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I INTRODUCTION 

This paper describes a Fortran IV simulation study of the all-digital phase­

processing circuitry designed by the NASA Omega staff of the Ohio University 

Avionics Engineering Center. A digital phase-lock loop (DPLL) forms the heart 

of the Omega navigation receiver prototype. Through the DPLL, the phase of the 

10.2 KHz Omega signal is estimated when the true signal phase is contaminated 

with noise. The study has provided a convenient means of evaluating loop per­

formance in a variety of noise environments, and has proved to be a useful tool for 

evaluating design changes. 

The DPLL uses a frequency synthesizer as the reference oscillator. 

The synthesizer is composed of synchronous rate multipliers (SRM's) driven by a 

temperature-compensated crystal oscillator (TCXO). Use of the SRM's in this 

application introduces phase jitter which degrades system performance. Simulation 

of the frequency synthesizer is discussed in Part Ill of this paper. 

The goals of the simulation were fourfold: 

A. To analyze the circuits on a bit-by-bit level in order to evaluate the 

overall design; 

B. To see easily the effects of proposed design changes prior to actual 

breadboarding; 

C. To determine the optimum integration time for the DPLL in an environ­

ment typical of general aviation conditions; and 

D. To quantify the phase error introduced by the SRM synthesizer and 

examine its effect on the system. 



If THE DIGITAL PHASE-LOCK LOOP 

A. Introduction. DPLL's have been the subject of intense study in the past 

few years (4,6,7). Application of phase-lock techniques to digital systems has 

led to loop filters of first, second, and higher orders. The DPLL described in this 

section is a first-order loop which stores information about the relative phase dif­

ference between the local oscillator and the input signal. 

B. Description of Circuit. The DPLL follows closely the ideas of 

J.M. Clark ( ' ) , first presented in 1968. The DPLL presently in use at Ohio 

University is essentially a highly adapted version of his digital phase tracking 

filter. A detailed discussion of the loop circuit operation is given by Chamberlin( 2 ) . 

The circuit employs a 6-bit counter which cycles once every 64 pulses 

of the 652.8 KHz clock (see Figure 1). This counter therefore cycles at a rate of 

10.2 KHz (=652.8 KHz + 64). The number in the counter is compared continuously 

to the six most significant bits in the up-down counter, which is in turn fed by the 

phase detector. During the brief period when the numbers in the two counters are 

bit-wise identical, the output of the comparator goes to the logical I state. Al­

though the duration of this pulse may vary, the uni-directional counter generally 

advances at a much faster rate, indicating a pulse width of 1/652.8 KHz, or 

approximately 1.5,sec. This pulse is used to trigger a monostable, creating a 

window whenever the contents of the two registers are identical. 

When viewed through this window, the zero crossings of the incoming 

signal are seen to be either leading or lagging in relative phase. When a lag is 

indicated, the up-down counter receives a down-count command, and the next 
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window is created earlier in time. In this way the edge of the window gating 

function is brought more and more closely into coincidence with the zero crossings 

of the true Omega signal. Similarly, when a phase lead is indicated, count-up 

commands cause the window to be created later in time. 

When lock is obtained, the six most-significant bits in the bi-directional 

counter represent the relative phase difference between the input frequency and 

the local oscillator (LO). The LO can be considered as a 10.2 KHz clock, whose 

zero crossings coincide in time with the zero-count of the 6-bit counter. 

C. The DPLL as a Cross-Correlation Device. In a cross-correlation type 

receiver scheme, two signals are combined to give a d.c. level by first delaying 

one signal in time, multiplying their resulting signals, and integrating or lowpass 

filtering (see Figure 2). To see how the DPLL performs this same function in an 

all-digital sense, it is first necessary to view the circuit operation under no-noise 

conditions. Under these conditions there is no phase shift due to noise perturbations, 

nor is there a Doppler shift. The only phase error is then due to initial phase dif­

ference at turn-on. 

Assume that the initial phase difference is such that a count-up command 

is given to the up-down counter. If N bits are being integrated, there will be a 

delay of 2N up-count commands before the comparator logic "sees" a difference 

in time between successive occurrences of identical numbers in the two counters. 

The time delay in such a case is (2 N/10.2 x 103 ) seconds. This integration 

performs the low-pass filtering operation of h(t) in Figure 2. 
A 

The output of the comparator, e, is the estimate of the Omega signal 

phase, ea_. When lock is obtained, e = e.,, and the binary number contained 
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Figure 2. A Generalized Cross-Correlation Device. 
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in the six most significant bits of the up-down counter is the phase difference, 

analogous to the d .c.level obtained in an analog cross-correlation device. 

D. Description of the Simulation. The digital nature of the circuit 

indicated the use of the digital computer as the most convenient simulation tool . 

Since the circuit was already built and was, in fact, yielding phase, information' 

which compared favorably with the Tracor series 599R receiver used for control­

group data collection purposes, the circuit model was wholly deterministic. 

The generation of zero-crossing information for the Omega signal in 

noise, however, was necessarily stochastic in nature. A complete description of 

the signal-generating procedures is given in Part 11 E. 

CORDET is based on the technique of periodic scanning; that is, each 

portion of the DPLL is observed and updated with each clock pulse, significant 

information about the state of the system is recorded, and the process is repeated. 

In the case of CORDET, the significant information includes the states of all logic 

circuit elements, including phase difference information referenced to a local 

oscillator. The phase information is, of course, of primary importance in an 

Omega navigation receiver. The ability to compare the DPLL output with the true 

phase of the simulated Omega signal, and to provide graphical output, are ad­

vantages of a computer simulation over a laboratory hardware experiment. A 

user's technical description is provided in Appendix A. 

E. Signal Input Simulation. Since the receiver front.end provides a 

15-Hz bandwidth narrow-band filter, the derived phase information can be con­

sidered to result from a noise-plus-signal input to a narrow-band system. 

The composite input signal can be expressed as 
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g(t) = f(t) + A cos (comt + P) (1) 

where wm is the center frequency of the filter, and f(t) is the narrow-band 

noise process 

f(t) = E(t) cos (w mt +.#(t)). (2) 

It can be shown (3 ) that the amplitude process E(t) is Rayleigh distributed, 

while the phase process /D(t) is uniformly distrubuted on the interval (0,21r). 

Now, f(t) can be written in the form defining its quadrature com­

ponents, 

f(t) = NI (t) cos Wmt + N2 (t) sin com t (3) 

where NI (t) and N2 (t) are independent Gaussian processes(3) 

From equation I, g(t) may be expressed as 

9(t) = f(t) + A cos Ycos to t + A sin tsinwmt (4) 

Substituting for f(t), and using 

cos (a + b) = cos a cos b - sin a sin b, 

we have 

g(t) = (N1 (t) + A cos r) cOSWmt + (N2 (t) + A sint) sinwmt. (5) 

Equation 5 may be put in the form 

g(t) = R(t) cos(Wmt + e)t)) (6) 

where 

R(t) =f[N 1 (t) + A cosyif + [N 2(t) + A si27 

and 

N2(t) + A sin 
e(t) = arctan (8) 

N (t) + A cos 
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Equation 8 is therefore the input phase representation to the phase 

detector, where N1 (t) and N2 (t) are statistically-independent Gaussian white 

noise processes with zero mean and unit variance, and A is the normalized signal 

amplitude. In general ,tcan be a function of time to represent the Doppler 

shift in the dynamic case. At speeds less than Mach I, however, the Doppler 

shift is well below the 5.060 (1/64 of a 10.2 KHz cycle) quantizing interval of­

the DPLL, and so tcan be considered constant over the sampling interval. 

A block diagram of the noise input phase simulation is given in 

Figure 3. 

F. Conclusions. In determining the optimal integration time of the first 

order loop, consider the case of a small aircraft in a noisy environment8 As 

the time-multiplexed Omega transmission sequence progresses, the aircraft will 

change position between successive transmitting time intervals of the 10.2 KHz 

frequency. For an aircraft flying a course coincident with a station pair base­

line (worst case), the change in position will amount io 120 of 10.2 KHz phase 

at a speed of 200 mph, conservative for private aircraft. For this reason, step 

phase inputs of 120 were taken both in a noise environment of 10 decibels SNR 

and in the no-noise case. 

To determine optimal integration time, phase error at the end of the 

625 msec. sampling interval is plotted vs. integration time in Figures 4 and 5. 

As could be expected, the best integration time in noise is one which is as long 

as possible without leaving a residual phase error at the end of a sampling interval 

in the no-noise case. For aircraft at 200 mph, 0.1 sec., or 10 bits of integration 

proves to be optimal . 
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Figure 3. Block Diagram Simulation of Narrow-Band Noise. 
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Ill SRM FREQUENCY SYNTHESIZER 

A. Introduction. Many applications in communications and navigation 

require synchronous signal detection using a local oscillator with high stability, 

and atnon-standard frequencies. For example, most Omega navigation receivers 

operating in hyperbolic mode require that a local oscillator (LO) at some integral 

multiple frequency of 40.8 KHz be used for detection. The 40.8 KHz frequency 

is the least common multiple of 10.2 KHz and 13.6 KHz (i.e., 4x 10.2 and 

3 x 13.6). These are two of the three frequencies broadcast by the Omega system, 

the other being 11 .333 KHz. 

