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THE EFFECT OF BENDING

ON THE STRESSES IN ADHESIVE JOINTS

by

11. Yuceoglu and 1). P. Updike
L.^high University, Bethlehem, Pa.

ABSTP.ic

The problem of stress distrib0-1	 :n adhesive joints where two orth-
otropic plates are bonded through a tie:^Ule adhesive layer is analyzed.
It is shown that the effect of bending of the adherends on the stresses in
the adhesive layer is very significant. However, the transverse shear
deformations of the adherends have is general very little influence on the
adhesive layer stresses and therefore these shear strains of adherends can

be neglected in many practical cases. It is shown that the maxiumum trans-
verse normal stress in the adhesive is, in general, larger than the max-
imum long:: ,idinal shear stress

The method of solution is :applied to several examples of sper_ific
joint geometries and material combinations. It is also shown thrt the for-
mulation and the solution of the problem of adhesive joints as presented
in this case is general enough to be applicable to other related problems

such as "scarf joints", "stiffener plates", etc. in a similar fashion.

1. INTRODUCTION

The joining and extension of structural components in the form of

"adhesive (or bonded) joints" has been a very common feature in 111 kinds

of lightweight structures. In recent years, the developments in very

strong epoxy based adhesives and advanced composites as well as new fab-

rication methods of joints have made feasible the extensive use of ad-

hesive joints in flight vehicle structures in which lightweight and high

fatigue strength are prime requirements. Consequently, considerable

amount of analytical and experimental research has been carried out on

the stress distribution in adhesive joints. In this connection, one may

mention some early analytical work by Goland and Reissner [11, later

•	 Mylonas [2), Cornell [31, Lubkin and Demarkles [S) and more recently

Erdogan and Ratwani [6], Sainsbury-Carter [7] and Adams and Peppiatt 181.

A good survey of the papers on adhesive joints up to 1964 can be found in

Kutscha [9]. The practical aspects of the design of adhesive joints and

.adhesives are given in a recent book by Bikerman [10]. For scarf joints,

Lubkin [111, Erdogan and Ratwani [61 can be mentioned.
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Adhesive joints are Paso being; used increasingly in prestressed

post-tensioned concrete structures. For instance, Papault [12], Levy

[13,14] and particularly Abeles [15] among others investigated the

practical applications of adhesive joints to prestressed concrete struc-

tural elements.

•	 It is of interest to observe here that in all the references given

above, excluding Coland and Reissner (11 the effect of bending of adher-

ends on the stress distribution in adhesive layer, has been ignored.

Also, in [61, [7) the transverse normal stress is neglected. In the case

of Goland and Reissner (1), the cylindrical bending of identical adherends

of isotropic material is considered in combination with the transverse

normal stress and longitudinal shear stress in the adhesive layer. How-

ever, they assumed adherends with equal thickness and identical isotropic

material in order to obtain a closed form solution to the problem. This

severely limits the applicability and the practical range of the closed

form solutions given in (I).

Therefore, the purpose of this paper is to develop an analytical

model for adhesive .joints in order to find the transverse normal stress

as well as longitudinal shear stress distribution in the adhesive layer

due to the bending deformations in unidentical orthotropic adherends.

Furthermore, the thickness shear deformations in the adherends will also

be taken into account.

The results indicate that the bending of adherends drastically

change both t:-: normal stress and shear stress concentrations in the ad-

hesive layer particularly in a joint composed of two adherends with differ-

ent elastic constants. It will be shown that the formulation and method

of solution of the problem of adhesive joints as presented here is

general enough to handle other related problems such as "scarf joints",

"double joints", etc. with relative ease.

2. FORMULATION OF THE PROBLEM

For all practical purposes, the adhesive joints in terms of geometry

may be divided into three basic types: 1) lap joint, 2) stepped joint,

and 3) scarf (or tapered) joint as shown in Fig. 1. In general, almost
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:11 other joints tray be obtained through some combination or repetition

of these basic types. In a similar fashion, from the standpoint of

mecha -'__ a, the "stepped joint" may be considered same as the " lap joint"[*]

and the "scarf joint" is a limiting case of infinite number of "stepped

Joints" put together between two end points of the scarf joint. There-

fore in this work only the "lap joint" will be investigated in detail.

Other types of joints and related problems will he presented in a forth-

coming report.

A typical "lap joint" of length L ^hown in Fig. 2, consists of

upper and lower adherends (or plates) of different orthotropic materials

with thicknesses h l and h 2 respectively and a thin isotropic adhesive

Dyer of thickness t. The principal directions of orthotropy in both

adherends are assumed to coincide with the coordinate axes as shown in

Fig. 2a and 2b. Both upper and lower adherends are treated as orthotropic

plates subjected to in-plane stretching, bendlag and thickness (or trans-

verse) shear deformations. The thin adhesive layer can be conside red as

composed of longitudinal shear and transverse tension-compression springs

connecting the two adherends. In other words, it is assumed that, in the

adhesive layer, the dominant stresses are the longitudinal shear and

transverse (or thickness) normal stress and, furthermore, these stresses

do not change across the thickness of the adhesive (see Fig. 2 and 3).

