'he del:ree of 

tailoring for tnaaned planetary will, ns described Irelow, depend on tile approacll to tile 

tnission. Present indications are tlitit the other two rnissions ~icerl, and justify, systems 

econoinically optimized for tlieir unique requirernents. 

2.3.2.2 TcclinologyJ4? 

Four tlrcas of technology needs were obscsvcd frequently and wirrent considcratioii for t.xlinology 

or study activities: 

Doclcing together in orbit of  massive vellicles o r  of vehicles to  pnyloads in order tc f o l n ~  

complete tronsport;ttioil/l,ayloati units. Masses are in tlie range of SO 000 kg to  300 000 Irg 

( 1  10,000 Ib to (100,000 119) depending on tllc modes and sequences selected. In mast cases a 

large proportion of tlie niilss is liquid propelllrnt. 

'Ironsfcr of propellant on orhit, typically from a tanker to a trailsportation stage. 
22 
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Avsilubiiity of a space engine in tlac tlnrust ranee 80,000 to 300,000 N (1 8,000 to 45.000 It)), 

with high isp, tank liaild ulliafiing and start, lo113 life q,vitli no lilriit on rcstorl's, aiid coimipact 

packaging. Where used for lunar or plnnetnry landing, tlirottliilg is rcquirecl. LQ,/LI17 e. 
YI or 

L03/MMII ;\re cizadidatt: propella~~ts; the choices between thcse ilnd otl~ers will be arldrcssetl in 

n later phase of the present study. 

Avoilalsility of ill1 electric thrustor with the following general characteristics: 

il) Efficiency lscttur thiul SOY{ frorti busbnr power to effective jet power. 

b) Common material such us water, ammonia, $odium, or hydrogen for worlcing fl~tid, 

c) Lightweigl~t and coinl>act paclcaging -less tlia~i 1 l<g/lcw (2.2 lb/lcw) or  electric powcr 

consumed inclutlirrg whatever power conrlitiorling is required. 

d) Isp in the range of 25 000 ~nlsec (2,500 sec) and higber. 

TIic fo~lrth tezllnology need arises for the inissions requiring very low cost transportation. The 

otllers i\re present in most of the potential programs analyzed. 

2.3.3 Earth Launclr Systems 

2.3.3.1 Sp,~cc Sliuttle 

As stated above, the space shuttle provides a souncl basis for advanced space transportation and fills 

a large proportion of the potential Earth latlnch requiren~ents. A number s f  payload requirements 

were obscrved in tlle mass range 25 000 to 4.5 000 1cg (55,000 to 100,000 lb). 

Most of these were Earth Iam~ches of small orbit transrer vehicles. Those greater in Inass than the 

currently planned shuttle capability of 29 500 1;g (65,000 lb) can be launclled partially off-loaded 

and subsequently topped off in orbit; this was the mocle assumed in this stidy. It can be observed 

that potential benefits are likely if the shuttle were to be u~gracled in LIP payloacl capability in the 

future; it is premature to state a specific desired capability. 

Occasioi~al needs were also seen for down payload capability greater than the 14 500 leg (32,000 lb) 

c~~rrently planned. These neecls were priiicipally Tor return to Earth of erp;riinent or applicatioi-~s 

systenls modules up 1.1 21 000 kg (46,000 lb) in mass. Tlle penalty for not leaving this capability is 

loss of opportunity to  ret~trn systelns to Earth Tor reuse; rnissioil capability is not impacted. Again, 

at is preinature to state a firm requirement as the above values are preliminary. 



2.3.3.2 IIcavy Lift 

Thc 'I'asl; 1 activity fou~lti pote~ltialhe:lvy lift rrcquirements mngine from 53 000 1;g (1 17,000 Ib) to 

109 000 kg (24*0,000 Ib) in a low Barlli orbit. Taslc 3, results i~ulicatc Llle Sollowing l~oteiltiill 

requirements anil considerations: 

It tnay be desirable to size the IIeilvy Lift Launch Vcliiclc (IILLV) to  Iauncli oorntnoli stages 

tiilly fuelert, leiitli~lg to a rnass mnge from 115 000 kg (250,000 lb) for L0,/LI12 common 
& 

stages to possitjly as much ils 190 008 kg (420,000 1b) for LQ,/MMII common stages. " 

It appears unnecessary to size tlie for the large single stages, up to 300 000 kg 

(060,000 Ib). It lrlay be Inore practical to lnrtncli these partially fueled and coml>lete f~leling on 

subsecluent flights. 

o Tt~iilcer flights f~ieling directly from residual propellant in the shuttle ET, ~ ~ s e d  as n heavy lift 

element, may be practical. If no payload is flown, the ET arrives in orbit with residual 

propellant nearly equal to the payload that WOLIICI otherwise liave been delivered. This .tanlcer 

mode (applicable o11Iy to LO2/L1-I2 orbit-to-orbit systems) woultl avoid development of a 

separate tanlcer system. 

The I-ILLV may be expected to fly several times a year. Accordiilgly its high-cost elements 

should be recovered and reused. 

A heavy lift option that ineets the above requirements was shown in Figure 2-3. This option was not 

compared to alter~latives and does not represent a recomineildation. The heavy lift requirenlents Tar 

power satellites (low cost Iieavy lift) are ~miq~ie  and are discussed in paragrap11 2.3.5. 

2.3.4 Orbit-to-Orbit Tra~lslsortatioll 

Several alter~latives were investigated. Tllese included a range of sizes, staging options, and 

propellants. Significant commonality between orbit-Lo-orbit trinsportatio~l requirements exists 

among manned I~mar and geosynchroilous orbit inissions. Systeins sized o r  these missions can also 

acconlmodate tlle automated plalletary options. T l~e  mass com~noilality is eviclent in F ig~~re  2-9, 

showing princil~al LO2/L1-12 options. TIle smallest vellicles are suitable for lunar landing wlle~l 

configured as la~lders ancl can be staged and auginented with expendable tanlcs to meet the larger 

orbit-to-orbit requirements. The largest vehicles provide single-stage reusable roui~cl trip capability. 

The intermediate size sestllts principally from the comlnoil stage "slingshot" mode. In this mode, 

the booster stage propels the assembly into an elliptic orbit, reserving ei1ougll propella~lt Fqr its own 
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return to low circulilr orbit for rccovcry. 1'11~1 t~pper sta[?e p,oes o n  from tllc ellipse to  comytlete the 

~iiission, iricludin~? rcttirn of pilyloall and recovery of  itself into ii low circular orhit. 

A11 modes invr?stitxitell arc compi i r~~~l  for the manned t!cosynclironous missions in I:igure 5 1 0  as to 

relative massc!; iulc?, in 'I't1hlc 2-3 as to otlic:. tictors. 'Ill~c I I I I C I C ) ~ ~ ~  cleclric t l ~ g  11;1s less ~CSIII)DIY 

(propellant) mass than any other system, hut its ~~roblenis witli slow tnlt~sfcr (14.0 days up). i111d 

reactor disp0sa1 itfter its nl~cleiir fuel is spent, Inay he allequate t?rotuids for rejection. In other 

applicutions (scc prwer satellite discussion below) its mass efficiency ~riiiy he grounds for sclection 

dcspite the prc~blcnis. Solar-tl~t~rtiial electric propulsion systcnis (S'I'III'S) offer it possible i l l t ~ ~ ~ l i i t i v ~  

to tlic nuclciir till:. Pcrii,miatlcc is cxpcctetl to he compa~.ahlc, and no reactor ritdiation or tlisposal 

problems arc encountered. C'onceptual analyses of S'I'III'S are included it1 the appendix to  this 

report. It was not flie intent of tlie effort rcportcd Bcre to srlcct systems. Syt~tliesis iind selection of 

optimal sys te~ i~s  will 1x2 iiccomplislied in tlie gla~i~ied I)I1;1se 11 of tlie 1?resellt s t t~dy.  

Selection of tlie data presented ;is o comparison iimong systertls wits prellicitted on iln ev:ll~uation of 

t11;uiy itlter~iittivc opi io t~s  for accomplisliitictit of mission rcquiremenls. Figure 2-1 1 compares tlie 

options for tlie ~ c o s y ~ i c l i r o n o ~ ~ s  ninnncci stntioll mission it1 tenns o S  piiranictric sizitig of ii 

common-stitge L 0 7 / L I l s  .& &. O'I'V system. It is clear tliiit the lwopart delivery options (tlclivery of tlic 

station from low orbit to geosynchronous orbit) coliipare most neorlv with tlic crew rotation/ 

reslipply reqldremetit and that tlie lottcr is sliglitly riiore difficult. 'I'liereforc veliiclcs wcrc sized for 

crew rotiltion/res~~l,plyy iis the basis of the ilbove comparisons. 

A co~tipiirison si~iiilar to that of I'igure 2-0, hut for LO?/MMII a stapes, is prcscnted in Fig~tre 2-1 2. 

No sinf.lc-stage optiotis itrc sllowli since tlic prctlictcd propellant fsactions ant1 specific impulse for 

LO?/MMII - systems result in very milrgit~ill single-stage systetils for tlicse missions. Figurc 2-1 3 

iil~~strates rclative sizes of typical orbit triinslkr vehicles. 

The orbit transfer systems ns 1,resently iuiderstood ltlay he summarized as fc)llows: 

a Tlic nuclear systems appear to present operii tiotlal and sitfe ty problems that niay outweigh 

thcir riiass efficiency in tliesc applications. 1:itial iudgrncnt is reserved for a 1:tter phase of 

study. 
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Table 2-3. OTV Concepf Assessment 
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@ 'hhe sing1c~t;tuge voiticlc offen; tlie sirnplcst c~pentions, laut is not p;lrticularly efficient, llilce 

phcud on orbit it cannot be rctuniod but rather must lie refiielcd iind rcfitrhisherl on orbit. 

TIne 1-112 stage, wit11 suital~le scts of tlrol~ talalss, is efficient and oonil~atihlc wit11 ,:l~uttlc 

1;rtmcli. Orl~it;~l ossembly is, liowever, coniplex, involvinl: both side-to-side aiid ctitl-to=eiid 

dtacl<iiig. 

0 'rlw two (uncqt~al) st;lk:e systcrli offers no ;~dvati Cages as compared to tlie common s t a ~ o  system 

and is not rccommendsd for fiistlier cotisi~les;11 1011. 

@ Tlie common stag6 system offers full :;.r~sability in an efficient motlc with only onc stage 

cteveloprnent. Tlre L,O?/LII? stages are too large for the slirittle it11d once placect on orbit, they 
6 Y 

must be refueled and refurbished tliere. If ;I 70% riiass penalty is aucuptcrl, ;i coriimoii stage 

system witli dense propell;~tits (LO-=&WII) u can bc dcfiiietl Iiaving empty stages compatible 

with shuttle return to Zlarth. 

Several aerobralciilg modes were invcstig;ited h r  tlie 1nai111ed ~eosyncliroiio~~s sntellitc tnainte~~ancc 

missions; tlicse have poteiitinl applicatioti to otller m~umed gcosynclironous missions, Tliese inorles 

influence sizirlfi of tlie orhit transfer systems. Tlie rriotles werc: 

Use of an aerobraltiilg (Iligll drag device) kit on an OTV to allow cirzularizalion of the elliptic 

retur~i transfer orbit by multil>le aerobralcing passes through tlie upper citmosl~here r;itller tliiiti 

by propulsion. 

Use of ail Apollo-type crew recovery vehicle. 'rliis veliicle is capable of direct entry from 

geosytldlroiious or lunar apogee. Thus the propulsion system does not lrnve to  deliver tlie 

payload thro~~gh tlie low Earth orbit inserfion delta V, and il shuttle crew recovery flight is not 

needccl. 

ZJse of a winged crew recovery vel~icle. Tlie winged vehicle ;nay include e~~ougli  inteniol 

propellant for n coplnnar desrbit from geosynchronous orbit. A11 L/D of 1.8 can l~rovide pliune 

changes from 0' to 30° during six to ten aerobralting passes that also reduce the orbit apogee 

from 35 786 lcm (19,323 n.rni.) to about 500 kin (270 ~i.mi.). The final orbit at 3O0 

ii~clinatio~i overflies the United States; a shuttle-type e~ltiy and l~orizoillal landing completes 

tlie recovery without the ilecessity for a shuttle crew recovery flight. Use of rnultiple 

aerobralcing passes allows the Izeat sliield to be desig~ied only for low orbit entry. 



2.3.5 Lunar Trmlsport Vchidcs 

Tlic lunar translaort vslnicle!; rocletired for lunclr pn*l:mlam o$ptic~ta:; in tlnis ! ; t~~dy arc 1tr)tclati;dly 

si~e.compatihlL.c witll slatittla nc; ril~cswn in 1;igkut: 2-P4. 'l hesc vehicle:;, Iiowovcr, wit11 tEie rxocption 

of the LO.n/LII? L, ‘J !;inrlu stape tln~el I902/hltvIII L1 options, itre quitc Ion:: iind tnay bjc risP;y to Lllid t1t~e $4) 

too hie,h ;i ccntar of ~~r;lvity this i:; e~pocii\lly true of %Ire two=:;tai:e sgtieam. A prol~lum ul!io cariscs ;IS 

to cili'go ~ t l i i ~ e m ~ n t .  The C';LF~C) I I I ; ~ ~  1 ) ~  01; V O ~ ~ O ~ P I ~ I ~ O L I S  ii!i the t T V ;  ~ ~ C P I I ~ ~ P S  1110~13 $50 t l l ~  I U ~ W  

surf;lce t ~ s c  mission. F:i~:urc. 2-1 5 :iliow!i typicol e;prt1o vol~rltlle:; for ;1 lunar landing opcriitiolt with 

payloacls side-mountcti to a sint:le=!;tat?c: LO?/LII? 1,'I'V. Also slnowtl is ra 1-1 12 sitage lontler not " 

constroi~lect to shuttlc dirntonsions illat:stratin;! thc! liei:!E~t rtx211ction tlicrchy ohtnincd. 

Patentially at tsilctive lander!i includo: 

c, 'The LO?/MMII[ single-statw lander. 1~ecauso of its compuclnsss, low c.::. and EreetSom from I,IIs-, " U 

boiloff concerns; 

* 'Tlic LB?/LII-, sitll:le-stage lander because of its weip,l~t advillitiigc~ altcl ~otcntiill comntonality 
U Y 

with Q'TV ;tppIiciltions; and 

Tliilorcd-configuration landers designed expressly for tlic laridin~/asce~lt operation, because of 

the low c.g. iittiiinakle iitld ability to ~naximize vehicle utility for the ~tnique needs of ltmur 

landing and ascent. 

2.3.6 Unique Tmnsposto tion Needs 

Three missions v ~ r e  identified its having unique trensportation needs. These were tnanned Mars 

lantling, nitclear (total waste option) waste ciisposel, and power satellites. 

Manitecl Mars Landing-The degree of uniqueness of this rcquircrrtent is associateci wit11 the critical 

issue of rnlission tlumtion. In itrly cvent, a ul~ique Mars lanclinglascetlt vehicle is required. The asccltt 

element may have it degree of' commonality with t11e striall orbit tra~tsf'es/lii~iar lander stages 

previously described, but tlle landing elentet~t is a unique ilemclyniin~ic and roclcet bralring system. 

Mars roundtrip stopover rilissions come in two principal varieties, a "short", typical 450-day, 

opposition-class mission, anti a "long", typically 1,000-day, conjunction-class mission. Interrrtediatc- 

duration (600-700 ciays) opportutlities ernplsying Venus swingbys lilso occur, somewhat less 

frequently. Ikergy (delta V) requiresrtetlts ore inversely correlated with itusation. The noniirlal long 

mission has an orbit-to-orbit delta V requirement about SOP' gxater thnn that for Ilortli-mooti 

missions. With elliptic orbits iit Mars and direct entry Earth return, the requirement Inay be even 







1e:j.s thiala tllc ne~min;~P l i i lr th-~ttol~ roundtrip tloltti V. ?he 1101niniil 1ih0~t illi~:jio11 11116 3 11~It;i V 
rec~~tisennoa~t :tl~c~e~t 980',:8 pro;ltor t l ~ a n  tl~iit for Iiorth-moon re~~t~ircizietaf~~, even with dircci elilry at 

l:;r,rtl~ rutalrul. 'I'lw Vualus swin~?hy missionri arc intsrmcdirtto ira energy requircm~nts, The payloorl 

rcqalircmcntt; ( 122 1600) Isg; 170,000 lh tuns-Mars anti 00 000 l i~ , ;  150,000 lb rcturii) result in tlic 

follr~wing gc11~1';tI 8it11iiti011: 

@ T11~ Ion[? 11l11s:~ion is co~lzpittiljle wit11 the LO?/LII? orljit-to-orl~it stages described for " - 
~:eosynchronous curd luiror mi!isio~is, with a moderote aiilount of clustering. Less tlliin 10 

ilcavy-lift fliglits would bs: needed to asscn~bte tllc systein i11 Earth orbit. 

Tlzo sllort mission with LC)q/L,117 Cs - requires either a peat  ainount of clusteriiig or clevclopiilcnt 

of ri unique, very large Iiircth dep;lrture stage, atid over 20 norninal Iieovy lift flip,lits. 

Veli~rs swi11gI)y cornbined witli aerodynamic braking for Mars arrival results in an inter11lertiaLe 

durntion mission comp;imble masswise to  the lolie mission, with LOs/LI-Is propulsion. Ihc 
U &# 

Edrtli return striges plus the mission spacecraft must be enclosetl in a large aerobrnlring heat 

shield througll Mars arrival. ?his lieilt sliield is again a ~uniclue requirement. 

* LN7 nilclear propulsion (Nerva-type hydrogen herlter reactor) results ill a 40%-50% reduction - 
of tlie initial Inass ill Earth orbit as compared to LO2/LII? propulsion for tlie short mission. .% 

A large nuclear-electric tug, s~lcll as described below for power satellite trailsfers to 

geosynchronous orbit, coilld provide a mclnned Mars rouild trip in 4.00 to 500 days, expending 

roughly 500 000 lcg ( 1  ,lOQ,000 Ib) of propellant. The tug nlass is roughly 450 000 kg 

(1 ,OQO,O00 lb). Tlie tug woiild retirr~l itself tuld the mission systems to Earth or t~i t  for reuse. 

Nuclear (Total Waste Option) Waste Disposal-Tlie requirement iinposed by this program option, as 

characterized by Task 1, was to launch, annually to solar systein escape, 1 100 waste packages each 

4.500 lcg(1(1,000 Ib) mass. This is an average rate of 3 packages per day. This requirement, it shoul~l 

be pointed out, is not the baseline nuclear waste disposal mission (see Section 3.9) below but is the 

extreine case of disposal of total solidified waste. 

It was found that potentially economical s~lutioils to this requiretnent llecessitated develolslneilt oS 

totally reusable syste~ns. Costs of disposal in terms or  kilowati-hours of electricity generated were 

still about an order of magnitude greater tlran for the baseline case or  disposal of refined wastes 

usiag the Shuttle. 'The total waste problem is described in inore detail in the Appendix to  this 

report. 



Powcr Sairtllitss-Tlicse systems are to  l ~ c  placccl in gcosyiiclirono~~s orbit in ortlcr to collect :tiid 

coiivcrt  solo^ power illid transmit it to Bartli hy microwave beam for commcrci;tl a1id illdustrial use. 

Like the nuclear (total waste option) waste disposal mission, the tnlnsl~ortatioii recluiremciit is large 

and must 11leet economics constraints rcsiilting in a requiremciit for totally reusable low-cost 

transgortation. 

'Various studies illid analyses of power stitcllitcs have beell reported, Estimates of specific rims llave 

raiigecl born 2.3 l<g/kw (5 It>/l<w) to 0.5 kg/lcw (14. Ib/ltw), with power delivered to tlie grid per 

satellite from 5,000 to 10,000 megawatts. Tlie 1:lnge of specific mass results primarily from variour; 

assulnptioiis as to tlie degree of teclil~ology ndvnnce, over today's state of tlie art, represented by 

tlie satellite. 

Solar pliotovoltaic and solar concentrcltor tlierinal engines have beell l~rsposed. Tlrerinal 

c~nceaitrators apparently can operate in the high-inteilsity regions of tlie vtui Allel1 rtlditltioii belts 

with possible nlinor degradation of collector reflectivity, whereas solar photovoltaics will suffer 

significant degradation of output unless the solar cells are well sliielcled or unless major strides are 

made in reducing solar cell sensitivity to radiation. Thus it is likely that tlie tlierinal engine plants 

could generate power to propel tliemselves (by electric propulsion) to a geosynclironous orbit, 

wllereas tlie pliotovoltaic plants are expected to require an orbit trailsCer syste~n sucll as a 

izuclear-electric tug. 

A solar photovoltaic satellite delivering 5,000 megawatts power (on the ground) at a total mass of 

1 1 .3x106 kg ( 2 5 x 1 0 ~  Ib) as defined in NASA CR-2357 is used as an example for this summary. A 

nuclear electric tug is assumed for orbit-to-orbit transfer. Tlie tug was sized such that the reactor 

core, neutron reflector, and inner gamina shield can be returned to Earth as a unit of 28 000 1~g 

(G3,500 Ib) mass by the shuttle, for ref~~eling. The inner gamma sllield is presumed to provide, arter 

a coolclowi~ period, enough shielding of the spent core to protect slluttle and grouild crews. Tlie 

sizing ratioilale described results in a tug with 20 megawatts jet power, and a total mass of 4.75 800 

kg (1,050,000 Ib). The tug can deliver about 550 000 Icg (1 ,OQ0,080 Ib) to a geosy~lclironous orbit 

in 160 days, using a total oC 360 000 Icg (800,000 Ib) of ?I-opellant, includiilg that needed for tug 

return. A total of 25 tug flights will deliver the entire satellite to geosynchrano~~s orbit. A fleet of 

25 tugs is required to l<eep the total delivery time witllin one year. The total mdss to low Earth 

orbit, excluding the tugs themselves and other logistics, is 2 0 . 1 ~  10' kg (45x 1 o6 lb) to place each 

satellite in its geosynchronous orbit. 



Tlie Itcy pnranicters in economics feusibility of l>ower satellites are: 

The system devclopmcnt investment required 

Tile cost and weight of the satellites i ~ i d  their ground-baser1 power receiving ante1111:ls 

The value of power derived From tlie system, i.e. co~npetitive busbar cost 

The cost of ground and spilce operations associateti with la~mcli, nsse~nbly, oper:~tions, alld 

maintenance of tlie systems 

Tlie cost of tmilsportcltiotl from low Earth orbit to gessyilclironous orbit, alrl most sig~lificant, 

tlic zfl'iciency of that transfer as reflected into total illass transportation requiremei~ts to Eartli 

orbit 

Tlie cost of transportation to low Earth orbit 

Various ecorionlics studies liave projected a coml~etitive busbar cost at about $0.025/lcwl1 in 15175 

dollars. This value, togetlies with ~reliminary estimates of development ailcl operatiolls costs, and 

assulnecl use of electric propulsio~i for tlie geosynchronous transfer, results in tlie tracleoCC of 

satellite cost ancl weight, and low orbit transportatio~~ cost, s l~ow~i  in Figure 2-1 6. Qbservatioils that 

inay be derived from tlie figwe are that: 

The satellites must be producible, including costs oC orbital assembly, at costs per unit weight 

(i.e. clollars per pound), coilll~arable to tliose experienced for commercial or military jet 

aircraft. Since the satellites will be large and simple structures coinparecl to aircmft, this 

appears reasible provided that orbital assembly costs can be kept witlliil reaso~lable bounds. 

Cost car low orbit tra~lsl~ortatio~l must be in the range $20 - 9; 100/l<g ($10 - $4,5/Ib). Payload 

per flight sllould be large to aicl in miilimizing orbital assc~nbly costs. Preliminary studies sliow 

that tllese costs and characteristics are attainable by a next-generation Iaui~cli vehicle 

incorporatiilg total reusability. 

* Economic feasibility of a total satellite energy system presents challenges to tecllilology iulcl 

systenls ~Ieveloprne~lt bur on the basis of available data appeaw witlzi~? reacll. 
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3.0 SPACE PROGRAM OPTIONS AND RIISSIQN MODES ANALYSES 

Each grogran1 option is inc1ividu:tlIy rcportctl in the following pages. It is assumed tllitt cacll 

program option is indcpenrlc~lt of the others, 

Mass rec~uirements are treated in flie following way: 

Mass properties reported untlcr mission system descriil,tions rcflect identified inass properties 

witllout growth allowances. 

Growth allowrulces are inclutled in statements or  transportation requirements. Growth 

allowances were determined 011 the basis of a statistical stttdy of lrisforical m:~ss growth 

(su11~rn;vized irt the appenrlix). TIE aI1owances appliecl are comme~lsurate with a 50% statistical 

confidence they would not be exceeded. 

Tecllilology improvements were exalnincd briefly. Two improvements were found to be of some 

sig~tilkxmce to the major mtinned station missions-solar arrays and integrated avionics. The total 

weight savi~~gs collstit~lte a small percentage of the l~ayloari syste~l~ mass; significant cllanges in 

transporlation requirements were not Co~~ncl. 

[REVERSE IS BLANK) 



3.1 EARTH ORBIT' SPACE STATIONS PROGRAM 

Tlirce optioils for manner1 stations in a low Bart11 orbit were examined. Tlie morlular slsacc staticl~l 

illustraeed ill figurc 3.1-1 can be dclivercrl to orbit in li~odules by the space slruttle al~rl nssenlbled in 

orbit; it rloes ilot require advancer1 space transportatiotl. The ~mitnry station is a single large-core 

~norlule with attadled applicatioils and sciellcs mo~lulcs (ASM's) tailorerl to specific imissions. Tlie 

unitary station is too large for the slruttle a~lrl must be l~lacecl in orbit by a heavy-lift vehicle. 140th 

oS tlrese stntioils nonnally carry a 12-man crew. Tlle tllirrl o ~ t i o n  is the space base, built up from 

~mitary station sizccl llloclules in a lllailllcr al~alogous to the assembly of slllaller modules. Tlle sl~ace 

base will support a crew of up to 60 ~nen  anrl call be expanrlecl beyollrl thal: if desirerl. All of tllesc 

stations ~lolninally operate at  500 Icm (270 nmi) altitude anrl 55 degree inclination, but other 

inclinations might be usecl for soille applications. Tlle princil~al references were the Rockwell space 

station sturlies cluriilg the period 1 970-1 972. 
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3.1.1 TWELVE-MAN EARTH ORBIT SPACE STATIONS 

3.1.1.1 Mission S u ~ i i ~ i ~ a r v  

3,1.1,1,1 General Descriotion 

T'Tllese missiolls include modular :ind utlitary (single-module) station options for support of  up to  

twelve tnen in a low Earth orbit for a variety of potential science and applicatiotls missions, The 

n~odular  station motlules are defined such that stations for 3, 6, 9, or 12 men can be built-up from 

the module set, Only the 1 ?-man configuration is described here, 

3.1.1.1.2 Missio~i Assil~liptio~is ant1 Co~lstrai~i ts  

General mission assumptiotls and constraints are sumtnarizecl in table 3.1-1. 

3,1.1,2 Mi,,~ion Systems Descriptions 

3 1 .I  -2.1 Missioli Options 

3.1.1.2.1.1 Modular Earth Orbit Space Station 

Tile nominal flight configuration for tllc MSS is sllown in figure 3,l-2. Nine station modules are 

required to provide quarters for the 19-man crew, supporting S U ~ S Y S ~ ~ J ~ S ,  and consumables. Four 

docking ports arc available for attachecl and detached application and science modules (ASM3s). 

No crew transfer vehicles arc shown at the station since the crew is transported between Earth and 

tllc station in :I crew transfer module (CTM) that is located in the cargo bay of  the space shuttle 

orbiter. Resupply modules (RM's) are used to Ilouse crew consumables and station expendables; 

these modules are also transported by the space shuttle. Following integration of a new RM into the 

station system, the expencled RM is returned to Earth for refurbishment and subsequent reuse o n  

ano tller resupply mission. 

The orbital weight of the MSS wit11 two ASM's and a full ?,M is approximately 98 600 kg 

(21 7,000 Ib) as itlentified by tlle reference. 

3.1.1.2.1.2 U~iitary Earth Orbit Space St n t' loti 

The flight configuration for the 12-man unitary Earth orbit space station (USS) is sllown in 

figure 3.1-3. The USS differs from the modula, Ypdce station in that a single large module provides 

the housing for the crew, general-pt~rpose labs, and subsystems. 
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Table 3.1.1: Low Earth Orbit Space Station Assumptions and Constraints 

ASM's are attnchetl lo  tlie st;itiol~ ;IS well :IS a rcs11pl~Iy 1l10d11le ( K M ) .  As in tllc tnorlular space 

station, 110 crew transfer vcllicle rcmail~s at the stalion since the crcw can he rcscucrl within 1 day 

by  an I:artll-la~incliecl sj3iIce sllultle. 

The tolal orbital mass with two ASM's ant1 a RM is 81 820 kg ( 1  80,000 11.) as iclenlifietl by tlle 

re fcrcnce. 

MISSION ASSUMPTIONS & CONSTRAINTS 

INTERMEDIATE TO HIGH INCLINATION 
EARTH ORBIT (BASELINE 55', 500 KM, 
RANGE 28.5 - 97O, 400-600 KM) 

COMPATIBLE WITH SPACE SHUTTLE FOR 
LAUNCH (MODULAR ONLY) AND RESUPPLY 

UNITARY STATION PLACED ON ORBIT IN 
SINGLE LAUNCH 

DOCKING SYSTEM FOR: 

ADDITIONAL STATION MODULES (UP TO TBD) 

* LOGISTIC (RESUPPLY) MODULES 

SPACELAB EXPERIMENT MODULES 

FREE.FLYING MODULES 

BASIC CREW SIZE OF SIX, TO 12; 
UP TO 60 FOR SPACE BASE 

UNMANNED QUIESCENT (STAND-DOWN) BY 
GROUND CONTROL 

CONTROLLED DEORBlT AT END OF LIFE 

CREW EVA CAPABILITY 

MISSION 

MANNED STATION 
IN EARTH ORBIT 

3.1.1.2.2.1 Moduli~r Earth Orhit Space Station Payloads 

A brief description of s i x  ant1 weiglit\ of' the ninc rnorlulcs formil~g thc st:\tiotl is presenter1 in 

table 3.1-2. 

OBJECTIVES 

LONG TERM MANNED 
SPACE RESIDENCE 

.SCIENTIFIC 
INVESTIGATION OF 
THE NEAR EARTH 
SPACE 

.BROAD SPECTRUM 
OF EARTH 
OBSERVATION 

ADAPTABI LlTY TO 
OBSERVATION OF 
OTHER CELESTIAL 
OBJECTS (SOLAR, 
STELLAR, ETC.) 

SPACE 
MANUFACTURING 
TECHNOLOGY 
DEVELOPMENT 

'l'he llnsic core n~odu le  (('R.1) liouscs Ixisic blalioli si~bsyslcms sucli as (;&N nnrl R('S ant1 provides 

t h c  I'scimework to  allow a t tachn~ent  of inany of the crll~er modules. The short core ~no(lulc  (S('44) is 

usetl prin~nrily to provide docku~g  fi~cilitics for tile RAM'S. Ihc  17:)wc.r ~ n o i l u l ~  (I'M siipport\ tlie 
7 3 

930-111- (10,000-St-) solar array tllat providcs the averalre loaf1 of approxi~nolely 25  kw. Also 

inclitdcd is cryogenic storage i'or fticl cells anti baltcrics. 



q$ STATION CHARACTERISTICS 

88 BASIC MODULES 9 

iab RESUPPLY MODULE 1 

.Oe 
ASM 2 

LABIGALLEY MODULE P9 CREWICONTROL MODULE BASIC STATION MASS 75,000 KG 
(165,000 LBS) 

ATTACHED ASM TOTAL STATION MASS 97,700 KG 
(215,000 LBS) 

SHORT CORE MODULE 

t 
N AD l R 

LABIGALLEY MODULE 

RESUPPLY MODULE 

LOCATIC? FOR FUTURE RM 

CORE MODULE 

POWER MODULE DETACHED ASM DOCKING (2) 

s- CREW/LAB MODULE 

Figure 3.7-2: 72-Man Modular EOSS 
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81,820 KG 
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Table 3.1-2. MSS Basic )c~lodules 

r 

ITEM 

1. CORE MODULE (CM) 

2. POWER MODULE (PM) 

3. CREW/CONTROL 
MODULE (CCM) 

4. LAB/GALLEY 
MODULE (LGM) 

5. SHORT CORE (SC) 

6. CREWILAB MODULE 
(CLM) 

DESCRIPTION 

ATTACHMENT FOR A L L  OTHER 
MODULES 

BASIC STATION SUB SYS (GN. RCS) 

SOLAR ARRAY 930rn2 
HIGH PRESS. GAS STORAGE 

STATERoOMS (3 EACH) 
ECLSS FOR 6 (EA) 
CONTROL CENTERIMEDICAL 
PERSONNEL HYGIENE 

GENERAL PURPOSE LAB 
GALLEY & DININGIRECREA- 
TION. EVA AlRLOCKS 

ATTACHMENT FOR RAMS 

STATEROOMS (3 EA) 
ECLSS FOR 6 (EA) - .  
GEN. PURPOSE LAB 

TOTAL 

QTY 

1 

1 

2 

2 

1 

2 

74.9 

UNIT SIZE 
(D x Ll 

164.9 

M 

4.4x12.2 

4.4x10.7 

4.4x11.8 

4.4 x 11.8 

4.4 6.1 

4.4x11.8 

UNIT WEIGHT 

1 4 . 5 ~ 4 0  

14 .5~35  

14.5x38.7 

14.5 x 38.7 

14.5 x 20 

14.5~38-7 

103 KG 

10 

7 

9.1 

8.5 

4.5 

9.1 

lo3 LBS 

22 

15.5 

20 

18.7 

10 

M 



Eacl~ of tile two crew/control nlodules (CCM) ~rovlcles crew quarters and station control capability. 

Each of these  nodules llas three staterooms ancl environmental control equipment suitable t o  

satisfy the needs of six men. Eac l~  of  the two crew/lab modules (CLM) also provide crew quarters 

for tllree ilS well ;IS general-purpose la11 t'ilcilitics, Euclz module lias environmentill control systems 

sized for six men, The two lah/galley mocl~iles (LGM) each provicle galley, clir;ng and recreation 

fi~cilities and general-puryosc labs, 

All of the moclules are 4,3111 (14 f t )  cliameler and vary in length between 6 , Im (20 f t )  and 12.1m 

(40 ft),  Tlte mass of  the motlules v;irias from 4 545 kg ( 1  0,000 11)) t o  10  000  kg (22,000 111). Tile 

center o f  gravity for eacll ~norlille is cstilnatccl to kc a t  its geometric centroid. 

3.1, i .2.2,2 U ~ ~ i l a r y  Earth Orbit Spt~ce S t a t i u ~ ~  Payloads 

Tlle basic unitary station for the Earth orbit mission includes a core module anti power n~otlulc. 

'I'he core ttioclule proviclcs quivters for the 1 ;?-man crew and ho~ises the majority of the subsystems. 

The n l o d ~ ~ l e  is rliviclecl into i i io  scparutc pressure compnrttncnts for safety reasons. llacll 

compartment consists of  two transvela,c decks. One of the pressure compartments incluclcs a deck 

for experinlents ant1 rtnotlicr serves as n combination crew rluarlers a~lcl station control deck, The  

second pressure conlpartnlcnt also i n~ ludes  a crew/control deck and a deck to provide galley, 

clining, recreation, anel nieclical klcilities. 'I'oroidnl encl bulkllci~cls provitle arlditional volume for 

housing subsystenis and equipinent, The core moclule has u cliameler of 10.06m (33  f t )  anti length 

of approxin~atcly 18.(1n-i ( 0  1 ft). 

The power ~nodulc  supports tlic 030-in2 (10,000-ft2) solar array and houses llle secondary and 

emergency power systetns. The motlulc has a lengtl~ of 1 1.7m (38  ft). 

Tlle clry mass of  the basic station, inclueling the integral experiments t ~ ~ l c l  effective mass of the 

la~ulcll hiring, is approximately 4 0  635 kg (109,200 111) as indicated by the refcrcnce stutly, "I'lle 

initial consumables launcllccl with the station s i~pply 12  lncn for  3 montlls and total 4 860 kg 

(10,700 111). ?'lie center of  gravity of  the station is cstimateel to be roughly 21n (6.h St) fcrward of 

the geometric centroicl of' the core n~oclulc. 

3.1.1.2.2.3 Application and Science Module (ASM) Payloacls 

'I'lic bulk o f  the applications ant1 science program defined for the I '-man low-Earth-orbit space 

station is accomplishccl tllrough use of  application allti science modules (ASM's). Tliese moclt~lcs 

provicle the 111cuns t o  conduct scicttcc anrl application missions, basic engineering, a r ~ d  advancer1 

s~ibsystem operations. ASM central control as well as bion~edical research will be acconrplished 
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within the lab rnodules of the station, 

The ASM's definer1 Izerein   re typical of transportation requirements but d o  not  necessarily 

represent current planning or  cotlcepts for actui~l pragrnms that would be carried out  by manned 

Earth orbit space stations. 

Attrtchcd ASM's-Seven types of ASM's were defined in the reference as hi~ving operating 

c11ar;lcteristics compi~tihle wit11 llle station o r  recluiring crew involvement. Tllese were operated in 

at tacllecl motle, At ally one time, not Inore than two of  these ASM's would be present. Two of  the 

nor~nal ly attached ASM's as originiilly clcfinecl (see table 3.1-3) are Itarger than the cargo bay of the 

orbiter ;inti therefore woulcl be redefineel o r  eliminated if tra~!~:)ortation is confinecl t o  the space 

shi~t t le .  

Table 3.7-3, Attached Application a, .' 'L~'er7ce 1l7odules 

Detncllecl ASM's- These ASM's are generally those tlli~ t have attitude stability and pointing 

requirements that exceed th,: capability provided by the station. Several cletaclled ASM's ]nay be in 

orbit at one time ancl each will be ~novecl to  the stotion for refurbishment a t  approxi~nately 90-day 

intervals, The characteristics of tllc detached ASM's are presented in table 3.1 -4. 

It should also be noted that  the nlajority of the detacl~ed ASM's include a basic instrument/se~~sor 

package plus n support section that provicles the s~tbsystems to opcratc and control the 

instrurncnls/se~~sors. 'I'llc combined length of  the two i~n i t s  in ~ n a n y  cases exceeds the space 

s h ~ ~ t  tle's cargo-bay Iength. Two laiulchcs arc recluired to  get these detached ASM's into orbit. 
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ITEM 

1. HIGH ENERGY STELLAR 
GAMMA RAY MODULE 

2. EARTH SURVE Y 
MODULE 

3. MANNED CENTRIFUGE 
MODULE 

4, ISOTOPE-B RAYTON 
POWER MODULE 

5. PRIMATE 

6. SPACE BIOLOGY 
MODULE 

DESCRIPTION 

HIGH ENERGY SURVEY- 
GAMMA RAYS 

EARTH SURVEYS 

CENTRIFUGE 

ISOTOPE-BRAYTON 
TEST SYSTEM 

PRIMATE PHYSIOLOGY 
AND 8EHAVIOR 

SMALL VERTEBRATES 
SPECIMENS 
MICROBIOLOGY 
INVERTEBRATES 

-. 
UNIT WEIGHT UNlT SIZE 

(Dxf-) 

103 KG 

5.64 

7.18 

2.14 

9.55 

1.36 

12.4 

M 

4,3 x 8.1 

4.3 x 8.1 

4.3x5.6 

4.3 x 16.6 

4.3x4.3 

6.7x11.9 

103 LBS 

12.4 

15.8 

4.7 

21.0 

3.0 

27.2 

FT 

14 x 26.5 

14 x 26.5 

1 4 ~ 1 8 . 5  

14 x 54.5 

14x14 

22x39  



Tile totals as tabulaterl are Tor the morlular slation option. The i~ni tary station option as described 

irl the reference rcquirerl more e x p c r i ~ ~ l c ~ t t  resupply, due apparently to  a higher level of exper i~~ient  

activity. Accordingly, the resupply interval was six weeks ratller than eigllt weeks. It sllould be 

rccognizetl that  resupply recluiremcnts ant1 itlterv:il are highly ricpendent 011 the particular science 

attcl applicatims programs in process :uld nlny be expcctetl to  vary significantly over the life of a 

station program. 

Table 3.1-4. Detached ASl'.d's and Support Sections 

ITEM 

1. X-RAY rlSTRONOMY 
MODULE 

2. ADVAIdCED STELLAR 
P.STRON0MY MODULE 

3. UV SOLAR ASTRONOMY 
MODULE 

4. SOLAR CORONOGRAPH 
& X-RAY MODULE 

5. UV STELLAR 
PLATFORM MODULE 

6. UV SCHMIDT 
AST. MODULE 

7. REMOTE MANEUVERIN( 
SUBSATELLITE 

8. COSMIC RAY 
LAB MODULE 

9. FLUID PHYSICS 
MODULE 

10. IR STELLAR 
AST. MODULE 

GRAZING INCIDENCE 
TELESCOPE. HIGH 
ENERGY SURVEY 

SUPPORT SECTION 

ADV. STELLAR TELESCOPE 
(3Ml 
SUPPORT SECTION 

1.5 DIFF1Jr ; 'VIITED 
TELESCC r ' EXTREh 
UV SPEC? 1 ; .  HLLIOGRAPH 

SUPPORT SECTiON 

1-6, 5-30 SOLOR CORONO- 
GRAPH. X-RAY TELESCOPE 

SUPPORT SECTION 

UV STELLAR PLATFORM 

SUPPORT SECTION 

0.6 UV SCHMIDT 
TELESCOPE 

SUPPORT SECTION 

COSMIC RAY LAB 
SUPPORT SECTION 

FLUID PHYSICS 
SUPPORT SECTION 

IR STELLAR SURVEY 
SUPPORT SECTION 

UNlT WEIGHT 

T i  
UNlT SIZE 



3.1.1.2,2.4 Crew Transfer and Reslipply Payloads 

Crewmiul stay times in the low orbit stations coulrl presi~li~ably be as long as six months. T!le 

non~ini~l  resupply interval is two months, providing opportunities for more frequent crew rotation if 

that shoiilcl be clesired. The controlling recl~~irement is resupply of experiments and consumables. 

Sincc the payloacl capability of the shuttle is greater than the resupply payload at  the nominal 

two-month interval, longer intervals coulcl be usecl. Additional flights will be required occasionally 

for ASM clclivory or cllangeout. Some ASM's are snlall enough to be carried on a regular resupply 

flight: o t l~ers  will require clcclicutecl flights. 

Crew Transfer Module-Tr:insportatiol~ for the crew betwecn Earth and the station is provided by 

the space shuttle. IIowever, since the orbiter crew compartment c~unnot accomn~odate 12 station 

crcwlrlen ancl at least 3 orbiter crewmen, a separate module is ~ ~ s e d  to house the station crewmen. 

This crew transfer module (CTM) will be carried in the cargo bay of the orbiter. The entire station 

crew is normally rotated at once; tllc CTM is therefore sized for 12 men. The CTM will also be 

sclf-sufficient in terms o f  providing environmental control/life-support subsystems. The CTM is not  

designed to  be released from the orbiter whilc in orbit. Its estimated mass, excluding passengers, is 

4 500 kg (1  0,000 113). 

Resup~ ly  Module (RIM)--The RM is designed to Ilave a pressurizetl section for the storage of bulk 

cargo (food, clothes, spares, etc.) and an unpressurized area for storage of fluids. The 2-month 

rcsiipply interval syecified in the modular st:ition reference required a total of 5 000 kg (1 1,000 Ib) 

of  cargo. 

The mass of  tho resupply moclule including unusable consumables but excluding usable consun~ables 

is estimated t o  be 4 800 kg (10,580 Ib). 

Consamables-A listing of the consumablcs ancl other resupply items included in the RM for a 

2-month interval is shown in table 3.1-5. 
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3.1.1.2.2.5 Mnss Summnry 

Mass summaries for the 12 man stations are summarized for mission start-up and resupply in tables 

3.1-6 and 3.1-7 respeolively. 

Tllese values are iclentifiecl Inasses and do  not include the growth allowance appropriate to sizing 

transportatio~~ systems. 

Table 3.7-5 MSS Resupply Requirements 
f 12 Men - 60 Days) 

ITEM 

CLOTHING 

LINENS 

GROOMING 

MEDICAL 

UTENSILS 

FOOD 

GASEOUS STORAGE 

OXYGEN 

NITROGEN 

WATER 

LiOH 

WATER MANAGEMENT 

ATMOSPHERE CONTROL 

C02 MANAGEMENT 

WASTE MANAGEMENT 

HYGIENE 

SPARES 

SUBTOTAL 

AV EXPERIMENT 
RESUPPLY 

TOTAL 60 DAY AV. 

UP-DOWN EMERGENCY 
(96 HOURS) 

OXYGEN 
NITROGEN 

- 

TOTnL LOADED 
CONSUMAULES 

MASS 

KG 

138 

112 

18 

27 

102 

1179 

3 

342 

650 

9 

73 

394 

103 

48 

19 

63 

3280 

1633 

4912 

287 

16 

521 6 

LB 

304 

248 

40 

60 

224 

2600 

6 

754 

1432 

20 

162 

868 

226 

106 

42 

138 

7230 

3600 

10,830 

633 

36 

1 1,499 
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Table 3.1-6. 12-Alan Space Station Start-Up A?ass Summary 

Table 3.7-Z 72-LAW Space Station Resupply Mass Summary 

Payload 

Basic station 

Attached ASM's 
(typical) 

Resupply module IRM) 

Crew .- 
Total 

1 

. .  . 

I Mass I 

1 -  Total 1 15.0 1 33.2 1 

Modular station 

Payload 

Delivery 

CTM 

Crew 

RM 
Consumables 

Return 

. Delivery (less) I - / (4.0 1 ilO.BI 1 

1 0 3 ~ ~  

74.9 

12.7 

10 

1,l 

98.8 

Unitary station 

consurnables 

. Plus sclence and 

103LB 

165 

30 

22 

2.4 

219,4 

I O ~ K G  

49,6 

12,7 

10 

1 ,1 

73.4 

103KG 

4.5 
0.5 
4.8 
5.2 

103LB 

109.3 

30 

22 

2.4 

163,7 

103 LB 

10.0 
1 .O 

'1 0.6 
11.5 

crew effects 

Total 11 .I 24.6 



3.1.1.2,2.6 Pickup Points and Triinsportation Constraints 

Modular Stntion-These station modules include clocking ports at  either end that ~>rovicle pickup 

points. For transportation in the shuttle payloacl bay, adapter fixtures will be required t o  bridge 

f r o n  docking points to payload bay attach points. Tl~ese modules tnust be protected from 

aerorlynaniic loads tluri~lg Earth la~ulcll, 

Unitary Stn tion- The ~ulitary stlltio~l incorporates structural hard points around its aft circumfer- 

ence for aclaption to a lleavy lift 1:lunch vehicle. The unitary stntiol~ modules must be protecteel 

from aeroclynunic loacls during Earth launch. 

ASM's, CTV's, a~rcl RM's -Tllese are h:~ntllecl like the motlular station modules. 

3.1.1.2.3 Transfer and Storage 

The  RM's provide nccessnry storage and conmunables. Transrer is not orclinarily required. Sonic 

ASM's arc likely to  require transfer of fluids from the RM. 

3.1.1.2.4 Orbital Assembly, Maintenance, ancl Modification 

'I'l:e modular station is designed to be asselnblcd in orbit by docking o f  modules. The unitary 

station is dcsigtled to be orbited in a single lau11c11; assctrzbly will be confined to attachment of 

ASM's. Routine maintenance will be l?roviclecl in crbit by the station crew. Modular station 

elements can be returnee1 to [:art11 by the shuttle if necessary; llle unitary station does not  pennil 

this, but subsystems call presu~nably be modularized such tlir~t changeout of faulty hardware is 

possible with return to Earth for repair. Requirelnellts for orbital rnodificatiolls as such were not 

identified. 

3.1 .1.3 Trrl~isportatio~i Requiremenis 

3.1.1.3.1 Payload Delivery Poiiits 

Low Earth orbit is the delivery point for all payloads. The nominal orbit is at  55  degrees inclinatiol~; 

5 0 0  km (270 nmi) altitucle, Orbits f'rom 28-11? degrees to sun synchronous ancl 300 km t o  550 kin 

( 1  0 2  n ~ n i  to 207 nmi) arc polential altcnlatives. 

3.1.1.3.2 Payload Delivery 0l)tions 

A mass gl.owth allowarlcc of 24% was used for transportation capability sizing. This a1low:tnce is 

applied to hardware but not  t o  consumables 

3.1 . I  .3.2.1 Moclular Station, CTM, RM, and ASM's 

Tlne niodular station system illclutles only clcments that can be delivered by the space slluttlc. 
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Station modules are s i ~ e d  for delivery of one per shuttle flight. Tile CTM and RM normally make up  

a shuttle payload: snlall ASM's can be included on a CTM/RM flight. Large ASM's require dedicated 

flights. 

The maximtin station nlodule mass, including growth, is 12 400 kg (27,340 lb). This is well within 

tile shuttle delivery or  return payloatl capability. Tlle longest module is I 1.8n1 (38.7 ft),  permitting 

use of a shuttle OMS kit when necded. The nominal crew rotation/resupply payload is 17 200 kg 

(40,000 1b) clelivered and 13 300 kg (29,400 lb) returned, Thc maximum ASM delivery mass is 

21 500 kg (47,000 Ib). This ASM mass exceeds the nominal shuttle return payload of 1 4  500 kg 

(32,000 Ib). 

3.1.1.3.2.2 Uliitary St a t' 1011 

Crew transfcr moclt~les, resupply modules, and the majority of the ASM's are delivered by the space 

shuttlc. The space station ant1 the two large attached ASM's will require heavy-lift capability for 

delivery. 

Some of  the detaclletl ASM's were too long for the orbiter's cargo bay and hence were designed t o  

have the  instrumentlsensor unit separable from the subsystem support sectior~. As a result, two 

launches were required to  gct a given ASM to  orbit. With a heavy liftllarge envelope transportation, 

these can be launcllcd as a single imit. 

The Inass inclucling growt l~  of the basic station is approxilnately 66 410 kg (146,000 Ib); it has an 

overall envelope of 10,06 mD x 30.2 mL (33 ft x 99 ft).  The largest of the attached ASM's is the 

engineering ancl operations ~nodulc  that has a Inass of 46  200 kg (101,000 lb) and an envelopc of 

7.6D x 20.17L mcters (25 x 68 ft). Crew rotation/resupply payloads are the same as for modular 

station. 

3.1.1.3.2.3 Operational Constrail~ts 

Normal sll~lttle operational proceclures are applicable. HLLV launches for the unitary option will be 

~l~lm;illned. 

3.1.1.4 Mission/Transportatio~l Modes and Operations 

3.1.1.4.1 Tral~sportat iol~ Options 

The space slluttle is the only applicable option for the modular station. The unitary station requires 

a NLLV for l a ~ ~ n c l l  of the station and some of the large ASM's. The 2-SRB option of the SRBIET 

I-ILLV as defined in paragrap11 2.2.1.2 is ~dequa te .  



3.1 . I  .4.2 Represcntntive Trnnsl)ortniion Mode and Systclils 

3.1.1.4.2.1 Trut~sportntion Sequencc 

Mission operations involving transportation systems in the MSS prograln are shown in figure 3.1-4. 

Tile major operations includc station b~~i ld-up ,  application tund science motlule build-up and crew 

rotation/resupply. 

Tlic nlajor ~ ~ n i t ~ l l ' y  SP;IL'~ station program oper:~lions involving transportation systems are clepictetl in 

f i g ~ ~ r e  3.1-5. In summnry, the st;ltion is l au~~ched  i~nrnannecl by a NLLV followed by the initial 

manning  sing the space shuttle. Delivery of ASM and periodic resupply and crew rolation is also 

performed wit11 thc space sl~uttlc.  

Tlie slli~ltle trajectoriei will be standarcl. Typical I-ILLV trajectories are described in the appendix t o  

this report. 

3.1 .1.4.2.2 Transports tion Sizing 

Not applicahlc. 

3.1.1.4.2.3 Operational Factors 

Mission I'rofilcs, Timelines, and Constraints-Transfers to the station orbit by the s l~utt le  or  any 

o ther  transportation vellicle are exl~ecterl to pass throuyh a 185 km (100 nmi) parking ant1 pllasing 

orbi t .  Direct ascents are comparatively inefficient. The entire ascent and rendezvous process 

normally recl~~ires only :i fcw hours anrl is not a significant mission factor. 

It  is expected t l ~ a t  repeating orbits wo~ild be selected for the space stations; for example, tlle 55O, 

500-kln (270-nmi) orbit results in 15 orbits per day. One ascent opportunity per day occurs with 

the  station positionecl in its orbit sc) tllat lengthy along-track phasing maneuvers are not required. 

Space station missions are constrained in altitucte by the van Allen belt radiation. The upper altiturle 

limit is approximately 550 km (330 nmi), tlepending to some degree on orbit inclination and the 

amoimt of sllielcling :~fforcletl by the station. 

Crew Involvelllent -All l a~~nc l i c s  of tll,. modular space station are rnacle by the manned shuttle, so a 

flight crew is always present to assist clocking and asse~nbly operations during station build-cp and 

s u b s e q ~ ~ e n t  operations. Tllc ilnitury station is l a ~ ~ n c h e d  unmal~ned in a single launch by a heavy-lift 

vehicle. Subsccluent launches (crew transfer, ASM's, and resupply) are made by tile manned slluttle 

so that  a flight crew is present to assist dockillg opcrations. The space base is assembled from large 
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(unitary-station size) modules launched unmannecl by t~ henvy-lift vehicle, Manned presence for 

docking nlicl ~ l s s e l ~ ~ b l y  is I~igllly desirub!e nni will require shuttle launches in addition t o  the station 

li~crnclles, Tlle alternative is to provicle automated clocking cal~nbility for the station modules, 

including the capability to select by progrtlmrircd instructions or  other means from several available 

docking ports. 

