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An analysis is given of the errors in Hadamard

spectroscopy that are caused by transparent slits in the

mask being systematically wider or else narrower than

they should be. It is shown that if the input spectrum

consists of a single line, the distorted spectrum that is

actually calculated consists of this line, plus four small

blips. Wn en the transparent slits are too wide, these

bl.^ps are of equal height and the same sign, one pair

surrounding the ]ine, and another pair displaced a certain

distance from it. When the s]-its are too narrow, the dis-

placed blips have the same amplitude but are negative.

The response to an arbitrary input spectrum is then

,ietermined from this. The same method of analysis may

also be used to handle other types of errors.
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ERRORS 1N HADVARD SPECTROSCOPY OR IMAGING

`	 CAUSED BY IMPERFECT MASKS

Introduction

Ire the course of running a series of laboratory cali-

bration spectra with a mercury vapor source at 1.7 microns,

we observed a consistently occurring pair of negative dips,

displaced a 'fixed number of spectral element positions to

one side of the mercury vapor doublet Fig. 1(a), These

looked like absorption features except that the intensity

at these positions of our derived spectrum was actually

negative rather than just zero.

Or further analysis, we found that moving the grating

shifted both the spectral lines and these negative dips

by equal amounts. However, when the spectral lines were

moved to the extreme left, the two dips reappeared at the

,:xtreme right of the spectrum. This immediately suggested

that we were dealingg, with a coding; rather than wi tuh an

optical error. The encoding mask has a cyclic code and a

coding error could therefore be simply cyclic in this

fashion, whereas stray light effects, for example, would not

be as likely to produce a cycling error.

A further piece of evidence, showing that light in-

tensity did play an important role, was obtained when the

mercury vapor doublet was moved so far to the left edge of

the spectrum that one of the lines no longer was transmitted

through the spectral mask. Not only did that component of
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the doublet then disappear from the spectrum, but the cor-

responding negative dip also vanished. From this we concluded
Y

that the error was dependent both on the light intensity and

on our encoding scheme.

This still left a number of possibilities open.

After a number of attempts to find the correct explanation,

we finally thought of the following possibility. During

't:e manufacture of the masks, whether by deposition of metal,

or by removal of metal through an etching process, it is

possible to obtain a systematic error that leaves each of

the opaque portions of the mask either too wide or too

narrow by a fixed amount. Essentially r.here is too much

metal deposited, or too much metal etched away at each edge

separating an open or a closed slit, and each of these edges

is therefore displaced by a fixed amount, independent of

whether the open slit is wide or narrow. For example, if

the open slits are too narrow, then the light passing through

an open slit position may have intensity values I o , I0(1-E)

orIo (1-2E) depending; on whether this particular open position

is bounded by two other open slits, has a closed slit

bounding it on one side only, or bounds on closed slits on

both sides. A computer simulation of this type of defect

showed, in fact, that we had tilt on the correct ! )lution.

Fig. I(b) shows the computer response when provided with

synthetic data expected for a single spectral line and a

perfectly constructed 255-element S-matrix encoded mask1.

Fig, 1(c) shows the same output when the computer is prD-

..^.^,..^.,.	 art
Y
	 _,
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vided with synthetic data corresponding to a mask in which

i t 	 each transmitting slot is too small by 0.1 slit widths
r

at each edge. Fig. l(d) shows the output for a similarly

defective mask when the open slits are too wide by the

same amount.

While the source of the spectral errors had thus

been located, we felt the need for a more general treatment

of this class o:' defect, since the displacement of the

spectral dips presumably coi.ld be quite different for dif-

fering encoding masks. We also wished to know what would

happen if the transmitting slits were systematically too

wide rather than too narrow. Finally, since image encoding

masks can make use of the same codes used in spectroscopy,

we felt that a general mathematical analysis would also

be germane to a wider range of optical problems outside of

spectroscopy.

The remaining sections of this paper therefore deal

with this analysis. The results are remarkably simple.

