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SPACECRAFT DETUMBLING USING MOVABLE

TELESCOPING APPENDAGES*

^t f	 by

Peter il. Bainum** and R. Sellappan+

ABSTRACT

The dynamics of detumbling a randomly spinning spacecraft

using externally mounted, movable telescoping appendages are

studied both analytically and numerically. Two types of telescoping

appendages are considered: (a) where an end mass is mounted at the

end of an (assumed) massless boom; and (b) where the appendage is

assumed to consist of a uniformly distributed homogeneous mass throughout

its l ngth. From an application of Lyapunov's second method boom

extension maneuvers can be determined to approach either of two desired

final states: close to a zero inertial angular velocity state, and

a final spin rate about only one of the principal axes. Recovery

dynamics are evaluated analytically for the case of symmetrical deploy-

ment. Numerical examination of other asymmetrical cases verifies the

practicality of using movable appendages to recover a randomly tumbling

spacecraft.

*This research was supported by the National Aeronautics and Space
Administration Grant No. : NGR-09-011-053 (Suppl. No. 1). Special
appreciation to Mr. Vearl Huff, NASA-HQ and to Mr. C.W. Martz, and
Dr. W. Anderson, NASA-Langley for many helpful discussions.

**Associate Fellow, AIAA; Fellow, British Interplanetary Society;
Member, American Astronautical Society.

+Student Member, AIAA; formerly with Indian Scientific Satellite
Project, ISRO, Bangalore, India.



NOMENCLATURE

C

h l , h2 , h3

ho

I3

11, 12, 13

I 1 , I2, 13

K

R(t)

m

P

t

T

T3f

V

w l , w2 , w3

S

P

vo, V0

T

e

I	
(0)

ri boom extension rate

• ,omponents of the angular momentum vector
along the principal axes

• constant value of h 3 for symmetrical
deployment maneuver

• instantaneous values of principal moments
of inertia

• hub principal moments of inertia

• moments of inertia at the switching time T3
in the recovery sequence to achieve final f
spin about the '3' axis

2 p c3

time varying length of telescopic appendages

boom end mass

2
2 me

time

kinetic energy

switching time in the recovery sequence to
achieve final spin about the '3' axis

= Lyapunov function

angular velocity components along the principal-
axes

desirL.d final value of w3 (w3f)

mass density per unit boom length

phase angles appearing in the solutions for
w l (t), w2(t) and determined from conditions at
t = 0, t = T 3f , respectively

Jb(t)dt

nutation angle

= indicates time differentiation

= indicates initial conditions
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I. IN1'R,10UCTION

With the advent of prolonged manned missions in space and

the possibility of in-orbit servicing and repairs to spacecraft

there is an increased interest in studying methods that can be

used to recover a spacecraft from an initial uncontrolled dynamic

state. A recent paper examined methods of recovering spinning

satellites to a flat-spin condition by using spin-up thrusters

and multiple combinations of thrusters. I It was concluded that

the use of such thrusters for the recovery operation are often

limited by the weight and propellant capacity of the thruster

system, and also the reliability problems associated with multiple

thrusters in sequence. (Caplan has described an alternate recovery

system which utilizes a movable-mass control device that is internal

to the spacecraft and can move along a fixed direction track. 2 This

device is activated upon initiation of tumble and is programmed via

a control law to quickly stabilize motion about the major principal

axis. In a recent related paper  it was concluded that the mass

track should be placed as far as possible from the vehicle center of

mass and be oriented parallel to the maximum inertia axis; in addition

the performance of the control system can be improved through larger

mass amplitudes along the track and also larger mass sizes.

It is apparent that the location and displacement amplitude of

any internal control mas 031 be limited by the physical dimensions

of the space vehicle.
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Externally movable appendages could allow for a greater range of

location and displacement amplitudes of such a system; however,

as the size of the appendages increases the flexibility problems

associated with such structures would have to be considered.

of interest in this study will be the consideration of the

detumbling dynamics of a spacecraft system with extensible boom-

type appendages along the principal axes, The recovery maneuver from

an initial tumble is designed to approach either of two final states:

(1) close to a zero inertial angular velocity vector and (2) to approxi-

mate a final spin about a principal axis. (It is thought that small

terminal residual angular rates could then be removed by temporarily

activating on-board damping systems.) A kev advantage of this type

of system would be its potential reuse for subsequent detumbling

recovery operations as the need arises.

