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ABSTRACT

An analysis 1s given of the errors in Hadamard
spectroscopy that are caused by transparent slits in the
mask being systematically wider or else narrower than
they should be, It is shown that il the input spectrum
consists of a single line, the distcrted spectrum that is
actually calculated consists of this line, plus four small
blips. When the transparent s5lits are too wide, these
bl.ps are of equal height and the same sign, one pair
surrounding the line, and another pair displaced a certain
distance from it, When the slits are too narrow, the dis-
placed blips have the same amplitude but are negative,

The response to an arbitrary iaput spectrum is then

iztermined from this., The same method of analysis may

also be used to handle other types of errors,
A
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ERRORS IN HADAMARD SPECTROSCOPY OR IMAGING
CAUSED BY IMPERFECT MASKS

Introduction

Irn the course of running a series of laboratory cali-
bration spectra with a mercury vapor source at 1.7 microns,
we observed a consistently occurring pair of negative dips,
displaced a {ixed number of spectral element positions to
one side of the mercury vapor doublet Fig, 1l(a). These
looked like absorption features except that the intensity
at these positions of our derived spectrum vas actually
negative rather than just zero,

Or. further analysis, we found that moving the grating
shifted both the spectral lines and these negative dips
by equal amounts, However, when the spectral lines were
moved to the extreme left, the two dips reappeared at the
extreme right of the spectrum. This immediately suggested
that we were dealing with a coding rather than with an
optical error, The encoding mask has a cyclic code and a
coding error could therefore be simply cyclic in this
iashion, whereas stray light effects, for example, would not
be as likely; to produce a cycling error,

A further piece of evidence, showing that light in-
tensity did play an important role, was obtained when the
mercury vapor doublet was moved so far to the left edge of
the spectrum that one of the lines no longer was transmitted

through the spectral mask. Not only did that component of
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the doublet then disappear from the spectrum, but the cor-
responding negative dip also vanished, From this we concluded
that the error was dependent! both on the light intensity and
on our encoding scheme,

This still left a nuuber of possibilities open,
After a number of attempts to find the correct explanation,
we finally thought of the following possibility. During
t1.2 manufacture of the masks, whether by deposition of metal,
or by removal of metal through an etching process, it 1is
possible to obtain a systematic error that leaves each of
the opaque portions of the mask either too wide or too
narrow by a fixed amount, Essentially there is too much
metal deposited, or too much metal etched away at each edge
separating an open or a closed slit, and each of these edges
is therefore displaced by a fixed amount, independent of
whether the open slit is wide or narrow, For example, if
the open slits are too narrow, then the light passing through
an open slit position may have intensity values Io' Io(l-e)
orIo(l-Qe) depending on whether this particular open position
is bounded by two other open slits, has a closed slit
bounding it on one side only, or btounds on closed slits on
both sides, A computer simulation of this type of defect
showed, in fact, that we had hit on the correct :olution,
Fig. 1(b) shows the computer response when provided with
synthetic data expected for a esingle spectral line and a
perfectly constructed 255-element S-matrix encoded maskl.

Fig. 1(c) shows the same output when the computer is pro-
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vided with synthetic data corresponding to a mask in which
each transmitting slot is too small by 0,1 slit widths

at each edge, Fig, 1(d) shows the output for a similarly
defective mask when the open slits are too wide by the

same amount,

While the source of the spectral errors had thus
been located, we felt the need for a more general treatment
of this class of defect, since the displacement of the
spectral dips presumably could be quite different for dif-
fering encoding masks, We &also wished to know what would
happen if the transmitting slits were systematically too
wide rather than too narrow, Finally, since image encoding
maske can make use of the same codes used in spectroscopy,
we felt that a general mathematical analysis would also
be germane to a wider range of optical problems outside of
gepectroscopy.

The reﬁaining sections of this paper therefore deal
with this analysis, The results are remarkably simple,
Independent of the particular S-matrix mask to be used there
are always precisely four false blips in the response to
any single element impulse, The amplitude of these blips
is always the same for a fixed narrowing or widening of the
transmitting slits, Two of the blips always surround the
main impulse and a pair of adjacent blips always is sovme
daistance removed from the impulse. We show how to compute

tire distance of this di'vnlacement, The amplitude of the



displaced blips is positive when the transparent slits are
too wide and is negative when the slits are too narrow, In
contrast, the two blips surrounding the main impulse always

are positive,

() Mathematical analysis if no errors occur in the mask

We shall assume that there are n = 2”7 - 1 ‘inknowns.