Independent of the particular S-matrix mask to be used there

are always precisely four false blips in the response to

any single element impulse. TLe amplitude of these blips

is always the same for a fixed narrowing or widening of the

transmitting slits. 7 4iuo of the blips always surround the

main impulse and a pair of adjacent blips always is some

distance removed from the impulse. We show how to compute

i	 tiie distance of this di, r)l.acement. The amplitude of the



displaced blips is positive w;ien the transparent slits are

too wide and is negative when the slits are too narrow. In

contrast, the two blips surrounding the main impulse always

are positive.

(1) Mathematical analysis if no errors occur in the mask

We shall assume that there are n = 2m - 1 -unknowns.

Let

x0,xl , ... ,xn-1 denote the unknowns,

YO' yl' .. '' yn-1 denote the measurements,

zO,zl,...,zn-1 denote the estimates of the unknowns.

Also we write x = (x 0 , ..., xn-1 ) , ,- = k yo, ... ,Yti_1)T.9

z - (z O , ... ,z n-1 ) T , w'.iere the T denotes transp,)se. These

quantities are related as i'ol]ows. Flr^t, y is a Hadairnard

transform of x, given by

Y = .S x
	

(1)

where S is a circulant matrix whose general definition is

given below in (III). As an example, if n = l^, a typical

matrix S is shown in Fig. 2. The blank entries are zero.
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Fig. 2

An Example of the Matrix S Wh on n = 15

VI

V2

V{

V] ® V4

V^ O V2

V,®V3

V^ ® V 3 ® V4

S=
	

V., ® V4

V^ ® V3

V 1 ® V. ® 3 1j

V^ ® V^®':Z

V^ 0V20V30V4

V ^ A V 3 ® V4

V 3 ® V4

V4

Equation (1 ) ar,.,umes that U. 	 is no detector error, and

that the mask is made correctly. Second, z is the inverse

Hadamard transforya of fir, given by

z = S-1Y.

Of course in this case

S -lSx = x,

and the unknown ,-, have been dotermined exactly.

l
e	

y
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(II)	 Errors caused when the transmitting slits are too wicle

Now suppose that the transparent slits in the

mask (which correspond to the 1's in S) are slightly

larger than they should be. Thus some radiation manages

to get through slits which should be opaque, if they are

adjacent to transparent slits. More precisely, consider

an arbitrary row of S, say

... 1 1 0 0 1 0 1 1 0 0 0 0 1 1 ...

We assume that

every 0 which is adjacent to two 0's is unchanged,

every 0 which is adjacent to a single 1 is replaced by E, &

every 0 which is adjacent to two 1's in replaced by 2E.

Here E is a small positive number which measures the fraction

of radiation which manages to get through a slit which should

be opaque and which is adjacent to exactly one transparent

slit. Thus the preceding row would be changed to

... 1 1 E E 1 2E 1 1 E 0 0 E 1 1 ...

Let S* denote the distorted matrix obtained from S in this

way. Figure 3 shows the distorted matrix corresponding

to Fig. 2 ..
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Fig. 3

i1 The Distorted Matrix S* When n = 1'_^

C o c 1 c t	 ? 1 2c 1 2t 1 1 1 1

n c 1 c c 1	 1 2c 1 2c 1 1 1 1 r

C 1 c c 1 1	 2c 1 2c 1 1 1 1 c o

1 r, t 1 1 ?c	 1 2c 1 1 1 1 c o r

c t 1 1 21 l	 ?L 1 1 1 1 c o c l

r 1 1 ?c 1 ?t	 1 1 1 1 r o c l r

1 1 2E 1 2c 1	 1 l 1 t o c 1 c rw
S 1 ?r. 1 ?c 1 1	 1 I c o r l c r 1

r 1 2c 1 1 1	 1 c o c 1 c t 1 1

1 ?c 1 1 1 1	 c o c 1 c c 1 1 2r

:c 1 1 1 1 t	 o c 1 c t 1 1 2c 1

1 1 l 1 c o	 c 1 t t 1 1 2c 1 ?r

1 1 1 c o c	 1 t c 1 1 ?c 1 2c 1

1 1 r o c 1	 c t 1 1 2t 1 2r 1 1

1 c o c 1 r	 c 1 1 2c 1 2r 1 1 1

Now we actually measure (instead of Eq. (1))

Y * - S*x	 (2)

and the estimate of the unknowns is

T* = S - ` Y- = S S*x.

We wish to discover how z* differs from x.