II. ANALYSIS

A. General Considerations

The dynamics of detumbling a randomly spinning spacecraft using

externally mounted, movable telescoping appendages are studied both

analytically and numerically. The appendages considered are of vary-

ing length and could represent extensible booms or a tether connected

to the main part of the spacecraft. Two types of telescoping append-

ages are condidered: (a) the case where an end mass is mounted at

the end of an assumed massless member (end mass moving) as shown in

Fig.l(a);and(b) where the appendage is assumed to consist of a uni-

formly distributed, homogeneous mass throughout its length (uniformly

distributed mass moving) as shown in Fig. l(b).

i
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The extensible boom type appendages are assumed to originate

from the center of the hub along the three principal axes. The

desired final states of the system considered are: (1) zero inertial

angular velocity vector and (2) a final spin about one of the principal

axes. The necessary conditions for(asymptotic)stability during the

detumbling sequences are determined using Lya punov's second method.

B. End Klass Moving

1. Development of Kinetic Energy

The configuration of the system, where the end masses are assumed

to be attached to the end of massless rods along all three principal

axes is shown in Fig.l(a).The end masses are assumed to be identical

(i.e. m  = m). The rotational kinetic energy of the system can be

developed in terms of the hub inertias (I i *) and boom lengths as:

2	 2	 2	 2	 2
T = 2 [(Ii + 2m(A2 + A3)} W1 + (

I2 + 2m(A 3 + A1)}w2

	

+ (I 3 + 2m(t 1 + AZ)} w3 + 2m(R 1 + A2 + t3)]	
(1)

*	 2	 2
Defining,	 11 = I 1 + 2m(t2 + t3)

1 2 = I2 i• 2m(A 3	 1

	

+ t)	
(2)

2

1 3 = I3
+21ll(11 +t2)

Eq. (1) can be rewritten as:

I	 Il

I
I

T = 2 [ 1 1 m 1 + I 2 w2 + I 3m8 + 2m(t 1 + t2 + t 3)]	 (3)

b

;g o<
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If the extension rates are assumed to be constant, Eq. (3)

can be expressed:

1	 2	 2	 2
T = 2 [I 1w 1 + I2 w2 + I3w 3 ] + non-negative const.	 (4)

Here the moments of inertia are time varying as the length of the

booms varies during extension.

2. Achieve Zero Inertial Angular Rate

(a) Lyapunov Function-Kinetic Energy

The desired final state of the system is w i = 0. A suitable

Lyapunov function, in the state variables w l , w2 and w 3 , is the

system rotational kinetic energy which can be written as:

V = T = [ I 1 w1 + I 2 w2 + I 3 w 3 ] + non-negative const.	 (5)

The Lyapunov function, V, is positive definite in the state variables

selected; for asymptotic stability V will now be examined.

Differentiating Eq. (5) with respect to time, there results:

1	 2	 2	 2
11 = — ( I w + I w + I w + 2I w w + 2I w w + 2136J31113) (6)

2	 1 1	 2 2	 3 3	 1 1 1	 2 2 2

Euler's equations of torque-free motion can be written in the follow-

ing form:

h 1 = w 3h2 — w 2 h 3 = I 1 w 1 + I 1w 1 	(7a)

h2 = w l h 3 - w 3 h1 = , I 2 w2 + I 2 w2	 (7b)

h 3 = w2 h 1 - w 1 h2 = I 3 w 3 + I 3 w 3	 (7c)

-6-
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Multiplying Eq. (7a) by w l , Eq. (7b) by w2 , and Eq. (7c) by W31

and adding we obtain the following:

2	 2	 2
I 1 w 1 W 1 4• 12W2W2 t 1 3W 3W3 = - 01WI + I 2 W2 + I 3W3)	 (II)

Substituting Eq. (8) into Eq. (6), there results:

V = - 2 ( I l wl + I2 W2	 I 3 W3 )	 ( 9)

From Eq. (9), we conclude that %/ is a negative definite function in the

state variables only if I 1 , I 2 , I 3 > 0.

