General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

D
L3

@
™ - :
: =]
!
4
(VASA-CF=142960) GREOPHYSICAL DATA BAST §75-25368
(Smithsonian Astrophysical Observatory)
98 p HC $4.75 CSCL 08FE
At 13, ! Unclas
. G3/46 260401
o / «

¥
~
~
P N
35 {
: s =
W
.
A
s
N
]
-
W, ol
2K,
- h %
«

3.1

V 4. l

A4

: ‘5‘6‘

6l

© 6.12 GDRDISK —GDB Return Disk File (R)

- TABLE OF CONTENTS

1ii

.15

8T
AL

43 -

ABSTRAOT 4 &5 » 9 l. . ¢+ 8 . - ll L] " L3 - A. . ¢ & & a8 ¥ » LI L A I I I) .‘r
MTRODUCTION .llI"tI.ﬂ...OlOl"il &« & ¢ &4 4 4 5w e Iw L AR l
OVERVIEWOI‘THEGDB EE TR PP . 3
2.1 Design CONSIAETATIONS s + « v v s v o s s senos o amon s Ve 3
.: 2 2 GomponeﬂtS. 6 s s e a s a'w a8 e 2e e 8 a8 0w * e 4. + s a e aw o . 4 -
.2 3 Capabﬂmes and Lln:utattons vaees bad s e e PR . 6
I'ILBSTRUGTURE..._.......’ e Ceiaciiee. D
The :Datﬂ.. a4 oeo p 'nnnnont -------- . e l.. C I I I I R) 49
3 2 The Catalogs. -_. L '... " 28 o .V. =P &4 = .l .l - - * B & & & - L] ll
: : THE G\'DB SYSTEM- o -. -‘_-: . LR B - ?, LR I I B LRI “ 4. 15
User :E"[mctions ‘o l.._l-.. -.lc .‘V. L . t‘“.. ")
4,2 Data Retrieval. . e ceoverivneaanns R RS A 7.
: ;4-3 Data. Fil(:‘. Creaﬁon R R N A A I) s a0 »es v LIRS LR N » 18
PrGhQCﬁmNIechamsms ie e @ s e e e n e A . “« . Ho“‘-"- - -
USERS' GUIDE TO THE GDB o ¢+ v s e v vuss s sosoasssssins Loe1
E 5.1 - Intl‘OdU.Cﬁon-. ‘. w l:..:. T P s e e P PR - -‘ " 21 ;
5:2‘Readbo.o-ooo'.-.....-_-_- 4 9 s A a A8 s st e e P Re e .- e 2,1
5.3 - erte - 'w & & L] ' LR ..I ' 4 & & 2 o= s & 4 % B & 8 w0 - LI 3 LI]
5,4 Efficient Use of Read/Wmte P T T p 25
- B.5 . Creation of a Data Set: T dae T 1
Maintenance ofa Data Base . -.;-, ie e e ei e i e P s ee s s ‘93
SI]BROUTNE DOCUMENTATION .= _‘o LI R R Tea . . s e & 7. 31 .
TL.G IndeXArra._Y LRI] o_; . b‘o--a . &2 -; ----- o . -
6.2 F]le IndeXReCOI'd e e ® & -.v * 4 & a3 & 8 ¥ LR NI o »om 4 a"s & 32
6.3 . GDOPEN-— GDBOEenCatalogs(H)..;...'.... s e e seass 33
6.4 GDADF — GDB ATach Data F11e (R)« + v e« « v s ivv in sainss v B4
. .6.5 GDREAD— GI)B Read Data Record (R) B T ve. " 35
6.6 GDWRIT — GDB Wrife Data Record . c e e a e e veh
6.7 GDREWR — GDB Rewrlte Data Record ceeries 39
6 8 o) G:DRD}B. G‘DB Read Da:ta- I'fldeX RGGOI'd (R) ------- . 0w u o o - ::_-:'_
6.9 GDRFIR — GDB Read File Index Record (R). B et 42
" 6.10 GDPCAT —GDB Print: t Catalogs ®) - T P SR
’ ,,60 ll GDRCAT G‘DB J.‘&ulease CﬂtﬂlOgS {R) LI D) s - * o2 e e g . 4:4;
. 45

24 -

6.13
6. 14
6.15

6.16

6. 17
6. 18
6.19
6.20
6.21
6.22
6.23
6. 24
6.25
‘e 6026
6. 27

6.28 GDCREAT ~ GDB Create Initial Data and File Catalog (R, E
M c) ¢+ & 4 ¢ 5 # A 4 2 & & ¥ * # ¥ & ® & a9 P e & s & * 4 B & » 8 2w * = ¢ 49
6.29 -i-.’mIT.'.!.l..,..-|.u....llll‘. lllllll @ 2 & 4 & 8 s W
6.30 IJ.A-TLO}TI " 9 @ 4 @ ¢ @ ¢ 5 & P 2 BB BT VS S * & & 5 3 5 & 0 & B S 8 2 F e
6. 31 mIT. * @& & 9 & 8 ¥ W 3 » 4 9 ¥ 1 3 » & 4 4 & ¥ 3 F 8 2 8+ o+ 00 & & 4 & & 3 B B & B
6. 32 NETBII' « B o® ¥ & 5 § 4 § € 3 & $ 4 8 A & ° A *® ® %W % & & B & 2 & 2 & » 2 8 ¢ 2@
6.33 ErrorCodes . e v iovnesnas s e Cee
7 SAMPLE USER PROGRA-MS a5 8 = @ * b & & ¢ 4+ B F 3 & B B FoREEFosa e

TABLE OF CONTENTS (Cont.}

GDCDF — GDB Create Data File R,E). . oo . e v e v vt e
GDEUP ~ GDB End Update (B,E)e v v v v vn..
GDAPT — GDB Add Pool Tape (R, E) . s e e ce e
GDDEACT — GDB Deactivate Pool Ta.pe (R E) cses s saseae
GDWDIR — GDB Write Data Index Record (B,E). .« .. v v .o
GDAFIR — GDB Add File Index Record (R,E). cr e s
GDPURDS — GDBPurgeDataSet(R,E M) covenennncvanns
GDRDT — GDB)B Release Data Tape (R, E,M). e
GDRPF — GDB Release Permanent I‘zle BE,M:coreerneas
GDPDIR — GDB Purge Data Tndex Reeord (R, E M) e
GDPFIR — GDB Purge File Index Record (R, E, M) e
GDRWDI — GDB Rewrife Data Index Record (R,E,M)
GDRWFI — GDB Rewrite File Index Record (R, E M). seseeace
GDSAVE — GDBSaveaDataTape(R,EM)....,..........
GDRELOD — GDBReloadCatalog ByE,C) cvvencenscencos

APPENDIX A: STRUCTURE DIAGRAMS OF THE GDB SYSTEJ

ORGANIZ-ATION.l....0...'ll.l.‘.‘.'..."‘....

iv

Page

46
47
438
49
50
51
52
53
54
55
56
57
58
59
60

62
63
64
65
66
67

69

A-1

""" - ABSTRACT

This report describes a general data-~-management system that provides a random-
access capability for large amounts of data. The system operates on a CDC 6400 com~
puter using a combination of magnetic tape and disk storage. A Fortran subroutine
package is provided to simplify the maintenance and use of the data.

GEOPHYSICAL DATA BASE

M. R, Williamson and L. R, Kirschner

1. INTRODUCTION

Our long-range objective is to design and construct a computerized geophysical
data base (GDB) that will contain all available and appropriate data for the earth-
dynamics areas of the Earth and Ocean Physics Applications Program. The first fask
was to develop a data file structure and a system for managing the data. This task is
complete, and the results are described in this report. The second fask, to collect
and compile the data for the GDB, has been started, with a few data now available.

The GDB was deasigned to have maximum flexibility compatible with our immediate
recuirements., What has evolved is a general data-management system appropriate
to a wide range of needs, The GDB provides efficient random access of many (up to
digk capacity), !arge (up to 1.5X 106 characters) subsets of a large (up to the number
of magnetic tapes available) conglomerate of data, The system also offers file-
management capabilities, including protection of the data. The GDB does not assume
particular formats for data records. It could easily be a basic tool for designing a
group of data sets with a more complex and specialized organization,

The GDB operates on the CDC 6400 computer, An interactive capability can be
provided by the Intercom system. The GDB should be easily transferable to other
modern computing systems with tape and digk facilities and a Foriran compiler. The

This work was supported in part by grant NGR 09-015-002 from the National Aeronautics
and Space Administration.

GDB subroutines are written in Fortran except for some basic input/output routines
that are coded in Compass. Those routines would need to be reprogramed for use on

another computer.

This report serves as both a description of the GDB and a users' manual. Section
2 outlines the general capabilities and limitations of the GDB, and Sections 3 and 4
detail the data file structure and the system. Sections 5 through 7 constitute a users’
manual. Structure diagrams of the GDB system organization are given in Appendix A.

2. OVERVIEW OF THE GDB

2.1 Desien Considerations

A large number of data relating to the earth's lithosphere are available in com-
puter-accessibie form, and increasing amounts are expected to result from {ufure
research, Some typical current data include surface gravity, heat flow, topographic
height, crustal thickness, seismic-velocity profiles, density variations, earthquake
history, and plate motion. These data are mostly numerieal, but future data may be
of a descriptive type and may include textual information. In general, the data are
complex enough to reguire tabular compilations.

To estimate the amount of data involved, we must determine the desired geo-
graphical resolution. The finest resolution to be cataloged r~ust be small enough to
distinguish geological detail but large enough to give a manageable number of data
points., For current scientific applications, areas of 100 km X 100 km, roughly
1° X 1°, seem to satisfy these conflicting criteria best. This means approximately
4 X 104 data points. In some cases, the data will have sparse coverage over the earth's
surface, while in others, the amount of data will vary significantly from point to point.
Assuming an average of 80 characters per data point for each of 30 to 3000 types of
data, the estimated amount of data involved is 108 to 1010 characters, a number that
is consistent with Smithsonian Astrophysical Observatory's estimate of the amount of

existing earth-physi~s data. *

Since the data will be used in many ways for several related projects, a random-

access capability is needed. The critical requirement, then, is for random access of

108 to 1010 characters. This requivement dictates a dual system that uses magnetic

tapes for permanent storage and disk files for temporary storage.

—m
Earth-Physics Data-Management Study, Final Report, Grant NGR 09-015-107,
Smithsonian A strophysical Observatory, Cambridge, Massachusetts, January 1971,
62 pp.

In addifion, the GDB has been designed to fulfill other requirements. Owing to
the large amount of data and large numbers of potential users, automatic file manago-
ment is indicated — to maintain records of where and how the data are stored, to pro-
vide for protection and backup of data files, to facilitate changes or additions to the
data, and to keep users informed of such changes. Because the full scope of future
use camnot be predicted, it is important that there be few limitations on the structure
and format of the data. The possibility of remote users suggests that the system should
be made available through an interactive as well as a batch system. Finally, as is true
for any system that will be in use for many years, it is desirable that the system be
machine transferrable.

2.2 Components

Figure 1 is a schematic diagram of the GDB, which consists of a set of computer
files and a computer system. The files are organized into a data base containing
catalogs, permanent data files on disk and on magnetic tape, pool tapes, and backup
tapes. The GDB system is a Fortran subroutine package. The user writes a miain
program, calling the GDB subroutines to manipulate the files.

Permanent GDB files are maintained as a combination of magnetic tapes and disk
storage. Magnetic tapes constitute the principai means of data storage because of the
large amount of data involved, buf permanent direct-access data files are allowed.
Two permanent disk files, the data catalog and the file catalog, contain the informa-
tion necessary to access the data. The former consists of a description of each data
set and includes the information used by the GDB to read the dati and general informa-
tion of interest to users. The file catalog comprises a description of each storage
unit in the GDB, i.e., each tape or permanent disk file, and containg the necessary
information for the GDB to manage data storage.

The data base looks much like an input/output device with subroutines to open and
close files, read and write records, etc. Routines to create and maintain the data~
base catalogs are also included. Thus, a private data base can be created by 2 user.
Moreover, it is possible to access more than one data base from one main program.

USER

MAIN

PROGRAM |

W

GDB SYSTEM

GDB FILES

FORTRAN
SUBROUTINE
PACKAGE

READ CATALOG

ATTACH FILE
READ RECORD

WRITE RECORD
CREATE FILE

PURGE FILE

DATA CATALOG

FILE CATALOG

)

PERMANENT

DIRECT-ACCESS
DATA FILES

MAGNETIC
- TAPE
LIBRARY

TEMPORARY
DIRECT-ACCESS
OATA FILES

Tigure 1. GDB components.