Tn fact it i, enotlf7h to determine z" when x Y1r1:1

a single nonzero componcrlt. For flupposc t-.hc input

x - x (l) = (1 0 0,0 0 ...,0)T

produces the response

I



Z* = S -is*x (l) • z (1)	 (say).	 (3)

^ ^	 WQ call (l) 4-	 i	 1^z	 m u oe r	 then since e^ ► ery row of

S (and S*) is a cyclic shift to the left of the previous

row, it follows that

x = (0, 1,0,...,0)T

produces the response

?* = gz(1),

and

x = (000'1'...'0 ) r

produces

Z* .. Y2z(1),

and so on. Here I denotes a cyclic shift of one place

to the left. Then an arbitrary input

x = (x0 , xl , ..., xn-1) 
T

produces the response

Z*	 x c ^z (1) 1- xlTZ(1) 4"	 1' xn-] `fin-1z (1) ^	 (5)

Therefore, once Cie impu] se.' response z 1 I it known, Lhe

response to an arbi_trary input (4) is detcr ydned (by (5)).



Befere giving the Analysis of the general case,

, ► 	 let us calculate z (l) for the case n = 15. Figure 4 shown
M

S-1, where - stands for - 1.

Fig. 4

The Matrix S -1 When n = 15

ORIGINAL PAVE; IS
OF POOR QUALITY

---	 1--	 1	 1- 1-	 1	 1	 1	 1

- 1-- 1 1- 1- 1	 1	 1	 1

1-- 1 1_ 1- 1 1 1 1-

t	 -	 1 1-	 i- 1	 1	 1	 1--

-- 1 1- i- 1>	 1 1--- 1

-	 1	 t,	 _ 1_ 1	 1	 1	 1---	 1-

1	 1- 1- 1	 1	 1	 1--- 1--

t-	 1-	 1	 1	 1	 1--- 1-- 1

- 1- 1 1 1 1--	 1-- 1 1

1-	 1	 1 1	 1--- 1--	 I	 1

-	 1	 1	 1	 1---	 1--	 I	 I-	 1

1	 1	 1	 1--- 1--	 1	 1-	 1-

Il	 l	 l---	 1--	 1	 1- 1- 1

11---	 I--	 1	 1-	 I-	 1	 1

1---	 1--	 1	 1- 1-	 I	 i	 l

Then z (1) is found from Eq. (3) to be

z (1)	 (1-E,^,O,VE,,U,O,O,O,O,G,0,0,0,7E). 	 (F,)

(III) The matrix

The theory of the matrix S is inti-mately connected

with that, of finite field:-,. llowever, wo shall r,ivc a simple,

self-contained description in several steps which assumes

no previous knowledge of finite fields. The definition of S

given here is in fact the same as that given in references

1, 2 and 3.
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(i) Choose n primitive i rreduc;l c,1 a polynomial . To begin

with, we need f.o choose a primitive irreducible

polynomial

P(X) 1 + a l x + a2 x2 	... + 41-1 xnl-1 + xm , ai = 0 or 1,

of degree m, where n = 2m-1. The definition of such a

polynomial need not be stated hare. For convenience

Fig. 5 gives a short table of such polynomials

Fig- 5

Primitive Irreducible Polynomials

m	 p(x;	 In	 p(x)

1	 l+x	 7	 l+x+x7

2	 1+x+x` 	 8	 1+x4+x5+x6+x8

3	 1-+x+x3	 9	 14 X 11 +X9

4	 l+x+x^t	 10	 14 x3+x10

5	 14-x2+x5 	 11	 1+x2+x11

6	 1+x+x6	 12	 1+x3+x4+xT+x12

Extensive tables of su(,h polynomials are available In the
r

literature ' ^' ' 7 ' ^. For our example wi th n = 15, we

take p(x) = lixix4.

(ii) Fornrl a shift rcgist.er. [text, w(^ form a linear feedback

o lift regr icter w1th m stat;es, whose feedbtlek c onneetiolls, arc

described by p(x) . For examplr, the rhift• regist.,-r

corresponding to p(x) = I+x-+-x It is shown in p'ig. 6 . here -^^-

is a delay element which holds a 0 or a 1, and 0 is a mod 2

adder.9

f	
._



Fig;. 6

Shift Register CorruopondinE to lix+xft
r

( iii) Form the matrix M. We loal this ^hilt register

with the initial state (1,0,0,...,0) and let it cycle.

