
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

GEOPHYSICAL DATA SASE

M. R. Williamson and L. R. Kirschner

(;NASA-CF-142960)	 G-'OPHYSICAL DkT'	 9Sr	 i:75-Z53bB
(Smithsonian Astrophysical Obst^!rvato=y)
98 p HC $4.75	 CSCL 08F

Unclas
G3/46 2b401

7 3 ¢
	February 1975	 c^g^'

A
	 ^^

Smithsonian Institution
Astrophysical Observatory

Cambridge, Massachusetts 02138

ii

i^

1

TABLE OF CONTENTS

P
^ age

ABSTRACT.	 V

INTRODUCTION....		 •...,..•......_..	 1

2 OVERVIEW OF THE GDB		
+ • . • 3

•
2.1 Design Con>sidea:atiohs 6 3
2:2 Components. , .	 .,	;	 .."	 .. , 4
.2.3 Capabilities and Limitations , • 6

3 FILE STRUCTURE . • 		 f	 .. • ... , .. 9
3.1 : The Data..:.:e..,.`.	 .:.f .:........	_ 9
3.2 The Catalogs .. ,_:...	 ... 11

4 THE GDB SYSTEM. • 15
4.1 User Functions	
4.2 Data Retrieval.......		 •	 17
4.3 Data File Creation , • 18
4.4 Protection Mechanisms. 	 v o ..	 • , • f . ,	 .. 19

5 'USERS' GUIDE TO THE GDB e	 ,	 : '21
5. 1 Introduction.. , ..:	 •	 . . ^	 ^'	 .:.. 21
5.2 Read.e...,......`.,	:.: 21
5.3 Write :		 ,..	 ...' . , ...	 , , .24
5.4 rt-mcient Use of Read/Write 25
55 Creation of a Data Set	 27
5.6 Maintenance of a Data Base . `. ".. 	:..... , 28

6 SUBROUTINE DOCUMENTATION , 31
6.1 The Index Array .. •:. 31.
6.2 File Index Record • .. , .. , ..:.. 	 .. , 32
6.3	 , GDOPEN- GDB Open Catalogs (R).: 	`.`, 33`
6.4 GDA-DF . - GDB Attach Data Fits (R) : 	 ..' 34
6.5	 ` GDREAD - GDB Read. Data Record (R)f 35
6. 6. -- GDB Write Data Record , , : ; , .:.. 37
6.7 GDREWR -- GDB Rewrite Data Record	 `...............	 ,	 .. 39
6.8 ; GDRDIII . - GDB Read Data Index Record :(R) .. 	 :..: 4I
6.9 GDRFIR - GDB Read F? e Index Record (R) 42
6.- 10 GDP CAT - GDB Prirt Catalags (R) '. • , ... 43
6. 11 GDRCAT -- bfB 11--lease Catalogs (R) 	:.... , 44
6. 12 GDRDISK -- GDB	 u.rxiRet	 Disk File (R) 	 ..

. 45..

i.i.i

±k
i

^i

r;
'	 3i

TABLE OF CONTENTS (Cont.)

Page

6.13 GDCDF — GDB Create Data File (R, E) 46
6.14 GDEUP — GDB End Update (R, E)...................... 47
6.15 GDAPT — GDB Add Pool Tape (R, E) 48
6.16 GDDEACT — GDB Deactivate Pool Tape (R, E) 49
6.17 GDWDIR — GDB Write Data Index Record (R, E) 50
6.18 GDAFIR — GDB Add File Index RCcord (R, E) 51
6.19 GDPURDS — GDB Purge Data Set (R, E, M) 52
6.20 GDRDT — GDB Release Data Tape (R, E, M) 53
6.21 GDRPF — GDB Release Permanent	 (R, E, M)_Fil.e 54
6.22 GDPDIR —	 B Purge Data Index Record (R, E, M)GD 55
6.23 GDPFIR — GDB Purge File Index Record (R, E, M) 56
6.24 GDRWDI — GDB Re_wrife Data Index Record (R, E, M) 57
6.25 GDRWFI — GDB Rewrite File ndex Record (R, E, M)......... 58
6.26 GDSAVE — GDB Save a Dais. Tape (R) E:, X) . , 0 . 4 0 0 , 59
6.27 GDRELOD — GDB Reload Catalog (R, E, C) 60
6.28 GDCREAT — GDB Create initial Data and File Catalog (R, E,

M, C). , 62
6.29 EXB1T 63
6.30 LATLOIDT... 64
6.31 IBIT ... 65
6.32 NETBIT	 66
6.33 Error Codes 67

7	 SAMPLE USER PROGRAMS........ 69

APPENDIX A: STRUCTURE DIAGRAMS OF THE GDB SYSTE'.4
ORGWI ATION A-1

t

i

4

5

7SS
Ir1.

r

`s

4

v

F!