The sign convention for u i , v i , w i (i = 1,2) displacements, the strain quantities,

the stresses and stress-resultants for both adherends and adhesive layer

are those 3f the theory of elasticity. (See also the Appendix)

A self-contained treatment of the field equations of the shear theory

of othotrople plates which takes into account in the avera q the trans-

verse (or thickness) shear deformations are given in the Appendix (see

*
Provided the vertical

adhesive or their effect
specially if one conside
in general very small.

This last assu p,, Dt ion

TX(x,Y) _ -x and 'ry(x,y)
t<<(hi$h2).

slits of the "stepE^d joint" are not filled with
is ignored. This is not an unrealistic assumption
rs the fact that the thickness of the adherends are

implies that G 1 (x,y) - (I 2 (	 Qx,y) -	 , T1(x,y)

= Ty(x,y)	 T y providing that adhesive thickness

3



also [16]). Thus, after some a'gebric manipulations, these equations

can be reduced, in terms of the so-called "fundamental variables" NX,

N 
xy
i . 

Qx
i, 

Mxi, Mxy
i 

P u i P 
vi0 wig 

S i
x g 

R 
yi (i - 1,2), into the following system

of partial d'fferential equations:

N 
1	 - _
X,x

i
P

_ 

N xY.Y

N 
ia -
x Y. x

piy
-( i	

i+
C12 u 'XY

C 
22

v i
'YY)

Q 	 = - p i - L2	 (W.i
	 + RY,Y)

(1	 1,2)

M1 	 -
X,X

m i
x

+Q i -Mi
X	 xy,y

M 	 -
xy,x

- mi
v
+ L i (w, i + R i )

2	 y -y
(D i .,

1..
R i	 + D i	 R i 	)
x,xy	 22	 y, YY

i	 -	 i	 i	 i)/Ci
u, x 	(Nx - 

C 12 + y	
11

v,X	 ( NXY - F22 u,Y)/F12

R	
(Mx - D	 Bi )/D

i 	(i - 1,2)x,x	 12 

i	 i	 i	 i	 i
Ry,x	 xy _ K 12 Rx,y)/g11

w,
x
	= Q/Lx i - Rx

and,

(la-e)

(If -j)

where i. = 1 and i - 2 correspond to the upper and lower adherends respect-

ively. The sum of the distributed surface loads pi, py, p i (i - 1,2) and

distributed surface moments mx,m V (i - 1,2) acting on the reference planes

are given as,

I
	 l _ T	 2 m - q 2 +p	 q	 Z

x	 x	 x	
p x
	 x	 x

+ Tp^ = q^ - T y	 py = - 
q Y	 Y

4
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pIqr -	 '	 p2 - - q  + 0
	 (2a-e)

1_	 1 h l	 h l +t	 1	 2 1i2	 h2+t

mx	q  2 + Tx 2	 '	 mx - qx 2 + Tx 2

m1 - 
1 hl	 h1+t	 2	 2 h2	 h2+t

y	 q  - 2 + T y - 2	 my - q  2 + Ty 
2

and the stresses in the adhesive layer are

a(x,Y) - B (WI - w2)

1.	 h
Tx (x,y) - ^ (u l - 61 21 - u2 - P 2 2 )	 ;3a-c)

r.	 h
Ty ( x ,Y) - t (v

1	
- By 21 - v 2 - sy 2 )

where B is an elastic constant related to the Young's modulus rand Poisson's

ratio v and the shear modulus G of the adhesive, (7(x,y) is the transverse

normal stress, T x (x,y), T y (x,y) are longitudinal shear stresses of the ad-

hesive layer in x and y directions respectively.

The equations (3a-c) define the mechanical behavior of the adhesive

layer and they also corre:3pond to the compatibility equations of the prob-

lem i.e. ;peeling off, cracking or separation are not permitted on the

interfaces between the adhesive layer and adherends.

The elastic constant B in (3.2) can be found from the following elastic

stress-strain relation for the adhesive layer.

Q(x,y)-a ez = a(e x + e  + e z ) + 2G,	 (4)

where a is the transverse normal stress, e x , ey , e  are the strain compon-

ents and,

^ = vE/[(1+v)(1-2v)]
	

(5)

Because of the compatibility of strains on the inter faces between adher-

ends and adhesive layer, e x and e  in the adhesive l ayer must be equal in

5

y



Y

magnitude to the adherend strains ex, e  (i a 1,2) on the interfaces,

whereas adhesive layer strain e  which is given by,

e - (w 1 - w2 )/t
	

(6)

-an be much larger or le x l>> ( e x ,eV ). If ex ,ey are neglected in compari-

son with e  in equation ( 5), then the elastic constant B of the adhesive

is,

B 3 a + 2C - (1-v)E/(1-2v)
	

(7)

making it somewhat larger than Young's modulus E.