Because p(x) war, chosen to be a primitive irr(ducible

polynomial, the shift register will go through t in-1 states

before repeating. It has period 2 m-1. During one period,

the successive states of the register give all 2m-1 nonzero

m-tuples.

For example, the first few states of the shift

register of Fig. 6 are shown in Fig. 7 .

Fig. 7

Successive States of the Shift Register of Fi g . 6
State	 Number

1	 0	 0	 0	 0

r,	 1	 0	 0	 1

0	 0	 1	 0	 2

ORIGINAL PA(;I; IS0	 0	 0	 1	 3	 OF POOR QUA I I1 y
1 1 0 0 4

0 1 1 0 5

0 0 1 1 6

]_ 1 0 1 7

r
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We form an m x ( Z% l) matrix M whore columns

are the successive state, of thin :shift register. For

n . 15,	 for example, we find from Fig. 6 & 7 that

0	 1	 2 3 4 5 6	 7 8 9 10 11 12 14

v 1 0	 0	 0 7 0 0 1	 1 0 1 0 1 1 1 1

v,, 0	 0	 1 ) 0 1 1	 0 1 0 1 1 1 1 n
M	 ._ V 

1 0	 1	 0 0 1 1 0	 1 0 1 1 1 1 0 0
v t; 1	 0	 0 0 1 0 0	 1 1 0 1 0 1 1 1

In general we have

0 1 2 ... in-1	 ... ,

v l ro 0 0.•. 1	 •.. ..

V2 10 n 0•..•0 •.

M= .	 .	 .	 . . . ...	 .	 .	 .	 . .	 .	 .

vm-2 0 0 1 ..	 0... •••

vm-1 0 1 0 ...	 0...

vm U 0 0... 0...

(7)

(8)

The COLMins of M consist of all 2m-1 distinct nonzero binary

m-tuples. The rows are labeled vl,v2,...,vm as shown.

Note that in Eq. (7), v2 = r,v1 , v3 = r, 2 v1 , and

v4 = L 3v1 0 v1

where (Z) denotes componentwise addition modulo 2, without

carries. Also v j , = IRV 1 = f -1v l , where R denotes a cyc'.ic

'	 shift of one place to the right. Therefore

Y	
-	 - - _	 ,..IV-M - -
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r3v1 0 vi 4 S-lvl
 :, 09

t.
or

g4GJ' (D].) vl = 0.

In the general case, the some argum e .at applied

shows that

(sm C) am-1
ym-1 

0 ... (D ajX Q a01)vl = 0,

i.e.,

1)(Y)v1 = 0	 (11)

(iv) "rhe connection with Galois fields. (This section

car, be omitted by readers only interested in the statement

of the result and not in its derivation.) The successive

contents of the shift register in fact give all nonzero

elements of the Galois field GF(2m ). These elements can

1 written in two ways, either as successive powers

''	 rri-2^-,a,a2 0 .. •,a 2

of a, where a is a zero of the polynomial p(x), and
„m

1	 1	 1; or equivalently as a polynomial in a of degree

less than in, by reading off the contents of the shift

register. In the example with m == 4 we have
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1 t

rz -	 a

2	 2
a =	 a

a 3 =	 a3

a4 	 1+a	 ^Rl^'INA1,

5 =	
2	 U^' 'Poojt 4pA`N ISa	 asa 

Y

a =	 a +a3

a r = 1 +a	 +a3

Thus M is actually a logarithm table for the field

CF(2m )! E.g. column 7 of Eq. (7) Says that

1 +a+a3=a7,
or

log a (1 -+- a + a 3 ) = 'l.
(v) Definition of the mptiix S.. We can now define S,

which is the (2m-1) x (2m -l) matrix whose first row is

v l (the first row of M), and each successive row is a

cyclic left shift of the previous row by one place. If

P i denotes the i th row of S (calling the top row tfie 0th
row), we have

P i = 9 1V, , for i = 0, ... , 2m-2.

r



Indeed Fig.	 2 is obtained in this way from Eq. 	 (7).