The Omega receiver prototype under development at Ohio University 

(8)
uses a LO frequency of 2.6112 MHz (64 x 40.8 KHz) . It is required that 

the LO have a long-term stability of at least one part in 107. To meet this 

requirement the LO must be of the temperature-compensated crystal oscillator 

type (TCXO). Since 2.6112 MHz is not a standard-frequency crystal, and 

special cutting of the crystal would be expensive, it was decided to synthesize 

the required frequency from a 5 MHz TCXO standard. The synthesized 2.6112 MHz 

frequency is then divided by 4 and the resulting 652.8 KHz wave (64 x 10.2 KHz) 

is used as the reference in the digital phase-lock loop described in Part II A. 

Use of the 5 MHz TCXO reduces the problem of long-term drift in the 

LO, but a new short-term phase jitter is introduced by the frequency synthesizer. 

This phase jitter, seen as additive noise when referred to the input signal off 

the air, must first be quantified before system degradation and design improvements 

can be evaluated. 
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B. The SRM Synthesizer. Rate multipliers have been in use in discrete 

form for several years (9), and recently (1972) programmable versions have become 

available in integrated-circuit form(13) . Rate multipliers are essentially counters 

which count modulo-N. Vhen supplied with appropriate logic circuitry, the 

counter will gate clock pulses in a predetermined sequence, effectively. multiplying 

the input clock rate by a factor of M/N, wihere M is determined by the programming 

circuitry. 

Literature concerning synchronous rate multipliers (SRM's) appears to be 

scarce, although the design employed by the Avionics Research Center staff at 

Ohio was inspired by references 9,10, and 11 . The synthesizer utilizes the 

SN 74167 Decimal Rate Multiplier (DRM) manufactured by Texas Instruments. 

Each DRM multiplies the input frequency by M/10, where M can be programmed 

to anyinteger from 0 through 10. 

A block diagram of the frequency synthesizer is shown in Figure 6. 

It consists of a 5 MHz TCXO followed by a chain of DRM's. The DRM chain 

is programmed in binary to multiply the input rate by .52224. That is, when­

ever 105 clock pulses enter the chain, 52,224 pulses are produced at the 

OR-gate output. To be able to calculate phase jitter in the output, it is clear 

that the sequence of pulses produced by each DRM must first be known. A 

FORTRAN computer program was written to determine the DRM outputs. 

C. DRM Simulation. Each DRM is composed of four T-type flip-flops 

and accompanying control logic gates (see Figure 7). Using the truth table 

associated with each of the logic elements, a program was written for the IBM 

System 360 computer using FORTRAN logical variables. The program, which 
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takes 10 seconds to execute, is listed in Appendix B. 

The results of the computer model are summarized in Figure 8. From the 

timing diagrams it is evident that programming the DRM inputs serves only to 

delete certain of the clock pulses. When the DRM's are cascaded in order to 

multiply by a longer decimal fraction, pulses are added whenever the ENABLE 

line to lower-order stages goes LOW. As seen from the ENABLE output in 

Figure 8, this can occur only for a period of one clock pulse in every ten. 

Note that the outputs determined by the simulation are identical to those 

produced by the circuit in the laboratory. Programmings of 5, 2, and 4 are shown 

in Figure 9. Results for all programmed inputs of Figure 8 were in agreement 

with laboratory observations. 

It is also evident that the first stage in the DRM chain will determine the 

worst case for phase jitter. For example, when the DRM is programmed to mul­

tiply by .5, the output will be the train of pulses shown in line 5 of Figure 8. 

The leading edge of the second pulse in this train will be two clock periods from 

the corresponding edge of the first pulse, the third pulse will be only one period 

from the second, the fourth again two periods from the third, and so on. Note 

that the time difference between the last of the five pulses and the first of the next 

train will be three clock periods. During this part of the pulse train, the ENABLE 

gate to succeeding stages goes LOW, and a pulse may be inserted by one of the 

following DRM's. 

D. Cascaded DRM Simulation. The computer was programmed to keep 

track of the number of oscillator pulses which occur between output edges of a 

series of cascaded DRM's. Summing the number of occurrences of each gives 
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Figure 9. 	 Observed Outputs of the SN 74167 DRM. Compare with lines 2, 4, and 5 
of Figure 3. The clock input is shown at the top of each photograph. 
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information which can be translated into a mean-squared-error figure for phase 

jitter. The program SYN, which simulates the DRM chain, when programmed to 

multiply by .52224, is given in Appendix C. 

Since the first DRM will determine worst-case output in terms of phase 

jitter, it is not surprising that in this case there are three possible time differences 

between output pulses. In terms of the oscillator period, the time between outputs 

is one, two or three periods. These results are summarized in Figure 10. 

E. Realization of Omega Frequencies. 

I. Post-division by 4. In order to obtain a frequency of 652.8 KHz 

from a 2.6112 MHz source, division by 4 is required. This division can eisily 

be performed by a pair of flip-flops. Using the SYN program with post-division 

by four (see Appendix C), it was determined that four distinct time differences 

between output pulse edges are produced, as seen in Figure 11. Calculating the 

weighted mean of these pulse occurrences in time gives: 

x= (output pulses) x (number of clock pulses between output edges) 
output pulses 

- (4448 x 6) + (16672 x 7) + (23328 x 8) + (7776 x 9) 
52224 

7.65931 clock pulses. 

As a check, 

fin (clock pulses/second) 

7-(clock pulses) 

or, 	 5x106 652.8 KHz (=10.2 KHz x 64) 
7.65931 

as expected. 
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The weighted mean can now be used to calculate mean-squared error. 

(times- difference between pulse " 2 
1,occurrences and weighted x 


Zoutput pulses
 

or, _ .53 7.o0)2 

_2 V 	 mean (number of pulses) 

= [(765931 - 7.00000>'] x 16672 

+ [(7.65931 - 6.00000)-r] 2 x 4448 

" 	 [(8.00000 - 7.65931)r] 2 x 23328 

[(9.00000 - 7.65931)r] x 7776 52224 

= 	.69277r2
 

where: 
1 

fin
 

For a 	5 MHz clock, 
-2 f t 	 014 se 2
2 .69277 /7_ Lj 2 2.77x10 sec.2 

2. Post-division by 8. Since the mean-squared error figure is a 

function of the clock period, it is a reasonable hypothesis to suppose that reducing 

the period will result in reducing the mean-squared error. To test this hypothesis, 

the SYN program was modified to perform post-division by 8 (see Appendix C), 

and a 10 MHz clock was assumed. The resulting output, illustrated in Figure 12, 

shows five possible positions for the resulting output pulse in terms of the input 

clock period. The weighted mean of the output is 15.31857 clock pulses, which 

yields an average frequency of 

10 MHz 652.8 KHz, 
15.31857
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Figure 12. Output of DRM Synthesizer with Post-Division by 8. 

-21­



as expected. Mean-squared error in this case is 3.12 x 10 -15sec. 2 , an 

improvement of an order of magnitude over the divide-by-four case. 

3. Pre-division by 4. As a point of reference, it is instructive to lo6k 

at the output produced by the DRM chain when driven by a 1 .25 MHz clock, or 

a 5 MHz TCXO divided by 4 (See Figure 10). The weighted mean in this 

-13 2 
case is 1.91483 clock pulses, resulting in a mean-squared error of 2.41 x 10 sec. 

F. Conclusions. In the case of the DRM synthesizer used in the 	Omega 

receiver protolype at Ohio University, this study has shown that significant 

reduction in phase jitter, and a corresponding reduction in the error introduced 

into the system, is possible by doubling the TCXO frequency at the input and 

dividing by 2 at the output. These results are summarized in Table 1 

Rate .2 Percent 
fin Multiplication C Improvement 

i 10-13 se 2 

5 MHz 4 x .52224 2.41 x 10 sec 
1 1-14 2 

II 5 MHz x .52224 r 4 2.77 x 10 sec 1-II 88.5% 

I 	 I-15 2111 10 MHz x . 52224 - 8 3.12 x 10 sec 	 1-111 98.7% 
11-111 88.7% 

2 22 -c 

(Percent Improvement = 2 1 x 100%) 

1 

Table 1. Phase Jitter Produced by Three DRM Synthesizer Configurations. 

Dividing the frequency of the DRM synthesizer output by powers of 2 

results in successively larger numbers of possible positions for the output pulse 

edges in terms of TCXO clock periods. It is difficult, therefore, to prove a 
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general theorem relatling circuit configuration to resulting phase jitter. However, 

for a 	given system, the following rules of thumb for programming the DRM's can 

be observed: 

1.	 Remember that the first stage determines worst-case phase 

ii-ter. Therefore, pick as high a programming number as 

possible for the first stage. 

2. 	 Successive doubling of the input frequency and corresponding 

division by two at the output of the DRM chain has been 

observed to reduce phase litter. 

In an application where reduction of phase jitter is critical, simulation of the system 

is not difficult using the techniques described in this paper. 