Data are not accessed directly from the magnetic tapes. Intermediate, temporary
disk files are created so that the data can be accessed randomly. The GDB data files
are written as one continuous string of computer words, making it possible to read or
write the file with a buffer of arbitrary size. The GDB maintains an existence-bit
string for each data set, which is used to locate individual records in the data file.
Indirect addressing is used for data files with variable-length records. These points
are discussed in detail in Section 3, 1.

2.3 Capabilities and Limitations

The data in the GDB have two properties that are iwnportant to the practicality of
the system. TFirst, they are divided by type into subsets; in this report, these are
called data sets. It is assumed that only a limited number of data sets will be used
at the same time, the limit depending on the amount of temporary disk storage avaii-
able on the computer. Second, the data sets are subdivided into ordered units of
information, which we call wnit records. The GDB allows random access of unit
records, but there is a limit, depending on many factors, to the extent of the random
access, and therefore the ovder of the unit recerds may be important.

Within that ffamework, the GDB allows users great flexibility in organizing and
using these data sets. A data set may have fixed- or variable-length unit records; the
size and number of unit records is arbitrary as long as the entire amount of data does
not exceed one magnetic tape. Tapes are written without logical-record gaps, thus
limiting each tape fileto ! 53X 10% characters. The number of data sets used simul-
taneously is arbitrary as long as the temporary disk space available is not exceeded.
Since records are located by means of an existence-bit string, computer storage must
allow for the bit strings when a file is being read or written., One bit for each possible
record in the data set is required for every file being used. Buffers must also be
supplied for all files being read or written.

The system. is written so that the: major elements of computer storage are provided
by the user, and therefcre the user retains control of the tradeoff between increased
computer storage requirements and increased computer operating time. In any case,
using the GDB should not significantly increase the central processor time needed to
process data, buf the amount of peripheral processor time can vary greatly.

The GDB provides automatic file management. The catalogs eontain a complete
description of the status of the data base, so users need not concern themselves with
where or how the data are stored. For example, to read a data set, a user calls
ane subroutine to atfach the catalogs, another to "attach'" the data set identified by
a data name and sequence number, and finally a third to retfurn the desired unit record,
Creating a data sot is a similarly simple process. The GDB keeps track of all tapes
autornatically and provides optional backup for data sets or for the catalogs, In addi-
tion, the data catalog contains a variable-length comment section for each data set so
that the data base can provide users with all the information necessary to interpret
the data contained in it.

The GDB provides protection for files. All tapes in the GDB have a tape label as
the first record, which musi correspond to the tape description in the file catalog
before it can be read or written by the GDB subroutines. In addition, there is a pass-
word system, which corresponds roughly to the permanent-file password system of
the CDC 6400. The five protection passwords follow:

Read — read any data set or catalog.

Extend — create new data sets; add or deactivate pool tapes.
Modify — purge any data set or catalog entry.

Control — purge catalog.

Turnkey — any operation.

These protection systems can be augmented by appropriate use of GDB backup proce-
dures, which are provided for both data sets and catalogs.

The efficiency of the GDB depends largely on the user. For example, the user
has control of buffer sizes; in some cases, the amount of peripheral processor time
necessary to read a file will be proportional to the size of the buffer, Also, the order
of the records in the file may be critical since a disk read or write is required wienever
the desired record is not already in the buffer. A minimum of 7. 8 min is necessary to
read or write, from the disk, the largest data file allowed in the GDB (1.5 X 10% charac-
ters). On the other hand, a disk access may require 0. 1 sec of peripheral processor
time, and thus if a disk access were required to read or write each of 4 X 10 records,
1 hour of peripheral processor time would be needed. The tape-copy routines are as

efficient as the operating system allows, Although the peripheral processor time varies
with the system environment, a full tape can be copied in as little as 5 min.

The GDB operates on the CDC 6400 computer. An interactive capability can be
provided by the Infercom system. The GDB should be easily transferable to other
modern computing systems with tape and disk facilities and a Fortran compiler. The
GDB subroutines are writien in Fortran except for some basie inpuf/ouiput routines
that are coded in Compass. Those routines would need to be reprogramed for use on
another computer.

3. FILE STRUCTURE

3.1 The Data

The data in the GDE are divided by type into data sets, and each set is further
aivided info units of information called unit records. (In this context, unit record
denotes a logical division of the data. It does not mean a collection of computer words
followed by an end-of-record mark,) For example, if the dafa set is a compilation of
1° X 1° mean gravity data, each unit record might contain information such as the
anomaly, the associated error, and a description of the source of the data.

A daia set is identified by a seven-character data name and a sequence number,
1 to 225, Each data set is listed as one entry in the data catalog and consists of one
or more tape file (or permanent disk file) copies of the data. Each copy has a unioue
copy number 1 to 225 and is 1'sted as one entry in the file catalog. A tape file con-
sists of a tape fabel record followed by the data iile, while a permanent disk data file
consists of only the data file.

Each data file contains 1) a data index section, which is a copy of the data index
record in the data catalog; 2) an address section, which is needed only it unit records
have variable lengths; and 3) a data section, which contains the unit records. Figure 2

is a diagram of a data file.

Each unit record in the GDB contains the data associated with a particular area
on the earth's surface, the earth being divided into unit areas ordered in some
way. For data files with fixed-length unit records, the order of the records in the
data section corresponds to the order of the unit areas. Missing data do not require
a special code., Each data set has associated with it a string of bits, called the
existence-bit string, which contains one bit for each unit area; the bit is on (or off)
if there is (or is not) a unit record for that area. The GDB locates a unit record in a
data file by counting on~bits in the existence-bit string. For variable-length records,
an indirect addressing system uses the address section of the data file. The address

A ssume that the bit string 10111100...1 (N bits; M on-bits) is associated with areas

815 89y Bgy seey A Then the data file would appear as follows, with fixed-length unit
records:

Data Index 3 Data index section
Recoxd 1:
data associated with 8y
Record 2: *
data associated with a3
Record 3: M unit records
data associated with a 4
Record M:
data associated with an End of record

The data file would appear as follows, with variable-length unit records:

Data Index J Data index section

Address and lengih of record 1

Address and length of record 2

> Address section: M words

fomrsorrm

Address and length of record M J

Record 1:
data associated with a;

Record 2:
data associated with a,*

3 ? Data section: M unit records
in any order

Record M:
data associated with an End of record

ES
Note: There are no data associated with Age

Figure 2. Data file.

10

section has one packed word for each unit record. This word contains the following
pointers to the unit record in the data section:

* :
1) The number of the physical record unit (PRU) in the data file that contains the
first word of the unit record,

2) The position in that PRU of the first word of the unit record.
3} The length of the unit record in words.

The address of the variable-length record is located by countiing the existence bits.
The variable-length records in the data section are in the order in which they were
written by the program that created the file.

The GDB uses pool tapes, data tapes, and catalog backup tapes. The first record
of all tapes is the tape label record, which is a copy of the file index record in the file
catalog: For pool tapes, the tape label record is followed by an end-of-file; for data
tapes, it is followed by the data file and an end-of-file; and for tapes that contain a
backup copy of the data or file catalog, it is followed by a copy of the appropriate direct-
access file.

3.2 The Catalogs

The data and file catalogs utilized by the GDB to manage the data provide a complete
description of the status of the GDB. Each data set is described by one entry in the data
catalog, and each tape and permanent disk file is described by one entry in the file catalog.

The data catalog is » permanent direct-access file consisting of variable-length
records, each one of which is called a data index record. One data index record exists

for each data set (data name, sequence numbex) in the GDB, with the following format:

1) Length of index record in words. Integer.

2) Data name. Seven characters.

3) Seguence number. Integer 1-255.

4) Creation date. Hollerith, as returned by the function ITIMER(1).
5) Maximum unit record length in words. Integer.

6) Fixed-length (= 0) or variable-length (= 1) unit records.

T
The physical record unit of a device is the basic information unit for reading or
writing. For the disk, it is 64 words; for magnetic tapes in binary mode, the PRU
size is 512 words.

11

7)

8)

9}
10)
11)
12)
13)
n+1)

Number of unit records. Inieger,

Number of disk PRUs in the index section. Integer.

Number of PRUs in the address section. Integer.

Number of PRUs in the data section. Integer.

Number of existence bits. Integer.

Length of comments in words. Integer.

..« (0) existence-hit array.

v o () comments including a description of the data, format, and sources.

The data index record is also described in Section 6. 1. The first record in the data

catalog contains the following:

1) Length= 12.
2) Data name = 7TRDATACAT.
3) Sei:luence number of the data catalog.
4) Creation date of the data catalog.
) Maximum length of the data index records.
6) 1.
7) Number of data index records (including the special data-catalog index record)
that are in the data catalog.
8) 0.
9) 0.
10) 0.
11) 0
12) 9.

The data catalog is soried by data name and sedquence numbher,

The file catalog is a permanent direct-access file consisting of fixed-length records,
each one of which is called a file index record. There is one file index record for each

tape and permanent direct-access file associated with the GDB. Each file index record

is eight words long and has the following format:

1)
2)
3)
4)
5)
6)

File device, tape (=0) or permanent divect access (=1).

Tile identification (reel number or permanent file name). 10 characters.
Data name. Seven characters.

Bequence number. Integar 1-—2556.

Copy number. Integer 1—255,

Creation date. Hollerith, as returned by the function TTIMER(1).

12

7) Tape dehsii:y; Iﬁtéger.
8) Length of tape in feet. Infeger.

The daiz name and sequence munber of a data set are 2s given in the data catalog.
For baclkup copies of either the data or the file catalog, the data name is TRDATACAT
or TRFILECAT, while for pool tapes, the name is specified by the owner of the tape.

For tapes, the file identification is the tape number (the visual reel number}, i.e., the
number printed on the tape. TFor permanent direct-access files, the file identification
is the permanent-file name (=10 characters). The file index record is also described

in Section 6.2, The first record in the file catalog is the special file catalog index

record,

1)
2)
3)
4)
5)
6)
7

8)

with the following format:

.ll

Permaneni-file name of file catalog.

TRITILECAT.

Sequence number of the file catalog.

Copy number of the file catalog.

Creation date of the file catalog.

Nuniber of file index records in the file catalog, including the special file~cata-
log index record,

0.

Figure 3 is a diagram of the file organization.

13

Tape Files

Backup for Data Catalog

Direct-Access Tiles

Data Catalog

Tape label record

Special data index record

Data c.atalog

Direct-access index

Data index recoxds:
one record for
each data set

Backup for File Catalog

Tile Catalog -

Tape label record

Special_ file index record_

File catalog

Direct-acecess index

File index records: one record
for each tape, permanent direct-
access data file, data cataiog, and
file catalog

Data Tape

Tape label record

Permanent or Temporary
Direct-Access Data Tile

Data file

Data file

Pool Tape

Tape label record

File index record = Tape label record
Data index record= Data label section of data file

Figure 3. Diagram of file organization.

St e 1 AR Gt K S S o R 2

4, THE GDB SYSTEM

4,1 User Functions

The GDB system is a collection of Fortran subroutines called by the main pro-
gram, which is written by the user. The subroutines are divided into groups corres-
ponding to the protection passwords. Those subroutines requiring read permission
only are the following:

GDOPEN - GDB Open Catalogs

GDRCAT -~ GDB Release Catalogs
GDADF — GDB Attach Data File
GDRDISK — GDB Return Disk File
GDREAD - GDB Read Data Record
GDRDIR — GDB Read Data Index Record
GDRFIR — GDB Read File Index Record
GDPCAT -— GDB Print Catalog

To read the data in the GDB, the user calls GDOPEN, GDADF, snd GDREAD,
GDRDIR, GDRFIR, and GDPCAT are used to obtain information about the contents of
the GDB. GDRDISK and GDRCAT release disk files from the user's program.