The surface load termsi
	 i	 i	 i	 i

p x , py , pZ and mx , my (i	 1,2) in (la-e) can

be easily	 eliminated by simply substituting (3a-c) into (2a-e). Fin-

ally, the system (la-e) and (if-j) reduces to the following; matrix form

of a system of twenty partial differenti-1 equations with the appropriate

boundary conditions in the region (a l <x<b 1 ) and (a2<y<b2),

3 , Y k

PJYTX
	 ,...)	 (k	 j	 1,2,..,20)

(m - n	 1,2,..,10)

a	 ay 
Y^(x.Y) - F^(x,y; iY

Tar(Y) Y r ( a l .Y) = 11m1(y)

I,,	 b
Tns(y) Y s (b 1 .Y)	 Unl(Y)

a	 a
Tm2 (x) Y r (x,a 2 ) = 1; 2(x)

h,	 h

Tns(x) Y s (x,b r )	 U112(x)

(r a s - 1,2,..,20)	 (8a-e)

where Y^(x,y) is a column matrix of order 20 which ir ,̂ Iudes all the "fund-

amental variables" an(. Um l (y) Ubl (y) are the specified boundary conditions
n

at x - a l and x = b 1 respectively. Similarly Um2 (s), Un 2 (x) are boundary

conditions specified at y - a 2 and y - b 2 respectively. The matrices Tmr,

T ns
h l	 a2 T 

mT
ar , T 

n9
h2 are coefficient matrices depending on the support conditions

along the boundaries. In general, they are unit matrices.
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(9a-c)(i - 1,2)

In the case of a joint with finite width in y direction the system

(8a-0 has to be solved. However, if it is assumed that the dimension

in y direction is large and that cylindrical bending occurs along the

joint in x direction, then the equations Oa-j) reduce to the twelfth

order system of ordinary differential equations given by,

i
dNx

dx	 Px

dQi

dx	 Pr.

i
dMx - 

m  + i
dx	 x Qx

and,

dui = Ni/Ci
dx	 x 11

i
d sx s 

Mi
/D i
	(i - 1 , 2 )	 (9d-f)

dx	 x 11

dw i 	i i	 i
dx	 Qx /L1 - Sx

Where p i , P i and m  ( i = 1,2) are given in (2a,c,d) however a(x,y), r (x,y)
x z	 x	 x

and T Y (x,y) become,

(i (x, 	 - (I W ,	 Tx(x,Y) = T 	 Ty(x,Y) r. 0	 (10)

with the righthand sides of the equations (3a,b) still being valid (see

Fig. 3).

Consequently, (8a-c) reduces to a simpler matrix form in terms of a

system of twelve ordinary differential equations with the boundary condi-

tions along the joint in the region with a l	b1 . + Q or (-f<x<+F_)

and (--<Y<+-),

dx 
Y j (x) = A ik W yk (x) + Pi 	 (j - k - 1,2,..,12)
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T 	 Y ( -L)	 Ua 	(m - n	 1,2...,6)	 (lle-c)mr r	 m

	

:b Y (+P)	 U 	 (r - s	 1,2,..,12)
ns s	 n

where Ajk (a) is a coefficient matrix of order ( 12,12) which includes the

elastic constants and geometric dimensions such as thickness, etc. of the

adherends and the adhesive layer. P j (x) is a column matrix of order 12,

corresponding to the distributed loads qX, Qy, qZ. The coefficient matrix

Ajk is not in general a function of x unless the thickness or the material

constants of the adherends (or the adhesive layer) or both varies along

the length of the joint ( i.e. scarf joint). The matrix Y j (x) is again a

column matrix of order 12, including all the "fundamental variables" as

its elements. The twelve fundamental variables N 
xi. Qx

i, M 
xi. 

u i , 6i
x
 , wi

(i - 1,2) are the unknown functions of the independent variable x. In

the boundary conditions (11b,c), the matrices T 	 and T 	 are constant
mr	 ns

matrices with the order of (6,12) and (6,12) respectively. The quantities

Um ani U  are column matrices corresponding to the stress- -resultants and

displacements prescribed at the ends of the adhesive joint x - - Q and

x - + Q respectively.

•	 The boundary conditions in (llb) and (Ile) are obtained from the

known stress resultants and displacements of the adherends at the ends of

the joint. In the lap joint In Fig. 2, the six boundary conditions to

bi prescribed at each end may be found using the free body diagrams in

Fig. 3 and Fig. 4. For instance, N * , Q* , M*a nd N*, Q*, M* where subscript

* designates prescribed quantities at x = + f, are calculated from the

statics in terms of the distributed external force P (or in terms of basic

loads No , QO , MO
 in Fig. 4) and the geometry. Then, the boundary condi-

tions are:

at x -	 the column matrix Um in (llb),

u l	 v	 w1 = 0	 Rl = 0	 N2 - 0	 Q2 - 0	 M2 = 0	 (12a)
x	 x	 x	 x

.	 at x = +t , the column matrix U n in (t1c),

N  = 0	 ^jx - 0	 Mx = 0	 NY - N* , QX	 Q* , MX = M* (12b)

8
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Note here that in (12a) displacement boundary conditions rather

than the force conditions prescribed for the upper adherenu at the left

end of the joint. The reason for this is twofold. If the three dis-

placements (i.e. u  . 0, w  , 0, B I . 0) are not prescribe', then the

displacements thre,3hout the joint cannot be found from (9a-f) or from

(lla-c). Because any arbitrary rigid b o dy displacements can be added

to these system of equations without violating the mathematical condi-

tions of the problem; hence, the solution to these equations would not

be unique. Also, the prescribed stress resultants N * , Q* , M * must necess-

arily he in equilibr;tim with N*, Q*, M*. This equilibrium, however, is

already expressed through (9a-c). Therefore, in (12a), the inclusion of

equilibrium values of the external forces as boundary conditions, instead

of displacements u* 	 0, w*	 0, a' - 0, would be redunde.nt. (Wit`% the

assumed fully fixed condition applied to the one section of the upper

adherend, the displacements ui , vi , w  (i - 1) now represent displace-

ments relative to this section. The choice of the ,joint end section

assumed 'ixed in no way influences the calculated stresses).