G. Recommendations. Frequency synthesizers utilizing rate multipliers 

hold great promise for use in digital systems where the inherent phase jitter can be 

tolerated. Applications in digital phase- and frequency-lock loops (16) appear 

to be especially useful. When programmable versions like the SN 74167 are 

employed, added versatility is possible. For example, if it is desired to navigate 

with the 13.6 KHz frequency in the Omega system, a simple programming change 

in the synthesizer will yield the proper clock rate for driving the DPLL. Noting 

that the ratio of 10.2 KHz to 13.6 KHz is 0.75, one could program the rate 

-multipliers 	to 52224/0.75 = 69632 and arrive at the desired 64 x 13.6 KHz rate. 

(The 11.333 KHz frequency, however, is not so easily accessable.) 

Care must be taken when using the synthesized frequencies derived from 

SRM chains in analog applications. For example, since the synthesizer described 

5here 	is periodic in 10 input clock pulses (or 10 msec. for a 10 MHz clock), only 
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harmonics of 100 Hz will be present in the output. Changing the phase jitter will 

alter the relative power contained in these harmonics. 

IV GENERAL CONCLUSIONS 

A. Phase Jitter as Noise. The graphic illustrations of phase jitter shown 

in Figures 10, 11, and 12 can be interpreted as probability density functions (pdf's) 

when the height of each line, i.e., the number of pulse edges occurring at each 

position, is divided by the total number of pulses. The probability that a pulse 

edge will occur within the limits of the discrete envelope then will be unity. Al­

though the phase process is not truly random at the output of the synthesizer, such 

a density function will describe the position of the output pulses when observed 

at random instants of time. 

In the Omega application described in this paper, this density function for 

phase noise can be referred to input since the phase detector used in the DPLL sees 

only relative phase difference between the received signal and the reference 

oscillator. Theoretically it then would be possible to obtain a signal-to-noise 

figure with phase jitter from the frequency synthesizer treated as added noise on 

the incoming Omega signal. Resulting system degradation could then be translated 

into a lower signal-to-noise ratio (SNR) in the signal off-the-air. This approach 

toward analysis has several shortcomings, as discussed below.I 

Since the signal off-the-air is band-pass filtered, we can again apply the 

theory of noise in narrowband systems with added sinusoids to describe the prob­

ability density function for phase. In particular, when the noise input is white, 

it can be shown (12 ) that: 
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Figure 13. Phase pdf for sinusoid-plus-white noise in a narrowband system. 

(e)=e- + s2 O es2sin2 6 fl + erf(s cos6)] 

2,iV 
_2 4 e-2d (9) 

Where: erfx 2 e dy 

s2 = power signal-to-noise ratio (SNR). 

This density function is sketched in Figure 13 for e =W and increasing 

values of s. Note that when the signal vanishes, the phase is uniformly dis­

tributed over the interval 0 to 2r. As the noise level approaches zero, q(O) 

approaches the delta function at e = i'. 

If one wants to speak of the contamination caused by synthesizer phase 

jitter in terms of a lowered apparent SNR, he must fit the empirically-obtained 

pdf to the pdf of equation (9). Several immediate difficulties preclude this 
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approach. 

First, the empirical phase pdf is discrete, not continuous, In the 

general case, even the contour of its envelope need not match any curve described 

by equation (9). Therefore, since equation (9) was derived for band-limited 

white noise (the usual case), we would assume that a phase pdf of the discrete 

form had been produced by some other noise source. 

It is apparent that any signal -to- noise ratio which would result from 

relating equation (9) to one of the empirical pdf's would have a meaning differ­

ent from the one familiar to the design engineer. Such a SNR would describe a 

synthetic pseudo- noise source with no counterpart in atmospheric channel noise. 

For this reason it would be more useful to formulate a figure-of-merit for a 

synthesizer with given empirical phase pdf. One would then attempt, through 

careful design, to optimize this figure of merit. 

In digital applications of rate multipliers, it is desired that the 

empirically-determined pdf be distributed over as narrow a phase interval as 

possible. The MSE value of deviation from the mean, when used as a figure of 

merit, has the advantage of penalizing large phase excursions more than small 

ones. When there is no phase jitter, the MSE is zero and the density function 

becomes the delta function at the mean. Adopting the MSE as the gauge with 

which to measure phase jitter, the designer should attempt to minimize MSE. 

B. Phase Jitter Relative to Omega Applications. How great an effect 

the MSE has in degrading the performance of a given system depends on the par­

ticular application. In the case of the digital phase lock loop application for 

which the synthesizer design was developed, it is clear that phase jitter will have 
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no effect on the system while the Omega signal phase lies outside the interval 

embraced by the pdf of the synthesizer. Once the pdf overlaps the Omega signal 

zero crossings, however, the phase detector will begin to give erroneous out­

puts to the tracking filter. The effect of this phenomenon will be to increase 

the lockup time of the DPLL, making it desirable to minimize MSE in the syn­

thesizer. 

After the loop has attained lockup, the phase jitter will drive the loop 

out of lock if the pdf is not symmetrically centered about the lock point, or mean. 

For example, after lock is attained in the pdf of Figure 12, the position of 

Omega phase will coincide with the weighted mean. If we consider the pdf to 

be the result of a random process, then 68% of the time the clock pulses will arrive 

too soon at the phase detector, and 32% of the time they will arrive too late. 

On the average, then, the loop will be driven out of lock twice as often in one 

direction as in the other. 

To completely determine the parameters of this process would require 

a dynamic mating of the SYN program and the CORDET simulation of. Part 11. 

However, the present study reveals that the error will be no more than the least 

significant bit in the bi-directional count register. This is true since the interval 

spanned by the synthesizer phase pdf is less than I .53pxsec, which is the minimum 

time interval the phase can be advanced or retarded at the comparator output. 

The net effect of the phase jitter in the present system therefore", is to introduce 

a possible one-bit uncertainty. 

This least significant bit represents 1'/64 of a 10.2 KHz lane. Examination 

of Omega lane geometry in North America reveals that in no case is it necessary 

to use station pairs which produce lanes of more than 30 nm separation (15). An 
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error of 1/64 lane is the worst-case equivalent of less than 0.5 nm. When the 

major emphasis is on producing a low-cost receiver, this error can be considered 

acceptable until such time as TCXO's are commonly available in frequencies 

compatable with Omega. 
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A. COMPUTER PROGRAM CORDET. 

1 . -General Description. 

CORDET is a logic simulation of the all-digital phase-lack loop (DPLL) 

presently employed in the Omega receiver prototype. 

Output provides graphic display of the timing diagrams of the circuit, 

plots of phase difference vs. time, and a histogram of phase difference between 

the DPLL output and the object-lock frequency. 

Provisions have been made to vary the number of bits of integration, the 

signal-to-noise ratio of the input signal, and the initial phase difference between 

the DPLL output and the object-lock frequency. 

2. Capabilities and Limitations. 

a. The program assumes the presence of a local oscillator in the circuit 

with a frequency of 64 times the object-lock frequency. 

b. Compile and load 	time is 15 seconds. Execute time is approximately 

0.15 seconds per cycle of object-lock frequency specified (when only phase differ­

ence and histogram are plotted). 

c. Approximately 21 	 x 103 bytes of storage are used. 

d. Subroutines HISTG and RANDNR are called from the Ohio University 

computer center request-call library. RANDNR uses the multiplicative congruential 

method of pseudo-random number generation. HISTG is a plotting subroutine. 

3.- Technical Description. 

Language: FORTRAN IV 

Number of arguments: 11 

I. 	 Data card 1: NCYC, MNUMB, NNUMB, 
DCYC, DELPHI, NOISE, A 
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Mode: 	 INTEGER (1,2,3,6,), 
REAL (4,5,7) 

2. 	 Data card 2: TD, PHA, HISTOG 
Mode: INTEGER 

3. 	 Data card 3: TITLE 
Mode: ALPHANUMERIC 

Argument definitions: 

NCYC - is the number of object-frequency cycles to be 
considered. 

MNUMB - is the number of bits in the up-counter. 

NNUMB - is the total number of bits in the up-down counter. 

DCYC - is the duty cycle of themonostable. 

DELPHI - is the initial phase difference in degrees of lag 
(DPLL output lags input). 

NOISE - is zero for no-noise case, 1 otherwise. 

A - is voltage signal-to-noise ratio in rational number farm 
(not db). 

TD - is 1 if timing diagram are desired, 0 otherwise. 

PHA - is 1 if phase difference vs. time plots are desired, 
0 otherwise. 

HISTOG - is I if histogram is desired, 0 otherwise. 

TITLE - is title for histogram plot. 

Figure A-I represents the positive-logic implementation of the DPLL. 

CORDET performs one pass through a DO-loop for each pulse of the 

64 x 10.2 KHz clock. New values for the logical variables indicated in the dia­

gram are assigned on each pass. Design changes in the circuit will, of course, 

necessitate changes in the logical statements in CORDET's main program. 
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LOMEGA
 

DN NNUMB-BIT" 

0 UP UP-DOWN COUNTER
 

MNUMB-BIT 
164 x 10.2 KH CUNTERONOSTAB 

LMONO 

Figure A-]. Positive-Logic Implementation of the DPLL. 

