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FEASIBILITY OF MOSSBAUER SURVEY METER FOR HYDROCARBON

AND MINERAL RESERVES

By

,fag J. Singh
Langley Research Center

INTRODUCTION

The current energ y and .Aterials shortages have sparked consideran!e

worldwide interest in prospecting for hydrocarbon and mineral deposits.

There are several geophysical prospecting methods currently in use.

Prominent amongst them are :hose based on anomalies in gravitational,

geomagnetic, or electromagnetic fields and the elastic pro;^erties of soils

and rocks associated with oil and mineral depnsits. Perhaps the highest

current field accuracy is achieved in gravity exploration where miAern gravity

meters can permit an accuracy up to 0.01 milligal (1 part in 108 ). Such an

accuracy, hm ,ever, is obtainable only with a complicated system of springs

and levers which require dimensional stability of a few atomic diamerers for

an extended period. (However, due to elastic creeps in springs, etc., these

instruments sometimes exhibit significant nonlinear drifts, corrections for

which cannoc. be made. The practical consequence of this is a reduction in

sensitivity to about 1, pert in 10 7 or more.) The reported accuracy of

gravity meters on airborne pads is of the order of 1 part in a million,

sufficient 1-o detect significant ore and hydrocarbon deposits deep underground.

Major drawbacks of current gravity survey techniques are their mechanical

complexity and tedious data interpretation. The extreme precision with

which Mossbauer spectral lines can be r„ensrre^^ p1(:sents a comparatively



simpler and lower cost alternative technique of measuring fine gravitational

anomalies associated with oil and mineral deposits. The basis of the proposed

technique, along with various physical requirements for the source and the

absorber crystals, is discussed in the following pages.

BRIEF REVIEW OF CURRENT GEOPHYSICAL PROSPECTING TECHNIQUES

Before proceeding with the Mossbauer gravitometer. a brief review ui

the presently utilized methods of prospecting and their limitations is

given. Current prospecting methods may be divided into two types:

1. Direct Methods: These methods include geologic and photogeologic

Rapping supplemented by drilling and sampling. If there is a surface evidence

of underground minerals - sucl, as soil staining, alteration, or structures in

deeply weathered areas - examination and sampling may be all that is necessary

to determine if further exploration is warranted. in the ansence of obvious

orgy- guides, pr r specting can still be hatted oa geological inference. for

example, ore minerals genetically associated with certain other minerals of no

economic importance can be detected by the presence of the latter. Similarly,

float materials (detached fragments of nineralized rock or vein material)

usually indicate a bedrock source at some higher point.

2. Indirect Methods: In these methods, geophysical, Reochenical, and

botanical evidence of subsurface deposits is usually employed. Of all the

indirect methods, those based on physical measurements are the most important.

The physical measur,^ments are irierpreted in terms of subsurface geological

conditions. A brief de-^_ription of commonly used geophysical methods

follows:
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a. Magnetic Methods: Both aerial and surface magnetic surveys are

used extensively to detect magnetic ore , and others which exist in conjunction

with magnetic ores. The accuracy of the precision Schmidt and compensation

type variometers is of the order of +5 gammas. The flux-crate and the proton

free precession magnetometets are usually capable of an accuracy of the order

of ±10 gammas ( ref. 1). These sensitivities are rather low. However, a

Josephson magnetic gradiometer may be able to detect much smaller magnetic

anomalies (i.e., about 3 x 10-12a«zs per (Hz)^ (ref. 2).
cm

b. Seismic Methods: For the last quarter of d century, the

exploration for oil and gas has depended on seismic methods. However, the

success ratio ui e)Lpioicatory wells	 on seismic sur y°vs is usually

between 15 and 20 percent. Even today, the seismic explorers depend on the

black magic of the so-called bright spots technique for oil/gas exploration.

e. Electrical Methods: Sulphur and graphite are usually detected

by self potential measurements. Water bearing Sormati 	 ydrocarbon

deposits, and conducting minerals usually require a de or low frequency ac

current source. Both types of measurements require contact with the earth,

which is not always possible.

d. Gravity Methods: These methods are based on the fact that the

densit y of hydrocarbon bearing rocks is different from the normal boil as well

as ore-carrying soil. These differences in subsurface soil density are

reflected in the values of local gravitational attraction. As indicated

earlier, the gravity meters are the most sensitive currently known means of

detecting subsoil deposits. Gravimeters capable of a resolution of the order

of 0.01 milligal are currently available (ref. 3).
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THE BASIS OF 'rHE PROPOSED HOSSBAUER CRAViTOMETER