E

ABSTRACT

This report describes a general data-management system that provides a random-
access capability for large amounts of data. The system operates on a CDC 6400 com-
puter using a combination of magnetic tape and disk storage. A Fortran subroutine
package is provided to simplify the maintenance and use of the data.

k
.] __ - __ -	

I

GEOPHYSICAL DATA BASE

M. R. Williamson and L. R. Kirschner

1. INTRODUCTION

Our long-range objective is to design and construct a computerized geophysical
data base (GDS) that will contain all available and appropriate data for the earth-
dynamics areas of the Earth and Ocean Physics Applications Program. The first task
was to develop a data file structure and a system for managing the data. This task is
complete, and the results are described in this report. The second task, to collect
and compile the data for the GDB, has been started, with a few data now available.

The GDB was de,3igned to have maximum flexibility compatible with our immediate
reoiirements. ghat has evolved is a general data-management system appropriate
to :a wide range of needs. The GDB provides efficient random access of many (up to
disk capacity), '.-.rge (up to 1.5 X 10 6 characters) subsets of a large (up to the number
of magnetic tapes available) conglomerate of data. The system also offers file-
management capabilities, including protection of the data. The GDB does not assume
particular formats for data records. It could easily be a basic tool for designing a
group of data sets with a more compl «x and specialized organization.

The GDB operates on the CDC 6400 computer. An interactive capability can be
provided by the Intercom system. The GDB should be easily transferable to other
modern computing systems with tape and disk facilities and a Fortran compiler. The

This work was supported in part by grant NGR 09-015-002 from the National Aeronautics
and Space Administration.

ia

r

f

1

.

GDB subroutines are written in Fortran except for some basic input/output routines
that are coded in Compass. Those routines would need to be reprogramed for use on
another computer.

i,This report serves as both a description of the GDB and a users' manual. ;section
2 outlines the general capabilities end Limitations of the GDB, and Sections 3 and 4
detail the data file structure and the system. Sections 5 through 7 constitute a users'
manual. Structure diagrams of the GDB sy-stem organization are given in Appendix A.

2

__.	 i	 I	 I	 I	 I	 I

2. OVERVIEW OF THE GDB

2. 1 Design Considerations

A large number of data relating to the earth's lithosphere are available in com-
puter--accessible form, and increasing amounts are expected to result from future
research. Some typical current data include surface gravity, heat flow, topographic
height, crustal thickness, seismic-velocity profiles, density variations, earthquake
history, and plate motion. 'these data are mostly numerical, but future data may be
of a descriptive type and may include textual information. in general, the data are
complex enough to require tabular compilations.

To estimate the amount of data involved, we must determine the desired geo-
graphical resolution. The finest resolution to be cataloged Trust be small enough to
distinguish geological detail but large enough to give a manageable number of data
points. For current scientific applications, areas of 100 tan X 100 km, roughly
10 X IQ , seem to satisfy these conflicting criteria best. This means approximately
4X 10 data points. in some cases, the data will have sparse co yerage over the earth's
surface, while in others, the amount of data will vary significantly from point to point.
Assuming an average of SO characters per data point for each of 30 to 3000 types of
data, the estimated amount of data involved is 10 8 to 10 10 characters, a number that
is consistent with Smithsonian Astrophysical Observatory's estimate of the amount of
existing earth-physi^s data.

Since the data will be used in many ways for several related projects, a random-
access capability is needed. The critical requirement, then, is for random access of
108 to 10 10 characters. This requirement dictates a dual system that uses magnetic
tapes for permanent storage and dish files for temporary storage,

Earth-Physics Data-Management Study, Final Report, Grant NGR 09-015-107,
Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, January 1971,
69 pp.

l
f<

3

I

_^	 ^	 1	 1	 l

i

in addition, the GDB has been designed to fulfill other requirements. Owing to

the large amount of data and large numbers of potential users, automatic file manago-

ment is indicated — to maintain records of where and how the data are stored, to pro-

vide for protection and backup of data files, to facilitate changes or additions to the

data, and to keep users informed of such changes. Because the full scope of future

use cannot be predicted, it is important that there be few limitations on the structure

and format of the data. The possibility of remote users suggests that the system should

be made available through an interactive as well as a batch system. Finally, as is true

for any system that will be in use for many years, it is desirable that the system be

machine transferrable.

2.2 Components

Figure 1 is a schematic diagram of the GDB, which consists of a set of computer

files and a computer system. The files are organized into a data base containing

catalogs, permanent data files on disk and on magnetic tape, pool tapes, and backup

tapes. The GDB system is a Fortran subroutine package. The user writes a nsain

program, calling the GDB subroutines to manipulate the files.

Permanent GDB files are maintained as a combination of magnetic tapes and disk

storage. Magnetic tapes constitute the principal means of data storage because of the

large amount of data involved, but permanent direct--access data files are allowed.

Two permanent disk files, the data catalog and the file catalog, contain the informa-

tion necessary to access the data. The former consists of a description of each data

set and includes the information used by the GDB to read the datA and general informa-

tion of interest to users. The file catalog comprises a description of each storage

unit in the GDB, i. e., each tape or permanent disk file, and contains the necessary

information for the GDB to manage data storage.

The data base looks much like an input/output device with subroutines to open and

close files, read and write records, etc. Routines to create and maintain the data-

base catalogs are also included. Thus, a private data base can be created by a user.