4, Program Listing and Sample Outputs. 
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OHIO UjtvpFstTy 0 U I J I SYSTEM F'URIPAN IV G-LFV&L COMPILER Sr-pTER-IFR 25. 1q7 PA.E O000-i 

LAnrL MAP
 
LAFJL LOCATION4 LABEL LnCATION LABEiL LOCATION LAOEL LOCATION LAInL LUCA I N 

I 003AE 2 000W4 3 000411 4 000434 b 0004., 
& 0"00&C 7 000400 0 0004A4 9 o00CO 10 000t: 
I O00.1Fs 12 000h3C
 

TOTAL MFMORY REOUIREMtNTS 000594 IIYTES PLOTI
 
/OATA 

MODULE AC0 LENGTH ENTRY POINTS 4E). EXTERNAL (X) AND COM0ON (C) REPF*INCES
 
MAIN.4. orooo &-4A1N44 B OOD X-ZSCOIA X-TRUN X44ON0S
 

00604 X-0MCGAI X-PLOTI X-FIXPI,
 
TRU.. OF608 00JI1A C-TUN OF0$ X-FIXPI
 
OMGAli OFOCO 001E4 E-0FGAI oFCo
 
MONOSI 0FBA8 00274 E-ONOS OFOAR
 
PLOTIp OFEZ0 00594 E-Pl-OT! OFE20 X-SCOmS
 

MOCULES LOADED FROM AUTO - CALL LIBRARY 

BOAFIXPI 10388 00048 X-1C1*om E-FIXPI 103C0 
M00ULE SUCCESSFULLY LOADED --- 2FS58 BYTES OF STORAGE REMAINING t EXECUTION BEGUN AT 0F000 

40 3 5 0.50 00.00 0.13
 

I N MToUN '4 REF LOMEGA POMECA UP ON L.ONO LMONO2 INOLOC EX 

1 0 0 1
 
2 31 0 2
 

3 31 7 3
 
4 31 7 4
 
531 7 5
 
6 31 7 6
 
7 31 7 7
 
a83! 7 0 IIII III
 
9 31 7 I I 
10 32 7 2
 

11 32 0 3 I
 
12 32 0 4 I
 
13 32 0 5 I
 
14 32 0 6 I
 
15 32 0 7
 
16 32 0 0 IIIIII PI
 
17 32 0 I
 
Is833 0 2 I II II II
 
19 33 0 3
 
20 33 0 4
 
21 33 0 S
 
22 33 0 6
 
23 33 0 7
 
24 33 0 0
 
25 33 0 1 IIIII II
 
26 3 0 2
 
27 34 0 3
 
25 34 0 4
 

29 34 0 5
 
30 34 0 6
 
31 3 0 7
 
32 34 0 0
 
33 34 0 1
 
34 35 0 2 I
 
35 35 0 3
 
36 35 0 4
 
37 35 0 5
 
38 35 0 6
 
3935 0 7
 
40 35 0 0
 
41 35 0 1
 
42 36 0 2 I
 
43 36 1 3 I 
44 36 I 4
 

45 36 I I
 
46 36 1 6 "
 
47 36 I 7
 
S 36 1 0 
40 36 1 1 I I I AI 
5 37 I 2 

ORIGINI51 37 1 3 

52 37 1 4 IIIII II
 
53 37 I 5 
54 37 1 6
 
55 37 1 7 ­
56 37 0
 
57 37 I I 

3 I 2 I I 
5q 3 1 3 I
 
603 I .
 I 
61 3 I I 
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C- ------- INITIATE AND DIMENSION--------
INTEGER*2 REF,EB(24),INDI,NS,TD,PHA,HISTOG
 

INTEGER PHADIF,PH(60)
 
LOGICAL LMONOUP, INDLOC,UPPEDNLOMEGA,[NDLMONO2,EXPOMEGA
 

C- ---- OM AND AM MUST BE DIMENSIONED TO 2*(2**MNUMB)+1. 
LOGICAL*1 OM(129).,AM(129) 
DIMENSION ARRAY(650) 
EX = .FALSE. 
LMONO2 = .FALSE. 
INDLOC = .FALSE.
 
POMEGA =.FALSE.
 
READ (1.13) NCYCMNUMB,NNUMB.DCYC,DELPHI,NOISE,A
 

13 	 FORMAT (31S,2F10.2.12,F5.2)
 
READ (1,14) TD,PHAHISTOG 

i/4 FORMAT (315) 
C- ------ THETA IS INITIAL PHASE SHIFT,=2*PI*DELPHI/360.-

THETA = DELPHI*O.01745329
 
SINE = SIN(THETA)
 
COSINE = COS (THETA)
 
DO 57 1=1,129
 
OM(I ) =.FALSE.'
 
AM( I )=.FALSE., 

57 CONTINUE 
JJ = 0
JJJ=a 	 0 ""
 
~I1 = 0 

MONO 0
 
M 0
 
N ---. .
 

MREGM - 2**MNUMB
 
MREGN = 2*-NNUMB
 
HALF = FLOAT(UREGM)/2.
 
MHALF = HALF
 
K = MREGM
 
NCYCP = NCYC*MREGM
 
NCYCT = NCYC*.I
 
X = (DELPHI/360.)*MREGM
 
IX = X
III = 0
 

JIl = 64
 
TNDCH = 0
 

C- ----- 0-LOOP BEGINS 
DO 12 I=I,NCYCP 

C- ------M IS NUMBER STORED 

M =M+I
 
IF (M-MREGM) 10,11,11
 

11 M 0
 
10 CONTINUE
 

WITH OCCURRENCE OF FIRST CLOCK PULSE-

IN UP-COUNTER-

C. ---- B INAQY NUMBER IN UP-DN COUNTER IS TRUNCATED DUE TO BIT 
C--	 ----- INTEGRATIPN. NTRUN IS RETURNED--D--

CALL TRUN (NNUMBMNUMB,N,NTRUNB)
C-- ---- IF M=NTRUN, REF GOES HIGH


IF (M-NTRUN) 
1.2.1
 
1 REF = 0
 

GO TO 3
 
2 REF = 1
 
3 CONTINUE
 
C- ----- MONOS PROVIDES OUTPUT OF 
MONOSTABLE. K IS TIMER FOR MONO
 
C- ------ LMONO IS LOGICAL OUTPUT OF MONOSTABLE. 

K = K+1 
CALL MONOS (K.RFFDCYCMREGMLMONO) -" 

C-- ---- LOMEGA IS OMEGA SIGNAL ZERO CPOSSINGS. 
C-- ----- A IS VOLTAGE SNR. POMEGA IS TRUE PHASE OF OMEGA SIGNAL. 

IF (IX.EQ."4) GO TC 30
 
POMEGA = *FALSE.
 
GO TO 31
 

30 PCMEGA = .TRUE.
 
31 CONTINUF
 

IF (NOISE.EO.O) GO TO 32 

IF (POMEGA) GO TO 34 

GO TO 51 


34 	 INDCH = -1--INDCH+1
 
IF (INDCH.EQ.1) GO TO.37
 
00 38 IJK = 1,129
 
AM(IJK) =.FALSE.
 

319 	 CONTINUE
 

- 1 ,"- I .
ORIGINALJAG
OF -POORQUMfrY 

C-- --- NOISE IS ADDED TO OUADRATURE COMPONENTS OF.OMEGA SIGNAL.-

CALL ANORM (AN)
 
ANUM = A*SINE+AN
 
CALL ANORM (AN) 	 -39­

39 



DENOM = A*COSINE+AN
 
THETAI = ATAN2 (ANUMDENOM)
 
PCYC = (THETAI/6.28318)*WREGM
 
INDEX = PCYC
 
IF (INDCH.EQ.1 )GO-TO 50
 
AM"(MREGM+NDEX) =.TRUE. ""
 
GO TO 51
 

50 OM (MREGM+INDEX) =.TRUE.
 
GO TO 51
 

37 00 52 IJK=l,129
 
OM(IJK) =.FALSE.
 

52 CONTINUE
 
"" GO 	TO 39
 

51 	 CONTINUE 
JII = JI+1 
III = rxr-+ 
IF (III.EO.129) III = I
 
IF(JII.EQ.129) JII =1
 
LOMEGA = OM(III).OR.AM(JII)
 
IF ((I.EQ.M).AND.(POMEGA)) LOMEGA POMEGA
 

32 	 IF (NOISE.EO.0) LOMEGA = POMEGA
 
C-- ---- LMONO AND LOMEGA ENTER PHASE DETECTOR-


UP = LMONO.AND.LOMEGA
 
ON =(.NOT. LMONO).AND.LOMEGA
 

C-- ---- PHASE DETECTOR OUTPUT FEEDS "UP-ON COUNTER"
 
IF (UP)"N = N+1
 
IF-,(ON) N = N-I
 

C-- ----- COUNT REGISTER MUST CONTAIN POSITIVE NUMBER
 
IF(N) 8,9,9-' . ...
.. 	 .. .
 