Iivricuation of thc s t t i t l~ns ,  if rccl~~ired, will nor~nally be accomplished by shuttle rescue, Evaci~atioti 

of thc spacc base will req:~ire several shuttle fliglzts, It is p res i~~ned that the space base will inclucle 

si~fficicnt r c t l~~ l~d i l t~cy  and cm1:rgl:ncy supplies that the time required for evacuatioti by up t o  five 
& 

shi~t t le  flights will be acceptable. Alternatively, a large crew transfer moclule for rescue (capl~ble of  

accommoclating the entire 60-~nan crew) could be provicled. 

Co~i t ro l  Functions t111d Requirements-No rcquiretncnts outsidc the normal capabilities of  the 

shuttle o r  a IlLLV were found. 

Nctwork Support Normal shuttle operntio~lal procetlures are al>plicable. The stutiorls can maintain 

continuous communications with the network through TDRSS. Most lnission data will be in 

magnetic tape or  hard copy for111 rincl will be returned by crew rotation/resupply flights. 

3,1,1.4.2.4 Enrtli Laulicll Requirements Summary 

A total o f  liinc s h ~ ~ t t l e  fligllts will be required to  tlcliver the modular station modules and crew, One 

HLLV i~sing 2 SRB's is required to  deliver the unitary station (no crew). 

Annual nloct~il;tr station transportation needs inclutle resupply flights every three montlls including 

rt combination resupply/crew rotation flight every 0 montlis for a total o f  four slluttle flights, On 

the cotilbination flight, an OMS kit will be required to satisfy the payload requirement. The unitary 

slalion retluires resupply lligllts every two months. A combination crew rotation/resupply occurs a t  

six man th  intervals for 3 tot31 o f  six slluttle Higllts. An average of four slluttle flights per year will 

also be required Lo tlclivrr thc ay~liccition ancl science modules for both station concepts. 

3.1.1.4.2.5 Otlicr Factors 

Impact of ;ln operation~il space manuficti~ring system on the space stations was briefly investigated. 

It appears t11:it the scale ot'opcrntions initially anticipaterl could be accommodated by a single ASM 

arltl t11ereli)re w o ~ ~ l d  havc cornpara lively lit tle direct impact o n  station size o r  configuration. Some 

of tllc S ~ L ~ C C  ~tla~li~l';lctiiritlg options rcrluire significant power levels ( 2 5  t o  50 kw), roughly doubling 

tllc power output requircmcnts for the station. Placcmcnt of a station in a fully illuminated 

sun-syncl iro~lo~~s orbit to provitlc continuous solar-pancl power has been suggested. This orbit, 
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Itowcvcr, 111ay be urtsitilccl to  a l tc r~~at ive  slntiorl rnissio~~s and reduces slli~ttle perforrnallce 

capability, I'lze arlvantnge of  the f ~ ~ l l y  illuminaterl orbit ~ l ~ i t s t  be traded with the increased 

power-system size anel i~~crcnsecl launch capability associated with lower i~ lc l i~ la t io~l  orbits. 

Space manut 'uc t i~r i i~ ,  when tlls tecllnoloyy is mature, is expected to  be a highly elastic market. 

Rout~rl  trip Lraiisportation-cost rerluctions that nlay clcvelop through shuttlc growtll o r  other lneans 

coulcl per l~ i~ps  lead to ;I tnarkct tnucli lurgcr tllan projected; a lurgc dedicated station would 

tllsrcforc bc reqnirerl. '1'11s likelil~ood of slich 11 devclopn~ent cannot be predicted with any 

co~~fielcnce ut this time, b i l l  i t  is recogt~i~erl as a possible eventuality that would create a significant 

clc~nancl for payloarl retur~l  to  l:t~rtli, 

3.1.1.4.3 Tnrnsl)ortntion Options Compt~rison rbrlcl Evnlua tion 

Not  applicable. 

3.1.2 60-MAN SPACE BASE 

3.1.2.1 Mission Summary 

3.1.2.1 . I  General Description 

TI~P PLISPOSC of  the 00-man space Lase is to  c o n d ~ ~ c t  a more exte~lsivc multiclisciplinary research, 

clevelop~ncnt, ancl operations program than that proviclerl by the 12-man spilcc station, A total of 38 

crew men are derlicaterl to the spacc operr~lions anrl scientific investigations (SOSI) program 

(culler1 rcscarcl~ and al>plication program in 12-man space s tat iot~ concepts), The SQSl provisions 

i t~c lude  a great variety of internal equipment as wcll as attached ;~nd  clctacllerl modules. 

3.1.2.1.2 Mission Assumptions and Corlstrai~lts 

Mission assumptions clnd constr:~ints in the reference were the same as for the 12-man tnodnlar :lntl 

iulitclry s t a t i o ~ ~ s  cxcept for crew s i m  Reccnt studies have indic:ltecl that an additional potential 

mission for a spacehasc sizccl station is to support crews i~~volvecl in orbital :lsscmbly of very large 

spacc systems: scc paragrtrpll 3.10. 

3.1.2.2 Mission -- Systems Uescrip tion 

3.1.2.2,l Mission Options 

A single option is cloi;cribed the 00-man space base. 

TThc flight ~i;;lf?lguration for the space base is s l~own i11 schctnatic form in figirrc 3.1-6. The 

catlfiguration consists of six. large manned moclules; two nuclear power reactors: and five 
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telcscopi~lg, connecting booms. The spiicc bilse is defineel in the refcrellce was designee1 to  provitlc 

both zero g ancl tirtificial g cnpnhility simultaneously. 

Zero g capability is provicled by n nonrolating center core; artificial g is provicled through use of a 

hut> rotating the four outer modules. Shoirlcl the space base be operated strict!y in a zero g mocle, 

tlic only major d i f fe re~~ce  wo,lld be the retluction in lellgtll o r  possible elimination of the artificial g 

1>1')0111s. 

'I'lic tolal mass of tlie basic space base excludi1;g attricl~cd ancl detaclled ~neuules  is 414  700 kg 

19 12,000 113) as tlefinccl in the reference slitcly. 

3.1.2,2.2 Payload I)eseriptions 

3.1.2,2.2.1 Base Motlule Paylocltls 

I jummary of Lllc charncleristics associatecl with the major elemenls of the basic space base is 

prcsentecl in table 3.1-8. 
7 3 

'I'llc core 1nocl~11e provicles crrw qu:trtcrs for 12, a 930-111- (10,000-ft-) solar-array systelii for use 

until tlic nuclear-rei~ctor power systems arc in orbit, and a SOSl lab. The subsystem module 

contain:. :,: .ily of LIle basic station subsystems, another SOSI lab, ant1 the rotating llilb for the 

artificial g ~ ~ ~ o t l u l e s ,  I-:ach o f  the 4 artificial g modules can accommodate 12 crewmen iuld also 

irlcl~~tle SOSI facililics. Ilacll of the ~nannccl  nodules is similar to  tlle core  nodule of uliitary space 

station in that  each is divitlecl into two separate pressure compartments, each provicles crew quarters 

ant1 subsystetn for 1'7 men,  anel each is l0,OGm (33 ft)  in diameter. The core a l ~ d  subsystem 

d nodules for tllc space bise llnve 8 decks ra t l~er  than four as in the i~nitary station; the arrifici:~l g 

~notlltles itlclude four clecks. 

?he major elesigrl difference in tllese tnoclulcs as compared t o  tlle unitary module is the use of  

flat-entl bulklleads of toroidal bulltl~eads. 

Two zirconium hydricle nuclear-reactor modules, each rated at I 1 0  kw, operate normally a t  one half 

capncity, A Brayton cycle is ~ ~ s e d  for the conversion system. Four telescoping l ~ o o m s  are recluired 

for tlle artificial g moclules, and one boom col~nccts  the base and the nuclear reactors. P. crosshead 

(sninll cylinclricol stsucturc) module provides docking capability for the Earth survey mocl~iles. 

3.1.2 7.2.2 Space Operations and Sciel~lific 111vestigatio11 Payloads 

Approxin~ately 31 750 kg ('10,000 Ib) of SOSl equipment and facilities occupy 10.5 decks witllill 



Table 3.1-8. Space Base Elements 
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UNIT M A S  
UNIT SIZE 

QTY 

1 

1 

2 

4 

4 

1 

1 

ITEM 

1 COREMODULk 

2. SUBSYSTEM MODULE 

(D x L) 
DESCRIPTION 

CREW QUARTERS FOR 12 
SOLAR ARRAY 
SOSl FACI LlTY 

SUBSYSTEMS 
HUB 
SOSl FACILITY 

FT 
- 

33 x 70 

33 x 70 

16x100 I 
33 x 35 

10 x NfD 

10xNID 

lOxM/D 

912 

I O ~ K G  

76.3 

76.4 

36.4 

4Q 

4.i 

6.8 

5.5 

I TOTALS 

3. NUCLEAR POWER I ZIRCONIUM HYDRIDE REACTOR 
SYSTEM BRAYTON CONVERSiON SYS 

414.7 

I O ~ L B  I M 

4- ARTIFICIAL G 
MODULES 

5. ARTIFICIAL G BOOMS 

6. NUCLEAR POWER BOOM 

7. CROSSHEAD MODULE 

- - .- 

169 

168 

80 

88 

9 

15 

12 

CREW QUARTZRS FOR 12 
SOSl FACILITY 

CONNECT ZERO G CORE 
WlTH ARTIFICIAL G MODULES 
TELESCOPrnG 

CONNECT REACTORS WITH 
ZERO G CORE 

ATTACHMENT FACI LITY 
FOR EARTH SURVEY MODULES 

10. x 21.3 

10.1 x 21.3 

4-9~30.5  

10.1 x 10.7 

4.3 x NID 

4.3xN/D 

4.3 x NID 



the manned moclulcs. The disciplines und teclinologies provitled by these facilities in tllc reference 

include the following: 

Biomeclicinc Materials Processing 

13ioscicnce Pllysics 

Chemistry Earth Surveys 

Astronomy General Support 

The characteristics of the attacheel ant1 tletached SOSI modules are n ~ u c h  the salt as those clefitled 

for the modular unitary stations, nlthougll more inodules could be used because of tlle larger crew 

size. In general, tllese motlules cover the rlisciplincs of astronomy, Earth surveys, chemistry, and 

pllysics. 

3.1.2.2.2.3 Crew Transfer and Resupply I'ayloncls 

Tlie csew Iransl'er and resupply concepts for the space base are the same as for ;he modular 1 ?-man 

space station. Crcw~nen stay n maximum of six months and are nornlally excllanged 12 men at a 

time, 

Resupply recli~irements per month ;Ire considerably greater than for the 12-man stations and 

amount of  approximately 15 150 kg (33,400 Ib) delivered to  the base ancl 0 580 kg (14,500 Ib) 

returned. Included within this total are 8 570 kg ( 1  8 ,900 Ib) for crew constlmables and st;ltjon 

expendables, The remainder of the resupply mass is relateel t o  experiment ec]uipment. None of the 

resupply masses identified a b o w  include mass for the RM. Using the same size resupply lnodi~le as 

in  the 12-man station concepts. a resupply mjssion would be required every 2 weeks. If the RM 

were enlargccl t o  take advantage of all of the slluttle capability, the resupply interval would be 2-112 

t o  3 wecks depencling on the orbit. 

3.1.2.2.2.5 Mass Summary 

The mass surnmary of the  space base is summarized in table 3.1-9. Resupply payloacls are similar to  

those described for the 1 2-m:ln stations (paragraph 3.1 . I  2 2 . 3  et seq.). 

Table 3.1-9, Space Base Mass * Summary 

Payload 

I Attached ASM I 25.4 ( 60 ( 
I Resupply module 1 10 1 22 1 

+ Without growth 

68 

Total 

5.5 

455.5 



Resupply payloatls are similar to those clescribed for the 12-man stations (paragraph 3.1.1.2.2.3 

et seq). 

3.1.2.2.2.6 Pickup Points a ~ i d  Transportation Co~istrai~its 

Base Modules-Thcse itre the same as for the 12-man unitary station (paragraph 3.1.1.2.2.6). 

ASM's, SOSI Modules, CTV's, RM's-These are handler1 as for the 12-man stations (paragraph 

3.1.1,2.2.6), 

3.1.2.2.3 Transfer and Storage 

Resupply modulcs (RM's) provide necessary storage for consumables.-transfer is not ordinarily 

required. Some ASM's or  SOSI mocl~iles are likely to require transfer of fluids from the RM's. If the 

space base is usecl to  support asselnbty operations 111 orbit, it must provide docking and storage for 

payloads awaiting use, ancl for orbital assembly equipment and tools. This requirement may be 

expected to  dlange the station canfl~uration from that described. 

3.1.2.2.4 Orbital Assembly, Maintenance, and Modificatio~i 

The space base is to be assembled in orbit from large modules by clocking them together in the 

prescribed configuration. The modules canliot be returned to  Earth; therefore maintenance and 

modification will be carried out by the base crew in orbit. A possible use of the base to  support 

major orbital assembl~ oper;ltions is clescribed in paragraph 3.10 

3.1.2.3 Transports tion Requirements 

3.1.2.3.1 Payload Delivery Points 

All payloads for the space base arc delivered to low Earth orbits. Orbit-to-orbit stages arc not 

required. Orbit incljnatiolls from 28-112' to sun synchro~~ous (about 97') have been examined for 

space stations. No selection has been ;li,ade. It is quite likely that stations intended for different 

purposes will be flown at different incline 4 t' 1011s. 

3.1.2.3.2 Payload Delivery Ol~tions 

Base modules are sized for a IILL'? transportation systetn. The referenced study assumed use o f ;  

two-stage Saturn V and hence config~~red I Om (33 ft) diameter modules. Shuttle derived HELV's 

are typically 8.2m (27 ft) in diameter and the base modules would be redefined to  that size. 

Ilelivery of the space base payloads is assumed to use space shuttle and a heavy-lift launcl~ vehicle. 

Payload mass growth allowances for tr:lnsportation analysis elnployed 24% on  the CTM, RM,  and 



ASM's; they are similar to tllose of the 12-man stations and have been stutlied in coltsidcrable detail, 

A 37% f;~ctor was applied to the basic space base elements inclueling the manned modules, nuclear 

rc:~ctors, and connecting booms. 

3.1.2.3.2.1 Base Module nllcl Equipment 1)clivet-y 

Tile reference stucly co~tcept for clclivery ol'thc mrunnecl tnodules was to lalunch eight decks eitlter a 

single 8-deck  nodule or two 4-clcck motli~lcs. With this approaclt and the designateel growth fi~ctor 

applied tllc rlelivcry mass for each launch woultl be approxintr~tcly 07 503 kg (2 15,000 Ill), An 

option to this approacll woulrl be tlre clclivery of just four-tlcck modulcs, reducing tlte delivery mass 

to an average of approximately 45 300 kg ( 100,000 lb). 

Attificial g !toonls, the nuclear powcr boom, and the crossheotl have clclivery ~nasscs ranging 

between 5 440 kg ( 1  2,000 111) :lncl 0 530 kg (21,000 111). 

3.1.2.3.2.2 Crew Tr:~nsfcr/Resupply 1)elivery 

Modules for these functions will he rleliverc~l by the space sltuttle and are tlie same as for thc 

unitary space station. 

3.1.2.3.2.3 SOSI Module Delivery 

Tlte atttlchctl motlules will have a nomi~ial delivcry mass of 8 440 kg ( 1  8,000 Ib) and liolni~lal size 

4.3 x 8.23111 (14  x 27 f t ) .  The maximum attachecl module would be 45 800 kg (101,000 Ib) and 

7.0m x 20.7111 (25 ft x 68 ft). 'I'llc tletaclled SOSl ~tio~lulcs have a mass range of 12 250 kg 

(27,000 11)) to 20 480 kg (65,000 Ib) ancl a size ralige of 20.4111 to 25.3111 (67 ft to 83 ft). All had 

cliamcters of 4.3m (14 ft). 

3.1.2.3.2.3 Operational Constr:~ints 

Normr~l slluttlc operational procotlures arc applicnble. IILLV la~unclles will he unmanned. 

3.1.2.4 Mission/Transporta tion Modes and Opera tiorls 

3.1.2.4.1 Transportation Options 

A 11e:lvy lift I;l~~ncIt vcliiclc (111,LV) employing modified components sf the space shuttlc al;tl the 

space s l ~ ~ ~ t t l c  ilscll'arc rcquirecl co perform this nlission. 

3.1.2.4.2 Representative Transportatioli Mode and Systelil 

3.11.2.4.2.1 Tra~isportation Sequence 

?'he ntajor transportatio~i operations il~volvecl in the space base build-up and its subsequent 
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Figure 3.1- 7. Space Base Mission Transportation Sequence 
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operations are shown in figure 3.1-7. The HLLV is used to deliver tllc I:,rge base mociules while tlie 

space shuttle delivers crewmen, supplies, ASM's and connecting booms. 

An alternate transportation mode for resupply woulci be to have thc supplies delivered by a IiLLV 

at 6 montli intervals tl~ereby eliminuting the 12 shuttle resupply flights. 

3.1.2.4.2.2 Tra~lsportat io~i  Sizing 

Not applicable. 

3.1.2.4.2.3 Operational Factors 

Seqi~ence operations are the same as for the 12-man stations (paragraph 3.1 . I  .4.2.4) except that 

more frequent Inanclies occur. 

3.1.2.4.2.4 Earth Launch Requirements Summary 

Five IILLV's ( 4  SRB) are required to deliver the major elcments of space base. One space sliuttle 

flig!lt is required to transport the nuclear power boom. Annual spaLe shuttic requirements woi~lrl 

include 12  for resupply, 10 for crew rotation (one every 5 weeks), ancl at  least 4 for ASM delivery. 

The resupply requirement coulcl also lie satisfied by using two I-ILLV (2  SIIB) launclles illste~~rl o f  - 
12 slluttle flights. 

3.1.2.4.2.5 Other Factors 

If the space base is used to support assembly of large space systems such as power salellites, the 

launcll rcquirements of delivery of those payloads will be much greater than those staled Ilerc. See 

paragraph 3.10 for typical data. 

3.1.2.4.3 Transportation Optio~is  Coliipariso~i and Evaluation 

Not applicable. 
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3.2 GEOSYNCHRONOUS OPERATIONS PROGRAM 

Geosynchrono~is orbit is the preferrecl location for a number of science and applications space 

operations. Examples of these operations include weather reconnaissance, co~nmunications/ 

navigation, global cnviron~nental science, Earth survey, and the generation or transmission of 

electrical power for terrestrial needs by satellite energy systems. Conduct of these operations may 

be accomplished through use of manned space stations and automated spacecraft. 

The missions selected to represent advanced geosynchronous transportation requirements are a 

manned space station and n manned sortie to service tiutomated spacecraft, 

Two other missions were briefly investigatecl: a large direct-access (mass) communication satellite, 

and a large space telescope (LST) with an auxiliary subsatellite for attempts at  observatio~i of  

planets around nearby stars. The LST payload would most probably be placed at  a lur~ar libration 

point rather than geosynchronous orbit but is includecl here beceuse the transportation 

requirements are similar to those for geosynchronous transfer. These two missions are discussed in 

paragraph 3,2.3. 

Analysis of satellite energy systems arc cliscussed separately in Sectio~i 3,10 due to the uniclueness 

of that program option. 

3.2.1 GEOSYNCHRONOUS SPACE STATION 

3.2.1 . I  Missiorl Sunimary 

3.2.1 . 1 .1 General Description 

The reference geosynchronous space station (GSS) mission consists of a modular station that can be 

continuously occupied by a crew of eight and can accommodate both Earth application and science 

sensors. 

Tlie concept is illustrated in figure 3.2-1. System elements making up this concept include the basic 

modules, application and science modules, crew transfer vehicle and resupply modules. A unitary 

(single module) station option is also described. 

Wic station provides quarters for the eight-man crew, supporting subsystems and consumables. The 

ftinctjons provided are as follows: housing basic station subsystems; crew quarters for eight men and 

sixteen in an emergency; command/control centers and radiation shelter; electrical power; gallcy 

and recreation; and cryogenics and other storage. 
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3.2.1.1,2 Mission Assumptions a~lcl Constrili~lts 

Tahle 3,2-1 summarizes mission ilssumptions and constraints. Tile geosyndlronous orbit location 

ass~unption is not ilpplietl to  the LST option payload as noted above. 

Table 3.2- 1: Geosynd~rorrous Mission Assumptions and Constraints 
-- - -- - 

I M I S S I o N - -  '-( - OBJECTIVES 1 M ~ s s l o ~  ASSUMPTIONS 84 CONSTRAINTS 

GEOSYNCt-lRONOUS 
OPERATIONS, 
INCLUDING MANNED 

.* . . 

SUPPORT VARIOUS OPERATlONS IN 
Gf OSYNCHRONoUs 
EVOLUTIONARY PROGPAM 
1. WEATHER RECONNAISSANCE 
2. AIRCRAFT TRACK 
3. GLOBALIENVIRONMENTAL SCIENCE 
4. COMMUNICATIONS 

TELEPHONEITV 
(CONVENTIONALI 
MASS COhlMUNlCATlONS 

5. SERVICING AUTOMATED 
GEOSYNCHRONOUS SPACECRAFT 

1 6 VARIOUS SCIENCE MISSIONS & 
PAYLOADS 

3.2.1.2 Mission Systems Descril)tion 

INITIAL AUTOMATIC PLACEMENT AND OPERATION 
GEOSYNCHRONOUS ORBIT LOCATION 
CAPACITY FOR UP TO EIGHT PERSONS 
CREW EVA CAPABILITY 
OOCKINO SYSTEM FOR PLUG-IN MODULES, 
INCLUDING LOGISTICS (RESUPPLY) MODULES 
SIZEIFUNCTION ADAPTATION B Y  MODULAR 
ADDITIONS 

3.2.1.2.1.1 Modular Ceosy~ic l l ro~~ous  Space Station (MGSS) 

The fliglit configuration for the MGSS is sllown in figure 3,2-2. Nine station modules are required to 

provitle quarters for the eight-man crew, supporting subsystems, and consumables, T11ree 

~ipplication ant1 science morlules (ASM's) are permanently attached to the station; at  least one 

detacherl ASM flies in close format~on and is ref~~rbishcd 3t the station. The two crew transfer 

vellicles (C'TV's) provide i~nlnetliatc emergency survival capability to allow time for a rescue 

mission, They :ire also usetl lor  crew rotation.' 

Crew rotation occurs every 6 months by bringing 111) the crew in a new CTV wit11 the replaced 

crewtnen returning in a CTV already a t  thc station. Station resupply is also nominally performeti 

every 0 montlls with tlle use of  a resupply module (RM). Following integration of tlie new RM into 

the station system, the expended IiM is returned for refurbisllment and subsequent reuse o n  

ano tller resupply mission, 

The  total lniiss of the MGSS with three ASM's and two CTV's is approxin~ately 125 000 kg 

(275,000 Ib). 

3.2.1 .2.1.2 Unitary Geosyt~chroncus Space Station (UGSS) 

Tlie flight configuration for the unitary GSS is shown in figure 3.2-3. The major difference between 

this concept and the motiular GSS is that a singlc module provides the required volume for the crew 

o f  eight, tllc s i~I )sy \ te~~ls ,  'tnd tllc co~ i s~ tn~a l~ le s .  All ~ t l l e s  features inclucling the application and 
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science r;!o(lulcs, crew transt'cr vcliiclch lor cmerpcncy abort tlrlcl crew ri)tiltioll, i~iltl rcsllj>ply 

provisions arc llie s:~mc. 'l'llc total orhital Inass ot' tllc tinilary G S S  with two ("1'V's ant1 tilrcc~ 

ASM1\ is np~roximate ly  05 000 kg (200,000) 111 its itlenlil'ictl hy tllc rct'crcncc. 

3.2.1.2.2 Payload 1)escril)lions 

3.2,1,2,2,1 Modular Geosynchronous S t n l i o ~ ~  

A briel' tlescription of tlic size and ~nasscs 01' the nine ~notl~!les forming tile station is prescntctl in 

tnhlc 3.2-2. Since both nre tlcsignctl to support ciglit crcwnicn l'ron~ the beginning, Ll~e mot2~1luh 

selected use tlie snlnc functional clcsign npproacli ar the modular OLS. 'I'l~c ccntcr of ;:vvity 

location for  each niotlulc is esti~naterl Lo be at its gcom~trii:  ccntroicl, 

Table 3.2-2. Modular Station Payloads 

1. CORE MODULE-1 
(CM-5 ) 

2. CORE MODULE-2 
(CM-2) 

8 ELECTRICAL POWER 
MODULE (EPM) 

4. SUPPLY MODULE 
(SM) 

5. CONTROL CENTER 
MODULE-1 (CCM-1) 

6, CONTROL CENTER 
MODULE-2 (CCM-2) 

7. CREW QUARTERS 
MODULE-1 (CQM-1) 

8. CREW QUARTERS 
MODU LE-2 (CQM..2) 

9. GALLEY/RECREATION 
MODULE (GRM) 

CENTRAL KEEL 
BASIC STATIOW SUBSYS. 
IVAIEVA AI RLOCK 

GENERALLY SAME AS 
CM-1 

SOLAR A R R A Y - ~ ~ ~ M ~  
CRYO STORAGE 

CRY0 STORAGE CRYO 
CARGO STORAGE 

BACK-UP CONT. CENTER 
RADIATION SHELTER 
LABS 

PRIMARY CONT. CENTER 
EXERCISEIMEDICAL 

4 STATEROOMS 
ECLSS FOR 8 MEN 
BACK-UP GALLEY 

GENERALLY SAME AS 
CQM-1 INCLUDES COM- 
MANDERS S.R. 

GALLEY & DINING 
RECREATION - 
- TOTALS 

U N I  I MASS 
(INCLUDING UNIT SIZE (DXL) 



Two crew quarters modules (CQM 1 and 2) are included with each providing four staterooms and 

sufficient ECLS equipment to  accommodate eight crewmen. These modules also have dual 

ft~nctions. The CQM 1 provides a backup galley and CQM 2 includes the station commander's 

stateroom, The final module provides the galley and dining facilities as well as recreation. 

The two core modules (CM 1 and 2) house basic station subsystems (such as G&N and RCS) and 

provide the frainework to allow attachment of all other modules. The electrical power module 

(EPM) supports the 465-m2 (5,000-ft2) solar array that provides the average load of approximately 

20 kw. Also included is cryogenic storage for fuel cells and batteries. Although the GSS has 

approximately the same power requirements as the OLS, the solar array size ib only about one-half 

since the occultation periods are approxin~ately 5% rather than 38%. The supply mbdu~e  (SM) 

contains the majority of the cryogenics and bulk cargo for the station. It houses 120 days of 

supplies. 

Control of the GSS is provided from either of the control center modules (CCM 1 and 2); CCM I 

;ilso provictes the radiation shelter and science labs; and CCM 2 also serves as the medical and 

exercise facility. 

3.2.1.2.2.2 Unitary Station 

The basic unitary station lor gcosynchronous operation consists of a core module and power 

module. The combined length of the two modules in the launch configuration is 30.8m (101 ft) and 

the mass (including consumables, and inert fluids) is 70 200 kg (154,800 lb). Physical data are 

summarized in table 3.2-3. The center of gravity of the station is estimated to  be roughly 2m (6.6 

ft) forward, i.e., toward the power module, of the geometric centroid of the core module. 

Table 3.2-3. Unitary GSS Payloads 

ITEM 

I 

CORE MODULE 

POWER MODULE 

DESCRIPTION 

ALL FUNCTIONS EXCEPT 
ELECTRIC POWER 

SOLAR/ELECTRIC 
POWER SUPPLY 

TOTALS 70.2 

UNIT MASS 
INCLUDING 
CONSUMABLES 

UNIT.SIZE 
(D x L) 

154.8 

I O ~ K G  

60.7 

9.54 

M 

8.23 x 18.6 

4 3 x 1 0  

I O ~ L B  

133.8 

2 1 

FT 

27 x 61 

1 4 x 3 2  



The core module is essentially the same as that used for the unitary orbiting lunar station. Tllc 

major differences between this core module and that used in the unitary low-Earth-orbit space 

statio.7 are a diameter of 8.23m (27 ft)  versus lOm (33 f t)  and the inclusion of a radiation shelter in 

the GSS. Tile length of the core module is 18.6m (61 ft). The dry mass is 38 600 kg (85,100 Ib); the 

consu~nables and inert fluids amount to 22 100 kg (48,700 Ib). 

The power module for the UGSS includes a 465-m2 (5,000-ft2) solar array that is the same as for 

the modular GSS. This module call be separated from the core module if required. The length of the 

module is l Om (32 f t )  and the total mass is 9 540 kg (21,000 Ib). 

3.2.1.2.2.3 Applicatioss and Science Modules 

Four ASM's were selected by tlie refc\renced stutly for use at the GSS. This number is representative 

of tlie transportation requirement and is used in this study. The ASM's are used with either station 

option. The characteristics of these modules are summarized in table 3.2-4. 

Table 3.2-4. GSS Application and Science Payloads 

Three of the four ASM's specified are permanently attacl~ecl to the station. The weather observatory 

module (WOM) provides the required sensors and data analysis capability to allow continuous 

weather coverage including real-time severe-storm warning. TV transmission of much of the weather 

data is accomplished by the con~municatio~i and navigation ~noclule (CNM) using a large deployed 

antcnna. Immediate coverage of geographic features (such as population centers, topographic 

regions, natural resources, etc.) is possible through use of optics and other sensors in the Earth 

survey module (ESM). 

ITEM 

1. WEATHER OBSERVATORY 
MODULE (WOM) 

2. EARTH SURVEY MODULE 
(ESW 

3. COMMUNICATION/NAV IG. 
MODULE (CNM) 

4. SOLAR ASTRONOMY 
MODULE (SAM) 

QTY 

1 

1 

1 

1 

DESCRIPTION 

A77ACHED.IMMEDIATE 
& CONTINUOUS 

ATTACHERGEQGRAPHIC 
81 TOPOGRAPHIC 

ATTACHED.TV TRANS- 
MISSION OF WEATHER. 
9.15 DIA (30 FT) 
ANTENNA 

DETACHED. EXCEPT FOR 
REFURBISHMENT EVERY 
90 DAYS 

I TOTAL 22 765 

UNlT WEIGHT 

50,100 

. 
KG 

5,455 

7,270 

2,270 

7,770 

- 
UNlT SIZE 

(DXL) 
LBS 

12,000 

18,000 

5,000 

17,100 

M FT 

4.3 x 7.9 14x26 

4.3 x 7.0 14x28 

4.3 x 7.9 14x26 

4.3X17.714~58 



The detached ASM depicted is a solar astronomy module (SAM), Deployment at the geosynchro- 

nous altitude will provide continuous viewing of the sun rather than the intermittant viewing from 

deployment in low Earth orbits. It is also conceivable that more than one type of SAM would be 

desirable. Refurbishment of the detached modules will take place at the station approximately 

every 90 days. 

Center of gravity f ~ s  the ASM's is estimated to be at tile geometric centroid of each, 

3.2.1.2.2.4 Crew Transfer and Resupply Payloads 

Crew rotati011 is sr&pectc,l to  occur at least cvery 6 months in order to not exceed the allowable 

radiation close. Normally the entire crew is changed at each rotation period. Resupply of crew 

consu~nables and statim expendables is also scheduled at 6-month intervals. A summary of the 

characteristics of the modules used to perform the crew transfer and res~~pply functions is presented 

in table 3.2-5. 

Table 3.2.5. Crew Trandt and Resupply Payloads 

Crew Transfer Vehicle (CTV)-The primary function of the CTV is to house the crew and 

supporting subsystems during the transit from low Earth orbit to syncl~ronous orbit and return back 

to low Earth orbit. Transportation is normally provided by an orbit transfer vehicle (OTV). 

One section of the CTV provides shirt-sleeve environment for the crew and also houses a portion of 

the required subsystems. This section is sized to nornlally accommodate four crewmen although 

eight is possible in an emergency (such as the second CTV at the station not operating properly). An 

unpressurized section of the CTV contains the remainder of the subsystems. In the no.minal abort 

ITEM 

CREW TRANSFER 
VEHICLE ( C N )  

RESUPPLY MODULE 

DESCRIPTION 

NOMINALLY- 8 MEN 
EMERGENCY-8 MEN 
30 DAYS SUPPLlES/SUBSYS 

CREW CONSUMABLES 
STATION EXPENDABLES 

UNIT WEIGHT 
UNIT SIZE 

(DXLI 

~ O ~ K G  

8.0 
UP AhD 

15.2 
UP 

5.2 
DO' 

M 

4 . 3 ~  4.3 

4.3x11.3 

I O ~ L B  

17.5 
DOWN 

33.4 

11.4 
NN 

FT 

14 x 14 

14x37 

J 



mode, the  CTV is used to  provide emergency sllelter for the crew until a rescue can be 

accomplished. It therefore is sized for 30  days' emergency supplies. This requires less mass than 

provision of  a propulsion system capable of a total delta V of  4 200 m/sec (14,000 ftlsec) for return 

back to a low Earth orbit. 

Zesupl~ly Module-The resupply nnotlule (RM) is essentially the same as the supply module initially 

launched with the station, These modules are sized to accommodate the supplies required for the 

nominal 6-month resupply interval plus 30  days contingency. Transportation between orbits is 

provided by an OTV. The ~ulitary station carries initial consumables internally. 

A pressurized section contains 4 3  nn3 (1,500 ft3) of  vol~une to store bulk cargo and the 

unpress~~rized section is use(1 t o  house the LO?, & LN2, LN?, - and N+14 - trunks. 

When the consumables in the RM are used up, the RM can be loaded with items to  be returned to 

Earth; upon return it is ref~irbishetl for reuse at a later time. 

Tlne consumables and expendables included in the RM for the 6-mo11tl1-11ominal-plus-30-day 

contingency total 12  170 kg (26,800 Ib). The RM empty mass is estimated as 4 300 kg. 

Co~isuniables-Siifficie~~t consumables for 180 days plus 30  days contingency are included in the 

initial station delivery. Each resupply mission provides capability for the same quantity. The 30  

days' contingency supply is replaced only if actually used. Consurnables are su~nmarizecl in table 

3.2-6. Values apply t o  either station option. 

ECLSS 

Table 3.2-6. GSS Consumables and 
Expendables 180 Day Nominal 
+ 30 Day Contingency 

STATION SPARES 

STATION CRYOGENCS 

LH2 
L02 
LN2 

ITEM 

FOOD 

EXPERIMENT FLUIDS 

4050 

EXPERIMENT SPARES 210 463 
I TOTAL 

KG 

1960 

LB 

4320 



3.2.1 2 2 . 5  Mass Sr~mmary 

Table 3.2-7 an3 Table 3.2-8 present a mass summary for the geosytlcllronous rfianned station options . 
Values do  not Include weights growth. 

Table 3.2-7. Mass Summary for GSS itfission Start-Up 

PAY LOADS STATION OPTION STATION OPTION 

TACH ED ASM'S 

I TOTAL DELIVER€ D 133.67 1 295.1 1 109.17 1 239.9 1 
Table 3.2-8. Mass Summary for Crew Rotation/Resupply Mission 

3.2.1.2.2.6 Pickup Points and Transportation C o ~ ~ s t r a i ~ ~ t s  

Modular Station-These station modules include docking ports at either end that provide pickup 

points. For transportation in the Shuttle payload bay adapter fixtures will be required to bridge 

from docking ports to payload bay attach points. Docking ports provide adequate pickup points for 

orbit-to-orbit transportation. These modules must be protected from aerodynamic loads during 

Earth launch. 

Unitary Station-The large unitary station modules incorporate structural hard points around their 

aft circi~lnference C9r aclaption to  a heavy lift launch vehicle or orbit transfer vehicle payload 

support structure. Docking ports provide pickup points for module grouping as needed for orbit 

transfer. The unitary station modules must be protected from aerodynamic loads during Earth 

launch. 

lo3 L B '  

17.5 

6.4 

26.8 

50.7 

28.9 

PAY LOADS 

CTV ( 1 )  

RM DRY 

CONSUMABLES 

DELIVER'{ 

RETURN 

I O ~ K G  

8.0 

2.9 

12.2 

23.0 

13.1 



ASM's-These are handled like the motlult~r station modules. 

CTV attd RM's-These are htulclled like tile modular station modules. 

2 Orbit-to-orbit transfer accelerations must be limited to aboiit 5 m/sec (112 g) wllen modules are 

groupecl in assemblies connectecl by docking structures. 

3.2.1.2.3 Transfer and Storage 

Fluitls transfers are not required. Fluids arc supplied in resupply lnoclules (RM's). "Shese remain 

connected to thc station asscml>lics until their collsumables are ex11;lusted. Tlley can then be 

returned to  Ilorlli for refilling and reuse. Bulk cargoes nf s l~~n l l  size (food, instruments, etc.) are 

transfcrsctl fso~n RM's lo tllc statioll manually through i :< e~ . . r i q  I )r>e'$ .. 1,:lrp 1-clyloads (e.g, ASM's) 

arc proviclccl in 1~1od~11ar units wit11 ~ I ~ c k i n g  capability: ~r ,$t ,  ,,l;-- ;JS ::r.  11 ih r,q).f y / l r ( r ,  'I,c(*, 

3.2.1.2.4 Orbital Assembly, Maintenance, and Modifir,oti~as 

The stations will initially be nssembletl in low orbit for : 'lc~~*E,okat. 1'1~:*:' wilt 81:elt l ~ c  tlisassen~blecl ~s 

reiluircd t o  suit the ,alecteci orbit-to-orbit delivcry optioai i . ~:i;?,\a' c f r . ; r  , q  t-y., and reassembled 

in the mission (geosynchronous) orbit. 

All maintenance recli~irecl will be performer1 by the crew in the lnission orbit. Return of station 

clements to Earth from geosynchronous orbit for mai~~tenance cloes not appear practical, Other 

mission elements can be returnccl i o  Earfli for maintenance if necessary. 

Orbital modification is confined to changeout of experiments and ASMYs. 

3.2.1.3 Transports tion Requiremen 1s 

3.2.1.3.1 Payload Delivery Points 

Transportation requirements inclucle scvernl types of payloads and delivery points. Payload clelivery 

points are low Earth orbit, geosyncllrollous orbit, and Earth return (either direct or tllrougll a low 

Earth orbit). Requirements are sl~own in Table 3.2-9 
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Table 3.2-9. Payload Delivery Points 

3.2, P; .3.L Payload Delivery Options 

Thc modular station is delivered to low Earth orbit one module at a time by the space shuttle; the 

'tnilary statiol~ is delivered as a single unit by a HLLV. Stations are assembled in low orbit for 

chcckout and tllell partially clisassernbled for delivery to the geosyncl~ronous orbit as appropriate to  

orbit transfer capabilities (see paragrap11 3.2.1.3.2.2 below). 

PAY LOAD 

STATION ELEMENTS 

Ot\BIT TRANSFER SYSTEMS 

CREW ROTATION AND RESUPPLY 
AR43RT VEHICLE (IF USED) 

L:),PERIMENTS AND 
FREE FLYER PAYLOADS 

I-. . , 

A colnbination crew rotation and resupply mission at 6-month intervals results ill  the fewest 

number of flights. Since at least one ASM is delivered with the station, the other three ASM's are 

included in ASM cllangeout flights. 

Payload values used in sizing the reference and alternate transportation systems include a 24% 

allowance on I~ardware mass. 

3.2.1.3.2.1 Station Delivery 

Station delivery options were developecl using several key guidelines: 1 ) for concepts requiring more 

than one orbit transfer launch, a crew must be present to  assist in the final docking maneuvers; 

2) only one-half the crew need be present during the station assembly phase; and, 3) when the crew 

is present, modules must be present to  provide power and control for the station and at least 3 

months (plus 1 1nont11 reserve) of supplies. 

LOW 
ORBIT 

x 

x 

x 
x 

x 

Using thcse guidelines at least four basic options are possible for the modular GSS. 

The two-launch station option sllowsl in figure 3.2-4 was selected as representative. This concept has 

a manned first iaunch transporting approximately one-half of tlle station in its orbital configuration 

and one-half the crew. Tlic second l a~~nc l l  brings up the remainder of the crew and the station (also 

conf'ig~~ralion). Maxiln~un delivery mass is approximately 60 000 kg (1 33,000 Ib). 

GEBSY NCHRONOIJS 
8RtBIT 
L" 

x 

x 
x 

x 

x 

+ 
EARTH 
RETURN 

x 
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ABORT ONLY 
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CCM-2 

GRM 

OTV PAY LOAD 

59 100 KG 
(1 30,000 LB) 

60 000 KG 
(1 33,000 LB) 

Figure 3.2-4. Itlodular GSS Delivery- Two Flights 



A triple-launch concept can result in payloatls of approximately 40 900 kg (90,000 Ib) as shown in 

figure 3,2-5. The first Ia~~nch  is iinmannecl and provides Basic station power, control, and quarters. 

The seconcl launch is lnanned and also delivers supplies and the second core module. The thircl 

Iaiu~ch is unmanned and brings up the remaining modules, 

I:,:. ..f n single launch to deliver the CSS woi~ltl result in a payloacl of approximately 125 000 kg 

r.l,?C,OOt, ,'w) while use of four lai~nches would iecluce the payloads to approximately 27 300 kg 

( 0  1 These options arc illustr~itecl in figures 3.2-6 and 3.2-7. 

's l::lt :ivllt ery options are possible sl~oulcl the unitary GSS be considered, single and two-flight 

3elil ri.;e~. Tlle two-flight option is shown in figure 3.2-8, For a one-flight delivery, the OTV payload 

requirement would be approxilnately 86 300 kg (1 90,000 Ibs). 

3,2,1.3.2,2 Crew Roltltion and Resupply 

The reference option employs combined crew rotation and resupply. Payloads are shown in 

figure 3.2-9. A combination crew rotation/ASM/resul,ply delivery is also 

3.2.1.3.2.3 Application and Science Modules 

Several options are available for the delivery of ASM's; 

1. Launch all four on a separate OTV flight 

2. Includc one ASM on each, crew iotat io~~/res~pply fligllt 

3. Launch one with each station cluster (2) with the other two ASM brought up on the first two 

crew rotation/resup ply flights, 

The delivery mass of these options is shown in table 3.2-1 0 Option 1 has been used to define a 

reference mission. 

Table 3.2- 10, ASM Delivery for GSS 

OPTION 

OPTION 1 

OPTION 2 

OPTION 3 

DELIVERY 

lo3 KG 

27.3 

31.8 

65.9 

RETURN 

103 LB 

60 

70 

145 

103 KG 

0 

15 

0 

lo3 LB 

0 

33 

0 



EPM 

OTV PAY LOAD 
40.91 0 KG 
(k.000 LBS) 

Figure 3.2-5. Modular GSS Deliwery-Three Flights 



CCM-2 GRM CCM-1 

OTV PAY LOAD 125,0001<G (275,000) 

Figure 3.2-6. tldodular GSS Delivery-One Flight 



OTV PAY LOAD 
36 820 KG 26 820 KG 
(81,OOO LBS) (59,000 LBS) 
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12.8rn 
CM-2 &Lr 

O N  

Figure 3.2-7. Modular GSS Delivery-Four Flights 



(61 FT) 

L 
O N  PAYLOAD 57 700 KG 

(127,000 LB) 

GSS CORE MODULE 

ORBIT TRANSFER 
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(88,000 LBI 

CREW TRANSFER MODULE 

m E R  MODULE 

EXPERIMENT MODULE 

RESUPPLY MODULE 

' ORBITTRANSFER 
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Figure 3.2-8. Unirary GSS Delivery-Tw Flights 



6 MONTH CREW ROTATION 
AND RESUPPLY INTERVALS 

UP 33 200 KG 
(73,000 LBS) 

OTV PAY LOAD 

DOWN 15000 KG 
(33,000 ILBS) 

15000 KG 
(33,000 LBS) 

Figure 3.2-9. Crew/Resy~p/y/ASZ.I Delivery 



3.2.1,3.2.3 Operational C o ~ ~ s t r a i ~ ~ t s  

No operational constraints were found. 

3.2.1.4 Mission/Transportatio~i Modes and Opera tio~is 

3.2.1.4.1 Tra~isportatio~l Options 

Transportation requirements include Eartll launch and orbit transfer. Earth launch options :ire tile 

space sl?uttle and a shuttle-derived HLLV. 

Tile principal OTV transportation candidates ronsidered for the GSS missio,l are as follows: 

L02/LH2 reusable single stage system (selected as representative system) 

L02/LI-12 one and onehalf stage system that has a reusable main stage and expendable drop 

tanks, 

L02/LH2 two stage system that has an expendable delivery stage and re~tsable returll stage. 

LO3/LI-I2 common stage system consisting of two equal size systems, both reusable. 
d. 

L02/MMH common stage system consisti, :, i f two equal size systems, both reusable. 

LH2 Nuclear Hydrogen-heater (Nerva type) reactor. 

@ Nuclear-Electric Tug (NET). 

Solar-Thermal Electric Propulsion System (STEPS) tug. 

3.2.1 -4.2 Representative Transportation Mode and System 

The representative transportation system includes the space shuttle and a heavy-lift space slluttle for 

Earth 1auncl.t of the mission and transportation elements, and a large single-stage L02/LH2 orbit 

transfer vehicle for transportation between low Eartll orbit and geosyncl~rono~~s orbit. The basic 

station is assembled in Earth orbit and then split into two subassemblies for transfer to  

geosynchronous orbit. Tile resupply missio~l includes one CTV and one RM. 

3.2.1.4.2.1 Transportation Seqlie~lce 

The reference sequence and operations associated with the GSS mission are illustrated in figure 

3.2-10 using a L02/LI-I2 single stage OTV and b o t l  the slzuttle and HLLV for Earth launch. Thc 

principal features of this mocle are as follows: 

6 A rnodular station is used with single modules ancl CTV's are delivered to  low Earth orbit 

(LEO) by the space shuttle (SS). 
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Figure 3 .2- 10 GSS Mission Transportation Sequence (Sheet 1 )  
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A large L02/LH2 single stage OTV is rleliverctd to LEO using ~1 HLLV and is connected with 

one of the station clusters, 

Fueling of t l ~ e  OTV is completed througlz use of a tanker delivered by a HLLV. 

The OTV delivers one station cluster to geosynchronous Earth orbit (CEO), returns to LEO 

and connects with tlle otller stntion cluster, 

The OTV is again f ~ ~ e l e d  and delivers the second station cluster to CEO for usse~nbly with the 

first cluster and the OTV returns to LEO for future use, 

A,pplicntion and science modules (ASM) nre delivered to LEO with the SS and delivered to 

GEO with the OTV. 

At GEO, payloads (2nd station cluster, RM, ASM) delivered by the OTV are transported to  tile 

sitation by a CTV. 

Crew rotation/resupply occurs at 6 month intervals with a pf ' rious CTV and expended RM 

returned to LEO using the OTV. 

a Recovery of the CTV (crew) and RM in LEO is accomplished with the SS, 

A mission history including elapsecl time, AV and milss renlaining is presented in table 3,2-1 1 .  

3.2.1.4.2.2 Trallsporta tion Sizing 

Orbit Transfer Vehicle--,'flze most desirable size for a given type of OTV is one that satisfies all 

anticipated delivery requirements associated wit11 the mission. For the CSS mission the most 

significant delivery requirements are those associated with placement of the station and the periodic 

crew rotation/resupply, 

The process for obtaining tlle most desirable OTV size employed parametric performance maps in 

terms of delivery and return payload capability for eacll OTV candidate for this mission. 

Superimposed on the performance maps were the specific delivery and return payload requirements 

associated with the various options. The resulting plot (Figure 3,2-1 1) sllows the match-up between 

transportation systems and mission requirements. An OTV mass of approximately 250 000 kg 

(550,000 Ibs) satisfies the delivery of the modular station if delivered in two separate clusters and 

the requirements of crew rotation/resupply. Delivery of I unitary station in two sections can also be 

satisfied . 
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Time 

Hr 

.5 
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A V  

Table 3.2- 1 1. GSS Mission 

LB 
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221,000 

1 65,900 
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2,475 

+' 
0 
o 

FPS 
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Figure 3.2- 7 7. Single Stage L02/L HZ IOTV Capability for GSS 
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Selectiotl o f  ill1 OTV size tililt Jelivcn: tlie stations in any combinstion otller tllan two sections will 

tliercfore result in over o r  wntlersixing relalive to  that rcquirecl for crew rott~tion/supply, 

3,2,1,4.2.3 Opemtionnl Factors 

Abort-('rcw return l o  Eartlz fi+om tlie station in the event of an emergency is rcquirecl. Four 

options ore avililable: 

1 ,  A rescue, to the station tund rctur~ling the crew to  East11 using either u single launch from liartll 

o r  a launch stugecl from a low-orbit sptlce station is the reference option, T o  support this 

opt ion,  tile CTV is ~ ~ s c r l  as iln emergency sllelter. 

2. A clirect entry n~oclule similar to  the Apollo C'M is anotllcr option. Considering rl n~ission 

longitude of 100°W as typical, 1111 extrii p;iss in the 10,5-hour clliptic descent orbit followed by 

a skip entry will allow recovery near lllc c o ~ l t i n g ~ l o ~ ~ s  U,S. Tlie tlelta V requirement is 1 91 5 

m/sec ((1,300 ftlsec). 

3. An aerobraking/entry glitter (sec paragraph 3.2.2) 

4, A propulsive return Lo low Earth orbit with a crew transport ~ l l o d ~ l r ,  requiring 4 200 mlsec 

(1 4 ,000  ftlsec) is a fourth option, 

Mission Profiles and Re~ldezvous Techniques-Nomi~~al mission profiles require transfers between 

low orbi ts and synchronous orbit il~cluding longi tucle pliasing, Geosynchronous orbits have an orbit 

period c:qual to the Earth's rotation periocl, The payloads clescribcd are tllcrcfore stationary over ;I 

sclcctetl I.:;~rth longitude. Pllnsing is done by a cotnt,ination of  wait in low orbit (typically 25 

degrees longitilde per orbit), extra passes in the 10.5-hour elliptic transfer orbit (about 16!Io per 

orbit), anel a final phasing orbit with apogee a t  gcosynchrouous orbit  and a period slightly less illat1 

tilt 23.93-hour geosyncIlronous periorl. The final pllasilig orbit is adjusted to  provide the last 

incrc~nent o f  phasing not  convelliently obtainecl fro111 the prior phasing. Tlresl: maneuvers require 

coast t ime; this r e s ~ ~ l t s  in a total transfer time on  t l ~ c  order o f  40  Ilours depending on  specific 

longitude clesired ant1 low orbit parameters. ?he lnanc1,wers d o  not incur del t ,~ V l>enaltjr:s. Thcy 

were described in the  context of  an up transfer; ana'logous n~at~euvers  arc required for the clown 

transfer if return to a particular (e.g., space station) low orbit is required. 

Renclezvous in the low Earth orbit  is required hot11 for the space shuttle and the returning OTV. 

Tllc rendezvous techniclite ernploys circular coplanar collcelltric phasing orbits with the active 

clenlent a t  the lower altitucle. Rcndezvous in the geosyr~chronous orbit occurs at the ter~nination of 
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tlze finill phasing (elliptic) orbit. Tlze rendezvous itself takes place in a fraction of an orbit and is 

analoeous to terminal rcntlezvous maneuvers in ti low orbit. 

Crew l~lvolveliic~it nncl Timclines-Mission and operations crews will be involved in all pluses of the 

GSS missiolz Crew i~zvolven~ent simplifies transportation operations such as rendezvous, docking, 

and orbital assembly since the crew ciun be relied upon ns the principal corltrol element, Crew 

timelines clo not llave iilly icle~itifietl effect 011 transportation requiren~ents, Crew rotation 

recluirements were tlcscribed in Paragraph 3.2.1,2.3. 

Co~alrol Functions nncl Requirements-Geosynchronous round trip missions require precision 

guiclancc ant1 lzavigation control to i~ccomplish the trrznsfers and achieve rendezvous phasing orbits 

within nomini11 performance allocations. Control functions inclutle derivation and execution of 

steering conzmancls, meusurenzent and control of clelivered impulse, and propellant management. 

Autonon~ous onboard control is highly desirable. 

Network Support-Network support may be needed for orbit c.letertnination t o  support final 

rendezvous. 

(;cosynclzronous mannccl stations will nominally be in continuous direct line-of-sight comnz~unica- 

tions wit11 the U.S. Large imaging applications o r  science modules are expected to  generate very 

liigl~ drttii rates in tlze range 100 to 1000 megnbitslsec. Tlzese will require X or  Ku band links for 

conzm~uzications to Earth. 

3.2.1.4.2.4 Earth Launch Requirements Summary 

The representative sequence requires 6 I-ILLV launclzcs to cleliver the OTV and tankers to effect 

slatioll delivery, :lncl 2 shuttle launclles and 4 IILLV tanker launches for each 6-nlonth crew 

so ta tion ancl resupply mission. 

3.2.1.4.3 Transl~urtation Optins:. Coniparisorv and Evaluation 

3.2.1.4.3,l Size and Perforlna~ice Coml~arison 

Sizing paralnetrics similr~r to Figure 3.2-1 1 are shown in Figures 3.2-1 2 through 3.2-1 5. As for the 

ref'ercnce single-stage OTV, the crew rotation/resupply require~nent lnatclzes well with delivery of 

the ststion in two flights. The 1-112 stage system was sizeci only for the nominal crew 

rotation/resupply retluirement. 