A data file is written as a temporary disk file withcut any passwords. I does not
become a permanent part of the GDB until it is "created.! The write subroutines
follow:

GDWRIT — GDB Write Sequential Dafa Record
GDREWR — GDB Rewrite or Random Write

Four subroutines that are sometimes useful in conjunction with the read/write sub-
routines, and for which no passwords are needed, follow:

IBIT — Set Indicated Bit

NETBIT ~ Retrieve Bit Value

EXBIT — Set Existence Bit

LATLON -~ Get Latifude and Longitude

15

e b bl i 4 S e Ty gl 8 o 0 o e % ATV % s eele PR L R

The following subroutines require both read and extend permission:

GDCDF — GDB Create Data File
GDEUP - GDB End Update
GDDEACT — GDB Deactivate Pool Tape
GDAPT — GDB Add Pool Tape

To add a data set to the GDB, the user first writes the file using GDWRIT or
GDREWR and then adds it to the system by calling GDCDY and GDEUP. To alter a
GDB data set, the user creates a new version and purges the old one. Creating a data
set requires a GDB pool tape. GDAPT is used to add pool tapes to the GDB, and
GDDEACT can be utilized to deactivate bad pool tapes.

The subroutines requiring read, extend, and modify permission as follows:

GDPURDS — GDB Purge Data Set

GDRPF — GDB Release Permanent File
GDPFIR - GDB Purge File Index Record
GDPDIR — GDB Purge Data Index Record
GDRDT — GDB Release Data Tape
GDRWDI — GDB Rewrite Data Index Record
GDRWFI — GDB Rewrite File Index Record
GDAFIR - GDB Add File Index Record
GDWDIR ~— GDB Write Data Index Record
GDSAVE — GDB Save a Data Tape

These are used to purge old files, maintain the GDB, and recover from system failures.
Normally, GDPURDS would be called to remove a data set completely from the data
base. However, abnormal situations occasionall require the use of one or more of

the other subroutines.

Finally, the following subroutines require read, extend, modify, and control per-
mission;

GDRELOD — GDB Reload Catalog
GDCREAT - GDB Create Catalog

16 i

S

4.2 Data Retrieval

The first step in retrieving data from the GDB is to attach the data and {ile catalogs.
This causes the GDB fo set up an array in core for each catalog, The array confains
one packed word for each entry (index record) in the catalog. A maximum of 100 entries
for each catalog is currently allowed. When a data set is "attached, " the arrays are
searched and the index records for the data set are read from the catalogs. If the copy
of the data set requested is a magnetic-tape file, the tape is requested, the tape label
is checked with the file index record, and the tape is copied to a temporary disk file.

If the data file is a permanent disk file, the file is attached to the user's program.

The data index record is returned to the user from the data catalog when the data
set is attached. The user then passes the index record to the read subroutine, thus
giving the read subroutine the information necessary to retrieve unit records from the
data file. The existence-bit string, included in the index record, confains one bit for
each unit area and the bit is on (or off) if there is (or is not) a unit record for that unit
area, The GDB locates a unit record in a data file by counting on-bits in the existence-
bit string, For data files with fixed~length unit records, the record can be located
directly by multiplying the length of the record by the number of preceding records (on-
bits). For data files with variable-length records, the address and length of the unit
record are located in the same way since the address section of the data file is like a
one-word fixed-length data file. Thus, accessing a data file with variable-length records

is a two-step process and may require two disk reads.

When the data are read from the disk, a full buffer of information is read. The
buffer for each file is provided by the user, and the length of the buffer is arbitrary. For
data files with variable-length unit records, the buffer is partitioned into one section
to read the address section of the data file and a second to read the data section. The
read subroutine keeps track of which information is in the buffer and accesses the data
file on the disk only if the desired record is not in the buffer. If a disk read is required,
the unit record can be positioned at the beginning, middle, or end of the buffer. The
user has control of this positioning.

The user has two options for specifying which records are to be refrieved: The

record can be identified by the number of its corresponding existence bit or by a bit
string with the bit corresponding to its existence bit tuined on,

17

4.8 Data File Creation

To write 2 new GDB data file, the user must either write the file sequentially in
the same order as the existence~bit string or set up the existence~bit string before
writing the file randomly. The user program calls the write subroutine once for each
record to be written and once to terminate the write.

The sequential-write subroutine fills a buffer with the unit records and writes the
buffer onto the disk whenever it is full. The subroutine leaves space at the beginning
of the data file for the data index section. The user passes the data index record to
the subroutine on the last call, and the data index record is written in the space
reserved for it. If the data file has variable-length records, space is also reserved
for the address section of the data file. The buffer is partitioned into two sections,
one to write the address section of the data file and the other to write the data section.

The random-write subroutine can write a new data file or alter an existing one.
If a new file is being written, blank space is reserved on the disk and the random
write then changes the blank file, The subroutine always reads and writes a full buffer
of information, aund if the information that is to be changed is in the buffer, no disk
access is necessary. For data files with variable-length records, the buffer has one
section to read or write the address section and another one to read or wriie the data
section of the data file,

The user must set the exisience-bit string before calling the random-write sub-
routine for the first time. For data files with fixed-length records, the subroutine
locates the unii record in the data file by counting on-bits in the existence-bit string.
The subroutine changes the record by writing the new record over the old one, For
data files with variable-length records, the address and length of the unit record are
located in the address section, Then the address is changed to that of the end of the
data file, and the new version of the record is written there. The old record remains
in the file but is never used again. If a disk read/write is required, the record to be
changed can be positioned at the beginning, middle, or end of the buffer as designated
by the user,

18

9 TR M e

The user makes a new data set a permanent part of the data base by ealling a
"ereate" subroutine, which catalogs the file as a permanent disk file or copies the
file to magnetic tape and makes the appropriate changes in the catalogs.

4.4 Protection Mechanisms

The GDB files are protected by a tape label system, backup procedures, and a
password system roughly corresponding to the CDC 6400 permanent-file password
system.

The first record on all tapes in the GDB is a tape label, which is the same as the
file index record in the file catalog. Whenever a tape is requested by the GDB system,
its label record is checked. If the record does not correspond to the file index record,
a message is written on the computer console instructing the operator to check the
visual reel number of the tape. If the tape lahel is still incorrect after this check, an
error indicator is set, a diagnostic message is printed, and control is returned to the
user's program.

It is advisable to back up the catalogs within the GDB system periodically., In
addition, it is wise to have more than one tape copy of any data set that is difficult
to recreate. If the GDB catalogs must be recreated from backup, it is possible, for
example, that a tape containing a data file will be listed in the backup file catalog as
a pool tape. This tape cannot be used by the GDB system until its file catalog entry
has been updated, however, because the tape label will differ from the file index

record.

The GDB passwords follow:

Read — read any data set or catalog.
Extend ~— create new data sets; add or deactivate pool tapes.
Modify — purge any data set or catalog entry.

Control — purge catalog.
Turnkey - any operation.

The passwords are specified when the user aitaches the catalogs. If the user calls
a subroutine without having specified the necessary passwords for it, an error flag

19

is set, an error message is printed, and control is refurned to the user's program
without the subroutine being executed,

This protection system applies to the data base as a whole; files are not protected
on an individual basis. Therefore, it is suggested that all operations requirving modify
or control passwords be carried out by one person. I this is not convenient, the data
base can be divided into several data bases, each managed by a single person. More
than one data base can be used simultanecusly. Also, it ic a simple process to transfer
files from one data base to another.

This system of protection has been implemented through the permanent-file pass-
word sysiem, Any operation performed on GDB data files is preceded by one on a
GDB catalog. Since the data and file catalogs are permanent files, using the permanent-
file password system to protect the catalogs will, in fact, protect the data files them-
selves. However, to the CDC 6400 operating system, the operations necessary to
create a data file appear the same as those necessary to purge one. Thus, operations
requiring both exitend and modify ave protected by the operating system through the
extend password only, and the GDB system, not the operating system, checks the
modify password whenever a purge operation is done.

20

5. USERS' GUIDE TO THE GDB

5. 1 Introduction

The GDB system is a Fortran subroutine package. The user writes a main pro-
gram calling the subroutines described in Section 6. Sections 5.2 to 5. 5 detail the
common user operations, and Section 5.6 gives some practical information concerning
data-base management.

The GDB files are protected by a password system that utilizes the following
words: read, extend, modify, control, and turnkey. The GDB subroutines
are listed with the passwords required. Users with only read permission cannot alter
the GDB files. Read and extend permission are required to create new files, Users
should inform the GDB manager whenever a "create" program has terminated abnormally.
Although it is impossible for the GDB files to be destroyed, it is possible that some
pool tapes will have to be relabeled by the manager. The manager can also help a user
recover a new file that was lost owing to the abnormal termination of the program that
created it, The data-base manager has modify, control, and turnkey permission. A
user who wishes to create a private data base should read Sections 3 and 4, which are
also helpful for dealing with sophisticated applications.

5.2 Read

To read data in the data base, the user writes a main program calling the GDB
subroutines GDOPEN, GDADF, and GDREAD. The GDOPEN attaches the GDB cata-
logs to the user's program; GDADT attaches data files to the program; and GDREAD
retrieves umit records from these data files. These subroutines are described in
Sections 6.3, 6.4, and 6.5. Section 5.4 gives further information concerning the
efficient use of GDREAD,

The first step in any run of the GDB is to call GDOPEN, thus attaching the file
catalog and the data catalog, which are permanent files residing on the disk. The

21

user must know both the permanent-file name of the GDB file catalog and the read
password.

The variable ICOND is an error flag that appears in the calling segquence of most
GDB subroutines. If an error is encountered, the subroutine writes an error comment
on a file specified by the user and returns control to the calling program with ICOND % 0,
An exception is the condition ICOND = 22 in subroutine GDREAD, for which no error
comment is printed. The user should test ICOND after each call to any subroutine.
Section 6,32 containg a table of ICOND values,

For a data file to be read, it must be "attached" by calling GDADF. The user
must know the data name of the data file, By means of the subroutine GDPCAT, infor-
mation can be obtained about the contents of the data files., Every file in the GDB is
uniquely identified by a data name, sequence number, and copy nux;lber, the last two
being integers from 1 to 255, The default condition in GDADF is to attach the file with
the highest sequence number and lowest copy number. However, the user may specify
particular sequence and copy numbers. GDADF returns to the user the data index
record (see Section 6.1) from the data catalog. This record is input to GDREAD, but
since GDREAD does not use the comment section, it is not necessary to retrieve that
part of the index record in the call to GDADF,

The existence-bit string associated with the file is part of the index record. The
bit string has one bit for each unit area (or key) associated with the file. The bit is
on (ox off) if there is (or is not) a unit record in the data file for that unit area. The
GDB locates unit records by counting on-bits in the existence bit string, The user can
determine whether or not a record exists by checking its corresponding existence bit,
using subroutine NETBIT. If a user is not interested in reading the file, the index
record with the existence-bit string should be obtained from subroutine GDRDIR, rather
than GDADF, since GDRDIR does not attach the data file.

If the file to be attached is on magnetic tape, the tape is copied to a temporary
disk file, and the user must provide a buffer to be used by GDADF for the copy opera-
tion. The buffer should be as large as possible and can be reused.

22

If many data files are to be processed sequentially, it is not necessary, and
probably not advisable, to attach them all at the same time. GDRDISK will detach the
data file and allow the same file name and temporary disk storage to be used for
another data file.

Once the data files have been attached by calling GDADF, the catalogs are no
longer needed for reading the files and can be released by calling GDRCAT. Only one
set of catalogs can be attached to a program at any one time. H files from different
data bases are reduired, the catalogs from one data base must be released by GDRCAT
before those from another can be attached by GDOPEN.

Once the data files have been attached, GDREAD will return individual unit records
from the files to the calling program. The user has two options for specifying which
data record is to be returned: If the variable MODE = 0, then array IBIT, correspond-
ing to the existence-bit string, is used. On each call to GDREAD, NBIT is incremented
to the next on-bit in IBIT and the corresponding record is returned. I MODE = 1, on
each call to GDREAD, NBIT is incremented by 1 and the record corresponding to that
bit in the existence-bit string is returned. In either case, if the designated record does
not exist, GDREAD returns with ICOND = 22.

This dual-read system suggests two obvious modes of use. For the "automatic"
mode, the user sets up an IBIT array, sets MODE = 0, initializes NBIT = 0, and calls
GDREAD once for each record specified by IBIT. Inthe "manual" mode, the user sets
MODE = 1 and then uses NBIT to specify which record is desired. The automatic
mode results in a sequential read of the data file, while the manual mode may or may

not be sequential.

The user provides GDREAD with a buffer, and a full buffer of information is always
read from the disk. Thus, GDREAD does not access the disk every time it ig called.
In the manual mode, a large number of disk reads may be necessary. Each digk read
may take 0. 1 sec of peripheral processor time. It is the responsibility of the user to
estimate the peripheral processor time connected with the job to ensure that it is not
too large. Correct use of the variable ITYPE can reduce the peripheral processor time
significantly (see Section 5. 4).