It can be shownl that

S-1	 n+T (2S-J),
(12)

where J is the all-ones matrix.	 In fact by adding a top

row and a left colLum of 0's to S and then changing 1's	 to

0	 -1's and 0's to +1's, we obtain a Hadamard matrix H

satisfying H2 = (n+l)I.	 Figure 4 shows S -1 when n = 15.

(vi)	 Labeling the rows of S. 	 It turns out 10 ,	 and this

is a key point,	 that the roris of S consist of all linear

combinations of the rows v l ,...,vm of M, with coefficients

0 or 1 but not all 0.	 I.e.,	 the rows of S are equal to the

vectors

v i , ... , vm, vl O vim, vl'0 v ) , ... , v 1 U v2	... G vm

arranged in some order.	 The rows of S can therefore be

labeled with the corresponding sum of the v i 's.	 For example,

the rows of S are labeled in this way in Fig. 2.	 We also

use the same labeling for the components of z.	 Thus if

the i th row of S is labeled yr +) vs 0 ... Q v t ,	 the ith

component of z ir, labeled in the same way.

(IV)	 The impulse response z(l)

We can now specify the impulse response. If

x (1)	 _	 (1,0, ... ,0) T then the impulse response z
(1)	 = S-1SXX(1)

is given by

Y
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(1)E	 E E	 E T	 3- (1-E , 7S, o, . ...pop   7S, 7, 0 0 ... , U, 7S) ,	 (1 )

!	

CCC	 cC

"	 where the second and third components ^ occur at the

coordinates which are labeled vi + v  and v1 + v2 . In

words, z (l) has the dominant component 1-E (where x (l) had

the component 1), surrounded by two blips of height c, plus

a second pair of blips of the same height which are displaced

a certain distance. The proof of this will be given in section

V. See Fig. 8, which shows z when n - 15 (in agreement with

Eq. (6)).
Fig. 8

Impulee respcns c z(l ) whon n -- 15

I - E

Impulse Response P)

E/2
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the second pair of

follows. Because

rphism11 between the

the field GF(2m),

To discover exactly how far

blips is displaced, we may proceed as
V

of Eq. (10) &; (11), there is an isomo

rows of S and the nonzero element: of

as follows:

	

row	 Corresponding el(_ment of GF(2m)

	

PO - v 	 <—> 1

P 1 - v2 = S'v I 	 a

Pi = S' iv1 	 <-4 a 	 fo r 0 < i < 2m -2

P2m-2 = V  = SI -]v1 <—'> a - 1 .

Therefore the second and third blips in the impulse response

occur at the i th and ( ill) ,t coord inates of z (1) (starting

the count at 0), where i is the solution of

1 (Da-1 = ai	 (14 )

in the field GF(2m ). Indeed, for this value of i, w^2

have

vl O 
vm = 

vl O 9-lvl = Sivl = Pi.

Fortunately the columns of M provide the information needed

to solve ( 14). For example, when n = 15, we have

0	 l	 (1)
l U CX = 1 ai4	

0)0()

0 = 0 --a3,
1 1	 0
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so the solution is 1 = 3. 'Therefore the blips occur in

the 3 rd and 4 th coordinates of z (1) (calling the left-most

coordinate the 0 th ), in a&reement with Eq. (6) and Fig. 8.

The case n = 257

S matrices; of size 255x255 have been used in

Ref. 2 and 1, correspunding to the polynomial

P(X) = 1+x +x5+x6 +x8.

The matrix M obtained from this is an 3x255 matrix, and is

shown in the appendix (turned on its side and cut into six

pieces). Using this appendix Eq. (14) becomes

l C) a-1 - l U a25 1

0 1
0 0
0 1
0 1.
0

+
1.

n 0
0 0
1 0

.1
0
1

1	 a230.1.
0
0
1

Therefore the iL743ulse response is

z (1) = (1-E,2,228 O's,2,2,22 0's,^)

(V) De rivation of the impulse respon se

If x (1)	 (1,0, ...,0) r then from Fq. (2), since

S* is symmetric, the transpose of yN is

(Y*) T ` lst row of S*
= v  + ew, (say),

.^	
y
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where w is a vector of 0's, 1's and 2's, and 4 denotes real

vector addition. Observe that w is given by

W = v1 * Yv1 + v1

where the bar denotes the complement of a vector and * stands

for componentwise multiplication,

v1 * v2 + v1 * vm

W  + w2 (aay),

where w  = v l * v21 w2 - v 1 * vm . Then

z(]) _ S-1_^* = S 1(v1+fw1i-cw?)