OTV mass colnparison ol' the candidate transportation systems is presented in Figure 3.2-16, The 

payloatl used in this colnparison is that of ' l l le crew rotation/resupply flight. Tlze significantly lower 
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mass o f  the L02/LI-I, .L 1-112 stage, two stage t~nd  comnlon stage systems compared to the single 

stage approach is clue to transporting less inerts as n result of staging. The L02/MMH common stage 

is heavier tila11 those of the LO7/L1d2 ,. systems as a result of kaving a lower Isp (approximately 870 

mlsec o r  90 sec), Representative mass for nuclear electric systems is also shown. Although the total 

stage mass is large, the propellant mass, representing actual recurring Earth-to-orbit transportation 

requirements, is less than for the other alternatives, Electric systems, however, are not deemed 

si~iterl for this mission (see below). 

The size comparison of these systems is shown in Figure 3.2-1 7.  Groundrules used in establishing 

tank lengths were I ) separate file1 and oxidizer tanks (no common bulkhead o r  nesting), and 2) 0.7 

elliptical bulkheacls, Diameters selccted were those most closely associated with t l ~ a  t necessary t o  

have two (3.7 bulkheads form the oxygen tank since, it requires the smallest volume. Electric syste~ns 

are not  sllown; they are milcll larger in din~ension tllan the vellicles shown. 

Several observations can be made as a result of this comparison. The first of these is that the 

L07/LI-I7 ,d w 1-112 stage system and L02/MMH common stage system both are size compatible with 

tleiivery to low Enrth orbit by the Space Shuttle, although off-loading of propellalit will bc 

reqi~ired. Tllc rcm:~ining stages require IILLV. Secondly, the L02/MMH stage is relatively small even 

tllougll i t  has o liigll Inass bealuse of  the lligll propellant density, 

3.2.1.4.3.2 Earth Launch Requirements Comparison 

?'lie number of I'artll launcl~es reqi~ired to delivery OTV hardware and fuel necessary to deliver the 

GSS ele~ncnts  t o  initiate tlic ~nission is s l~own in figure 3.2-1 8, Sevcral of the OTV cat~didatcs are 

dialensionally cornpatihle with tile space shuttle. All of  tlle OTV concepts can be Iauncl~cd wit11 the 

FI1,LV with a consitlcrablc reduction in nwmber of Earth launches. Space slluttle flights are shown 

wit11 one  of the IILLV options since only a portion of the EILLV capability would be required t o  

complete tlie clelivery of tlie OTV systcms. 

In general, for those OTV canrliclates that can use either launch vehicle, tllr HLLV reiluires only 

one-tllird as 1na11y launches. 

E:~rt l~ ln~ulchcs required to deliver OTV hardware and fuel necessary for the GSS crew rotation and 

rcsupply rcquirenlents arc shown in figure 3.2-10, Again, the HJ,l,V rccluires only one-third as n ~ a n y  

launclics as tlic space slluttle. 
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3.2,1.4.3.3 Operational Comparison 

All the geosynclzronous mission/transportation modes require precision targeting for rendezvous in 

geosynchronous orbit and for Earth return, either to low Earth orbit or  to direct o r  aerobraking 

entry. Onboard navigation and targeting is desirable for all modes and esselltitil for aerobraking. 

In addition, all modes require some combination of dockitlg, ref~cl ing,  and recovery by the Shuttle, 

These requirements are st~mtnarized in Table 3.2-1 2 

Table 3.2- 12. Geosynchronous Missions Operational Factors 

Nuclear propulsioll systems present severe operational problems. Thc L,ll2/Nerva system cannot 

approacll eitlier tllc shuttle o r  the lna~lnetl station due to racliation hazartls. A special transfer tug 

nlust be used; it approaches and departs frorn the LH,/Nerva - stagc witllin a safety cone dcfinecl by 

the shadow slzield. Fuelil~g must be accomplished by automated or remote-controllecl systems. 
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Spent reactor clisposnl is an unsolvcel problem. The nucle~r-electric lug (NI;T) and solur/rlcctric 

(STEI'S) tug are not suited for crew rotation ii~icl  resupply due t o  the Ion& trip times, l l e y  could be 

usctl for station placement bill rcprcgnts  a rc.elunclant solutioll since tile cliemict~l systeni sizccl for 

crew rotati011 can also d o  the station placcnicnt. With llie NET, alw,  reaclor ~lisposal is a prohlem, 

3.2.1,4.2.4 Practicality Assessment 

All of tilo cl~emicnl ~nocles i l~ialy~crl  JSC practical for the GSS ~iiission. 'I'llo nuclcar ancl S7'1'13S 

rl~oclcs present severe ~ p e ~ ' i \ t i o ~ i : ~ l  pro l~ lc l i~s  nnrl arc juclgcel irnl~raclioal, cI'ahlc 3.2- 13 prcsc~its pro's 

;ttlcl con's for  tl1c systcnls, 

3.2.2 GEOSYNCHRONOUS SATELLITE MAINTENANCE SORTIE 

3.2.2.1 Mission Summary 

3.2.2.1 . I  General Description 

('i~rrent estimates of the quantity of geosynul~ronous nitloma tor1 satellites range froni 1 80 to  over 
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400 by 1990. Econonlics associated wit11 operating the sutellites will probably necessitate repair nncl 

rcfurhisllment r i~ ther  tllan rtisposal wlien a failure occurs. Cotnplexily o f  tlie sut:llites may prevent 

~l~rrintenance h y  tlutomateil vehicles. As it result of the above factors, the need for lnanned sorties t o  

repair and rcS~~rbisll  uutomatetl geosynchronous satellites is a probt~ble recluirement, 

The  reference geosynchronoi~s s:ttcllite maintenance sortie (GSMS) mission consists of a four Inan 

crcw performing one week of  maintenance operations, The mission concept is illustrated in 

figure 3.2-20, 

Tllc major system elements in this niission include a crew transfer vehicle (CTV) t o  house tlie four 

man crew for one  week anrl tlic tlcccssnry repair i ~ ~ ~ t l  refurbisllment provisions, 

3.2.2.1.2 Mission Assumptions rtncl Coilstraiilts 

l'llci li)llowiny assumptions and constr:~illts were uscrl: 

4-11lan crew, one week in geosyncllronous orhit 

Kcltlotc manipulator rnainten:ulce system; t~ormally no EVA 

* 1 000 kg (2,2CO Ib) mctintenance anrl spares payload 

lictunl t o  low Earth orbit upon severe solar flare event 

3,2.2,2 Mission System Description 

3.2,2,2,1 Payloads 

Tllc crcw is I~oused in a crew transport nlodule (CTV) very silnifar to  that used on the lunar landing 

missions: see pitragr:lpl~ 3.3'1.2. 

Mass 3nrI size cliaractcristics of  the systuni clenients are influenced by tllc transportation mode user1 

t o  perform the mission. One such ~norle  is the rcturn of the CTV back to  Earth orhit upon 

conipletion of tlie inaiiiteilancc task, Anotller mode is to design the manned compnrtment t o  have 

direct entry capability. 

Fo r  tlle retllrn to  East11 orbit mode, the CTV is estimated to  l~avc a mass of 4 100 kg (9,040 Ibs). 

An Apollo type direct entry vehicle woulrl have a mass of approximately 5 930  kg (1 3,070 Ibs), 

Repair 311~1 r~fiirbishnlcnt provision will be the same for both modes with an estimated mass of  

1 0 0 0  kg (2,200 113s). 

Pickup Points-These payloads are norrilally launcherl intcgraterl with an orbit transfer vehicle, 

either I>y sp:icc s l ~ l ~ t t l e  or  :I IILLV. 





Crew Rotntion nncl Resupply-Not applicable, 

Trtll~sfer and Storage-Not tipplic:~ble. 

Orbilnl Assembly, Mnintennnce, f111cl Modifict~tio~~-No'i applicable. 

Consu~~inbles-A clctaileel estimate was not macle, Cons~t~nnbles estimating factors used for the 

parametric descriplions in thc appcndix to this report were used to estimate consu~nables 

requirements r ~ t  350 kg (770 Ib), 

3.2.2.3 Trnnsportrrtion Requirements 

3.2.2.3.1 Payload Delivery I'oints 

The payloiicl is clcliverecl l o  a gcosynclironoi~s orbit, in some cases recluiring operations in low Earth 

orhit, 311d s i ~ h s e q ~ i e ~ ~ t l y  r c t ~ ~ r ~ l c d  to Er~rtll either through low Earth orbit or  clirectly. 

3.2.2.3.2 Pnylond Delivery Options 

'Tlie only option considered was delivery to gcosynchrono~~s orbit c;n a single OTV flight. Delivery 

of the sysleln (inclucling OTV's) cmployed citller multiple shuttle tligllts or  a single HLLV flight. 

Tile total p:iyloarl inclucling repair :lnci refurbishment provisions and applicable growth allowance of  

24'.4 is 6 000 kg (13,230 Ib) for the propulsive return CTV and 8 370 kg (18,450 Ib) for the 

Apollo-mode CTV, No operationnl constraints were fo~und. 

3.2.2.4 i~iissioii/Tr:~nsportatio~l Modcs anc.1 Operations 

3.2.2.4.1 Transporlntion Options 

Transportation lnoclcs for the GSMS mission may be expressed in terms of disposition of the CTV 

upon completing the mail~tenancc tasks. More specifically, tile modes may be defined as 1)  Earth 

orbit return and 2)  clirecl entry. 

The I.::irth orbit return lnocle has two submodes. One of these submodes uses propulsive means to  

return thc CTV. The otllcr uses a combination of prop~~ls ion  and aerobraking. 

Tllc clircct entry mode requires prop~~ls ion  for deorbit and then uses the aerodynamic shape of the 

CTV to allow return back to  a recovery area on Ertrth. Ballistic and wingecl re-entry vehicles are 

both a~l~tl idates.  

In all moclcs, propulsion is reqi~ired to transport the CTV to  geosyl~chronous orbit. 
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The resulting modes includi~lg propulsion may be summarized as follows: 

Mode 1 Enrtlz Orbit Return 

1A Single Stage LO?/LH9 I I 

1 B C o m ~ n o n  Stagr LO7/LH2 u 

IC Cornmon Stagc L02/MMI I 

I D  Single Stage LO,/LI-12 - wit11 Aerobraking Device 

Mode 2 Direct Entry 

2A Single Stage LO?/LI-17 .. - with Aerobraking Vehicle 

3.2.2.4.2 Rel~resentative Transportation Mode and System 

3.2.2.4.2.1 Sequence Descriptiol~ 

Typical sequences and operalions associatccl with the CSMS mission are ill~~stratetl in Figure 3.2-21 

 sing Mode 1 B as a reference. T11c principal features of this ~nocle are as follows: 

Tlle CTV, two LO?/LII? common stages and tanker are ail delivered to Eartlz orbit rising tile 
-r '. 

space shuttle. 

Transfer to geosynchronous orbit is accon~plislzed using two burns and requires use of both 

stages. 

The first stage provides approximately 75% of the first burn AV. After staging, the first stage 

returns to  Earth orbit. 

Tlze second stage completes the first burn ancl all of tlze burn required to  circularize into 

geosynclzrono~~s orbit.  

Upon completion o f  tllc lnaintenance task, tlze second common stage is again used t o  cleorbit 

and insert the CTV into a low Earth orbit where rendezvous ancl docking is perfor~ned with the 

first common stage. 

Recovery of thc n~ainten:u~ce crew is nccomplished using the space shuttle. 

Refueling of  the common stages would tlzelz allow another maintenance mission to  be 

performed. 
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Table 3.2-14 presents key events and elapsed time, maneuver delta V and mass renlaitiing for the 

represen tativc system, 

3,2.2.4.2.2 Tri~llsportatioll Sizing 

Parametric analysis was used to size the representative system and tlle alternates. Figure 3,2-22 

sllows the results for I!:e representative system, 

3,2.2.4.2.3 Operational Factors 

Sequence operations are generally similar to the GSS mission (paragraph 3.2.1,3,2.4) for propulsive 

modes. 

3.2.2.4.2.4 Earth L~uncl i  Requirements 

The representative mode requires eitl~er 3 space slluttle lawncl~es or one HLLV launcl~. Recovery of 

the crew requires a slluttle flight, or requires the last shuttle involved in launching the mission to 

wait in orbit for its return, 

3.2.2.4.3 Transportation Options Comparison atid Evaluation 

3.2.2.4.3.1 Size atid Perfortnance Comparison 

Propulsive Modes-Parametric transportation system performance maps with superimposed payload 

requirements were developed for tl,e return to Earth orbit mode using propulsion. Results of these 

plots for the alternate propulsive options are shown in figure 3.2-23 and 3.2-24. Performance for 

the return to Earth orbit using an aerobraking kit was perfor~necl on a point design basis, 

Transportation analyses for the other aerobraking modes will be conducted during the Phase I 

ex tension. 

Mass comparison of the transportation modes is sl~own in figure 3.2-25. The significantly lower 

mass of the return to Earth orbit using propulsion and aerobraking is the result of a 2 226 m/sec 

(7,302 t'ps) saving in AV. lnclucled in this transportation mass is the penalty for the aerobraking 

device and for tlle radiation shielding. 

Aerobraking Modes Discussion-Multiple pass aerobraking using a high-drag kit applied to a 

propulsion stage as illustrated in figure 3.2-26 allows a single stage to operate efficiently, The five 

clays required for the 30-pass return is a severe disadvantage. Tailored aeromaneuvering stages such 

as the concept of figure 3.2-27 from a Locklleed study can reduce the time required. 
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Table 3.2- 14 GSICfS Mission History- L 02/L H2 Common Stage 

Event 

Initial condition (leave LEO) 

Boost 

I 
Drop stage 1, skirt and stage 1 

remaining fuel 
Complete 1st burn with stage 2 

Ascent coast 

Circularize 

Wait-drop payload (assumed 24 hr 
wait in GEO) 

Deorbit 

Descent coast 

Circularize to LEO 
Stage 1 recovery 

Descent-coast 

Stage 1 EOI 

Cum 
time 

h r 

0 

0.5 

0.5 
0.5 

5.5 
5.6 

29.6 

29.7 
34.8 

34.9 

5.5 

AV Mass remaining 

MPS 

2000 

547 
10 

1787 

1787 
10 

2447 

10 

1900 

lo3 kg 

76.4 
48.2 

42.3 

FPS 

6561 

1794 

32 
5862 

5862 
32 

8028 

32 

6233 

103 

168 
106 

93 
37.3 1 82 
36.8 
24.1 

24.1 

15.5 
15.5 

8.2 
5.4 

5.3 

3.5 

81 
53 

53 
34 
34 

18 
11.8 

61.7 

7.6 
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Figure 3.2-22. Common Stage L02/LH2 OTV Capability for GSMS 
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Figure 3.2-23. Single Stage L 02/L H2 0 TV Capability for GSMS 



L 1 I I I I I 

0 2 4 6 8 10 12 (lo3 KG) 
PAY LOAD RETURNED 

Figure 32-24. Common Stage LO2/MAQH OTV Capability for GSMS 
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Use of rtn Apojlo-shape clirect entry rnodule allows direct retur~i  of  the crew by nerobrtiking t o  sea 

recovery, Mi15 tiple passes are 110 t requirecl. The moclule liiust be propulsively cleorbiterl from 

geosynchronous erbi t ,  incluciing a 28O to 30° plane change, 

Direct return is possible, using an nerobruking, entry, nlid landi~ig glitler sin~ilar t o  the configuration 

s l low~i in figure 3,2-28, The glider includes propulsion far  n copln~ier &orbit; its neroclynajnic L/D 

provides the return plane cliit~ige tluring aerobraking, Approximately ten aerobrnking passes (2 dnys) 

arc rcquirerl. A mass properties analysis has not been clone; mass data shown are very prelinlinary 

estimates. 

At this point in the study, no  rissumptions have bee., made relative t o  tlie ni~niber of anlrual flights 

o r  the time betwcen flipllts. Consequently, the comparison of Earth lni~nclles is related o~nly to  that 

rcqliired to perforln oiie mailntenancc sortie flight, This co~tiparison is shown in figure 3,2-29 with 

tlle nulnber of l a~ i~ l ches  including tilose necessary for the delivery of  the transportation systeni and 

CTV cind maintct~ance provisions. 

3.2.2.4.2.3 Opernliolls Comparison 

This colnlparison is silllilar to  paragraph 3.2.1,4.2,3. All the geosynchronous mission/tra~~sportatio~l 

modes require precision targeting for rendezvous in geosynchronous orbit and for Earth return, 

either t o  I3w Earth orbit o r  t o  clirect o r  aerobraking entry, The aerobraking rnocle requires repeated 

precision targeting for each successive pass, including corrcctions for perturbations occurring during 

the lierobraking passes, Aerobraking targeting must be clone quickly (one to  two hours) so that 

corrcctions can be made near apogce where energy requirements are minimal. Onboarcl navigation 

m d  targeting is desirable for  all motles and essential for zterobrakiug. 

Tllc return t o  Earth orbit mode tisi~lg run aerobraking kit applietl to  tile propulsion stage requires 

npproximately 3 0  attinosplneric passes in order t o  ~ninitnizc tile tllermal protection penalty. 

Conlpletion of  the aerobrciking phase will require about  five days. Tlle aerobraking mode also results 

in considerable radiation exposure as the velticle passes thro~tgh van Allen be1 ts. Art estinia ted 

1 500  kg (3,300 ib) of shielding is required in orcler t o  reduce the crew mdiation expostrre to  an 

acceptable level, 
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The glider aerobraking system requires about ten passes and two days. 

Operational factors are compared in Table 3,315. 

Table 3.2- 15. GSMS Operational Factors 

3.2.2.4.2.4 Practicality Assessment 

Practicality of the aerobraking kit, 30-pass mode is doubtful because of the time required and the 

risks, considering that a crew is involved. The other modes appear practical. Pro's and con's are 

compared in Table 3.2-1 6. 
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3.2.3 OPTIONAL GEOSYNCHRONOUS PAY LOAD STUDIES 

The concepts rlescribed below as option payloads were developecl as a part of this stucly. Tllc Inass 

co~~lmunicatiolls satellite was examinecl by a Boeing in-house stitdy about 7 years ago and updated 

for illis study. Tile LST occulting clisk has bccn discussed in the literature since about 1 962, but no 

substantive analyses were found. 

These option payloads represent conccpts in the formative stage. As such, they are representative of 

advanccd payloads that ]night be operational during tllc time frame of manned geosynchronous 

operations. They do  not, however, constitute selections or  reco~nrne~ldations as to  advanced 

payloads. Both concepts nccd further study to develop irlcreasetl co~lfidence in characteristics and 

capabilities. 



The LST occulting disk mission reqirires placement of an LST in a very hlgh Earth orbit, Lunar 

trojan points are representative, Although this orbit is not geosyncl~rono~~s, tlle transportation 

requirements are more nearly equivalent to geosyncl~ro~~ous missions than to the others discussed in 

this report. The occulting disk ~nission is therefore inclutled in this section. 

3.2.3.1 Mass Co~nniullicatio~ls Stitcllite 

The mass comn~unications satellite concept proposes to provide a system of large sophisticated 

satellites as "switchboards in tlle sky" serving subscribers in a manner analogous to the hard-wired 

and microwave telephone links of today. It is possible that ilsers of this system could 

communicate throi~gli hand-lleld two-way units to other users anywhere in tlle world. Wllether this 

coiil~l be achievecl is cloubtf~~l, but tclepllone units capable of some antenna directivity coulcl 

communicate effectively through such satellites. A concept of a mass cotnmunications satellite is 

shown in figure 3.2-30. 

ORIGINAL PAGE IS 
OF POOR QUALITY 

Figure 3.2- 30 Mass Communications Satellite Concept 
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These satellites, although unmanned, would be large and complex, requiring periodic man-directed 

service on orbit to achieve an aclequate level of system availability. From 1 to 40 satellites would 

conlprise the system, depe~~ding on the level of subscription. Each satellite is expected to weigh 

about 40 000  kg (88,000 Ib). It is estimated that manned service missions on the order of twice a 

year would be desirable. Each service mission (see paragraph 3.2.2) would visit all satellites needing 

service. 

3.2,3.2 LST rind Occulti~lg Disks 

Thc LST occ~llting disk mission is post~datecl as a means to  achieve direct observation of planets 

around nearby starts. The LST unaided might be able to observe large planets around a few (one to 

five) of the brightest neartest stars. Suc11 planet observations will be extremely difficult because the 

parent star will be brigllter by a factor of lo8 to l o 1 0  (20 to 25 magnitudes) than the planet. 

Diffracted light from tlle steller image will be more intense by a factor of lo2 to  l o 6  than the 

planet image sotght. 

In  1962, Spitzer ill a paper on extrasolar planetary systems-discussed the idea of placing an 

occulting disk at a great distance from a space telescope to  blot out the bright star image while 

allowing the planet image lo be seen (figure 3.2-31). The improvement in detectability by this 

technique was estimated in a concept stucly for the FSTSA study and found sufficiently promising 

that the LST/occulting disk was incorporatect as a representative advanced payload for 

geosynchronous operations. 

TELESCOPE SHADOWED PLANET 
BY DISK BUT CAN 
OBSERVE PLANET 0' 

,o5k,77 -$AIGkm -- 10' km 

. - - - - - - - -  
I' 

7-4----- 1--,--__ 
0 

Figure 3-2-31: Concept of the Occulting Disk (Not to Scale) - - - 
Distances Shown are Typical 



Each time an observation is attempted, the occulting-disk spacecraft must fly to the required 

occultation posiliotl (different for each target star), remain in this position uncler active control of 

the LST fo;. roughly 1 hour, and then return to the vicinity of the LST to await the next attempt. 

The disk milst be a great riistance typically lo5 km (54,000 ~?lni) from the telescope. Uoless this 

distance is s~nall comparecl to the distance of the telescope from the Earth, the propulsion 

requirements for mancuvering the disk are enormous. Therefore, location of an LST at a lunar 

t r o j : ~ ~ ~  librution point 380 000 km (250,000 nmi) from Earth was selected as representative. 

Tl~e disk spacccroft, shown co~~ceplu:llly in figure 3.2-32, will have a gross Inass of about 3 000 kg 

(6,600 113) inclutling 1 000 kg (2,200 Ib) of propellant (sufficient for one observation tnaneuver), It 

would normnlly be attacltetl to a propell:tnt storage facility co-orbital wit11 the LST. The number of 

polcntial target stars is roughly 30: an average of 5 observation attempts for each is a representntive 

figure. Assuming tlle observation progrctm to extend over a 5-year period, t l ~ e  following 

transportation requirements are estimatecl, 

Il~itial -'Hie initial transportation requiremet~ts inclucle - 

I%~cen~ent of a 15 000 kg (33,000 lb) LST at the libration point 

Placement of tlle occultingilisk spacecraft and support facility (20 000 kg [44,000 Ib] total) 

at the same libration point 

Recurring -Manned service lnission twice a year to the libration point in a mission similar to the 

GSMS mission (paragraph 3,2.2), but also including 10 000 lo 15 000 kg (22,000 to 33,000 Ib) of 

propellant for the occulting-disk spacecraft. 

Final-Return of the LST to low Earl11 orbit to Enrtll for continued use in other science program. 



Figure 3.2-32.50-Meter Occulting Disk Spacecraft Concept 
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3.3 INDEPENDENT LUNAR SURFACE SORTIE PROGRAM 

Tllis program is representecl by 3 single independent Iiular sortie ntission concept with severt~l 

3.3.1 INDEPENDENT LUNAR SORTIE MISSION 

3.3! 1.1 Mission Summnt*y - 
3.3.1 . l  . l  General Description 

I'hc term "iaclel?e~~tIcnt" signil'ies that each mission is sell' supporting as were tllc Apollo lu~las 

~nissioris. I,oaisl~cs lligl~ts, sl~pport missions, or systenls :Ire not requirecl. A shuttle llighl !nay hc 

rccl1111t~d to rctl:rn the ~llission crew to East11 after tl~cir rettlrll lo l a r th  orbi t ,  rlcpc~lrlillg on tI1c 

tru~lsporl-1 (ion ~:~oclc sclectt\rl. 

'I'llcre is no principal reference for this mission. Mission equipment data art. based primarily on  the 

OLS slucly and the Minlosa study. 

Lach mission leaves Earth orbit, transfers t o  the moon, enters a lunar orbit, lands four men and 

4 500 kg (10,000 lb) of ~nissio~l equipment on the lunar surf~ice for a 14-day exp1or:ttion stay, and 

L ~ L ' I I  r c t ~ l ' t l ~  L O  I<:~rtll. A rcl)resont;~tivc inclcpendent lunar sortie configllration is illilstrillctl in 

1:ig11rc -3.3-1. 

3.3.1.1.2 Mission Assumptions ;rnd Constraints 

Nonlinal mission assumptions and constraints are siunmarized in table 3.3-1. The polar orbit is 

considered representative as it phases well with a 14-clay surface stay. Altcr~lative orbits are not 

cxcludcil. In particulur, a 11310 parking orbit will provide continuous commi~nication via relay for 

S I I S ~ ~ I L ' S  niissions on the back side of tile moon (i.e., not visible from Earth). The constraints are 

intentionally kept general in  order to not exclude any of the ieveral transportation modes 

poteutinlly applicable to  this mission. 

3.3.1.2 Mission Systenl Descriptions 

3.3.1.2.1 Mission Options 

The selection between retun1 to Earth orbit and direct return t o  Earth determines the nature of 

puyloacls for the independent lunar surface mission. The options are sllown in figure 3.3-2. The 

retun1 to Earth orhit mode was selected as representative for transportation analyses. Conlparison 

data wort. tlevcloped for tlie direct  node. 
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Table 3.3.1 Assumptions and Constraints 

MISSION 

MANNED LUNAR 
EXPLORATION (WltHOUT 
SUFWRTlff i  LUNAR ORBIT 
STATION) 

6 

OBJECTIVES 

IN-DEPTH EXPLORATION OF 
SELELTED LUNAR A R M  

MISSION ASSUMPTIONS L CONSTRAINTS 

FOUR MAN CREW CAPACITY (MISSION MODULE) 

MISSION MODULE. CSSOCIXTED WITH WOWlSlON 
STAGE IS) FOR DESCENT AND ASCENT 

14 DAY STAY TIME 

T W  MAN ROVER WITH 10 DAYS LIFE SUPR)RT 
CAPABILITY IWKMOUT AND RETURI. RANGE 
CAPABI LlTY 

EXPERIMENT STATION WlTH ALSEP TYPE CAPABILITIES 

BACK SIDE CAPABILITY WITH COMMUNICATION THROUGH 
RELAY SATELLITE 

SAMPLE RETURN ChPAClfY OF600 KG 

30M DRILL CAPACITY 

TOTAL LUNAR SURFACE ACCESSIBLE EXCEW FOR TBD 



Figure 3.3-2. ILSS !,lission Modes and Requirements 

MODE OPTIONS 

CREW QUARTERS 

EXPLORATION 
AND SCIENCE 

LTV OPTIONS 

OTV OPTIONS 
(TLI, LOI, 
TEI, E01) 

RETURN TO EARTH ORBIT 

a 
l CEM 
l 14-DAY SURF CAPAB 
4 1 - D A Y  DESIGN CAPAB 

7920 KG (17,470 LB) 

DIRECT RETURN TO EARTH 
(APOLLO TYPE LOR) 

n+a ----& 

OCEM EARTH RETURN 
*I4 DAY SURF MODULE 

CAPAB 7 DAY CAPAB 
021 TOTAL 6870 KG 

CAPAB 
06695 KG (15,145 LB) 

(14,765 LB) 
MANNED ROVER, FLYER AND EXPERIMENTS I 

4 5 3 5  KG (10,000 LIB) 

SINGLE STAGE - L021LH2 

l SINGLE STAGE - LO2/MMH 

SINGLE STAGE - L02/LH2 

l COMMON STAGE - L O Z I L H ~  

COMMON STAGE - LOzIMMH 

l 2-1 12 STAGE - L02/MMH 

TWO STAGE -- L021MMH 



3,3,1,2,2.1 Crcw :rrlcl Eqt~ipmcrit Moclt~lc 

The crcw aurl equipment nioclule (CL<M) supports the crcw Tor the entire ll~ission in tllc 

return-to-Earth orbit (liI<O) tnocle and for all o f  the niissiol~ except I:,tlrtIi return entry alicl Iculclillg 

for the Apollo mode. 120r Lllc ILS mission rcpsescntative transport;~tiotl mocle, tllc ('EM is ci~pahlc 

of  elockil~g on the li)rwuscl encl o f  a LSV nncl equipment modulc while ctllached by a separation 

joint t o  3 sccolld L.SV/L~M: tllc CliM clraws its power c~nd C O I ~ S U I I ~ ~ I I I I ~ S  from citllcr o r  botll 

cquipniett t ~tlorlulcs. 111s ('EM is sliown it1 Figirsc 3.33. A mass sirmmary for 4 1 -clay total calx,'~ility 

is slcitccl in tnhlc 3.3-2. 

Table 3.3-2. 4 1 -Day 1 LSS CEIC: Xass Summary 

Tliis represcllts the niaximum missiotl duration; a liiore typical duration is 3 0  days. 

Item 

CEM inerts 

Crew, g a r  and ressryos 

Consumables 

Total 

For the Apollo mode the CEM is clesigllecl for ;I ~ io~n i~ i ; l l  34-day totrtl capability, resnlting in thc 

nlass data sunimarizerl in tnhle 3.3-3. 

kg 

4860 

1160 

1900 

7920 

Ib 

10,710 

2,560 

4,200 

17,470 

Table 3.3-3. 34-Day l LSS CEh? Kass Summary 

Item kg 

CEM inerts 4535 

Crew, gear and reserves 1160 

Consumables 1575 

Total 6695 

Ib 

10,000 

2,560 

3,470 

16,030 
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3,3.1,2.2,2 Enrill Entry Module 

The ApollolLOR mode Earth-entry module carries the crew to the Earth's surface fron: a 

trans-Earth trajectory by aerodynamic braking, followed by parachute descent. It coi~ld be usecl by 

t l ~ c  crew as a habitat during tile tmnslu~~ar,  l~lnar orbit, and trans-Eartl~ mission phases, I-lowever, it 

is assumecl in this study that the CTM is used for these purpases, nllowitig the EEM to bc more 

compact, As an option, a fifth Inan may be added to the ~nission as an EEM solo pilot during the 

lunar surface phase to provide a backup to LSV-active rendezvous and docking after lunar ascent. 

Also co~isiclerecl was a direct mode, lirntling the Apollo-type EEM tlirectly on the moon dong wit11 

return propulsion. In this approach, no crew equipment module is used so the Earth entry ~nodille 

llouses the crew for tlie totnl mission. It should be noted that the !labitable volume of the EEM is 

about 113 that of the CEM due to the diameter res:.3s.,,i. q z  of tl:d shuttle. This mission mode is 

therefore not fully responsive to niission requirements ail, ..IOWII or~ly for comparison. 

Masses of the EEM are stated in table 3.3-4. 

Table 3.3-4. Earth Entry Module Masses 

'CARRIED IN PROPULSIVE STAGE; NOT PART OF ENTRY PAYLOAD 

EEM DRY WEIGHT 

SERVICE MODULE 

EQUIPMENT (DRY)" 

CREW, GEAR 81 RESERVES 

COMSUMABLES 

TOTAL 

NET PAYLOAD WITH CREW 
ACCOUNTED IN  CEM 

3.3.1.2.2.3 Surface Exploration Payload 

For the 14-day surface mission, 4 535 kg (10,008 Ib) of exploration equipment are provided, Any 

combination of equipment can be accommodated, A representative payload is summarized in 

table 3.3-5. 

APOLLO MODE 

KG 

5 535 

1010 

1 160 

325 - 
8 030 

6 870 

DIRECT MODE 

LB 

12,200 

2,230 

2,560 

71 5 -- 
17,705 

15,145 

KG 

5 535 

1010 

1 160 

1 900 - 
9 605 

- 

LB 

12,200 

2,230 

2,560 

4,200 -- 
21,190 

- 



Table 3.3-5, Surface Payloads 

Payload - 
Lunar Roving Vehicle 

Transport and deployment pallet 

Surface experiments 

Experiments canister 

Total 

3.3.1.2,2.4 Crew Ro tn tion s l ~ d  Resupplv Pnyloads 

Not applicable. 

Typical consumables estimating factors are stated in table 3.3-6. 

Values do not incltt~!e reserves, Water is assuined derived from fuel cells. 

Table 3.3-6. 11 

Breathing O2 

Food 

Cabin leakage 

Power (fuel cells) 

Lioh and miscellaneous 

Total - 

kg per manday Ib per manday 

3.3.1.2.2.6 Mass Sult~inary 

The mass summary for the ILSS modes investigated is pr~scnted in table 3.3-7. 

3.3.1.2.2.7 Pickup Points and Transports tion Constraiiits 

Pickup Points---The CEM and EEM are desigllecl to be launcl~ecl fitted to  propulsiola stages. They 

also incorporate docking Iixtures capable of providing sufficient structural strength for orbit 

transfers. Surface payloads are assumed to be llandled as depicted in figure 3.3-4. 

146 



Dl  80-1 8768-1 

Table 3.3-7. lLSS Mass Summary 

Note: * Does not provide required volume for crew and equipment 
, TLI - Translunar injection 

TEI - Trans-Earth injection 
EOI - Earth orbit capture 

14 7 

r 

Event 

TLI 
CEM 

EEM 

S M  

Surface payloads 

Crew, equipment, reserves 

ConsumaMes 

Total 

Lunar Descent 

TLI (less) 

Transfer cor\sumables 

Vehicle in L.O. 
* .- 

Total 

Lunar Ascent 

Lunar descent (less) 

Surface consumables 

Surface payloads 

flus ret. science 

Total 

TE I 

Lunar Ascent (less) 

ConsumaMes 

Vehicle in L..O. 

Plus vehicle for return 

Total 

EOI or Entry 

TEI less consumables 

Total 

R E 0  

103kg 

4.86 
- 
- 

Mode 

1031b 

10.71 
- 
- 

Apollo 

10%~ 

4.54 

5.54 

1.01 

4.54 

1.16 

1.9 

12.46 

(.47) 
- 

11.99 

Mode 

1o31b 

10.0 

12.2 

2.23 

Direct 

103kg 

- 
5.54 

1.01 

Mode' 

103kg 

- 
12.2 

2.23 

4.5) 

1.16 

1.02 

13.26 

(-47) 
- 

12.80 

(.65) 

(4.54) 

-20 

7.00 

(.47) 
- 
- 

6.54 

(.47) 

6.07 

10.0 

2.56 

2.25 

29.23 

(1.03) 
- 

28.21 

lie 
4.2 

41.19 

(1.03) 

(14.43) 

25.72 

lie 1 ;:; 4.2 

27.47 

(1.03) 
- 

26.44 

18.68 

(.47) 

(6.55) 

11.67 

(1.44) 

(10.1,l 

.44 

15.45 

(1.03) 
- 
- 

14.42 

(1.03) 

13.39 

(.65) 

(4.54) 

.2O 

6.68 

(.47) 

(4.54) 

6.55 

8.23 

(.47) 

7.76 

(1.44) 

(10.0) 

.44 

17-22 

- 
- 

17.22 

(1.03) 

16.13 

(1 .44, 

(10.0) 

.44 

14.73 

(1.03) 

110.0) 

14.43 

18.14 

(1.03) 

17.11 

(.65) 

(4.54) 

.M 

7.81 

- 
- 
- 

7.81 

(.47) 

7.34 
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Figure 3.3-4: Cargo Deployment from Lunar Sortie Vehicle 
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CARGO MODULE 
PRIOR TO DOCKING 



X Y E  (DAYS) 

DEPART EARTH ORBIT 10 20 30 40 

Y I I 1 1 

POUR ORBIT, 
SHORT ORBIT WAIT 

LUNAR ORBIT 

LUNAR SURFACE LUNAR ORBIT / 
I ' I  

Y U R  ORBIT, 
L W G  ORB, WAIT bw'"1 

HALO ORBIT 

DIRECT 

TRANSFER TO H.O. 

LUNAR ORBIT 

I LUNAR ORBIT 

LUNAR SURFACE 
LUNAR ORBIT 

TO HALO ORBIT 

L.UNAR SURFACE I 

TO EARTH u 

LUNAR ORBIT 

EARTH O R B l f  

LUNAR ORBIT 
LUNAR SURFACE 

'-j [DIRECT ENTRY AT EARTH) 

'MRECT ENTRY FOR 1 

Figure 3.3-5: Comparison of Timelines for Alternative Independent Lunar Surface Mission Modes 



Polar Orbits-Orientation of  the polar luuar orbit results in a nomilla1 stay time in lunar orbit of 21 

days, inclucli~lg the 14-day surface stay period. Sollie surface site longitucles will require a lunar 

orbit time of  about 3 4  days. Total missioll time, inclucling 3-day transfers to cincl from the Moon, is 

approxin~ately 28 days o r  41 days for the 3 4 d a y  orbit stay, The desired time during the lunar 

month for arrival ill lunar orbit will be cleterrninetl by thc time of  year (Sun's location), assulnillg it 

is desirccl tllat tlle surface stay be during lullar daylight. 

Halo Orbit-A halo orbit, with the penalty of sotnewhat higher missiol~ delta V's and slow trcinsfers, 

allows access t o  ally surface site any timc. Transfer times arc about 8 days each way between Earth 

orbit and halo orbit and about 3 clays each way between the halo orbit and the surface. Thus, halo 

orbit lllissions with a 14-day surface stay will be approximately 38 days in lcngtll for tiny site 

location. Tlle halo orbit, always in view of Earth, also provides comm~~nicat ions relay capability for 

continuous commi~nication will1 about 90% of the lunar far sicle. 

Direct-The direct flight mode permits free selection of  lunar orbits since the lulzar departure orbit 

is ~~~nconstrained by the lunar arrival orbit. Tl~crefore, norninal l ~ m a r  orbit wait times will be about 1 

day, leading t o  a total 22-cl:ty mission for a 14-clay surface stay and 3-clay transfers. 

Coi~lpnrisoll-Figure 3.3-5 shows a cotnparison of the representative tilnelines for the modes 

discussed. 

3.3.1.2.3 Transfer and Storage 

Not applicable. 

3.3.1.2.4 Orbital Assembly, Maintenance, and Modification 

Not applicable. 

3.3.1.3 Transportation Requirements 

3.3.1.3.1 Payload Delivery Points 

Payload delivery points are summarized in table 3.3-8, with vellicle utilizations for the reference 

transportatio~l mode. These are generally applicable to all transportation moclcs. 
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Table 3.3-8. Independent Lunar Surface Mission Nominal Payload Delivery Points 

Note: SS = Space Shuttle 
HLV = Heavy Lift Vehicle 

3.3.1.3.2 Payload Delivery Optioils 

Sizes (envelopes) are approximately as stated in table 3.3-9. 

Delivered .-. 
Mission Phase 

To Earth orbit 

Table 3.3-9. Payload Size Characteristics 

and Science 
Equipment 

SS 

OTV 

LSV 

- 
- 

- 
Left on 
Moon 

Lunar Sortie 
Vehicle (LSV) 

SS 

A 20% mass growth allowance was applied to CEM inerts. Since the EEM was based on Apollo 

hardware, no growth allowance was deemed necessary. The 4 535 kg (10,000 1b) surface 

cxploratioil payload was a requirement specified in tile study statement of work and was ass~~mecl 

to inclutlc growtli, I'ayloc~cl Illasses used in sizing transportation systems are prcselltcrl in table 

3.3-10. 

Orbit Transfer 
Vehicle (OTV) 

SS or HLV 
Pppp 

SELF 

- 
- 

SELF 

SS if appltcable 

- 

Earth orbit to Lunar orbit 

Lunar orbit to Lunar surface 

Lunar surface to Lunar orbit 

Lunar orbit to Earth orbit 

Earth landing 

Disposal 

Item 

CEM 

EEM 

Payload pallets (2 required) 

7 

Crew 

SS 

OTV 

LSV 

LSV 

OTV 

SS 

- 

OTV 

SELF 

SELF 

- 

- 
Crash on 
Moon 

Meters (DXL) 

4.2 x 4.7 

4.4 x 4.3 

4.4 x 6.0 

Feet (DXI.) 

13.8 x 15.5 

14.5 x 14.0 

14.5 x 20.0 
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Table 3.3- 10, Payload Pass Characteristics 

3.3.1.4 Mission/Tmnsportntio~~ Modes and Operations 

3.3.1.4.1 Transportation Options 

Principal transportation candidates consirlerccl for the ILSS missio~l were compatible with lairncln by 

the  space shuttle. Tllere were: 

Small L02/LH7 w orbit transfer vehicle (OTV) slagccl as rcquirecl wit11 return to  Bart11 orbit 

(reference mode); 

- 
Payload Item 

Total initial payload 

Landed payload 

Ascent payload 

Return payload 

L02/MMI-I OTV, tandem staged (for equal states) Tor tlelivery to the lnoon and single stage for 

Iiunar descent and ascent; return lo Ilurth orbit; 

LO?/MMII - OTV's and lander opcrntcrl in file Apollo mode; 

L03/MMH - OTV's ancl lander with direct lunar lanclitlg cuncl direct Earth entry return 

(comparison only). 

R E 0  Mode 

Additiollal candidates, not compatible with shuttle launch, were. 

Large single-stage L07/LI-17 - - OTV f ~ r  Earth-moon transportation: single-stage LO7/LI-I2 - lander; 

return t o  Earth orbit. 

kg 

13 425 

12 960 

7 975 

7 510 

The same modes except for use on tandem-staged LO,/LI-1, ‘- .., OTV's for Earth-mcon 

transportation. 

lb 

29,500 

28,570 

17,580 

16,555 

Apollo Mode 

3.3.1.4.2 Representative Trallsportatioll Mode and S y s t e ~ ~ i  

kg 

19 585 

12 575 

7 590 

8 225 

Direct Mode 

Ib 

43,175 

27,720 

16,735 

18,135 

kg 

13 260 

12 795 

7 810 

7 810 

Ib 

29,230 

28,210 

17,220 

17,220 



3.3.1.4.2.1 Tru~isportatio~i System 

Tlie reference mode vehicle assembly is tlepiclzd in Figure 3.3-6, t~nd the mode sequence in Figure 

3.3-OA. 'Che lnodc as clepictcil results in expenditures of two drop tanks, two orbit trunsfer vehicles, 

anrl the lunar exploration payloacl, One OTV ancl the crew and equipment module are recovered by 

a sli~ittlc lligl~t at the encl of the mission. Table 3.3-1 1 is a tabulation of the time, delta V and mass 

11isLori~'s for the reference mode. 

3,3.1.4.2.2 Transpartation Sizing 

'I'lle reference sequence was sized on a point-design basis. 

3.3.1.4.2.3 Operolional Factors 

Operations Derived Requirements- 

Assumbly of the entire mission vehicle in Earth orbit is recluired. Vellicle elements may he 

requirecl to remain in Earth parking orbit as long as several weeks while the assembly sequence 

is co~npleted, The degree of asse~nbly is dependent on selection of Earth-to-orbit transporta- 

tion. Even if a heavy-lift system is available (capable of launclling tlie entire mission in a single 

launch) some orbital assembly may be required to minimize launcl~ loads carried througli 

mission-vehicle structure. Assembly is likely to require unmanned, but remote piloted, 

docking, 

Transfer of propellants from a tanker to the mission vehicle may be required, depending on tlic 

Earth-to-orbit transportation and mission transportation systems selected. 

The !)ortion of the mission vehicle left in lunar orbit must remain serviceable unattenrled for 

the 14-day duration of the surface mission and provide a cooperative (but passive) clocking 

target at the completion of the surface mission. Relldezvous techniques will be as used for 

Apollo. 

?'he LSV must be capable of clocking with cargo motl~iles delivered to orbit by the shuttle: it 

must also be capable of rotating and translating these cargo modules to a suitable location for 

lunar landing. 

Tlie LSV must be able to jettison "down payloacl" cargo in order to accomplish a landing 

abort and return to  lunar orbit. 

Crew Involvement-The independent lunar surface mission is a manned mission; tlie crew is involved 
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EARTH ORBIT OPERATIONS 

PHASE 1 

FOLmUT FRAME 

DELIVER TLI STAGE 
WITH SS 

DELIVER DROP TANK 
NUMBER 1 WITH SS 

e ROTATE DROP TANK 
INTO PLACE 

DELIVER DROP DELIVER LOI/TEI/EOI 
TANK NUMBER 2 STAGE WITH SS 
WITH SS 

ROTATE DROP TANK 
INTO PLACE 



'H ORBIT OPERATIONS 

1 WEEK 1 1 WEEK I 1 WEEK I 1 WEEK 
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Table 3.3- 1 7. Mission History 

LUNAR LANDING 

EVENT 

INITIAL CONDITION (LEAVE LEO) 

BOOST 

SEPARATE DROP TANKS 

INJECT (TLI) 

DROP TLI STAGE 

LOI-1 (ELLIPTIC ORBIT) 

(LANDING STAGE) 

LOI-2 (CIRCULARIZE) 

(RETURN STAGE) 

SEPhihATE LANDING STAGE 

RENDEZVOUS WITH RETURN 
PAY LOAD AND CREW 

TEI (RETURN STAGE) 

EOI (RETURN STAGE) 

CUM 
TIME 
HR 

0 

0.5 

0.5 

0.6 

0.6 

90.6 

94.7 

95 

434.7 

434.8 

54 5 

AV 

INITIATE DESCENT 

DESCENT & LANDING 

READY FOR ASCENT 

ASCENT 

M/SEC 

2050 - 
1300 
- 
400 

525 

- 
945 

3145 

MASS REMAINING 

95 

97 

433 

434.7 

Fl"/SEC 

6725 - 
4265 
- 

1312 

1722 

- 
3100 

10,318 

lo3 KG 

152.8 

96.5 

92.7 

69.2 

66.2 

59.7 

52.9 

18.3 

25.3 

20.3 

9.7 

21 72 
- 

2000 

lo3 LB 

337.0 

21 2.7 

204.4 

152.6 

145.9 

131.5 

116.7 

40.4 1 
55.9 

44.8 

21.4 

34.6 

21.3 

16.2 

10.3 

71 25 

6561 

76.3 

97.0 

35.6 

22.8 



in all mission pllases. 'Ule lunar liiission vehicle is assembled in orbit through a sequence of docking 

maneuvers. it is envisaged that the shuttle crew will perform tlie unmanned dockings flying the 

stapes ill a remote pilotctl mude. 'I'wo of the ~inmannecl dockings are followecl by a rotation 

maneuver to acl~ievc tlle SILIC-by-sirle co~lfigiir:~tiotl for the TLI stage and its clrop tanks. Tile 

rotation will be assisted or pcrfor~ncd by the crew using the shuttle-attacliecl manipulator (SAMS). 

'I'hc intlzpctitl~nt 1u11ar surface siission is ge~~erally analogous to tlle Apollo lunar lnissiolls in its 

:it~ort ;uld resc t i~~  cI~;ir;~~ter'~,tics. I'rior to il~itiation of lunar descent, eitlier of .. 3 4 0  stages 

ren~airiing L';LII rlcliver the crew ~ n o ~ l u l e  11:ick Lo an Earth orbit for shuttle p;ckiip. IIowever, after 

ltuiar tlosccnt, tlie rep~'rLoise of ti1)ost a1111 rescLie ~liocles available to the OLS and lunar surface base 

rllissions is not :tvail;ll~lc, 'I'licse inodes coulcl be provided by sending a group flight of two 

independent lunar surf:i(~ nlissioll vclliclcs to the moon; one veliicle would wait in lunar orbit while 

the  otllcr would conducl t11c surfticc mission. IIowever, the practicality of this is cloubtful. This 

a:~ort/resc~ie situation applies to a11 of the candidate mission modes cliscussed, except that in the 

direct mooe tlie backup flight if used would also land on the lunar surface. If a heavy-lift vellicle 

were :~vi:ilablc. allti capable of launcliing the entire ILS mission vehicle in a single launch, a rescue 

lo-,~icll from 1~:lrtli coulrl he employecl. Assembly of a rescue vehicle in Earth orbit is not excluded, 

hu t  it would ljc too time consuming in lliost situations. 

Control E'unrfions and Reclr~irelnents -All the independent lunar surfiice sortie missions and 

transportation modes involves tlirec critIca1 n1:tneuvers requiring precision targeting: 

L.unar orbit i~~sert ion 

Lu~iar Innding 

Earth re turn to direct eliCry or Ilarlli orbit 

111 :irlJilion, most of the nlocles require lunar orbit rendezvous. 

Network Support 'I'l~e ILSS mission is envisaged as analogous to Apollo and would probably be 

tlr>wn only a i'ew times, for example tc, fill in gaps in lunar science. Accordingly, it may be expected 

to require cclntinuous nctwork support as clicl Apollo, 

3.3.1.4.2.4 Earth L~t~lunch Requirements Sumlnary 

l? ie  representative nlocle requires seve,l shuttle flighls to assemble tile mission vellicle in Earth orbit 

;rncl oiita fligl~l to retrieve the r e t u r ~ ~ i ~ ~ g  crew. 

3.3.1.4.3 Transportation Options Coli~parison and Evaluation 

The  following variations on tlie reference ,node were investigated: 
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12cci~very ol' t l ~ c  two o'I'V's cxpc~~tlct l  in tllc rcferencc moclc. Iiel'crring to  tllc sequence 

pictori;~l, ;~f tc r  sept~ri~tion (step 10) tllc 'TLI stage cxcci~lcs a li11iar I'rcc return trajeclory 2nd 

r c t t l r ~ ~ s  lo 11;1r111 0r1)iI. At sel~;lr;~tiot~ i t  r~t;litls S L I I ' S ~ C ~ C I ~ ~  [)ropcII;~t~t l'or 1Iic I'url11 orhit 

i n s c r t i o ~ ~  hu~.n, In slcil 17, the Innrling stngc rlocs not separate hut is returned to  I'urtll orbit ;IS 

r e t i~ ru  payload. 'I'llc '1'1~1/1101 sti~gt: is it1crc;~scil in site as rcquisctl hy 1111: cxtrc~ rclur~i  i)aylo;~tl. 

'I'i~rce shuttle fligl~ls r ;~ t l~c r  L ~ I : I I I  OIIC 31'~' r ~ ( ~ i ~ i r ~ t I  ;it C I I C I  of tnissio~l to rc111r11 t11c ~ U C ~ V O I ' C ' ~ ~  

Ilartlwarc to liartl~. 'l'l~is lllotlc is ohuut 20% heavier t11;11l t11c rcfcrcncc tllode (1110st1y 

propcllnnt) at s l r~rt  of mission. 

'I'anilc111 stagcil IX)7/MMI - I O'T'V's li)r liarth-moon l ranspor ta t io~~ pltls a singlc-stage L,O-,/MMII " 

lanrlcr, 'I'llc I:l~~tler opcr;~tes t l ~ c  sntne cis the rcl'crcncc, morle; lllc lanlle~n-slapctl 0'1'V's opcralc 

in a manucr nnaiogous to  that  sell i'or the gcosyncl~ronous satellite maintenance sortie. 'l'llc 

tal~dcrn stagcs rclurn to Iiartll orbit for reuse, '~11:: lantlcr may be rcusctl o r  expentlctl at t l ~ c  

moon aflcr ascent. The 111:lss pct;nlty, in terms ol'initial mass in Ilarlh orbit, for lunclcr reuse is 

rottgllly 40 000 kg (88,000 11)). 

1.0 ,/MMII stages i n  an  Apollo-LOR nlode (single-stage luntlcr). 'I'llc tllotlc is tllc samc as that 
& 

) 
ilscil for Apollo cxccpt Illat 111e crcw rcsirlcs in t l ~ c  crew and ctluipmcnt nlotlulc (usetl h r  tllc 

I ~ ~ n a r  surl'acc sortie) cluring tllc entire ~nission except I ~ o r t l ~  return. 

@ L,O~/MMII w stages in a Jirect InncIing/tlirect rctunl ~notlc.  AI'tcs ;~rrival in lunar orbit, thc cntirc 

renlai~iing vehicle (lalldcr, ascent/l ' l~l stage, and last11 entry nlorlulc) lantls on  t l ~ c  moon. After 

s i ~ r l ' a c ~  nlission complclion, tllc nscent/TI<l st;~gc lifts off and dclivcrs tllc lil!M to  lunur orhit 

anti then to ;In l:,arth relitrn (direct entry) tr;~jectory. As notcrl earlicr, this morle docs not 

provirle an  adequalc crew hrtbitahlc volume as dcfinetl. It is not r econ~~nc~~r l c r i  thr further 

consitlesation. 

L02/I , II?  '. single-stage 0'lY with a I.C),/LI4, .. ,. single-stage lantlcr, all stages reusctl. The 

single-stage OTV waits in Iwlar orbit for the surf~lce sortie. After the s u r f ~ ~ c c  tnission the OTV 

returns tlle lander crcw clnci equipment modtlle, and crew to I<artl~. The single-stage OTV is not 

cclmp:ltible with slluttlc Inuuch. 

L02/LIIq '. tandem staged (two cquai stages) OI'V will1 LOq/LII? '. single-slagc lander. 'The 

mission is llle samc as above except that  the tanc!e~n stage boost elenlent is sepalntcly 

rccovcretl. 



3.3.1.4.3.1 Size and Perfor~nance Compariso~~ 

Those trailsportittion inodes that appeared prinlarily suitecl only to this mission were point- 

matched. 'Those applicable to other lunar missions (orbiting lunar station ond lunar surface base) 

were paran~etricitlly miitched. Figure 3,3-7 compares masses of the alternatives  nodes and 

figure 3.3-8 compares sizes. Figures 3.3-9 through 3.3-12 prcsent vchicle iind stage mtltcl~ing/sizitlg 

data for most of these motjes. 

3.3.1.4.3.2 Earth Luul~cl~ Tra~~spor ta t io~l  Compariso~~ 

Tllc nutnber of shuttle anrl/or heavy-lift flights required t o  accomplish the lLSS options are 

su~iln~arizerl in figure 3.3-1 3. 