23

e e Mo e,
B

5.3 #'rite

To write a data file, the user first writos a main program calling either GDWRIT
or GDREWR once for each record to be written. The catalogs do not have to be
attached in order to call GDWRIT or GDREWR.

GDWRIT writes data files sequentially. I must receive records in the order
required for the oufput file. However, it is not necessary to specify the existence-bit
array until after the file has been written. Initially, the GDWRIT subroutine uses only
the length of the data index record, the data type indicator, and, if the data file has
variable-length records, a maximumm for the number of records to be wriitten. After
the last record has been written, the user makes a final call to GDWRIT, providing
the data index record. Each record wriiten in the data file must have the correspond-
ing existence bit turned on (=1). The subroutine IBIT can be used to turn on the bits

in the existence-bit string.

GDREWR allows w.3ers to do random-access writing of data files. However, the
existence-bit array must be set up hefore the first call to GDREWR. The user provides
GDREWR with a buifer so that GDREWR does not access the disk every time it is
called. However, if the records are not at least partially ordered, GDREWR couid
take up to 0. 2 sec of peripheral processor time for each record written, The user
must estimate the peripheral processor time connected with the job to ensure that it
is not too large. Correct use of the variable ITYPE can reduce that amount of time
significantly (see Section £, 4).

If GDREWR is employed to write a data file with variable-length records, the
resulting file will have an address section arranged in the same order as the existence-
bit string and a data section arranged in the order in which it was writien, a system
that may or may not be satisfactory for future use. To sort such a file writien by
GDREWR, the file could be read with GDREAD and then rewritten sequentially by
GDWRIT (or GDREWR).

With GDREWR, changes can also be made to an existing GDB file. The user must

call GDOPEN to attach the catalogs, call GDADF to attach the file as a temporary disk
file, and then call GDREWR for each record to be changed. For nxed-length records, the

24

new version of the record must be the same length as the old one. For variable-length
records, the new version can be any length since it will be written at the end of the file.
Note that the old version of the record remains in the file and the file will be longer than
necessary. Also, the records will not physically be in order on the tape. I necessary,
this situation can be corrected by rewriting the file sequentially with GDWRIT or GDREWR

To add to an existing GDB file, the file must be rewritten. The user calls GDOPEN
and GDADF and then writes a new file by copying the old records and including the new
records, using either GDWRIT or GDREWR.

In any case, the newly written file does not automatically become part of the data
base; to become permanent, it must be entered in the catalogs, as described in

Section 5. 5.

5.4 Efficient Use of Read/Write

If a user wishes to read or write many large files in the GDB, efficient use of
those files becomes important, with the choice of buffer sizes and of the algorithm that
positions data in the buffers (ITYPE) being most important, Also, alterations in the
data files or in the procedures for processing the files may be necessary.

In order to attach a data file residing on tape, the GDB copies the tape to a direct-
access disk file. Likewise, to create a new data file, a disk file is copied to tape.
In these cases, the I/0 buffers, supplied by the user, should be as large as possible,
especially if the files are large or if many files are being processed. While the exact
time to copy the file varies with the system environment, the buffer size greatly affects
the efficiency. Since tape is the slower device, the minimum buffer size should be two
or three tape PRUs (512 words each). For optimum efficiency, the buffer size might be
as high as 20K, This buffer can be reused after the data file is attached or created.

To read and write data files, the user must supply an I/0 buffer that is passed
to the read/write routines, the optimum length of the buifer dependiﬁg on the 'specﬁ:'ic
application. If it is too short, I/0 will be inefficient; if it is too long, buffer space may
be wasted. Thus, in order fo choose an appropriate buffer length, both I/0O efficiency
and the amount of central memory available for buffers must be considered.

25

The goal in choosing a buffer size for the read/write routines is to minimize the
actual number of disk accesses. The GDB accesses the disk only when the desired
unit record is not already in the buffer. Thus, for files being read or written
sequentially, the buffer should be as large as possible. On the other hand, if the file
is to be read or writien randomly {i.e., the next record is so far from the last one
that it cannot possibly be in the buffer), then making the buffer larger than the minimum
would be a waste of space. For example,

Unit record size = 3 words
Numzver of unit records = 60, 000

Call to GDREAD Unit record number
1
2 60000
3 2
4 595899
B 3

In this case, no matter how big the buffer is, a disk access will be necessary on each
call to GDREAD, so the user might as well set the buffer size to the disk PRU size of
64 words (or the next multiple of 64 words greater than the unit record size).

It is important to note that a disk access can take 0. 1 sec of I/0 time. Since a
tape without record marks holds about 1, 500, 000 words of data, the effect of buffer
lengths is as follows:

Peripheral processor time to read

Buffer length or write (from the disk)
(words) a full tape's woxth of data (min)
3200 7.8
1600 15.6
512 46. 8

The peripheral processor time cannot be reduced further by using a buffer greater
than a half-track (3200 words) because the disk head must be reposgitioned if more than
half a {rack of data is accesssd,

26

The user can control which information is read ox written into the buffer by the
variable ITYPE. The desired record can be positioned in the begimning (ITYPE = 1),
end (ITYPE = 2), or middle ITYPE = 3) of the buffer. ITYPE should reflect the
order of the accessed data records in the data file:

ITYPE =1 , forward read/write
ITYPE = 2 , reverse read/write
ITYPE=3 , rvandom read/write .

For example,

Subroutinecall 1 2 3 4 5 6 7 8 9 10
NBIT 1 2 3 10
ITYPE 1 1 1 2 2 2 2 11

If the data records are not to be read or written in any particular order, set ITYPE = 3.

5.5 Creation of a Data Set

To create a data set, a user writes a main program calling first GDWRIT or
GDREWR and then GDOPEN, GDCDF, and GDEUP. Either of the first two subroutines
writes a temporary disk file, as deseribed in Section 5.3, which must be cataloged as

- a permanent disk file or copied to tape in order to make it a permanent part of the
data base. The catalogs must be attached by calling GDOPEN with both read a..d extend
passwords. Then GDCDF is called to make changes to the catalogs and make the new
data file permanent.

At the end of a job that creates new data sets, the user must call GDEUP to
make the changes permanent by extending the catalogs, to sort and print the new cata-
logs, and to create backup for the catalogs. When writing or cataloging a data set,
users should always check ICOND, and if ICOND # 0, GDEUP should not be called. As
long as GDEUP has not heen called, no permanent changes to the GDB catalogs are made.
For example, the file catalog still lists tapes written by GDCDF as pool tapes, and those
tapes cannot be used until the entry in the file catalog agrees with the tape label. Such
inconsistencies must be fixed by the data-base manager. However, the pool ‘tape can
be removed from active status with the subroutine GDDEACT, and new pool tapes can
be added with GDAPT.

27

5.6 Maintenance of a Daia Base

The maintenance of a data base should be the responsibility of only one person, who
will perform all the operations that require modify or control passwords, including
creating the data base, normal purging of data sets, and recovery from user errors or
operating-system failures. Anyone who will be maintaining a data base should read
Sections 3 and 4.

To set up a private data base, it is first necessary to create both an initial data
catalog and an initial file catalog, accomplished by calling subroutine GDCREAT from
a user-supplied main program. Once the catalogs exist as permanent files on the disk,
the user can add pool tapes to the file catalog by calling GDAPT and then proceed to
create data files.

It is advisable to dump the catalogs to tape periodically in case the permanent-file
versions are accidentally destroyed. This is done by calling GDEUP at the end of any
GDB run with the backup-copy flags turned on. If many changes are made fo the catalogs
during the day, it is wise to back up the catalogs with GDEUP. Reloading from data-
base hackup tapes involves calling subroutine GDRELOD with the visual reel numbers
of the backup tapes. In reloading, note that the data sequence numbers of the data and
file catalogs must always match.

The catalogs should be dumped to tape periodically by GDEUP and reloaded by
GDRELOD. This procedure deletes inactive entries from the permanent disk files

and therefore reduces the amount of disk space required.

Alihough a data set is normally removed from the data base by calling the sub-
routine GDPURDS, some situations require the use of the other subroutines. Once a
data set has been completely purged from the data base, it cannot be recovered, because
the data tapes have been relabeled as pool tapes. However, if only the catalog entries
are changed, the data set can be recovered by rewriting the catalog entries. No {ape
in the GDB can be used unless its tape label corresponds to the file index record in the
file catalog. ‘

28

In certain cases the GDB manager might want to reference entries in the file and
data catalogs without specifying the data name, sequence number, or copy number.
This might be necessary if an entry with a "bad" data name or number got into the cata~-
logs by accident. Therefore, certain GDB routines that normally require data name,
sequence number, and copy number as input will, instead, use the position of the
entry in the catalog. This is specified as follows:

NDNAME = 10H blank
NSEQ = position of the entry in the catalog (including special file catalog
or data catalog index record)
The routines that follow this convention are as follows:

GDPFIR - GDB Purge File Index Record
GDPDIR - GDB Purge Data Index Record
GDRFIR - GDB Read File Index Record
GDRDIR -~ GDB Read Data Index Record

GDRDT _

GDRPF These routines follow the same convention but should be used only
GDRWDI internally by the GDB system.

GDRWEFI

To delete a bad GDB data file that cannot be deleted by normal means, the mana-
ger writes a GDB main program and calls GDPFIR and GDPDIR as described. If the
file is a tape file, the tape can be reentered into the file catalog with GDAPT. Ifif is
a permanent disk data file, the file must be purged by direct use of the system
permanent-file control cards.

The manager cap recover a data file whose data and file catalog entries are missing
by ecalling subroutine GDSAVE. As long as the tape file itself is intact, the file does not
have to be recreated. GDSAVE gets the file index record and data index record off the
tape and enters them in the catalogs.

29

ELER e E b L Uil T i b i EE R Y Al GRS Rt L

6. SUBROUTINE DOCUMENTATION

6.1 The Index Array

The index array is used to store the index record of the data catalog. The length

of the index record as specified by the user will limit the number of words retrieved.

Thus, for example, storage does not need to be supplied for the comments unless they

are to be used in the program.

INDEX (1)
(2)

@)
4)
(3)
(6)

(7}

(8)

(9)

(16)

(11)

(12)
(13)...(n)
(n+l)... {m)

where

=]

length of index record in words. Integer.

data name. R format, seven characters, with the first character
nonblank.

data sequence munbevr. Integer 1-—255.

= creation date. Hollerith, as refurned by the function ITIMER (1).

il

ihon

1

maximum unit record length in words. Integer.

0 for fixed-length records.
1 for variable-length records.

number of unit records. Integer.

= number of disk PRUs in index section. Integer.

i

number of disk PRUs in address section. Integer.
number of disk PRUs in data section. Integer.
number of existence bits. Integer.

length of comments in words. Integer.
existence--bit array.

comments,

(INDEX(11)~1)/60 + 13.
INDEX(12) + n.

PRECEDING PAGE BLANE NOT FILMED o,

el

e A A e, i R e -

———— d . cims mmem e e samie emeee) ee e e e— * -

6.2 TFile Index Record

The array IFNDEX is used to store the file index record.

IFNDEX (1)
(2)

(3)

@
()
(6)
(7)
(8)

file device: tape = 0 or permanent direct access =1,

file identification. L format. For tape, reel number is given;
for permanent file, permaneni-file name is given.

data name., R format.

‘data sequence number.

data copy number.

creation date, Hollerith, as returned by the function ITIMER(1).
tape density. Integer.

length of tape in feé_t. Integer.

32

%
6.3 GDOPEN— GDB Open Catalogs (R)

GDOPEN attaches the data and file catalogs, which are permanent files residing

on the digk.

where
FCNAME
FCPASS

POOL

ICOND

CALL GDOPEN (FCNAME, FCPASS, POOL, ICOND)

permanent-file name for the file catalog. L format.

five-word array containing the permanent-file passwords for

the file catalog and the data catalog. The user must specify alil the
passwords required by subroutines to be called in this run, If the
GDB is only to be read, only the read password needs tc be given.
Permanent-file passwords are in L format, and the order is not
significant, I less than five passwords are given, the last one
should be followed by a zero word.

data name of the user's pool tapes. R format. T

condition code.