Thus, at x - - Q, the displacement conditions for the upper adherend

In .^ombination with the force conditions for the lower adherend represent

the "appropriate" boundary conditions for Um (m = 1,2,.., 6 ). In (llb,c)

the matrices 'la , Tb are unit matrices, however, in special cases with
mr	 ns

spr'ng and other type of support conditions at x = + Q they may have

other nonzero components.

Thus, the equations (Ila) with the appropriate boundary conditions

(Ilb,c) represent a system of twelfth order linear ordinary differential

equations. The entire system (lla-c) constitutes a so-called "two-point

boundary value problem" of all the three basic types of the adhesive joint.

3. METHOD OF SOLUTION OF DIFFERENTIAL EQUATIONS

The system of equations similar to (la-j) or (4a-c) and also (9a-f)

or (Ila-c) has been investigated among others by Kalnins [16,17). In

•	 general, taey can be solved by making use of numerical methods such as

the "multi-segment method of integration" or "finite difference methods"

9



or both. However, in the came of adhesive joints under s pecial conditions,

the equations (9a-f) (or lla-c) WC a closed form solution. This "special

case" and the more "general casev" are considered next.

The problem in both 4aeeial and general cases will be solved for ex-

ternal tension Not external shear Q  and external bending; moment M  which

are defined as the three "basic loading cases" in Fig. 4. Anf other load-

ing case can be treated as a superpo; pion of these basic loadings (pro-

vided there are no distributed surface loads on adherends).

P) Special Case (Adherends with idential thickness and material):

In order to gain some idea about the effect of the thickness shear

deformations of adherends on the stresses T(x) and o(x), consider a special

case in which adherends have the same thickness and material. (ot hIQ2Qa'

E 1 E 2. E , G I G2 G	 v1	
^

v2 v	 C 1 C 2 C , D 1 D 2 D	 L 1 I.2 L whey_
1	 1	 12	 12	 a	 11	 11	 a	 11^ 11	 a	 1^ 1^ a

subscript "a" jenotes x direction and "b" for y direction in identical aKd

orthotrople adherends).

In such a case the system of ordinary differential equations (9a-f)

and (lla-c) can easily be reduced to two coupled ordinary differential

equations in terms of the two unknown adhesive layer stresses ON) and

T(x) so that,

d 2T/dx 2 -(c) T- - Gha(Q*+Q*)/(2Da0
(13 a.b)

d 4o/dx 4 - 2(a) 2 d 2a/dx 2 + (P) 4 a • 0

A - 2G/(c t) + Gha a	 a(h +t)/(2D t)
a 

(a) 2 = B/(La0	 (14a-c)

(S) 4` 2B /(Da0

The quantity (Q* +}( 2 ) in the equation (13a) can be considered as the total

shear resultant transmitted through the joint. It is of interest to A

serve here that if the transverse shear strain in the adherends is neglected,

l0

Y



then ( 13a) remains the same, but the parameter a in (13b) becomes zero.

In such a case, the equations reduce to these of Goland and Reissner (1).

Thus, 4 , seems that transverse shear strains in adherends effect mainly

the transverse norm.il stress a(x) in the adhesive layer.

The general solution of (13a) iK,

T 	 - A I sinh cx + A l cash cx

+ Gh i^(QI+Q 2) /(2Da tc. 2 )	 (15)

However, the solution of (13b) is dependent on the rel,tive values of a

and S. Thus, if a<B, the general solution of (13b) 1:,

C1(x) - A 3 sinh ax cos bx + A 4 sinh ax sin x

+ A 5 cosh ax sin bx + 6 cosh ax cos bx 	 (16)

where

a - M 2 + a2 ) /2j 112
	

(11a,b)

b - W2 - a 2 WA 1/2

If a>^, the general solution of (13h) becomes,

Q(x) - A3 sinh ax + A4 cosh ax

+ A 5 sinh bx + A6 cosh hx	 (1g)

where	
1/2

a	 cx2 + a4_,4
(19a ,b)

-1 1/2

1)	