S-lvi -+ E2 1-m (2S-J)(wi+w2)f rom (12)

X (l) + e21-m(Cwrl+GwT)(15)

where G = 2S-J is a matrix of +l's and -1's. If P is a

typical -row of S, let

X l = P, Va l 	 Pw1.' ^`2 =_ : P, w 2 > = Pw2

denote the usual real inner products. Then 12 
the component

of Gwi + GwTc orresponding; to P i

2 (^, +N 2) _ 2m-1
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To show this, let a be an arbitrary row of G, and let

e = 7(a + 1) be the corresponding row of S, where 1 denotes

a vector of all 1 1 s. Also let w be an arbitrary vector

of O's and 1 1 s, containing say h 1 1 s. Suppose there are

i coordinates where L and w are both 0, ,j coordinates where

p is 1 and w is 0, and k coordinates where Q is 0 and w

is 1, as shown in the following picture.

1 . . . 1 1 . . . 1	 - . . . -	 - . . . a

l...l 1...1	 0...0 0...0	 = P-

1 0...0	 1...1 0...0	 = w

i k

Then awT = i -k.	 But i = <p,w^ and i-+k = h,	 so

awT = 21,1 - h (16 )

Mis implies that the component of Gw1T 4 Gw2T corresponding

to f)	 is

2(X 1 + X2) 	 2m-1	 (17)

The values cf the inner products X, X 2 and, from

Eq. (15), of the components of z (l) are easily calculated,

and are shown in Fig. 9.



Figure

The components of Ow 1 .
r)w 2T, and of z(1)

row

of s
^l	 ^V I w lj T2 - ^P, w2>

component

of Gw1T+Gw2 r ,

from	 (17)

component

of	 z (1	 ,

from	 (15)

v l 0 0 -2m-1 1-E

v
2

2m-2 2m-3 2m-2 1

V
2m-3 2m-2 2m-2

m

v1-±v2
2m-2 2m-3 2m-2 lc

V -► v
1

2m-3 2m-2 2m-2

1m

all other 2m-3 ?m-3 0 0
rows

This completes the proof that the impulse response z(1)

is given by Eq. (13).

1

rY
_.i—



b a s b n l l a

b n n n a l l y

b h n 1 l n

t a n b n 1 1 a

T1 b n 1 1 n b

a b n 1 1 n b

i	 n b a 1 1 n b

h a 1 1 n b n

b a 1 1 a b n n

t n 1 1 n h n n

n 1 1 u b n n b

n	 l l l b n a b

]	 l a b n a h n

]	 n b n n b a 1

^^ h a a b n 1 1

ORIGINAL PAGE IS

OF POOR QUALITY

S4 *^-

r

VI. Errors caused by the transparent slits bein g too narrow

Now let us consider the case where the transparent

slits are too narrow. More precisely, we assume that in

each row of S.

every 1 which is adjacent to two 1's is unchanged,

every 1 which is adjacent to a single 1 is replaced

by 1 - c, and

every 1 which is adjacent to two 0's is replaced by

1 - 2 E,

while the 0's are unchanged. Let S be the distorted

matrix obtained from S in this way. Fig. 10 shows the

distorted matrix corresponding to Fig. 2, where a denotes

1 - E arid b denotes 1 - 2c.

Fi j,u re 10

The Distorted Matrix S	 When n - 15

y
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Now the input

it	 x = x (l) = (1,0,0,...,0)T

produces as output the impulse response

z2 ^ S-1 S** X(l)

This is given by

z (2) 	 , o, ... , o, - C, -C, o f ... , 0,) T ,	 (18)

where the components c occur at the coordinates which Tire

labeled v 1 + v  and v 1 4 v2 . Fig. 11 shows z (2) when n - 15.

Note that z (2) is the same as z (l) except for the sign of

the second pair of blips.