GDOPEN assumes that labeled common block GDLFNS has heen set up and
initialized in the ealling program as follows:

LFNS(1)
LEFNS(2)
LFNS(3)
LFNS(4)
LEFNS(5)
LFNS(6)

logical~file name for data catalog. ¥

l'ogical—file name for file catalog,
logical-file name for mounted input tape.
logical-file name for mounted output tape.
logical-file name for error-comment output.

logical-file name for regular printed output.

*'I‘he GDB passwords are abbreviated as follows: R= vead, E = extend, M = madify,
and C = control (see Section 4.4). '

TAll data names in the GDB are seven characters in R format, the fivst of which must

be nonblank,

A1l logical-file names in the GDB ave lefi-justified with zero file. LFNS(1), LFNS(2),
LFNS(5), and LFNS(6) must be mentioned on the PROGRAM card since they are
handled with Fortran. All other GDB files are handled outside of Fortran, and
therefore must not appear on the PROGRAM caxrd. :

33

6.4 GDADF — GDB Atiach Data File (R)

GDADF attaches a data file. If the file resides on the disk as a permanent file,
it is attached as a temporary disk file. If it resides on a magnetic tape, the tape is
mounted, its GDB label is checked, and it is copied to a temporary disk file. If the
data files are to be processed sequentially in the run, it is not necessary (and probably

not advisable) to attach them all at the beginning of the run.

CALL GDADF (NDNAME, NSEQ, NCOPY, FNAME, DFPASS, FET, IBUF,

where
NDNAME

NSEQ

NCOPY

FNAME

DFPASS

FET

IBUF

LBUF

INDEX

LINDEX
ICOND

il

LBUF, INDEX, LINDEX, ICOND)

data name of file to be attached. R format.

data sequence number:

= () means attach highest sequence number,
> 0 means attach NSEQ.

data copy number:

= (means attach highest copy number.
> 0 means attach NCOPY.

logical-file name of temporary disk file on which the data file is
to reside after it is attached or copied to the disk. This file name
must not appear on the PROGRAM card. L format.

not used.

eight~-word array to hold the file environment table* (FET) for
disk file FNAME.

buffer (array) used in copying tape to disk. The buffer cax be
reused after the call to GDADF.

length of IBUF. LBUF must be a minimum of 513 words.

array containing the data index record for NDNAME NSEQ.
This is returned by GDADF¥. (See Section 6. 1.)

number of words to be returned in INDEX.,

condition code.

A file environment table is a storage area set up in central memory. It is used by
the CDC 6400 operating system and a user program to communicate about the
status of a file being read or writien.

34

6.5 GDREAD — GDB Read Data Record (R)

GDREAD returns data records to the calling program, one record at a time. In
automatic mode, the user specifies which data records are to be returned by setting
up an array IBIT that is similar to the existence-bit portion of the data index record.
If a bit in IBIT is set to 1, the corresponding data record will be returned by GDREAD
if the record exists. IBIT is notf used in the manual mode. The user sets NBIT to cne

less than the number of the bit in the existence~bit array corresponding to the desired
record and calls GBREAD.

CALL GDREAD (FNAME, FET, INDEX, MODE, IBIT, NBIT, IBUFF,

where

FNAME

FET

INDEX

MODE

IBIT

NBIT

IBUFF

il

[

B

LBUFF, IREC, LREC, MREC, ISTCR, ITYPE, LUERR,
ICOND)

logical-file name of the file to be read (name with which it was
attached in GDADF). L format.

eight-word array set up by GDADT with the FET for disk file
FNAME.

array containing the data index record for the data file (Section 6. 1).
The comments section of the index record is not used by GDREAD.
The data index record is returned by GDADF,.

0 means automatic mode,
1 means manual mode.

array containing bits specifying the data records to be returned.
IBIT corresponds to an existence-bit array and is used in the
automatic mode only.

on input, one less than the bit number in IBIT at which searching is
to begin. In the automatic mode, GDREAD increments NBIT until it
finds a bit in IBIT that is on and returns the corresponding data
record. For the automatic mode, NBIT is initialized {o zero (or
some other starting point) and is not altered between calls to
GDREAD. On output (both modes), NBIT corresponds to the data
record refurned or not found.

read buffer. Each file being read at the same time by GDREAD
must have its own read buffer. The buffer for a given file must
not be altered by the user until reading is done on that file. For
files with variable-length records, IBUFT is partitioned into two
parts: The first is the read buffer for the data themselves, and the
second is the read buffer for the address pointers for the file.

35

LBUFT

IREC

IREC
MREC
ISTOR

ITYPE

LUERR

ICOND

i

buffer sizes:

LBUFF(1)
LBUFF(2)

length of data section of IBUFF, in words.

length of address section of IBUFF. The user must
set LBUFTF(2) = 0 for fixed-length record data files.
LBUFF(l) and LBUFTF (2) must each equal at least 64 words.

The larger they are (=3200 words), the more
efficiently the GDB will operate.

o

data record refurned to calling program. IREC can be any data
type.

number of words of data record to return in IREC.

actnal number of words read.

eight-word scratch array used by GDREAD. Each file being

vead at the same time by GDREAD musf, have its own ISTOR array,
which must not be altered between calls to GDREAD. ISTOR must
be initialized to zero before the first call to read for the file,

read mode for the file (see Section 5.4):
= 1 means forward.
= 2 means reverse.
= 3 means random.
logical-~file name for error comments = LFNS(5).

condition cade,

36

6.6 _GDWRIT — GDB Write Data Record

GDWRIT sequentially writes the data records associated with a GDB data file onto
a temporary disk file. The user makes repeated calls to GDWRIT, feeding it data
records one at a time. GDWRIT must receive data records in the order desired for

the output file.

CALL GDWRIT (FNAME, FET, INDEX, IBUFF, LBUFF, [REC, LREC,

where

FNAME

FET

INDEX

IBUFF

LBUFF

IREC

LREC

i

ISTOR, LUERR, ICOND)

logical-file name of the temporary disk file on which to write the
data. L format.

eight-word array to hold the FET for FNAME.

array containing the data index record for the data file (Section 6. 1).
On the first call to GDWRIT for the file, set:

INDEX(1) = length of INDEX.,
INDEX(6) = fixed (=0) or variable (=1) length.

Before the final call to GDWRIT (LREC=0), the user must set all
other elements of INDEX except INDEX(8), INDEX(9), and INDEX(10)
to the correct values.

write buffer. Each file being written at the same time by GDWRIT
must have its own write buffer. The buffer for a given file must nat
be altered by the user until writing is done on that file. For files
with variable-length records, IBUFF is partitioned into two parts;
the first is the write buffer for the data themselvee, and the second,
the write buffer for the address pointers for the file.

buffer sizes:

LBUFF (1) = length of data section of IBUFF.

LBUFF(2) = length of address section of IBUFF. The user must
set LBUFF(2) = 0 for fixed-length record data files.

LBUFF(1) and LBUF¥(2) must each equal at least 64 words. The
larger they are (=3200 words), the more efficiently
the GDB will operate.

record to be written. IREC can be any data type.
length of IREC. After the last call to GDWRIT to write a data
record, it is necessary to make a final call with LREC = 0 in order

to flush the write buffers and perform other final operations on the
file.

37

e P e

ISTOR

LUERR
ICOND

eight-word seratch array used by GDWRIT. Each file being
written at the same time must bave its own ISTOR array, which
must not be altered hetween calls to GDWRIT, ISTOR(1) must be
initialized to zero and ISTOR(4) to the maximum number of records
to be written for this file. Seiting ISTOR(4) is neceasary only when
dealing with variable-length records.

logical~file name for error commenis = LFNB(5).

condition code.

38

6.7 GDREWR — GDB Rewrite Data Record

GDREWR writes the data records associated with a GDB data file onto a temporary
disk file. Unlike GDWRIT, however, it does not require the records to be input
sequentially. Furthermore, GDREWR allows the user to rewrite selected data records
on an existing data file (not a permanent file) without copying the erntire file,

In writing a new file, GDREWR is called once for each data record in the file,
The records can come in any order since direct-access methods are used and the
calling program gives GDREWR the velative position of the data record in the file.

To make changes to an existing GDB file, the user need only attach the file with
GDADYF and then call GDREWR fer each record to be changed. For fixed-length
records, the new version of the record must be the same length as the old one, and
for variable-length records, the new version can be any length,

GDREWR will operate most efficiently if the incoming data vecords are at least
partially ordered. If the records skip around with no order, GDREWR could have fo do
one random-access read and one random-access write for each data record.

CALL GDREWR (FNAME, ¥&T, INDEX, IBUFF, LBUFF, IREC, LREC,
ISTOR, NBIT, ITYPE, LUERR, ICOND)

where

FNAME = logical-file name of the temporary disk file on which to write the
data. If the file already exists and is to be altered, FNAME is
the logical-file name with which it was attached in GDADF. L
format.

FET = eight-word array to hoid the FET for FNAME.

INDEX = array containing the data index record for the tile (Section 6. 1).
INDEX must be completely set up before the first call to GDREWR
(except that if FNAME is a new file, then INDEX(8), INDEX(9),
and INDEX(10) are set up by GDREWR). This means that the
existence-hit array must be set up before the first call to GDREWR.

IBUFF = read/write buffer. Each file being written at the same time must

have its own buffer and it must not be altered by the user until
writing has been completed on that file. TFor files with variable-
length records, IBUFF is partitioned into two parts: The first part
ig the buffer for the data themselves, and the second, the buffer for
the address pointers for the file.

39

LBUFTF

IREC
LREC

ISTOR

ITYPE

LUERR

ICOND

buffer sizes:

LBUFTF(1) = length of data section of IBUFF.
LBUFF(2) = length of address section of IBUFF. The user must
set LBUFF(2) = 0 for fixed-length record data files.
LBUTFF(1) and LBUFTF(2) must each equal at least 64 words. In
general, the larger they are (=3200 words), the
movre efficiently the GDB will operate.

record to be written.

length of IREC. Afier the last call to GDREWR to write a record,
it is necessary to make a final call to GDREWR with LREC = 0 in
order to flugh the buffers and perform other final operstions on the
file (i.e., INDEX(10) is recomputed and INDEX is rewritten at the
start of the file).

eight-word scratch array used by GDREWR. Each file being
written at the same time must bave its own ISTOR array, which
must not be altered between calls to GDREWR. ISTOR must be
initialized to zero before the first call to GDREWR.

i stence~bit mmber of record to he written.

signal telling current order of dats records (write mode):

= 1 means forward.
= 2 means reverse,
= 3 means random.

This signal should be changed during the writing of the file as the
order of the data records dictates (see Section 5.4). If the data
records are not ordered in any particular way, set ITYPE = 3.
logical unit for error comments = LFNS(5).

condition code.

40

6.8 GDRDIR — GDB Read Dafa Index Record (R)

GDRDIR reads the data index record for a data file from the data catalog,.

CALL GDRDIR (NDNAME, NSEQ, INDEX, LINDEX, ICOND)

where
NDNAME = data name. R format.
NSEQR = data sequence number:
= (0 means highest sequence numbex.
> 0 means NSEQ.
INDEX = array containing the data index record (Section 6. 1).
LINDEX = number of words of data index record to return in INDEX,
ICOND = condition code.

4]

e et AT oy S rbrb 4 S e s ey

R LR PR

PPV G AU SRR e e e s e e e e e e ey o 4 emae e wn e s e s e i — W RO RO X " R i N O R i RORE R S e SRS R s S AR RIS TR R EmIE i m——

6.9 GDRTFIR — CDB Read File Index Recoxrd (R)
GDRFIR reads the file index record for a GDB file from the file catalog.

CALL GDRFIR (NDNAME, NSEQ, NCOPY, IFNDEX, LFNDEX, ICOND)

where
NDNAME = data name. R format.

NSEQ = data sequence nwunber:

= { means highest sequence number.
> 0 means NSEQ.

NCOPY = data copy number:

= 0 means highest copy number.
> 0 means NCOPY.

IFNDEX = array containing the file index record.
LFNDEX = length of IFNDEX.

ICOND = condition code.

42

6.10 GDPCAT — GDB Print Catalogs (R)

GDPCAT prints the data or file catalog. The catalog can be cptionally sorted

before printing.

CALL GDPCAT (ICAT, ISORT, NCOPY, IPRINT, INDEX, LINDEX, ICOND)

where

ICAT

ISORT

NCOPY

PRINT

INDEX

LINDEX

ICOND

nn

Il [T

i

1 means file catalog.
2 means print data catalog.