IOL

h 	 (X -64

The maximum values of T(x) and o(x) corresponding to each basic loading

case can easily he calculated from (15), (16) and (18) and they occur in all

loading cases at the ends of the joint. For example, in the case of external



normal tension 1osA No in Fig. 4, T(x) and Q(x) are even functions of

x so that the arbitrary constants A 1 . A -49 A 5 of the solutions in (15)

and (16), (19) and the remr► ininR three constants may be determined from

the boundary conditions (or the external equilibrium conditions) of the

joint. Thus, for external tension load No,

211 
max 

/No - ce Goth ct	
(20n,b)

tDaR Gm:ix/KM* - k2/k1

where

M* - No (ha + t)/2 (21)

and	 for Jt<R,

k 1 - b? sinh 2st + at sin 2bQ

(22a,h)

k2 - bt sinh 2aZ - aZ sin 2bQ

whereas,	 for a>R,

k 1 - bP rinh he cosh at. - at sinh al	 cosh be

(23a,b)

k2 - bP_ cosh bQ sinh aZ - a,_ cosh aZ sinh be

Similarly,	 in the ca ge of external shear force 9  shown in Fig.	 4,

the stresaeS T(x)	 and r7(x) are even functions of the coordinate x.	 The

maximum values of T(x) and Q(x), which occur at	 the joint edges, arc,

2tD CT	 /Gh Q 4' - coth cQ - 1/cQ
a	 max a o (24a,b)

tDaR2G	 /B Qoe
(k2 + k3)/kl

max

where,	 for a<R,

k 3 - 2ah(cosh 2af + cos 2b0M2
	

(25a)

12
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ard. for a>B,

k 3 ' - (a 2 - b2 )(cosh at cosh bP)
/6 2
	(25,b)

and k  and k 2 are given in (23a,b).

In the case of bending moment loading M  of Fig. 4 the express'ons

for T(x) and v(x) are odd functions of x and maximum values occuring at

the edges art,

2tDaCT max /Ch IM0 - tanh cf	

(26a,h)

tDa 
2
a

 
MIX /BM

o 	kl/k2

where k i and k 2 have been defined prr-iously.

In order to calculate these maximum stresses, values of the ratios

k 2 /k l and k 3 /k l as functions of BF and a/0 have been plotted in Figures 5

and 6, respectively. In these plots, the parameter describing the in-

fluence of the t r -nsverse shearing strain of the adherends is the r..tio

a/B given by,

1/4

[0.5 HDa /((La ) 2 t}	 (21)

Substituting for D and L the ratio a/B becomes for orthotropic adherends
a	 a

of equal thickness and "ae same material,

a/B s [3BEaha/(50(1-v2)(Ca)2t}^ 
1/4	 (28,a)

and for isotropic adherends of equal thickness and same material,

a/B a 
1
12 ( 1 +va )Bha /(50Ea (1 -va )t}1

1/4	(28b)

•	 By calculating the ratio a/B from (28a) or (28b), one can determine

for any given case whether or not the thickness shear strains in adherends,

significantly influence the maximum value of the normal stress in the

adhesive. According to Fig. 5 and Fig. 6, the curves for the values

13

a/B
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a/B<l do not differ significantly from those for (%/B-0, thu g , the in-

fluence of the thick. . ahear strains of adherends on maximum normal

stress c1
max 

can be ignored provided a/6<1.0.

(This is more or less valid in practical cases. For example, a

typical joint of two aluminum plates, each of ha-0.1 inch thickness

with Ea-10 x 106psi, vas 0.33 bonded by a layer of epoxy with E-4.5 x

10 5 psi, v-0.35 and t-0.01 inch thickness, has a ratio a/6-0. 1 7 which

15 ,mallor than unity). On the other hand, in the case of adherends

with 1P.•ge thicknesses and small longitudinal shear mouulus C 13 , :he

effect of the adherend thickness shear deformations on the adhesive

layer stresses may not be ignored.	 3i

h) General Case (Dissimilar Adherends):

In the case of adherends with unequal thicknesses and different

elastic properties, a closed form solution (such as given in the pre-

ceeding section) of the two-point boundary value pr-,blem of (lla-c)

seems not to be possible. Therefore, numerical ;nethods have to be

employed in order w solve this system. The "multi-segment method of

integration" as given in [17] is most suitable for this purpose. In

fact, this method if numerical integration is used here in solving the

general case in (9a-f) or in (lla-c). This way, the two-point boundary

value problem of the adhesive joint reduces into a series of initial

value problems and then integrated numerically between the boundary

points.

For the sake of simplicity, one can drop the quantities corresponding

to the distributed surface loads such as q I , qi( i - 1,2) in (9a-f) and

consequently P  matrix in.. (lla-c) associated with the external surface

loads. Then, in (Ila-c),

qx = q
z = 0 or P j (x) = 0 (1 - 1,2; j = 1,2,..,12)	 (29)

It should be emphasized here that this last additional assumption in no

way affects either the general form of the system in (lla-c) or the appli-

cability of the method of solution employed here to the lap joint as well

as other type of ,joints.
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Thus, a computer program based on multi-segment method of integra-

tion has been develop^!d to solve the equations in (9a-f) or (!la-c) and

has been applied to several joints under various edge loads. The results

I

	

	 for a typical lap joint subjected to basic external load cases of Fig. 4

and also for a stepped joint are presented in the next section.