3.3.1.4.3.3 Operational Coml~arison 

Operatiollit.1 factors are summarized in table 3.3-1 2. The common stagc modes require tracking and 

control of  two independent vehicles. For tile clustered snlall OTV mode, if the TLI stage is to be 

recovered, it must be tracked and controllecl on a lunar free return while the lunar mission is in 

progress. 

3.3.1.4,3.4 Practicality A s s e s s ~ ~ ~ e l ~ t  

All of tlle modes ant~lyzecl appear to be practical. Maxi~nizing recoverability of the representative 

nloclc does not  seem wortl~while .the aclditiont~l shuttle flights required will largely negate recovery 

savings and mission operations are considerably more coniplex. Table 3.3-1 3 presents pro's ant1 

con's for the a1 ternatives. 
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Figure 3.3-7 Mass Comparison of ILSS Options 
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Figure 3.3-8. Size Comparison of Representative ILSS Transportation Modes 
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Figure 3.3-9, Single Stage I. C2/L/-E2 LSV Capability for I LSS 
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Figure 3.3- 10. Single Stage L02/LH2 OTV Capability for ILSS 
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Figure 3.3- 12: Common Srage L 02/MMH 0 TV Capability for I LSS (Return to Earth Orbit) 
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Figure 3-3-73. Earth Launches Required for One ILSS Mission 



Table 3.3- 12. Operational Factors Summary 

are indicated 

" Can be launched fueled by heavy lift vehicle. OTV reuse requires refueling 
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Table 3,3- 13. 1 LSS Mode Assessment 

169 ( R E V E R S E  IS B L A N K )  



3.4 ORBITING LUNAR STATION PROGRAM 

A more extensive investigation t \ f  moon than that possible tllrougll the independent lunar surface 

sorlic program could employ an orbiting lunar station as shown n figure 3.4-1. The objectives of 

this program would be as follows: 

Perf-or111 a broad spectrum observation of the lunar surface. 

Conduct surface sorties. 

Support ancl control unrnallned orbital and surface operations 

The orbiting lunar station program includes an orbiting lunar station (OLS) and vehicles to perforlv 

surfi~ce sorties. Tlle principal reference on this mission is the Rockwell OLS study conducted in 

1970-7 1 (contract NAS9-10924). The requirements determined for this mission are based primarily 

on this rcfttrrnce. 

3,4,1 ORBITING LUNAR STATION MISSION 

3.4.1.1 Mission Sulntnary 

3,4.1.1.1 General Description 

l'he OLS mission employs an 8-man station as illustrated in figure 3.4-1 and operates in a lunar 

polar orbit at 11 1 km (60 r i) altitude. A lunar llalo orbit is a potential alternate location. Docked 

to the station are two lunar sortie vehicles each capable of a round trip to the lunar surface with a 

crew of four and their exploration and support equipment for a 28-day nominal surface stay. Two 

to four surface sorties per year are conducted. For this study, the OLS is considered to be 

composed of station modules derived from the modular Earth orbit space station, with the optional 

alternative of a unitary (single mod~ile) station derived from a similar unitary Earth orbit space 

station element. 

The OLS and its surface sortie missions are supported by logistics flights, nominally at 109-day 

intervals and originatir~g from Earth. 

3.4.1.1.2 Mission Assumptiolls alad Col~straiilts 

Nominal mission assumptions and constraints are summarized in table 3.4-1. The lunar polar orbit 

was selected by the Rockwell study after considerable investigation of alternatives ancl is adopted 

here. The "halo orbit" as a location for an orbiting lunar station was described by Farquhar and was 

brief?y analyzed in this study. Depending on selection of the transportation system, the halo orbit 

may present advantages. 
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Table 3.4- 1. Orbiting Lunar Station Mission Assumptions and Constraints . 
OBJECTIVES 

.BROAD SPECTRUM OBSERVATION OF 
THE LUNAR SURFACE 

*CONDUCT SURFACE SORTIES 

.SUPPORT AND CONTROL OF UNMANNED 
SURFACE 0PERAI"PBNS 

ASSUMPTIONS AND CONSTRAINTS 

11 1 km LUNAR POLAR ORBIT 

UP TO 8-MAN STATION CREW 

ONE-MONTH DURATION 4-MAN SURFACE 
SORTIES UP TO FOUR TIMES A YEAR 

DOCKING FACl LITIES TO ACCOMMODATE 
AD HOC MODIJLES FOR MISSION ADAPTABILITY, 
LOGISTICS (RESUPPLY) MODULES, LUNAR 
SURFACE SORTIE VEHICLES 

CREW EVA CAPABI LlTY 



3.4.1.2 Mission System Ilescription 

3.4.1 2 . 1  ' ~ i s s i o n  Options 

3.4.1.2.1.1 Modular Orbiting Lunar Station (OLS) 

Tlle fligllt configuration for tlle moclular OLS is sl~own in figure 3.4-2. Eleven moclules form the 

Imic station for a crew of eight, subsystems, experiment equipment, and consumables. Two lunar 

sortie vehicles (1,SVys) provide capability to conduct 28-clay surface explorations. Shown attached 

to one 1,SV are two modules tllat Ilouse mobility vehicles used on a lunar sortie. One of the LSV's is 

used to transfer logistics modules from the logistics space vehicle to tile OLS. 

Otller modules such r!s fluid module (FM), resupply moclule (RM), and crew transfer vehicle (CTV) 

are atiaclled only during resupply and crew rotation. 

The weight of the basic station is 102 000 kg (225,000 lb) with the total OLS wcight including 

LSV's being approximately 185 000 kg (400,000 lb). 

3.4.1.2.1.2 Unitary Orbiting Lunar Station 

The flight configuration for the unitary OLS is shown in figure 3.4-3. The major difference between 

this concept rund tlle  nodular is that essentially a single module provides the required volume for 

the crew of eight, subsyste~ns, experilnent equipment, and consumables. All ot l~er  features 

(including lunar sortie vehicles, operations, crew rotation, and resupply provisions) are the same. 

Tlie total orbital mass of the unitary OLS with 2 LSV's and experiment module is approximately 

144,000 kg (3  17,000 lb) as identified in the reference. 

3.4.1.2.2 Payload Descriptions 

3.4.1.2.2.1 Modular OLS 

A brief description of the size and weights of the 11 modules used to form the basic station is 

presented in table 3.4-3. Two moclules (CM 1 and 2) serve as the keel to which all other modules are 

attaclietl: tllese modules alscg house basic OLS subsystems. An electric power module (EPM) 

supports the solar array and houses cryogenics. Cryogenics are also stored in two other 

modules CCM 1 and 2. Tllese modules also serve as storage areas for bulk cargo. Two control 

center modules (CCM 1 and 2) are provided; one also contains the radiation shelter, Staterooms for 

the crew are provided in two modules (CQM 1 and 2). One module (GM) provides galley, dining, 

ancl recreation facilities. Tlle SM contains onboard sensors and subsatellites. All modules have a 

diameter of 4.3 meters (14 ft)  and vary in lengfh from 8.0 to 12.8 meters (26 ft to 42 ft); tllesc 
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FLIGHT 
DIRECTION 

-SOLAR ARRAY PANELS 

ECS RADIATORS 

OWERMODULE 

GAIN ANTENNA 
(3  PLACES) 

Figure 3.4-2. OLS Flight Configuration 



PI- 39.6 M 
(130 FT) 1 

Figure 3.4-3. Unitary Orbiting Lunar Station 
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Table 3.4-2. Orbiting Lunar Station Modules 

*INCLUDES CONSUMABLES 

i #- 

MODULES 

1. CORE MODULE.1 
(CM- I ) 

2. CORE MODULE-2 
(CM-2) 

3. ELECTRICAL 
BOWER MODULE 

(EPM) 

4. CRY0 STORAGE 
MODULE -1 

(CSM-1) 

5. CRY0 STORAGE 
MODULE-2 

(CSM-2) 

6. CONTROL CENTER 
MODULE-1 

fCCM-1) 

7. CONTROL CENTER 
MODULE-2 

fCCM-2) 

8. CREW QUARTERS 
MODULE.1 

(CQM- 1 ) 

9. CREW QUARTERS 
MODULE-3 

(CQM-3) 

10. GALLEY MODULE 
fa4 

11, EXPERIMENT 
MODULE 

r) 

25 000 KG (55,000 LB) 

SIZE 
(DIAMETER 

METERS 

4.3~12.8 

4 .3~12 .8  

4.3x12.8 

4.3 x 9.8 

4.3 x 9.8 

4.3 x 9.8 

4.3x9.8 

4.3x9,8 

4.3x9.8 

4.3x9.8 

4,3x8.0 

DESCRIPTION 

- 
CENTRAL KEEL 
BASIC STATION 
SUBSYSTEMS 
IVAJEVA A1 RLOCK 

GENERALLY SAME 
AS CM1 

SOLAR ARRAY 
CRY0 STORAGE 

CRY0 STORAGE 
CARGO STORAGE 

CRY0 STORAGE 
HYRAZINE STORAGE 
CARGO STORAGE 

BACKUP CONTROL 
CENTER 

RADIATION SHELTER 
LABS 

PRIMARY CONTROL 
CENTER 

EXERCISEIMEDICAL 

4 STATE ROOMS 
ECLSS FOR 8 MEN 
BACKUP GALLEY 

GENERALLY SAME 
AS CQM-1 

INCLUDES COMMANDERS 
STATEROOM 

GALLEY AND DINING 
RECREATION 
LAUNDRY 

ONBOARO EXPER. 
SENSORS 

SUBSATELLITE M&R 

TOTALS 

x LENGTH) 

FEET 

1 4 x 4 2  

1 4 x 4 2  

1 4 x 4 2  

14 x 32 

14 x 32 

14 x 32 

1 4 k 3 2  

1 4 x 3 2  

1 4 x 3 2  

1 4 x 3 2  

1 4 x 2 6  

MASS 

1 0 3 ~ ~  

14.5 

11.3 

10.9 

4,5 

12.2 

16.8 

5.4 

6.8 

5.9 

7.3 

5 

100.6 

103 LB 

32 

25 

24 

10 

27 

37 

12 

15 

13 

16 

11 

222 



tlimcn:;ic>ns ;!re compatible with the space shuttle's cargo bay. Masses vary from 500 kg (1,100 11)) to 

10 XOO kg (37,000 111). ?'ot:ll mass of tlle 11 moclules as tleliveretl inclurles a total of 25 000 kg 

t 55,000 111 ) of  cons~unal~les 

3.4.1.2.2.2 llnitary OLS 

T11e h:lsic ~lnitary st3tion for the lun;\r usbit mission consists of a corc motlule, power module, ancl 

~*xpcri~ncnl module. 

'I'lic core ~iiodule provitlcs c1u;irters for the eight-man crew and houses the majority of tlie 

sul)systclns. 'I'he module is divicletl into two separate pressure compartments for safety reasons. 

I'ilc.11 conlpartnleut cctnsists of two l,ransverse clecks. One of the pressure colnpartlnents includes a 

deck for experiments ant1 anotlier serves as a (*ombination crew (1u:lrters r!nd station control deck. 
# 3 Ihe sccoall pressure co~npurtlnent also inclucies a crew/control deck and a deck to  provide galley, 

2 dining, recreation, and medical facilities. The power module supports the 930m2 (10,000-ft ) array 

:IIIJ houscs the secondary and emergency power systems. Also supported i'rom tlie module is the 

llortlr communications antenna. The experiment module (XM) contains onboard sensors ant1 

subsntcllitcs. 

M:lsses anti sizes of tlre ~noclules are su~n~narized in table 3.4-3. 

3.4.1.2.2.3 Surface Exploratioil (Sortie) Payloads 

'I'lle ~ ~ ~ y l o a t l s  I'or the lunar sortie vellicle (LSV) are summarized in table 3.4-4. Tlle crew and 

cquipmc111  nodule is us definer1 for the IL,SS mission (para. 3.3.1.2.2. I ), 

St i r f i~c~ exploration will include use of boll1 a two-man rover and a two-man flying vehicle. Each 

type of  nobility ~ m i t  is provide~l with 3 separate storage and transport module and both will be 

retusncd t o  tllc Ol,S. 

3.4.1 2.2.4 Crew Rotatioil and Resupply Payloocls 

Incl~~detl :ire a crew trallsporl vehicle (CTV), resupply module (RM), and fluids module (FM). 

Crew Transport Vellicle (CTV)-The primary function of the CTV is to pry&% quarters for the 

crew (luring transits between Earth and lunar orbit. The CTV consists af .y qa~aclcJe p,,. riding 

sllirt-sleeve environrncnt for the crew and a portion of thc re@drcd suppoiting eqstparar;.b4. AII 

unprcss~rrlzcd ecluipment module is incl~rded for the remaigrder of thc support equipment. 
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Table 3.4-3. Unitary OLS Mass Summary 

*INCLUDES 22 100 KG (48,500 LB) CONSUMABLES 

MODULE 

CORE 

iWK"E R 

EXP RIMENT 

.-.-,.-. 7 

Table 3.4-4. Lunar Sortie Vehicle Payloads 

TOTALS 

I 

PAY LOADS 

1. ROVERVEHICLEMODULE 
(R\/M) 

2. FLYING VEHICLE MODULE 
(FVM) 

3. CREW & EQUIP MODULE 

DESCRIPTION 

CREW, SUBSYSTEMS AND LABS 

SOLAR ARRAY & POWER EQUIPMENT 

ONBOARD SENSORS & SUBSATELLITES 

SlZE (DIAMETER 
x LENGTH) 

76.7 

METERS 

8.23 x 18.6 

2.28 x 12.2 

4 . 3 ~ 8  

DESCRIPTION 

ROVER+CONTAlNER 

FLYING VEHICLES (21, 
EXPERIMENTS, CONTAINER 

CREW, QUARTERS & SUPPORT S/S 

169.2 

MASS 

FEET 

27 x 61 

7.5 x 40 

14x26  

lo3  KG 

60,7* 

11.0" 

5 

TOTAL LANDED 

103 LB 

133.8, 

24.4" 

11 

MASS* 

1. RVM 

2. FVM 

3. CREW & EQUIPMENT 
MODULE 

lo3 KG 

3.2 

3.6 

7.1 

13.9 

2.4 

2.3 

5.8 

10.5 

SlZE (DIAMETER 
x LENGTH) 

EMPTY RNI 

EMPTY FV EXP'T + SURFACE 
SAMPLE + CONTAINER 

SAME AS 3 ABOVE LESS 
CONSUMABLES 

I O ~ L B  

7 

8 

15.7 

31.7 

5.3 

5.1 

12.8 

23.2 

METERS 

4,3x5.2 

4.3x5.2 

4.3 x 4.6 

4.3x5.2 

4.3x5.2 

4.3x4.6 

'EXCLUDING GROWTH TOTAL RETURNED 

FEET 

14x17 

14x17  

14 x 15 

14x17 

14x17 

14x15  



'I'ht entire crcw (8 men)  is nor~nally excl~angetl on  eacll crcw rotation/resupply fligllt a t  109-day 

i~ll~rviils.  'l'l~e i11terv;11 is dictaterl hy lunar lliglit mechanics constraints. 

'I llc cbcji~ip~lic~lt ~ l t od~ l l e  l10ilses c l ~ c t ~ ~ i c a l  power sources, cryogcliic tankage, iunrl a slnall emergency 

prol)ulsion systcnl capahlc of a 400 m/sec (1,300 ft/sec) delta V, 'The purpose of the propulsion 

systt81n is to  1)rovicIe tlie c;~p;lOility l'or the ('TV to acllievc n lunar orbit o r  I -clay Earth parking orbit 

i ~ i  tllc event tllc 0'1 V fi~ils to operate, 

E~luitl hlotlulc (I:hl) 'I'lic I:M provirlcs fluicls lo  colnpletcly replc~risll one LSV, all lunar lnobility 

V C ~ I ~ I ~ I C \ ,  ;i11i1 cryogt~iics for tlic 01,s ~ ~ ~ I I I O S ~ ) I I C S C .  This 1110di1le is disl~oscd of Sollowitig resi~pply by 

at t a l ~ l l i ~ ~ g  it 1,) tI1e O'l'V alid Jettisoning i t  (luring the return to tiarth. Althougl~ tile size of the PM is 

colnpatihle with tllc space sliuttlc, it must be la~u~checl offloarled so that thc sh~~ t t l c ' s  payload 

a1pal)ility is 1101 exccctled. Sizillg of tile fluicls l i i od~~ le  depends o n  propella~lt mass required for the 

1,SV. 

Rcsupply Module (KM)-- ' lhe KM is a pressurized 1:anlainer that includes bulk cr~rgo (e,g,, food, 

clotl~es, etc.) for both OL,S ancl LSV sorties. This rnodule is disposed of  in the same manner as 

tl1c I:M. 

'Il'al~lt~ 3..!,-5 sulnlnarizes crcw rotation and resupply payloatis, 

3.4.1,2,2.5 C'otisumables 

('ot~sunlnl)l~~s arc sum~narizetl in table 3.4-0. Co~~sumablcs  for the OLS itself are detailed in 

tahlc J.4-7. 

3.4.1.2.2.6 Moss Su~~lllnnry 

Tahlc 3,-1-8 prcselits a mass summary for the OLS missiotl options. Values clo not  include growth 

allowances. 

3.4.1.2.2.7 Pickup Yoillis atid Transportiltion Colistsail~ts 

Modular Stittion Tliese station modules include docking ports a t  citller elid that provide pickup 

points. I:or transportation in the slluttle payload bay adapter fixtures will be required t o  bridge 

i'roni docking ports t o  payloitd bay attach points. Dockilig ports provide adequate pickup points for 

orhit-to-orbit transportation. These modules must be protected from aerodynamic loads durilig 

1~:irtli I:~i~ricli. 
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Table 3.4-5, Crew Rotation and Resupply Pa yr'oads 

Table 3.4-6. Consumables 

PAYLQAD ITEM 

1. CTV 

r BASIC VEHICLE 

r CONSUMABLES 

r CREW & RESERVES 

r RETURN SCIENCE 

PROPULSION SYSTEM 

TOTAL CTV (RETURN) 

2, FLUID MODULE 

* LSV USABLE PROPELLANT 

OLS FLUIDS 

r SURFACE FLUIDS 

r BOILOFF 

TOTAL FM 
FLUIDS 

FM INERT 

TOTAL FM 

3. RESUPPLY MODULE 

r OLS B U M  CARGO 

8 SURFACE BULK 

TOTAL RM CARGO 
RM INERT 

TOTAL RM 

'EXCLUDING GROWTH 

DESCRIPTION 

CREW QUARTERS AND SUBSYSTEMS 

INCLUDES CARRY ON EQUIP & 
FLUIDS RESERVES 

EMERGENCY USE ONLY 

L02/LH2 SINGLE STAGE LSV ASSUMED 

L02/LH2 PROPELLANT& CEM 

CONSUMABLES 

I DELIVERY TOTAI, 

ITEM 

CTV 

CTV PROPELLANT 

OLS BULK 

OLS FLUIDS 

LSV PROPELLANT 

SORTIE CONSUMABLES 

BOILOFF ALLOWANCE 

SORTIE BULK CARGO 

DESCRIPTION 

9.DAY MISSION, 4 MEN 

USED ONLY IN EMERGENCY 

109 DAYS PLUS 55 DAY CONTINGENCY 

SAME AS ABOVE 

L02/LH2 SI NGLEsSTAGE LSV 

CEM CREW SUPPORT AND MOBILITY 
SYSTEMS PROPELLANT 

FOOD, LiOH, EXPERIMENTS 

MASS 

103 KG 

3,8 

0.4 

0.7 

0,2 

0,6 

5,7 

31.8 

5,9 

3,O 

0.5 

41.2 

3.6 

44,8 

3,6 

0.9 

4.: 
1.8 

6.3 

56,6 

TOTAL CONSUMABLES 
L 

* 
103 LB 

8.4 

0.9 

1.5 

0,4 

1,s 

12,5 

70.1 

13 

6.6 

1.1 

90,8 

7.9 

98.7 

7.9 
2 

9.9 
4.0 

13.9 

124.7 

SIZE (DIAMETER 

MASS 

x 

METERS 

4.4 x 4.3 
- 
- 
- 
- 

- 
- 
- 
- 
- 

4.4 x 12.2 
- 

KG 

400 

600 

3 552 

5 876 

31 800 

3 000 

50Q 

900 

46 628 

LENGTH) 

FEET 

14.6 x 14 
- 
- 
- 
- 

- 
- 
- 
- 
- 

14.5 x 40 
- 

LB 

880 

1,320 

7,830 

12,955 

70,110 

6,600 

1,100 

1,985 

102,781 

- 
- 
- 

4.4 x 5.8 

- 

- 
- 
- 

14,K x 19 

- 



Table 3.4.7, OLS Consumables 

FOOD 

ECLSS 

STATION SPARES 

STATION CRYOGENICS* 

L"2 

'-02 

LN2 

EXPERIMENT CRYOGENICS* 

LO2 

LN2 

N2H4 

EXPERIMENT SPARES 

"TRANSPORTED IN FLUID MODULE 

Table 3.4-8. 0 LS Mass Summary 

ITEM 

STATION 

2 LSV'SCTYPICAL 

SORT1 E PAY LOAD 

TOTAL ORBITAL MASS 

UNITARY STATION 

I O ~ K G  

76.7 

75.6 

13.9 

166.2 

MODULAR STATION 

1 o3 LB 

169.2 

166.7 

30.6 

366.5 

103 KG 

100.6 

75.6 

13.9 

1 90.1 

1 0 ~ ~ 0  

222.0 

166.7 

30.6 

419.3 
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U ~ ~ i i n r y  Station I?le I;lrye ilnitary slation modules incorporate structurnl hard points around tlieir 

aft circumference Li)r i~daption to ;I heavy lift luunc11 velliclc or  orbit Lril~lsf~r vehicle payloatl 

support structure, 1)ockinp ports provide pickup points for n~otlule groupink as lleetletl for o r l~ i t  

trtlnsfer, I I le  ilnitt~ry stati011 I I I O ~ U I C S   nus st he ~ i rovid~ 'd  fro111 ;~cn)tlynan~ic loatls tlt~rinp l i i t ~ t l ~  

Inunch, 

LSV's Tllesc arc ii;~ntlled like tllc I ~ O L I L I I ~ I S  station m o d ~ ~ l e s ,  If l i ~ ~ ~ t ~ c l ~ c t l  hy the sllt~ttle,  t l~ey  are 

oftlouclctl to  he ct)mputibll: wit11 sliuttlc payloncl ctlpabilily. 

CTV and RM's 'l'llcse art. I~anclled like the lnotlular station modules. 

1 
Orbit-to-orbit transfer :rtcceleratic)ns rnust he linlitrscl to about 5 mlsec- ( 1 / 2  g) w l ~ e n  modules arc 

groiipetl in assclnblies co~~llectt!tI l)y tlocking structures. 

3.4.1,2,3 Orbital Assembly, Mn~nlcrrance, and Modification 

OLS--A range of potential OLC ljrdrtkdowns exisls for transport to llie Moon. 'I'llc clegrec of orhital 

assell~bly in 1i;irtll orbit tint1 lunar orkit will depcntl on the transportalion system selection nnrl its 

delivery capability per trip. 

In general, assembly rc(luircmcnts will illvalve docking of nludules o r  sets of modules together, 

pressi~rizatian, dtlployn~cnt of  solar arrays itntl antennas, checkout, ant1 commissioning. All of tllese 

functions will be requireti to  solnc tlcgrcc regardless of tlle choice of tmnsportntion, 

Once cstal~lisl~cd in lunar o r l~ i t ,  the 01,s will be maintainecl and moclifictl t l~ere  for its operational 

life. The impact of tllcse fitctors on transportation requirements is expectctl to  be incitlental 

compttred to the requirements imposetl hy crcw rott~tion :lncl opcrt~tional logistics. 

Assembly and Operations with LSV-The ussernbly operation begins wit11 the LSV, and surfacd 

exploration payloads all docket1 at  separate locations on the OL:L 'I'l~e LSV will muncuver nntl tlock 

with one of the mobility vehicle modules. 

Separ;ition of the combination is perfor~netl and the payloatl roti~tetl to  a position nlongsitle tllc 

LSV. It is then movetl untler positive control down a guideway track to the base of  thc LSV. This 

position will mini~nize the tipping momenl during a lunar landing. Tllc same approacli is tllen usctl 

on the oiiler payload. 



1)eployment upon reucl~ing tlie surfi~ce consists of rotating the sick of the module that supports the 

surFLrce down 10 t l ~ e  surl'nce. The rover can then bc moved onto the surface and deployed to its fir11 

conliguratiun. '1'0 r e l u r ~ ~  the rover to OLS, the procedure is reversed. Again, the same :~pproach is 

irsctl for dcploynlent of tlle llyillp vehicles. 

3.41.2,s Transfer and Storage 

A c o ~ l ~ c ~ p t  for transferring ctlrgo from the O'TV to  the OLS is depicted in figure 3.4-4. A utility tug, 

ifav;~ilahlc. o r  one of the LSV's transports cargo from the OTV to  the OLS. 

'rllres separate trips trre inrlicated in the concept, although it wo~rlcl be possible for the LSV to 

transkr a11 of the cargo t o  tht. 0L.S ant1 then lnove each moclule t o  its correct location. 

Ollce tlic cargo rnotlules arc 3t tlie OLS, cargo can be transferrecl t o  the appropriate OLS and LSY 

nloclulcs. In solne instances. a given ~noclulc may not require firrther nlovernent (e.g,, RM). In the 

case of tllc I:M, 111ovement  nay be rec1~1ired to simplify fluid transfer. 

Bull< cargo will primarily be stored in tile cryo storage modules, galley module, and crew-quarters 

rnotlult.. ('ryogenics from the FM will be supplied t o  the cryo storage rnodules and electrical power 

module. 3~111~  cargo and cryoge~lics (propellant) will also be transferred to the LSV, and surface 

payloails wllile they are clockcd to  the OLS. Propellant and :~tmosphere cryogenics will be 

transl'crre~l directly from the FM. 

3.4.1.3 Tmnsl~ortation Requirements 

3.4.1.3.1 Payload Delivery Points 

I'ayload delivery points are s~unmrtrized in table 3.4-0. Also indicated are represerltative vehicle 

~itilizations, 

3.4.1 -3.2 Payload Delivery Options 

Thc rnoclular station is delivered to low Earth orbit one module at  a time by the space shuttle; the 

unitary station is delivered as a single unit by a HLLV. Stations are assembled in low orbit for 

clleckout and then partially disassembled for delivery to the geosynchrono~rs orbit as appropriate to 

orbit transfer capabilities (see para. 3.4.1.3.2.2 below). 

Crew -otation and resupply occur on a combination flight. 



DOCK RM 
0 LS 

NO'#---- TUG 

0 
'---- 

* OTV 
CAN BE DOCKED 

DOES NOT 
TO OLS BUT NORMALLY 

Figure 3.4-4. Logistics Module Docking to OLS 



Table 3.4-9. Orbiting Lunar Station Nominal Payload Delivery Points 

NOTE: SS = SPACE SHUTTLE HL  = HEAVY LIFT 

CREW 
TRANSFER 
VEHICLE 

SS OR HL  

OTV 

0 LS 

LUNAR 
SORTIE 
VEHICLE 
(LSV) 

SSOR H L  

OTV 

SELF 

ORBIT 
TRANSFER 
VEHICLE 

SS OR H L  

SELF 

TO EARTH 
ORBlT 

SELF 

SELF 

SS 

I REUSED 

SS OR H L  

OTV 
TANKER 
& PRO- 
PELLANT 

SSOR H L  

SURFACE 

LUNAR SURFACE 
TO LUNAR 
ORBlT 

LUNAR ORBIT 
TO EARTH ORBIT 

EARTH 
LANDING 

DISPOSAL 
CRASH 

SELF 

REUSED; 
CONTROLLED LUNAR 

EARTH ORBIT 
TO LUNAR 
ORBIT 

LUNAR ORBlT 
TO LUNAR 

CREW 

SS 

------- 

OTV 

LSV 

OTV 

EARTH ENTRY 
AT END OF LIFE 

SS 

REUSED 

CARGO 
& EXPERI- 
MENTS 

SS 

OTV 

LSV 

MOON 

LSV 

OTV OR 
I LSVOR 

CTV 

SS OR 
CTV 

- I 
LSV 

I OTV SELF 

SS OR SELF 
CTV 

REUSEDOR , 
LEFT ON REUSED 



Payload values used in sizing the transportation systems included 24% growth allowance on station 

modules, 20% growth allowance on CEM's and CTV's, and no growth on surface payloads as the 

latter were considered capabilities rather than requirements. Growth allowances were applied to 

hardware mass but not to consumables. 

3.4.1.3.2.1 Strrtio~l Delivery 

Four buildup or delivery options have been considered. In developing these options, it was assumed 

that if tile OLS modules were to  be delivered in less than a complete configuration, a crew would be 

required in lunar orbit prior to delivery of the remaining modules in order to assist in the docking 

and checkout. 

The first option is the OLS delivered in a single launch as sllown in figure 3.4-5. In this case, two 

suboptions are possible. Option A consists of the entire OLS plus one LSV for a combined weight 

of 169 600 kg (374,000 lb). Option B is simply delivering the OLS without LSV at a weight of 

approximately 125 000 kg (276,000 lb). 

Option 2 consists of a double launch as shown in figure 3.4-6. The first launch delivers nine of the 

modules; the second launch delivers the final two modules and the crew in an LSV. OTV payload 

weights are reduced to a maximum of 86 360 kg (190,000 lb); I~owever, individual placement of the 

last two modules is required. Repositioning the experiment module (XM) to the lower side of the 

OLS is also required. 

The third option, shown in figure 3.4-7, requires three launches to get the basic station to lunar 

orbit. In this case, the OTV payloads are reduced lo a maximum of 58 000 kg (128,000 Ib); the 

length is reduced to a maximum of 27.4m (90 ft). The first launch delivers six of the modules, the 

second launcll a crew in a LSV, and the third launch the remaining five modules. Tile only 

repositioning of the modules is the XM to the lower surface. 

The fourth. concept is that developed by the reference study to  accomplish OLS transfer to the 

moon in a single flight with a high-thrust OTV. This concept is shown in figure 3.4-8 and involves 

the OLS being transported disassembled; it is assembled in lunar orbit. 

Two options have been considered for tlle delivery of the unitary OLS including one LSV. In the 

two launch concept illustrated in figure 3.4-9, the basic core and power modules are included in one 

launcll and the LSV, CTV and experiment module in the other launch. The OTV payload masses for 

the two launches are approximately 79 000 kg (172,000 1b) and 52 600 kg (1 16,000 1b) including 



1. ONE FLIGHT 

CSMl CQM3 CQMl CSM2 

CCM2 GM CCMl 

OPTION OTV PAYLOAD (WITH GROWTH) 

A WITH LSV 167 730 KG (369,000 LS) 

B WITHOUT LSV 126 300 KG (278,000 LS) 

Figure 3.4-5. Orbiting Lunar Station Delivery 



2. TWO FLIGHTS 

EPM 

41.1M 
(135 FT) 

OTV PAY LOAD (WITH GROWTH) 
- - 

81,36Cl KG 
(179,000 LBS) 

86,365 KG 
(190,000 LBS) 

Figure 3.4-6. Orbiting Lunar Station Delivery 



3. THREE FLIGHTS 

EPM 

OTV PAYLOAD (WITH GROWTH) 

19.5M 
(64 FTI 

49,545 KG 58,180 KG 58,180 KG 
(128,000 LBI (1 09,000 LBS) (128,000 LBS) 

CTV 

LSY 

Figure 3.4-7. Orbiting Lunar Station Delivery 

14 O N  >. 



FIVE RlNG TO 
SEVEN RlNG ADAPTER 

POWER MODULE 
EXPERIMENT MODULE 
CORE MODULE 1 
CORE MODULE 2 

SEVEN RING I 
ADAPTER u 

OTV PAYLOAD 166,000 KG 

WITH GROWTH (365,000 LB) 

Figure 3.4-8. Disassembled Delivery Concept 



CREW TRANSFER MODULE 

27.4 

-r 
- 

I -LUNAR SORTIE VEHICLE 

I 11(- ORBITTRANSFER VEHICLE 

31.4 
(103 FT) 

jAi OLS CORE MODULE 

I 

ORBIT TRANSFER 
f VEHICLE 

--- 
POWER MODULE 

d 

Figure 3.4-9. Unitary 0 LS Delivery 

DELIVERY OPTION 

ONE FLIGHT 

MI0 FLIGHTS 

OTV PAY LOAD CHARACTER ISTICS 

MASS 

103 KG 

131 

78.2; 52.7 

LENGTH 

105 LB 

288 

172; 116 

M 

58.8 

31.7; 27.4 

FT 

193 

102; 90 



tlle expected growth on Ilnrtlwarc. A single la~inch conccpt results in all OTV payload of 

iipproximately 13 1 000 kg (288,000 lb). 

3.4.1.3.2.2 LSV/Cre\v/Resul)ply Delivery 

Delivery of lunar sortie vehicles, crew and res~~pply  payloads from Earth orbit to luiinr orbit 

requires use of an orhit tnulsfer vehicle (OTV). Delivery coi~cepts are clepicted in figure 3.4-10, 

Delivery of the seconrl or replacelllent LSV nncl 109 days of supplies in the resupply module (RM) 

results in a payloatl mass of approxiin:llely (12 600 kg (1 38,000 Ibs). In this case, the LSV is S~illy 

fueled so no fluid module is required. 'Hie purpose of the CTV on this flight is to provide retur~i 

capability far crew members : ~ t  the OLS ancl still retain two LSV's at the OLS. Tlie CTV 1s locatecl 

at the fsrwartl end of tho config~~rution to simplify separntioil in tlie case of an abort. 

A typical crew rotation and 109 (lay resupply colrfiguratioll results in a payloacl innss of 

approxiniatcly 58 400 kg (128,750 Ibs). The fluid inodirlc (FM) in this tlclivcry trt~~lsports the 

cryogenics for the OLS and propellant for n fully t'elaable single state LSV. Shoultl any portion of 

tlle LSV prop~~lsion hardware be expendable then the resilpply clelivery flight must include tlle 

appropriate replacelllent as wcll as propellant. The CTV will constitute the return payload and with 

surfrlce samples, film and other will have a inass of G I00 kg (1 3,400 Ib). 

3.4.1.3.2.3 Surface Payload Delivery 

As previously described, the LSV surface payloads transported between lunar orbit and the lunar 

surface include the crew/equiptnent module to  provicle quarters ancl operatio~is center wltile on the 

moon, a lunar rover, two lunar flyers and a variety of science instri~ments. 

The combined delivery mass of these payloacls is 14 900 kg (33,000 Ib) with the return puyloail 

being 11 500 kg (25,400 Ibs). 

3.4.1.3.2.4 Operatioilal Coilstraints 

Logistics flights to the Moon and lunar surface sorties from tile OLS must observe flight n~ecllanics 

constraints if system pcrformance requireinents are to  be held near minimum levels. 'I'hese 

constraints arise from tlle dynamics of the Earth/Moon system and the nature of minimum energy 

trajectories. 

Summary of Constraints-The following is a summary of constraints: 

1. For an OLS operation not dependent on Earth-orbit support: by an orbiting facility (space 

station or staging base), transfer opportunities are controllecl principally by lunar polar-orbit 



TYPICAL LSV AND 109 DAY RESUPPLY 

PAYLOADS = 132,000 LBS* 
(INCLUDING LRV AND LFV) 

TYPICAL CREW ROTATION AND 109 DAY RESUPPLY 

'WITH GROWTH 

PAY LOADS = 720,000 LBS* 

Figure 3.440 Crew Rotation/Resupply Delivery 



nlignment, 'Translunar opporturtities occur every 14 clays. Rcturrl oppor tu~~ i t i c s  occur ahout 0 

days iuflw eucli Lr;u~isIunar opportunity, 

2, If  the OLS opcrt~tion is tlependcnt on  support by an 1lartl1-orbitiny facility, f ; l v o ~ i ~ h l ~  1ransfi.r 

opportwlitics occur npproxi~nately cvcsy SS clays, :~ssuming tllc L'ilrtll orbit is syncl~ronir,etl 

with lunar motion, Wail pcriorls in lu~~iur orbit for favorahlc return opportunities may nulge 

fro111 7 to  SO clays clepenrling on  the i11clitl;ltion of the Moon's orbit to  t l ~ c  I~artll's etlu:~tor. 

W;lil pcriocls will genesully be 20 clays o r  less if moderate trans-l'artli injection dclt;~ V 

penalties arc acccl~tctl. 

3. Surfi~cc sortie apportunitics li)r nlinimiun energy ascent or  rlescenl to :uiy pi~rlicular site recur 

a t  approxi~natcly 14-rlay itlicrv;rls. Thus, no r~n ;~ l  s t~ r f i~ce  stay times in multiples ol' 14 days are 

indicated, I~equircmcnts for ahort fro111 the surface to  the OLS in an out-of-plane situation can 

be met f'-rougll a resci~e mocle, 

4. If n Ilalo orhit is used, transfer opportunities between n particular I'arth orhit and the I~a lo  

orbit  occur approxim:ltely every 10 clilys, and transfer Ixtween any ~wi i i t  on the siirfi~cr. :lncl 

the halo osbit may he nlacle 31 :illy time. Transfers are relatively long c111out 8 days between 

E3urtll o r t~ i t  'lncl the llalo orbit and about 3 clays between lllc Iiulo orbit ant1 the surlhce. 

Abort-Derived Rcquirc~iienls If tile orbit tnu~sfer  velliclc (OTV) fi~ils to  initiilte tllrust at lunar 

arrival, tlie crew ~ n o d ~ t l c  call scpnrtltc from it ,  exccutc ;I sn~al l  11~dta V, ;uirl be cnl)turecl in a lunar 

orbit to  await rescue by :I Ittt~ar sortic vcl~icle based a t  the OLS. If the OTV f:lils to  initi;~le tlirust a t  

Etlrth arrival, it is not  practical to provide 1111 ahort delta V great enough t o  insert the aborted crew 

I I I O ~ L I I C  into low I ' ;~rtl~ orhit;  clboul 3 000 ~n/scc  (9,800 ft/sec) woulcl be neetlccl. A smaller delta V 

on the order of 4 0 0  tn/sec (1,300 ft/scc) will place tlle crew motli~lc in a I-day waiting orl)it. Tllc 

 noon's location t ~ t  the time of abort iritiation is such t l ~ a t  (1 substantial pllase change and apsitlal 

rotatian woultl be required for u lun:u-based LSV to re:lcJi the rescue orbit. Itowever, ;I pnrtially 

fueled 1,SV dclivcred to  orbit by tlic shultlc will be cap:~blc of surficiellt delta V (about S 000 n~/sec  

(16,000 ft/sec) to effect the rescue antl ret~rrn to tlie slluttlc, 

Two op t io~ i s  exist for surf:~ce abort: :1 recluirernent may be placer1 on  the lunar sortie vclliclc to 

execute a 90° plane cllange on nsccnt to  cover the abort case when an abort becolnes urgently 

necessary after 7 d;lys on the surface. This is clone t l~rough a 3-impulse plane cllnnge in a1 24-llour 

intennecliate orbit. The clelta V requirement represents approxiniately 1 400  m/sec (4,600 ft/scc) 



margin above the nominill in-plane ilsccnt de l t i~  V btiilgct, ?his sizcs the LSV and results in 

cxpentlilurc of propellant OII nominnl missions that woultl otherwise not occur; the propellant 

required for llic 1 400-ni/hcc t4,000-ft/sec) ruargin I I ILIS~ Ile delivered tl~rougll the nominal 

4 170-m/scc (13,700-ft/sec) landing :~nrl ascent delta V, cven if it is not wsed, The tliffcrence 

hetween normal ;lnd iibort ascent payloatl reclt~ccs, hul tlocs not  eli~i~in:ite, this penalty, 

Tllc alternative is tllat, in tllc eve11l of  ill1 urgcnl out-of-plonc abort,  tlie LSV on tllc surface ;\hosts 

t o  tun in-plane orbit, achievcs wllatcvcr plilne ~ I I ~ I I I ~ C  it ciin with rcmi~ining prc)pcllant, ant1 tlie crew 

is resci~ed hy tlie LSV st;~tionetl a t  tllc OLS, This reserve LSV is rcquirerl anyway t o  proviclc for 

rescue off the surface if necess;lry. It luis cnougli tlelta V to  d o  the 90° PI:IIIC change and hack. 

Three-impulse p l i~~ ie  clianges :ire used (figure 3.4-1 1 ). If a n ~ a x i ~ n ~ l r n  delta V of 1 900 ni/sec (6,200 

ft/scc) is :~llowetl for the rescue maneuver (one way), the minimum size intermediate orbit has a 

semim:ijor axis of 2 550  k111 ( 1,380 nmi) at about 3 , l  hours, A phasing allowance of up to  2 hours 

gives a ni:lximwn intermciliate orbit period of  5.1 liours, As noterl in figure 3,4-1 1, the maxim~un 

tinie to re;tcil tlie aborterl vcliicle is ;~pproximately 9 hours. 'l'his alternutive was selected for 

~ronsportntion sizing. 

3.4,1,4 Mission/Trnnsl~orlatio~~ Mocles nncl Operations 

3,4,1,4,1 Transporisiion Options 

Trunsportalion modes for tllc OLS mission inclurle v a r i o ~ ~ s  staging teclinicl~~cs and propulsion 

tcclinologies, 

Tlie principal OTV transportnlion cc~ntlidatcs are :is follows: 

L02/LI12 single stage, reusable. 

L07/LI17 r ,. 1-112 stage system wit11 a reusable main stage rind expendable drop tanks. 

L07/LH2 LI common stage system consisting of  two equal size systems, both reusable, 

L,O?/MMfI ‘. conllnon stage systcnl consisting o f  two equal sizes, hotli rct~sablc. 

'l'hc principal L'L'V transportation candidates are as follows: 

I,02/L,I12 single stagc 

LO?/LI17 L. r 1-1 /2  stage 

L , O ~ / L N ~ t v ~ o s t a g c  LI Y 

L07/MMI '. I single stage 



MISSION EVENT - TIME REQ'D 
ABORT TO ORBIT 1 
OLS REACH LINE OF NODES 1 
TRANSFER ORBIT 6 
RENDEZVOUS 2 
TOTAL 

-- 
9 

r MANEUVER 2 
PLANE CHANGE 

/14\ 

ESTABLISH TRANSFER ELLIPSE 

MANEUVER 8 
RE-ENTER OLS 
ORBIT 

Figure 3.4- 1 7. Out-o f-Plane Orbital Rescue 
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'I'lic principal I:arll~ Ii~tr~icll vullicle c ; ~ n t l i ~ l i ~ t c ~  i~lclutle: 

Space Slli~tllc (SS) rcus;~ble 

I leavy 1,iSl L:~unch Vclliclc ( I I1,1,V) cxpentlablc 

3 I 4 Itcprescntntivc Tr:lnsportntio~i Motlc i111tl Systc~ll 

3.4.1.4,2.1 Scquencc 1)cscril)iion 

'I'ypicol sequences 311d opcr;~lioils ~~ssociiited will1 tllc OLS 111issioll il!ustrc~tccl in figure 3.4-1 2 ,  

'I'ransportnt~,,n syskc~~ls  cnlployctl incli~dc a single slngc QTV, single stage LSV ;ulrl but11 tlie space 

s l l ~ ~ l t l c  i~ntl II1,LV for I'iirth lai;nclies. Tllc principill transportalion fcatirre ;~ssociatctl wit11 niission 

arc ns I'c)llows: 

Statio~l nlotlulss arc tleliveretl to i:artll orbit l ~ y  the SS, : I S S C I I I ~ I ~ C ~  ;111tI cI1eckcd 0111. 

' I l~c  O'I'V is tlcliverctl to  LliO by a IILLV, tlocks will1 one ol' the slntion clusters imrl is 

s~~l-rscquently f~~cle t l  by tanker ;llso In~~nchecl by an IILL,V. 

Tlic O'I'V clclivcrs the strttiotl cluster to  l u~ la r  orbit ant1 rct i~rns to l'artll orbit, 

'I'lle first I,SV is rlelivsrcrl to 1':irlll orbit hy a SS ant1 tlocks with the OTV. lilnkcrs arc again 

lat~ncllctl with IILLV nntl refuel tllc O'TV wliich then delivers tllc I,SV and first crew to the 

slution in Iilnus orbit, 

I lpo~l  retitrn to l:,arlll orbit tlle OTV clocks with the seconcl station cluster, is ref~tclctl and 

tlclivcrs the c l ~ ~ s t o r  to  I~unur orbit. 

@ l3clivcry of  the sccontl 1,SV to the OLS is pcrfosmctl in the SitIlle manner as for the first LSY. 

Siirf;tc~' sorties will I ~ c  ~ ~ c r S o r ~ ~ ' c ( l  Ily llic LSV, 

Crew rotation/rcsupl;ly fligl~ls will use an OTV t o  tieliver the payloacls to tllc near vicinity of 

lhc 01,s at wllicll time a LSV will rcccive tllc payloarls ant1 take them to the station. 

Crews will be triulsported back lo  Ili~rth orbit ill the CTV by tlie OTV wllesc they will bc 

retrieved by tile SS. 

A flight profile llistory inc l~~t l ing  elnpsctl time, AV, ancl weight history is presented in toblc 3-4-10, 

3.4.1.4.2.2 Transportation..S:I.z,i~~g 

7'hc representative LSV was a single-stage L07/LI12 ,. vehicle. Par;lmetric performance for this option 

is sllow~l on  figure 3.4-1 3. The LSV sizing is a principal factor in OTV sizing. A singlc-stage 

I,07/L11? O'I'V was tlsctl Sos the rcprcscntalive system. 
C -. 
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DELIVER 10 STATION MODULES, a CHECKOUT ASSEMBLED a SEPARATE STATION INTO @ DEb 1 
1 EXPERIMENT MODULE AND STATION TWO CLUSTERS (A AND B) 
CHECKOUT CREW WlTH SS 

WIJ 

a DELIVER OTV WITH HLV FUE 
a 11 ss FLIGHTS a DOCK OTV WITH CLUSTER@ 

FOLDOUT FRAME 



1 

DELIVER OTV TANKERS STOW SOLAR ARRAY DEPLOY SOLAR RETURN OTV 
HLV (2 FLIGHTS' DELIVER CLUSTER@ ARRAY I T o  EARTH ORBIT 

FUEL OTV TO LUNAR OHBIT ACTIVATE SUBSYSTEMS 

DISPOSE OF TANKERS WITH OTV 

Figure 3.4- 12 OLS Mission Transportation Sequence 
(Sheet I )  

199 A (REVERSE IS BLANK) 



1ST LSV DELIVERY 

LUNAR ORBIT - 

DELIVER LSV 

DOCK LSV WITH OTV FUEL OTV AND LSV 

DISPOSE OF TANKERS 



I I I 1 

SEPARATE LSV FROM OTV RETURN OTV TO EARTH 
DOCK LSV TO STATION 

Figure 3.4- 12 OLS Mission Yiansportation Sequence 

{Sheet 2) 
199 B (REVERSE IS BLANK) 



EARTH ORBIT 
270 NM, 28.5' a- 
=--% 

STATION DELIVERY (CONTINUED) 

LUNAR ORBIT - 
fXJ NM. POLAR , I 

*DOCK O N  WlTH 
STATION CLUSTER 

@ 

I 

DELIVER OTV TANKERS 
WlTH HLV ( 2 LAUNCHES) 

FUEL OW 
DISPOSE OF TANKERS 

I D E L I V E R  CLUSTER 
@TO LUNAR 

ORBIT WlTH OTV 

DOCK CLUSTER @ 
TO CLUSTER @ TO 
FORM COMPLETE OLS 

CHECKOUT ASSEMBLED 
STAT1 ON 

MAY USE LSV TO 
MANEUVER AND DOCK 
CLUSTER @ 

RETURN OTV 
TO EARTH ORBIT 

Figure 3 -4- 12 OLS Mission Transportation Sequence 
(Sheet 3) 

199 C !REVERSE IS BLANK! 



SECOND LSV AND RESUPPLY DELI\% 

EARTH @ 
ORBIT 

270 NM, 28.5' 

0 - 
/ 

/ 

LUNAR ORBIT 
60 NM, POLAR / - -%---- *- - 

/ 

F O ~ U T  FRAME 
A# 

DELIVER RESUPPLY 
MODULE, CREW TRANSFER 
MODULE AND SECOND 
LUNAR SORTIE VEHICLE 
AND OPERATIONAL 
CREW WITH SS 
(2 FLIGHTS) 

DOCK WITH OTV 

DELIVER TANKERS 
WITH HLV ( 2 LAUNCHES) . FUEL OTV AND LSV 

DISPOSE OF TANIKERS 

TO LUNAR ORBIT 
DELIVER LSVICTVIRM 

WITH OTV 

1 
SEPAq 
AND B 
CH 
US 



Figure 3.4- 12 OLS Mission Transportation Sequence 
(Sheet 4) 

JVER LSV/CTV/RM 
LUNAR ORBIT 
1H OTV 

199 D (REVERSE IS BLANK) 

SEPARATE LSV/CTV/RM FROM OTV 
AND DOCK WITH STATION 

CHECKOUT CREW RETURN TO OTV 
USING CTV 

RETURN CTV (CREW) TO 
EARTH ORBIT USING OTV 

RETRIEVE CTV CREW AND 
RETURN TO EARTH USING 
SS 



LUNAR OPERATIONS 

LUNAR ORBIT 
60 NM, POLAR 

LUNAR SURFACE 

PHASE TIME 
I 1 

28 DAYS 
I 

CUM TIME 
1 

Figure 3 -4- 12 0 LS Mission Transportation Sequence 
(Sheet 5) 

LSV DESCENT AND LANDING 
WITH 4 CREWMEN 

1 

199 E {REVERSE iS BLA'UYi 

COhlDUCT SURFACE 
EXPLORATION AND 
SCIENTIFIC INVESTIGATION 
USING ROVER AND FLYERS 

a OLS CONDUCTS - 
ORBITAL SCIENCE 
AND SUPPORTS 
SURFACE PARTY 

LSV ASCENT AND 
RENDEZVOUS WlTH OLS 

ROVER WUD 
PAYLOADS RETURNED 



CREW ROTATION/RESUPP 

EARTH A 
ORBIT 

28.6' 

PHASE TlME . 

LUNAR ORBIT 
b60 NM, POLAR 

--.*. 
/ 

/' \ 

CUM TlME 
I 

DELIVER RESUPPLY DELIVER TANKERS 1 DELIVER CTV/RM/FM @ SEPARATE LSV I MODULE (RM), FLUID I WITH HLV ( 2 LAUNCHES) TO LUNAR ORBIT 1 TO CTV/RM/FM 
MODULE(FM) AND a FUEL OTV AND FM USlNG OTV 
CTV (4 NEW CREWMEN) 
WlTH SS (2 FLIGHTS) ' DlSP0SE OF 

DOCK WlTH OTV 

RETURN CTV/RF 
LOCATlON USlN 

a REPLENISH LSV 

RETURN ONE HI 
(OLD HM AND D 
USiNG CTV 



SEPARATE LSV FROM STATION AND DOCK 
TO CTV/RM/FM 

RETURN CTV/RM/FM TO PROPER STATION 
LOCATION USlNG LSV 

a REPLENISH LSV PROPULSION USlNG FM 

RETURN ONE HALF (4) OF OLS CREW, 
(OLD RM AND DEPLETED FM), TO OTV 
USING CTV 

RETURN CTV (CREW) TO 
EARTH ORBIT USlNG 0TV 

a JETTISON RM AND FM 
PRIOR TO TEI 

RETRIEVE CTV (CREW) AND 
RETURN TO EARTH USlNG 
SS 

REPEAT STEPS 27 THRU 32 
EVERY 109 DAYS 

Figure 3.4- 12 OLS Mission Transportation Sequence 
(Sheet 6) 

199 F [REVERSE IS BLANK) 



Table 3.4- 10 OLS IG7ission History - Single Staw LOgL HZ OTV 

Event 

Initial mass 

Translunar injection 

Lunar orbit insertion 

Separate payload 58,000 kg (127,900 lb) 

Return payload 7,000 kg (15,400 Ib) 

Transearth injection 

Earth orbit insertion 

(OTV inert) 

(Pay load) 

- 

Elapsed 
Time 

Hr 

0 

A V  

+ 

Mass Remaining 

MPS 

149,500 
1 19,900 
61,900 

68,900 

55,400 
27,000 

(20,000) 

(7,000) 

1 0,974 

3,175 

3,375 
1 0,49 1 

0.5 r 
I 

90.5 

100 

440 

450 
565 

329,600 

264,300 
136,500 

151,900 

122,IQO 
59,500 

(44,100) 
(1 5,400) 

3,345 
968 

968 
3,198 

FPS 

31 9,000 703,301) 

KG LB 



Table 3-4-10. (Continued) OLS Mission History - Single Stage L02/L H2 LSV 

IU 
0 
IU 

Event 

Initial mass 

Descent 

Offload landed payload 4,500 kg 

Elapsed 
Ti me 

Hr 

2 
18 

Ascent (10,000 Ib) 1 676 

(LSV inert) 

(Ascent payload) 

I 

- - 

A 'J 

MPS 

2,t 94 

2,020 

Mass Remaining 

FPS 

7,198 

6,627 

KG LB b 

4 

$ - 17,400 

(6,000) 
(1 1,400) 

I 

37,300 
(1 3,200) 
(25,100) 

- 
V - 
30 

8 - 
M: 

53,700 
32,400 
27,900 

118,400 
7 1,500 
61,500 



o3 LB) 

* REFERENCE PAYLOAD 

0 5 10 75 20 25 
PAYLOAD RETURNED 

' LB) 

KG) 

Figure 3-4-13. Single Stage i0#LH2 LSV Gpability for O LS 



As inrlicatctl, 011 figure 3.4- 14, ii wiilc range of O'l'V sizes is possible to  a c c o ~ n ~ l i s l ~  the tlelivcry 01'  

tllc s t i~ l jo~i  ;i1111 crew ~~ol;iti011/rcs~1j1j>ly C ' ~ ~ L I ~ ~ ) I I I C ~ I ~ .  I I~wcver ,  sirlcc tllcrc will be many crew 

rot:ttion/rcsuppIy Ilipllts ( 3  per year) rl~rring Llle C O L I ~ S ~  of 111e ~ > T O ~ I X I I I I  as opposed 10 only several 

clc*livcsies for tllc s(;iti011, O'I'V s i ~ c  seIceLio~~ is I);~setI 011 1I1c crew r o l i ~ t i o ~ ~ / r ~ s ~ ~ p p I y  rec~i~i rc t i~c~l l .  