The Mossbauer gravitometer is based on the ,principle of equivalence in

the general theory of relativity, according to which the energy of a source

photon of energy E will change by ( 2 gh) as it arrives at the absorber
c

station located at a vertical Jistance h above the source. (Any fluctuation

in g will be accompanied by a corresponding fluctuation in the photon energy

**
loss.) In the case of certain isomeric radionuclides - such &-, Rh	 , 

4 109 ,

and In	 - the change in photon energy per met 	 travel against the gravitat-

ional field may be large enough to take the photon off resonance at the

absorber atom (ref. 4). Application of a finely controlled modulation field,

superimposed on a do magnetic field, to the ahsorber atom can restore the

resonant absorption condition for certain hyperfine levels. The magnitude of

the modulating field needed for such a restoration will depend upon the local

gravitational field. Thus a measurement of the "resonance" magnetic field is

expected to give information about the gravitational potential distribution,

which trAy be used to locate oil/mineral deposits.

The basis of the proposed gravitometer is illustrated in figures 1 and 2.

A source photon of energy E, after traveling against a gravitational

attraction g through a distance h, will loose an energy AE:

fR+h

QE	 2	 (. MEdr
R	 r

E h

c
2 g

(1)
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The fluctuation in AE - 6E, resulting from a fluctuation Rg in g

may he calculated as follows:

(AE ± 6F.) - - Z (g t bR) h	 (2)
c

bE _ !A	 (3)
AE	

g

:. bE pE (^)

AE x 10-6 (for tA = 10-6

( 2g h ) x 10-6
c

E x 10 -22	 per meter at the surface of earth

- 4 x 10-1 eV/meter	 [for Rh l 	. keV) lt 	(4)

Now using the Heisenberg uncertainty principle (ref. 5), one ob^ains:

+
r [Rh

103* 
(2 

) I - 1.9 x 10
-19 

eV	 (5)

i.e.,	 r = 21 for Rh 103 (40 keV) per meter source-absorber 	 (6)

separation.

Thus a change in 40 keV photon energy resulting frcxn a 1 ppm fluctuation

in local g equals 21 times the natural width of the isomeric level in Rh 103

Such a change should be detectable by meane of magnetic modulation.

Figure 2 provides a conceptual explanation of how such a s y stem might •.:ork.

In this figure, it has been assumed that the photon energy depends on the gravi-

tational potential but the nxiclear levels, measured by an observer at rest with

t Rh	 (40 keV) has been used for illustrative purposes onlv.

1
e

=
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respect to the nucleus and si r uated in the same gravitational potential, remain

unchanged. This assumption is based on the weakness of the gravitational inter-

action as compared with the nuclear and electromagnetic forces.

REQUIREMENTS FOR A MUSSBAUER GRAVITOME'TLR

It is obvious from equations (4) and (S), in the previous section, that

the line width of the Mossbauer state must be less than the fluctuation in

the phocc.n energy resulting from 	 1 ppm change in the gravitational force if

the Mossbauer gravitometer is to detect a 1 ppm gravitational anomaly. For

the sake of clarity, the conditions governing the Mossbauer level widths will

he di.scussed in terms of a specific nuclide (Pd 103 - Rh103).

Coasider a crystal of very pule rhodium metal at very low temperature.

At absolute zero, the electronic and nuclear spins are all alined by their

magnetic interactions. If the crystal is perfect, the local magnetic fields

,en by the different nuclei will be the same magnitude and all nuclei will

be oriented the same way relative to the local field. The magnetic shift

of the resonance frequency will therefore be the same for all nuclei and

they will remain in perfect resonance with one another. ThE same applies to

local Zlectrical fields. However, an actual rhodium crystal at low (but

non-zero) temperature will have some randomly distributed impurities/

dislocations or misalined spins resulting in broadening of the line. These

and other sources of line broadening are 6escribed below.

1. Electron-nuclear Interaction: The main broadening effect due to

an impurity, dislocation, or misalined spin arises from the .magnetic dipoie-

dipole interaction between the electron and the nuclear spins. If n is

the atomic density in the crystal and f l is the fraction of sites occupied

by the defects or misalined spins, the level broadening are-n is given

by the following expression (refs. 6 and 7).

6



(7)

ue' ^'n
ire-n = 2 d3

"eun n f l

•	 In the case of Rh103, un = 0.0879 nuclear magneton and µ e = 2 Bohr magnetons.