Figure 11

Impulse re^F)nnse 7 (2) when n =- 15

I - E

lulse Response z(2)

M E/2

- E/2

i



- 2 4 -

The proof of Eq. (18) is similar to

Eq. (13), except that instead of Eq. (15)

z (2)	 x (1) - E21-m 
(2Gv 1 T - Gw3T

where w3 = v1 * v2 and w4 - v 1 * vm	 Also
Eq. (17) , one has that the co•iponent of 2G,

corresponding to p is
^^, v l> - 2<L), w^> - 2<L,, w ll > - 2 rn-1

The details of the proof are left to the ri
I

The Fart of this study that was done

I	 University was supported by WASA contract I
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Figure 1 Caption

Spectrum of the 1.7 micron mercury vapor doublet (a). Peaks

extending downward from the top of the picture are negative

valuer which ordinarily would fall the Fame amount below the

abscissa, but, in our form of display, appear at the top of

the graph. (b) Shows the response we would obtain to a single

spectral line with a perfect mask. (c) Shows the response for

• single line with the radiation simulated as passing through

• mask with slits too narrow because each opaque mask element

I	 protrudes into the adjacent transparent slot by a tenth of a

slot widUl. (d) Shows the effect of simulating slits that

are systematically too wide. Note that the main spectral line

has been placed in different positions for the synthetic runs

(b), (c) and (d).
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APPENDIX:	 '1'hc Cnloic I^'1c1J C1'(28 ), Jci'ineJ by x^ 3 1x f̂ ^x,4x l ^	 U

01234567 for 01234567 log 01234567 log

-0 1 1 1 1 )4,') 1 1 1 1 1 1 85
1 0 1 1 1 1 147, 1 1 1 1 1 86

1 1 1 1 11 414 11111111 87
1 2 1 11 11 4u> 1111 1 88

1 3 11 11 4E; 1111 11 89
1 4 1 1 1 1 1 1 1 47 1 1 1 1 1 1 901 5 1 1 1 1 1 1 48 1 1 1 1 1 911 6 1 1 1 1 1 49 1 1 1 1 1 1 921 7 1 1 1 1 1 50 1 1 1 1 1 931 1 1 1 8 1 1 1 1 51 1 1 1 1 1 1 94

1 1 1 1 9 1 1 1 1 52 1 1 1 1 1 1 95
1 1 11 1 10 1 1 1 53 111111 96
1 1 1 1 11 1 1 1 54 1 1 1 97

11 11 12 1 1 11 55 11 11 98
1 1 1 1 13 1 1 1 1 5( 1 1 1 1 99

1 1 1 1 14 1 1 1 1 1 57 1 1 1 1 1 1 1 100
1 1 1 15 1 1 1 1 1 1 5^, 1 1 1 1 101
1 1 1 1 1 1 16 1 1 1 59 1 1 1 1 1 102
1 1 1 1 1 1' 1 1 1 60 1 1 1 1 1 1o3
1 1 1 1 1 1 18 1 1 1 6 1 1 1 1 1 1 1 101

11111 1 19 111 6,,' 11 1 1 1 105
1 1 1 20 1 1 1 6,) 1 1 1 1 lo6

1 1 1 21 1 1 1 611 1 1 1 1 107
1 1 1 22 1 1 1 1 61, 1 1 1 1 108

1 1 1 23 1 1. 1 0(1 1 1 109
1 1 1 24 1 1 1 6'( 1 1 1 110

1 1 1 1 25 1 1. 1 W, 1 1 1 1 111
1 1 1 1 1 26 1 1 1 6 9 1 1 1 1 112
1 1 1 1 1 1 2'T 1 1 7. 1 1 1 113
1 1 1 1 1 1 1 28 1 1 71 1 1 1 114
1 1 1 1 1 1 29 1 1 1 1 1 'l2 1 1 1 115
1 1 1 1 1 1 1 30 1 1 1 1 1 73 1 1 1 1 116
1 1 1 1 1 1 31 1 1 1 1 74 1 1 1 1 117
1 1 1 1 1 32 1 1 1 1 1 ?5 1 1 1 118