Ilclivcry oS tllc ~nalltrlar stnliort t1icrcli)rc s l lo~~l t l  he accornplisllctl i r ~  l l~scc fliglits (one fljplll 

i~iclutles one I,SV). 

'I'llc unitary station c .o~i~~cj>ls  coulil llc rlc.livcrcc1 in two fiigl~ts, 

3,4,1.4,2.3 Qpcr:~lion:\l Factors 

Mission P~.ol'ilcs :lntl Rcntlclvous Tecl~niqucs Nominal lnissio~l profiles require t l ' ;~~~sfcrs  l)etwcc~l 

low 1;;1rlI1 orllits nrltl lunar polar orki ts. 'l'llc ~~ro f i l c s  are govcrnc~l by fliplll mecl~nnics constsaints as 

rlcscrihcrl in paragrap11 3.-C.1.3.2,4. A lyl~ical liarill-nloon profile enlploys ;I 00-llour owtbo~~nr l  

tnuisit, 1 5 rlriys' stay in Iiular orbil, n I 10-llour inbountl lratlsi t ,  ant1 ohout So pl:lnc cliange en tcring 

and leaving lunor orbil. 

'I'arget c)rl>ils entusillg 1l111ar :11111 I:al-tli orhits will be about 18 kt11 (1 0 nmi) below tllw opcmlional 

orbits a1 5 2 8  It111 ( 3 5  nnli iu~tl I I I ~ I I I  (00 I I I I I ~ )  ; ~ l  Ij;1rt11 011~1 ~noorl ,  respectively. Af'tcr orbit 

i~iserlion, torgcl arhiis will be tri~ttrr~ctl coplarliir Lund a conver~tiont~l conccnlric scn(1ezvous scqucncc 

uscd, 

Crew Involvcmenl and Timclines ('sew involvcmcnls ;\re summrirized in lrtble 3.4-1 1 .  Crew 

lirnclincs ns such tlo no1 imposc ;rrly i(lcntificd Lrrlnsportation requirements. 

Col~irol Functions and 0l)crntion;ll Rcquiremcnls l'rccision targeting is required for East11 orbit 

insertion, I i~nar  orbit inscrtion, iund Ii~nar Inncling. 'l'licsc control funclions sholllrl be au lonomot~s  

will1 network support only :is o I~:~ckiip. 

'l'llc following opcralional rcquirc~nents were identificrl: 

1. 'Tllc propcllnnt lanker for Llle orbil transfer vclliclc (OTV) must rcnclczvous wit11 tlic OT'V and 

make sut'f'icienl physicr~l co~~ t t i c t  to  i rcco~~lp l i~ l i  propellant transfer. 

2 .  Tile orbit traltsfer vcllicle rn~ist be caj~able of  rcn~lczvous ant1 tlockj~lg with the 013 :ulrl with n 

support Sr~cility in Eart11 orbit if' one is nsctl. 

3, 'Ilie OLS must p~.ovitlc docking facilities for the OTV for two LSV's and for six to eight curgo 

ant1 sortie payloatl ~nocl~rlcs, 



A DELIVERY OPTIONS (NO.-FLIGHTS)" 
(lo3 KG) - A - MOLS (1) 
150 - B - MOLS (2) 

C - MOLS (3) 
D - UOLS (1) 
E - UOLS (2) 
F - CREW ROTATION/RESUPPLY 

(109 DAY INTERVALS) 

* LEO-LO-LEO 

I (103 LB) 

' KG) 

PAYLOAD RETURNED 
Figure 3.4-14. Single Stage L02/L H2 OT\/ Capability for O LS 



Table 3-41 7: Crew lnvolvement Summary Orbiting Lunar Station 

i 

> 

CARGO/ 
EXPERT 
MODULES 

TFiANSFER 
FROM 
SHUTTLE 
T O  OTV 

UTIL IZE EXPERI- 
MEETS FOR ORBI- 
T A L  SCIENCE 

TRANSFER T O  LSV 
OR OLS AS REQ'D 

DEPLOY & 
RELOAD AS 
REQUIRED 

TRANSFER T O  
OLS AS 
REQUIRED 

TRANSFER T O  
OTV AS 
REQUIRED 

TRANSFER 
TO SHUTTLE 
AS REQUIRED 

CREW 
TRANSFER 
VEHICLE 

CHECKOUT 

CHECKOUT 

USE FOR 
EARTH RETURN 
AS REQUIRED 

CREW 

PI LOT 
SHUTTLE 

PERFORM 
ORBITAL 
MlSSlON 

PERFORM 
SURFACE 
MISSION 

PI LOT 
SHUTTLE 

ORBIT LUNAR 
SORTIE 
VEHICLE 

CHECKOUT 

CHECKOUT 

PI L O T  & 
PERFORM 
LANDING 

SURFACE CREW 
USES AS 
SURFACE 
SHELTER 

PILOT & 
PERFORM 
RENDEZVOUS 

OPTIONAL 

gz:ER 
RETURN 

EARTH TO 
EARTH ORBlT 

EARTH ORBIT 

EARTH ORBITTO 
LUNAR ORBlT 

LUNAR ORBIT OPS 

LUNAR DESCENT 

LUNAR SURFACE 
3PS 

LUNAR ASCENT 

LUNAR ORBlT TO 
EARTH ORBIT 

EARTH ORBIT 
TO EARTH 

DISPOSAL 

CHECKOUT 

ASSEMBLE 
L U N A R  

TRANSFER 

LIVE 
ABOARD 

STATION CREW 
STANDS BY T O  
ASSIST SURFACE 
CREW AS REQ'D 

STATION CREW 
STANDS BY T O  
ASSIST SURFACE 
CREW AS REQ'D 

STATION CREW 
STANDS BY T O  
ASSIST SURFACE 
CREW AS REQ'D 

VEHICLE 

CHECKOUT 

ASSEMBLE T O  
PAYLOADS 

PILOT/ 
CONTROL 
I F  ABOARD 

RENDEZVOUS 
WITH STATlON 

PILOT/ 
CONTROL I F  
ABOARD 

TANKER 

DOCK T O  OTV 

~ ~ N T ~ ~ , "  
PROPELLANT 
TRANSFER 

CONTROW 
MONITOR 
ACQUISITION 
BY SHUTTLE 



4. Cryogenic propella~lt transfer capabilities are required as follows: 

:I. Tnnker to OTV (unless OTV is not reusable and can be la~unched fully fileled into ljartl~ 

orbit) 

b. 'I'anker to fluid module (FM) 

c. F M t o  LSV 

d,  IJM to surface mobility vehicle (SMV) 

e. FM to OLS cryogenic stores module 

5. 'rile LSV must be capable of docking to the OTV and to the OLS, 

0 ?'he 1,SV n~us t  he capable of docking with cargo mocl~~les rlockcd to the OTV or OLS, 

unclocl<ing the cargo module from t l ~ e  OTV or OLS, and translating the cargo mod~rle to a 

suitable position for l~unar 1r;nding. 

7 .  In-orbit crew transfer is required, from a disabled or aborted LSV or OTV crew module to a 

rescue LSV or to the shultle. 

8. The LSV must be able to drop "down payload" cargo in order to accornplisll a landing abort 

and re turn to  lunar orbit. 

9, ' f i e  crew rnoclule of the OTV must be capable of separation from the OTV and subsequent 

propulsion delta V on the order of 400 m/sec (1,300 ft/sec) followed by a wait of up to several 

drtys for rescue. 

Network Support-OLS mission will be largely autonomous ancl principal data return mode will be 

hard copy, tapes, ancl samples. Daily communications sessions will presumably be held while the 

OLS is line-of-sight with U.S. network sites. Orbit determination support will be required for station 

orbit trims and as a backup for rendezvous. 

3.4.1.4.2.4 Eartli L ~ u n c h  Requirements Summary 

OLS dclivcry to lunar orbit requires 1 I shuttle flights (rlelivery of OLS modules to Earth orbit) and 

8 I-ILL,V flights (delivery and refueling of OTV). Four shuttle flights and 7 NLLV flights annually 

are required to support the system. 

3.4.1.4.3 Tra~isportatiol~ Options Comparisori atid Evaluation 

3.4.1.4.3.1 Size and Performalice Comparison 

Parametric performance maps were developed for all of the OTV candidates except the 1-112 stage 

20 7 



system whicli was on n point design basis. Plots for the alternate options wit11 the superi~nposed 

delivery options nssocintcd with the station and crew rotation resupply are shown in figures 3,4-15 

and 3.4- 16. 

OTV mass compariz.t*,~l for the canditlale transportation systems is presented in figure 3.4- 17. Tile 

OTV masses indicated are based on a payload that includes propulsion replenishment for the 

reference LSV (L02/LH9 single stage). Staging gives the L02/Lf-I2 1-112 stage and common stage 
L, 

cotlcepts a total mass advantage over tlic L02/LH2 single stage. The LO21MMI-I common stage 

sys ten~ is relatively massive due to its lower lsp. Sensitivity of OTV's to LTV options is indicated 

for the L02/LH2 single stage OTV. The size comparison of figure 3.2-17 is appiicable to  this 

mission. 

Performance maps were also developetl for the LSV transportation candidates with the exception of 

the 1-112 stage concept which was analyzed on a point design basis. Performance plots for the 

alternate options are shown in figure 3.4- 18 and 3.4-19. Payload for this delivery is the crew 

equipment module and the two modules contnining exploratioll and science equipment. 

Mass c01nparis011 of the LSV transportation concepts is presented in figure 3.4-20. Mass of the 

L02/MMH is approximately 11 300 kg (25,000 Ibs) greater than the L02/LI-I2 single stage. 

Nowever, clue t o  its greater density tlle L02/MMI-I system provides a total LSV lengtll wllicll is 3m 

(1 0 ft) shorter. The LSV options are shown in figure 3.4- 2 1. 

3.4.1.4.3.2 Earth Launch Requirements Colllparisoli 

Tllree OTV flights are required to deliver the OLS elements to lunar orbit. Wit11 109 day resupply 

cycles, three OTV flights are als6 required on an annual basis. 

Tlze number of Earth launches required to deliver OTV hardware and fuel necessary to deliver the 

OLS element to initiate the mission is shown in figure 3.4-22. Several of the OTV candidates are 

dimensionally compatible with the space shuttle. All of the OTV concepts call be launcl~ed with the 

HLLV with a considerable reduction in number of Earth launches. Space slluttle flights are shown 

with two of the HLLV options since only a portion of the HLLV capability would be required to 

complete the delivery of tlze OTV systcn~s. 

In  general, for those OTV candidates that can use either launch vehicle, the HLLV requires 

approxinlately one-third as many launches. Earth launches required to deliver OTV hardware and 

fuel necessary for the OLS annual requirements are shown in figure 3.4-23. Again, the  HLLV 

requires only one-third as many launches as the space shuttle. 
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0 10 20 30 40 50 60 ( lo3 KG) 
PAYLOAD RETURNED 

Figure 3.4-7 5. Common Stage L02/LH2 0 TV Capability for OLS 



A - MOI-S (1) 
B - MOL-S (2) 
C - MOLS (3) 

D - UOILS (1) 
E - u0'L.s (2) 
F - CREW ROT AT IONlRESUPPLY 

(1019 DAY INTERVALS) 

1 I I 1 1 I t 

0 10 20 30 40 50 60 (lo3 KG) 
PAYLOAD RETURNED 

Figure 3.4-16. Common Stage LO$i?MH OTV Capability for 0 LS 



Figure 3.4- 77. OTV Comparison for OLS 



PAYLOAD DELIVERED 
Figure 3.4-78. Two Stage L02/L H2 LSV Capability for OLS 



I t  I I I I I 

0 5 10 15 20 25 30 ( I O ~ K G )  
PAYLOADRETURNED 

Figure 3-4-79. Single Stage L02/MMH LSV Capability for 0 LS 



STAGING SPLIT 

PAY LOAD* 
103 KG 103 LB ' 

DELIVERY 15.9 35 
RETURN 11.4 25 

Figure 3.4-20- LSV Comparison for OLS 



SINGLE ST6 SINGLE STG 8 I-1/2 STG TWO STG 
L02/LH2 L02!M!?S LO2/LH2 LOZ/LHZ 
38 640 KG 46 820 KG 310 455 KG 31 820 KG 
(85,000 LB) (103,000 LB) (67,000 LB) (70,O 00 LB) 

Fbure 3.4-2 7 Representative LSV3 for DLS Mission 



SPACE SHUTTLE MODE LEGEND 
I- 

SSLAUNCHES 

HLV W/2 SRB ---  

HLV W/4 SRB 
- 

ll 

HEAVY LIFT VEHICLE MODE 

...- 
..-. .... .-.. .*. .... ... .... .... .... .... ... .... .... .*.. ... ...- , . . . 
.*. .... .-.. . . - 

1-1 /2 COMMON SINGLE I - I f 2  COMMON COMMON 
STG STG STG STG STG STG 

I L02/LH2 L02fMMH pp L O ~ / L H ~ - - - - - - ~  L02/MMH 
ORBIT TRANSFER VEHICLE CANDIDATES 

Figure 3.4-22. Earth Launches Required for OLS OTV System {Missic;; Start-Up) 



SPACE SHUTTLE MODE 
*THREE FLIGHTS PER YEAR 

LEGEND 

SS LAUNCHES 

a ..-.. HLV W/2 SRB 

HLV W/4 SRB 

HEAVY LIFT VEHICLE MODE 

1-112 COMMON SINGLE l-lr7 COMMON COMMON 
STG STG STG STG STG STG 

L02/LH2 L02/MMH C-LO~/LH~-- -4 L02/MMH 
ORBIT TRANSFER VEHICLE CANDIDATES 

Figure 3-4-23. Earth Launches Required for 0 LS 0 TV System lA17nual Crew Rotafion/Resup -fy) * 



3,4,1.4.3.3 Operf~tioilnl Comp~risoli 

All lnnocles investigated Ii;~vc esse~itially equivalenl guidance, navigation, targeting, control, :uid 

nctwork s ~ ~ p p o r l  requirements, with tlie exception that common-stage modes hove an extra vehicle 

to track a1nc1 S C C O V C ~ .  The tlocki~ng connpru'iso~i tlevelopetl for the geosynchronous manned station 

niissiol-r (para. 3,2.1.4.3.3) applies. Nuclear Inodes were not investigated because of  the operational 

problems foiund in thc geosyncl~ronous prograln rulalyses, 

Lunar sortie vehicles k~resent opernlional problems with (a) height of  tlie crew from tile Iiuiar 

surfacc, (b) height of tllc vel~iclc c,g. at  landing, f c )  placement ant1 llantlliny of cargo. Tlne 

single-stage vehicles tippear the best from a c.g. heigllt standpoint (about 0,4 meters, 21 f t )  whereas 

tllc 1-112 stage vellicle 11:)s tile best crew locntion. 'She 2-stage vehicle is very bar1 in both respccts. 

The 1-112 stage vehicle prcscnts u tank removal/clisposal problcm, All are con~parable froril the 

cargo handling standpoint, 

3.4.1.4.3.4 Practicality Assess~neiit 

All modes and options investigated appear practical with the probable exception of  the 2-stage 

LO2/L1%? ,d LSV. Pro's ancl con's of the LSV's were discussed above, cund are prcsentcd for OTV's in 

table 3.3-1 1. 

Table 3.4-12. 0 TV Assessment 

ADVANTAGES DISADVANTAGES 

(V r 
2 
(V 

x 
25 
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S 
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COMMON 
STAGE 

X 

x 

x 

x 

x 

x 

x 

x x 

X 

- -- 

x 

x 
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3.5 LUNAR SURFACE BASE PROGRAM 

Two representative lunar surface base (LSB) missions, significantly greater in capability t1i;in the 

OLS surface sortie have been investigated: 1) n 6-mzn temporary base wilh durations up to six 

months; and, 2) 12-man semi-pern~anent or  perm'lnent base as illustrated in Figure 3.5-1 with 

mission dur:ltions up to five years. 

The objectives of the 12-man LSB reference study were to conduct an evolutionary program leatling 

to nearly permanent manned presence, while performing astronomical observations, deep drilling, 

remote explorations, local science and experiments on extraterrestrial resources utilization. 

*Accomplisllment of this mission requires a variety of surface equiplnent, capability to  rotatc the 

crew, resitpply capability, and transportation elements to move the equipment between the E',artll 

and the moon. 

The baseline LSB mission assumes no si~pport from other major systems such as an orbiting lwlar 

station or  Earth orbit stations. 

Principal refcrcncc for thc mission is tllc Rockwell Lunar Base Synthesis Stitdy of 1970 and 1971. 

Additional references include the Mimosa Study and a summer study of a lunar colony conducted 

at the NASA Johnson Space Center in 1972. 

An additionai point of interest on LSB missions involves recent studies investigating the feasibility 

of establishing space colonies. Some of these studies have assumed extensive use of lunar surface 

materials. With ideas of practical utilization of space receiving more emphasis, the 12-man LSU 

mission might place nlore empl~asis on pilot plant operations processing indisenous materials rather 

than on astronomical observations. This study was conducted using the original 12-man LSU 

definition. It is believed that the postulated pilot plant payloads are comparable to the science 

payload definitions used. Insufficient definition of the former exists at  present to  enable a 

conclusive analysis of transportation requirements. 

3.5.1 12-MAN SEMI-PERMANENT BASE 

3.5.1.1 Mission Summary 

3.5.1.1 .1 Ge~leral Description 

The LSB surface elements primarily consist of a sllelter for the crew and equipment, numerous 

mobility vehicles for surface transportation, and science equipment for astronomical and geological 

il~vestigations. A variety of other mod~tles and equipment serve in a support role. 
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'I'lle LSI3 sllelter colisists of  eight modules that provide quarters for the crew, comniancl and 

communic:itiol~ center, liiailitena~lce f:icilities for base ant1 tnobility equipment, science labs and 

general base services such ;IS medical, galley and recreation, All of these modules are 4.3m (14,s f t )  
I 

diameter with six being approxitnately 8,8m (29 ft) long and the others 11.3tn (37 f t )  long. The 

average mass is approximately 4 500 kg (1 0,000 Ibs), 

I.'our basic types of surfiice mobility vehicles :IS well as I~ular  flying vellicles are provicleci. T11e prime 

nlover serves as the primary clrive unit during the assembly of the LSB conlplex :ind on sortie 

missions, E;lc11 mobile power unit provides 3.5 kw fro111 the I'olonium 210 isotope/organic Rankine 

system and 1.2 Icw elncrgency ii.0111 a tl~ermoelectric unit, Three of these ilnits are dedicated to  the 

shelter, 'I'he remainder are available for sortie missions or  scie~lce use. 'The other self-powered units 

includc the mobile crew sl~el ter  for long r l~~ra t ion  sorties away fronl tlie base and the utility trailer 

used for hauling bulk cc~rgo, soil samples or  the lunar flying vellicle (LFV), Mobility equipment not 

self-powcrecl inclucles module tnu~spor t  trailers which are used to move modules ancl equipment 

that do  not  have wl~eels, a support operations equipment mod~lle  that inclucles the llarclware 

nrcsssary for the lunar transport vrlliclc la~ulcll  and laneling operations and a mobile cargo supply 

moclulc. 

The tnajor science payloads used in the LSB program inclucle deep drillillg provisions, radio 

telescopes, X-my telescol~e and optical telescopes. 

3.5.1.1.2 Mission Assumption and Constraints 

Nominal mission assumptions a11d con~tr;iints are stated in table 3.5-1. ?he scientific and 

engineering expcrilnental eqi~ipment  i~lrlicated is representative ancl does not indicate a selection or  

recommendatiol~ for particular programs that might be carriecl out a t  a lunar surface base. 

3.5.1.2 Mission Systeliis Dc .illtion 

3.5.1.2.1 Mission Options 

Not applicable. 

3.5.1.2.2 Payload Descriptions 

3.5.1.2.2.1 Base Shelter Moclules 

A sLunm:lry clescription including quantity, size, and Inass of the modules is presentee1 in table 3.5-2. 

The total identified mass of the surfiice equipment, excluding transportation (cargo) rnodules, is 

approxiinatoly 1 18 000 kg (200,000 lb). Module dianleters have been reduceel from the referenced 

stutly valilc of 4.0m ( 1  5 f t )  l o  4.4111 f 14.5 f t )  t o  comply with current shuttle grouncl S L I ~ ~ S .  



Tabk 3.5- 7. Lunar Surface Base Assumptions and Constraints 

MISSION 

LONG TERM MANNED 
LUNAR SURFACE 
OPERATION 

OBJECTIVES 

EVOLUTIONARY PROGRAM LEADING TO 
PERMANENT, NEARLY SELF-SUFFICIENT 
MANNED PRESENCE, WHILE PERFORMING 
DEFINITIVE INVESTIGATION OF THE 
LUNAR SURFACE AND ASTRONOMICAL 
OBSERVATIONS 

ASTRONOMiCAL OBSERVATORY 

DEEP DRILLING 

REMOTE EXPLORATION 

LOCAL SCIENCE 

EXTRATERRESTRIAL RESOURCES 
UTILIZATION EXPERIMENTS 

MISSION ASSUMPTIONS & CONSTRAINTS 

TWO BASE TYPES ARE HERE DEFINED FOR THE 
EVOLUTIONARY PROGRAM: 

PIPE CREW 

I 6 6 MONTHS 

I I 12 5+ YEARS 

CREW MODULE FOR MANNED ASCENT AND 
DESCENT WITH LIGHT EQUIPMENT, SURFACE 
SAMPLES, DATA 

CREWMAN STAY TIME 6 TO 12 MONTHS 

BACKSIDE CAPABILITY VIA RELAY SATELLITE 

* EXPLORATION EQUIPMENT AS FOLLOWS: 

TYPE ROVER OTHER -- 
I 2-MAN INTERMEDIATE DEPTH DRILL 

i I 4-MAN DEEP DRILL + OBSERVATORY 
WITH 
AUXI LI- 
ARY 
EQUIP- 
MENT 

OPTIONAL EXPERlMEtJTATlON DIRECTED TOWARD 
UTILIZATION OF INDIGENOUS CONSUMABLES 
(LUNAR RESOURCES) 



Table 3.5-2. Lunar Base Equrjomen t Definition 

"DEVIATION FROM REFERENCE STUDY 

QTY 

1 

1 

1 

1 

1 

1 

1 

1 

ITEM 

SHELTER MODULES 

1. CREW & MEDICAL (CMM) 

2. CREW & OPERATIONS (COMI 

3. SORTIE &TRANSIENT CREW 
(STCM) 

4. LAB & BACK-UP COMMAND 
(LBCM) 

5. GALLEY & RECREATION 
(GRM) 

6. BASE MAINTENANCE (BMM) 

7. DRIVE-IN GARAGE (DGM) 

8. DRIVE-IN WAREHOUSE (DWM) 

u 
c. 
00 
? 
c. 
m 
4 
Q\ 
90 
e 

DESCRIPTION 

4 STATEROOMS,MEDICAL FACILITY 

4 STATEROOMS,COMMAND & 
COMMUNICATION CENTER 

4 STATEROOMS, BACK-UP GALLEY, 
BACK-UP COMM CENTER 

SClENCE LABS, SCIElu'iE CONTROL 
CENTER 

GALLEY/DINING,RECREATION, 
AIRLOCU/CLEAN ROOM 

AI  RLOCWCLEAN ROOM 
MAINTENANCE & REPAIR 

MOB1 LE EQUIPMENT STORAGE & 
MAINTENANCE 

HOUSE MOBILE SUPPLY MODULE 
LSB SUPPLY STORAGE 

UNIT WEIGHT* UNIT SIZE (D x L) 

KG 

3,765 

4,264 

3,992 

4,173 

3,447 

2,858 

2,177 

2,314 

26,990 
'DRY 

M 

4.4 x 9.1 

4.4 x 9.1 

4.4 x 9.1 

4.4 x 9.1 

4.4 x 9.1 

4.4 x 9.1 

4.4 x 9.1 

4.4x11.3 

LBS 

8,300 

9,400 

8.800 

9,200 

7,600 

6.330 

4,800 

5,100 

59.500 TOTALS 

FT 

14% x 30 

14% x 30 

14% x 30 

14% x 30 

14% x 33 

14% x 30 

1 4 % ~  37" 

14Xx37" 



'fie arrangement of the eight sllelter  nodules is sllown in figure 3.5-2, Three tnotlules (CCM, C OM, 

;ind S?'CM) are designctl to nominally accoma~otlatc! foul: men each and provide all the necessary 

crew services. In addition, each of these modiilcs also provides a base service such as the lnetlical 

facility, cornmanti ant1 communications center, or backup galley and cotnmand center. 

Othcr modules provitle the science Inbs and control (LBCM), galley and recreation facility (GRM), 

111aintcn:ince f;icility for sn~rill base ccluipment (BMM), and drive-in warehouse (DWM) and drive-in 

garage (1)GM) for mobile vehicle storage and mainlenr~nce, 

All of the  nodules except the DWM iind DGM are 4.4m (14.5 ft) diameter and 9 . lm (30 ft) in 

length, These dimensions allow two modules to be launcllcd to Earth orbit on a single slluttle flight, 

The DWM and DGM are botll 4.4m (14.5 ft) diameter, but l1.1m (37 ft) in length in order to 

accommodate a prime mover and still be able to enter either of tlle adjacent modules. The center of 

gravity of each of  the shelter niodules is near its geometric centroid, Shelter modules llave docking 

ports and are trallsported without containers. 

'I'he wllole shelter is covered with lunar soil to ~ r o v i d e  thermal, radiation, ancl meteoroicl 

protection. 

3.5.1.2.2.2 Operations Support Equipment 

Mobility Equipmenl-Four types of surface mobility vehicles and lunar flying vehicles are provided. 

?'he four surface nlobility units are depictecl in figure , 3 5 3  performing 6 sortie niissio~~ aw:ly from 

the ~naih base. Mobility equipment requires containerization for shipment. 

The prime mover, illustrated in figure 3.5-4, is sizetl for 2-nien/36-hour autonomous operation. The 

vehicle serves as the pririiary drive unit and control module on sortie missions and also 

accommotlntes soil ancl equiplnent llandling devices. 

Each mobile power unit provides 3.5 kw from tile Polonium 210 isotope/organic rankine system 

and 1.2 kw emergency from 3 thermoelectric unit. Three of these units are dedicated to the shelter. 

The remainder are available for sortie missions or science use. The mobile crew shelter provides 

habitability on long-duration sorties away from the base and is sized for four men to satisfy the 

requirements of the deep-drill mission. 

Tile utility trailer is used for hauling bulk cargo, soil samples, or the lunar flying vehicle (LFV). The 

LFV cart is similar in tlesign to the utility trailer. The LFV provides the capability for two lnen to 

make short but fast sorties. 
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PRIME 
MOVER 

LAB AND TUNNEL TO 
SORTIE AND BACK-UP OBSERVATORY DRIVE-IN 
TRANSIENT WAREHOUSE 

Rncc CREW MODULE MODULE MODULE 
YnUL 

MAINTENANCE 
MODULE 
(BMM) 

GALLEY AND - 
\ 1 RECREATION 

DRIVE-IN CREW AND CREW AND MODULE (GRM) 
GARAGE 
MODULE 
(EGM) 

MEDICAL 
MODULE 
(CMM) 

OPERATIONS 
MODULE I I 

Figure 3.5-2: LSB 72-Man She/ter Complex 



Figure 3.5- 3 Sortie h7obility Elements 



PM CREW tNGRESSIEGRESS 
THROUGH Al RLOCK & 
CLEANING ROOM 

PMJSHELTER MODULE 
rNTERFACE RING 

LIGHT INTENSIFIER 
TV CAMERA 

Figure 3.59: Prrine &lover 



Hnndling Equipment Soil Iliindling is acco~nplislletl by attactling a skiploatlcr tlcvicc Lo a prilne 

mover. 'I'l~sks to  I)c p c r f o r ~ ~ ~ c r l  inclurlc cxcavctlion, covering, iintl levclilig of' tcn*eiin. 

Auxiliilry Motlulcs Several 1notlulcs serve 111i1i11ly ill ;I s i l l ~ p o ~ ~ t  role. 'I'IIc 111ol)i1c c;irgo S L I I I I ) ~ ~  

nlotl~rlc cirn I)c taken to tllc luntling site, loarletl with supplies, ant1 broi~glit back to tllc basc untl 

Ilousecl in the rlrivc-in warcliousc, 

'I'llc motlulc tra~nsport trc~ilcr tM'Iw1') is a Slut-bctl type illlit usccl to 111ovc nlotlurcs that (lo not Iiavc 

pcrtnancnl wliccls. 

'I'hc support operations cqi~ij)mcnt motlulc inclitdes Illat Iiartlwarc licccssary li)r the lunar tri~nsporl 

vellicle Ii1~111cll ant1 lantling opcratiolls. Included arc navigcition alntl h c a c o ~ ~  aids ant1 liquificution 

cqilipmcnt to  I~ontllc prol)cllant boiloff' from tllc lunctr trunsport vchiclc stationctl on tlic silrlhcp for 

long periods. 

Mosscs ant1 sizes of' this cqiiipmcnt arc swnmarizctl in tclhlc 3.5-3, 

3.5.1,2,2.3 Scie~icc Equipment 

'I'lle major scie~icc equipment to be i~sccl 1'0s tllc I,SB is shown in figure 3.5-5. Science cquipmcnt 

requires con tninerizal io~~ Lbr sllipmcn t. 

Deep tlrillillg for geological, geophysical, and gcocl1ctr:cal investigations will inclitde capa~bility to 

obtain core salnples from (100 lo 1,000 f t )  lloles. Deep drilling is perfornlcd wit11 a press~~rizetl 

module that can be one of  tlie cargo modules previously used t o  bring the LSD equipment t o  the 

Moon. 

Four  radio telescopes with li-eq~lency ranges of 0,3-1.0 Mllz, 0.0-1.2 Mllz, 1 - 1  5 Mllz and 

5-500 MlIz ;Ire provitletl; they cover a n  nrca o f 4 0  km x 05 kin 125 nii x 40  mi),  

Tlle X-ray telescope has a l m  (40-in) aperture and a 10111 (400 in) focal length, Operation of the 

uni t  is accomplisl~ctl while wcasilig n pressure suit. 

Rotll the 1 .25171 (50-il1) ;tnd 2.5111 ( 1  00-in) optical telescopes are enclosed witliitl a protected clomc, 

T h e  1.25111 (50-ill) telescopc also is eqitiplxxl with IIi instr~uncntation. 'Tllc 2.5111 (100-in) 

cliffsaction-limitetl telescope consists of tllc following major nsse~nblics: ( I  1 dome, ( 2 )  horizonlnl 

t~unnels, ( 3 )  Sni (200-in) flat pointing mirror, (4) a 2.51n (100-in) ~~araboloidal  off-axis inirt.or, 

( 5  smallcr secondary mirrors, ant1 (0) obscrva tio11 ; ~ n t l  instrumcn tation rooms, ?he Ialttcr two 

roonls citn illso be expendccl container ~notlules used for trrulsportation of  equ i~ r~ncn l  to  tlic Moon. 



Table 3.5-3. LSB Llobi/ity and Support Equipment 

ITEM 

SELF MOBILITY EQUIPMENT 

1. PRlME MOVER (PM) 

2 ELECTRICAL POWER 
MODULE (EPM) 

3. CREW SHELTER (MCS) 

4. UTILITY TRAI LER (UT) 

5. FLYER CARTfFLYER (FC) 

HANDLING EQUIPMENT 

1. SOIL 

2. MODULES & EQUIPMENT 

AUXILIARY MODULES 

1. MOBILE CARGO MODULE 
(hrlCM) 

2. MODULE TRANSPORT 
TRAILER (MTT) 

3. SLJPP OPER EQUIP MOD 
(SOEM) 

UNIT SIZE 
QTY 

4 

6 

1 

1 

1 
2 

1 

1 

1 

4 

1 

DESCRIPTION 

TRACTOR UNIT* 2-MAN ENCLOSED 
CAB 

3.5 KWe 
ISOTOPE/ORGANIC RANKINE 

4 MAN CAPACITY 

CARGO MODULE OR FLAT BED 

FLAT BED 
FLYERS 

SKIPLOADER 

GENERAL PURPOSE HOIST 

TRAFJSPORT CARGO FROM LANDING 
SITE TO BASE 

TRANSPORT LARGE MODULES 
FROM LANDING SITE TO BASE 

H2/02 LIQUIFACTION, LTV 
LANDING AIDS 

(D 

M 

3.4 x 6.0 

3.7 x 5.5 

3.4 x 6.7 

3.4 x 5.5 

3.4 x 5.5 

2.4 L 

5.5 L 

2.7 x 5.5 

4.0 x 8.5 

3.4 x 8.5 

x L) 

FT 

17x 20 

12x18 

11 x22 

11 x 18 

11 x 18 

8 L 

19 L 

9x18  

13x28 

11 x 20 

UNIT - 
KG 

1 846 

2 223 

2 540 

767 

862 
363 

227 

680 

454 

1 851 

1 678 

36 060 

M A S  

LB 

4,070 

4,900 

5,600 

1,690 

1,900 
800 

500 

1,500 

1.000 

4,080 

3.7W 

79,470 



SMOOTH SURFACE X-RAY OBSERVATO9Y -2.5 M (100 INCH) OBSERVATORY 

Ti---- 1 1,591 KG (3,500 LBSI a 15,000 KG (33.000 LBS) 

I 8 1.5Mx10.7M (5FTX35FT) 5.0 M (200 INCH) FLAT 

I 2.5 M (100 INCH) PRIM. 
40 KM I a 9.1 M (30 FT) DOME 
(25 MI) 1 

I 

(40 a 5,455 KG 
(12,000 LBS) 

Figure 3.5-5. LSB Science Equipment 



Masscs anti sir.es of  science cqir iprne~~t  arc sum~narizetl in t:lblc 3.5-4. 

3.5.1.2.1.4 Initial Supplics 

Supplies for the first 5 ~ n o ~ l t l l s  (27 tni~nmonths) of buildup have a mass of  1 5 500 kg (34,300 Ib) as 

sutnmarizecl in table 3,5-5, 

3.5,1.2,2,5 Crcw Trnnsfcr and Resul~ply I'ayloads 

Resupply intervals o f  I04 clays were tlcfinctl by llle referellcc stutly. Crew rotation cycles were 

:~llowed to extend to 328 tleyr; since tlic sllclter is covcrccl wit11 soil lo r e t l ~ ~ c c  tllc ruclialion, 

crow~~lct i  are operating ~ ~ n r l e r  a gravity fielcl and are not collfirierl to s~nilll qu:~rters. ('onseqi~cntly, 

every 164 days a co~nbination crew rot;1li01i/resl1pply tligllt will be ~'!OWII with one-llillf of 1I1e crew 

rotated. 

Crcw Transport Velliclc -'I'lic prilnary f ~ ~ n c t i o n  of the 1 v is to provitle quarters for tllc! crcw 

tluring transits between L'artll anel lunar orbit. 'Ille ("I'V is normally transported llclwecll the orbits 

by an orbit transfer velliclc (O'YV), ' lhe  S'I'V consists of' a moclule provieling shirt sleeve 

environnlent for tllc crcw a~i t l  a portion of the reqnirecl supporting cqi~ipnient,  An u ~ i p ~ * ~ s s u r i ~ e d  

e q u i p ~ i ~ e n t  motlule is inclueled for the re~naintler of the support equipnle~ll,  

This moelulc is sizetl to acco~nmotlntc! a crcw of six, tlte ~lonn:~l  crcw rot:~lion co~nple lne~l t .  'I'llis 

vrhiclc. lleecl not be sizctl for tlle entire I,S13 crcw o f  12 in the event of emergency cvacur~tion of tllc 

base, becai~se tlie ('I!M/Ld'I'V that brings the crew up from the Iwse lo  lunar orbit CiIn be rcft~clecl 

:llicI tr;111s~ol*t a t  least 0 crewmen hock to [Inrtli orbit. 'l'lle CTV crew moclulc llil~sl also 

acconilnoclate the lunar piiyload to be returned to Earth (i.e., film, tapes, surfilce sn~nl>les, e tc ,  1. 

'rlie ecluipn~en t ~no(lule Ilo~lscs electrical-powcr sou~~ccs ,  cryogenic tankage, ant1 a slllall prop~llsion 

system. 'l'he Iwrpose of tlie propulsion systclll is to provicle the capability for tile ("I'V to  achieve a 

I-day I'artll parking orbit in the event the OTV fails l o  o ~ c r a t e  cluring L{:trtll-orbit insertioll. 

Crew/Equipment Module (CEM)-'Ihe ('EM is part of t!le liuiar transport velliclc nntl provitlcs 

quarters f t ~ r  tllc crcw nntl the requireel support equiplnent during transits between lunar orbit ant1 

the I.Sl3. l'lw ('1:M ol' tllc 1,'I'V is similar to tlie CI'V used bctwcen I'arlll and lunar orhit but with 

several elifferences. One differctuce is that the CI3M only needs provisio~ls for 1 to  2 clsys; tllc ('TV 

niitst liave s ~ ~ p p l ; e s  for an  Iiclrtll return of  up to 10 days. 'I'l~e second difference is that the CIiM 

must ;~ccomlnociatc tlic entire 1,SB crew of 12 in event of a base evacuation: the ("I'V only needs to 

house tllc normal crew-rotation complement of 0.  In aclciition to the crew, the ('EM m ~ t s t  also 
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Table 3.5-4. Lunar Surface Bae Science Equipment 
r 

ITcM 

SCIENCE 

1. DRILL COVER MODULE 

2. DRILL EQUIPMENT 

3. REMOTE SORTIE EQUIP 

4. 50 IN. AST. OBSERVATORY 

5. X-RAY AST. OBSERVATION 

6. RADIO AST. OBSERVATORY 

7. 100 IN. OBSERVATORY 

8. 100 IN. OBSERV. SHELTERS 

DESCRIPTlGi' 

SHIRT SLEEVE EIJVIRON. 
USE EMPTY CARGO MODULF 

SMALL, MEDIUM, 1000 FT F - 
MlSC SUPP EQUIP 

SCIENCE 

TELESCOPE, DOME, lNSTR 

TELESCOPE, I NSTR. 

ANTENNA, INSTR 

TELESCOPES, DOME, INSTR. 

2 REQUIRED .- USE EMPTY CARGO 
MODULE 

QTY 

1 

1 SET 

1 SET 

1 

1 

1 

1 

UNIT MASS - 
KG 

2 177 

1 542 

5 239 

1 588 

5443 

14 969 

UNIT SIZE 

LBS 

4,800 

3,400 

11,550 

3,500 

12,000 

33,000 

(D 

M 

3.0 L 

%/D 

4.9 DUME 

1.Ex3.0 

1.5 x 10.7 

N/D 

9.1 DOME 
5.1 FLAT 
2.5 PRIM 

x L) 

FT 

10 FT L 

16'D DOME 

5xlOSCOPE 

5 x 35 SCOPE 

NID 

30'D DOME 
200 IN. FLAT 
100 IN. PRIM 
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Table 3.5-5. Initial Supplies 

transport the lunar payload that is to be returnecl to Earth. It shuuld also be noted that since the 

CEM includes the G&N ancl information siibsystems for the LTV, the CEM must be incluclcd with 

tlle LTV wl~ell it is flown ~ u ~ m a n n e d .  

ITEM 

FLYER PROPELLANT 

EPS SPARES 

PRIME MOVER SPARES 

CREW CONSUMABLES 

EVA SPARES 

A&CS SPARES 

COMM & DATA SPARES 

MEDICAL 

Resupply Module (RM)-The TIM will contain both LSB crew consumables and surface expendables. 

On a normal resupply mission, only supplies will bc landed at  thc LSB. Therefore, two RM's are 

provided in order t o  provide a reasonable velzicit: c.g. Assuming the use of a 4.4-meter (14.5 ft) 

3 diameter module and an average packing density of 160 kg/m3 (10 lblft  ), module Icngti~s of 5 

nlelers ( 10.5 f t )  are required. 

LTV Resul)ply-Replenisl~~ne~~t of the lunar transport vellicle (LTV) usecl to transfer payloads 

between lunar orbit ant1 the lunar surf:ice is also required. Tlle represer~tative option employs a fully 

reusable single stage L07/LH7 .- - LTV; rc\upply consists of propellants and auxiliary fluids. 

DESCRIPTION 

L02/LH2 

FOOD, CLOTHES, ETC, 

Table 3.5-0 summarizes crew rotation and resupply requirements. 

1 
I TOTALS 

MASS 

KG 

1 361 

386 

2 132 

10 074 

853 

227 

381 

145 

15 559 

LBS 
3 

3,000 

850 

4,700 

22,210 

1,880 

500 

840 

320 

34,300 
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Table 3,5-6. LSB Crew Rotation and Resupply Payloads 

Mass Size (dia x len) 

Lunar Ascent 

Crew and equipment 
modification (CEM) 

Crew, equipment, 
and reserves 

Consumables 

Science 

Total 

Lunar Descent 

Ascent P/L plus 

Resupply module 

8 Base consumables 

CEM consumables 

Total (ascent 4- 
decent) 

Lunar Orbit-Earth Orbit -- 
Crew transfer vehicle 

Crew, reserves and 
consumables 

Total returned 

Earth Orbit- Lunar Orbit 

Return payloads plus 

Propellant module 

Propellant 

Total delivered 

Sized for 6 men, 
6 days. Emergency 
12 men returned 
to Earth 

Normal-6 men 

Emergency-1 2 men 

For crew supply 

Samples, film, tape 

See above 

Dry-2 required 

169 days 

Sized for 6 men 

Dry 

4 .0 

1 .O 

(1.4) 

0.2 

0.4 

5.6 

2.7 

16.8 

1.3 

26.4 

5.3 

2.1 
- 
7.4 

3.8 

37.2 - 
70.8 

8.8 

2.2 

(3.1 1 
0.4 

0.9 

12.3 

6.0 

37 .0 

2.9 

58.2 

11.7 

4.6 - 
16.3 

8.4 

82.0 - 
156.0 

4.4 x 4.6 

4.4 X 4.6 

4.4 x 4.6 

4.4 x 10.7 

14.5 x 16.0 

14.5 x 15.0 

14.5 x 15.0 

- 

14.5 x 35.0 



3.5.1.2.2.6 Consumables 

Vonsumables rcrluircments were incluclecl in table 3.5-0. De1:iils o f  base consumilblcs require~ncnts 

arc given ill tii111~ 3.5-7. 'I'lle fc)llowing consumahles use ussiunplions wcrc ~nacle: 

0 7 :  " 1:rom writer electrolysis 

N1: '. 1:rom N1114 clissociatioli .. 
Water: 'I'wo closerl loops arc i~sed o11e for W;ISII water and r~notllcr for the 

rcmaindcr of the writer. Wntcr is also produced in the CO? - rccluclion 

process. 

11,: .. I;or ('0 7 rccli~ctio~l: fro111 N 7 1  I4 dissociatio~i .. 0. 

('lothil~g: Ilxpcnclnblc 

W:~stc: l'oilct, clry jolln 

'I'r:~sh, v a c i ~ u ~ n  clry hiiry other waste 

12uocl : Wet ancl clry 

Table 3.5-7. LSB Supplies for 12 Men - 180 Days 

ATMOSPHERE AND CREW SYSTEMS 

CONSUMABLESIEXPENDABLES 

SPARES 

MEDICAL 

EVA SPARES 

SUITS, APLSS, ETC. 

SCIENCE SUPPORT 

SORTIE 

ASTRONOMY 

COMMUNICATION AND DATA 

SYSTEMS 

VHF RELAY LINKS 

ELECTRICAL POWER 

ISOTOPES AND HOLDERS (6 UNITS) 

SYSTEMS (6 UNITS) 

MOB1 LlTY SYSTEMS 

SPARES (4 PRIME MOVERS) 



3.5.1.2.2.7 Mi~ss Summary 

Mass tlelivery requirements as itlentifictl in source tlatn are summarized in table 3.5-8. These valiles 

do not include growth allowances. 

Table 3.5-8, Mass Summary 

3.5.1.2.2.8 Pickup I'oinls and Tr:lnsportation Colistrni~its 

Shelter nlodules are suitably co~~figurecl for tralisportolion ancl Ilontlling: they will be Ilandled like 

tiiodular space station elements (see para 3.2.1.2.2.0). Base equipment recluires packaging in 

eqi~ipment  clclivery motlulcs (liI1M1s). 

ITEM 

INITIAL DELIVERY 
a SHELTER MODULES 

MOBILITY EQUIPT 
SCIENCE 
INITIAL SUPPLIES 

TOTAL 

TYPICAL RESUPPLY 
a DELIVERED TO LUNAR SURFACE 

ASCENT 
,-- 

171e equipment delivery modt~le  (1iUM) quantity was cstablishecl based on cstitnalccl equipment 

sizes stated in the reference st ~ltly. Using this approach, u total of 28 E1)MYs wcre rcqi~ircd to cleliver 

tlic surfr~ce base cquiplnent. 

'I'liis number is rt.quired becai~se there arc Inany units of c q ~ ~ i p t n e ~ l l  so large that only one unit can 

he accommoclatcd by a singlc 1il)M. 

MASS 

Since in 1i10st C:IS~S the ~ n a j o r  units do  not occupy the entire length or  diameter of tllc EIIM, tllc 

base supplies and otlier scicncc equipment can bc accommotlatcd by tllcse same EIJM's. 

lo3 KG 

27 .O 
36.1 
31 .O 
15.6 

109.7 

26.4 
5.6 

'The type of cql~ipment  includetl in each EIIM is presclitccl in lablc 3.5-'). 'l'llc module number listccl 

is a prclinlinary cslitnatc ot' tllc clelivery sequence. 'I'lic primary considerations j i i  establislling this 

order  was that shelter, electrical power, nncl mobility systc~ils must be available early to allow 

efficient construction of the hase. It sl~ould also be noted that  equipment otlier than major units 

can be  switclicd between tnodules if necessary. 

lo3 LB 

59.5 
79.5 
68.3 
34.3 

241.6 

58.2 
12.3 



Table 3.5-9. Lunar Surface Base Delivery Modules 

NOTE: A L L  MODULES ARE 4.4 x 9.1M (14% x 30 FT) 

2 37 

* 

EQUIPMENT 

CREW & COMMAND MOD 
CONSUMABLES 
SPARES 

DRIVE-IN GARAGE MOD 
PRIME MOVER 
HANDLING EQUIP 

DRIVE-IN WAREHOUSE MOD 
POWER UNIT FUEL 
J BOX 

CARGO MODULE 
MTT 
MCM 
CONSUM 

CARGO MODULE 
SUPP OPER EQUIP 
CONSUM 
100" OBS (INSTR) 

GALLEY & REC MOD 
CONSUMABLES 

CARGO MOD 
PWR C'NITJFUEL 

CREW & MED MOD 
CONSUMABLES 
SPARES 

CARGO MODULE 
PWR UNITJFUEL 
EPS SPARES 
CARGO MODULE 
DRILLS 
MTT 
CARGO MODULE 
P MOVER 
CONSUM 

LAB & BU COMM MOD 

CARGO MODULE 
MNR UNITIFUEL 
CONSUM 

BASE MAINT MOD 
CARGO MODULE 
PWR UNITIFUEL 
CONSUM 

CARGO MODULE 
POWER UNITJFUEL 
CONSUM 

MODULE 
NO. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

VOLUME 
UTl LlZATlON 
FACTOR 

1 .O 

1.0 

1,O 

1 .O 

0.8 

1 ,O 

0.7 

1 .O 

0.7 

0.8 

0.7 

1 .O 

0.7 

1 .O 

0.7 

- -- - 

WEIGHT 

KG 

5.9 

5.4 

5.5 

5.4 

6.4 

4.8 

4.0 

5.3 

4.1 

5.7 

4.0 

4.1 

4.9 

2.7 

4.9 

(K) 

CB 

13.0 

12.0 

12.2 

12.0 

14.0 

10.6 

8.9 

11.6 

9.4 

12.6 

8.9 

9.0 

10.9 

6.0 

10.9 

- - 



MODULE 
NO. 

16 

17 

18 

19 

20 

2 1 

22 

23 

24 

25 

26 

27 

28 

Table 3.5-9, Lunar Surface Base Delivery A 

EQUIPMENT 
- - 

CARGO MODULE 
P MOVER & SPARES 
REMOTE SORTIE EQUIP 
CONSUMABLES 

CARGO MODULE 
100" OBS (DOME & MlSC STRUCT) 

CARGO MODULE 
100" OBS (2 PART-200" FLAT MIRROR) 

CARGO MODULE 
100" MIRROR, SEC MIRRORS, MOUNT/ 
CONTROLS) 
CARGO MODULE 
PWR UNITIFUEL 
50" OBS (DOME + INSTR) 

CARGO MODULE 
P MOVER & SPARES 
CONSUM 
X RAY OBS (ASPELTT) 

SORT & TRANS CREW MOD 
SPARES 

CARGO MODULE 
UTIL TRAI LIFLYERIPROP 
50" OBS (INSTR & CONT) 
RADlO T (1-15 MHz) 

CARGO MODULE 
MCS 
EVA SPARESICONSUM 
CONSUM 
CARGO MODULE 
50" OBS (SCOPE & YOKE) 
MTT 
CARGO MODULE 
RADIO T (.3-1.0 MHz) 

CARGO MODULE 
FLYER CARTIFLYERIPROP 
REMOTE SORTIE EQUIP 
RADIO T (0.6-1.2 & 5-500 MHz) 
CARGO MODULE 
MTT 
X-RAY T (PRIMARY l3 SUPP EQUIP) 

NOTE: ALL  MODULES ARE 4.4 x 9.lm (14% x 30 FT) 
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'I'l~e Illasses specificel for each moclulc inclucle that of the primary st:ucture of the III>M plus the 

payloacl, 'I'lle itverage mass of  the loadeel L{I)M1s is 4 500 to  5 500 ky (10,080 to  12,000 111). The 

mininlum is 3 000 kg (8,000 Ib i~ncl tllc maximu~n is 0 400 kg ( 14,100 Ih), These values clo not 

inclucle growth allowance. 

'I'lle volunle factor (VI;) indicateel is an cstimate of the ratio of equip~nent  volume to  total volunle 

of a given IIIIM. Sixty percent of the IilIM's Iluve a volume filctor of 0.0 or  great er. 

HIM'S with 0.0 to 0.7 V1: gener:~lly contain large major i~ni t s  of equipment o r  d o n ~ e  s t r i ~ c t ~ ~ r e s  for 

the observatories. (Large sectio~ls minimize cons t ruc t io~~ effort.) These low volume-factor L:,DM1s, 

Ilowever, coi~lcl be used to carry some of the equipment of the HIM'S weiglling 5 000 to  0 300 kg 

( 13,000 t o  1 3,'100 lb)  if that eq~ripment could be designed in small units. 'This approacll w o ~ ~ l d  l l ~ ~ v e  

Llle benefit of reducing the n l a x i m ~ ~ m  EIIM weight to approximately 5 500 kg ( 1 2,000 Ib) at the 

expense o f  increased construction time. 

3.5.1.2.3 Transfer and Storage 

Tlle concept for I~andling payload modules by the LTV while it1 order and 01.1 the lunar surface is 

sllown in figure 3.5-6. The rnain feature used in the payload handling is a moclule docking adapter 

(MDA) mechanism located a t  the base end of the LTV. Eit l~er  two or  four docking adapters can be 

incorporated. 

Unloacling o f  payloacls on tllc liular surface consists of Ilavil~g the MUA lower the payloacl to  a 

position where it can be placed o n  a module transport trailer (MTT). Final removal of the payload 

moclule from the LI'V rcquircs the i ~ s c  of the prime Inover with the hoist. 
I 

Propellant transfer is requireel from the propellant ~noclule to the L1'V in lunar orbit. I'lle LTV's are 

stosctl on the lunar s~rrface ut the base between resupply missions, The reference sti~cly assumed that 

electrically-powered propellant recovery and reliquification equip men^ woultl be useel 011 the lunar 

surface t o  recover and recycle L'T'V boiloff. 

3.5.1.2.4 Orbital Assembly, Maintenance, and Modification 

Not applicable. 

3.5.1.3 Transportn tion Requirements 

3.5.1 -3.1 Paylonci Delivery Poi~its I Pilylosd delivery points are suo~marized in table 3.5-1 0.  



PRIME MOVER 

MODULE DOCKING MODULE IN 
ADAPTER 
IN RECEIVING 

FLIGHT CONFIGURATION 

POSITION k k ~ )  

(FIRST PAYLOAD RE 

LTV 

LTV PAY LOAD UNLOADING 

r - l  

pq 
LTV 

MODULE TRANSPORT 

Figure 3.5- 6 Payload Handling Concepts 



NOTE: SS =SPACE SHUTTLE HL = HEAVY LIFT 

Table 3.5- 10. Lunar Surface Base Delivery Points 



3.5.1.3.2 Payload 1)clivcry Options 

3,s. 1.3,2.1 Configurnlions 

[:or base tlclivcry, 1II)M's rultl slleltcr motlulcs lire clcbliverctl one or  two at ri tinic, rlcpenrling o n  

Icngtll, l)y the sllultlc. 'I'lley ilrc itr~'angcd in cornhi~~ations ill l i i~ r t l~  orbit ils i~ppro j ) r ia t~  to tllc 

capabilities of  tllc O'I'V/("l'V tl.ansporlalioti systcnl. 