As it is expla±ned at the beginning, the ana l ysis of a "stepped joint"

is not different from that of a lap joint. Therefore, it will not be

treated as a separate case. However, in order to point out the influence

of bending on the stresses in a stepped jol r, even when it is under uni-

axial tension, the results of a numerical example given in Fig. 10 will

be discussed briefly in the next section.

In passing, it may be of interest to note here that in the case of a

scarf joint (see Fig. 1) the formulation of the problem and the method of

solution as presented in this paper can easily be employed. In such a

rase the equations (9a-f) and (lla-c) are exactly the same except that the

terms of the coefficient matrix A jk become functions of x due to variation

of adherend thicknesses rather t han elastic constants. The computer pro-

gram which was developed for the general case can also easily handle the

scarf joint problem.

4. DISCUSSION OF RESULTS

The non-dimensional expressions (20a), (24a), (26a) for t	 and
max

(20b), (24b), (26b) for 
Amax 

corresponding to the basic loading cases in

a joint of identical thickness and material, are functions of the para-

meters c$, SZ and the ratio a/B. As it is noted earlier in the solution

of the "special case", the transverse shear strains in adherends may be

neglected. This, for practical applications, the ratio a/a ir, the

{	 "special case" becomes

F	 a/^ - 0	 (30)

an.: similarly in the "general case", in (9f)

(Q I /Li)	 0 (1 - 1,2)	 (31)

15



--	 - - .

which corresponds to the vanishing of adherend transverse shear strains
i

or consequently to the classical bending theory of thin platen.

For practical purposes, in a typical joint a/S raitio may be assumed

as

a/S < 1
	

(32)

and the adhesive thickness t is in general considered to be very small

i.e. t<<ha ( h 1 - h 2 a h "1 ). Then, the parameters c£ and BP become large

and for tLe values of,

ct > 3, Bt > 5
	

(33)

the T
max 

and °max equations ( 20a,b), ( 24a,b), (26a,b) for the basic exter-

nal loading cases can be expressed in terms of asymptotic expansions for

large Q.

Thun, for the external tension load No case of Fig. 4a, the asymptotic

•	 values of T	 and o	 are
max	 max

Tmax - NAc/2 (34a,b)

Gmax = No (ha+t)B /( 2tDa(32)

by introducing (14a) and (14c) for c and ^ and also for Da/Ca=(ha)2/12,

Tmax 
and 

nmax 
can be further reduced to,

N
A

Tmax	 ^- ^ (2C/Ca)1/2 (35a,b)

Amax = 
,̀
o (3B/Ca)1/2

In the case of a Joint subjected to external bending moment M  only

(Fig. 4c), the asymptotic expressions for 
Tm'ix 

and 
Amax, 

derived in the

same manner, are

16
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M

Cmax ? 

Mo 
(0.115 G/Da)1/2

r	 (36a,b)

Amax = 

Mo 
(0.5 H/Da)1/2

r

Similarly, if the joint is under external shear force Q ° in Fig. 4b, the

asymptotic expressions for Tma _, and a
max are,

Q0 U0-Q)	
112

Tmax(0.375 G%Da)

VfF

Amax - Q

o(Po-e) 
( 0.5 B/D a1/2

At-

(37a,b)

The equations ;34a,b), (36a,b) and (37a,b) all indicate that for
joints composed of identical adherends in thickness and material, maximum

stresses occur at the edges of the adhesive joint. Furthermore, Fnth

amax 
and Tmax are of 0(1/r) as t -► 0, showing the singular behavior of these

stresses around the edges. Similar results are obtained in the more gen-

eral case with unidentical adherends. For example, in Fig. 7, 8 and 9, a

lap joint of aluminum-epoxy-steel subjected to basic external loads demon-

strate behavior similar to that of a joint with identical adherends. Both

stresses o(x) and T(x) shoot up within the boundary layer region in the

neighborhood of the joint edges. This is specially so in the pure bending

case (see Fig. 9) which clearly illustrates the effect of bending of

adherends.

Another interesting result can be obtained by estimating the ratio

Cl	 /T	 for basic external load cases of Fig. 4. Thus, from (35a,b), for
max max
the basic tension load No,

(3 
max /Tmax z-

	 B/G)1/2	
(38)

and for the basic external moment loading M 0

Q
max max

/T	 = -L (B/G) 1/2 as t 1 0	 (39)

11



the ratio for the basic shear loading Q  is equal to that of 09). Them..•

stress ratios, in the case of identical adherends, depend only on the

Poisson's ratio v of the adhesive and for practical values of v, one can

conclude that,

a	 /T	 > 1.0 as t -+ 0
max max

and gets larger as the bending of the joint increases (depending on the

particular loading this ratio can easily reach the value of 2 or more).

These results can also be verified for the general case with unidentical

adherends by simply comparing 
amax 

and Tmax values in Fig. 7, 8 and 9.

These plots again indicate that higher stress concentrations occur at the

edge corresponding f or less stiffer adherend and the normal stress, a max , because

of bending deformation, is in general the dominant stress. As a result,

the tearing apart of the adhesive layer and adherends along the joint

is likely to start and grow due to these transverse normal stress cone. -

trations. Therefore, one .nay rightly call the maximum transverse normal

stress 
Amax 

as the "tearing stress" of the adhesive joint. On this besis,

It may be said that theories which do not take into account the bending

of the adherends ca:tnot correctly predict the maximum stress in the ad-

hesive layer. (Fc,r instance, in F:dogan and Ratwani [6), Sainsbury-

Carter [7), Adams and Peppiat:. [8), ►.ubkin fill, the effect of bending Is
completely ignored).