Here it is seen that when the rotational kinetic energy is used

as a Lyapunov function expressed in terms of small amplitudes of the

inertial angular velocity components, that the necessary conditions

for asymptotic stability are satisfied for positive constant boom

extension rates and three orthogonally mounted sets of booms along

the hub principal axes. This means that as time becomes extremely

large (and boom lengths become infinite) it would be theoretically

possible to achieve a zero inertial angular velocity state. (Of

course, such a situation wi.l'I, in practice, not occur due to finite

length appendages and the presence of large amplitude rates for the

general situation of an initial random tumble. However, it will be

of interest to simulate how much of a random tumble could be removed

by this process where stability is now considered in the global sense

about wi = 0.) The selection of rotational kinetic energy as a Lyapunov

function has also been used by Edwards and 1Wplan 3 for the system treated

in Ref. 2.



(b) Analytical Solution

As a special case when the spin axis is an axis of symmetry

(I 1 = I 2 = I) during deployment, Eqs. (7) become:

h l + b(t) h 2 = 0	 (10a)

h2 - b(t) h, = 0	 (10b)

h3 = ho = const	 (10c)

where

b(t) = I 3(t) - I(t) h	 (11)
I t I3 t	 0

Introducing T = fb(t)dt Eqs. (10a) and (10b) reduce to,

dhi + h = 0	 (12a)
di•

dh2 - hl = 0	 (12b)
dT

which are in the standard form of the two dimensional harmonic

oscillator. The solutions to Eqs. (12) can be written as 4;

h l (t)	 q 0 cos T = qo cos (f0 b(t)dt + q) 0 )	 ( 13)

h2 (t) = qo sin T = qo sin (fo b(t)dt + yo)	 (14)

The solutions given by Eqs. (13) and (14) are'identical with those

previously given by Hughes as a --peciai case of his approximate

analytical solution for the motion during deployment of a spacecraft

with telescoping booms where the nutation angle remains small.5

c
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Ile apply this solution to the symmetrical configuration of

Fig. 1(a) where the moments of inertia about the principal axes

are expressed, for the case of a uniform extension rate, c, along

all three axes, by:

I 1 = I * + 4mz2 = I * + 2Pt2

*	 *	 2
I 2 = I	 + Amt 2 - I	 + 2Pt	 (15)

	

I3 = I3 + 4mR 2 	I3 + 2Pt2

2
and P = 2mc

Using Eqs. (15) in Eq. (11) we obtain:

	

ho	 1	 1	
(16)b(t) _. P{ d—z-+t^ - d 2 +'tz— }

	

1	 2

where d 1 = I*12P	 and	 d2 = ,I3 2P	 (17)

Introducing Eq. (16) in Eqs. (13) and (14), and after performing the

integration, the solutions for the transverse angular velocities are

obtained as:

	

q3 cos[ 2P { dltan-1 d1 -T-	
tan 1

Z- 	
)+ ^o]

W 1 (t) =	 I* + 2Pt	
(18)

	

0	 1	
- 1

qo sin [ 2P { d tan	
d l	 d2 tan
	 d2 )+ yo]

1

W 2 (t) =	 I* + Utz	(19)

-9-
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where qo and Mo are determined ,from the initial conditions.

From Eq. (10c), the angular rate about the 1 3' axis is written,

1 3 w3(0)
W 3 (t) I3 +2Pz	 (20)

we observe here for large values of t, the solutions for the angular

velocities lead to the form:

l	

wi(t) = const/(Ij + 2Pt2 ), i = 1,2 1 3	 (21)

This equation indicates that the magnitudes of the angular velocities

decrease during extension of the appendages, with the square of the 	 f

elapsed time.

3. Achieve Final Spin About One of the Principal Axes 	 !'

(a) Lyapunov Function-Modified Kinetic Energy

The desired final state of the system is: wl = 0, w2 = 0 and

W
3 
= w3f = si. Using the state variables: w l , w21 and w 3 - R, the

Lyapunov function is defined as the modified rotational kinetic

energy, which can be written as:

2	 2	 2

V	
2 [I

l w l + I 2w2 + I3 (w3 - Q) ]	 (22)
, 	 Ii

Here V is positive definite in the state variables selected. Differ-

entiating Eq. (22) with respect to time, there results: 	
{J'

V = 2 [I lwl +I 2w2 + I3
(
w3 - n)2

ii
+ 2Ilw l w, + 2 12 w22

+ 2 I 3 ( w3- S2)w3]	 (23)

{

l^



fir ,_..	 } .,	 n

3	 ^

Using Eq. (9) in Eq. (23), we obtain,

1	 2	 2z 1 2•
V = ^ y(I I W I + 1 2w2 i I 3w 3 )+jS2 T 3 ^ ( I 3w3 +I 3w3 )	 (24)