1 1 1 1 1 33 1 1 1 1 1 76 1 1 1 119
1111 1 3.4 11 111 77 1 1 1 120

1 1 35 1 1 1 1 V^ 1 1 1 121
1 1 36 1 1 1 9 1 1 122

1 1 37 1 1 1 0 1 1 123
1 1 38 1 1 1 81 1 1 124

1 1 3^1 1 1 1 1 82 1 1 1 1 1 125
1 1 1 40 1 1 1 1 8 1 1 1 1 1 126

1 1 1 1 1 1. 1 1 1 1 12'(



n1e G lois Fi Id GF(28 ), continue 

.-
o 1 2 3 4 567 1 (', 0 1 2 :; 4 ? 7 log 0 1 2 3 4 567 log 

1 1 1 1 1 128 1 1 1 1 171 1 1 1 214 
1 1 1 1 1 129 1 1 1 1 1 1 1 172 1 1 1 n? 

1 1 1 1 130 1 1 1 1 In 1 1 1 1 1 1 2Hi 
1 1 1 1 131 1 1 1 1 1 1 1 17 11 1 1 1 217 

1 1 1 1 132 1 1 1 1 1 1 1 175 1 1 1 1 1 1 218 
1 1 1 1 133 1 1 1 1 17 1 1 1 1 1 1 2lS 

1 1 1 134 1 1 1 1 1 ITr 1 1 1 1 1 220 
1 1 1 1 13~ 1 1 1 1 1 1"(8 1 1 1 1 221 

1 1 1 1 13 1 1 1 1 1 1 1(9 1 1 1 1 222 
1 1 1 1 137 1 1 1 ] 1 Wo 1 1 1 1 223 

1 1 1 1 1 138 1 1 1 1 1 1 III t 1 ] 1 2211 
1 1 1 1 1~9 1 1 1 1 1 1 1 W2 1 1 1 225 
1 1 1 1 1 110 1 1 1 1 18~ 1 1 1 22 

1 1 1 1 1 1111 1 1 1 1 18 1 1 1 1 22'( 
1 1 1 1 1 142 ] 1 1 1 185 1 1 1 1 221'\ 

1 1 1 1 143 1 1 1 1 186 1 1 1 1 229 
1 1 1 1 1 ] 411 1 1 1 1 W7 1 1 1 1 1 230 
1 1 1 1 1 1 145 1 1 1 188 1 1 231 
1 1 1 1 1 111 1 1 1 1 189 1 1 232 

1 1 1 1 1 ] II~ 1 1 1 1 190 1 1 23(, 
1 1 1 1 1 111 1 1 1 ] 1 91 1 1 231 

1 1 1 1 1 1119 1 1 1 1 1 192 1 1 235 
1 1 150 1 1 1 1 1 193 1 1 236 
1 1 1 1 1 1~1 1 1 1 1 194 1 1 237 

1 1 1 1 1 152 1 1 1 195 1 1 1 1 1 2~8 
1 1 1 1 1 1 153 1 1 1 196 1 1 1 1 2 1 
1 1 1 15)1 1 1 1 1 1 1 19'1 1 1 1 1 1 240 

1 1 1 155 1 1 1 1 1 1 198 1 1 1 1 1 2111 
1 1 1 156 1 1 1 199 1 1 1 1 242 

1 1 1 157 1 1 1 1 1 1 200 1 1 1 1 243 
1 1 1 158 1 1 1 1 1 ] 201 1 1 1 1 2)14 

1 1 159 1 1 1 1 1 202 1 1 1 245 
1 1 160 1 1 1 ] ~O3 1 1 1 246 

1 1 1 1 1 1 1 1 204 1 1 1 247 
1 1 162 1 1 1 1 1 205 1 1 1 248 

1 1 1 163 1 1 1 1 1 2 6 1 1 1 1 249 
1 1 1 1611 1 1 207 1 ] 1 1 1 250 

1 1 1 1 1 1. 165 1 1 208 1 1 1 1 251 
1 1 1 1 1 1 1 1 209 1 ] 1. 1 252 
1 1 1 1 167 1 1 2 10 1 1 ] ] 2') 'j 

1 1. 1 1 ] b!\ 1 1 2 11 1 t 1 1 ?JII 
1 1 1 1. 1 1 9 ] 1 212 1 2~~ 

1 1 1 1 1 170 1 1 1 213 
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