The significance of the bending effect even on the relatively smaller

longitudinal shear stress of the adhesive can best be demonstrated by

simply comparing the results presented here with those which neglect both

the bending deformation and transverse shear deformations in the adherends.

(40)

The equations (15)

if the bending sti

11,	 i.	 L  are assumed
bending neglected,

and (16) reduce to that of [6) with a(x) --C and T(x)O C

ffnesses DI I P nil
 

and the transverse shear stiffnesses

to be infinite. Thus, "-" defining the quantities with

(15) and (16) become,

d ` T x) _(c) 2 T(x) = 0
dx2

a 	 = 0
	

(41a,b)
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(c) 
1)

 = 2G/(Ca t)
	

(42)

then the corresponding maximum shear stress tmax for the basic external

tension load No of Fig. 4 is given by,

2ti 
max 

/N o - ce Goth iZ	
(43)

and the asymptotic value is,

Tmax = N
oc/2	 (44)

by using (20a) for T
max 

which includes the effect bending and transverse

shear deformation and (43) for Tmax'

T
max max

/T	 = c coth cQ/(c coth U)
	

(45)

For the small values of adhesive thickness, i.e. t«ha , the ratio is

almost c/c = 2. Then,

•	 T	 T	 > 1	 (46)
max max =

However, from the asymptotic values in (34a) and (44)

T	 /T	 2	 (for large ct and t- 1-0) 	 (47)
max max -

Thus, for practical joints, this T
max max

/T ratio will have a value some-

what close to 2. Consequently, the theories [.;,7,8,11] which neglect the

bending effect, even in the case of uniaxial external tension only, mi,ht

underestimate the maximum shear stress by nearly 50%.

Similar results are obtained fo. the more "general case" with uniden-

tical adherends. For instance, the comparison of the longitudinal shear

stress plot of the same "stepped ,joint" of Aluminum-Epoxy-Steel in Erdogan

and Ratwani [6] with that of the shear stress plot obtained by the present

authors and which includes the bending effect is given in Fig. 10. It is

obvious that, in spite of the uniaxial external tension load, the actual

maximum shear stress is almost: twice as large as the shear stress obtained

19
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A

by 161. Also, it is important to observe here that, in Fig. 10, the

maximum transverse normal stress, because of th, bending deformations 	 5

along the joint, is again very much larger than the maximum transverse

shear stress.

The influence of protruding lengths 
f  

and f 2 outside of the joint

on the normal and shear stresses in the adhesive is also considered.

As pointed out previously, even under uniaxial tension the adhesive

joint, is in the state of bending regardless of the size of the pro-

truding lengths. As an example, 0e stresses in Aluminum-Epoxy-Boron

Epoxy joint under uniaxial tension P=I.G are computed for protruding

length values ei
=f2=P.*(Q*-0,L,SL) as shown i. zig. 11. 1i is

seen that, after Q *=5L	 is reached both the maximum normal stress and

shear stress in the adhesive layer level off and remain more or less

same in magnitude. Ag^.in, as expected, the maximum normal stress is

larger than the maximum Shear stress.

5. CONCLUSIONS

A gener?1 method of stress analysis of adhesive joints of relatively

rigid adherends bonded through a flexible adhesive layer has been developed

and applied to several types of joints. Based on the numerical examples

and the discussion in preceeding section, one can conclude the following:

1. Banding of one or both adherends is a dominant factor on the

stress distribution in adhesive joints and it occurs even in

a stepped joint under external uniaxial tension load.

2. Due to the influence cf bending of adherends, the distribution

of the transverse normal stress a(x) as well as the shear stress

T(x) in adhesive layer is drastically changed and 
amax 

is in

general larger than Tmax and in some cases at least twice as

large. (This point should be taken into account in the design

of adhesive joints.)

3. Stress concentrations for a;x) and T(x) occur at both ends of

the joint within the so-called boundary layer region, with

higher stress concentrations taking place at less stiff	 ad-

herend side. Otherwise, with equal thiclne g s and identical

20



adherends both a(x) and T(x) are symmetric or skew-symmetric

as the case may be.

4. As the adhesive thickness t decreases the magnitudes of strrss

concentrations at the ends of the joint increase sharply and

finally as t+0 the stresses become singular i.e. t	 +^,
max

o
max _

*W . (''or identical adherends these limiting expressions

have the form 7 ma x -0(1/T	
ma x

) and (i	 o0(1/r) as t-0 and for
• 

unidentical adherends, similar forms can be expected).

S. The thickness shear deformations in adherends do not signif-

icantly influences T(x) and a(x) distribution in the adhesive

layer. For practical purposes thickness shear deformations in

adherends can be neglected unless the adherends are extermely

thick and deformable in shear.