('rew rotation/resupply payloatls are groupctl illto a single asscnibly li)r ;i joilit crcw rotation 

resupply mission every 104 clays. 

3.5.1.3,2.2 Mass illid S ~ L C  C11 :~ rn~ t~ r i s l i~ s  

M~ISS growth allowances of 3 3  pcrcetit were applictl to base Iirtrtlwarc: 20 pcrcetit was al?j~lietl to 

("I'V, ('EIM, ruitl p;~yloatl p i~~kag ing  Ilartlwarc. 

I3asctl o n  tlle est~rnatcd ecliiipmcr~l sizes slolcrl in the liockwcll study, iI total ol' 20 4.3111 tlia x X.Xt11 

length ( 14.5 x 20 St 1Il)M's plus tlic eigllt shelter nlotlules will rcquirc tri~nsporli~liori. 'I'llc average 

mass (with growlll) of tliesc ~ ~ i o d i ~ l c s  is ;11~~~roxiliir1teIy 0 800 kg (15,000 Ibs), Since n Iiitlar 

tratlsport vcl~iclc (1,'I'V) is require(l t o  tlclivcr the IilIM's bctwcctl I~i~i irr  orl)it ant1 the I~rnar surl'irce, 

this uri,it also r c q ~ ~ i r e s  tlclivcry to 1~nrlIi orhit. 

lJpon rcacliing Ilartll orbit ,  tlic 1II)M's ant1 1,'l'V's can be nrrongccl in colnbinutions for rlclivery to 

lunar orhit ;~nrl subscqiicnt tlclivcry to tlic 1ilnar surface. Transportatio~i rcquircmcnls bctwccn 

Eartli orbit and tlie lunar surface are summarized in figure 3.5-7. As definctl in the refererice stutly, 

two  LTV's are required to rleliver e q ~ ~ i p m e n t  to the lunar surface so the first two base equipment 

c!elivery flights will inclutle LTV's. A crcw transfer vcllicle (CTV) is includecl to  provirle emergency 

retirrri capability for the crew s l~oi~l t l  the LTV crcw colnparttt~ent be irninl~a1)itablc. As indicated in 

figure 3.5-7 options of eiilier tleliverirlg two or four BDM arc possible with thc resulting mass being 

respectively 01 300 kg ( 135,000 11)s) and 88 040 Icg ( Ic15,000 11)s). 

L'I'V tra~isportatioli requircn~cnts I'rom lunar orbit to  the lunar si~rf'acc will be 20 000  kg (40,000 

111s) or 35 450  kg (78,000 11)s) cleycnditig \\rhether two o r  ('our III)M's arc delivered. 'I'liesr nlasscs 

incli~cle the e.cw/cqliiprnent motlulc for t11c li~~ldirlg crew. 

S ~ ~ b s e q ~ ~ e n t  OTV l'liglits will hc requirctl to cleliver the rcmainrlcr of the 1iI)M's. Again, an oplion 01' 

citllcr two o r  f o i ~ r  tlL)MYs niay bc tlclivcrcrl per flight. In aclclition to tlic I'I)M's, a ~ ~ r o p u l ~ i o ~ l  

motlule (I'M) is also inclu~lccl for replenishment of tlic L'I'V. After the tliircl O'I'V/payloatl Slight 

renclles Iiunar orbit, the L'I'V at t l ~ c  L.SB will launcll a~l t l  rendezvous with the O'IV. I-'I'V 



FIRST TWO FLIGHTS 

I 
r LTV 

EARTH ORBIT - LUNAR ORBIT 

4 I EDMI EDM CTV I 
LTV I 

LUNAR ORBIT - LUNAR SURFACE 

~ E D M  / EDM i I 
I 

KG OT?I P/L - (LB) - I 
I 

DELIVER* 2 EDM 61 360 :135,000) i 

EDM @ DM 

I 4 EDM 88 640 (195,000) I 
I i 35 460 (78,000) 

I RETURN CTV 6 820 (15,000) I 
- 

L I 

PLUS C N  

N 
.D 
w 

Figure 3.5-7. LSB Surface Equipment Delivery 

-- - 
SUBSEQUENT FLIGHTS 

I LTV 
I 

D ~ E D ~ E D M ~ E D M ~  PM 
i 
I 
r 
I 4 
I LTV P/L f 

KG (LB) OTV P/L 1 KG (LB) - KG - - (LEI 
DELIVER 2 EDM 46 820 (103,000) I - 20 910 (46,000) 

4 EDM 76 820 (1 69,000! 
0 

I 
5909 (13,000) 

35 460 (78,000) 
RETURN 0 I - 



replcnisll~ncllt anrl paylooti transfer will be pcrSormetl iintl the 1,'I'V relunlctl to  t l ~ c  1,Slj. I'ayloi~tl 

111a45cs for t l ~ c  1,'I'V are tlic* salnc as li)r first two flights. 

Sys t cn~  clcmcnls rccluirctl to  pcrl'ornl the crcw rot;~tionIrc~upply fullelions i~lclude ("1'V Ibr jix 

crtaw, two KM containinlr. :I totol 2 0  000 kg (44,000 Ills) of .irrpplie4 alltl iI I'M l i ~ r  1,'I'V p~.opt~l\ion 

replcnisl~nlent. Intlivitlual III;I.;W\ li)r t l ~ e ~ e  ele~l ic~l ts  :ire :IS SoIIows: 

E l c ~ ~ i e ~ i t  kl: Ibs 

(*'rsv 7 270 

I<M( 2 )  21 820  

I'M 41 820 

Arn~ngetilcnt nntl toti11 Inasses for tllc crcw rotation/resupl?ly clemcnts on their clclivcry fliglit to 

lunar orhit :111tl to  tlic lu~lar  surf:~ce i1I.C shown in figilre 3 5 8 ,  Paylo::cl to Iiuiar orbit is 7 0  9 10 kg 

(1  50,000 Ibs) :~ncl 27 730 kg (01,000 11)s) to tlic l u ~ l t ~ r  surf:lcc with tile latter again including tlie 

crcw/crluip~ncnt nloclule :lnd two RM's, 

3'5.1.3.2.3 Opernlionnl Constrnints 

Nominal operational constraints are similar to  the 01,s lnissio~l (para. 3,4,1.3.2,4). Nonpolar lunar 

parking orhits may be uscrl, i~nless a polar base is plannc~l. 1.ow inclinnlion orbit:, nluy allow sllortcr 

trip tinlcs I'or logistics fligllls. I:or a specific base latitude, a lunar orhit can be sclcctetl that will 

allow surfi~cc stay tilnc:, ol' iIIiy tlcsipnolctl rlirralion. If the plnnnctl stay time t is ovcrslayctl, tlic 

liest ili-]l11;1sc ; I S C ~ I I I  o ! ~ l ~ ~ r t i ~ ~ i i t y  ge~~c r ;~ I ly  oeci~rs i~l'tcr 27.5 - t clays (1 in tlnys). 

Safet) :~ncI Abort Conslr;~ints I;xccpt Sor the adtlitiotli~l criterion tliat lunar rlcsccnts Lo :I lantling 

site in tllc vicinity of'on occupicrl si~rl':~cc hasc sliall he piloteel by a 11lini1num lliglit crcw of two. 

s:llilty critcria Ihr tlic lunar-siu'S;~cc base mission :ire the saliic as l i ~ r  tlic O1.S lnission. 

If the husc is not s i~pportcd by un 0 1 . S ,  citlicr II:1rt1i-hasc~tl rcsci~c capability or  onsitc abort 

cltp:~bility ( s c ~  below) capalrlc of cvaci~nti~lg tllc hasc crew to li;~rtli is recli~ircd. 'l'llc ~t :~l idi~rt l  

logistics systcr~i Inay be usctl but tiut~st be liclrl in a slantlhy cajlncily in orbit (unless it call he 

launcl~erl by n single lai~ncli) so tI1:1t the ~ i c s l  available lunar clcparlurc olrportunily may he tlsctl. 

1)cparturc opportunities O C ~ L I S  alroilt every 10 cloys. 'l'lic m a x i m ~ ~ t n  10-clay wail for a tlcparturc 

oppor t i~ni ty  lrlus 3 clays li)r I t~nar  t ranskr  anrl 1 clay Sor Iiular-orbit operations ctlual :I ~n i~x in ium 

wait titlie for r ~ s e i ~ e  (21' 14 lli~ys. ' 1 ' 1~  hPst ;~v;~il;~lde Iiui:!: orlrit will be usetl to avoicl wail time in 

lunar orlrit prior to tlesccnl. 



1. EARTH ORBIT TO LUNAR ORBIT / 2. LUNAR SURFACE TO LUNAR ORBIT 

OTV RMRM PM P 
PAY LOAD = 11400 KG 

(157,000 LB) 

LTV 

I PAYLOAD = -6400 KG 
(14,000 LB) 

4. LUNAR ORBIT TO EARTH ORBIT 1 3. LUNAR ORBIT TO LUNAR SURFACE 

LTV 

PAYLOAD = 7300 KG 
(16,000 LB) I PAY LOAD = 27700 KG 

(61,000 LB) 

- 

Figure 3.5-8. LSB Crew Rotation/Resupply Delivery 



'I'lic onrile i1b0~1 allernalive provirlc:; one or  mostb ahort vclliclcs, similar lo  t l ~ c  lunar transporl 

veliiclc, fi~lly t'~it-lcrl on lhc s11rl:lcc a1 llic base. 'l'liis vcliiclc woi~lil lantl i l l  the norlnal way ant1 Ilc 

rol'i~cl~tl o n  lllc ~11rSil~c by a suh~ccl i~cnl  cargo fliplit. If  bancl cloning tlic base is necessary. tlic ;~bort  

vclliclc(s) ahr,clitl l a  u lunar osl)il or  ol:portunily si~ilnble Ibr iliitiictliato tratis-I;i~~Lh injection alirl 

111t1st Iiilvc s~~l'l'icien t tcl  till  ilelt:~ V cajx~l~ili  ty to en tcr i\ low IiiIrtll orhil. 

l'nrth-hascd rcscuc was i~ss~~nicr l  in sizing tri1nryort;ition system. 

3.5.1,4 Mission/Tr:~nsport:~tio~~ Motlcs anti Opcra tions 

3.5.1.4.1 Trilnsporlil tion Options 

'I'ransportatim systelli:, arc rcquirctl for Ilortll l a ~ ~ n c l l ,  rlclivcry to !unar orbit using O'I'V's i~ntl 

delivery to tlic lunar surl'acc will1 1,'l'V'h. 

'T'lic principal O'I'V ond 1,'I'V trolisl>orlatio~~ calltlirlatcs i1l.c shown in toble 3.5-1 1 

Table 3.5- 1 1. LSB 0 TV and L TV Transportation Candidates 

I Transportation System I OTV I LTV I 
L02!LH2 single stage 

L02/LH2 I -'/a stage 

L02/LH2 common stage 

L02/LH2 two stage 

L02/MMH single stage 

L02/MMH common stage 

'I'l~c psincil~al 1:artll lai~ncli vt\liiclc cantlirlntcs iWc: 

Space Sl111lllc (SS) 

IIcuvy 1 il't Launch Vcllicle (IILL,V) 

3.5.1.4.2 Representative Tratisportatioii Mode and System 

Thc representative sequence eniploys the spacc shuttle il~ld a lILLV as Earth laulich systems, iuid 

single-stage LO?/LfY-, - - OTV and LTV's. 

3.5.1.4.2.1 Transportation Sequence 

Typical sequences and operatio~ls associaterl with tlie LSB mission are depicted in figure 3.5-9. 

, -nnisportntion systems employctl iiicl~tdc botli space sllul!le and IIL1,V launcll vt:hiclrs, single stage 

OTV and single stage I,'I'V. 'I'lio psi~~cipal  tr,~nsportation fcati~ses ;~ssociaterl with these niissiotis arc 

0s Sollows: 
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(FIRST TWO FLI 

CUM 1 
TIME 1 

FOUXUT FRAME 



'LUNAR ORBIT 

\ 
\ 

['- A 
LUNAR SURFACE ,- 

I I I I 3 DAYS 
I 7 DAYS 

1 
3 DAYS 

Figure 3.5- 9 LSB Alission Transportation Sequence 

I 

~ E L I V E R  FLIGHT 
CREW 

bP OFF OTV 
~ N D  LTV 

ROPELLANTS 

(Sheet 1 )  
247 A (REVERSE IS BLANK) 

l TRANSLUNAR 
INJECTION 

l COAST 

LUNAR ORBIT 
INSERTION 

.LUNAR ORBIT 
cIRcULARIZATIO~I 

.WAIT FOR LANDING 
SITE ALIGNMENT 

l DELIVER 
2ND LTV AND 
EQUIP MODULES 

REPEAT STEPS 
l 1  

8OTV PERFORMS 
TRANSEARTH 
INJECTION 

l COAST 

.OTVPERFORMS 
EARTH ORBIT 
INSERTION 

~ L T V  DESCENT 
AND LANCING 

l OFF-LOAD 
EQUIPMENT 

l PREPARE BASE 
SITE 

l ASSEMBLE 
BASE 



PHASE 
I 

TIPE 3 WEEKS I 4 WEEKS I 3 DAYS I 7 DAYS I 1 
CUM 7 
TIME I 

1 
DELIVER EQUIPMENT 
MODULES AND LTV 
PROPELLANT MODULE 
WITH SS 

WAIT FOR 
LANDING SITE 
ALIGNMENT 

DELIVER OTV 
TANKERS WITV YLV 
(2 LAUNCHES) 

FUEL OTV 

TANKER DISt'O. 4'- 

1 9 
I 
' 1 
'i 
'1 

TRANS LUNAR 
INJECTION 

COAST 

LUNAR ORBIT 
INSERTION 



b m c E  EwlPMENT DELIVERY OPERATIONS 
(FLIGHTS 3 THRU 8) a 3 -- 

I LUNAR SURFACE -?.L- 

WAIT FOR 
LANDING SITE 
ALIGNMENT 
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REPLENISHMENT 
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EARTH INJECTION 

e COAST 

O ~ V  PERFORMS EARTH 
ORBIT INJECTION 

Figure 3.5- 9 LSB Mission Transportation Sequence 
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EARTH 
ORBIT 

1 
CREW ROTATION/RESUPPLY OPERATIq 

PHASE 
TIME 2 WEEKS I 4 WEEKS I 3 DAYS I 7 DAYS 

CUM 
TlME 

WAIT FOR LUNAR 

1 
DELIVER PAYLOADS WITH DELIVER OTV o TRANS LUNAR 

SS TANKERS WITH HLV INJECTION SURFACE SITE 
RESUPPLY MODULES (2 LAUNCHES) COAST ALIGNMENT 

LTV PROP MODULES FUEL OTV o LUNAR ORBIT 

CREW TRANSFER VEHICLE TANKER INSERTION 

LSB CREW REPLACEMENT 



CREW ROTATION/RESUPPLY OPERATIONS I r.. 

I '  
M LUNAR SURFACE 

I 7 DAYS I 3 DAYS I 3 DAYS I 1 DAY I 

I e WAIT FOR LUNAR LTV ASCENT WlTH 112 OF 
BASE CREW 
RENDEZVOUS AND DOCK 
WITH OTVICARGO 
LTV RECEIVES RESUPPLY 
MODULE 

LTV PROPULSION 
REPLENISHMENT 

CREW EXCHANGE 

OTV PERFORMS TRANS 
EAR'TH INJECTION 

OTV PERFORMS EARTH 

Figure 3.5- 9 LSB Mission Transportation Sequence 
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,Z large single stage 0'1'V is dcliverctl to llartl1 orbit with a III.l,V, 

111)M nntl 1,'l'V are tlclivcrctl to l'artll orbit using SS tinrl :\re clocked to tllc OTV, 

1:ucling o f  tllc O'I'V ontl l.'I'V is completed using a tanker lanncllctl by :I IlL,I,V. 

'I'llc O'T'V tlelivcrs thcsc payloads to 1un:lr orbit wllcrc the 1,TV transports tlle LIIIM's to  tile 

llr11;lr sllrf~lcc. 

'l'hc O'T'V is retirr~ictl to l'artll orhit with t11c operations :~ssoci~ltecl with tlclivery of :uiother 

I.'I'V ant1 1'I)M's being rcpcatctl. 

'1'11e licxt six O'I'V fligl~ts will (lelivcr l'I>M1s :IS wcll ns PM's to lunar orbit. 

Wllc~l fllc O'I'V ~C:ICIICS IUII ; IS  o r l~ i t ,  ;I I I I ~ I I I I I ~ C ~  1,'l'V will l;1111ic11 fro111 tIie lunar surl'i~ce :tiid 

perform rcndczvous and clocking operations followerl by clelivcry of the cargo back to  the 

lunar surface. 

I'rew rototion/rcsupply fligllts makc irse of tllc SS Lo tlelivcr the elenients to  Earth orbit. OTV 

for delivery to Itrnar orbit ant1 a 1,'I'V for tnuisportation to tllc s l~rf i~ce.  

1Zettrn1 o f  crews to lI:~rth orhit will be followctl by retrieval using the space slluttle. 

A mission Ilistory incliciiling key transportation events, claspccl time. AV nntl mass rcm:~ining is 

prescntctl in tablc 3.5-1 2. 
- 

3.5.1.4.2.2 Transportation Sizing 

Since the majority of the fligllts rluring the course of thc LSR program will be for crew 

rotation/res~lpply, the OTV slloultl be sizetl for tlris flight. As indicatccl on the performance map of 

figure 3.5-10, : u ~  OTV sized in this manner will also satisfy all other tlelivery requirenients including 

thrit of transporting four EIIM's per flight (after the first two flights). 

A performance map Tor the LTV is shown in figurc 3.5-1 1.  Tlle LTV size was selected for crew 

ro tation/resupply : it tlelivers 2 EDM's per trip for base buildup. 

3.5, 1.4.2.3 Operational Factors 

Mission Profiles allti Relldezvous Techniques-The LS13 buildup and support operation can probably 

be carried out  witliout :t dedicated I 'artl~ orbit support facility. The single-stage OTV is then not 

constrained t o  return to  a particular Earth orbit, but can return t o  ally low-inclination (e.g., 30 
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Table 3.5- 72. LSB ftiission History - SingJe Stage fO-,/f H-, OTV 

Event 
Mass Remaining 

1 Hr MPS I FPS I KG 1 LB 

Initial mass 

Translunar injection 

Lunar orbit insertion 

Separate payload 71.400 kg (1 57,400 Ib) 

Return payload 7,300 kg (1 6,000 Ib) 

Transearth injection 

Earth orbit insertion 

(OTV inert) 

(Payload) 



Table 3.5- 12. (Continued] LSB fdission History - Single Stage L 02/L H2 L TV 

N 
ul 
P 

Event 

Initial mass 

Descent 

Offload landed payload 
21,300 kg (47,080 Ib) 

Ascent 

(LTV inert) 

(Ascent payload) 

Elapsed 
Ti me 

Hr 

2 

10 

G V  

IMPS 

2,194 

676 I Pno20 

Mass Remaining 

FPS 

7,198 

6,627 

KG 

70,700 
42,400 

21,100 

13,200 1 29,100 

LB 

156,000 
93,500 

46,500 

6,800 

(6,400) 

(1 5,000) 

(1 4,100) 



Figure 3.5- 70. Single Stage L02/LH2 0 TV Capability for LSB 

DELIVERY OPTIONS (LEO-LO-LEO) 

( 1 0 3 ~ ~ )  
A - ElQUlP DELIV (FLT 1& 2) 

r B - EQUIP DELlV (FLT 3-14) - 2 EDM'S EA 

CI 
100- 

J 
t 
Q 
e 
t 

N 
w W 
N > - 

-I 

50- 

C - EQUIP DELl (FLT 3-8) - 4 EDM'S EA 

D - CREW ROTATlONjRESUPPLY 
(1164 DAY INTERVALS) 

NOTE: PAYLOAD INCLUDES - A SINGLE STAGE 
L02/LH2 LTV 

- 

- I 

25 50 75 100 125 150 ( 1 0 3 ~ ~ )  
I 

10 20 30 40 50 60 ;O ( I O ~ K G )  
RETURN PAY LOAD 



I 1 I I I I I 
0 5 10 15 20 25 

RETURN PAYLOAD 
30 (103 KG) 

Figure 3.5- 1 1. Single Stage L 02/L H2 L TV Capability for LSB 



~lcgrccs) orbit. L.uni1r orhils 111i1y !\<I sclcclc~l l i )~  Llic I ) ~ I T ~ ~ C I I I ~ I S  ~ X I S C  I ; I IIJIII~ site, ;IS W:IS lrllc SOY 

Apollo. 

Moilcst plant c11;11igcs, recluircll li)r llcl~arlure l'rom low- i~ lc l i~ la l io~~ lunar orbits ill tinics otlicr tllan 

tlic in-lll,ll~c apportuliily, ;\re acccl~lulllc. 1 ogislics lligllt rot~ntl trips 01' sliort clur;~lion, i.c., 8-10 

~ I ; I ~ s ,  ;\re t l l c r c~ l~ rc  l'c;lsiblc ilS ~ l l i l ~ ~ ~ l  i l l  I ' ig l l~~  3,s-1 2 ,  

If niissions iI1.i' st;~gciI I'r'i)ili a I ' l~~ll i ty  ill ;I ~ ~ ; ~ r l i c u I ; ~ t  I:;)rtIi orllil. tllc 55-clay lunar lliglil opportu~li ty 

rcj1e;ll cycle as llcscribcrl l'or tile OL,S will hc a col stmi111 illso li)r tllc lun;~r si~rfiicc \lase, 12cs11lting 

Li111~~illcs iISc ;lIsO ~Ili)\vll i l l  figlll'c* 3.5 12. 

Rcnilc~vi)ils tccli~~iilucs will Ilc colivclitic)n;~l ca l?cc~~l r ic  scql~cnccs ;IS wils truc l'or tllc 01,S. In  this 

rcnrlc~voirs u t  [lie Iiioon will he 1.'1'V ilctivc (O'I'V passive a1111 i ~ t  Iiartli, Il:~rtll launcli vel~iclc 

;lclivc (O'I'V ;~gi\in passive 1. 

TIME IN DAYS 
0 "0 20 30 
L 

TRANSFER TO MOON a NO CONSTRAINT 
ORBIT OPERATIONS & CREW TRANSFER ON ORBIT 

SE LECTlON 
RETURN TO EARTH 

\ 
PREPARE FOR ASCENT 

OPERATIONS, REFUELING, & CREW TRANSFER 

DESCENT 

@ MISSION CONSTRAINED 
TO RETURN TO 
EARTH PARKING 

REFUELING, & CREW TRANSFER ORBIT 

DESCENT 

ORBlT OPS & CREW TRANSFER 

OTV 

Figure 3.5-72. Typical Earth-Lunar Flight Timelines 

TRANSFER TO MOON 

/ RENDEZVOUS WITH LTV 

0 WAIT FOR RETURN OPPOR 

RETURNTOEARTH 

\ 



Crew Involvcmcnt Ol~crations crews autl missioa crews will be involved in essentially 311 pliascs of 

tllc lun;~r  silt f;lce base, 

('rew involvcnient ;;itilplil'ics t r ; ~ ~ ~ s p o r t i ~ t i o t ~  opcralions swell us rcntlczvr~i~s, tlockil~g, orbital 

asscmhly, lun;~r landing, 'lnd cargo Iinllilling o n  tlic l11n:lr surlhcc wl~crc tlic crrW;i n::!:~ I N >  relied 1111011 

ils the princip;~l control clcmc~il.  ('row tiliiclillcs (e,g., tinic rcquirctl l o  transfer from o ~ l c  vcliiclc to 

iulotlicr) tlo not Ilave any itlenlil'ietl significanl cl'fcct on transporlation rcqt~iltB;ucllts. 'I'lle crew will 

assclnl>lc tlic base from tlic tralisl>ortctl Iiardwarc. 'l'lic rcl'crcnce sltirly cstiliiolctl 27 lunar 

l l l i l l l l ~ l 0 l l ~ ~ l ~  ~ O l l l t l  be rc(l11irctl. 

'I'hc nominal crewman slay l i ~ n c  at tllc I2-111i1n surface base is two logistic5 intervals, i.c,, 3% tlays. 

'I'lic n o ~ n i ~ i u l  s t i~y  ti1nc l'or llie 0-mon 111 I~osc is I 04 days ( 3 tilnes t l ~ c  55-ili~y translunor opportunity 

repeal cycle). If an  0 I . S  is cmployetl as iIn aitl to ntission operations, iIn ntldition;~l wait  ti!;^^ at  tlic 

01,s  niay hc req~~iret l  typically I 4  to 30 rlays for ['or111 rctuni opportunity. 

Control Functions :lntl Rcquircn~cnts ('ontrol fi~nclions and rcquircmcnts are t11c same as l'oi tlic 

01,s (para. 3.4.1,4.2.3) will1 the addctl ~?quirerncnt that lun:lr landings ~ l i i ~ s t  be precision targeted 

to :I ~ l c~ ig t l i~ t cd  1;111tling site within 100 meters (300 feel) o r  Icss, A honiing hcacon on tllc Iiuiar 

surP,icc can \>e usctl 3s a la~l i i i~lg aid4 

Network Support--Network s i~ppor t  will be si~liil t~r lo  tlint for tlic OLS (para. 3.4.1.4.2.3). 'l'lie LSD 

b i~ i ld i~p  atitl rcsi~pply tnuisportalion operations will be 1a;gely au to~io~nous .  Principal data rctitni 

means will be hard copy, tnpcs, :untl samples. 

3,s. 1.4.2.4 Earth Launch Rcquiremcnts Summary 

llclivcry o f  tllc ciglit sllcltsr ~nodulcs atid 3-0 lil)Mqs will reqi~ire eight O'I'V fligllts assu~iiing Sour 

131)M's arc tlclivcre~l on ci~cll l'ligllt al'ler tllc firs1 two Lligllts. A total 01' two 0'1'V Sliglits per year 

will also be required for crew rotation/rcsilpply. 

Sixtee11 slluttle flights are requirctl to tlclivcr bi~sc liartlware to  Ilarth orbit;  8 sllilttle lligllts and 18 

IIL,LV fligllls iISe recli~irctl to support tr:insportation opcr:~tions for b;lsc builtlup. Four slii~tlle 

flipllts and 0 III,l,V Iligllls annually arc rcquil-ctl to sitpport crew rotation onrl resupply. 

3.5.1.4.3 Transports tion Options d'omp:~rison :~ntl Evalu:~tion 

3.5.1 .4.3.1 S i x  and Pcrformancc Comparison 

1 l ) ;~~.a~netr ic  p c r l b r ~ i ~ c  maps were clevelo~~eil for ;\I1 of the O'I'V candidates c x c c ~ t  the 1 -1  /2  st:~gc 

syhtcln wliicli was on ;I point tlt'sipn basis, llclivcry payloails for the Sirsl two O'I'V t7ights. 
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subsequent 0'1'V lligllls cleliv,:ring eillior two or  four EDM's ant1 crew rotatiun/resupply 

req~iiremcnts ilre super-imposctl on the performance maps of fig~rre 3.5-13 and 3.5-1 4. 

OTV mass comparison for a11 carldidates is presenteel in figure 3.5-1 5 for the crew rotation/resupply 

flight, The range of  OTV masses is approximately 227 300 kg (500,000 Ibs) for the L02/LH2 

]-I/:! ancl common stages :~ncl 3 18 200 kg (700,000 Ibs) for the LO?/MMII cornlnon stage. l'lle 
" 

sli~;illest full stage is again the rc l~ l rn  stage of the 1-1 12 stage system at 25 000 kg (55,000 Ibs), 

I'erformance maps west: also developed for the LTV transportation cantlitlatcs with the exception of 

the 1-11? stage concept wllicll was ati;~lyzed o n  ti point design hasis, These performance plots :ire 

sl~own in figures 3.5-1 (> and 3.5-17. Payload for this delivery is the crew equipment module and tlle 

two resupply modules, 

Moss comparison of the LTV transportation concepts is presenteel in figure 3.5.18. Mass of the 

LO?/MMH - single stage is cipproximatcly 50 000  kg ( I  10,000 111) whicl~ is 0 830 kg (15,000 Ibs) 

greater tllan the LO?/LII? - - single stage, I-Iowever, due to its greater density the L02/MMH systen1 

provitles a total 1,SV length wllicll is 3m (1 0 f t)  sllorter. 

3.5.1.4.3.2 Eartli 1;aunch Requirements Comparison 

The number of Earth la~mches requircd to dclivcr OTV I~ardwnre and fuel necessary to deliver the 

LSB stirface cquip~nent I I~CL\S~; I I*Y to  initiate the mission is shown in figure 3.5-19. Several of the 

OTV conclIcl:~tcs may be la~uicheel using the space shuttle since they are dimensionally compatible. 

All of thc OTV concepts cali bc 13~111~'lled wit11 tlie llLLV with a consiclerable reduction in number 

of Earth launches. Space shutllc! flights are s l~own  with one of the HLLV options since only a 

portion o f  the I-ILLV capability w o ~ ~ l t l  be r e q ~ ~ i r e d  to  complete tile delivery of tile OTV systems. 

In general, for those OTV candidates that w n  use either launch vehicle, use of the liLLV results in 

only one-fourth ns many Earth l a~u~ches .  Eartll launches requi,ed to deliver OTV 11:irdware and fuel 

necessary for the LSB annual requirements is shown in figure 3.5-20. Again, use of the EILLV 

requires only one-third to  one-fourth as many launclles as required when using the space shuttle. 

3.5.1.4.3.3 Operational Compar i so~~  

The operational comparison for the OLS program (para. 3.4.1.4.3.3) applies with the following 

additional corlsideration: 

Tlle LSU operation is not  necessarily tied to tlle 55-day logistics repeat cycle as was the OLS 

because 
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DELIVERY OPTIORIS (LEO-LO-LEO) 
A - EQUIP DELlV (FLT 1 & 2) 

B ? EQUIP DELlV (FLT 3-14) 2 EDM'S EA 

C - EQUIP DELIV (FLT 3-8) 4 EDM'S EA 

D - CREW ROTATIONIRESUPPLY 
(164 DAY INTERVALS) 

NOTE: PAYLOAD INCLUDES 
A SINGLE STAGE 
L02/LH2 LTV 

I i 5  (103 LB) 

PAYLOAD RETURNED 
Figure 3.5- 13. Common Stage L 02/LH2 9 T V Capability for LSB 



PAYLOAD RETURNED 
Figure 3.5- 14. Common Stage L 02/MMH 0 TV Capability for LSB 
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1103 LB) 1 

100' DELIVERY OPTIONS (LO-LS-LO) 

A - 2 EDM'S 
B - 4 EDM'S 
C - CREW ROTATION/RESUPPLY 

- (164 .DAY INTERVALS) 

- 

- 
- 

I I t I 

o 5 10 15 2b 25 ( lo3 KG) 
RETURNED PAYLOAD 

Flqure 3.5- 16. Two Stage L O2\LS2 L TV Capability for LSB 



I- I I I I I 

0 5 18 15 20 25 

RETURN PAYLOAD 

Figure 3.5- 17. Single Stage L02/MMW L TV Capability for LSB 



STG STG STG STG 

I------- LO*/LH2 -F~.O~/MMH~ 
Figure 3.5- 18. L TV Comparison for LSB 



LEGEND 

17 SS LAUNCHES 

1-1/2 COMMON SINGLE 1-1/2 CQMMON COMMON 
STG STG STG STG STG STG 

L021LH2 L%/MMH 1- L02/LH2 -----I LO2/MMH 

ORBIT TRANSFER VEH.SCLE CANDIDATES 

Figure 3.5- 19. Earth Launches Required for LSB 0 TV System (L7ission Start-Up) 



1 SPACE SHUTTLE MODE 

HLV W/2 SRB 
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*TWO FLIGHTS Pkpi YEAR 

HEAVY LIFT VEHICLE MODE 

1-112 COMMON SINGLE 1-112 COMMON COMMON 
STG STG SVG STG STG STG 

ORBIT TRANSFER VEHICLE CANDIDATES 

Figure 3.5-20 Earth Launches Required for LSB 0 N System 
(Annual Crew Rotation/Resupply) * 



1 )  there is n o  I~unur orbiting f;~ciliiy, hetice a particular (i.e., polar) lunar orbit need not he used: 

2 tllc base ele~nctlts will not he assc~iihlecl illto the operational configuratio~i in Enrtil orbit as 

was the OLS, lleucc OTV retirrll to a particular I<arth orbit is not ~.equircd, 

Ilowever. if a coml~~on-st:~gecl LOqILI-1, OTV is uscrl re tur~i  to  ;I pnrticular Eartll orhit is rccluir~ci .. '. 

s i~ lce  the two OTV stages 111ust get: togetller :~g;~in for reuse. Since the L071MMI-I common stages 
'. 

can he returned lo I.i\rlll by tllc shutllc the restriction tloes not apply to  tllc LO,/MMII system. 
4. 

3.5.1,4.3.4 Prrlcticr~lily Assess~~~crit  

All n~ottcs invcstigatctl arc juclycd to hc practicid, cxccpt that tllc 2-st~ge LO?/LI[-, III'V has n .. I 

center of gravity ~,roblcm as was noted in p;~r:t, 3.4.1.4,3.4. I'ro's anc1 con's for the QTV 111odes are 

summarized in table 3,s-13. 



3,5,2 SIX-MAN, SIX-MONTH BASE 

A brief st~icly of a six-mnn, six-month bnsc was contluctecl. Tlze bnse rind crew coulcl be doliverccl to 

the moon by two OTVILTV flights using, the transporttition systeni sclccterl for tho 12-mtuz 

semipernin~~ent base. A tlzird flight woultl pick up the crew rrt tlze encl of the six-month siirface 

mission. No rcs~ipply wns requirerl. The mission dicl not inlpose any unique trnnsportation 

requirements, and coultl be t~dnptecl to the transportt~tion systc~ns describetl for the ILSS, OLS, or 

LSB missions, 



3,6 MANNED PLANETARY EXPLORATION PROGRAM 

Mannccl M~ISS lancliny is consitlcrccl the rcl?rcscntt\tive missios for tile n~anned pla~ictary cxplor;~tion 

p r o p ~ i m .  J h e  objectives o f  this n~ission tire lo  cotiduct it11 in-clrptli science program clcaling \villi. 

Mars pliuletolo~y, effects of  ~nodifyiny l'orces, composilion, environment anel pohsible life form\. 

'I'lic tnditional ~ilission vehicle itlelltifiecl hy nlany stiltlies h:ls heen an assem1,ly al' spr~cc~r i~ l ' t  

n~otlulcs proprllecl by a multist:~gr nuclear propulsion system as illuslrated in I'ipi~rc 3.0-1. 

A mr~jor ~*efcrel)c'e for lliis ni iss i~n is tlie Ijoeinp, IMIS('1) stiltly of  1008, 

3,h.l MANNED MARS LANDING MISSION 

3.6.1 .1  Missior~ Summary 

3.6.1,1,1 Gc~le r i~ l  Description 

'ITie nlr~jor systenl clcmcnts associutetl wit11 i\ l~ialllied Iaiicling on 9:irs i1~c111tle [I 1nissio11 111o~Ii1Is 

( M M ) ,  Mars excilrsion module (M1:M) and Earlli entry module (I'I1M). These elelncnts nlonp will1 

unmanned probes form the ~ ~ ~ i s s i o n  splice~riift as s l~own in figure 3.6-2, 

l 'hc ~uissian moclule crew c o ~ n p a r t n l ~ n t  provides tlie six 111r111 crew will1 3 shirt-sleeve environment, 

cluarters far living filnctions, opcrtltions center, cxpcrimcl~t laboratories, r;idiation sl~clter 311ti I I I ; I I I ~  

o f  tllc subsystems required lo  s i~ppor l  tile above ft~nclions. This compr~rtment is occtlpictl 11y 

crcwlllrn for lllc entire ~nission, except during llie time wllcn three crewmen descend t o  llle Miirtia~i 

surf;icc a~itl  tluring the l'r~rtll entry pllasc of the mission. 

The MEM is usecl to luncl i\ thrce nlan crew on tlie surfrice, provide crew qu:irters and opcralions 

center for 30 days ancl r e t u r ~ ~  tile crew to  the mission spacecraft. 

'fie Earth entry module (Jil<M) configuration is ;r six-~ii:~n bluntctl hiconic, l 'hc EEM syste~nh iirc 

tlesigtlctl for 1 day's occupancy prior to I'artll entry, Tile Ileal sllicltl is designed by tllc I~ipllcst 

Erirtli elltry velocity cxpectcrl from the opposition mission. 'I'hc i~nmanncd probes are usc(1 to 

clleokout thc potential landing sites for tlie MEM, collect Mars orbital science data anel explorc lllc 

mootls orbiling Mtirs. 

3.6,1,1.2 Mission Assumptions and Corlstrai~its 

Nornitla1 mission :~ssumplions alirl constraints are tabulated in tahle 3.0-1. Tllcse arc acloplctl from 

tlic Bocing IMISCI) slutly of 1008 with thc atlrlition of a sinall surf;~cc rover in llic class of Ills 

Apollo 1,RV. 







Table 3.6- 1. Manned Planetary Mission Summary 

MISSION I OBJECTIVES I .4ISSION ASSUMPTJONS & CONSTRAINTS I 

MARS PLANETOLOGY 
EFFECTS OF MODIFYING 
FORCES 
COMPOSITION 
ENVIRONMENT 
POSSIBLE LIFE FORMS 

ELLIPTIC MARS PARKING ORBIT AT OPTION 
SIX TO EIGHT MAN CREW 
THREE TO FOUR MAN LANDER, ONE OR TWO PER 
MISSION 

EXAMINE CONJUNCTION AND OPPOSITION CLASS 
MISSIONS, 1994 LANDING 

MANNED MARS 
LANDING 

ONE ROVER PER LANDER, TWO-MAN CAPACITY' 
100 kM TO RANGE 

CONDUCT IN  DEPTH SCIENCE 
PROGRAM DEALING WITH: 

LONG LIFE INSTRUMENTATION SYSTEM OF 
"ALSEP" TYPE + METEOROLOGY STATION,PER 
LANDER 
SCIENCE & SAMPLE RETURN CAPACITY OF 
1000 kg 

3.6.1.2 Mission Systems Description 

3.6.1.2.1 Mission Options 

Not applicable-manned Mars 1,~nding was the cnly lnission consiclered. 

3.6.1.2.2 Payload Descriptio~is 

The spacecraft assemblv shown in figure 3.6-3 consists of three modules occ~~pied by lhe crew 

(luring the coursi? of the mission, connecting interstages, subsystems to provide operational 

capability, experiment equipment and sensors, and unmanned probes. Overall length is approxi- 

mately 33111 (108 ft) with n~aximurn clia~neter of 101n (33 ft). 

The forward interstage compartment is an unpressurizetl area that supports and encloses the Earth 

entry module, mission moclule subsystems, external experiment sensors, and the inbound ~nidcourse 

propulsion system. A t ~ ~ n n e l  connects the EEM ancl ~nission module crew co~npartment to provide 

for pressurized transfer. 

The mission module crew compartment provides tlle crew with a shirt-sleeve environment, quarters 

for living ftlnctions, space-vehicle operation capability, experi~nent laboratories, radiation shelter, 

ant1 Inany uf the subsystems reqirirecl to  support the above f~~nctions.  The various functional areas 

and equipment are distributed on four decks. This con:,partmcnt is occupied by six crewmen for the 

entire mission, except dr~ring the time when three crewlnen descend to the Martian s~~r face  and 

during the Earth entry phase of the mission. 

Tl~e aft interstage compartment is an ~inpressurizecl area having the shape of a truncated cone. This 

conlparttnent houses the remainder of the ~nission motlule s~ibsystein, external experiment sensors, 

ancl a portion of the unm:~nnetl probes. An airlock extends fro111 the crew comparttneni to provide 
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EMERGENCY OXYGEN 
STORAGE (2 PLACES) 

\ N2 GAS STORAGE 

CREW TRANSFER AlRLOCK7 \\ (6 PLACES) 

PM-IBMC PROPELLANT DOCKING 
REACTION JET FLOX/CH4 (2 PLACES) MODULE 
PROPELLANT - DOCKING PORT1 
N2O4IAERO-50 TRANSFER TUNNEL LASER OPTICS 

(2 PLACES) ------/ 

Figure 3.6-3. Mission Spacecraft 



for pressurized trnasfer to the MEM and also provide EVA operation. Tunnels connect tlle airlock 

and logistics vehicle docking ports to provitle additional pressurized transfer capability. 

Located within the aft-most portion of the truncated-cone interstage is the Mars excursion modi~le. 

Tlle purpose o f  the MEM is to transfer three crewmen to the Martian surface, to provide living and 

operations quarters while on t!*e surface, and to return the crewman to the space vehicle, 

Ullmanned probes occupy tlie 10111 (33-foot) diameter aft cylindrical portic~n of the spacecraft, 

3.6.1.2.2.1 Missiori Modtiles 

The primary futtctions of the mission module, shown in figure 3.6-3 are to provide shirt-sleeve- 

e~~vironment subsystetns, experiment and vehicle operations control subsystems, the necessary 

structure to enclose and support the above, ant1 to provicle attachment to the MEM interstage and 

the Mars orbit-departure propulsion module (I'M-3). The recon~mended mission nlodule has 

sufficient volume for equiptnent and expendables suitable for Mars, Venus, and MarsIVenus 

swingby missions of durations up to approximately 1,180 days. In addition, the mission module 

serves as the living and operations center for the assembly, test, and checkout crew while the 

interplanetary space vehicle is being nssemblecl in Earth orbit, The mass of the mission module is 

37  I00 kg (09,900 113) for a 450-day mission anci 47 000 kg (103,600 Ib) for a 1000-day mission. 

3.6.1.2.2.2 Mars Excursion Module 

The Mars excursion module (MEM) is a 9. lm- (30-ft) diameter, Apollo-shape, three-man vehicle (fig. 

3.6-4). It brings tllree men to the Martian surfiloe, houses them for ? [ I  days, and then returns tlle~tl 

to  the orbiting spacecraft. External solid rockets provide the impulse for deorbit. FLOX/CH4 

propellants are used for ascent and the final stages of descent in the configuration described. Other 

propellants could be used. The ascent delta V to a circular orbital aititude of 1 000 km (540 nmi) is 

5 300 m/sec (17,300 fps). The outer shell and laboratory are staged at the Mars surface. Only the 

central core ascends to the space vehicle with the crew. Upon transfer of crew and Mars surface 

samples to the spacecraft, the MEM ascent stage is jettisoned and remains in Mars orbit. The MEM 

mass is 33 100 kg (73,000 lb). 

3.6.1.2.2.3 Bico~iic EEM Configuration 

The Earth entry module (EEM) configuration is a six-man blunted biconic (fig. 3.6-5). In order to 

maintain a high degree of commonality, tlle EEM design is fixed for all missions. Tlle heat shield is 

designed by the highest Earth entry velocity, approximately 18 000 m/sec (60,000 fpsj as defined 

by the opposition mission. The EEM mass is 6 850 kg (15,100 lb) for a 450-day mission and 

5 260 kg (1 1,600 Ib) for a 1000-day mission. 
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Figure 3.6-4. Mem Configorztion Three-Men-30 Days-540 N MI Orbit 



The EEM systems are clesignecl for 1 clay occupnncy prior to Earth entry, Final clescent is made by 

paracllutes will1 a capability of Itincling cill~er on lancl 01. wuter. 

3.6'1.2.2.4 Probes ancl Il~terstages 

The mass of the probes and subsalellites carriecl is 8 890 kg (1 9,600 Ib). The total interstage Inass is 

9 100 kg (20,000 lb). 

3.6.1.2.2.5 Crew Rotation and Resupply I'nyloads 

Not applicable. 

3.6.1.2.2.6 M:~ss Summary 

Payload masses are sumtni~rizcd in tiible 3.0-2. 

LIFE SUPPORT ATTITUDE CONTROL 

HYDRAZINE ANKS FOR MASS 
FOR FUEL CELLS ALANCE FLUID 

FORWARD EMERGENCYOXYGEN 

DISPLAY PANELS 

STRUCTURE 

HONEYCOMB 
SKIN PANELS 

EMERGENCY CREW 

MAIN STRUCTURA 

PARACHUTES (3) 

CANISTER (3) PAYLOAD ITEMS 

Figure 3.6-5. Biconic EEM Configuration Six-Man Crew 

Table 3.6-2. Manned Mars Payload P,!asses 

MEM 1 33 100 1 73,000 1 33 100 1 73,000 

Item 

MM (includes experiments) 

EEM 1 6850 1 15.100 1 5260 1 11,600 

Probes 

lnterstages 

Mars Opposition 
(450 Days) 

Total 1 89 640 1 197,600 1 103 350 1227,800 

.Mars Conjunction 
(1000 Days) 

Kg 

31 700 

Kg 

47 000 

Lb 

69,900 

Lb 

103,600 



3.6.1.2,2.7 I'ickup Points n l ~ d  Transportc~tio~i Colistri~irits 

'rlie payloatl clcscrihtd is clcsig~~r.rl to be luuncl~cd to l i ~ s t h  orbit as :I single unit by n 1-1LLV. In orbit 

i t  will be jointcl with the orhit transfer system. 

No tmnsportntion constrainls were Soiuid except mission profile co~lstiaillts ancl options. Tllese are 

discussccl in para. 3,0.1,3.2.3. 

3.6'1.2.3 Transfer a ~ ~ d  Storage 

Not  applictlble. 

3.6.1.2.4 Orbital Assembly, Mt\i~ite~inncc, rind Modifici~tio~l 

The  ~nissio~l  vehicles clescrihetl are dcsigned to be servicecl and mnintainctl by the mission crew. 

3.6.1.3.1 Payload Ilelivery Points 

I1ayloacl clclivcry poinls arc us Sollows: 

Spncc Vcl~icle Asscmhly 

Mission Orbit 

I'lanel lixploralion 

(Yew & Science Kcturn 

Low 1it1rth Orbit 

Mars Orbit 

Mars Snrhcc  

Mars orbit to l<;~rlh 

orbit o r  clircct cnlsy 

und lantling 

3.6.1.3,2 I'nylontl Ilelivery Options 

3.6.1,3.2.1 Mission Vehicle 

Moss alitl sixc cllasnctcristics of the ~ o y l o i ~ t l ,  including applicable mass growl11 allownnccs, arc 

sum~l ia r i~c t l  in I'igurc 3.0-0. I'ayloael nlasscs for each principal transportalion o p e r i t l i o ~ ~ ~  nrc 

suuim;~rized in figure 3.0-7. 

3.6.1.3.2.2 Operational Constrainls 

C'olistrai~~ts result Sronl nlission profile cl~araclcristics. Mars stopovcr ~nission opportunities occur in 

two j~rincipal varielies ( 1  colljunclion long cluration, long stay a t  Mars, low energy, tuid 

( 2 )  opposition: s l~o r t  tlus;ltion, short stay (optimiun = 0) at Mars, high encrgy. Inter~nedinte 

durnlion Vcllus swingby opporlutlitics also occur a1 less frequent intervals. 

'I'he ~nissiolls chnr:~cteristics r1cscril)ctl span lllc rilligc of energy req~~i rcments  of the various Mars 

opport~mitios otistinp eluring the typical Mass synodic cycle f'rom 1075 to l C ~ c ~ O  (table 3.h-3). The 

275 



PROBES CREW COMPARTMENT 

MODULE 32.9M 1 - 
(108 FT) 

Figure 3.6-6. Manned Mars Spacecraft System Elements 

1 MASS I 

PAY LOADS 

- 
MISSION MODULE (INCL EXPERIMENTSJ 

MARS EXCURSION ~ O D U E E  
EARTH-ENTRY MODULE 

PROBES 

INTERSTAGES 

TOTAL 

MARS OPPOSlTlON (450 DAYS) MARS CONJUNCTION 11,000 DAYS) 

LB 

11 6,600 

95,300 
13,900 

24,500 

2!,000 

27 1,300 

KG 

37 600 

43 200 
7 900 

11 100 

9,500 

109 390 

LB I KG 

82,900 52 900 

95,300 
17.400 

24,500 

21,000 

241 ,I 00 

43 200 
6 300 

11 100 

9 500 

123 000 
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MISSION PHASE 

1. TRANS MARS INJECTION1 
MARS ORBIT INJECTION 

'c---, wg-I R ----. 
@ 

- 2. TRANS EARTH INJECTION 

3. EARTH ORBIT INJECTION 

D 
* EXCLUDES ANY AEWOBRAKING 

Figure 3.6-7. Manned Mars Transporfation Requiremen ts 

-- 

PAY LOAD MASS* 

MARS OPPOSITION - 

KG 

109 591 

50 455 

7 909 

PROVISIONS 

MARS CONJUNCTION 

LB 

241 ,f 00 

11 1,300 

1 7,400 

KG 

123 318 

64 227 

6 300 

LB 

27 1,300 

141,300 

13,900 



pl;mcti~ry stay titnc is 40 rlays for ol)posilioli ~nissiolls at111 selcctctl at millimwn cncrpy l i ~ r  the 

c o n j o n ~ * t i o ~ ~  t i~is \~ot l  (appro\iil'l~atcly 500 days at Mars). I'll' r~(11tire111e11 1s S I I O W I ~  011 tile ellart were 

~ l i ~ r i v ~ ( 1  1)y t l c v ~ l o ~ ) i ~ i g  L ~ i ~ i ~ ~ i . f ~ r i c s  tlial provitlcrl tltc ~nin i lnun~ initial mass it1 Ilarlh orhil. 'l'llosc 

rcq11irt.aients with the glt:tt~~\L ~llll)ilcl 011 llic S I ) : I C ~ C ~ ; I L ' ~  wcSre llle I~;trt11-~111ry vc l~c i ty  ;111rl tllc 

lllissioll tiltlc. 

1:lliplic o r b ~ t s  at  Mars miiy rttli~c,c ellcrgy r c ( l~~ i r c l~~c l l t s  1)cIow tliohc sti~ted. I:or Ll~ih 10 IIC t r~rc ,  ill1 

clliplic orllit m~ist be l i ~ t ~ n t l  Illat allow\ near ])criilpsis-to-pt.ri;~~>si!; trallsl'cr willlout excessive plane 

~.liartpr. 
Table 3.6-3. Mission Parameters Variations 

3.6.1.4 Mission/Transport:~tio~i Mocles and Operaliol~s 

= -  --. 
EARTH DEPARTURE AV 

MARS ARRIVAL AV 
(1000 KM CIRCULAR ORBIT) 

MARS DEPARTURE AV 
(1000 KM CIRCULAR ORBIT) 

EARTH ENTRY VELOCITY 

TOTAL MISSION TIME 

PLANET STAYTI ME 

3.6.1.4.1 Transportn lion Qlltions 

'I'lle principal transporlalion c;ulcliclates considc>rccl li)r lllc tllrcc tnqjor tnission velocity rcquirc- 

lllellts are as follows: 

An all nuclear sq'stcln (NNN) cot~sisting o f  tllruc soparate stages. 

3600.5000 M/SEC (1  '1,700-1 6,700 FPS) 

21 00.5300 MISEC ( 6,950-17,400 FPS) 

1900-5800 M/SEC ( 6,320.19,OOO FPS) 

11,500~18,300 MISEC (38,000-60,200 FPS) 

(OPPOSITION) (CONJUNCTION) 
460 - 1,040 DAYS 

(OPPOSITION) (CONJUNCTION) 
40 - 580 DAYS 

An all cllemical syslenl (('('(') using three separate L03/1,117 -, - stapes. 

o A cl~etnic~l/nerobrakii~g/clieti~ical syslelll (('AC') using a I,O .. ,/LlIq - stag(. for 'I'M1, aerobraking 

for M 0 1  and a L07/LI17 sl:lge for 'l'l:I. - +. 

The aerobraking portion ol' this vehicle is a cone-cylirlt1t.r-L1~1re tlesign as sllow~t in figuse 3.6-8, 

Enclosed within thc acrobraking conl'iguration is tllc nlission spacecraft ancl I'EI stage. A fixed 

deflection in the flare forces t l x  vehicle to  fly at an angle of attack consistent with the dcsired 

lift-to-drag ratio. 'The c1ircclio:l of' the lift vector is controllcrl by rollillg tllc vel~icle wit11 
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THERMAL I PROTECTION 1 =E CYLINDER 

17.0 

(3.5) 

LI FTIDRAG = 1.0 

M/CDA = 3930 K G / M ~ { ~ o ~  LBIFT~) 

"E = &&I MPS (22,500 FPS) 
MARS VM - 8 ATMOSPHERE 

CI RCULARiZATlON A V = 288 MPS (920 FPS) 

I 

figure 3.6-8. Aerobrakir~g Configuration Characteristics 

FLARE 

30.0 

(6.2) 

BASE 

9.7 

(2.0) 



reaction jets. 'lllia nosc', flare, ~IIIJ lower Ilall' of 111s cylinilcr arc. protcclcd hy ublatiot~ nlaleriill. 

'I Ilc* upper 11;11f ol' Lllc cylitliler ant1 tllc husc ol' tile Ilarc arc ~~rotectcr l  Ily Kcae' 4 1 railiution 

rl~atc*rjal. 'l'llc ilverayc unit wcigl~ls arc i l c t c r~~~ i~ lcc l  lor tllc col~ditions hllown. 

I'lle only l 'ar t l~ Iauucl, vellicle consirlerctl is a IILLV using ~noilificd cotnpononts of  tlte slluttle. l l l c  

space sltuttle woulil [ransport crews am1 sirpplies rluring the space vel~icIc ~ ~ s s c ~ n b l y  ~ I ~ I ~ I s c .  