0 means no sort first.
1 means sort before printing.

mmber of print copies desired (not implemented).

applies to data catalog only:

0 means minimum printout.
1 means limited (minimum plus comments).
= 2 means full (minimum plus comments plus existence bits).

Hu

seratch array used by GDPCAT to hold the file index records or
data index records to be printed.

length of INDEX. Size of a file index record or largest data index
record.

condition code.

43

e ST T L T T e

6. 11 GDRCAT — GDB Release Catalogs (R)

GDRCAT allows the user to refuin one version of the GDB éatalogs so thaf a new
one can he attached by calling GDOPEN again.

CALIL GDRCAT

There are no axguments in the calling seguence.

6.12 GDRDISK — GDB Return Disk File (R)
GDRDISK allows the user to retuin the disk file on which a datz file resides when
wozrk on it is completed so that another data file ean then be attached with the same

legical-file name and file environment table.

CALL GDRDIBK (FNAME, FET)

where
FNAML‘ = loginal-file name of the temporary disk file to be returned.
FET = eight-word array containing the file environment table associated

with FNAME.

45

S LA b e L e i R e s i e

6. 13 GDCDF — GDB Create Data File (R, E)

GDCDF makes the temporary file written by GDWRIT a perinaneni: part of the
GDB. It is cataloged as a permanent disk file or copied to tape. GDCDF must be
followed by a call {o GDEUP.

CALL GDCDF (FNAME, FET, IBUF, LBUF, INDEX, NPERM, DFPASS,
PFID, NCOPY, ICOND)

where

FNAME = logical-file name of temporary disk file on which the data file
resides. L format.

FET = eight-word array containing the FET for FNAME.

IBUF = buffer (array) used ia copying disk to tape. The buffer can he
reused after the call to GDCDF.

LBUF = length of IBU¥. LBUF must be a minimum of 513 words.

INDEX = array confaining the data index record for the data file (see
Section 6. 1).

NPERM = "pname'" means catalog FNAME as permanent-file '"name. "
L format.

= (means no permanent-file copy.

DFPASS = not used.

PTID = permaunent-file identification of the user, which is necessary
to catalog a new permanent file (NPERM # 0). L format.

NCOPY = number of tape copies of FNAME to be made.

ICOND = condition code.

46

6. 14 GDEUP — GDB End Update (R, E)

GDEUP closes (updates) the daia and file catalogs and creates backups for the new
versions. The last operation performed must be a call to GDEUP in any run that -
changes the GDB.

CALL GDEUP (M1, M2, N1, N2, INDEX, LINDEX, ICOND)

where
M1 = number of backups of file catalog to be made.
M2 = number of backups of data catalog to be mada.
N1 = print signal for file catalog:
= 0 means minimum.
= 1 means limited.
= 2 means full.
N2 = print signal for data catalog:
= 0 means minimum printout.
= 1 means limited (minimum plus comments).
= 2 means full print (minimum plus comments plus existence bits).
INDEX = array large enough to hold the largest data index record in the
data catalog {see Section 6. 1).
LINDEX = length of INDEX.
ICOND = condition code.

47

m 118 2o SR et tats o ettt e e o - 3 4 . 4 - -4 a . B emtut et ey Rl s e e GmaA e A,

6. 15 GDAPT ~ GDB Add Pool Tape (R, E)

GDAPT adds a magnetic tape to the GDB as a pool tape by adding it to the file
catalog and writing a GDB tape label on the tape.

CALL GDAPT (NTAPE, IDENS, LEN, ICOND)

where
NTAPE = visual reel number of the tape. L format,
IDENS = density at which the tape is to be read and written. The value is
an integexr, usually 556 bpi.
LEN = length of the tape in feet. Integer.
ICOND = condition code.

Currently, IDENS and LEN are not used by the GDB but are retained in the file
catalog.

48

e et —rrrs

6. 16 GDDEACT — GDB Deactivate Pool Tape (R, E)

GDDEACT deactivates a pool tape so that it will not be requested in future GDB
NS,

CALL GDDEACT (NDNAME, NSEQ, NCOPY, IFNDEX, LFNDEX, ICOND)

where
NDNAME = data name. R format.
NSEQ = dafa sequence muonber,
NCOPY = data copy munber.
IFNDEX = array containing the file index record written in the file catalog.
This is refurned by GDDEACT.
LFNDEX = length of IFNDEX.
ICOND = condition code.

GDDEACT changes the data name of a bad pool tape to BADPOOL. The GDB
manager should periodically delete BADPOOL entries firom the file catalog.

Note that GDDEACT requires only read and extend permission.

49

4) T Ay s e — o =t b SRR o mme e el s ms s morm e s tawml woeos s oo o= R - o

6, 17 GDWDIR — GDB Write Data Index Recoxd (R, E)

GDWDIR adds a data index record to the data catalog, first checking to see that
the data name and sequence number in INDEX are not duplicates.

CALL GDWDIR (INDEX, ICOND)

where
DNDEX = aprray containing the data index record to be added to the daia
catalog (see Section 6. 1).
ICOND = condifion code.

50

ARt SR R T AT R e e T e Ve Y A

6. 18 GDATFIR — GDB Add TFile Index Record (R, E)

 GDAFIR adds a file index record to the file catalog, first making sure that the file
index record does not duplicate an existing dafa name, sequence number, or copy number,

CALL GDAFIR ((FNDEX, LFNDEX, ICOND)

whexe
IFNDEX = array containing the file index record to be added,
LFNDEX = length of IFNDIEX,
ICOND = condition code.

51

6.19 GDPURDS — GDB Purge Data Set (R, E, M)

GDPURDS, the bhasic file-removal routine for the GDB, removes an entire data
set from the GDB sysiem.

CALL GDPURDS (NDNAME, NSEQ, PASS, ICOND)

whera
NDNAME = data name. R format.
NSEQ = data sequence number:
= 0 means remove all NDNAME entries except that with the
highest sequence number.
= -] means remove all NDNAME entries.
PASS = not used.
ICOND = gcondition code.

GDPURDS takes care of the entire purging operation by: 1) removing data index
record(s) from the data catalog, 2) reassigning data tapes as POOL tapes, 3) purging
permanent-file versions of the data file from the disk, and 4) making appropriate
changes to the file catalog.

52

6. 20 GDRDT — GDI3 Release Data Tape (R, E, M)

GDRDT sets data tapes back to pool-tape status by altering. the file catalog and
rewriting the GDB label on the tape.

CALL GDRDT (NDNAME, NSEQ, NCOPY, ICOND)

where

NDNAME

data name. R format.

I

NSEQ data sequence number:

= () means remove all NDNAME entries except that with the
highest sequence number.
= ~1 means remove all NDNAME entries.

NCOPY

Il

data copy number:

= () means remove all entries with data name NDNAME and
sequence number NSEQ except that copy with the highest copy
numbezr.

= -] means remove all entries with data name NDNAME and
sequence number NSEQ,

ICOND

condition code.

GDRDT does not alter the data catalog.

53

6.21 GDRPT — GDB Release Permanent File (R, E, M)

GURPF releases the permanent-file version of a GDB dafa file by removing its

file index record from the file catalog and purging the permanent file. This does not
alter the data catalog.

CALL GDRPF (NDNAME, NSEQ, NCOPY, PASS, ICOND)

whern?
NDNAME
NSEQ

NCOPY

PASS
ICOND

1

1l

1l

dut.. name. R format.

data sequence number:

= 0 means remove all NDNAME entries except that with the
highest seguence number.
= -1 meansg remove all NDNAME entries.

data copy number:

= (} means remove zll entries with data name NDNAMIHE and
seguence number NSEQ except that eopy with the highest copy
number,

= -1 means remove all entries with data name NDNAME and
sequence number NSEQ.

not used.

condition code.

54

6.22 GDPDIR — GDB Purge Data Index Record (R, E, M}

GDPDIR purges an entry from the data catalog by assigning it data name DELETE.

CALL GDPDIR (NDNAME, NSEQ, ICOND)

where
NDNAME = data name, R format.
NBEQ = data sequence number:
= 0 means remove all NDNAME entries except that with the
highest sequence number.
= -1 means remove all NDNAME entries.
ICOND = condition code.

56

6,23 GDPFIR — GDB Purge File Index Record (R, E, M)

GDPTIR purges an entry from the file catalog by assigning it data name DELETE.

CALL GDPFIR (NDNAME, NSEQ, NCOPY, ICOND)

where

]

NDNAME data name. R format.

NSEQ

Il

data sequence numbhber:

= 0 means remove all NODNAME entries except that with the
highest sequence number.,
= -1 means remove all NDNAME entries,

NCOPY

data copy number;

= (} means remove all entries with data name NDNAME and
sequence number NSEQ except that copy with the highest copy
number.

= ~] means remove all entries with data name NDNAME and
sequence niumber NSEQ.

ICOND

It

condition code.

56

6.24 GDRWDI — GDB Rewrite Data Index Record (R, E, M)

GDRWDI overwrites a data index record specified by NDNAME and NSEQ with INDEX.

CALL GDRWDI (NDNAME, NSEQ, INDEX, ICOND)

whera
NDNAME = data name. R format.
NSEQ = data sequence number;
= 0 means remove all NDNAME entries except that with the
highest sequence numbexr.
= -1 means remove 2ll NDNAME entries.
INDEX = array containing the data index record to be written in place of the
old one (see Section 6. 1).
ICOND = gcondition code.

57

6.25 GDRWFI — GDB Rewrite File Index Record (R, E, M)

GDRWFI overwrites the file index record for a data file specified by NDNAME,
NSEQ, and NCOPY with the contents of IFNDEX.

CALL GDRWTFI (NDNAME, NSEQ, NCOPY, IFNDEX, LFNDEX, ICOND)

where
NDNAME

NSEQ

NCOPY

IFNDEX

LFNDEX

ICOND

I

data name. R format.

data sequence number:

= { means remove all NDNAME entries except that with the
highest sequence munber.
= -1 means remove all NDNAME entries.

data copy number:

= 0 means remove all entries with data name NDNAME and
sequence number NSEQ except that copy with the highest copy
number.

= -1 means remove all entries with data name NDNAME and
sequence number NSEQ.

array containing the new file index record (see Section 6.2). The
contents »f IFNDEX replace the old file index record.

length of IFNDEX.

condition code.

58

6.26 GDSAVE — GDA Save a Data Tape (R, E, M)

GDSAVE allows the GDB manager to recover a data tape file if its data catalog
entry and file catalog entry are missing but the tape file itself is intact. This might
occur if the catalogs are reloaded from kackups that were crected before the data file
was created. It might also oceur if the program that created the data file failed after
the file was created by GDCDY bhut before GDEUP was called. GDSAVE requests the
tape on which the data file resides and copies the file index record and data index
record from the tape into the file catalog and data catalog, respectively. Only one tape
copy in a data set can be recovered in this manner.

CALL GDSAVE (NVIS, IFNDEX, LFNDEX, INDEX, LINDEX, ICOND)

where
NVIS = visual reel number of the tape on which the data file resides.
A format.
IFNDEX = buffer for file index record.
LFNDEX = length of IFNDEX,
INDEX = buffer large enough to hold the entire data index record.
LINDEX = length of INDEX.
ICOND = condition code.

59

6, 27 GDRELOD — GDB Reload Catalog (R, E, C)

GDRELOD reloads the data or file catalog from a backup tape specified by the
uger. The tape is copied to the disk, the old version vf the catalog is purged (if it
existsj, and the new version is cataloged as a permanent file. GDRELOD might be
called for two reasons: The data or file catalogs may be tno large or their permanent
files may have been destroyed owing to system failure. Repeated use of the GDB causes
the permanent files to get cluttered with inactive entries and to keep growing in number
of disk PRUs occupied, even though their apparent sizes have not increased very much.
Dumping the catalogs to tape and then reloading enable all the inactive cntries to be
deleted. This process should be done periodically so the user's permanent-file allotment
is not exceeded. To dump the catalogs to tape in a normal run of the GDB, the user calls
GDEUP with M1 and M2 (number of backups) equal to 1. Then, in a separate run of the
GDB, GDRELOD is called. If both catalogs are to be reloaded, GDRELQOD can be
called twice in one run. * Reloading the catalogs must be performed in a separate,
special job in which GDOPEN and GDEUP are not called.