For symmetry about the 1 3 1 axis during extension:

h 3 - I 3w 3 + 1 3 W3= 0	 (25)

Eq. (25) is used in Eq. (24) to obtain:

2	 2	 2	 2V - - 2 C I lwl + I 2W2 + I 3 ( w3 - R )a	 (26)

After rewriting Eq. (25) in terms of the state variables,

V = 2 C T I W1 +I 2W2 + 1 3 (W3 -0 1 - I 3P (w3 - R)	 (27)

Also from Eq. (25), the solution for w 3 (t) is given by,

W 3 (t) = I 3W3 (0)/1 3 	(28)

We conclude from Eq. (27) that V is negative definite in the state

variables only if:

W3"'  I l , I 2 > 0, and T 3 > 0 f o r w 3 > S

Thus for the case where a spin about one of the principal axes

is a desired final condition, a modified form of the kinetic energy

can be used as a Lyapunov function.

-11-
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Here the final state can be achieved by extending all telescoping

booms until the desired spin rate 'is reached and then continuing

the extension of the set of booms along the nominal spin axis until

the transverse components of angular velocity reach an acceptably

small amplitude (within the limitations of boom length). It should

be noted that if we allow w 3 e n and I 3 ¢ 0 1 there will be a

difference in sign between the third and fourth terms in Eq. (27).

(b) Analytical Solution

The time at which w 3 = w3f = n will be denoted by T3f.

At t = T3f,

I 1 = I 2 = I * + 2P (T 3f ) 2 	(29)

1 3
 = 13 + 2P (T 3f ) 2 	(30)

For t < T3fO th

from Eqs, (18),

For t > T3f,

I 3 =

_ 1t

I -

where	 If =

solutions for the angular velocities can be obtained

(19) and (20).

2
const = I 3 + 2P (T 3f )	 (31)

I * + P(T 3f ) 2 + Pt2 = If a• Pty	(32)

I* + P(T3f ) ?	(33)

)

From Eq. (11), and using Eqs. (31) and (33), we obtain

b(t) = 
w3f { I^ -1}
	 (4)

f

i.^

tl
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Introducing Eq. (34) into Eqs. (13) and (14), the solutions for

the angular velocities for t > T3f are,

gpcos[w3f[ 
Ia

I^ {tan-I( 
t

^*%P )-tan-'(--L3-f—) }-t•+T 3 ]+VO]

	

f	 f	 If/P	 f

WI(t)
	 (If + Pt2)

(35)

*	 T3

g0sin[w3f[ 
Iv	

{tan-'(,I )-tan-1( I
	

))-t+T3f]+Oo]

W2(t) _	 , f P
2(I *f + pt2)	

^c

and from Eq. (10c),

	W 3 (t) = w,, f = const	 (37)
i

Here qo and y o are to be determined from Eqs. (18) and (19) at

t = T3f and should not be confused with qo and q,o which are determined

at t = ^.

For large values of to Eqs. (35) and (36) reduce to the form,

qo cos ( w3f x const x t + const)

wl	
I* + Pt?	 (J8)
f

f	

qo sin (w3f x const x t + const)

W2 =	 If + W(39)

-13-
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qo cos { of b(t) dt + S

Wil t ) _
I* + 3 Kt'

qo sin { X t b(t) dt + y
W2 (t) =

I*+ 3 Kt 

_13 
W3(0)W3(t) 

I3+3 3Kt

and K = 2 p 0

-1^1-

The above two equations indicate that the frequency of oscillation

approaches a constant value and the magnitude of the oscillation

decreases with the square of the elapsed time.

The time, t = T3f , at which the extension of the booms along the

'1' and '2' axes are stopped can be determined from 6 3 = 0, yielding

the result:

	1I3	 r W 3 (0) -W3f1T3 f = 2c	 m	 `	 W3 f 	 J	 (40)

C. Uniformly Distributed Mass Moving

1. Achieve Zero Inertial Angular Rate

(a) Analytical Solution

The desired final state of the system is W i = 0, The booms con-

sidered are assumed to have a uniformly distributed mass (p) along

their lengths. The same procedure as adopted in the case of the

moving end masses can be applied here to obtain the solutions for

the angular velocities. Here we present only the final results.