Let

XopXypeees Xy 4 denote the unknowns,

Yordyeeees¥pa1 denote the measurements,

ZpsZyseeesZ, o denote the estimates of the unknowns.

T

Also we write 5 = (xo,...,xn_l)T, 1 = \yo’nao,.yn_l) »
z = (zo,...,zn_l)T, wiere the T denotes transpose., These
quantities are related as follows. First, y is a Hadamard

transform of X, given by

¥ = 8x (1)

where S 1s a circulant matrix whose general definition is
given below in (III). As an example, if n = 15, a typical

matrix S is shown in Fig. 2, The blank entries are zero.
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Fig. 2
An Example of the Matrix & When n = 15

1 11 1 : 1 3 vy
1 §. 4 1 BE iy OF v,
1 11 1 R vy
1 11 1 = N W Ve v,
11 1 35 &3 1 viev,
11 1 it BT 1 v, 0V,
11 1 Y- 4733 1 vev,ev,
S= |1 1 I 4:) 1% 1 1 v,e v,
1 53 & 3 1 % viev,
1 R =g 1 13 v,ev,e v,
e 1 11 1| vyev,ev,
Sk 1 1 11 1 viev,ev,ev,
A S 1 28 1 1 vV, eV, @V,
11 1 $ 1 1 1 vaev,
| 1 33 ] 33 vy

Equation (1) assumes that LLcre is no detector error, and
that the mask is made correctly. ©Secord, z 1s the ilnverse

Hadamard transforn of y, given by

0f course in this case
-

and the unknowns have been determined exactly.
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(II) Errors caused when the transmitting slits are tooc wide

Now suppose that the transparent slits in the
mask (which correspond to the 1's in §) are slightly
larger than they should be, Thus some radiation manages
to get through slits which should be opaque, if they are
adjacent to transparent slits, More precisely, consider

an arbitrary row of S, say
vast 240 0LE 0L I VDO0ILE s b

We assume that
every O which is adjacent to two 0's is unchanged,
every O which is adjacent to a single 1 is replaced by ¢, &

every O which is adjacent to two 1's is replaced by 2¢.

Here ¢ is a small positive number which measures the fraction
or radiation which manages to get through a slit which should
be opaque and which is adjacent to exactly one transparent

slit. Thus the preceding row would be changed to
ver-a -8 . KA B3 3T E N DE L svay

Let S* denote the distorted matrix obtained from S in this
way. Figure 3 shows the distorted matrix corresponding

to Pig. 2.,
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Fig. 3
The Distorted Matrix 8* When n = 15
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Now we actually measure (instead of Eq. (1))

y* = S*x (2)

and the estimate of the unknowns is

- -1
z* =8 "y* = S T5*X,

We wish to discover how z* differs from X.
In fact it is enough to determine z* when X has

a single nonzero component. For suppose the Input

x w x2) o (1,0,0,.:.,0)7

produces the response

A
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z* = 8.15*5(1) - E(l) (say). (3)

We call 5(1) the impulse response, Then since every row of
8 (and 8*) 1s a cyclic shift to the left of the previous
row, it follows that

X = (0,1,0,404,0)T
produces the response
z* = £2(1),
and
X = (0,0,1,.4.,0)7
produces
2+ = £25(1),

and so on, Here { denotes a cyclic shift of one place

to the left, Then an arbitrary input

&= (xoﬁx1:°-°sxn-1)T (4)

produces the response

z* = xog_(l) i xlfr_.(l) et xn_lfn'lg(l). (5)

\
Therefore, once the impulse response E(]' is known, Lhe

response to an arbitrary input (4) is determined (by (5)).
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Befcre giving the analysis of the general case,

let us calculate g(l) for the case n = 15, Figure 4 shows

s'l, where - stands for = 1,

Fig. 4
The Matrix g-1 When n = 15
s = » ] » » ] ] « 1 = 1 1 1 1}
ORIGINAL PAGEIS |~ ~ ' -~ - '*!'-t-1r1i-
OF POOR QUALITY FAR.Y. RS ATE A R . N
1l = = 1 1 = 1 = 1 1 1 1 == =« =
« =« 1 1 « 1 =« 1 1 31 1 = =« = 1
= 1 1 = ] = 1 1 1 1 & &« =« ] =«
s!,lll-l-llll---l--
E1-1- 1 1 3 o 5 o1 » = )
* - 1 1 = = « 1 « « 1 1

1

= e s e

= = =

Then g(l) is found from Eq. (3) to be
(1) _ W N 1 p
Z - (1"(:,'2€,0,§€,E€,0,O,O,O,O,O,O,O,O,Ee). (6)