Thus for 8r e _ n < r(natural) in Fib
10 3* 	 f l must be $ 10-10. An fl value

of 10-10 for misalined spins corresponds to an electron spin system

temperature of = 10
-2 

K° because the electronic splua are oriented chiefly

by their near neighbor dipoler interactions (ref. 7).

2. Internuclear Interactions: Broadening due to impurities and wrongly

oriented nuclei must also be considered. It must also be remembered that

Rhl 
3 

(40 keV) itself is an irr,,urity in the Rh 103 crystal. For the level

broadening due to such impurities not to exceed the natural width, th,-

impurity fraction f2 is estimated to be < 10 -7 . As the limit on the

wrong nuclear spin orientations, an f2 value of 10 -7 corresponds to a

nuclear spin temperature of -10 -3 K° (refs. 7 and 8).

3. EFG - nuclear quadrupole Interactions: The source/absorber crystals

should be sufficiently free from random charged impurities and mechanical strains

103
to produce an electric field gradient (EFG) at a Rh 	 nucleus of no larger than

10 volts/m210 	 in order to keep line broadening dEQ within acceptable limits.

This can be seen from the following calculation.

QEQ - 4 (Qe ^2`^/^z2)

2.5 x 10 -19 eV	 for Q - 10-28 m2 and ^2W n2 = 1010 v
olts) 

(a)

m
2

An EFG value of < 10 10 volts/m2 can be met by an impurity level < 10 -10 required

to keep down electron-nuclear broadening.

7



4. Miscellaneous Sources of Line Broadening: Pd 103 atoms will act as

random magnetic impurities in the source crystal, leading to the source line

broadening. Also the magnetic interaction between the ground state and the

Mossbauer state will lead to level broadening :n both the source and the

absorber atoms. These sources of line broadening can, howevar, be eliminated

by imposing a do magnetic field on the source and absorber crystals. Such a

spin polarizing field will also provide the added aevantage of simplifying

the Mossbauer spectrum as discussed in Appendix 1.

Of the various - urces of line broadening discussed above, it appears

that the purity/perfection requirement will be the most difficult to meet.

Besides broadening the level widths by me4hanisms	 3, defects/impurities

can also increasa line widths via inhomogeneoas chemical shift of the

Mossbauer line. However, it is possible to use a ;riPcially selected radio

frequency field to cancel out such inhomogeneous snift (ief. 9).

In addition to these basic sou rces of line broadening, the source-

absorber vertical separation must nL change by mire than 1 ppm if the

magnetometer is to maintain a sensitivity of 
g
" 3 10 -6 . (See equation (4).)

All these factors affecting line width are summarized in figure 3.

PROPOSED DESIGN OF A MOSSBAU'.R GRAV'ITOMETER

Since Rh 
103* 

(40 keV) isomer state has 1,een used as a model for

calculations so far, the following design will also be based on this state.

A typical source-absorber arrangement capable of a resolution — I ppm is

illustrated in figure 4. Such a system would be based on the Pdl 3 _ Rh103

transition. The Rh 
103* 

(4 KeV) transition to the ground state is strongly

8



converted, giving rise to K electrons and the accompanying X-rays which

can serve as the basis for resonance fluorescence detection. Figure 5 shows

further details of Rhl 
3 

(40 keV) decay scheme. For an annular detector

subtending 30-40 percent of the total solid angle at the absorber, one

expects a counting rate of the order of 60 ism for a Lh uncertainty - 1 ppm

(for a Nd 
103 

source strength	
t

1.5 curies). The reasors for the choice of

(Pd 103 _ Rh103) transition as the basis for a typical Aossbeuer gravitometer design

are listed below.

1. Pd 103 source of required strength can be easily produced by

103	 103	 103	 103	 103
Rh	 (p, n) Pd	 or Rh	 (d, 2n) Pd	 reactions. Furthermore, Pd

can be rather easily separated from Rh 
103 

and other reaction products by an

ion-exchange process. (See Appendix 2.)

2. Low coergy of X/v-rays and the electrons involved in Pd 103 _ 
Rh 103

decay e.tsure freedom from radiation damage to the crystal lattice.

3. Low photon energy *40 ke y') and high Debye temperature in Rh 1
03

(512 t 17 K°) ensure a large i,!coilless fraction (f _ 0.7) in Rh1 3

Rh 
103 (g.s.) transition.

4. Prospects for Rowing very pure (impurity/defect concentration

-10	 22	 12	 )03	 103
10	 (1 x 10 ) ^ 7 x 10 /cc) single crystals in Rh"

	
and Pd	 are

reasonably high. (This conclusicu is based on comparison with the silicon

crystal purity problem (ref, 10).)