8 N = MREGN+N
 
9 CONTINUE
 
C-- ----- UP-DN. COUNTER COUNTS MODULO-MREGN-

IF (MREGN-N) 23,24,24 
23 	 N 0O
 
24 CONTINUE 

IF (TD.EQ.O) GO TO 501 
IF (1-1) 40,40,70 ­

40 CONTINUE 
C-- ---- TIMING DIAGRAM IS PLOTTED--

PPINT 500 
-500 	 FOQMAT(' 1' ,2X,'I,3X,'NI ,3X,'NTRUN',3XlMs,4X,'REF 3X;'LOMEGAv12X " 

,'POMGA,4X'UP%,6X,DN,4X,LMONO%,3X.'LMONO2 ,2X,*INDLOC',4X,'E 

70 CONTINUE
 
CALL PLOT1 (I,N,NTRUNM,REFLOMWGA,LMONO.LMONO2,DN,UPINOLOC;EX.PO
 
IMFG4)
 

501 CONTINUE 
IF ((PHA.EQ.O).AND.(HISTOG.EQ.O)) GO TO 12 
IF' .NOT.POMEGA) GO TO 65 
JJ = JJ+1 
IF (JJ.EQo.I) GO TO 28 
AJ = JJ/10. 
IJ = AJ 
IF (IJ.NE.AJ) GO TO 65 

28 CONTINUE 
IF (M.LT.MHALF) GO TO 20 

"- IF (NTRUN.LT..1HALF) GO TO.21 
22 PHADIF = 2*(NTRUN-M) 

GO TO 45 
21 PHADIF = (NTRUN + MREGM-M)*2 

GO TO 45 ­
20 IF (NTRUN.LT.MHALF) GO TO 22 

P-ADIF 2*(NTRUN-MPEGM--M) 
45 -CONTINUE 
C--- ------ ARRAY IS LOADED FOR PLOT SUBROUTINE­

jjj = JJJ+l 
PH(JJJ) = PHADIF 

65 CONTINUE 
12 CONTINUE -ORIGA PAGt IS 

IF (PHA.EO.0) GO TO 502 	 0POURn 
CALL PLOT (PH,JJJ)
 

502 CONTINUE
 
IF (HISTOG.EQ.0) GO TO 503
 

-. ---- ARRAY IS LOADED FOR HISTG SUBROUTINE
 
00 27 1 = 1,JJJ
 
ARRAY (I) = FLOAT(PH(I))
 

27 CONTINUE 
DIMENSION TITLE(20) 
RFAD (1,146) TITLE 

146 FORMAT (20A4) .- -40- - ­

http:NTRUN.LT
http:IJ.NE.AJ
http:I,N,NTRUNM,REFLOMWGA,LMONO.LMONO2,DN,UPINOLOC;EX.PO
http:INDCH.EQ


DATA AST/'*'/ 
-- HISTOGRAM IS PLOTTED---
CALL HISTG (JJJARRAY,TITLE,1.AST) 

503 CONTINUE 
STOP 
END 

C 
SUBROUTINE TRUN {NNUMSB,MNUNBS,NNTRUN,a) -

THIS SUBROUTINE CONVERTS DECIMAL INTEGERS TO BINARY FORM 
C AND TRUNCATES, SHIFTS DOWN "REMAINING BITS 'AND RETURNS 

INTEGER*2 B(NNUMB) 
00 9 1 = INNUMB 
B(1) = 0 

9.... CONTINUE", 
1=0 
DUM = N 

1 . DUM=DUM/2. 
S= I+............. 

I DUM=OUM 

2 
IF 
B() 

(DUM-IDUM) 213,2 
= 1 

DU=DUM-'.......... 
IF (OUM) 4,4,1 

3 B(I) = 0 
IF (DUM) 4,a,1 

4 CONTINUE' 
C THE BINARY NUMBER IS TRUNCATED 

DO 11 1 = I,MNUMB 
B(I) = B(I+(NNUMB-MNUMS)) 

1 CONTINUE - -

C THE TRUNCATED BINARY NUMBER IS CONVERTED BACK TO DECIMAL 
NTRUN = 0 
DO 10 f---,MNUMB 
K= (I )*(2**( I-l) 
NT RUN = NTRUN + K 

10 CONTINUE 
RETURN 
END 

SUBROUTINE MONOS (KRE%-,CCYCMREGMLMONO "-

LOGICAL LMONO 
INTEGER*2 REF 
X = DCYC*MREGM - 1. 
IX = X
 

IF tREF) 10,10,2 
10 IF (K-IX) 14.14,11 
11 ' MONO = 0 

GO TO 18 
12 IF (K-IX) 14.14,19 
19 MONO = I 

K=O 
GO TO IS 

14 MONO = I 
i IF (MONO)15,.15,I6 
is LMONO = .FALSE. 

GO TO 17 
16 LMONO = *TRUE. 
17 RETURN

END
 

ORIGINAL PAGE0 .18Of PooR QUALM 
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SUBROUTINE PLOT (PH,JJJ)
 
REAL LINE(129)
 
INTEGER PHADIFPH(JJJ).
 
DATA DOT/9.*/,PLUS/-+f/,BLK/. '/,VLINE/*Ij/,AST/OQ*/-

DO 12 JJ = I.JJJ
 
IF (JJ.NE.1) GO TO 5
 
PRINT 8
 

a FORMAT ('!",45X,'PHASE DIFFERENCE IN DEGREES VS. TIME IN MSEC'.')
 
4 PRINT 2
 
2 FORMAT (3X'-180.28Xu-g0,30X,#Ow,31X,*0o.28X",s1o8


)

6 PRINT 7
 
7 FORMAT (4X 4+1,16(1 - +'))
 
5. CONTINUE
 

NSP = PH(JJ) + 65
 
IF (NSP.GT.129) GO TO 15
 
IF (NSP.LT.1y"GO TO 15
 
GO TO 3
 

15 CONTINUE
 
PRINT 23,PH(JJ)
 

23 FORMAT (IOOX,'PH= -r;I103
 
RETURN
 

3 CONTINUE
 
C CLEAR LINE
 

O0 I J 1,129
 
LINE(J) = BLK
 
CONTINUE
 
LINE({) = VLIME
 
LINE(129) = VLINE
 
Al = JJ/10.
 
II = Al
 
IF(AI.NE.II) GO TO 9
 
LINE(17) = DOT
 
LINE(33) = PLUS
 
LINE(49) = DOT
 
LINE (65) = PLUS
 
LINE (81) = DOT
 
LINE (97) = PLUS
 
LINE (113) = DOT
 

9 CONTINUE
 
10 LINE(NSP) = AST
 

IF (AI.EQ.II) GO TO 20
 
WRITE(3,11) LINE
 

11 FORMAT (4X,129AI)
 
GO TO 12
 

20 TIME =(FLOAT(JJ)*.C09039216)
 
WRITE (3.21) LINE
 

21 FORMAT (4X.129A1)
 
WRITE (3.22) TIME
 

22' FORMAT ('+',4X,ES.2)
 
12 CONTINUE
 

RFTUR;'t
 

ORIGINAfL PAGE IS 
OF POOR QUALInI 
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SUBROUTINE PLOTI (I,N,NTRUN,MREF,LCMEGALMONOLMONOZDN,UP,INDLOC,
 
*EXPOMEGA)
 
INTEGER*2 REF
 
LOGICAL'LMONO,UP, INDLOC.DNLOMEGA,LMCNO2,EXPOMEGA
 
INTEGER LINE(66J
 
INTEGER ELK/' */,VLINE/' j4/
 
DO I J 1,66 

TLINE(J) = BLK 
.1 CONTINUE 

LINE(I) = VLINE 
.00 2 K 1,8 
LINE (8*K) = VLINE 

2 CONTINUE 
IF (REF.NE.l) GO TO 3 
LINE(3) VLINE
 

S LINE ('1) = LK
 
3 IF (.NOTLOEGA] GO TO 4
 

LINE (10) VLINE
 
LINE (8) = BLK"
 

4 	 IF I.NOT.POMEGA) GO'TO S
 
LINE(18)= VLINE
 
LINE (16)= 8LK
 

5 	 IFI.NOT.UP) GO TO*6
 
LINE(26)= VLINE
 
LINE (24)= BLK
 

6 	 tF(.NOT.DN) GO TO 7
 
LINE(34)= VLINE
 
LINE (32)= ELK
 

7 	 IF (NOT.LMONC) GO TO 8
 
LINE(42)= VLINE
 
LINE (40)= ELK
 

8 	 IF (oNOT.LMON02) GO TO 9
 
LINE(50)= VLINE
 
LINE (48)=,RLK
 

9 IF (.NOT*INDLOC) GO TO 10
 
LINE(58)= VLINE
 
LINE (5f)= BLK
 

10 	 IF (.NOT.FX) ,GO TO 11
 
LINE(66)= VLINE
 
LINE (64)= 3LK
 

11 WRITE(3,12) I,N,NTRUN.MLINE
 
12 FORMIAT (IX.2144Ib,15,5X,66AI)
 

RETURN
 
ENO 

100 6 8 0.50 O0o 1 3.60
 
0 1 1
 

PHASE DIFFERENCE IN 64THS OF -A CYCLE
 

QIGINAL PAG~I 
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B. DRM SIMULATION
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VEISITY 0 U I J I SYSTEM 16:17:56 DEC-t4-JEP 9. 1' 

;QAlmMEN ACC-UNT- IOENT -- TI' 'izC~nDS -- - M LIS eXCCf 
,VIC P N&1 3 60 5C F Y F 

.. UIVAL'NCE (CK .TAr=.TC.TO;(NSAL;LI.KUIIJ1,cNf.
 