(III) The matrix S

The theory of the matrix S is intimately connected
with that of finite fields. However, we shall pgive a simple,
self-contained description in several steps which assumes
no previous knowledge of finite fields., The definition of S
given here is in fact the same as that given in references

1, 2 and 3.
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(1) Choose a primitive irreducivle polynomial., To begin
with, we need to choose a primitive irreducible

polynomial
p(x) =1 + a,x + a2x2 + see + aﬁ-lxm'l + xm, ay = Oorl,

of degree m, where n = 2™.1, The definition of such a
polynomial need not be stated here. For convenience

Fig. 5 gives a short table of such polynomials

Fig.5

Primitive Irreducible Polynomials
m p(x) m p(x)
b | l+x 7 1+x+x7
2 14x4x° 8 1+xu+x5+x6+x8
3 1+x+x3 9 1+xu+x9
u 1+x+xu 10 14x34xt0
5 1+x2+x5 11 1+x2+x11
6 1+x+x6 12 1+x3+xu+x7+x12

Extensive tables of such polynomials are available in the
4,5,6,7,8

take p(x) = 1fx|xu.

literature For our example with n = 15, we

(11) Form a shift register. Next, we form a linear feedback

shift regicster with m stages, whose feedback connections are
described by p(x). For example, the shift registoer
corresponding to p(x) = 1+x+xu is shown in Fié. 6, Here L}
is a delay element which holds a O or a 1, and ® is a mod 2

adder.’
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Fig. 6

Shift Register Corresponding to 1+x+xh

& i

-0

(1141) Form the matrix M, We load this shift register

with the initial state (1,0,0,...,0) and let it cycle.
Because p(x) was chosen to bYe a primitive irriducible
polynomial, the shift register will go through 2™.1 states
before repeating. It has period o™.1, During one period,
the successive statec of the register give all 2™-1 nonzero
m=tuples,
For example, the first few states of the shift
register of Fig, 6 are shown in Fig. 7.
Fig. 7
Successive States of the Shift Register of Fig. 6

state Nunber

ST ot g 0

CRE R S 1

o o0 1 o0 2 OBIGIAL pagy

R O SR 3 OF POOR qu Aur?
T S PR 4

geesl B 4 5

5 O3 i 6

e I R 7



We form anm x (2"-1) matrix M whose columne
are the successive states of this shift register. For

n = 15, for example, we find from Fig. € & 7 that

0 1 2 3 4 5 6 7 8 9101112 .3 14
vy > 9 8 X O 9 3 32 0 031 3.3 1
v 9 %e-7 9 A9 20 E2.3 3 B
M - e . (7)
V3 ¥ 3 90 % 30 0% X3 3 00
vy : U 9.9 3200 1 % L2 4O X  J 2
" -

In general we have

0 1 2.um=Ll... .

vifo 0 0okt wi wi
A2 0 0 (o RTR ¢ UL I
g eem . Y I (8)
V2] © O 1w Ouin o
V=110 1 O res Ouer oo
L= h”1 0 0see 0.., -

The columns of M consist of all 2™-1 distinet nonzero binary
m-tuples. The rows are labeled VisVpseee,V, 88 shown,

Note that in Eq. (7), v, = £v,, vy = Levl, and

vy = .l'.3v1 ®v,

where () denotes componentwise addition modulo 2, witho!t
carries. Also vy = va = n'lvl, where R denotes a cyc'ic

shift of one place Lo the right. Therefore
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f3v1®v1®f'1vl w 0,
or
' @L®1)v, = 0. (9)

In the general case, the same argum:at applied to Eq. (8)
shows that

" ® am_l.l'm'l @ Qo f@ayl)vy = 0, (10)
i.e.,
p(f)v = 0 (11)

(iv) The connection with Galois fields, (This section

car be omitted by readers only interested in the statement
of the result and not in its derivation.) The successive
contents of the shift register in fact give all nonzero
elements of the Galois field GF(2™). These elements can
be written in two ways, either ar successive powers

5 2 ™2
sy s esey2

of a, where q is a zero of the polynomial p(x), and
~m
e.-1 1l; or equivalently as a polynomial in g nf degree

less than m, by reading off the contents of the shift

register, In the example with m = 4 we have

T ——— ———_—————
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l =1
a= a
2 2
a = a
03 = a3
4 ORJ,
a = l+a GLy
Op RAGE
05 = a+‘c:2 POOR UAI,".;S
6 2
a = a +a
a7 = l+a +a