3.6.1.4.2 Reprcse~lltltivc Tr~nspor ia i ion  Mocle tlnd Sysle~il 

3,6.1.4,2.1 Tnlssportstion Secluencc 

'l'yl)ici~l scclucnces and operations i~ssociiite~l will1 a11 all nuclear tmnsportution system are illustraletl 

in 11~~1re  .3.0-C1. 'I'llr: principal pl~ascs cluring the rnissioll include I'artli orbit operations, I'arl11-Mars 

transit, Mars operrltions :lncl Mars-Eurtl~ triinsit, 

1)ilring tllc Iiartll orbital operrition 11liasc the mission spacecraft will he clcliverecl to orhit with a 

IILLV. Delivery OK seven nwc1e:ir propulsion nioclulcs tutti two drop  1;inks and two fuclil~g t a ~ ~ k e r s  

will ctr111pIete the assembly and fi~elitig of tlte m;utncrl Mars sp:loe vehicle. Iluring the last few weeks 

of this pllrtse, tlic lnissioli crew will Itc tle1ivert.d to complete tho clleckolit of  the vcl~ic!~.  

'I'lic 1:arlll-Mars tr;ltlsit pl~ase consist\ of linrtll orhit clcpi~rture, mitl course co r r cc l io~~s  and illjcction 

inlo ;I l~igll Mars orbit using Illc sce011d 1111~I~itr strtgc systc111, 'J'llis I ~ L ~ C ~ C ~ I S  syste~ll is je t t is~ne(l  ; I I I ~ ~  

the vcl~iclc triinsl'crrcil tlown to a lowcr operational orhil. 

Mrtrs orhit opcrntions it~cluile I;~ilncll of unrn:~nnetl probes to assist in sclccting the Ml'M lancling 

site, t11c 30 day excursion of' tlie MItM to tltc st~rlilcc ant1 launcl~ing ol ' i~nt t~annet l  scicntil'ic probes. 

Mars-1:arlll Iratlsi t consists oL' tlcparlure f r o n ~  Mars orbit using tlte Iilst nuclear st:lpc, inho~lnil 

~ t r i t l~o t~ lve  corrections itnil scalxtsatiott o f  the IJarth entry nloilulc i~lcludinp tllc crew ajq>roxi111:1tely 

otle clay I)cSore scl~ctltrlctl elltry. S11r)~rlcl ii high speed re-elltry not he clcsirt.rl. a storahlc propulsion 

systeni coulcl be i!seci to place a stnall ~na~ ine t l  vehicle Ixlck into I:artli orbit where retrieval coi~lrl he 

accomplisl~ecl with llle Sl~utt lc .  

IJsc of an all chea~icrtl transportation systctli woultl rcsult in generally tllc salne operatioas as for the 

all nilelear system. 

3.6.1.4.3.2 Transportation 

Piiran~etrics were not tlevelol~ed, Sizing li)r the options is co~llparerl in paragrap11 3.0.1.4.3.2 



262 N.M. 
EARTH ORBIT a - 

/ 

* DELIVER TEI STAGE 
DELIVER DELIVER ASSEMBLY TO ORBIT WITH HLV DELIVER MOI STAGE 'TO ORBIT 
UNMANNED AND CHECKOUT CREW 
SPACECRAFT TO 

WlTH HLV, ( 2  LAUNCHES) 
WlTH SS 

ORBIT WlTH HLV 
DOCK AND ASSEMBLE 
TEI STAGE TO 
SPACECRAFT 

CHECK OUT SUR- 
ASSEMBLY 1 

FOLDOUT FRAME 



EARTH.ORBIT OPERATIONS I---- 
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Figure 3 .6- 9 Manned Mars Landing Mission Nuclear-Nuclear-Nuclear (Sheet 1 )  
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Figure 3 -6- 9 . Manned Mars Landing Mission Nuclear/Nuclear/Nuclear (Sheet 2) 
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MARS OPERATIONS 

Figure 3.6- 9 Manned Mars Landing ~ission-Nuclear/Nuclear/Nuclear (Sheer 3) 
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Figure 3 -6- 9 Manned kjars Landing Mission Nuclear/Nuclear/Nuclear (Sheet 41 



3,6,1.4.2.3 Operc~tioaal Factors 

Missio~i Profiles--1'roSilc tlatn were summarized ill paragrap11 3.0.1,3.2.3, 

Crew Involvement and Timelines ('sew involvc~neni will simplify t l ~ c  M;~rs orhit rcnt lo/vo~~s 

rcquirecl a t  tllc completion of tllc srlrlhce missions. ('rcw Lilncliaes clo not hovc i111y ids~tliSietI el'l'ect 

on i1~1nsportalion rcqi~irements. 

Colitrol Functions al~cl Requirements- I'recision nl~vigation ant1 targeting arc required for triuls-Mar5 

illjeclion; Mars orbit inscrlion; Mars lantling, ascent, ancl rcntlczvot~s; trans-llartli ili.jcction: ant1 

Earth en t ry  ancl Inncling. 

Network Support--'I'l~c ~nanned Mars lancling ~ l~ iss ion  will tlemtlntl ill least claily network support 

tluring the  transplani coast phases, prinlurily to  monitor systenls sltttus c~ncl alert tile crew to  il~ly 

needed corrective action. Conlinuous support, cxcept for comm~unicatio~is blackouls i l ~ ~ c  to  

occultation by M;xrs, will be ~leecled cluring the Mars slay. Communications proceclurcs must de:ll 

with the 2 0  to 30 mini~te  signal roiultl trill time cleloy froni Iiarlli to Mars and back. 

3.6.1.4.2.4 Earth h u n c h  Requirements S u ~ n ~ n a r y  

Earth launch requirements are comparccl in par:igr:ipli 3,O.I .4.3.3. 

3.6.1.4.3 Transportation Options Co~npar i so~i  and Evaluation 

3.6.1.4.3.1 Alternate Sequence Description 

T l ~ e  CAC mission sequence is illustrated in figure 3.6-10. Tlie major cliffere~lce in this sec]ut.ncc I \  

the use o f  aerobraking for the MOI maneuver. The lnost sig~lific;int propulsive mancilvcr tlr~ring t l ~ e  

MOI phase would be the tr~lnsfer from the entry altit~ltle up lo  the operational altitudc 01' I 000 km 

(540 11. mi.). 

3.6.1.4.3.2 Size and Performance Coml)orison 

Performance capability of the candidate transportatioll sys te~ns  Ilas been ol~t ,~inct l  from Booing 

IMISCD study. The comparison of the initial niass in Earth orbit (IMIl3)) for three 1nis4on cl:~sses 

is shown in figure 3.0-1 1 .  The oppositio~l lnission has the shortest t l~~ ra t ion  but tlic highest etlcrgy 

requirements. Conjunction and Venus swingby have fairly comparable energy requirements lor  

many mission opportunities but the swingby mission has a duration of 600 days versus 1,000 days. 

In all missions, the all nuclear systenl results in a sigl~ificant reduction in IMIEO cornparetl to tllc all 

cl~emical system, However, shoultl a ~ ~ u c l e a r  program not be undertaken, the aerobraking concept 

provides a reasonable IMIEO for the opposition nlission with chcmical propulsioli. 
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Figure 3.6 10 Kanned Mars Landing Mission-ChemicaljAerobraking/Chemical (Shfet 2) 
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- 

Figure 3 .6- 10 Manned Mars Landing Mission-~h~~ical/~erobraking/Chemical (Sheet (3) 
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C O N D U C T  ORBITAL SCIENCE 

l LAUNCH SCIENTIFIC PROBES 

l COLLECT SURFACE DATA AND 
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MARS - EARTH TRANSIT OPERATIONS 

PHASE TIME 
I I I 

21 G250 DAYS 
i 

< I  DAY 

CUM TIME 
I 

460-550 DAYS 
@ (EXCLUDING EARTH 

ORBIT ASSEMBLY) 

Figure 3 -610 Manned Mars Landing Mision-~emiwl/Aerobraking/Cher17ica/ {Sheer 4) 
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SPACE TRANSPORTATION SYSTEMS 
Figure 3.6- 1 7, Manned Mars /M/EO Comparison 



Siligle stage LO,/LI-19 systenis from the <;SS and lunar programs appear aclaptable for manned 
LI & 

planetary missiol~s since their average mass was npproximately 272 700 kg (600,000 Ibs) resulting in 

;I typical cluster of six moclules for TMI and off-loaclilig onc motlule erich for tlle MOI and Tlil 

st;lges. The liuclear stage sizes for GSS and lunar Ijrograms are equally adaptable but tlle nucle:ir 

systems were juclgccl t o  be of cloubtfill prricticnlity for t l~osc missions. 

3,6.1.4,3.3 Earth Lailrlcll Requirements Comparison 

The number of HLV luunches required to delivet. tlie manned planetary space vehicle to Earth orbit 

is shown in figure 3.6-1 2. lnclilded in this quantity of launclles is that recluired for the mission 

spacecraft since in the aerobrciking concept this unit is consiclerably heavier than the missiol~ 

spacecraft for the all-propulsion mocles due to  thermal protection. Only the HLLV llas been 

considered for laiulching tile system elements altlloilgll space shuttle would be uscd to deriver 

crews/supplies to orbit. 

3.6.1.4.3.4 Operational Comparison 

An operational comparison was not developecl. 

3.6.1.4.3.5 I'racticality Assesslnel~t 

Tlie nuclear system requires development of a unique propulsion tecllnology and system (the 

~uiique technology was demonstrated by the ROVERINERVA nuclear rocket program) that may 

liave no other practical uses. Thus its efficiency relative to the chemical system must be evaluated 

with due consideration o f  the potential differences in unique development costs. 

The chen~icaI/aerobmking (CAC) system requires dependence on the large aerobraking device; i t  

cannot be practically demonstratecl excepting possibly tllrougll a subscale automated mission. (The 

same ol>jection can be raised for the MEM and could have been raised for the Apollo LM). 

The all-chemical system requires assembly of a comparatively massive system on orbit but otllerwise 

appears quite practical. Large Eartll orbital or  cislunar stages are applicable t o  the trans-Mars 

injection maneuver if they are designed Tor multiple clustering, but  would require modification to  

reduce boiloff for the maneuvers at  Mars. 
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Figure 3.6-12- Earth Launches Required for A Manned xars Mission 



3.7 AUTOMATED LUNAR EXPLORATION I'ROGRAM 

3.7.1.1 Mission Summary 

1T1e progam ol7jective is ~~nniannetl  exploration of the lunar w~rf i~ce ,  including 11igli l t ~ t i t ~ ~ d e  and 

bocksitlc regions, wit11 the followi~lg ct~pnbilities: 

S~lrl'acc 111obility ( lo~ig  duration traverses) 

1)eployed science stutiotls (extension of ALSIPS net) 

Sample return (of nlaterial collected on trtlverses) 

Bro:idband scie~ttific observalion of  the total lunar surf~lce. 

Figure 3,7-1 shows general operatiollal features of the various program Ilarclware elenlents, 'The 

scierrce satellite is 1oc;itccl in polar orbit: it rcleases a subsatellite into the same orbit. A b;~cksirle 

l a n d ~ l ~ g  and a traverse by  a deployed rover are also slzowt~. Cornmul~ications duritlg backsidz 

operatiolis are relayecl by a "llalo" orbit satellite, Science stations are set out by tile rover, wllicll 

perfonns various scientific functions including sample collcctio~l during the traverse. Sainples are 

brouglit by the  rover lo llle return systenl mou~lteci on thc lat~dcr platform; a deprtrture to B:~rth by 

tile salnple returll is sllown. 

3.7.1.2 Mission - Syste111s Description 

3.7.1 -2.1 Mission Options 

Not applicable, 

figurc 3.7-2 sliows tile general arrangement of the orbital spacecraft systems used by this program, 

along with their Inass anel volumes. 'These volumcs correspo~ld to launch configurations. Antennas, 

solar arrays, etc., llave bee11 folclecl ancl storecl for launch. 

T h e  general cllaracteristics of  the lal~der platform and of  the rover and retilr~l system i t  carries arc 

s l lowl~ in figure 3.7-3. The delivery size SIIOWJI is for the composite package as prepared for laul~cll. 

' Ihe East11 atmospl~ere elllry return systern variant is pictured. Its weight is approximately 

one-quarter o f  thal of the Earth parking orbit return varianl; when that option is used a heavier 

lander is required. 

PR41CRDING PAGE BLANK NOT FII,Mm 



SAMPLE RETURN 

LANDER ARRIVAL 

DEPLOY ED SCIENCE 
STATION 

ROVER TRAVERSE 

LANDING SITE 

COMMUNICATI 
(HALO ORBIT) 

Figure 3.7- 1. Automated Lunar Operations 



CHARACTERISTICS 

FEATURES 

I 60 N MI  POLAR ORBIT I 60 N MI POLAR ORBIT I BACK-SIDE 

INSTRUMENTS 
OPTICAL SCANNER 

HALO ORBIT 

MODIFIED ATS-F 
USED I N  CONJUNCTION 
WlTH SCIENCE ORBITER 

MICROWAVE SCANNER 
MAGNETOMETERS 

PARTICLE A N D  
FIELD INSTRUMENTS 

DELIVERY SIZE 
M (FT1 

D x L  

DELIVERY MASS* 
KG (LB) 

WlTH GROWTH 
Figure 3.7-2. Automated Lunar Orbiting Payloads 

455 (1,000) 59 (130) 909 (2,000) 



'WITH GROWTH 
Figure 3.7-3. Automated Lunar Sample Return Payloads 

CHARACTERISTICS 

FEATURES 

DELIVERY MASS* 
KG (LB) 

Dl R ECT EARTH 
LANDING 

EARTH PARKING 
ORBIT 

DELIVERY SIZE 
M ( F T ~  ! 

D x L  EARTH PARKING lDRBlT 4.4 x 4 (14.5 x 13) 
C 

LANDER SYSTEM 

TRANSPORTS ROVER 
AND SAMPLE 
RETURN SYSTEM 

TERMINAL LUNAR 
LANDING 
SYSTEM 

732 (1,610) 

1,641 (3,680) 

DIRECT: 1,632 (3,590) PARKING ORBIT: 3,714 (8,170) 

DIRECT EARTH LANDING 4.4 x 3.4 (14.5 x 11) 

ROVER 

COLLECT SURFACE 
SAMPLE 
DEPLOY SCIENCE 
STATIONS 

489 (1,075) 

SAMPLE RETURN SYSTEM 

Dl RECT EARTH 
LANDING AND 
EARTH PARKING 
ORBIT OPTIONS 

411 (905) 

1,552 (3,415) 



'l'hcsc payloails tlcsignctl Lo he launclictl Lo liorl11 01-hit i~itcgr:~tecl with ;III upper (tlelivcry) stage 

and protcclctl Li.ott~ air lo;ttls by iI p:~yloatl sllrouJ or  cqttivulcnt, 

3.7.1.2.3 Crew Roti~tion :~nd Resupply Rcquircnicnts 

Not applicable. 

3.7.1.2.4 Tr:lnsfcr nntl Slorilgc 

Not applicable. 

3.7.1.3 I'r:~nsport:~tion Rcquil~cnlcnls 

3.7.1.3.1 l';~ylo:~cl 1)clivcry Points 

P:~ylo,trl ticlivery points arc lunar polar ant1 halo orhits I'or tllc orbilcrs, 'l'hc lantlcrs are dcsiguccl lo 

be rcleasccl at 8 kni (20,000 ft) ullituclc ubovc the lunar surface :~ t  a relative velocity of I 10  mlsec 

(360 ft/sec) or less. 

3.7.1.3.2 1':lyloacI 1)elivcry Options 

Not :~ppli~. t~hlc.  

3.7.1.4 Mission/Traospori:~~io~i Moclcs irncl Opcrotions 

3.7.1.4.1 Tr:lnsportn tion Options 

Delta V rcq~~i remcnls  arc as l'ollo\vs: 

Landers: l'art11 dcpart1u.c 3 1 50 nl/scc ( 10,335 St/scc): tlecclcra tion over lunar surfilcc prior to 

lantlcr release, 2 050  tn/scc (c),07S I't/scc). 

Polar Orbiter: I~artli  dcpartltrc 3 150 m/sec (10,335 ft/sc:c); orbit iliscrlioli 050  m/:;ec 

(3.1 17 I'l/sec). 

Halo Orbiter: Eartli departure 3 150 ni/sec (10,335 ft/sec); lunar I'lyby 1'10 m/sec (023 ft/sec); 

11310 orbit insertion 1 SO ni/scc (402 ft/scc). 

'Tllc pol:~r orbiter is williin the capability of shuttlc/lUS. The Halo orbiter is within tlie capability of 

sllitttle :~ntl a liquid IUS or  of shuttlc/solid IUS proviclecl tliat a s~iiall liquicl stage is added lo thc 

llalo orhilcr to perl'orrn lllc two stnall clclln v's in the lunar vicinity. 'l'lie lantlers arc within tilt 



c;ip,~hility 01' ,I sliultlc/I:ull ( ' ; ~ p i ~ ~ i t y  I'ug t I:("l') will1 lhc lug cxpenclrtl in the case of the larger 

lanclcr. Advancecl translxvlation systenlh as ~ ~ n a l y t c ~ l  by this study ilrc not rcquircd. A small O'SV 

~.oulJ  he user1 in lieu of  IIrS or I:('I ifrlchircrl. 'l'sansporlrltion ;~nalyscs were not colidiiclerl Ibr the 

au lor~~nt t i l  lunar ~nission ~ ~ x ~ ~ t ~ p 1  10 vtsrify tile abovc cal~;rhilitics, 



3 , s  AUTOMATE11 I'LANETARY PROGRAM 

1'1111 current slii~lllc traffic l~lotlcl li)r ui~to~natc'rl pnyloatls contains 14 missioli tyl?es, i~iclutlirig 

co111et flyby, usleroitl rentlczvous, Suturn orbiters, iI slnnll Mars snrilple rctitnl sys ten~,  and other  

advancerl niissions. Kii tller Illan at t c ~ i i l ~ t  to  Sorecast all possil~le o r  prol)nblc aclva~~cocl ~llissrons of an 

entire I ' i~t~lrc  unmanliccl progrutn, tlirec ~nissions wcrc scleclccl that arc represe~itativc of t l ~ e  degree 

of' tcclinology atlvanccmcnt alict ecluiprnenl size that tnay occul. in tllc tilllo period consiclored in tlljs 

stucly. 

'I hc ~ I I T L ' ~  ~liissiolls ~cIectet1 3s re~~resen1;~tive of si~cll  ;111 ; I ~ V ; I I I L ' C ~  IIrOeriIlll are 

e A large Mars sample return systcnl 

A Ji~piter  13uoy:lnt I'l'obe 

A (;unyinctle L,antlcr 

'l'l~cre arc' 110 pri~lcil>;~l r e f c r c ~ i ~ e ~  for tllew rilissions, altliougli thc su~iiplc return mission has many 

sitnilarilics l o  tllil zl~ultlc tr:~fSic ~noclcl saniplc r c l ~ ~ n l  mi5sion. 

3.8,1 MARS SAMPLE RETURN 

3,X. 1 , l Mission Summary 

3.8. 1 . 1 . 1  Gencrai 1)escription 

'I'llc mission goal is exploration of the Murtian si~rl'l~cc with retur1i of 10 kg (22  111) of surf;~cc uncl 

atlnospllcre S;IIIIPICS. 

'I'lic illustration sllown il l  figure 3.8-1 is ol' ol~cralions on lllc 1C1;irti:ln surfrlce, 'I'llc l a ~ ~ d e r  stands o n  

its legs wilh lllc two rovcr r:~ti~j)s tlcl?loycrl, 011c roves is o n  [lit r;l~llj>; the scconrl is near tllc sr~mplc 

rctL1r11 systcr~l receptacle. 'I'liis rcccpt;~clc b r ing  lllc \ample canister to  its launcl~ locution in tlie 

r c t u s ~ ~  systc111 wllicli is 11io~11itec1 011 the 1:11ldcr. 'I'lle 1;11icIcs serves ;IS 1;1i111cll ~xld for the S ; I I I I ~ I C  

return asccn t stage. 

'I'lie lantlcr sllown carries two rovers to increase the probability of' ~nission success: n s a ~ ~ i p l e  call be 

obtnincri eve11 i f  one rover I'ails o r  is involvctl ill an accident. 

3.8.1.1 , 2  Mission Assumptions and Cotistraints 

Missioti assilmptions and constraints art. s~lmmasizc.tl in tuhlc 3.8-1. 





Dl 80-1 8768-1 

Table 3.8- 1. Mission Assumptions and Constraints 

3.8.1.2 Mission Syste~iis Dcscripiion 

3.8.1.2.1 Mission Options 

Two nlodcs o f  samplc return were cotlsitlcretl: 

Direct liartll atmospheric entry by a sealccl capsulc (note: quarantine rcquircnients may he 

imposed on this missioti. 1 

Mission 

Mars 
Rover 
with 
selected 
sample 
return 

Return to  an l;.artll parking orbit for rclricval by a vclliclc sucll as the space shuttle 

Two l~lissioll i>rofiles were considcretl: co~ljunction (slow) ant1 opposition (fast) profile typcs. 'l'his 

leads to a total of four mission options. 

Objectives 

Investigation of numerous 
Mars surface features on a 
continuous traverse, 
collection of selected sample 
and return to earth 

Figure 3.8-2 sllows the fotu options that result from the lsasic possibilities of slow o r  fast mission 

return anrl Earth pl~rki~ig orbit o r  I'nrth attnosphcric entry, Slow rcttrrn cases the propulsion 

reqi~ircnient but incrcascs the opcrotional mission period: this has a possible impact on reliability. 

Mission Assumptions and Constraints 

On-board avionics to permit semi. 
autonomous operation 

Navigate to selected Martian 
coordinates with path-adaptive 
guidance for oatacle avoidance 

01 Communications through relay satellite(s) 
C / )  Sample pickup for observation; 

optional return to earth up to 12 kg 
Automated biological laboratory 
All-weather descent capability, or hold 
provisions in orbit for suitable weather 

3.8.1.2.2 I'nyloacl Description 

'The satnplc reli~rti  propulsion systetn is here considcrcil as a payloatl to permit sizing of  the landrr 

system ond tleterminatiol~ of  tllc l>hysical rclatiotlslxips to  tlic rover ;~ntl the sample handling 

equipment. ?'hc lander descelit engines and propellants are included for the sanlc reasons. 

Propi~lsion systellls werc hnscd o n  Iiartll-storable propellants, Isj? = 3 140 m/sec (320 seconds). 

Stage propellant mass fraction was varied with size and ranged from 0.84 t o  0.90. 

3.8.1 ,2.2.1 Sample R e t ~ r r ~ ~  Syste~iis  

I3otll sample retuni typcs will rcq uirc the ability to perfoml one o r  more miclcourse maneuvers to  



EARTH ATMOSPHERlC 
ENTRY OF SAMPLE 
CAPSU LE 

EARTH PARKING ORBIT 
FOR SAMPLE CAJ'SULE 

FAST* SLOW* 
RETURN RETURN 

MARS DEPARTURE 8.4 kmls 6.4 kmls 
VELOCITY (27,600 FPS) (21.000 FPS) 

EARTH ARRIVAL 1 1.9 kmls 11.8 kmls 
VELOCITY (39,000 FPS) (38,500 FPS) 

FAST* 
RETURN 

5.4 kmfs 
cABuLE J17i7W F P l j  SAMPLE 1 

SYSTEMS 

4 EARTH 
ORBIT 
STAGE 

EARTH ARRIVAL 
SAMPLE 7 

SYSTEM 

HEAT 

MARS DEPARTURE 
STAGES 

'FAST, 13W RETURN 
SLOW, 260d RETURN 

T r  
Figure 38-2. Mars Surface Sample Return Options 

SLOW* 
RETURN 

6.4 krnh 
12 1.000 FPS] 

4.4 kmfs 
(14,400 FPS) 



enstrrc accul.;rte arrival a t  I(ar.tlr. ('onseclttcrrlly, t l ~ c  rc~trtrriirig payloatf iticl~rdes tile Ibllowing 

c;~p;il~ilitit\s: 

I r;~c.king hdacon 

( 'OIIII I I ; I I I~ recepli011/~lec0~1~ 

@ Atlitutlc rcfcrcnce systcnl: i~lcrtial 11lus stelli~s/solar 

I'ower supply for the ahovc (solar cells plus battery) 

, l t l i l~itle co~l t ro l  

Start/slop vcr~licr cllgi~lc capacily 

I:nvisonn~enLal control 

'I'llc I~~asl11-cntry optiou require!, a tl~crmal-proluclioll system (Ileal sllic*ltl), drogue, ant1 main 

pnracl~utes, flotation systcln (even if aerial rclricval is basclincrl), ant1 recovery aids. 'I'ahle 3,8-2 

Table 3.8-2. Sample Return Systems Weight Summary 

"INCLUDES SAMPLES OF MARTIAN ATMOSPHERE 
**HEAT SHIELD WEIGHT ESSENTIALLY CONSTANT FOR RETURN 

TRIP TIMES OF 100 DAYS OR MORE 

COMPONENT 

r 

SAMPLES" 

CONTAINMENTJCORE TUBES* 

HATCHJACTUATOR 

GUlDANCE/NAV./COMMUN ICATIONS 

ELECTRIC POWER 

ENVIRONMENTAL CONTROL 

ATTITUDE CONT./MIDCOURSE 

AEROSHELLJOTHER STRUCTURE 

PARACHUTEJRECOVERY AIDS 

SYSTEM TOTAL 

EARTH ATMOSPHERE 
ENTRY OPTION 

KG 

10 

2 

1 

15 

10 

5 

20 

45'" 

32 

7 40 

EARTH PARKING 

LB 

22 

4 

2 

33 

22 

11 

44 

99 

71 

309 

ORBIT 

KG 

10 

2 

1 

15 

10 

5 

25 

20 

2 

90 

OPTION 

LB 

22 

4 

2 

33 

22 

11 

55 

44 

4 

198 



?111111111i1ri/er ~~ \ t i~ l l ;~ t c r l  w c i ~ l ~ t \  li)r tllese rys te~~ls :  tile l ' i~r t l~  l~arking orbit option systcn~s i1rc 

i t ~ t w r i ~ t ~ t l  ~ i l l i  till3 prol)illsio~l ryhtcrli r l ~ o w ~ ~  in I'ipi~rc 3.X-2 us tlic " l* i~ r t l~  orhit .4tugc." 

3.8. I .2.2.2 I i o b c r  ('ollcctio~i Syslcn~s 

:I rt)\i1r \Y\[~'lll Wilr ~ ' 0 1 1 ~ ~ ~ 1 1 ~ ~ ' ~ ~  ~ ' ~ 1 ~ ) i l ~ ) ~ e  01' IOllg rilllge trilVVr5Cs ;llltl h ~ l l l l ~ ~ ~ ~ '  ~ O ~ ~ ~ ~ ~ i 0 1 1  f~Oll1 il L'LIllgC t)f 

hfilrtl i i~~ \ I I S ~ ; I L ' ~ ~  I ' L ~ ~ I ~ ~ I S L ~ \ .  S~IILVL* c o ~ ~ ~ ~ ~ ~ i ~ ~ ~ i c i t t i o ~  (hliirs/l; i~rfl~/Mi~fi) will always he a1 Icnst 8 n;inutcs, 

1111~ I o \ ~ r  I \  sr'lni *;~i~follol~lollr.  1~1-i111arilp ill file itrCi1 01' ohstilclc~l~a/i~rtl  rr-cog~~ilion ant1 avoitlance. 

I lii\ 1oki1r I ~lli~stritletl 111 t'ig:~ro 3.X-3; it wcbiglit sloLe111c111 ir giil!n ill tal)lc 3.8-3. 

Table 3.8-3, Automated Surface Vehicle (Rover) Mass Statement 

3.8.1.2.2.3 Mars La~itli~ig Systctii 

'I'lle Marliaa :~tmosphcre (siuS:~ce pressure 1 O ~ I I / M ~  % I 0  mb: scale height -? 1 1 km = 3.0 x 10 4 

ft all:)ws paracl~ute tlccclerotion of lanrling l~ayloads. Sitpersonic drogues ant1 extremely large main 

prtrac11tltc.s nrc involved. ?'he Viking System ( 1 000 kg [2,200 lb]  ) is l?robably representative of  :i 

m a s i m u ~ u  practical parucllutc systcm, Landing weights for this program are as high as 10  000  kg 

(22,000 117):  tllcrefbrc, par:~cl~utcs are not ass~uncd to be practical. For  a planform loading of 300 to  
7 

100 k g l ~ '  ( 0 0  to  80 Il,/St-) and 21 tlrng coefficient of 0.9, terminal tlescent velocity of an "Apollo 

shape" will hc  :ipproxilnately 500 m/s (1,100 ft/sec), a reasol~rible rmge fo;: rocket tlecelernlion. 

I;ig~lrc~ 3.8-4 i\ it11 all-inl>oi~rtl p~~ol'ile ol' suc l~  a Inllrlcr: i t  incorporates a thrcc-~. :~gc ;scent systeli~ for 

Lllc I a1 th orhi t r c l L ~ n ~  option, 

I- 

Item 

Mobll~ty and structure 

Power (RTG) 

G&N 

Communic,dions 

Data 

Science 

Total 

Ilttring t11e I'illal tlescenl :11'tcr tllc entry heat pulsc. tile hnsc heat sl~icltl is jettisonccl. exposing t l ~ c  

11ozzler of tlicl l;mlling engine\. iuntl llle liintling gear legs arc tleployctl. 'l'lle 1:lntling engines, 

Iliiotlling ;I\ ~ e ~ l \ t i r i ~ t l ,  11rc ilipul\ I'rom ;I 1)clpl~l~r  radar and lligllt contsol system to bring tllc lander 

l o  ; I  4011  ~Oll~ ' I ld0~11.  I I1C l;llltle*r \r'l.V~*r ;I\ 1;11111~~l 11;lti for the ;lscellt Stage. 

300 

Mass - 
kg 

17 1 

259 

3 1 

36 

31 

8 1 

609 

Ib 

377 

57 1 

68 

79 

68 

179 

1342 
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Figure 3.8-3, Mars Rover Vehicle 
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Figure 3.8-4. Mars Samplrz Re turn ,Cystem 
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3,8.1.2,2.4 M;~ss Stlmniory 

I i ~ l ~ l c  3.X.4 is il Inass \n1lllllilry OS t l l ~  lanrlcr incl~ttling all l~i~ylofid items. 

Table 3.8-4 MSR Mass Summary 

3.8.1.2.3.5 C'omparison of Options 

I'llia Sous 1l i i~4oli  ollliotis tIcsc'ril>i~d rcs~11t it1 it wide r;1111:e o f  I:1nrler (pny1o:ttl) 11lasst.s anti sizes. 

I llc\c arc1 coll~pascil ill  talllc 3.8-5. Mass vi11:tcs rlo not incli~rlc growtll allow:~nccs. 'l'hc I'artll parking 

o r l i t  rclurn. fils1 11iission option res~tItcd ill ;t11 ~ X C C ' S S ~ V C  III~ISS i111r1 was rIro11pcd hrl l l  S I I S ~ I I C ~  

co~isitlcra t ion. 

Table 3.8--5. Masses of Sample Return Options 

Item 

Sample system 

Earth parking orbit stage 

Ascent vehicle system 

Rovers (2) 

Lander inerts 

Lander propellants 

Total - 

3.h.  1.1.2.6 ('sew Trilnsfes nlitl Rcs11pl)ly 

Not i~policill~lc.. 

Mass 

kg 

90 

7 88 

13370 

1218 

5625 

5300 

26391 

Component 

Sample system 

Earth orbit systerri 

Mars escape system 

Rovers 

Lander system 

Total at Mars entry 

Lander dia, m (feet) 

Ib 

198 

1,737 

29,475 

2,685 

12,400 

1 1,684 

58,179 

Baseline system, described in text 
-.A. 

Earth Parking Orbit Return Earth Atmosphere Return Option 

Fast Return Fast Return 

kg 

90 

1488 

51685 

1218 

42120 

96600 

14.3 - 

Slow Return 

kg 

140 

- 
10920 

1218 

7195 

19473 

6.4 

Ib 

200 

3,280 

113,945 

2,685 

92,860 

212,970 

4 7 

kg 

90 

788 

13370 

1218 

10925 

26390 

7.5 

Slow Return 

Ib 

31 0 

- 
24,075 

2,685 

15,860 

42,930 

21 

Ib 

200 

1,737 

29,475 

2,685 

24,085 

58,182 

24.6 

kg 

140 

- 
2440 

1218 

3212 

7010 

4.4 

Ib 

310 

- 
5,350 

2,685 

7,080 

15,455 

14.5 
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3,s.  1,2.2.7 I'Eckul) I'oints i~ntl Trnnsl)ort;llio~i Constraints 

'I'liesc payloi~tls arc dcsig~lctl to hc launcllc.tl irilcgratctl wit11 a tlelivcry ~~ropuls ion  stage nritl 

protcctctl ti.o~n l~art11 osccnl ;~crorlynatnic lontls. 

3,s.  1,2.3 Tr;insfcr ilnd Stori~gc 

Not apl>licablc. 

3.X,1,3.4 0rbit;ll Assenibly Maintcn;rncc :inti Motlifici~tion 

Not al>l>licul>lc. 

3,8,1.3.1 I'ayloi~d 1)clivcry I'oinls 

'l'hesc ~>aylonds rcquirc tlclivcry Lo a circuli~r Mars ol.hit at 1 000 kt11 is30 nlni) nltitt~rle. 

3.8.1,3,2 1'aylo;itl 1)clivcry Options 

'l'hc Sour options tlescrihcrl arc slio\vn in lal>lc 3,s-0. Mass val~lcs inclutlc n 70 percent growtI1 

allowance on hartlwarc Inasses. 

'I'Iic 11e;1vic~t optiotl show11 is Sor ;I lantler larger than some proposccl for mi~nnerl si1rl':icc 

exploration, ant1 was not nnalyz,cil fl~rthcr.  'l'he s y s t c ~ ~ i s  sllowll hcrc provide for the total return to 

t3nrth. 'l'llc liglilcsl option is sizcwisc compalihlc with s l~ul t lc  la~~ncl i :  the others arc not. 

Mass :~nd tlclta V rcquircmcnts for tlclivcsy to Mnrs orhit arc summarizctl in table 3.8-7. 'l'hc 

payload dcl'incd ahove inclutlctl t l ~ c  snlnplc r c l ~ ~ r n  transportation. 

3.8.1.3.3 Oper;itioni~l Constrilinls 

Operational constr:~ints were n o t  spccil'icnlly invcstigiitctl. I'rincipc~l ones are the inf'reqi~cnt laul~ch 

opporltr~litics, approximat~ly 70-nlonth intcrvais, and trajectory aticl procedural constraints 

resul tine Ssotn planetary qu,~rn~it ine rcc[uircnicnts. 

3.8. I .4 Mission/Tr;~usl)ortntio~i Modcs ;lntl Opcra tions - 

3.8.1.4.1 Tmnsportiitioii Option5 

1,0,/L1I7 singlc stagc O'l'V's wcsc a.;sunlctl for [i:lrth rlcparture, and L07/MhfI1 single-stage OTV's - - & 

I'or Mars auiv;ll, 



Table 3.8-6. Mars Surface Return Options 

*WITH GROWTH 

- 
CHARACTERISTICS 

DIRECT EARTH LANDING RETLJRN I EARTH PARKING ORBIT RETURN - -7 

SLOW 

6 402 (21,000) 

4 390 (14,400) 

FAST 

VELOCITIES 
- MPS (FPS) 

MARS ASCENT & 
DEPARTURE 

EARTH 

SLOW 

6 402 (21,000) 

11 800 (38,700) 

8 415 (27,608) 

11 890 (39,000) 

FAST 

8 41 5 (27,600) 

5 396 (1 7,700) 
ARRIVAL 

PAYLOAD M A S  * 
KG (LB) 

@ MARS ENTRY 

PAYLOAD SIZE 
- M (FT) 

6 MARS ENTRY 
(0 x L) 

I 

I 

20 989 (46,000) 

6.4 x 6.4 (21 x 21) 

184 545 (230,000) 

14.3 x14.3 (47 x 47) 

5 636 (12,400) 

3.4 x 3.4 (1 1 x 11) 

28 455 (62,680) 

7.6 x 7.6 (25 x 25) 
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Table 3.8-7. MSR Transporra tion Requirement Summary 

3 I 4.2 Kc.prcscn(;, tivc l'mrrsport;rlio~~ Syslcms 

All i~rri\.al 5t;tgcs usc t l e l l ~ ~  ~ i r c ~ p t - l l ; ~ ~ ~ t s ,  I O~/tvIMII, with Is[> = 3 0 3 0  m/scc (370 scc). An nllowal~cc 

(>I' I(';) 111:s (320 l't/si~t*) for ~nillcu\lr.\c c;tlrahility is ~>rovirIcrl for Illis sti~pc. I;artll tlc\l>i~rtt~rc sl;~gcs 

usc 1,0~/1,111, Isp = 4 500 ai/scc (45') scc). M;iss Sr:tclic>ns arc b:~scrl on lllc slutlics of  orbil transfcr - .. 
uclliclc~s rlcst-rilrcll in Scclio~i 5. hli~ss ilali~ iinrl slnpv s i l i ~ ~ p  iIrtb su~u~ii :~ri lcl l  in (ahlc .Z.S-S, 

Table 3.8-8. Mars Sarnple Return Moss History Summary 

Option 

1 

2 

3 

3.8.1.4.3 ' I ' rnnsl~orl :~t io~~ Options C'oml):lrison :~ntl Ev;~lu:~lion 

0 l I 1 ~ r  ill tcrniltivcs wcrc no1 atialyzcil. 'l'hc lllrce inission ol>lions dcscrihctl i11.i~ all pr:lctic:~l in the 

scustX ol' I~cing williin Lllc c*;tp:~llilily o l ' t r ; t~~s~~or l a t i on  sys lc~ns  colnpnrablc lo  those rcquirctl for tllc 

il~iinucll gcosyncl~ronous a1111 liil~ar missions. I l owc~cr ,  I I W  practiculity o r  tlcsirnhility of nulomntcii 

Earth re tun^ Mode 

Atmos. entry 

Atmos, entry 

Earth parking orbit 

System Elument 

Mars Lander 
(Miss~on payload) 

Arrival stnge inerts 

Arrival stage propllant 

Arrival stagu total 

Arrival total 

Departure stag inor ts 

Departure stage propellant 

Departure stage total 

Total initial mass 

Mi~sion 

Fast 

Slow 

Slow 

Lalidor Mass Eartti Departure AV Mars Arrival AV 

20 700 

7 500 

18 400 

Opt~on 1 Option 2 

k8 

20 700 

7 965 

98 235 

106200 

126 900 

27 300 

314 300 

341 600 

468 500 

kg 

7 500 

960 

7 040 

8 000 

15 500 

4 350 

31 700 

36 050 

51 500 

Option 3 

-Xi---- ~b 

45,540 

16,500 

62,480 

Ib 

45,540 

17,560 

21 6,600 

234,l 60 

279,700 

60,200 

692,900 

753,100 

1,032,800 

lb 

16,500 

2,120 

15,520 

17,640 

34,140 

9,590 

69,900 

79,490 

1 13,630 

kg 

28 400 

2 900 

26 100 

29 000 

57400 

12 400 

1 1  1 700 

124 100 

181 500 

Ib 

62,480 

6,390 

57,540 

63,930 

126,410 

27,300 

246,300 

273,600 

400,000 

tnlsuc 

5 000 

4 300 

4 300 

ft/sec 

16,400 

14,104 

14,104 

mtsec 

5 400 

2 200 

2 200 

ftlsec 

17,700 

7,200 

7,200 



pla~letary rllissiolls requiring ~nultiplc I II,LV launclles is at least clul~ious. One of the MSSR options 

was well within tllc ciipal>ility of iI single 1II.I.V launcll. l 'hs  iclca of il MSSK mission in :I single 

II1.I.  V l a i t ~ l ~ l i ,  cnpahlc of  cxtetlclecl ~~ulomatccl surl'acc traverse a~ltl  sample selection, significatlt 

(c.p., 10 kg; 22 11)) sanlplc ret i~nl ,  n o  requirement for Mars orbit rendezvous, and compc~rc~tivcly free 

from stri~lgctit lllilss limits, iippcars attractive based o n  the limited examina t io~~  accomplishecl in this 

s t idy .  

A con~parison ilcross tllc t l~rce ai~tomalccl plonctasy missions is provided in paragrap11 3.8.4, 

3.8.2 JUPITER BUOYANT PROBE 

3.8.2.1 Mission Summary -- ----.--- 

3.8.2.1.1 Gcncr:11 1)escription 

'I'llis is tllc secontl of the t l~rec  nutomated planetary missions. Mission objectives are the i ~ c q ~ ~ i ~ i t i o n  

of data from thc region of tllc upper Jovian cloud system over one clay-night period (10 hours), 

with furtlier one-time data actluihition to  depths of at lcast 500 kin (170 n.tni.) below the cloud 

tops. 

l,ong tlirrittion nlissio~l dnta is collcctctl by a science plotihrm si~pportetl by il balloon. In the 

i l l~~stral ion (figure 3.8-5) it is just above the cloud tops; the moon lo is visible. 'I'he clcep probe has 

ji~st been rclcasctl ant1 will dcscencl into regions of  increasing pressure ancl tempcraliu'e. 11' relays 

tl;lt:l to the buoyant l~ rohc ,  for tsnnsmission to an orbital relay :111d thence to Eartll. 

It is possihle tllat tile .lovi:~n at~nosphesc is too violent (sl~c:i~s nncl gusls) to  allow opcrutiorl of a 

balloon. Alternative mecllanizations might be visualizetl. Clearly, acltlitio~lal clata on the planet arc 

~~cct let l  to  allow firm sclcction of :I clcsign approacli. 





3.8.2,1.2 Mission Assumptions i ~ n d  Constraints 

Mission assumptions ancl constraints are summarized in table 3.8-0. 

Table 3.8-9. Jupiter Buoyant Probe Mission Assumptions 

3.8.2.2 Mission Systems Description 

33.2.2.1 Mission Options 

NO1 ilpplicabl~. 

Mission Concepts-'rile basic principles of  this missiotl are as follows: 

An orbital communicc~tions rclay satellite is esta~lislletl in orbit around Jupiter; orbital scic~lce 

systems are includecl in its equipment complement. 

Assumptions and Constraints 

Basic probe principle of operations to be 
that of a buoyant probe which can be 
positioned at various levels in atmosphere. 

Probe to release a "free falling" hardened 
descent probe to return temperature1 
pressure measurements from up to 3. 

Probe to be released from an atmoshere 
entry probe. 

e Probelentry mission supported by relay 
orbiter 

Buoyant probe to operate for at least 
one Jovian daylnight period 

TY = 1980 

Mission 

Jupiter orbiter1 
probe 

A probe enters the Jovial1 atmosphere and- after deceleration cicscellds by parachutes at a 

velocity and to an altitude where deployment o f  a supporting balloon system can take place. 

Scientific investigations take place from this buoyant platfor111 for a period of at least 10 

hours; data are relayed t o  Earth through the orbital systpt?. 

Objective 

Investigate conditions in Jovian 
ionosphere and atmosphere at 
various depths 

A deep descent probe is rcleased from the buoyant system t o  gather information from dcptlls 

up t o  500 km (270 nmi) below the buoyant probe. Data are relayed through the  buoyant 

probe and the orbital system. 



Uuoyant Syslc~ll 'I'llc balloon porlion ol' the 11uoy;int syslc~n was illustraletl in 1:igure 3.8-5, Wllen 

inflater1 lllc balloon is 30m ( 100 1'1) in tliamcter. 'l'llc b:tllooll is Sillctl with ambient ;~ i r  thnt is I~erlted 

in the Ileal excllanger sllown. '1'11s Ilcr~t source is tllc Ilytlrogen of tllc Jovinn atmosphere (82% 

Ilytlrogc~l by weigllt), 'l'llis is b u r ~ ~ e t l  will1 liquitl oxygen brought from 1:1rtll ill tllc I:irge t;illk SIIOWII 

within tllc probe. ('ombuslio~l prodiicts arc not allowccl to enter lllc k:illoon. 'l'lle aerosllcll ant1 rift 

li~irillgs ate jcllisonctl before hrilloon inflatioil wllile tlcscc~lt on the main p i i ~ a c l l ~ ~ l c  (20111 (85 f t )  

rlialncleri is i l l  pruccss, 

Orbital Systerli I:igure 3.8-0 sllows tllc orhital elcrnc~lt will1 tllc bt~oyunt probe (in its ctilsy 

;~crosllclli atlacllctl. 'I'ronsport~ition rcquircd for attainment of Jupiter orbit is not inclutletl, 'l'lie 

main comnlunlcalions anlenna tlionletcr is 3m (10  ft). Power is tlrawn froln all I i l l< ;  rtssembly. 

Ope~.ationnl Scqocnee I;igurc 3.8-7 sllows nlission cvelils vcrsi~s time. Initial Ilealing of tlle balloon 

requires approxit~lately 185 kg (408 lb) of LO,; .& tllercafter 45 kg (1 00  lb) arc consumed per hour. 

As tllc LO? .& is burned off, the system becomes lighter rind moves to  n higher altitude. Dropping o f  

the deep probe could be n real-timc tlecision; it is shown as occurring a t  the beginning of the  secolld 

Jovian day. Rctlt~ction in vehicle weight allows it to  rise a l~ove  the cloud tops. 



3m ANTENNA - 

ORBITAL SYSTEM *JUPITER ENTRY S Y ! ! , T E M e  

Figure 3.8-6: Jupiter Systerns 



PRESSURE ATWS ALTITUDE (EARTH 
(KM) FEATURE EQUIV.) 

- 0.7 NH3. NH4 
GAS 

CLOUD TOPS 
NH3 ICE 

NH4 SH - 1 H20 (ICE) 

TIME AFTER ENTRY, HOURS 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

F i ~ m  3.8- 7 : Jupiter Buoyant Entry Probe Events/7imelines 
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C'rctv Rotation illltl Restwpl)ly No t  al)plicahle. 

Murs Summary I iiljlt 3.Y-10 i4  a Ilia+\ suainiury. Note tliut ~nas s  growth allow;inces arc inclutletl. 

3.X.2.2.3 ' I ' r i l i l~ l ' ~~~  ~ l n d  Sto~ilgc 

Not ;ippli~-;iI)l~~. 

3.8.2.3 Tri~nsl)ortii tion Kec~~~ircnlcnts  
*- ---------- - --- ~- .------- 

3,8,2.3.1 Pnyloatl llelivery Options 

'I'lic Jupiter hi~oynn t probe requires tlelivery to ;un ellip tical J i ~ p i  ter synchronous orbit with a period 

of0.02 Ilours. !'ircular or l~i ts  werc cansidcrcd hut rcrluiretl cxtrclne dclto V's. 

3.8.2.3.2 P;lyloi~d 1)clivcry Options 

Not applici~l~lc. 

3.8.2.3.3 Opcr:~tion;il Constmints 

'I'ra~lsScr opl>ortutiilics for J~ ip i l c r  niissions occ t~ r  ;it clpproxitnately 13-nlontll intervals ant1 l;~sl 

i~l~oii t  20  clays. 

3.8.2.4 Missio~i/Tr;insl)o~~tatio~i Modes :inti Oper:~tions - -------- " ---- . -* - - .-. *- -- 

3.8.2.4.1 Tr:insporti~tio~i Options 

Alternillives wvsc  lot il~vtstig;iteii, 

3.8.2.4.2. Rcpresallative Transportation Mode n ~ i d  System 

3.8.2.4.2.1 Trnnspurtatioii Secluence 
1 ? 10 ' '111~ tlclivcry includes ;in Iinrtil ticparturc with a ( 1 3  of a t  Icnst 80 km-/see- ( (1 .8~1~10 ft-lsec-1 

rccluisi11.g ;I t l ~~ l t a  V of  ;111o~rl 0 500  nl/sc< ( 2  1.325 ft/scc) ant1 itljeclion inlo the Jupiter orhit with a 

delta V sc~cluirement of 0 1 10 m/scc (10,000 ftlsec). I:in2lly the atniosphere probe must be 

tlcorl)itt~rl with ;I delta V oS 000 tnl\cc ( 1 .OHO ft/sccj. 'l'he transit time to Jupiter associated wit11 the 

i~ l jo \~*  ( ' 3  i \  i1l3011t 800 to 000 tluys. ~lcpcntling on the particular mission opportunity, 

312 



Table 3.8-70, Jupiter Buoyant Probe Weight Summary 

DEEP PROBE 

BUOYANT PROBE 
SCIENCE/COMMUNICATION 

ELECTRICAL POWER (BAT) 

STRUCTURE 

TPS 

PARACHUTE 

BALLOON/INFLATlON SYSTEM 

ANTENNAS 

LO2 TANK 

LO2 
MISC./UNKNOWNS (20%) 

STRUCTLJRE 

TPS 

ANTENNAS 

SUBTOTAL 

SUBTOTAL 

ENTRY SYS7 EM 

AEROSHELL/FAIRING 

COMMUNICATIONS, ANTENNA 

RADIATION SHIELDING 

SUBTOTAL 

38 

12 

1 
65 

- 

ORBITAL ELEMENT 

SCIENCE!COMMUNICATION/ANTENNA 

ELECTRICAL POWER (RTG) 

STRUCTURE 

VERNIER PROPULSION 

MISC./UNKNOWNS 

84 

26 

2 

145 

SUBTOTAL 

TOTAL (NO PROPULSION) 



3.8.2.4.2.2 Tr:~nsport:~tio~i Siting 

l'litb AV'\ for t l ~ i \  ~lli\sion :ire extrcalely de~niincling. '1'0 obtain a "rcasonablc" I'arlli clcpartiirc mnss 

it li~pll ~ ~ c ~ r t i r r l n t l ~ ~ ~ c ,  \pi i~~~-\ to~iihIc.  propellant combination W ~ I S  ~elcctccl: c l ibor i~n~ (13711(,) .I i111cl 

okypen tlilluorirlc. Isp is l)rerlictcrl as 4 170 ni/scc (425 see). 

'I wo stage\ arc rcqt~irctl for tile above malicuvcrs. 'I'llc lirst stage proves 5.2 kn~/scc  ( 17,050 ft/scc): 

tllcs seco~~cl  provitlc\ 3.') ktn.'scc ( 12,742 I't/scc) for tllc prohc/lantlcr conibination, ;inrl Lllc~l 0,00 

l i~nfscc ( 1,008 ftlscsc) for tile I ~ I I I L I C S  cleorhit. 'I'lle velocity split between tllc st;lgcs is clio!;cn to yicltl 

minimum rliass for the total (tnhlc 3.8-1 1) .  Propell;~~il mass fractions are l~ppropriate to  a 

pressure-fell system. Somc avionic fiinctions are :~ssiuncd to  he providecl hy tlie orbiter. 

7 1 
'I'liis Illass is in tile Iiiryc 0'1'V class as rcgartls the I:,rirtl~ clcparti~rc l?laneuver, A ( I 3  of 80  km-/sccm 

1 1 
( 0 . ~ 0 ~ 1 0 ~ ~ )  ftw/scc-1 ( t r ip  t i~nes  of ;ipproximntcly 000  ,!,lvs) wil! , l q u i n  a start of wcigllt of 

approximately 350 000 kg (770,000 111) indicating u large ': ! 1' ,ss of 280 000 kg (030,000 Ib). 

Table 3.8- 1 7 Mass Summary for Jupiter Probe Orbit Insertion System 

3.8.2,4,2.3 Operational Factors 

0peraliot1;il fnclors were not analyzctl; no significant problcms are apparent except tllot launching 

Stdge One 
(Thrust = I50 000 N (33,721 lbf) - 

Inert 

Propellant 

Stage 

Stage Two 
(Thrust = 30 000 N (6,744 Ibf) ..- -.-.. 

Inert 

Deorbit propellant 

Main burn propellant 

Stage 

Payload 

Total 

OF7/U311(, L. A# propellants in tlie shuttle payloacl hay appears undesirable from the risk standpoint. 

3.8.2.4.2.4 L.:;lrtl~ Launch Rcquirc~iicn ts Summ:~ry 

Mass 

kg 

7 800 

45 960 

53,760 

kg 

1 300 

490 

6 530 

8 320 

2 420 

65 500 

Sixteen shuttle launches o r  Ibur III .1  V lat~ncllcs are requiretl. 

ib 

17,160 

101,112 

1 18,272 

Ib 

2,860 

1,078 

14,366 

18,304 

5,324 

141,900 



3,8,2.4.3 Trnnsportation Options Conrparison and Evnluation 

'I'his mission iippcors ptncticnl but requires u large tincl prcsil~ntlbly expelisive trarisportation systelii. 

'I'he missio~i appears quite clesirablc from tlie science sttindpoint, The large mass of this niissio~l 

results from the lligll orbit insertion ctelta V a t  J upitcr. Multiple-pass aerobraking, even if it took 

scverul nionths, might proviclc tl way to  rccluce tlie overall mass requirement by as mucli as a factor 
/ 

of  10, 'I'lie mission coulcl the11 be clone will1 two sliutllc launclies, 

3.8.3 CANYMEDE LANDER 

3.8.3.1 Mission Summ:~ry 

'I'llis is the tllircl o f  three tlutc tecl planetary missions. It was addecl a t  the request of  NASA 

Ilcarlquarters following tllc mitltern: hricfing. Mission goals are: 

1 ) <)rbital ohscrva tiall of' Ganymcele s ~ ~ r f a c e  

21 Soft Ituldi~lg, wit11 S ; I I I I ~ I C  collection and analysis, stereo TV, plasma pllysics, magnetonieter, 

seis~iiic instruments, 

Orbital mat ic~~ve~*s  liear Jupiter are I?:isccl on "Exploring Jupiter ruicl its Satellites wit11 an Orbiter", 

J, C, Bcckman, J. I<. IIydc, and S. ' * . ,lstroni~utics ii~icl  Aeronautics, September 1074. 