6. The formulation of the problem and the method of solution as

presented in this work is very general and can easily be applied

to other types of joints such as "scarf joints", "double joints",

"cover plates", "joints with layered adherends", -tc. without

any difficulty. (In fact,these problems have already been

i	 solved by the present authors and will be presented in .a forthcoming

report as the continuation of this work.
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APPENDIX

For the sake of completeness and easy reference the field equations

of orthotropic plates which include the transverse shear deformatic.is  will

be reproduced in this section. Referring to Kalnins (161 (similar equa-

tions were also obtained by other well known authors), dne can write the

equilibrium equations of the orthotrapic plates in terms of the coordi-

nate s y stem given in Fig. 2 in the following form,

N	 + Ni	 i	 i
x,x	

xY.Y + px	 0

,i	 i	 i

Nxv,x NY,Y + pY = 0

Q 	 + Q 	 + p Z - 0	 (1 - 1,2)	 (A.la-f)
Y+Y

M 	 + M1	- Qi + m i - 0
x,x	 xy,y	 r.	 x

M i	+ M1	- Q  + m i 0
xy,x	 Y,Y	 Y	 Y

Ni . Ni
xy	 yx

where i-1 indicates upper plate (or adherend)

lower plate (or adherend) and p
i , pi, 

pi arex	 y	 z
inY are distributed moments both acting on the

crence plane) of the upper and lower plates.

and 1-2 corresponds to the

distributed loads and in  and
x

middle plane (or the ref-

The Hooke's Law or the stress-

strain relations for an orthotropic material,

i	 i	 i	 i	 i
o x 	K 11 ex + B 12 eY

CY

Y

 - 

B12 e + Bi2 e
x	

Y

Qi = 0
z

C
	 2 e

I
	 i	 i	 (i - 1,2)	 (A. 2a-f)
xy	 xy 012

aYz 
- 2 eyz 023
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Cy
	 2 e

	

i	 i	 i

	

xz	 xz G13

where

Bii a Ei/(1- 
Vi Vi

B 12• v 12E i M - 
Vi V21 )	

V21E2/0 - vi 2 ^2 1 ) (i - 1,2)

B'22• E1/0 - Vi V21)

and where EI E2 are the Young's Moduli of the material in the d

of x and y axes respectively. Similarly C i G i	 G i are the al
12	 23'	 13

with the subscripts corresponding to coordinate axes x-1, y-+2, z

V
12' Vi are the Poisson's ratios of the material. The expressii

i	 idisplacement u, v, w i are,

	

ui	 ui + z i (ii
x

	

v i	 vi + z i Ry	 (i - 1,2)

	

-i	 t
w - w

where u i , v i , w i are middle surface displacements along x, y, zi coordinate

lines and (ix and ay are angles of rotation of the normal to the middle

Surface. The strains e ij , in terms of middle surface strains E J ' Y xz'

YY Z . Y1. Y2, 6 1, b2

e  . F  + z  k

	

X	 x	 x

ey - Ey+ z i ky

•	 ei- 0
z

2e i Q (b i + z 1 bi ) + (A 2 + z  b2)	 (i - 1,2)
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i	 i i
^Y L2 Y Y z

Q 
i = i i ,x	

I.1 Yxz 

lei M Yi
xz	 xz

i	 i

2eYX	 Yvz

Where middle Surface strains Ej and other strain quantities y i ,
xz

Y ^ z , kX, k i , Yi, Y2, di, d2 are defined in terms of displacement quan-
Y

tities u i , v i , w i and rotations fix, fiy in the following way,

E x - 11 , x	 9 Ey us

i i ii
Y1 =

v,x
Y? 0V,

y
(1	 1,2)	 (A.6a-d)

k 
^1 k 	 a

6 

x x,x y y,y

1

^

2y,x x,y

Yi =
w, i + ^i

xz x x

Yy z . w,y + fig (1	 1,2)	 (A. 6e-R)

i
Yxy

i +
Y 1 	 Y2

i

The stress-resultant and strain relations can be expressed as,

Nx	
X11 E1 + x'12 E ► 	 Ny = 

X 12 ex + X22 E

	

y	 Y

Mx	
2= D11 kx+ 	 D1	

ki
' 	 Mi = Di ki + Di ki

	

Y	 Y	 12 x	 22 y

	

(1	 1,2)	 W a-d)

1	 1	 1 N i =Fi	 i +p i	 i = i 	 M	 =K	 d +K	 cS	 M 
i

xy	 11 Y 1	 12 Y2	 Nyx	 xY	 ll 1	 12 2	 yx
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Where extentional, bending, twisting and shearing rigidities are Riven as,

c  - f B  dzi c  • B  dzi c  - I B  dzi11	 11	 12	 12	 22	 22

•	 Di - f Bi (z i ) 2 dz i D	 - f B 1 ( z i ) 2 dz i Di s I B 	 (z i ) 2 dzi11	 11	 12	 12	 22	 22

.	 Fi - F 	 w f G1 dz i 	 (i - 1,2) (A.fJa-e)1]	 12	 12

K11 a K1 2 - f Gi l (z i ) 2 dzi

Li - f G1 3 dz i , LL - f G2 3 dzi

The integrals above are to be taken across the thickneNses of the plates.

1
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