Thus M is actually a logarithm table for the field
GF(2™)! E.g. column 7 of Eq. (7) says that

l +a+ a3 = a7,

or
log (1 + a + a3) =7,
a

(v) Definition of the matiix S. We can now define S,

which is the (Qm—l) x (2™-1) matrix whose first row is
v, (the first row of M), and each successive row is a
cyclic left shift of the previous row by one place., If

th th

p; denotes the 1™ row of S (calling the top row the 9

row), we have

py = flv;, for 1 = 0,...,2"-2,



Indeed Fig. 2 is obteined in this way from Eq. (7).
1

It ecan be shown™ that
- 2
8™t = 25y (28-9), (12)

where J is the all-ones matrix. In fact by adding a top
row and a left column of O's to S and then changing 1's to

-1's and 0's to +1's, we obtain a Hadamard matrix H

1

satisfying H2 = (n+1)I. Figure 4 shows 8™~ when n = 15,

10

(vi) Labeling the rows of S. It turns our™", and this

is a key point, that the rows of S consist of all linear
combinations of the rows VisesesVy of M, with coefficients
0O or 1 but not all 0, I.e,, the rows of S are equal to the

vectors
vl,...’vm’vl ®v2’VI ®V3’.na’v1 ®v2 ® .o @Vm

arranged in some order., The rows of S can therefore be
labeled with the corresponding sum of the vi'a. For example,
the rows of S are labeled in this way in Fig. 2. We also
use the same labeling for the components of z. Thus if

the 1th h

t
row of 5 is labeled v, ®v, ® ... ®vy, the 1
component. of z 1s labeled in the same way,

(IV) The impulse response 5(1)

We can now specify the impulse response. If
5(1) = (1,0,...,0)T then the impulse response g(l) = s'ls*5(l)

is given by
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E(l) = (l-e,g,o,...,o.%.%,O.---.O.S)T. (13)

where the second and third components £ occur at the

2

coordinates which are labeled vy + v, and v, + v,. In

m
words, g(l) has the dominant component l-¢ (where 5(1) had

the component 1), surrounded by two blips of height %, plus
a second pair of blips of the same helght which are displaced
a certain distance, The proof of this will be given in section

V. See Fig., 8, which shows z when n = 15 (in agreement with

Eq. (6)). -

Impulse respcnse g(l) when n = 15

I-€
Impulse Response z‘”

€/2




T .

To discover exactly how far the second pair of
blips 1s displaced, we may proceed as follows, Because
of Eq. (10) & (11), there is an isomorphismll between the

rows of S and the nonzero elements of the field GF(2™),

as follows:

row Corresponding element of GF(2™)
P0=V1 > 1
P = Vo = fvy “> a

_£1 3 m
Py = 47V, € a for 0 i1 ¢ 22

1 -1

P =v. =0V, &> a ",
oM_o m 1

Therefore the second and third blips in the impulse response

th

occur at the i and (1+1)St coordinates of g(l) (starting

the count at 0), where 1 1s the solution of
1 C)a-l - a (14)
in the field GF(Em). Indeed, for this value of i, we
have
v, ®v, =v @S_"lv = My = p
> m 1 e 1 - &

Fortunately the columns of M provide the information needed

to solve (14). For example, when n = 15, we have

0 1 1
o0 () )+
b 1 1 0
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so the solution is 1 = 3, Therefore the blips occur in

the 379 ana 4*® coordinates of g(l) (calling the left-most

th)
’

coordinate the 0 in agreement with Eq. (6) and Fig. 8.

The case n = 255

S matrices of size 255x255 have been used in

Ref. 2 and 2, correspuanding to the polynomial

b 5456458

p(x) = 14X +X74X +X .

The matrix M obtained from this is an 3x255 matrix, and is
shown in the appendix (turned on its side and cut into six

pieces). Using this appendix Eq. (14) becomes

0 1 1
0 0 0
" 0 1 2
1@0.-1 = l@a25 = 8 % = i ‘—'(1230.
0 0 0
0 0 0
2 | 0 1

Therefore the inpulse response is

E(l) = (1-6,35228 O's,g—,%,EQ O'S,%)

(V) Derivation of the impulse response

i 5(1) = (1,0,...,O)T then from Eq. (2), since

S* is symmetric, the transpose of y* is

)T = 1%% row of s*

(x*

U]

v, + ew, (say),
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where w is a vector of 0O's, 1's and 2's, and + denotes real
vector addition, Observe that w is given by