The solutions for the angular velocities are given by:



kl

4.	 Na- -

In Eqs. (41) and (42),

ft b(t) dt = 3ho	 1	 (da +
 An[

	
t)2	

}+	 tan
1 	_i	

2t - d3

[ — _	 {	 }
0	 6d3	 d3 - d 3 t+t2 	d3^	 d33 -3

2

1 an {	
du H t } _ ^1 tan 1 { 2t -da } 7

6	 dk - d4t + t	 di„r3	 d	a 	
(44)

3 _ 3I * 	3	 3I3

d 3 - 2K and dy = 2K

2. Achieve Final Spin About One of the Principal Axes

(a) Analytical Solution

The desired final state of the system is w l = 0, w2 = 0 and

w 3 = w3f = Q. For t s T3f , the solutions for the angular velocities

can be obtained from Eqs. (41), (42) and (43). For t > T 3f , the

solutions for the angular velocities can be obtained as:

q o cos{ ft b(t) dt + ^o}
T3

w l (t) _	 *	 1 
f 

3

	

I f + 3 K t	 (46)

q  sin{ f t b(t) dt + 0}	
1T

w2 (t) _	 *	
3f1 	

3	 (47)

I f + 3 K t

W3(t) = w 3 = const	 (48)	 j
f

3where If = I * + 3 (T 3f )	 (49)
i
I

r

(45)



In Eqs. (46) and (47),

3 I	 1	 (d A. t)2
Tt b
( t)dt = w3f [	

K3 { 6
d2— zn (

d2 - d t + t2 }
3	 5	 5	 5

f

21; - d
+

d 
5 11x^ tan 	 d5 /^,^ } } -t + T 3 f]	 (50)

I 3  - I 3 + 3 K (T3 )3

f	

(51)

3 I*
3	 f

d 5 = K -	 (52)

The time T 3 , at which the booms along the '1' and '2' axes are stopped,
f

can be obtained as:

3 I3	 w3(0) -w3	 1 3

T	
f

3 = L 	
2K	

(	
w	

)	 (53)

f	 3f

III. NUMERICAL RESULTS

A. End Mass Moving

A typical detumbling maneuver for an initially uncontrolled

spacecraft is illustrated in Figs. 2 and 3. In this example because

of symmetry the uncontrolled torque-free nutation (Fig. 2) can be

theoretically predicted. This motion is also represented by the

dotted curves corresponding to a zero boom extension rate (c i = 0)

in Figs. 3. The effect of extension rate on the recovery is illustrated

in Figs. 3(a) - (c). For small extension rates (up to 1 ft/sec) the

oscillatory nature of the transverse motion is not removed until after

-16-
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the first cycle; the advantage of considering higher extension rates

(at the expense of on-board power) for an initial fast tumbling is

apparent. It should be noted that at a given time in these figures

different boom lengths are represented according to the extension

rate. For example, with an extension rate of 4 ft/sec after 60 ft.

of extension along all three principal axes the angular velocity

components have been reduced by more than a .actor of 10 and, if

240 ft. of boom could be extended, by a factor of over 300. Removal

of this residual angular velocity could then be achieved by temporarily

activating on-board damping devices. Then the appendages could be

retracted and would be ready for subsequent reuse as necessary.

Numerical examination of other cases for asymmetrical hubs

also verifies the practicality of using movable appendages for the

initial detumbling of randomly spinning spacecraft (Figs. 4(a) and

(b)). The numerical simulation results for an asymmetrical spacecraft

are compared with the closed form solution for a symmetrical extension

and it is observed that the closed form solutions are only applicable

when the asynwietry is small. Although the moving end mass system is

effective in reducing the magnitude of all components of the angular

velocities, for the masses considered here it will not effectively

reduce the initial nutation angle during the response time simulated.

For the symmetrical deployment shown in Fig. 4 the initial nutation

angle of 27.89 degrees is iaintained, whereas for the asymmetrical

case, an initial nutation angle of 29.09 degrees is increased within

3.5 seconds to 36.95 degrees and maintained up to the 60 seconds simulated.
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The nutation angle is defined here as the angle between the nominal

symmetry ('3') axis and the total angular momentum vector.