*(CL,F] .?I CC.Cm) ,CST1.,FE.2,PC,PD)
, (NCK,)2.C2,2*A2) tPI0,0I).

* (PIC ,CI) ,( I=@ ) (1IA.A1)I (04,NI) .(C4.q2},{3SN3) (A5,N4), 

WN~~b0 I).((V!N IC),tO3,YC0L,03, I,03CCAP)(OAK2,IsC3,1 ______
(09,13.U3).(CC.C2,. --I.l .J2). II,')..(J3,H2)(H3.GC){('.Glci, 

*(Po , 3),({CCRAP,.4), (F3 CA),.(E3.C3).( F4,OABAQ I, IV4.ENCUT) 

- -- LpG I!CAL tI1 A, DQD. WA, NCC, FNAeL, CK jTABTC,TD NENLAIILt ILLJ _Q'.J! .G31 ,'41CL.Pt.02.S1 ,CC.CD.ST9,, ,F 2P'qCP.ONCK.C2,32,A?.RIDD.I 
*PECC1I PP,' I PIAVAI .04,N IC4.N2,E!S.N3.AE,N4.NS,Z.C1 ,UN ICA,.02,03. 
*yLa,3 0. 1A
2,3OP143.OC.G2.M2,A3,J2.14,HtJ3.H2.H3 

.*GC,C3, tO>VD PA 4,F3.CA, E3,CS,R4.QA6AR.M4 ,ENCUT.KZ,L30Q.3GA __-

INTtCGER LINE(66)
 
UNICA = .TRUE.
 
OA .FLSF. 

00 .FALSE.
Or')= FALSE. 

___________AA = TRaUE. ____ ______________________ 

ODBAP = .TRUE.
 
P4A .FALSE.
 

REA' (I,!) FNArLE,STCL 
I FORMAT VfAXLl) 

~r--0.T2~MNE ~FINPUMS-
NENA$L = .KOT.ENA5LF
 
D6 C J=1,10
 
READ (1.7) RID.RICPI.RIA
 

7 OPF-IAT 'A A(XL L)-- ......
 
Oil4 1 .4C
 

F3 = F1.CR.F?
 

L3I~ .J'DL --.L__ 
K3 = AIl:.K2
 
IA II.6ND.I.AND.!3

JI Jl.ANiRaJ2
 
H3 = -


CI:-----GNL Hl.CQ.H2RATA cL CC < -PUSE-
ICK - -I=ICK+l
 
IF (ICK.=C.I) GO To 2 

GO TO 3
 
2 CK = TQU'.
 
3 CONTINUF
 

LAX Er'C- OP _C' T0!GCESOPS-j -­
t ALI TFF (CAPRA;GA.TA;OA.QAPPR)

" 

CALL TF (Cn's.G;T.O,CO8AP)
= 

CALL TF (CC,-)RC.GCTCOC.CC6AP)
 

....... CALL TfI' (CO-, J.GD.Tf.C,00jAR11J.
 

C ----------- -ErEDMINE
- OUTOUT....
 
NCK = .\QT.CK
 

g = .tCT.(I{ND' .W2.ANjdA?3) 

C4 CI~iNP4rC2.ANO.C3
 
85 = 91.4A'.95.AND.433.AND.94 
AS. AI.ANO,.A.At..O.A2.A .A4 

__ ____ __ _N5 = .NP'T,(NI. 2'.N2* CZ..N3 * R NA) . . ... ___ .. __ _ __ _ __ _ 
03 = ( .JcT.(oI ;ANODo2) 

IF (I.FO.1) P0TNT7.qIP.IC,RIBRlA
 
IF (I.E.IPINT 9-


N ;3x , SNP T-,* T,4X,'OOS6APA' 

CALL PLVTI (1,d IC'C.CK.CKVOA,0SOC.00.-NAILE.ENCUT.OOBAP) 
4 CONT I 4U 

... .. o. C O ,T tN U . .. . ... . .. ... . .. . . . . ..... 

STOP
 
ENO
 

ECU VALENCE DATA MAP 

L OCATION SvM' IOL LCCATIPM SYA400L LOCATION SYMBOL LOCATT0N 
o"WiC TA ,'-ICoC TO c'cOOeC TC 0'10C 
06CO) Li 'q KlOOO Il oo0,( 

'0jGNAL PAGE IS 
pOO QUALJM 
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IVEPSITY 0 Ut I J I SYSTEM FOPTPAN IV G-LEVEL COMPILER DECEMBER 

SUI3 0UTINE PLOTI (II,J.KK<*Mt
LOGICALC1 LiiL2,L3.L4.L5.Lo.L7,L8.L9 
INTFGFP LINr(E6) 

___I-NTFzGPrILK/. , VII/~/-

LI.L?,L3.L4.L5.L5l,L7,L8,L9) 

______~___ 

1 
LINC(J} = 
CONTINUF 

OLK 

2 

DO 2 K = 1.8 
LINr (8t<) = VLINC 
CONTINUE 

f.NOT.LI) GO TO
LINE(3) -= VLINE... 

3 
.. 

-
3 

.-­

4 

5 

6 

L 

-

-

LINF (1) = ELK 
IF (.NOI.L2) GO TO 4 
LIN, (1).= VLINE ...-... 
L I N5 (9) = B3LK 
IF (.NOT.LJI GO TO 5 
LINE(18) VLIN 
LJ 3E.ji6)Z= BLK __________________________ 

IF (aNOTeLT-GO-TO 6 
LINE(261Z VLINC 
LINE (24)= ALK1EtNO..,. L-_ G JQL _..______-__.7________ 

7 

8 

LINE(34)= VLINE 
LINO (32)= RLK 
IF (eNOT.L6) GO TO 
_ IN

t 
(42)= VLINS_ 

C IrNECI4oZ5RL 
IF C.NOT.L7) GO TO 
LINE(S0}= VLINE 

a 

9 

9 

11) 

11
1? 

I (.NCT.LS> GC TO 10. 
LINL(58)= VLINS 
LINE (56)= BLK 
IF (,NOT.LQ) GC TO II 
Lrta (66' LINE..----- -----
LINF (64)= LK 
WPITE (3,12) LI,JJ.KKti'.LINE

FORAT Ik' (4 16 I, ,e6AA)______ 
RCTURN. -
END 

SCALAR NAP 
LOATION SYNROL LOCATION SYMBOL LOCATION SYMEOL LOCATION 
GOGEA VLIN 
00F9 KK0_cI.ot ..... ... _ 

1OGOEB J 
COOFC MMO_?IO17_.... L5 ... 

000EC 
COClcOAO00.0IOA0 

K 
Li
I9__ 

GOOcFO 
000104 

000108 L9 ocCI1C 
ARRAY MAP 

SUBPROGRAMS CALLED 

000218 
LABEL '-A 

.-- SLCA2TION 

O30480 
OIoslt 

LA .L LLCATION
ooosQecIQ----------­ ' 

0008C2 t032
7 OC49r 

12 1')Osc 

LABEL-

T3 
a 

-
L0CAT 

COC4Z6
CCC4BC 

-C 
--LEab 

4
9 

_ 
L

L( -o 
000444
00040A 

ORIGINAL PAGE IS 
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________________ 

___ 

0 OHIO UNIVERSITY 

0001 

0002 
0003- -_0004 
COOS 

OOto 

COO? 

0009 

cc10 


,C.0011 

0013. 


00I4 

0015 


0017 

001 


SYWEOL 

PP 

T 


LABEL 

2 


.. 

0 U I 	J I SYS'vv F(IRTQAN IV G-LSVFL COMPILER 


S'3OUTINe TFF (C,PR.GT.C.OBAR)

LOGICALt 1 C,PP.TC,0JAqG
 
IF 	 G.NOT.('f.fl.C))CC TO 	 IQ (P= ) GQC C ... .. . ....­--.... 


O=.FALSF.
 
GO TC 	 3 

2 
 CONTINUP
 

3 	 OBA =.NQT.o 
IF (.N(JT. CPC.ANDC)) 

_____l__OHA= TRUE09.TP.
 
RETURN
 

1 	 IF (.NOT.G) RETURN
 
IF (T) C=.hQT.C
 

....OTAL_-TTAHIEMQFY R£ <,T -0,.coDFUR~ TSF 
/DATA
 

MOLCLE ACt' LENGTh 
MAIN44# 0Z030 0C644 E-MAIN44 
-cij. $ - -PLCT L-T- -005Q4_-

E--Tv
OFC6C 002R4 
COLS SUCCESSFULLY LCADEC ---

- FFP - FY 

TFFa 


2 1 11. 0 a"
 

2 1 1 1
 
1 0 c
 

....7...- __..0 _0
1 0 

14 11 

91 1 0 0 I
 

16 11 11 

cS 1 0 0
 
11 i 0 0 i 

174 1 01 01 

I0 1 1 1.
 