W= Gl * fvl + Gl » va,

where the bar denotes the complement of a vector and » stands

for componentwise multiplication,

= Wy + W, (say),
where w, = 61 ¥ Vo, Wy = Gl *» v.. Then

= S'lvf + eal'm(Es-J)(w¥+wg) from (12)

1)

x(1) 4 e2' ™™ (Gw) +0w ) (15)

where G = 25-J is a matrix of +l1's and =1's, If p is a
typical row of S, let

7‘1 =(p,w1> - pwgs 7\2 =<P,W2>= P"g
denote the usual real inner products, Thenl2

of ng + ng corresponding to p is

the component

m=1
2(A1+A2) -2



To show this, let a be an arbitrary row of G, and let

= %(g-+ 1) be the corresponding row of S, where 1 denotes
a vector of all 1's, Also let w be an arbitrary vector

of O's and 1's, containing say h 1's, Suppose there are

i coordinates where p and w are both O, j coordinates where
g is 1 and w 1s O, and k coordinates where p is O and w

is 1, as shown in the following picture,

10-01 1.001 "™ ®iia" = 2

1-.01 1..-10..0 0...0 = E

1..-1 O.llo 1--.1 Ooooo = w
i J k

Then aw' = i-k. But 1 = <p,w> and itk = h, so

aw’ = 2{p,w> - h , (16)
This implies that the component of GwlT + GweT corresponding
to p 1s

2(A + 2p) - 2"1 (17)

The values of the inner products A, AQ and, from
(15), of the components of g(l) are easily calculated,

and are shown in Fig. 9.



Figure 9
The components of GwlT + GweT, and of 5(1)
component component
Dl - A = <pswp> | Ap = <pswy |of Gw1T+Gw2T, of 5(1),
[of o from (17) from (15)
vy 0 0 N i 1-¢
v, 2m--2 2m-3 oM=2 %e
v, 2m-3 2m-2 2m-2 é—e
v 4V, e gMm=3 g2 %«
VitV gM=3 gn-2 gm-2 %ﬁ
all other m-3 m=3
et 2 2 o 0

This completes the proof that the impulse response 5(1)
is given by Eq. (13).
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VI. Errors caused by the transparent slits being t0o0 narrow

Now let us consider the case where the transparent

slits are too narrow, More precisely, we assume that in
each row of S,
every 1 which is adjacent to two 1's is unchanged,
every 1 which is adjacent to a single 1 is replaced
by 1 - ¢, and
every 1 which is adjacent to two O's is replaced by
1l - 2¢,
while the O's are unchanged., Let s"" be the distorted
matrix obtained from 8 in this way, Fig. 10 shows the
distorted matrix corresponding to Fig. 2, where a denotes

l - ¢ and b denotes 1 - 2¢,

Figure 10
The Distorted Matrix S.* W@en n = 15
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Now the input
2" i(l) - (110a00---:0)T
produces as output the impulse response

22 - g7l g"* x(1)

This is given by
2(2) - (]_-c, %, O siss U -%, "E’n Oy ¢045 0, %)Tn (18)

where the components % occur at the coordinates which are
labeled vy + v and vy + Vs Fig. 11 shows 3(2) when n = 15,
Note that 5(2) is the same as 5(1) except for the sign of
the second pair of blips,

Flgure 11

Impulse response 5(2) when n = 15

Impulse Response 2(2)

'_Ie/2 llLlllllr-“/z
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The proof of Eq, (18) is similar to the proof of
(13), except that instead of Eq. (15) one has

5( ) x(l) (26v T, GW3T - quT) ’

where w3 ol * vy and Wy =V * v ., Also instead of

1 m
(17), one has that the conponent of aovlT ‘

corresponding to p 1s

g, v = 2{p, Wp) = 2(p, W) - gm-1

The detalls of the proof are left to the reader,
/

The part of this study tnat was done at Cornell
University was supported by WASA contract NGR 33-010-210,
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Figure 1 Caption

Spectrum of the 1,7 micron mercury vapor doublet (a)., Peaks
extending downward from the top of the picture are negative
values which ordinarily would fall the same amount below the
abscissa, but, in our form of display, appear at the top of
the graph, (b) Shows the response we would obtain to a single
spectral line with a perfect mask, (c) Shows the response for
a single line with the radiation simulated as passing through
a mask with slits too narrow because each opaque mask element
protrudes into the adjacent transparent slot by a tenth of a
slot widih, (d) Shows the effect of simulating slits that

are systematically too wide, Note that the main spectral line
has been placed in different positions for the synthetic runs
(b), (e) and (d).
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The Galois Field 0F(28), continued
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