CALL GDRELOD (NDNAME, PFNAME, PFID, PASS, NVIS, INDEX,
LINDEX, ICOND)

where
NDNAME = TRFILECAT or 7TRDATACAT.
PFNAME = permanent-file name of the catalog to be reloaded, L format.
PFID = permanent-file jidentification of the user (needed to catalog a new
permanent file).
PASS = five~word array containing the permanent~file passwords needed to

attach and purge the old version of NDNAME and then to catalog
the new version. L format.

PASS(1) = turnkey, set to zero if password is not to be specified.
PASS(2) = control, set to zero if password is not to be specified.
PASS(3) = modify, set to zero if password is not to be specified.
PASS(4) = extend, set to zero if password is not to be specified.
PASS(5) = read, set to zero if password is not to be specified.

e
Note that the sequence numbers of the data and file catalogs must always match.

60

NVIS = wvisual reel number of the tape on which the backup resides.

A format.

INDEX = array large enough to hold largest data index record or file index
record (see Section 6. 1).

LINDEX = length of INDEX.

ICOND = condition code.

61

6.28 GDCREAT — GDB Create Initial Data and File Catalog (R, £,M, C)

GDCREAT sets up an initial data and file catalog for a new GDB. Once this is
done, any other GDB subroutines can be used as usual in subsequent runs.

GDCREAT (NAMEFC, NAMEDC, PFID, PASS, ICOND)

where
NAMEFC
NAMEDC
PFID
PASS

ICOND

permanent-file name for file catalog, L format.

permanent-file name for data catalog. L format.

identification for user's permanent-file allotment., L format,
five~-word array containing the permanent-file passwords for the

catalogs. L format.

PAS5(1) = turnkey = 0.
PASS(2) = control.
PASS(3) = modify.
PASS(4) = extend.
PASS(5) = read.

condition code.

GDCREAT is called in the same way as any other GDB subroutine, except that
GDOPEN and GDEUP must not be called.

62

6. 29 EXBIT
EXBIT sets the existence bit corresponding to LAT and LLONG in an array.

CALL EXBIT (IDEX, NEX, LAT, LONG, NBIT, ISIG)

where
IDEX = array in which bit is to be set.
NEX = number of bits in IDEX.
AT = latitude (degrees).
LONG = longitude (degrees).
NBIT = existence-bit number corresponding to LAT, LONG. Output.
ISIG 0 means normal exit.

nu

1 means bad exit.
LAT and LONG are the latitude and longitude of the northwest corner of the 1°X1°

square corresponding to NBIT. The order of these squares is assumed to be longitude
1° to 360° within latitude 90° to -89°.

63

6: 30 TATLON

LATLON gets the latitude and longitude from the existence~bit number.

CALL LATLON (NBIT, LAT, LONG)

where
NBIT = exisience-bit number,
TAT = latitude (degrees).
LONG = longitude {degrees).

LAT and LONG are the latitude and longitude of the 1°X1° square corresponding
to NBIT. The order of these squares is assumed to be longitude 1° to 360° within
latitude 90° {0 -89°.

64

6.31 IBIT
IBIT is a function that sets a bit in an array to 0 or 1.

ISIG = IBIT (ITEM, IWRDS, NBITS, Il

where
181G = 0 means normal exit.
= 1 means bad exit.
ITEM = bit number.
IWRDS = array.,
NBITS = number of bits in IWRDS.
1 = value to which bit number "item" is to be set (=0 or 1).

65

8.32 NETBIT

NETBIT is a function that geis 2 bit from an array.

IVAL = NETBIT (ITEM, IWRDS, NBITS, ICODE)

where
IVAL = value of bit retrieved = 0 or 1).
ITEM = bit to be reirieved,
IWRDS = array.
NBITS = mumber of bits in IWRDS,
ICODE 0 means normal exit.

En

1 means bad exit.

66

6. 33 Error Codes

The variable ICOND is an error flag that appears in the calling sequence of most
GDR subroutines. If un error is encountered, the subroutine prints an error comment
and returns control to the calling program. The user should test ICOND after each
call to a GDB subroutine. The following table lists ICOND values.

n

ICOND 0=0.K. Noerror.

1 = general bad exit code.

2 = call to attach a permanent file fajiled.

3 = bad data name, Sequence number, 0r copy number.
4 = file catalog already full.
5 = data catalog already full.

6 = cannot find (data name, sequence number, copy number) in
file catalog.

7 = cannot find (data name, sequence number) in data catalog.

8 = duplicate (data name, sequence number) in data catalog.
9 = trouble packing or unpacking identification word.

10 = duplicate (data name, sequence number, copy number) in file
catalog.

11 = trouble requesting a tape (systemn routine REQUEST).

12 = vigual reel number or data name on tape label does not maich
file catalog; wrong tape may be mounted.

13 = data catalog or file catalog does not have copy number equal
to 1.

14 = new record is longer than old record, so random-access
rewrite is illegal,

15 = ¢all to extend a permanent file failed,

16 = call to open a random-access disk file with OPENRA failed.
17 = not used.

18 = call to catalog a permanent file failed.

19 = buffer to copy to or from tape is too small (< 513 words).

20 = call to RDBUF or WRBUF failed to read or write a tape.

21 = call to PRIMRA package failed.

22 = user wants a data point that does not exist in the data file.

23 = attempi to write more data records than specified maximum
(variable-length records only).

67

24 = eall to purge a permanent file failed.

25 = attempt to read past end of information on a random file.
26 = nonzero code and status in call to CIGL.

27 = buffer too small to hold the data or file index record.

28 = attempt to rewrite in place on a permanent file,

29 = illegal attempt to purge file or data index record; no
modify permission.

30 = attempt to deactivate a nonpool {ape.
31 = duplicate visual reel number in file catalog.
32 = no modify permission.

68

7. SAMPLE USER PROGRAMS (code only)

69

[aXalatalal

100

[afakal

200

[alalal

lalalal

500

PRRCRDING PAGE BLANK NOT FILMED

PROGRAM TESTOL LINPUT+OUTPUT +TAPEL s TAPE2 4 TAPEGG=QUTPUT)
WRITE A NEW GDB DATA FILE WITH FIXED LENGTH RECORDS
SEQUENTIAL WRITE
ONE TAPE COPY QNLY
BACKUP DATA AND FILE CATALOGS

COMMQON/GDLFNS/LFNS {6}

DIMENSION FCPASS(S5)

DATA FCPASS/TLREDWOOD »3LEL M43 40/
PATA FCNAME POOL/6LGDFILE «7RGDBEPOGL /
DIMENSION IFNDEX(8)+INDEX(1500)

DATA LFNDEXLINDEX,LIND/8¢1500,99/
INTEGER FET(8)

DATA FNAME/6LTAREGO/

CATA LENS/SLTAPELSLTAPE2+5LTAPE3 45L.TAPES +6LTAPESS +6L TAPEDY/
QATA HZERC/=0/

DIMENSION I1BUFF (32000 .LBUFF(2)

DATA LBUFF/320040/

DIMENSION ISTORI8)

DATA 15TOR/B#0/

DATA NPERMsMCOPY/ 041/

GYHENSION [REC{3}

DATA LREC/2/

LUERR=LFNS(5)

OPEN DATA AND FILE CA
CALL GDOPEN{FCNAME +FCPASS
IF{ICOND,LGT,.0} GO TO 900

CREATE DATA INDEX RECORD
INDEX (1) =LING
ENDEX (2) =7RSANPLE]
INDEX{3)=1
INDEXt4}=]TIMER(1)
INDEX{5)=3
INDEX (6} =0
INDEX(7)=5000
INDEX (8) =0
INDEX (91 =0
INDEX(10)=0
INDEX(11)=5000
INDEX{12)=3
DO 100 I=1,484
INDEX(1+12)=MZERD
CONTINUE
INDEX (97) =1OHEXISTENCE
INDEX{98)=10HBITS ARE A
INDEX (99} =10HLL ON

T8
+PO0L + ICOND)

WRITE DATA FILE

DG 200 17145000

IREC{1) =0

IRECI2}=0

IREC(3) =1

CALL GDWRIT(FNAMEFETINDEX, 1BUFF (LBUFF,
1IRECLREC4ISTOR 4LUERR » ICOND)
IF{ICCND,GT,0} GO TO 900

CONTINUE

CALL GDWRIT{FNAME «FET INDEX o IHUFF JLBUFF 4
1IREC 04 1STOR4LUERR ¢ ICOND)

IFLICOND,GT.0) GO TO 900

CREATE GDB DATA FILE
CALL GDCOF (FNAME 4FET s IBUFF \LBUFF 4 INDEX ¢NPERMyDFPASS +HF 1Dy
LMCORY y ICOND)
IF{ICOND,GT,.0) GO TO 90O

CLOYE DATA AND FILE CATALDGS
BACKUP DATA AND FILE CATALOGS
CALL GDEUP{1s19141+INDEXLINDEXICOND}

STOF
CONT INUE
CALL ABNORML
END
ORIGINAT
OF Pog; PAGR 15

B QUALITY)

71

1
!
%
i
i

[aka¥aTa¥al

220

210
200

300
900

IN4g,
o cetl}gl}l!t"

PROGRAH TESTOZ (INPUT+0UTPUT sTAPEL « TARPEZ + TAPE9$=0UTPUT)
READ AND PRINT TWO GDB DATA FILES
ALTOMATIC HODE
FORWARD READ
FIXED LENGTH UNIT RECORDS

COMMON/GDLFNS/LFNS(6)

DIMENSION FCPASS(5)

DATA FCPASS5/7LREDNOOD4#0/

DATA FCNAME ¢ POOL/6LGDF 1LEv7RGDEPOOL/
DIMENSION IFNDEX(B).INDEX(1500)

DATA 'LFNDEX,LINDEX/B41500/

DATA LFNS/5LTAPEL+SLTAPE2+SLTAPES+SLTAPEA 1 6L TAPESS + &1 TAPEDY/
INTEGER FET (8!}

BATA FNAMEZ6LTAPEGD/

DIMENSION IBUFF(3200)

DIMENSION LBUFFtz}

DATA LBUFF/3200,0/

DIMENSION 15TOR(8)

DATA ISTOR/8%0/s

DIMENSION IREC(3)

BATA LREC/3/

DIMENSION IBIT{1500)

EQUIVALENCE {IBIT«INDEX(13))
DIMENSION NDNAME(2) +NSEQ{2} 4NCOPY (2}
DATA NDNAME/7RSAMPLEL+TRSAMPLEZ/
DATA NSEQ7141/

DATA NCOPY/0+0/

DATA MODESNBITWITYRE/0+04L/
LUERR=LFNS{5)

OPEN DATA AND FILE CATS,
CALL GDOPEN{FCMAME +FCPASS4POCOL » ICOND?
IF{ICOND,GT,0) GD TO 900

ATTACH GATA FILE (AND GET PATA INDEX RECORD)
£C 300 J=1.42
CALL GDADF {NDNAME (J} ,NSEG{J} yNCOPY (J) (FNAME JBFPASSFET,
11BUFF yLBUFF y INDEX 4L INDEX 4 1COND)
IFLICCND,6T,0) GO TO 900

READ AND PRINT ALL EXISTING UNIT RECORDS IN THE FILF

NRECS=INDEX(7) .

NBIT=0

DC 220 JJ=1,.8

ISTCR{JJI=0

DC 200 I=]1+NRECS

IREC(1)=0

IREC(2)=0

IREC(3)=0

CALL GDREAD (FNAME JFET yINDEX JMODE 4 IBIT+HBIT (IBUFF JLBUFF ¢
LIREC4LRECAMRECISTORITYPELUERR y ICOND)

IF(ICCND,.GT,0) GO TO 900

PRINT 2104NBITMREC,[REC
FORFAT(S110)
CGNTINUE

RELEASE DI1SK FILE FNAME S0 IT CAN BE REUSED
CALL GDRDISK (FNAMEWFET?