17 1 0 0 I
 
12 1 I 1.. 

2 1 0 0- 24 1 1 i i2 0 1
2Q 1 0 0 1 

312 1 0 Q

20 1 1 1
 
264 1 1- 1~
 

3 E _ 1 - ­ 0 0 

RCTUtN 
FND
 

LOCATION SYMBOL 

000080 C 

0CO0OB5
 

LOCATION LABEL 

000188, 3 

RETURN
 

SCALAR MAP
 

LOCATION SYMBOL LOCATION SYMBOL L 
or091 0 00B0082 OBAR 0 

LOCATION LABEL LOCATION LABEL L 
(00C 	 1 000209.Y FS .....TFE.. 


ENTRY 	 POINTS (E). EXTERNAL (X)
OFOOG X-IBCOM# 

0F6A -- ,-- - 1OFCl
 

20000 EYTFS OF STORAGE REMAINING 
O 8 C-

I....
L --­

~. 

AND COMMON-(C) REFS
 
X-TFF
 

4 C
 

t EXECUTION BEGUN 

_--


I 

. . 

. 

37 1 a UALITY 	 -47­-..39 1 0 
FF F T 

CK YC(A 	 08U c CO EN EN0UT1 0GIA PAG I-S­
3 

5 

2 

2 

0 

0 

U 

0 
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--------

:VERSITY. 0 U I i I SYSTEM 10:15:27 FEBRUARY 14. 1
 

;RAMMER ACCOUNT 
 IOENT TIME RECORDS 
 COMP 	LIST EXEC a
IERLIN K N2546 
 toO 1600 	 F Y F
 

'A' HISTG 
LOGICAL*1 SYN1.SYN2*SYN3.SYN4,SYNSSYNENABLE 
INTEGER PREY 
DIMENSION TITLE (20).DIF(BOOO),IDIF(8000 "
 
PREY = 0 

J ='0
 
K 0
 
KK 0
 
DO 9 II =110
 
N 0
 
IF-(II.NE.) PREV = PREY - 10000 
DO 8'ICK = 1,10000 

C-------FIRST ODM IS PRCGRAWMEC TO 5- -C ----.--- SUCCEEDING STAGES ARE ENABLED WHEN ENABLE = .FALSEE ---
I = MOD (ICK.10)
 
SYNI = ((I.EC.2).OflII.E.4)OR.(I..sy5oOR(IIo.7}.o(z.Eo.g))
 
ENABCE =(t.NE.O)


C-----SECOND ORHM IS PROGRAMMED TO 2----

IF (ENABLE) GO TO 4
 
M = M+I
 
I = ,OD(M,10)

SYN2 (.C3.~IE.) 
ENABLE =(I.NE.0)
 

C-- ---- THIRD DRM IS PROGRAMMED TO 2----­
4 IF (ENABLE) GO TO 5
 

J + II
 

SYN 3 = ((I.EQ.3).CR.(I.EO.8))
 
ENABLE =(I.NE.O)


C--.------ FOURTH ORM IS PROGRAMMED TO 2---­
5 IF (ENABLE) GO TO 6
 
- K = K+
 

I = MOD (KI0)

SYN 4 = ((I.EO.3).OR,(I.EO,8-)
 
ENABLE =(r.NE.O)


C-----FIFTH ORH IS PROGRAMMED 
TO 4--.-­
6 	 IF (ENABLE) GO TC 7
 

KK = KK 41 -

I = MODKK.O -


SYN5 = ((I.E.2).OR.(I.EC.4.ORC(I.EO.7)OR.(,EO.9)J
 
7 CONTINUE
 
C----CLOCK OUTPUT IS SYNTHESIZED WITH OR-GATE ---------


SYN = SYNI.OR.SYNE.OR.SYN3.0R.SYN4.0R.SYNS..
 
C-----NORMALZED PHASE CIFFERENCE IS CALCULATED 


IF (.NOT.SYN) GO TO 8
 
N = N+ I
 
IOIF(N) = ICK-PREV -
PREY = ICK -
SYNi = eFALSE. 

. .. .SYN2 = .FALSE. 
SYN3S= .FALSE.
 
SYN4 = FALSE.
 
SYNS = .FALSE.
 

a 	 CONTINUE
"DO 10"Il = 1,N 
DIF(I) FOT II {}
 

10 CONTINUE
 
DATA AST /''**
 
READ (1,2) TITLE
 

2 FORMAT (20A4)
 
CALL HISTG (N,OIFTITLE.l,AST)
 

9 CONTINUE
 
STOP
 
END
 

SCALAR MAP 

LOCATION SYMBOL LOCATION 
 SYMBOL LOCATION - SYMBOL LOCATION
000004 M 000 J 000OC K OOOOEO
OGOOEB N COOOEC 
 ICK OOOOFO I 000OF4

OJOCFC ENABLE OOOOF 
 SYN2 OO00FE SYN3 0oooFF
 
000101 SYN 000102
 

AQRAY 	MAP
 

LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL 
 LOCATION
 
000104 DIF 	 IDIF
000154 	 007E54
 

http:I.EC.2).OflII.E.4)OR.(I..sy5oOR(IIo.7}.o(z.Eo
http:IF-(II.NE


4 

NORMALIZED FREQUENCY 5PECTRL 
 PLOT 	I
 

__ 	 3182 -I,
 
3139 .
 
3096 * 
3053 *
 .3010 * + + + +t+ + + + 4 4 
2967 ".--... - ­
2924
 
2881 *
 

-,-283E
 
2795 " +
 
2752 
 *+
 
2709
 
2666 * 
2623 -!

2580 * + . ++ .4 + + + 	 + + 	 +
2537 *
 
2494
 
245 1 .
 
2408 *
 
.2365 * 4 + 4- + + + + + 	 + + + 4 +
2322 *
 
2279- *-


2236 
­

2193 *
 
2150 +4 + 4 + +4 + + + 	 + + + 
2107 *
 
2064 *
 
2021
 
1978
1935 * 4 + + + 	 - + +4 4+ 4 +
1892 * 
1845 *
 1806 * ­

1763 .
172C * + + 	 + 4 + + + + + + + + 
1677 *
 
1634
 
159 1 .
 
1548
 
'1505 * + + + 	 + + + * + + + + +
1462 *
 1419 * . ... 	 . 

1376
 
1333 *
 

....	 1290 +4. + + + + ++ + + 
1247 .

1204 **
 
1161 **
 

1075 4 +**+ + + + +-------....---....-- + 	 + +*+
 
989
 
1032 


946 *
 ... 903 **-------------------------------------
 -- "--c............ . ..
 
860 ** 4 ­ + + 4 + + ++ + +
 
817 *4
 

. 774 "******
 . .731 .............. 
 .... ....--------------------------------. -. ".-


645 *44+ + + 4 + + + + 4 -. .+ 
602 *V*
 
555 *4* 	 -" " -

516 **
 
473 *4
 
430 **+. 4 ++ 4 *+ 	 ~ 

- 387 * 	 + + 
344 4*­
301 ** 
25a
 
215 4* + + + 	 + + + + + ++ + . +
172 **
 
129 **
 
86 *4
 
'43 ** 

I 	 6 11 16 21 26 31 36 41 46 51 	 56 61 66 71.
 

NUMBER OF POINTS REPRESENTED IS 5223 
 NUMBER OF Pf
 
ACTUAL PLOTTED DATA LIMITS ARE FROM 
 I TO 3 INTERVAL FOF
 

-50­
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V--_S1TYn U I JISYS . .. 	 . 1i1351 18 MAPCH 31. 175 

, A'R At:CrUNtT IrN T TI.-P RECOFDS COMP LIST EXEC 0 
1E4LI'l K 12.146 5 O O S S O S.... X L.--

C------------ D? SYNTHS[Z:D -or)EL NITH POST-DIVISION BY 4
 
LD-ICAL SYN! , SYN2. SYN3 ,SYN4. SYNS. SYNC-NABLE. OUT
 

CNTCCP Pj"'FV -----

A'JTL(sLh-2 IA
 
DIWFNSO ICNT(S0)
 
DO 10 1 = 1, O
 
ICENT(I ) = 0
 

10 CNi !NU.
 
IDIIF - 1
 
pCv= 0
 

K 0
 
KK = 0 

D'O -%E-( ooF~~-6-o0 
C-------- FIRST ORM IS PROGRAMMED TO 5
 
C -------- SUCCCEDCNG STAGES ARE FNABLED WHEN ENABLE = .FALSE.----------

I = IOO
(!CK.1O) 
SYN1 ((I .FQ.2) .OR.(I .EQ.4) OR.( I.EQ.5) .OR.(IEO.7.OR.(I.EO.9) 
ENAbLL =(I.NE.O) 

C-------- S-COND DIM IS "PROGRAMMEO TO 2----
IF (FNRLP) GO TO 4 

I = MJO(M.10) 

SY J2 = ((I.EO.J).OR.(I.EC.B))
 
F(NA LE (I 0)
:.NE. 