A typical experimental configuration for a Mossbauer surve y meter based

on excitation of long-lived nuclear states is illustrated in figure 5.

t This is true for isotropic distribution of the 40 keV radiation at tho source.
For a polarized source, with sharply fo •-ward peaked distr bution, cons;derably
higher counting rates may be expected.

9



One aspect of equations (1) and (4) deserves a few words of expl4v14.ion.

As long as the source and the absorber crystals experience identical accelerations,

the resrnance fluoreSLence conditions at the absorber will be affected only by

the gravitational potential difference We gh) between them. However, any

relative motion between them will affect the photon energy at the absorber. it

is therefore necessary that all extraneous forces that can induce relative: motion

between the source-absorber crystals be eliminated/minimized or otherwise allowed

for in the subsequent data analysis. in the presently envisioned configuration,

the source-absorber crystals will be mounted or, a rigid rod maintained at a

constant temperature (see fig. b) to minimize their relative motion and the entire

ass , L. will be mounted on an inertial platform to maintain parallelism with

the local normal to keep constant vertical separation.

CONCLUDING REMARKS

A feasibility study of developing a Mossbauer survey meter based on

resonant excitation of isomeric states has been conducted. Detail I calculations

have been made for specific transition (Rh 10	 Rh 103 and critical require-

ments, that must be met for a succesful development, identified. The purity/

perfection of the source/absorber crystals has been found to be the most

important factor governing rla level widths. Prospects for growing single

crystals of required perfection/purity appear to he reasonably high on the

basis of similar experience with silicon crystals. The consideration of dikute
r

magnetic impurities in the source/absorber crystal dictated the need for a

polarizing magnetic field. Such a hyperfine field will also have the added

advantage of simplifying the Mossbauer spectrl im (i.e., four lines instead of

fourteen expected for a 2 I11	 2 transition). In view of the positive
10

r
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APPENDIX 1

THE PROBABILITY OF MULTIPOLE EK'.SSION AND ABSORPTION

In the wave zone of the source radiation, the electromagnetic energy

incident per second or a surface element R 2 d n around the direction

•	 (9,cp) is given by the following expression:

	

U (n) d n- ISI R 2 d n
	 (1)

where S is the Poynting vector. The energy i.n s. pure electric multipole

radiation field of the order f, m with 'he amplitude a r, (t, m), emitted

per second into a solid angle element d n is given by U E (r2, m; n) d 0,

wh:t r e

2
O F (I, m; n)	 c 2 ZIm l9, to) I a E (1, m)

2nk

	 (2)

whf.re k = wave number of the emitte,' radiation and the angular distribution

f.inction ZI m (0, cp) is given by:
,

Z
+

Zl'm (9, ^P)	
1
Z 1 

_ m (m	 1)
 [	 B (2 + 0 1 I YI,M+1 (A ► co)I

2
1	 _m (m- 1)I

+ 2 [ 1	 I (1 + 1) J I Yf,m-1 (9, 'a)

By analogy, the electric multipole radiation

J 1 -• J2 may be written as follows:

m2 .12
+I ( I + 1) Yrt, (9,^

19S. )

J 1	JZ

112 (9, 	 1	 Pm1IC(J11
m1 =-J 1 m2=-.12



where J 1 . ground state spin

.J2 = excited state spin

L	 - multipolarity of the transition

Pm l = relative probability of populating the substate ml

For the special case of Rh 103 (2+ 
b 
111>

 - ) transition, the following

values of the angular distribution function ZI,m (A.;;) are obtained:

Z3,0 ( A, CO)	
1 

I Y3,-1 (A, T)I
2
 + 2 

1 Y3,
+1 ( A , T)l2	 (4)

Z3 ^ 1 (A, ^^ = 2 IY3,0 (A, 
to) 

12 + 24I Y3,1 (A. :D)I
2
 + 12 ( Y3,2 (A, 'D)I 2 	(5)

Z3,2 (A, o) = ^ Y
3 ,1 (A, (D)l 2 + 3 Y 3 ^ 2 (A, T)I 2 + 4 I Y3,3 (A, U)l

2
	(6)

Z3,3 (6, (D) - 4 Y 3 ^ 2 (A, CP)I 2 + { Y 3 ^ 3 (A, Q) 
12
	 (7)

Substituting the values of appropriate sphe • s_cAl hArnonics, one nhtsirs :.hp

following values of the angular distributioi, functions.