CONTINUVE
STOP
CONTINUE

CALL ABNORML
END

s

12

PROGRAM TESTO3 (INPUT «OUTPUT « TAPE L » TAPE 2+ TAPES9=DUTPUT)
GDB TEST = CREATE GDB DATA FILE WITH VARIABLE LENGTH RECS.
RANBOM HRITE
REVERSE ORDER
ONE TAPE COPY

[2¥alalaXalal

CCHMPON/GDLFHS/LFNS L8)

DIHENSION LFNDEX(8) 4INDEX(1500)

DATA LFNDEXSLTNDEX LIND/B415004177
DAL LFNS/ELTAPEL+SLTAPEZ25SLTAREI +SLTAPE4+ 6L TAPES9 46LTAPESS/
DIMERSINN FCPASS (5}

DATA FCRASS/TLREDWOODs3LELA+300/
DATA FCNAHKE+POOL 76LGDF[LE+ TRGBAPOOL/
INTEGER FET{8)

CATA FNAME/<APESO/

DIHENSION IBUFF 110241 LBUFF(2)

DATA LBUFF/5124512/

DIMENSION ISTOR{8}

DATA ISTOR/a®0/

DATA NPERM/Q/

CIHENSION IREC(100}

LBTOT=LBUFF {1} +LBUFF (2}
LUERR=LFNS (5]

MCOPY=1
MZERO=T777TT?T7T77TTI77777778

C OPEN CATALOGS
CALL GDOPEN tFCNAME FCPASS4PUOL 4 ICOND)
IF(ICONDWGT,L0) GO TO 900

C SET UP DATA INDEX RECORD
IRDEX{1}=LIND
INDEX {2) =7RVARODO)
INDEX{3)=]
INDEX(4)=ITIMER(L)
INDEX{S) =100
INDEX (6) =1
INDEX{7)=100
INDEX(8)=0
INDEX(9) =0
INDEX{10) =0
IKDEX(L1)=100
INDEX(121=3
INDEX{13)=MZERO
INDEX{14)=MZERD
IRDEX{15)=1pHTHIS 15 A
INCEX(16)=10HTEST OF VA
INDEX(17)=10HRIABLE LEN

[aRalal

WRITE UNIT RECORDS IN REVERSE ORDER

LASTSINDEX(T)
ITYRE=2
DC {10 1I=]4LAST
HEIT=LAST-I1+1
LREC=NBIT
DO 50 J=1.LREC
IREC =0

50 CONTINUE
IRECILREC}ELREC

CALL GDREWIt {FHAME oFET o INDEX o 1BUFF LBUFF , IREC (LREC
LISTCR4NBIT I TYPE JLUERR, ICOND)
IF(ICONDLGTL0) GO TO 900
110 CONTINUE
CALL GDREMR {FNAME yFET + INDEX 4 IBUFF yLBUFF 4 IREC 40+
1ISTCR4NBIT+ITYPE oLUERR + ICOND)
IF(ICOND,GT,0) GO TO 900

CREATE GDB DATA FILE
CALL GDCDF {FNAME+FET+ IBUFF+LBTOY 4 INDEX +NPERM4DFPASS4PFID

1HCQPY « ICOND)
IF{ICORD,GT.0) GO TO 900

[aXalal

an

CALL GDEUP{O+Ov141 4 INDEXL INDEXsICONI)
s70P
900 CONTINUE
CALL ABNORML
END

ORIGINAL PAGE IS
OF POOR QUALITY|
73

PROGRAM TESTO4 (INPUT +OUTPUT+TAPEL +TAPE2+TAPE99=0UTRUT)
READ AND PRINT GDB DATA FILE
VARIABLE LENGTH UNIT RECORDS
READ IN REVERSE ORDER (MANUAL MODE!

nnNnn

CCMMON/GDLFNG/LFNS (8)

DIMENSION FCPASS(S)

DATA FCPASS/TLREDWOOD +4#0/

DATA FCNAME,POOL/6LGDF ILE TRGDBPCOL/
DIMENSION IFNDEX (S} +INDEX (1500}

DATA LFNDEX,LINDEX/B+1500/

DATA LFNG/SLTAPEL»SI. TAPE2+SL.TAPE+SLTAPE4«6LTAPESG +6L TARESY/
INTEGER FET(8)

DATA FNAME/<APESD/

DIMENSION TBUFF (1024} «LBUFF(2)

DATA LBUFF/5124512/

DIMENSYION 1STOR({8)

BATA ISTOR/8%*0/

DIMENSION IREC(100)

DATA LREC/100/
LATCTSLBUFF (1) + BUFF(2)
LUERR=LFNS(5)

C OPEN DATA AND FILE CATSe
CALL GPOPEN{FCHNAME+FCPASS +POOL « ICOND)
IF (ICOND,GT.O0! GO TO 900

C ATTACH DATA FILE {ARD GET DATA INDEX RECCRD)
NENAME=TRVARQODL
NSEG=1
RCOPY=1
CALL GDADF (NDNAME (NSEQ,NCOPY (FNAME (DFPASS (FET 4 IBUFF (LBTOT 4 INDEX .
1L INDEX y ICOND)
IF{1COND,GT,0) GO TO 900

c : RgAD AND PRINT FILE IN REVERSE ORDER
< HANUAL HMODE- IBIT IS NOT USED
HMODE=1
ITYPE=2
NRECS=INDEX(T)
DO 200 I=14HRECS
C FOR READ, SET NBIT TO ONE LESS THAN THE DESIRED UNIT RECCRD
NBIT=100-1
CALL GDREAD({FMAME ,FET 4 INDEX ,MODE4IBIT NBIT,{BUFF (LBUFF,
1IREC LREC JMREC,15T0R 4 I TYPE 4L.UERR 4+ 1 CONDY
IF{ICOND,EO,22) GO TO 200
IF (ICOND,GT,D) GO TQ 520
PRINT 210.HRECIREC(MREC}
210 FORMATIZ2IS)
200 CONTINUE
SToP
900 CONTINUE
CALL ABNORML
END

T4

APPENDIX A

STRUCTURE DIAGRAMS OF THE GDB SYSTEM ORGANIZATION

PRECFDING PAGE

APPENDIX A

STRUCTURE DIAGRAMS OF THE GDB SYSTEM ORGANIZATION

The following block diagrams describe the organization of the GDB subroutines.
Some of these were not mentioned in the previous documentation since they are inter-
nal to the GDB system and are never called by the user. Note that many GDB sub-
routines that the user may call are also called by cther subroutines.

Internally to the GDB, each entry in the data catalog or file catalog is identified
by 2 unique ID word. Subroutines DNAM, MAKEID, GETID, and LOOKUP manipulate
this ID word, which contains the following information packed into one 60-bit computer

word;
: Sequence Copy
| Data Name No. No.
, Content
59 | 57 16 | 15 8| 7 0 Bit Numver

Most of the names given in the diagrams are individual subroutine or fmetion
names. However, some represent a package of routines. These are described below.

FORTRAN random-access routines:
OPENMS — open file
READMS — random read

WRITMS — random write

RDBUF package, which performs regular sequential input/output, avoiding Fortran
completely:

OPBUTY ~ open file
RDBUF ~ read

WRBUF -~ write

BLANK NOT FILMED A-3

RWBUF -~ rewind
EOFBUF -~ write end of file
UNLOD -— unload

PRIMRA package, which performs random-access input/output, avoiding Fortran;
OPENRA — open the file
READRA — random read
WRITRA - random write
REWRRA -~ random rewrite in place

Subroutine EPRINT is called by nearly all the GDB routines and is therefor: not
mentioned on the diagrams. Whenever an error is detected by a GDB subroutine
(ICOND > 0), it calls EPRINT to print an error message and then returns control to

the user.

GDOPEN

open

data and

file catalogs
{
) |
GDADC GDAFC
attach data attach file
catalog catalog
]]
J I i }
GDATT GDPCAT Foriran MAKEID
attach print file random-~ make
permanent file or data access routines ID word
catalog
GDADF
attach
data file
|
i i | | 1
GDATT GDCOPY | | PRIMRA GDRDIR GDLABEL RDBUF
attach disk/tape | | random- read daia request non-Fortran
permanent copy access index record | |tape and check | | read/write
file package GDB label routines

GDREAD

read
data record

GDRD

read word
string from
random file

PRIMRA

random-
access
package

GDWRIT

write a
data record
(sequential)

1

PRIMRA

random-~
access
package

RESERVE

reserve
space on
disk

GDWR

write word
string to
random file

PRIMRA

random-access

package

GDREWR
random

data record

write

{ | i
PRIMRA RESERVE GDRW GDWR
random-~- reserve rewrite word write word
access space on string to string to
package disk random file random file

GDRTIR GDRDIR
read file read data
index record index record

1
I i
LOOKUP Fortran
find ID random-
word in acecess
catalog routines

GDPCAT
print file
or data
catalog

GDSCAT

sort file
or data
catalog

Fortran

random-
access
routines

GDRCAT

release
catalogs

refurn
digk file

GDRDISK

RDBUF

routine s

non-Fortran
read/write

GDCDF

creaie
data file

|

GDWDIR

write data
index record
in data
catalog

RDBUF

non-Fortran
read/write
roulines

GDWTFIR
write file
index record
in file
catalog

GDCOPY

disk/tape
copy

GDCATLG

catalog
permanent
file

GDLABEL

request
tape and check
GDB label

01-v

GDEUP

end update
by closing
catalogs
| |
GDhCDC GDCTC
close data close file
catalog catalog
[_ f
[1 ! | 1 | | i | i [I
GDRWFI GDEXT GDWFIR GETRDAT | | GDTABEL GDRTIR GETID RDBUF RANOFT GDSCAT GDPCAT Fortran
rewrite extend write file get reque:t tape read file unpack | |non-Fortran turn off sort data priit random-
file index | {permanent ; | index record dote and check index record | |1ID word read/write randem hit or file file mv data| | recess
record file in file ¢ atalog GDB l=hel routines in FET catalog catalog 3 routines

GDAPT

add pool
tape to file

catalog

GETID RDBUF GETDAT GDATFIR GDREQ
unpack | non-TFortran get add file request
ID word read/write date index record tape

routines to file catalog
GDDEACT
deactivate
pool tape
r
I | I I
GDRFIR GETID GETDAT GDRWFI
read mpack get rewrite
file index ID word date file index
record . record

A-11

GDWDIR
wyite data
index record
in data
catalog
T
| |
MAXEID Fortran
make random-access
D word routines

GDATFIR

add file
index record
to file catalog

MAKEID

make
D word

1

Fortran

random-access
routines

A-12

GDPURDS

purge data
get completely

i % 1
GDPDIR GDRDT GDRPF
purge data reloase release
index record data tapes permanent
files
GDRDT
release
data
tapes
|
| =] f { I |
LOOKUP! ;GDLABEL GDRTIR POOL RDBUF GDRWFI
find ID rvequest | |read file change file non~Forfran rewrite
word in tape and index index record read/write file index
catalog check record to pool tape routines record
GDB label
GETID GETDAT
unpack get
ID word date

A-13 .

GDRPT
release
permanent
~ files
i
! | i |] |

LOOKUP GDPURG GDRFIR RDBUF GDPFIR -] GDATT
find ID purge read file non-Fortran purge file attach
word in permanent index read/write index permanent
catalog file record routines record file

GDPDIR

purge
data index
record
i
I i | |
LOOKUP GETID GDRDIR GDRWDI
find unpack read data rewrite
ID word ID word index data index
in catalog record record

A-14

GDPFIR

purge
file index
record
_ L
I 1 : —_ i
LOOKUP GETID GDRFIR GDRWF.
find M unpack read file rewrite
wored in ID word index file index
catalog record record
GDRWDI GDRWFI
rewrite rewrite
data index file index
record record
I |
| » }] I
LOOKUP GETMOD MAKEID Fortran
find ID get permanent- make random-
word in file modify ID word access
catalog permission routines
bit

A-15

GDRELOD

reload data
or file catalog

from tape
|
| |] | | | i !
GDLABEL RDBUF Fortran GDATT GDPURG GDPCAT GDCATLG RANOFT
redquest non-Fortran random- attach purge print file catalog turn off
tape and check read/write access permanent permanent or data permanent random bit
GDB label routines routine file file catalog file in FET

o91-Vv

GDCREAT

create

data and
file catalogs
for new GDB

I

Fortran

random-
2CCess
routines

GDCATLG

catalog
permanent
file

RANOFF

tum off
random bit
in FET

GDWFIR

write file
index reecord
in file
catalog

GDRFIR

read file
index record

get
date

GETDAT

GDRWFI
rewrite

file index
record

GDATIR

add file
index record to
file catalog

A-17

GETMOD

get permanent-

file modify

permission bit

SEETET

get copy
of Fortran

FET for
file

GDLABEL

request tape
and chechk
GDB label

|

GDREQ

request
tape

ROUBUF

non~Fortran
read/write
routines

A-18

LOOKUP

find ID
word in
catalog

MAKEID

make
D word

L UTC—— |

MAKEID

make
ID word

DNAM

data name/
number

conversion

A-19