C-----------THIiD IS TO 2 ------
WOFM P-,OGRAMMED 

4 Ix (C.vABLE) G9 TO 5
 

i = J 	 + 1
 

I = POO(J. -tO_
 
SVN 3 = (=I..3)C2.(IEO.1. ))
 

C---------- FCTH D'H. IS OROGRAWMEC TO 2 ----­
5__ I- (FNAGL ) GO TO 6
 

K= K+I 
W (4,10)vn 


SYN - ((I.fr.3).OP.(I.EC.S))
 
______ ENA3.L E =(I.NE.' ) 	 ___ 

-	 -c-------T-'--zs--T5fl -O-G-RAMMED° TO 4 .. 

I
= 

o 	 (ENZ'LE) GO TO 7
 
K = KK+1
 

3YNS = (,(.CO.2).tJP.(I.EI.4).OR.(I.EO.7).OR.(I.EO-9))
 
7 CONT INUE
 
* ----- CLCCK OUTPUT IS SYNTHESIZEC WITH OR-GATE ------


SYN =SyNI1 .OP.SYNF*.flaSN?,LatPy4AtBRtjYN5
 
c ------.OUTPu IS DIVIDED BY 4--------------


IF (.NOT.EYNI GO TC 11
 
NN = NN+ I
MN"I. M0() .(NN,&-) .... _ _ _ __ _ _ __ _ _-_ 	 _ _
OU.T = 	 (iN.EO.0) 

C ------- NOrMALIZED PHASE CIFFERENCE IS -CALCULATED
 
IF (OUT) I}IT = ICK - PqEv
 
IF____ ])I-T(, F = ICNT +1l~I
 

IF (rUT) UPEV = ICK
 
SYT! = eFALSE.
 
SYN12 = .FALSE.
 
SY!,'!= .AlLS! 
SYN4 =FALSE. 
SYN5 = FA1LSE.
 

11 CUNTINUL
 
3 C 3NT I U U__
 

PO INT 	 50,I,ICNT() 

9 	 COr4T I-UF 

STOP
 
FNO 

SCALAR MAP
 

L CT ION$ M?"2L LICATIN SYMPCL LOCATION SYMFOL LOCATION 

3000D4 ID IF 200005 rEV O000OC M 000EG 
-
 OOOFO 0000F4 

.... O JFC .... .. Y' . . CO! 00 .SYN3 . 000104 . SYN4 . 000 08.... 
000110 CCO114 OUT 000118 

00001 i KK nOOEC NN 	 ICK 

http:MJO(M.10
http:OR.(IEO.7.OR.(I.EO


-- C--U1VE.-.S-TY 0 J J2 SYSTE'4 Ft'-RTAN IV G-LFVEL COMPILER 

ARAY MAP
SYt'fln-L LOCATI 0." SYMH[AOL LCT. SytfOL. LO.AIJ_ 

SUB3PqQGkAVS CALLED 

SYBOL LOCATION SYMI.L. LOCATccON _SYROL__ L 0.QATION------ SYBOL--


LABEL MAP
 

LAHEL L*3CATTON LAHEL LC T. LAIFL._LOC AT I ON--IAE
10 OOO2I E 4- 00019= 5 000410 

L 
611 0JC5DC 8 00050C 9 
 00062C 500


TOTAL ,IMOY REOJIRVENTS 000684 qYTES MAIN44
 
/ZDATA 
 " 

O}ULE ACOR LENGTH ENTRY POINTS (E). EXTERNAL (X) AND COMMON (C) t'AAITN44 0=0 0 00O64 -AAIN44 OF000 X-cBCCmM 
MCOULE SUCCESSFULLY LCADED --- 30900 BYTES CF STORAGE REMAINING / EXECUTION BEGI
 

0
1 
2 0 
3 0 
4 0 
5 1 
6 444o 
7 15672 

) 
7 ?Yo 

10 0
 
11 0
 

... . .. 12 . 0 0... _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 
13 

_ _ 

0
 
14 0
 
15 0

16 0
 
17 0
 
1.8 0
 
1 _ 0
 

21 0
 
22. 0
 
23 0
 

0
 
2' 

2r 0
 
27 0
 

29 0
 
30 0
 
31 0
 
32 C
 
33 0
 
3A
 

34 0 

37 0
 
35 0
 
39 0
 
40 0
 
41 0
 
A2 0
 
4 3 c
 

44 0
 

46 0 
47 0 

4R
 

-goo0 



VF9S1T C) 1I TT MA RC S31144 19450 

.RAIMR ACCCUJT I-LFN TIVE RPCOPDS COMP LIST EXEC Of 

.ErLI- ,2a, 50. 50 F Y F 

C-.-.." SV--T-F-I--- t MODEL WI1TH POST-DIVISION 3Y --------------
LQ'ICAL SYNI .SYMa',SYNJ.SYN4,SYNSSYNENA3LEOUT 

ZOf.,'$N$flr ICNT(0) 
,)I V' I 1.50 
ICNT(1) C 


IDIP =
 OPE=V = 0 

"4=0 

K 0 -

KK, 0 
N = 0 
DO " ICr* .10,0000 

C-------- FIRHT DRM IS PPCGPAUMEO TO 5-----------
C-------- SUCC.EDTNG STAGES ARE ENAELEO WHEN ENAdLZ = .FALSE.- -----

I ; O$ f IC'<.IO)__}__ 

SC-------- SrCl.O frlq IS RCGPAMMEC TO 2--­
t, f1~3 GO TO 4 

SYN2 iCIpEo3)oOR.II, )) 

4 	 IF (ENPELF) GO TO -
Ji 	 + I

I = -OO(3DJ,1C) __________ 	 ______ 

r--NABLE :( I.NE..0)) 

C-------- -OUtTN DRM IS PPCGqAWMEO TO 2 .-­
- -- IF ltJflLlL O TO 6 _--- --

K 7-
I CD 1K.0) 
SVN4 I.FO.3).CaI.EC.8))
 

5 	 IF (SNAPLZ) CO TO 7 
KK KK +1 
T5 = Ml)O(Kv.10) 

7 CONT INUi 
.- C --- CLOC< OUTPUT IS SVNTHESIZ.D WITH OR-CATE----------

SYN - .YN1. .SVc?.OP.S".O'..SYN.ej.SyNg 
C--------fUT rSIVlU D JY---........... 

I (.NCT.SYN) GO TC 11 
N1 =- NM-N 1 

11'4_F (t.NN.R) 
OUT = C'AN.EO.O) 

C------- N,PALtZFD CHASE CIFFEPFNCF IS CALCULATED--------
DZ (rUT) 1I1F = ICK - PPEV 
IFPrun TC'jT (IFIPI ICtKT (ICIP) + I 
IF (CUT) PRE--= ICK 
SYNI = eFALSE. 
SYN? = .FALS=. 
SYN3 = .FALS . 
SYNL = .FALSF. 
SYNS = .FALSE. 

11 C2NTITiUr 
R CONT I 1.5 

PRINT 5", l. . TCNT( I) 
CONT INU4 

END 
SCALAR MAP 

LOJCATION 
0')E~-
O1QI-E8 

SYM-30GL 
I ) IF 

KK 

LCCATION 
^,COD8 
lOCC-C 

Syt4fIL 
PPEV 
NN 

LOCATION 
0OOoC 
OQ00FO 

SYMBOL 
M 
ICK 

LOCATION 
OOOOEO 
O000F4 

- 01. 
000,10 

. 
MN 

.. .010 ....... 
0001 1& 

-. SYN3 
OUT 

..... 0104....SYNA 
000118 

.000I 8­

1t1 

9 

http:SVc?.OP.S".O'..SYN.ej
http:Ml)O(Kv.10
http:iCIpEo3)oOR.II


LUS AIONIADOAY MAP
J SY~rROL LO]CATION: SY~O LL, AT ION M L__

-C -0 C " . . . . ___.3O AT .ON .... S- -ti-.OOLQ T

SJePPOCPAVS CALL-EOYSYM OL L,)CA r[ OH -SYM C. L LCCA TI ON _SX lOL .jgAT IfN _ M_ L_ -Ys com,. -d('50IE -cyl --Lj A L--A.I.l s-Ln
LAeFL MAP

LL8BEL LAGATI !N LAF'L L-0CATEON .10 o 3J" -a"c 5 000410 6TT 0 Ono-cc 9 00062C 500TOTAL MF=OPy rOQIREVNTS 000684 .3YTFS MAIN4 4 .-

- AAtfbuLE 09060 L ENGTH 4- 6 OR FIOTNTS E), -XTRNAL X) AND C M.ON (C) R,4AIN444. O FOOO 006h4 ----M ;44 0F00 X-IBCOM#NCOULE SUCCESSFULLY LCAFE; --- 30(00 BYTES OF STORAGE PEMAINING / EXECUTION BEG'

1 02 0

-3 0.

5 0
07 0

10 0
11 0
12 0
1 44-5
14 2225
15 2R80016 '3552 ____
1 "i--I1 " -15 -

la 0
19 0

21 0

22 0

2c, 0

29 0- - -
30 0
31 0

29 0
34 0
3! 0

39 0" 0

3 0

- " 44 _ 043 0

47 0

40 0

4o 0

4711B

C ______-54-