Tlie basic missio11 plan is to enter J ~ ~ p i t c r  space followillg a fliglit from Earth of ryproximately 800 
3 7 10 2 9 

days ( C 3  of 80 km-/seev = 6.XOxlO ft /sccU). A Ganymeclc powered swing-by maneuver is used 

to reduce tllc AV required at Jupiter arrival. A series of C;anytnc3dc fly-bys follow (Ganymede 

punips) retiuci~lg the orbital period (Figure 3.8-8). Four fly-bys take place before tile Inncling; rliore 

coultl be used, but wit11 tliminislling retiir~i.  A inruieuver summary is given in table 3.8-1 2. 

Table 3.8- 12 Orbit Maneuvers 

* Ganymede is at 15.0 Rj **  Orbiter i s  now in 14.4 day orbit, Ganymede period i s  7.2 days. 

315 

Orbit 
Period 
Days 

105 

43 

29 

2 1 

c I 

I 

Day Maneuver 

0 Jupiter orbit 
Insertion 
(powered fly-by) 

105 Ganymede pump 

148 Ganymede pump 

177 Gariyrrrzde pump I 198 Landing 

Spacecraft 
AV, MIS 
(FPS) 

1 190 (3,900 
ftlsec) 

0 

0 

0 

4 080 0 
(1  3,400 ftlsec) 

Effective 
h V  Savir~gs 
MIS (FPS) 

500 (1,640) 

500 (1,640) 

350 (1,148) 

300 ( 984) 

Resulting Perijovel 
Apojove 
(Jupiter Radii) 

1 4.011 66 

13.4187 

12.9162 

1 2.5152 

15.0/15.0* 



Figure 3.8-8: Orbital Maneuvers in Jupiter Space Pror to Ganymede Landing 

3.8.3.2.1 hlission Options 

Not apjllicahlc. 

Lintlcr Systcl i~ 'I'llc lanclcs system is basccl o n  the Survcyor vehicle, with the sol:u cell arrays 

~ . e p l i ~ c ~ ~ l  wit11 Ii'I'G's. Also somc changes in insulation are rcquirecl, resulting in a lllodest incroosc in 

wcipl~ t .  'l'llc o r l~ i l i~ l  ~ I C I I I S I I ~  is 11;1~ct1 011 t llc ~II ; I I I I ICCI  M:~ri~les Jupi tcr Orbi tor (MJO) 1 98 1 spnccoruf't. 

wilhoirt t l ~ c  propulsion package (since the proplllsion nlodulc tlcfinctl here prov~rles all AV).  A m a s  

stltnnlary l'or t l ~ c  lanclcr ancl orbitcr is presentccl in 1:lble 3.8-13. Tllc cotlfiguration including 

prol~i~lsioti package is illt~stratcil i l l  L'ig~rrc 3.8-0. 



Table 3.8- 13. Ganymede Rass Summary 

With lander only, does not include vertical terminal vernier provided by lander. 

"* With lander and orbiter. 

* * *  Power and communications through orbiter. 
**+*  Excluding Earth departure and midcourse propulsion. 

Component 

Lander inerts 

Lander vernier propellants and gasses 

Initial lander weight 

Orbiter 

Propulsion module inerts 

Propellant for Ganymede capture: 
AV* = 4 080 MIS (1  3,382 fps) 

Propellant for powered swingby: 
AV * * = 1 190 MIS (3,903 f ps) 

Total*""" 

kg 

310 

100 

410 

740 

400"*" 

2 200 

1 750 

5 910 

~b -'I 
1 

684 

220 

904 

1,631 

882 

4,850 

3,858 

13,029 



ATTITUDE CONTROL 
HRUSTER GROUP 

MAIN PROPULSION 
INE 9 x 103 N 

(2020 16) 

-- 

ANTENNA 
COMMUNICATIONS 
TO EARTH DIA = 3M 

740 kg (1630 Ib) 

Figure 3.8- 9 Ganymede Probe System Elements 



Crew Rdta tiori and Resupply-Not applicclble. 

Pickup Poitlts and Transportation Constri~itits-'The payload is designed to be launched integrated 

with a propi~lsion stage, and prolectetl from Earth ascent aerodynanlic loads, 

3.8.3.2.3 Transfer illid Storage 

Not applic:~ble. 

3.8.3.2.4 Orbital Assembly, Maintenance and Modification 

Not applicable. 

3.8.3.3.1 Payload Delivery Points 

Tile Ca~lynlcrle lancler requircs only itljcction to a Jupiter transfer. Successf~~l execution of the 

~nission plan dcpends on a slow transfer injection with Cg about 80  km21sec2 ( 6 . 9 8 ~ 1  020 ft2/sec2). 

requiring a departure delta V of about 0 500 ~nlsec  (2  1,325 ft/sec) including gravity losses, 



3.8.3.3.2 1';lylo:ld Ilclivcry Options 

Single-stage 1 . 0  ~ l 1 . 1 1 ~  i~rltl 1.0 ~IMMII O'I'V's were cx;l~llilled. - - - 
3.8.3.3.3 Opcmlionnl Constraints 

'I'ransf'tlr o p p o r t ~ ~ ~ i i t i c s  to Jrrpitcr' occur :tl?tttrl every 13 ~notltlls ancl lasl approxi~n:ltely 20 tlilys. 

3.8.3.4 Mission/Tronspostntion Modes and Operations 

'I'llc (;:u~ynletlc lanilel* system o t  5 01 0 kg ( 13,000 lb)  rcq~iices a n  L,O?/LII, - - OTV of  c~pproximately 

30 000 kg(7c),000 lb)  lo  deliver it to the reqi~irecl J~rpitcr tr:~tisl'er injcclioll, If 1111 L07/MMII - OTV is 

'1'11~. (;;t!iylnc.cle la~itlcr lnission with eitller o f  the 1ransport;ilion oplions appear pmctioal ill all 

respects. 

3.8.4 OVERALL AUTOMATED PLANETARY TRANSPORTATION COMPARISON 

Required OTV nlasses arc catnpc~retl in Figure 3.8-10. Several of the opt iol~s are seen to fall within 

tllc r311ges of requirements tleterlllillet! for tlle mannet! program options. Required n~ilnbcrs of  

l a i~nc l~es  arc. sunlm;ui.tetl in 12ig\vc 33-1  1 .  
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Figure 3.8-1 1. Earth Launch Requirements Summary Automated Planetary Missions 



3.9 NUCLEAR WASTE DISPOSAL 1N SPACE 

Iirotluclion of nucleiir energy by fission results i n  protlilction of  highly saelioactive wastes consisting 

of fission products and rntlioactive, mostly ~~onfissionnble isotopes created by liel~tron capture, 

N~iclear waste material is initially millions of times more radioactive than the parent: uraniilni. It 

decays, rougllly exponentially, t o  :I level below that of' the parent in about 10 million years, Tliere is 

no general agreement on the length o f  time requirerl for tlecny to a "safe" level. Listimates of  various 

alltiloss range Sson~ "hi~ntlrcd of years" to "millions of  years." 

A nunibe~- of n~ctllotls for pcrtnanent (i.e,, not requiring a continuing ~nonitoring program) tlisposal 

1l:lve been stutlietl. One of  tllcse is tlisposal in space. 

Tile power proclucecl pcr unit of  wclslc proeluct procluced by riuclear energy is large, lending to an 

econonlic leverage potentially large e i lo~~gl l  to  permit tlie cost of' space clisposal, Most studies of 

space disposal, in order t o  cnlic~nce the economics, have tlealt with refinecl w~istes (short-lived 

isotopes separilted out  antl lleld in monitoretl stor:!gc until t11e)t decay to safe levels). A system to 

dispose of tot;il waste would be clesirable if feasible. 

3.9.1 REFINED WASTE 

3.9.1.1 Mission Summary 

3.9.1.1.1 Gcneral Description 

N~iclear waste materials as normally processed colisist nlostly of inert non-raclioactive material. The 

rarlioactive components are principally fission products with half-lives of 30 years of less, These will 

decay t o  l~arnlless levels in less than 1,000 years. Also present in much snialler quantities are 

uctir~itlcs (named for the elcment actiniwn); they are the res~llt  of non-fission neutron capture by 

uraniilm and plutonium. Includecl are isotopes of neptunium, americium, californium, etc. These 

isotopes are conipamtively well suited to space disposal: the riiass t o  be delivered is relatively small, 

the isotopes are easy to shield, and importantly, these isotopes have very long half lives antl are 

higllly toxic. They present tlle principal challenge to disposal on Earth beca~lse they are Ilazardous 

for u p  to ten tilillion years, longer than safety of Eartll disposal rtlethods can be predicted with any 

confidence. Separation of  the actinides from the remainder of the waste material, packaging them 

suitably, and launching them to a space destination for disposal, comprises the baseline approacll of 

refined waste disposal. Figure 3.9-1 i l l~~strates  the concept. 



Figure 3.9-7: Orbital Deployment of Refined Waste Disposal Vehicle 



3,9.1 .1,2 Mission Assump(ions r\ncl Const mints 

Assulnptions ;ulil constraints arc prcscn tcrl in tekle 3.0- 1 . 
Table 3.9- 1. Nuclear Waste Disposal Mission Assumptions 

I Mission I 

remove from the Earth 
tho total U.S, production 
of radioactive nuclear 
actinide wastes. 

Objectives 
Effectively and sifoly 

confined between 0.80 and 0.90 astronomical 
unlts. Alternative option direct solar system 
escape 

Mission Assumptions and Constraints 
Destination orbit to be heliocentric. and 

Use waste production rate from nuclear power 
projections for 1985 (250,000 megawatts 
electric) to estimate traffic for 1995, i,e, 
10-year delay for processing and short-term 
storage. 

3,9,1.2.1 Mission Options 

'I'he use of o~.iliiiary chelnical propulnioll systems is the hasclinc approach, hasetl on studies 

performet1 by the 1,ewis Research ('ellter.. 

3.9,1.2.1.2 Electric Propulsion Utilizi~lg Occity Hen1 

'I'lie Marshall Space 1:Iight ('enter has contluctcd i\n inl\ouse study in coopertition with clen~cnts  of 

the Ilnergy Kcsearcll allrl I)cvelopment Agency (1llil)A) to tlcfinc 11 ctlntlidale system for ~ltilizing 

the decay heal of :ictitiidc wastes. 'TIic dcc:~y heat woi~ltl operate a lllennionic coilversion system to 

generate electric power to drive a n  electric p~~opulsion syste~il capahle o f  propelling tlle wastes froln 

a low Earth orbit to solar sys te~n escl~pc. 'I'llis optiotl was not c~nalyzed by this study c~ntl is not 

tliscussetl furtliel', A brief analysis of  the use of tlic ilecuy heal f son~  toti~l solidil'icd waste was 

perfornled. 11 was founcl that f11c energy content of  total waste is marginal. I h e  energy co t~ t en l  of  

(refined) actinide wastes is Illore than ten times greater per ~ u i i t  mclss tllall that of total wastes and is 

Inore tllnn sufficient. 

3.9.1.3.2 Payload I)cscriptions 

'I'lie cotlccpt sllown in I'igurc 3.0-2 wiks tlevcloped by the Lewis R~:scarcll ('enter t l i r o~~gh  inlloilse 

stutly. Waste is rcfilleil to  separate out tlic lolig Ilalf-life aclinides. Only tllese are Iri~mclied to  space 

tlisposal. 'Ille disposal package incorpor:ites entry and impact protection p l~ is  sufficient shiclcling for 

safe Ilan~lling and ~ ~ L J S C I ~ C I I .  It is tlicrefore potentially compatible will1 la~inch by an unmanned, 

non-intact-abort vehicle. 'I'he pclckage sizc slrown is representative; package sizc can be selected 

witlliil rerlsonahle lirrlits t o  matcll the transportation system, 
325 



RADIATION 
SHIELDING 

- IMPACT SPHERE 

BLUNT-CONE REENTRY 
BODY (HEAT SHIELD) 

WEIGHT BREAKDOWN OF TYPICAL 
NUCLEAR WASTE PACKAGE 
[SOLAR SYSTEM ESCAPE FOR ACTINIDES.] 

Figure 3.9-2, Refined and Shielded Waste Concept ' 

COMPONENT 

ACTINIDE WASTE 
MATRIX CONTAINING WASTE 
GAMMA SHIELD 
NEUTRON SHIELD 
IMPACT SPHERE 
REENTRY BODY (HEAT SHIELD) 

TOTAL 

*LEWIS RESEARCH CENTER 

MASS 
LBS . 

440 
1375 
2618 
396 

1408 
902 

7139 

KG 

200 
625 

1190 
180 
640 
410 

3245 



Crew Transfer irlitl I<c\sul)pl y N o t  applical>lc. 

Mnss Summary Not upplic;~blc. Kcpscscnli~livc p;ryloatl 111;1ss tl;11;1 ~ e r c  ~ ~ V C I I  ill (Igilrc 3.0-2. 

I'ickul) I'oinfs nlitl Tmnsportntion Conslminls 'I'llc payloc~tls arc tlcsignctl to he launcllctl lo  Ilartli 

orbit i~ltcpri~tctl will1 1llcs propulsion syslcms intcntlctl lo I~runcl~ Lllc payloiltls l o  Lllcir tlcslillatioli. 

3.9.1,3 Tr;~lisporl;~tio~i Requirenicnfs -- 
3 9 . 3 ,  I I';~yloi~tl 1)clivcry I'oinls 

Many altcrnalivc tlcSslination option\ (i.c., wllcrc to  sc~ltl the wastc) Ilcrvc hccn proposetl ant1 

rlisc'u\scrl. 'l'llc tlcstinirtion options sclcctcll as rc~~rcscnlativc arc a solar orbil a t  0.0 A l l  (hetween 

t l ~ c  I:arlli allti Venus) ;lnrl tlirccll solar system cscal>c. 'I licsc span Ilic range ol ' t lcst i~~at ion energies. 

Iligll 1:arlll orhits llavc. [~ccll p ropt )s~ '~I ;  tllcy require ahout tlle salnc energy us the 0.0 A l l  sol;~r orbil, 

Solar systcnl\ cscnpc hy Jupilcr Slyhy scqirires Irss energy Illan tlircct cscirpe ant1 Ilas been proposctl: 

in firct. tlic sp;rcccr,~St I'ioncscr 10 ant1 I'ionccr 1 1 arc o n  sue11 Ir;~jc~cloriss. I lowcvcr, tllc Jupiter 

la i~ncl~  wirldow is ope11 only during a 20- to 30-tlay pcriotl every 300 tlays, 'l'lic. trul'fic level requircil 

to 1rtilic.c this winllow while i t  i \  ope11 i \  very Iiigll, niaking si~cli  iI cotisitlcr;~tiw i l i i l> r i~~ t i~ ;~ l .  

3.9.1 ..3.2 P;lylontl 1)clivcry Options 

Not applicahlc'. 

3.9,1.3.3 Opcralion:~l Rcquiremcnls allti Conslr;~infs 

Non~inal operational rcquirc!niclits arc \talcti in table 3.0-2. 

Table 3.9-2. Operational Requirements 

Mass requirements 

Representative waste 
package - kg (Ib) 

Package size - -  m (ft) 

Rate requirements for 
250,000 megawatts power 

Packagestyr 

Masslyr - kg (Ib) 
( packages only) 

3,221 (7,150) 

2 x 1.8 (6.6 x 6) 

50 

163,636 (360,000) 



Sl)cciiil require i i c ~ ~ t s  exist rluc lo tlic I i ; i i~rdoi~s 11;1tlire of tllt ~ii;ittri:\l trinsportcil: 

I 1 ~ i l ) l i i *  c8xj)o\\lrc* l o  1 1 1 ~ ~  ~l)i~tt~riil l  11it14t Ire‘ prcvcrl trtl. 'I'llis is acco~tiplisli~il in [lie baseline syste~ii 

1)) lllcl p;lchi~pitlp 45- 41~*11i. 

Wa4te j)ai*ha~cs tiiu4t l>cl ul~tlc~r 4Lrict conlrol a t  all tiliics. lJ~inliini~ctl launch by a sinylc vcl~iclc 

ill~*livc~rirlp ;I l ) i i ~ * h i t ~ ~  lo orbit li)llowtil tlircctly by illjcc'tion to tile tlcstinnliun is pcr~iiissible. 

0pc1ratiorls l l~rougli i ~ ~ , i c ~ l i o ~ l  lo llic tlcstini~lion  nus st 1)c conlir~uoiisly n~oliilorctl and 

eontrollc3il to prcclullc inailvc*rtcllt re-entry ol' tile wiistc ~ruckapcs inlo tllc ;\tnlospllcre. 

3,9,1.4.1 Transl)orlatio11 Options 

Alternatives were 1101 ruiitly;lcd. 

3 9 4 Reprcscnta tivc Transl~orta tion Motle ;i11(1 Syste~ii  

1:igilrc 3.0-3 s l~ows tllc t r i i ~ ~ s p o r t a l i o ~ ~  scclilencc l i ~ r  llic L.cwis Rcscarcli ('enter concept Sot laul~ch 

to 0.0 All .  I:ipiire 3.0-4, sc*pciilerl li'oln tlic I.cwis Rcscarcli ('enter study, shows tlic transportation 

rcqtlcncc li)r soliir systern c'scapc (SSI:). ' l l ~ c  0.0 AIl mission takes o t ~ c  s l i ~ ~ t t l c  flight per waste 

l > i ~ c k ; ~ g ~ :  tllc SSI' t i~issio~i.  two. I'llc I'ull-capacity t ~ ~ p  Tor tile 0.0 AU tiiissiot~ can be rcusccl by using 

il solitl rocket motor liic-h rlagc for ~ I I C  solar orhi1 circuloriz;ttion btlrn ol' 1,700 tn/sec (5,580 ftlsec). 
7 7 7 >  ' 'I'llc 1t1g it~jects tlli* SKM ~ I \ I s  ~ ) i ~ y l o i ~ ~ l  to a (',3 OS 3.5 ~ I I I - / S C C -  (0.73 x 10 l'l-/see-), pcrfornls a 

rctso Iiiiillcttvt.br ol' approximately ,500 mlscc ( 1,040 ft/secl lo  bccotnc recnpturctl in Earth's gravity 

potential, nnrl iipon rc1turn to low orbit pcsigce pcrli)rnls a brakillg m:incuvcr of i~pproximatcly 

3,200 ~n/sc.c. ( I0,XOO l'tt'\ctr*) to circuliirirc in low orl)il. I f  tllc lug is cxjrc~~rlcd, it bur11s ill :I siliglc 
7 7 7 ?  ' 

1)ttrn to a (',3 of 2.5 km-kcc- (0.73 x 10 ft-/scc-) iinrl separiilts from tllc SRM/waste payload. 

' l ' i~ l ) l (~~ 3.0-3 i111tl 3.9-4 Ivcsent sccl i~c~~cl:  summary data for the 0.0 A U  (rcusrthlc tug) 311~1 SS1: 

1norlcs. 
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Figure 3.9-3. Nuclear Waste Disposa/- Lewis Research Center Concept 



SOLAR SYSTEM ESCAPE. VELOCITY . 
INCREMENT, AV = 9.16 KM/SEC (38,000 
FT'/SEC); TWO SHUTTLE LAUNCHES TO 
370 KM (200 N M I )  ORBIT (ONE SHUTTLE 
CARRIES PAY LOAD AND EXPENDABLE 
TUG, THE OTHER CARRIES REUSABLE 
TUG); TWO BURNS AT  PERI,GEE-; TIME 
BETWEEN BURNS, - 8 HR 

Figure 3.9-4. SSE Mission Sequence 



Table 3.9-3, NWD ll 
I I 

Event 
Time I /hrl 

Initial mass 

Inject with tug 

4 Separate tug 1 

Circularize at 0.9 AU 4350 

Tug mans at separation 1 

1 Retro burn I 1.2 

I Return orbit insertion 1 10 

ass History Using Tug (0.9 A U)  
Delta V I Mass Remaining 

3.9.1.4.2.2 Transportation Sizing 

Table 3.9-4. NWD illass History Using Common-Stage Mode for Solar System Escape 

Botll sccluellces clescriberl above mcltcll well with the nominal full-capability tug (FCT). If the tug is 

-- 

- 

expended on  the 0.0 AU mission, larger packages can be h a ~ ~ d l e d ,  resulting in a need for 

approximately 30 packages per year r;~lher than 50. 

Event 

Initial mass 

Boost 

Drop Stg 1 
Inject with Stg 2 

Drop Stg 2 
t Stg 1 + fuel 

Stg 1 retro into LEO 

3.9.1.4.2.3 Operational Factors 

Tllc nuclear waste mission requires protection of the public and the biosphere ill ge~leral from 

Time 
(hr) 

0 

0.5 

8 

8 

accitlental release of the waste. A thorough aiialysis of nuclear safety was beyond tile scope of this 

study. 'Tllc mocles seIcctc.cl were chosen wit11 the belief that nuclear safety requiren~ents could be 

accomlnodatecl, hut this was not dcnionslrated. 

Delta V 

'I lie 0.0 AU destination reql~ires a sccontl bum six n l o ~ ~ t l l s  after Earth tleporture. This ~nission 

M/Sec 

2,240 

6,920 

2,140 

Mass Remaining 

tllercli~re rc( l~~ires trackiilg of dozel~s of pack:iges at once. 'The SSE missiol~ requires no tracking 

Ft/Sec 

7,350 

22,700 

7,020 

Kg 

57 370 

28 624 

24 240 
5 970 

3245 

4 385 
2 725 

orlce thc cilcrgy for SSE is eslablisllecl. 

Lb 

12b,472 

63,105 

53,440 

13,161 

7,154 
9,667 
6,005 



3,9,1.4.2.4 Ei~rtli L ~ u n r h  Retli~irc~r~cllts Su~llnlary 

'I'llc 0.0 AU lliissi011 reqilircs 30 shutllc launcl~cs ailllually with tug expeilclccl or  50  with liig rciist.il. 

'I'he SSE mission requires 100 shultlc launches nilnually. I f  ti I1Ll.V is used, ahout one-fourlll c~s 

many lautlclics arc nceilerl. All these valucs i\rc 1~1scrl on the assumption of 250,000 nlcgawatls o f  

pcnerolion cup;~hilily. 

3.9.1.4.3 Tr:~nsportation Options Comparison and Ev;~luatiol~ 

('o~nparisons were not tlcvelopctl, cxccpl as tliscitssetl above, All llle options clcscribecl above appear 

practical anit ill1 c:111 be ilonc wit11 iI vcry 111odcst s11rcI1:1rge 011 electric power, less than $0.001 

( I i i ~ i l l )  j ~ e r  kwh. 

3.9.2 TOTAL WASTE 

,Z brief analysis of total wat;te rlispos:~l options was cnrriecl oil1 311d is reportetl in tlle appendix to 

this rcport. 



3.10 SATELLITE ENERGY SYSTEMS 

Two classes of  satellite systcms related to terrestri~il utilization of electric power have been 

proposetl : 

'I'he first is on-orbit power generation with power trallsrnissioll by miciowave benrn t o  an Earth 

1.eceivi11g station. Solar energy is col~vertetl to  clectricjty by the sateliite employing either of 

two conversion system options that llavc been analyzed, solar photovoltaic cells :~nd  thermal 

co11centr:ltor lielit engines. Figure 3.10-1 sllows the system concept. 

The second is on-orbit reflectors (power relays), for microwave beams generated by 

I'artll-basecl power anrl receiver1 by Earth-located stations near the power clistrib~~tion point, 

Note that this is a concept for power transn~ission, not gencrntiotl. 1;igure 3.10-3 shows the 

power relay concept, 

Tllesc systeins would normally be located in geostationary (geosynclironous) orbit, altllougl~ other 

locations have been proposecl. Allalyscs in this sturly llave been confineel to the geosynchronous 

location, 

The systems depend upon large-scale Iiighly efficient frnnslnission of energy by microwaves. This is 

tl~eorctically possible ancl preliminary feasibility expcri~ncnts have been encouraging, Analysis of 

~nicrownvc power transmission is beyoncl tlie scope of this study. 

3.10.1 POWER GENERATION SYSTEMS 

3.10,l . l . l  General Description 

Large satellites for collection ;,ncl  onv version of solar energy are to be placed in a geosynchronous 

orbit. Each satellite will be capable of rlelivering from 2 000 t o  20  000 nlcgawatts of electric power 

to  commercial lletworks through a ground receiving station. Most stuclies to date have consiclered 

either 5 0 0 0  o r  10 000  megawatt satellites. Microwave transmission link efficiencies 011 the order of 

7 0  percent have been predictecl; ass~uning that tllesc are realized, the electric power generation 

capability o f  the  satellite will be about 1.4 times the ground station output.  

Figure 3.1 0-3 shows the solar pllotovoltaic satellite concept p io~~ce red  by Glaser, el al; figure 3.10-4 

illustrates a solar lieat engine concept developed in Boeing IR&D studies. 



SOLAR POWERSAT 

ORBITAL POWER 

Figure 3.1 0 - 1  . Solar Power Satellite Concept 









3.10.1.1.2 Mission Assumptions n ~ i d  Constri~ints 

I t  is pcncr;tlly itssumeel tll;ll power s :~  tcllitcs must be c a ~ ~ a b l e  of protlucing electric powcr at  

commercially acccptn\)lc costs. A rcprcsentativc figure is $0.025 per kwh ill 1075 dollnrs. 'l'llis in 

tun1 11li1ces cost relatctl rcquire~ncnts on the satellites and their twnspor tn t io~~ systems. 

13cc~1usc of the comtncrcial nature of the systems tlcscribcd, it is assumeel tllnt powcr s~itcllitcs will 

he placctl o n  orbit a t  a sate equal to  tllc tlcmatlel for new plont capacity in tllis h r ~ n .  Various 

prc~jcctions have been made, r:l~lging fro111 less than one t o  several 10 000 megawatt s:ltellitcs per 

yeill'. 

'I'llc systems clcscrihecl are f~llly operational satellites. 'l'lle resulting program is quite large in scope 

I)y c o ~ ~ l p i ~ r i s o ~ l  to tllc olllers rcportctl in previous pages, A d c ~ n o ~ ~ s t r n t i o n  progr:inl, aimed at 

tlcvclopinp elllcl tlcmonstrating all the key c:lpabiIities and tccllliologies ~leetlecl for a powcr satellite 

program, would in itsclf result in a substc~ntial transportation rcquirc~lient and one that W O ~ I I L I  of 

course arise hefore thtlt of tile operational program. I)enlonslr:itio~ progrtlms 11:lve 1101 yet been 

~lcl i~ict l ,  but sollle activity is ci~rrently titking place to d o  so, As rcprescntativc tlc~llonstrl~tiol~ 

progranls I)ccomc atlcq i~tltely clel'inecl , they will be inclutlcd in subseq~~en t  pll:lscs of llle study. An 

operational satellite encrgy s y s t c ~ ~ l  i~ lc l i~dcs  IlliIlly c l e ~ ~ ~ e n t s  hesitlcs the sntellite itself, '1':tble 3.10-1 

su~nmarizes systc~n elements, 

3.10.1.2.1 Mission Opi io~is  

'1 1011 3.10.1.2.1.1 Pilotovoltaic Gcncrd t '  

I:ipitrc 3.10-5 shows tlimcnsions and general layout of the photovoltaic satellite dcfinecl in NASA 

('K-2357. 1:ig~lre 3.10-0 shows a typical detail. Aluminized plclstic film rcSlectors arc usctl to 

concentrate solar energy on thc cells to reduce cell i ~ ~ v e n t o r y ,  A uoncentrc~tioii ratio of 2 is i1set1; 

tllis is about as mucll as t.;111 be e~llployecl witllout active cooling 01 the cells. 

3.10.1.2.1.2 Thermal E~ig i~ ic  Generation 

1:igurc 3.10-7 illustrates tile thermal engine generation concept. bhc11 generation ~nodule  enlploys u 

conccrltratinp rcl'lcctor co~nposctl 01' 10,000 or  nlorc flat strctchccl alirminizcrl plastic film rcl'lcctor 

Ihccls. 1i:tcll fi~cet is individu:~lly controllerl to direct its reflcctcrl sunligllt into a cavity ahsorher. 

'T'llis approach allows ncllicvement o f  thc high concentrntion seltios. 2,000 or more, llceclcd tbs an 

efficient t l~cnnal  engine wllilc attaining tllc relatively low lrlass resulting from use of plastic film. 



Table 3.10- 1. Satellite Energy System Description 
r I 

I Work Breakdown Structure 

Level Element 
Function Description Cost Leverages 

1 Satellite Energy System 
Coltact & CGnVM enorgy i n  
space for  commrciel  u a  on 
Earth. 

Total system investment con must b. 
min im izd  t o  minimize c a t  o f  p o m r  
d d  t o  uwn. I Ste l l i t *  solar meqw colkam. - 

vert.rr i n  gaorynchrronous orbit: rnicrb 
wave transmission to Earth. 

2 Satelltte System I Co l l c t  energy, convort t o  
RF. and radiate to  Eanh. 

Cost of satellit. is a major share o f  sym 
cost. Mass o f  satellite d r i m  : r a v r t %  

3 Generation Synern I Conwrt  solar energy 30 eloc- 
tric energy. I a) Solar photovolto~c. or  b) solar con- 

antrat ion b a t  eq ine  system 
Gonuation system cost a d  m a r  are the 
principal vwiabl..r. 3 Microwave Powor & Transmission Convert electric energy t o  R F  

(Microwave) form 81 radiate 
t o  Earth. I Lam p h a r d  array antenna wim mpl t t r on  

microwave gsnwation; activs ptUp control. 
Beam forming and R F  generation officioncy 
impact sizo of powor vnwa t i on  system. 

3 Control & Support Systems Control satellite & provid. 
support functions (Data. 
anitude.control. etc.) 

Control equipment for p o w u  system and 
attitude control, etc., including &tabto 
a n t r o l  statioh. 

Not  a major cort contrrbutor. 

Cost of  transportation is a l a m  share o f  

tort- 
- Transportation and support systuns as &- 

cribed below. 

Reusable Earth-to+-rbit cam* for low 
density payloads oif 100.000 km or m m .  

2 Transport & Space Support Systems Transport spaceborne elements I t o  drstinations & support satellite 

I oprations. 

Transport major system elements 
t o  low Earth orbit. I Must achien low con. on the order of $201 

Ib. t o  make system feasible. 3 LEO Freighter 

I Rwsable Earth-to-orbit a r r r r  for l i ~ h t  
payloads & cr-. Horizontal landing. 
Mayba partly common with LEO freighter. 

Rwsable orbit-to-ovbi t ranport  system 
nominally electric propulsion. 

I very  low cost per flight n**d.d. 
3 LEO Logirtics Vehicle I a Transport c r a m  & light cargo t o  

and from low Earth orbit. 

Propellant required directly impacts total tram- 
portation colt; t r ip tima C.US.I dolay cost. 

3 GSO Freighter Tranrport major system elements 
t o  geosynchronous orbit-includes 
self-powr as applicable. 

3 GSO Logistics I 1 ranrport c r e w  & light cargo t o  
& from gemynchronws o r b i t  

Reusable orbit-tonubit system for fast 
trips, l ight payloads, Nominally dmniul 
propulsion. I N e d &  t o  minimize out* rime due t o  failures. 

Provide crew housing & other 
operztional support i n  low Earth 
orbit. I Combined payload handling, c r r r  habitability. 

and satellite modul* asumbly fixture Ration. 
Front-end cost intm but required t o  support 
orb~tal  c r s m  

Some 3 GSOSupport I Dit to in  gecnynchronous orbit. Crew habitability and op.rrtiom uppm 
statton- 

I Ground f j c i l i t i u  for sipport of a t d l i t e  
asambly & oparations and rueir ing o t  porm. I Influenm systmn efficiency and are slpnificrnt pert 

of overall cost. 
2 Ground Systems I Provide all g round-bad operat= 

& support functions. 

3 POMI Receive! 81 Distribution 
Fscility 

Rueive microwaw pow* beam. con- 
vert to  & & then to  grid-compatible 
8c I Ractifying microwmre antenna I"mctmnr"l 

end &lac ccnmsian equiprmnt I Receiving officmncy impacts required satdlite 
powor IweI L size. I Larp pap  .f satellite cost i-nod i n  h i s  faolity. I Manufacturing facility at  launch site. 

3 Manufacturing & Asumbly 
Facrl~ty 

Manufacture & suhswmble po-t 
e lemma as required. 

Conduct all flight svstem launch & 
rcovery oporetlons. 

Manbfactura propellant. & pnemt ly  
provide logixtic 81 opuat1on.1 support. 

I Launch, rscornry. E; flight control 
mtm for dl uarrportatton systmn 
e l m n a  

Must contrtbun t o  efficient system op.ntion. 

3 Launch & R u o v w y  Facillty 

a) propellant plants 81 stor.q.: b) trans- 
portation vehicle rrfurtiish & m i c e  
facility: central control: d) o t h r  
function% 

ih jor  h a r e  o f  trarapmation cat i ncu r rd  i n  t h w  
fnlit ies. 3 Log tn iu  & Support Facilities & 

Operations 
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Tlie Ile;~t engine itself uses 3 closetl cycle inert gas Braytoti turboalternator. Un~~sitble licat is 

rejectccl from the cycle hy a la~::e space r;iclir~lor. 

3.10.1.2.2 I'nylond Descriptions 

3.10,1.2.2.1 Satellites 

Various niass estini~ltcs for power s~ltellitcs 1i:tve been published. NASA ('R-2357 reports 1 1 340 

nletric tons (25  x 1 0() 113) for 311 advanced technology photovoltaic system protl~lcing 5 (;W (5000 

MW) of usable power 011 tlie grouncl. Published 13oeing IR&D studies llave reported 34 000 nietric 

tons ( 7 5  x lo(' lb) for an atlvanoctl technology (high cycle temperatures) solar/thermal engine 

systcni protlucing 10 (;W on tlie grountl, R[:cent Boeing IIi&l> studies Ilave clevclopccl esti~nates 

based on  less aclva,,cerl tcclinology lc:ieling to gret~tcr masses (as wou!cl be expected). 'l'llc range of' 

:~viiilable estimates is fro111 approximately 2,3 to approximately 0.5 kg/kw (5  Ib/kw to  14 Ih/kw), 

(satellite n~uss/us~iblc Liartll power). 

3.10.1.2.2.2 Other 

I'aylnads in a~lciition to the powcrsats thc~nselvcs will include assembly cquip~ncnt ,  transportation 

systeni(s) I'or transfer to  geosynchronoirs orbit, crews, crew quarters, ancl consiunables. 'I'llese 

req~~i remcnts  are 1)oorly tlcfiued a t  present: for tlie purposes of this s t ~ ~ c l y ,  it will be assumed that 

transportation systems capable of  tlelivering tllc basic powersrils will be able to meet this adclitional 

reqniremen t. 

Pnyload recovery rcquiremcnts are s~ilall compareel t o  delivery requireinents; tllese retluiren~ents are 

well within the capability 01' tlie spacc shuttle. 

3.10.1.2.2.3 Crew Rota tion atid Resupply 

Thesc requirements havc not  been well cl~aracterized by studies to  date. 11 Ilas been roughly 

estimated that an assembly support facility in low orbit will house a crew of 60  or more, and that a 

small crew in ~ C O S ~ I I C I ~ ~ O I I O L I S  orbit will also be required. A coniposite requirement roughly the sutn 

of space base (para. 3.1.3), geosy~~chronous  manned station (para. 3.2.1 ), and geosynchronous 

satellite mail~tenance sortie (para. 3.2.2) is indicated. 

3.10.1.2.2.4 M:lss Sutnmi~ry 

Insul'ficicnt d a l : ~  exist to  put togother a co~nyrelic~isive Inass summary. Thc power satellites 

themselves are tlie principal reqi~irement. 



3.10,1.2.2.6 Pickup Points and Trnnsportution C o ~ i s l r a i ~ ~ t s  

'Tl~e power satellites will be assembled in orbil from subassemblies and piece parts, These will be 

piicknpetl or1 pallets for delivery to low orbit in u protected paylotid bay. 

Mrtjor assemblies, modules, o r  cotnplctc. salellilzs will l>e delivered from the low orbil assembly 

support fiicility to geosynclirono~is orhit. Pickup points have not been defined and will clepend on 

the nature of the orltit trat~sl'cr system seleclecl, 

3.10.1 2 . 3  Tr:~nsfer anti Stor:cgc 

I)nylo:,.ls will be storccl at tlie low orbit assembly f~icility lo await use in the assembly process. 

3.10.1 2.4  Orbital Assembly, Mnintennnce, ;111d Modificatio~i 

A m;~jor orbital assembly operation is i~iclicr~tecl, re(1uiring a dedicated facility. One concept of sucll 

a fi~cilily is shown in tigi~re 3.10-8, sllowing a thermal engine power satellite module being 

constructed. '1'11~ ;~sse~~iI) ly st11)port t';~cil~ty includes rillachmcnt to the salcllite moclule, crcw 

c,l~:irlers. clocking provisions, payload ancl propellant stonigc, power, and otller features. A space 

slluttlc a l n  tJe setn in 111~' illuslr:~tio~l, clocked lo the facility. Also sllown are assembly vehicles, crew 

work vcllicles, ~ l c .  

3.10.1.3 Transportation Requirements 

3.10.1.3.1 Pay1o:ld 1)elivery Points 

Salelliles ;ire tleliuerecl t o  low or l~ i t  in p;irts, assembled there, and cietivered to  geosynchronous orbit 

where furtllcr assemldy may he required. Crew and s i~ppor t  systems must be delivered to low orbit, 

geosyncl~rol~ous orhil, and L:arll~ return. 

3.10.1.3.2 Payload llelivery Options 

Packaging for delivery to tlle low orbit will depend upon the launch system selected. 

l'liree assembl y/transportation modes arc available: 

1, Low-orbi t assembly of llie total satellile with integral transfer Lo geostationary orbit 

2. Low-orbit assembly of modules and modular transfer lo geostationary orbit 

3. All assembly in geostationary orbit 

Low altitude assernbly has the following advantages: 

Assembly crcws ancl cc~uipmenl ( i s . ,  "orbital tooling") need not be carried to geostationary 

orbit thus minimizing the total energy required per plant produced. 

'I'he system can be cliecked out  Iwfore transfer so that correctioils, replacement, elc. arc Inore 

easily accom plishetl. 344 



Figure 3.70.8 Power Satellire Orbital Logistics and Assembly Station 



3.10.1,3,3 Operntionnl C'onstrc~ints 

'I'lle v~ul Allen racli;itio~l belts miist he traversccl on  the way to  geoslatio~lary orbit. 'T'l~c resultiint 

Jcpratliitioi~ to \olur cell iirrays will i~npac l  electric tila operations if they i~tilize solar cells. 

Soliir-electric progulsion (SI:l'S) sludics curren tly in progress have cvcilua tecl clcgradntion of solar 

ctblls on SI'I'S trtiilsfers fro111 low orhits to geosyncllronous orbit. ' f i e  amount of degrcitlation varies 

with tlic type of cells, trip t i n~c ,  sliielcling. and otller factors. Lithium-dopccl cells were founcl to be 

ulost racliation resistant, but eve11 tllese experiel~ccd tlegracliltions o n  the orcler of 50 perceut in n 

single rountl trip. 

.i. 10.1.3.4 Otller Factors 

I'lle ts i~nsportut i i )~~ reclt~irc~nent imposed by this sys tc~n inclucles strong ccol~oillic consider:itions. 

'I'lle key p;u.;~mclers in economics Seabibility of power satellites are: 

'I'he systenr rlevclopmcnt investment required 

'I'11e cost ant1 weigl~t of the s3tellitcs allel their ground-basetl power receiving arztennas 

+ 'I'lic valtic of' power rlerived from the system, i.e., coit~petitive busbar cost 

'I'he cost ol' groiuntl ancl space operations associated wit11 launch, assembly, operations, and 

maintenance of tllc syste~ns 

'l'lle cost of trnnsportation Srom low E:trth orbit to geosyncllrol~ous orbit, and most signif cant, 

lllc cll'iciency of  that tri~nsl'er as reflectetl into total lnass tni~lsportcition requirements to 13artll 

orbi L 

'I'he cost ol' tt'ansporlatiol~ to low liorth orbit 

Varioiis econon~ics stticlies Ilave projected a competitive busbar cost at rtbout $0.025/kwll in 1075 

dollars. 'I'l~is value. logcther with preliminary esti~llates of development and operntiolis costs, and 

assulncti use of electric propuls io~~ for the geosynchronous transfer, results in the tradeoff of 

satellite. cost a1ic1 weight, al.,l low orbit transportation cost, shown ill figure 3.1 0-0. Observiitiolls 

tliot may be riel-ivccl fronl tllc figure are that:  

'I'lle satellites miist be psotluciblc, inclueling costs of orbital assembly, a t  costs per tmit weigllt 

(i.e., dollars per pountl), compa~.ablc to tllose expericllcecl for com~nurcial o r  militclry jet 

aircraft, Since the satellites will be large and simple structures colnparecl t o  aircraft, this 

appears fcnsihle providetl that orhital assembly costs can be kept within reasoi~able bounds. 
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('(1st 01' low orljil lranspor'lalion nlilsl lw ~ I I  111c rilnge $20 $I OO/kg ($1 O $4S/lb). I'ayloatl 

per ll igl~t slioultl hc large l o  aicl in ~nininliziny orbitt~l asscmhly costs. 

16cononlic l'cs;~41~ility of iI LOLilI ~alcl l i le  cni2rgy syslel~i lvesenls cllallcnges to lechnology :lnrl 

sys tcn~s  t IcvcIo~~l lc~i t  1)i1t 011 lllc l>i~sis of availtlhle tlala appears within reach, 

3.10.1.4 Mission/Tr:~nsl)ort:~tio~i Motlrs and Operations 

3.10.1.4.1 Tr;lnsportil tion Options 

A low cost IlCi~vy lil'l v~llicle is cl~li~rly ncccletl. A varicly of  conccpls coc~ltl be consitlerctl. A 

rcprc\entat i v  I ('I I1 ,V conccpl was i1tl01)letl li-o~n ci~rrenl  Boeing I It8 1) as an exi~mple u1' tile class 

of citpal~ilily recluirctl. I'llis vcl~iclc is a tololly r c i~s i~ l~ l e  ?''!'OVI. vcllicle will1 200 000 kg (440,000 

11)) payloat1 pcr lai~nch. A typical configuralion is ., iwa  ill 'Is\arc 3.1,0-10. 7'11e vclliclc is 

waler-rccovc~r:1I~1c, i141ig an itrtil'icinl frehll-walcr I , , R \  12 LYC ' ~ h c  :,<';El ' , i s  discussetl in the 

appen!lix. 

A with2 variety of orhi1 transfer systclll oplions arc i I~+ ,~! ' . ! r .  ~ tw?  dink r .  

('i1crnie;rl ( 1,('12/1,117) .. expentlahlc 

Scpar:~tc electric pro],ulsion using rcsistojets, magnctoplasmnclyn;t~nics, o r  ion jets 

I'arasitc electric propi~lsion using tllc same propulsion technology opl io~is  but drawing power 

from tlie power siitcllilc ~nodulcs on llle wily I I P  (applicable l o  tllermal engine power satellites 

only);  sell'-propelled down for reuse by eilller electric o r  chelnical propulsion 

Various degrees of  expendabilily of' thrirsters, tanks, power conditioners, etc. 

3.10.1.4.2 Representative Transportation Mode and System 

3.10,1.4.2.1 Transporla tion Sc(luence aiid Chnmcteristics 

Sincs a I:~rge-scnlc orbital assembly process will be i~secl, t l ~ e  low Earth orbit ant1 orbit transfer 

seg~ncnts 01' tllc systcln itre not as rigorously linked as in other missions. LCI-ILV flights will arrive a t  

the orhit ssscmbly and logistics station in low orbit approximately daily. As ~na jo r  power satellite 

st~l~assclnblies or ~ n o r l ~ ~ l c s  arc completed, llicy are released from the assenlbly f~c i l i ty  to begin the 

Lransl'er t o  gcosyncllronoi~s orbil. 'I'llc sequence show~i  in figure 3.10-1 1 is n representative option 

cn~ploying parasite electric propulsion fhr tllc up trip and electric self-propeller1 propulsion down. 
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'The sequence i l lustrut io~~ w o ~ ~ l r l  not change for the separate propulsion option ;~pplicable t o  

photovoltaic power satellites: up trip :;lnes woulrl be greater, 

A typical mass, delta V, and time l~istory is shown in table 3,lO-2. System characteristics are bi~serl 

on tile nucleiirelectric tug clefinition given in tlie appendix, with an ass~uned specific impulse of  

,:\ 000 ~n/sec (3,670 sec). The mission is rlclivery of a 450  000 kg ( loo 11,) powersat motlule to  

!:tsosy 1.  :lironous orbit. 

Table 3.10-2. Powbr Sat, Mission/Transportation Sequence Mass History 

The cot~iplete sequence, for tlie advancecl tccll~lology photovollaic satellite of NASA ('13-2357, 

would etncompass 25 trips such as summurizcd in table 3.10-2. If a fleet of 25 tugs is available, 381 

days passcs from initiation of  ascent operations until the first satellite is co~npletely delivereri, After 

that,  :ipproximalely 1 .(I satellitcs per year ccul be delivered as shown in figure 3.10-1 2. 

- 
lternlevent 

Initial mass 
Ascent 
Separate payload 

Jettison up 
propellant tanks 
Descent 

Down propellant 
tanks 
Nuclear-electric 

3.1 0.1.4.2.2 Trnlisportntiorl Systelii Sizing and I'erformance 

A higllly coniplex tradeoff exists among several f:~ctors, including: 

'I'1::: cost per iunit tniiss of low orbit transportntiotl, 

'I'lle unit weigllt (kg or  117 per kw) of the power satellites. 

Cumulative time 
(days1 

0 
1 60 
160 
1 60 

230 

'I'he i~llit weight allrl Isp of  tho orbit Lransfer system. 

('apability of  the powcr satcllitc to provide power for the up transfer. 

'I'lle cost o f  up  transfcr trip time it1 tcrms of delay cost between time of  investtnent in the 

satellite ant1 beginning of  its revenue returti. 

. Delta V 

The cost of investinci~t it1 the orhit t r a ~ ~ s f c r  system fleet. 

mlsec 

6,700 

6,700 

Mass remaining 
ftlsec 

22,000 

22,000 

103 kg 

1,286 
1,026 

576 
550 

450 

(10) 

(440) 

103 ib 

2,835 
2,260 
1,270 
1,213 

1,213 
995 
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Figure 3.70- 72. Power Satellite Orbit Transfer Sequencing 



'I'liis traclcoff is presently ~111tler invcstigiltion. Certain prrlrcipt~l tre~itls i\TC ~ecog~i ixa l~ le :  

The  cost of  transporti~tioti to  low orhit is a Jomint~nt  purumeter. It is i~l'fected primarily ky 

power sc~tcllile spccil'ic ma$s, tile or l~ i l  tmnsfer nlultiplier, i.e., rutio of' (totill IiIiIsS to  low 

orhit)/(powersat mass) ant1 tlie sl~ccil'ic cost of low orbit trnnsportiltion. 'Ihese purametcrs are 

nc~~nogri~pliecl in fiyilre 3.10-1 3. Aclviincctl tcc1111ology power si~lclli tes iuid the power relay 

satellite nluy he t r i~~~s l?or t ;~hle  by c l~e~n ic i~ l  prop~~lsiol i  to gcosync l~ rono~~s  orbil, wliilc near 

teclinc~!ogy st~tellites will probably neecl electric propulsion. 

In most cases it tlocs llot pay to  r c t u n ~  lip propellant tiinks to  low orbit for reuse, 

Ilel~ry cosr in fluences tllc sclcction of electric p rop~~ l s ion  specific impulse. Arleli tional factors 

are  tJle cosl of  low orhit trnnsportc~tion, satellite spccil'ic nli~ss, ancl electric propulsion specific 

m;lss. Over the range of expcctetl vali~cs for tllese I I ~ I ~ ~ I I I I C ~ C ~ S ,   referred specilic i~i ipi~lse IIIRY 

range fro111 10 000 to 40 000 m/scc ( 1,020 to 4,100 scc). So111c example results arc shown in 

figure 3,10-14. 'These arc seleclctl from a wide rmge 01' o ~ t i o ~ ~ s  ana ly~ed  by IJocing 1 R&l) 

stuely. 'l'l~c values shown represent compi~rat iv~ly heavy (early tecilnology) satellites i~ncl law 

costs for Eartll-to-orbit t rnnsportat io~~,  'Tl~c trend for these cascs is to prefer an Isp of  ahout 

20 000-25 000 m/sec (2,000-2,550 sec). 'l'lle trenrl c o r r e l i ~ l i o ~ ~  is as follows: 

Iligl~ [.ow 

Isp IS], 

I Ieavy s:~telli tes Light satellites 

Low cost salclliles l:xl?ensivc satcllilcs 

Iligllcr cost tralisportation Low cost tral~sportation 

to low orbit to low orbit 

I t  is aclvantageous to he ahle to use power satellite moclule outpiit to drive Lllc L I ~  trip 

propulsion system, anti if this is done, to use a clirick ( 112 rlily) clle~~lical 01'V return of 

reirsablc electric tllruslers anrl power conclitioning. 

'I'lic pcrforlnancc data clcscsibed for elct:cric syste~ns rilllgc from an orhit transfcr multiplier of 1.5 

to val i~cs greater than Ihe represel~lative l , O ? / L l I ~  - - vallie of 3.5. Iligh v a l ~ ~ e s  result from trying to 

recluce trip twice hclow valiles practical for the systenl consiclercd. ('leasly it rlocs not make sense to  

select a n  eler-tric system poorer in perl'orrnance than t l ~ c  LO,/ - L117 ultcniative. - 
Sizing as such, i c., selcctillp a particular power, size, o r  welgllt of transportation system, was not 

adclressed. ('le;irly, tllc power satellite c;ln he clivicled into s ~ ~ l ~ a s s c r n b l i ~ s  or rnodulcs of solnewhat 
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i~rhitrary size, IIowever, large moclules appear to he iuilicatecl bectrusc: 

Assc~nhly operations * 1 gcosy~icl~ronous orbit arc mitiimizecl; 

l'fficirncy, partict~lurly ofni~clear/clcclrir:~r/ecctric systems, is itnproved in large systems; 

IS power S~~om tile satellite is to be employccl, nlore or  icss complete modules tni~st  be I~unclled, 

probably with nlasscs in t l ~ c  ~nilliolls ol' kg (111) :~ncl electric oulputs l'ron~ I~undrecls to 

t l lo~~s i~nr l s  of alcyow:ltts ( the cslcctric prop~~ls ion  systcm 11eccl not use the total output) ,  

3.10,1.4.2.3 Opcrntional 1:aclors 

'I'llc nattrrc ol' syslcnl opcratiorls lilr a power ~ittt'llitc transportation propr:~tn is not completely 

undcrstootl. Studies tc) elntcb Iluvc tcntled to tlcal wit!' tlic nroblern crn a ~ ~ i c c c ~ n c a l  basis. ('lcariy, it 

Iilrge scale orl)it;~l i ~ s s c ~ n l ~ l y  opcri~l io~l  will he rcquirecl. 

Several t o  rnnny satellite motlules will 11e in tri~asit  to  geosynchronous orbit a t  any one lime, 

ass~trili~ig electric propt~lsion. A11 will he untlcr control fro111 the prouncl or  from tllc low orbit 

stntiotl. ('apability for n la~~ner l  visits to tllcse nloclulcs iil transit, o r  in g e o ~ y ~ ~ c l ~ r o ~ ~ o i ~ s  orbit, will be 

nectlcil. A pcosynr:l~rono~~s ni;lnncrl station Inay he rcqi~irctl to  proviclc for i~sse~nbly ancl 
I 

~naintcni~occ crews, 1:acll operational sotcllitc will require some tlegrce of grottntl co~itrol  nntl 

~ l~on i to r i~ ig .  Operational suj~port  rcqrliremcnts of it pnwcr snlcllitc l>rogram arc believed to  i~iiply a 

low orhit mannctl progratll coniparablc t o  !lie space base8 pltts tlic gcosy~ic l i rono~~s  rnar let1 station. 

3,10.1.4.2.4 Eartli L:ILIIIC~I Requircmcnis 

'Ihc Ilartli lairncl1 systclli is rclalivel) uncot~plctl l'so~n the orbit lrunsfcr system by low orbit 

asscm1)ly operations. Its size will prcst~nlnhly he selcctctl basccl on  ccolio~liics consitler;~tions. Ihese,  

as presently untlerstootl, seen1 to l i~vor lasge V'J'OVI, totally rcusablc "low cost lteavy lift 

(LCIILV)" vehicles (see tliscussion in the appentlix). l'ayload de~isities for cleployuble satellite 

elcmcnts  nay Ilc as low :IS 20-30 kg/ni3 ( I  .2-2 lb/ft3). Large pt~yloatl volumes tire thwel'orc 

intliuatctl. I'rojccted Iniunch rates are o n  the orclcr of one per day for powcr satellites ;ltlcl one per 

week t o  10 clays for tile power relay satellite, Figure 3.10-1 5 s l~ows lat111cI1 rate rut~t~irernents in 

tlionogrepll form. 

3.10.1.4.3 Trnnsportatio~i Options Coml>;~rison :~nd Evaluaiio~l 

An cvaluc~tion is quite tlifficult at tllc picsc~it state o f  knowledge. 'l'hc options ev;~lurrtecl appear 

practical il'tliey satisfy ccononlic recluircmc~lls. 



POWER SATELLITE SPECIFIC MASS 

Figure 3.70-15 Low Orbit Launch Rate Requirements 



3.10.2 POWER RELAY SATELLITES 

Power relay satellites wcre not onalyzecl it1 detail. Figure 3.10-16 sllows a typical relay satellite size; 

the muss is typically 3 x lo5kg (000,000 Ib). Transportation rcquircnlents arc sufficiently 

comparable t o  tliose of  tllc geasy~~cllronous mannecl station that the transportation opt io~ls  a11tl 

sequences clescribecl in para. 3.2.1 tire applical'jle. 



Figure 3.10.16. Passive Micro wave Reflector 
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