IF ,

Z1	 m (A, e = 0 A _ r/2

Z3,3	 (A, CD) 0 105/256 rr

Z3,2	 (A,	 CD) 0 70/256 r

Z3,1	 (A, ta) 224/256 rr 7/256 r

Z3,0	 (A, CD) 0 84/256 n

It is obvious that along A = 0 direction, only the Z 3 1 (8, m) function

has a non-zero value. This implies that only J+-
3	 ^M= ±1 , 1 + 1) and

2	 2	 2	 2

14



+Z

+ 5/2
+ 3/2
t 1^
- viz

-5/2_ 
7/2

M	 •`I

_IY2

+1/2

J2 - ;2

J. = Y2

1+ 1	 QM ,	 i -	 1

( 2 ! 2 -- -^ 2	 2) 
transitions will be observed along 9 = 0 direction.

Thus the Mossbauer spectrum will be consiaerably simplified if the source/

absorber nuclei are polarized by a do magnetic field parallel to the source-

absorber line. The IAM; - 1 photons arriving at the absorber crystal will

then excite only the ± 3/2 and + 1/2 sub-levels in the 7/2 + excited state,

resulting in only four lines instead of fourteen lines expected for an

	

E	 _

unpolarized 7/2+
	 I11^ 

112 transition. This is illustrated in the figure

below

MJ

Hyperfine spectrum for polarized source/absorber nuclei

in Rh103

15
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APPKNDIX 2

PREPARATION OF 1'd 
103 

RADIOACTIVE SOURCE

There are a number of nuclear reactions that can be used to produce Pd 103

radionuclides. Some of them are summarized .n the following table.

	

No.	 I	 Nuclear Reaction	 I	 Cross Section

	1
	

Rh 103 (p, n) Pd 103
	

(a) (700 ! 40) mb at E 
10 MeV (ref. 1)

(b) 1100 mb at F  = 12 MeV I
(ref. 2)

(a) (58 ! 3) mn at Ed

	

14.6 MeV	 j

(b) (30 i 1.5) mh at t d =
20 MeV (ref. 3)

1040 mb at En	 13.1 MeV

1226 mh at En = 14.1 MFV	 I

1334 mb at E	 15.1 MeV

(ref. 4)	 n

2
	

Rh 
103 

(d, 2n) I'd 103

3
	 Pd 104 (n, 2n) I'd 103

Rh	 , 
which is 100 percent abundant, is commercially available to the

99.999 percent purity level. A tvpical source preparation calculat or.

based on Rh 
103 

(p, n) Pd 
103 

reaction is given below:

Source reaction: Rh103 
(p, n) 

Pd 
103

o(p, n) at E  - 12 MeV: 1.1 barns

Assume a 1 gram Rh target.

The bombardment time, using a beam of 100 microamperes, needed to produce

1 curie of Pd 1-03 source is given by:

)6



1

8 x 10 16	
secs : 5^ hours

11.1 x 10 -24 x 6 x 1021 x 6.25 x 1014

One rust of course make sure that the target thickness is less than the

•	 range ^f 12 MeV protons in rhodium.

The preparation and isolation of carrier free Pd 
103 

produced by

Rh
103 

(d. 2n) Pd 
103 

reaction 'ias been described by several workers (refs.

5, 6, and 1). The procedure used by Gile, et al, (ref. 5) in :solacing

carrier free Pd 
103 

from the target element and 41-day Ru
103 

reaction, is

described below. After bombardment for a predetermined time Oith 20 MeV

deutrons, the 1 gran pure rhodium target was fused with excess potassium

acid sulphate and the resulting mass leached with water. Insoluble impurities

wereseparated by cent rifugat !on and the decantate was made h N in h-,drochloric

acid by treatment with 12 N hydrochloric acid and sodium chloride and then

5 milligrams of seleneous acid were added to the solution. The resulting

solution was treated with excess sulphur dioxide which resulted in

precipitation of elemental selenium which carried 99+ percent of Pd 103

from the solution. The precipitate was washed with water, dissolved, and

reprecipitated. The selenium precipitate was dissolved in concentrated

sulphuric acid, transferred to an all-glass distilling flask, 9 N

hvdrobtomic acid added and the mixture distilled at 200°C. The residua

contained all of the Pd 
103 

activity. All these steps can be completed

within a period of 1-2 hours. For the extreme purity required for the (Pd 03 -

Rh 
103) 

gravitometer, the source thus produced may have to be subjected to a

mass spectrometric separation and single crystal growth.
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