Fig. 5'illustrates a recovery maneuver which would result

in a final spin about the '3' body axis with a small transverse

residual. The booms are extended so that the modified rotational

kinetic energy is positive definite and its total time derivative

is negative definite during the maneuver. All booms are extended

until T3f at which time w 3 = w3f . Then, only booms along the + '3'

axis are extended to reduce the transverse residual components. At

the switching time, T 3f , the ;effect of any lag in the system has not

been considered here but should be considered in the design and per-

formance of the actual system. From the figure it can be seen that

the frequency of the response of the transverse components of the

angular velocity is essentially constant in the terminal part of the

maneuver (consistent with the discussion in connection with Eqs. (38)

and (39)).

A comparison of the recovery maneuver of an asymmetrical spacecraft

with that of a symmetrical spacecraft to achieve a final spin along the

'3' axis is shown in Figs. 6(a) and (b). The calculated T 3f for the

symmetrical spacecraft is used for stopping the booms along the '1'

and '2' axes. It is observed that using this logic the final W3 
	

(

reaches a lower value (1.8 rad/sec) when compared with the desired

final value (2.0 rad/sec). ' Also we notice from Fig. 6(a), the response
	 l

of W 1 (t) for the asymietrical case differs from that of the symmetrical

case.

1



s

This is due to the increase in the.order of the system equations

for the asymmetrical extension (i.e. - three first order differential

equations must now be considered). It should be pointed out that

after T3f , for the asymmetrical case, the time response of w 3 is not

exactly a straight line as apparently indicated in Fig. 6(a) but also
n

consists of small amplitude oscillations superimposed about this

straight line solution. For larger asymmetries this oscillation

would become apparent within the plotting scale sho wn and the

difference between w 3 achieved and desired would also increase
f

using the open loop control logic of switching the extension sequence

at a pre-set T, 
f* 

It should also be noted that the nutation angle,

for both cases, does not vary greatly after T3f.

B. Uniformly Distributed Mass Moving

For the case of a spacecraft with a uniformly distributed

mass along the boom lengths a typical detumbling maneuver is illustrated

in Figs. 7(a) and (b) for a symmetrical and asymmetrical hub, respectively.

If 240 ft. of boom could be extended the total mass of each appendage

would be about 1 slug. The effect of the increased appendage mass

(when compared with the case of Figs. 3 and Q is immediately apparent

by noting the extremely small amplitude of the residual angular velocity -

of the order 10-4 rad/sec. The-nutation angle behavior for both cases

of deployment is essentially the same as already described in connection

with Fig. 4.

A representative recovery operation to achieve a final spin about

the '3' axis with this system is shown in Figs. 8(a) and (b).-

i

*a
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A comparison with the results of Figs. 6(a) and (b) clearly demonstrates

the effectiveness of the heavier boom after the switching time. In

addition, after approximately 40 seconds a drastic reduction in the

nutation angle is also apparent - a result not achieved by the lighter

end mass system. Despite the obvious advantages of using a more

massive appendage there are, however, two practical considerations

that have been ignored: (1) the increased weight of the payload

package and (2) the effect of flexibility on the assumed rigid body

dynamics simulated here.

IV. CONCLUDING COMMENTS

As an application for spacecraft rescue and recovery, when booms

are extended along all the principal axes to detumble a symmetrical

spacecraft, exact closed form analytical solutions can be obtained

for all three angular velocities of the spacecraft.

Doom extension maneuvers can be determined to approach either

of the two desired final states using Lyapunov's second method. The

conclusions are that: (1) as time becomes extremely large (and boom

lengths b pcome infinite) it would be theoretically possible to achieve

a zero inertial angular velocity state (of course, such a situation will,

in practice, not occur due to finite length booms); (2) the final spin

about one of the principal axes can be achieved by extending all tele-

scoping booms until the desired spin rate is reached and then continuing

the extension of the set of booms along the nominal spin axis until the

transverse components of angular velocity reach an acceptably small

amplitude.
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Numerical examination of other cases for asymmetrical hubs

also verifies the practicality of using movable appendages for

the initial detumbling of randomly spinning spacecraft.

An advantage of the telescoping system as used in the recovery

of tumbling spacecraft is its potential reuse. The booms can be

retracted at the end of each recovery operation once the small

residual angular velocity components have been removed by temporarily

activating on-board damping devices. The constraints on such a system

are: (1) the limitations on the extension rate, and boom lengths that

are practicable; (2) the limitations on the rate of initial tumble

that could be handled by the system without compromising its structural

integrity.
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