Moreover, it is possible to access more than one data base from one main program.

4

USER

"n	 MAIN
PROGRAM

FORTRAN
SUBROUTINE
PACKAGE

READ CATALOG

ATTACH FILE
READ RECORD

WRITE RECORD
CREATE FILE

FILE CATALOG

PERMANENT
DIRECT-ACCESS
DATA FILES

TEMPORARY
DIRECT-ACCESS
DATA FILES

DB components.

b i	 f

•
iw

GDD FILES
GDS SYSTEM

DATA CATALOG

MAGNETIC
PURGE FILE
	

TAPE
LIBRARY

Data are not accessed directly from the magnetic tapes. Intermediate, temporary

disk files are created so that the data can be accessed randomly. The GDB data files

are written as one continuous string of computer words, malting it possible to read or

write the file with a buffer of arbitrary size. The GDB maintains an existence-bit

string for each data set, which is used to locate individual records in the dat a file.

Indirect addressing is used for data files with variable-length records. These points

are discussed in detail in Section 3. 1.

2.3 Capabilities and Limitations

The data in the GDB have two properties that are important to the practicality of

the system. First, they are divided by type into subsets; in this report, these are

called data sets. It is assumed that only a limited number of data sets will be used

at the same time the limit depending on the amount of temporary disk storage avail-

able on the computer. Second, the data sets are subdivided into ordered units of

information, which we call unit records. The GDB allows random access of unit

records, but there is a limit, depending on many factors, to the extent of the random

access, and therefore the order of the unit records may be important.

Within that framework, the GDB allows users great flexibility in organizing and

using these data sets. A data set may have fixed- or variable-length unit records; the

size and number of unit records is arbitrary as long as the entire amount of data does

not exceed one magnetic tape. Tapes are written without logical--record gaps, thus

limiting each tape file to : 5 X 106 characters. The number of data sets used simul-

taneously is arbitrary as long as the temporary disk space available is not exceeded.

Since records are located by means of an existence--bit string, computer storage must

allow for the bit strings when a file is being read or written. One bit for each possible

record in the data set is required for every file being used. Buffers must also be

supplied for all files being read or written.

The system is written so that thc. major elements of computer storage are provided

by the user, and therefore the user retains control of the t-adeoff between increased

computer storage requirements and increased computer operating time. In any case,

using the GDB should not significantly increase the central processor time needed to

process data, but the amount of peripheral processor time can vary greatly.

6

The GDB provides automatic file management. The catalogs contain a complete
description of the status of the data base, so users need not concern themselves with
where or how the data are stored. For example, to read a data set, a user calls
one subroutine to attach the catalogs, another to "attach" the data set identified by
a data name and sequence number, and finally a third to return the desired unit record.
Creating a data sut is a similarly simple process. The GDB keeps track of all tapes
automatically and provides optional backup for data sets or for the catalogs. In addi-
tion, the data catalog contains a variable-length comment section for each data set so
that the data base can provide users with all the information necessary to interpret
the data contained in it.

The GDB provides protection for files. All tapes in the GDB have a tape label as
the first record, which must correspond to the tape description in the file catalog
before it can be read or written by the GDB subroutines. In addition, there is a pass-
word system, which corresponds roughly to the permanent-file password system of
the CDC 6400. The five protection passwords follow:

Read	 - read any data set or catalog.
Extend - create new data sets; add or deactivate pool tapes.
Modify - purge any data set or catalog entry.
Control - purge catalog.
Turnkey - any operation.

These protection systems can be augmented by appropriate use of GDB backup proce-
dures, which are provided for both data sets and catalogs.

The efficiency of the GDB depends largely on the user. For example, the user
has control of buffer sizes; in some cases, the amount of peripheral processor time
necessary to read a file will be proportional to the size of the buffer. Also, the order
of the records in the file may be critical since a disk read or write is required whenever
the desired record is not already in the buffer. A minimum of 7.8 min is necessary to
read or write, from the disk, the largest data file allowed in the GDB (1.5 X 106 charac-
ters). On the other hand, a disk access may require 0. 1 sec of peripheral processor
time, and thus if a disk access were required to read or write each of 4 X 10 4 records,
1 hour of peripheral processor time would be needed. The tape-copy routines are as

7

... 	 ._.__.........._.	 i	 _.	 _...._

efficient as the operating system allows. Although the peripheral processor time varies
with the system environment, a full tape can be copied in as little as 5 min.

The GDB operates on the CDC 6400 computer. An interactive capability can be
provided by the Intercom system. The GDB should be easily transferable to other
modern computing systems with tape and disk facilities and a Fortran compiler. The
GDB subroutines are written. in Fortran except for some basic input/output routines
that are coded in Compass. Those routines would need to be reprogramed for use on
another computer.

3. FILE STRUCTURE

3. 1 The Data

The data in the GDB are divided by type into data sets, and each set is further

aivided into units of information called unit records. (In this context, unit record

denotes a logical division of the data. It does not mean a collection of computer words

followed by an end-of-record mark.) For example, if the data set is a compilation of

1 0 X P mean gravity data, each unit record might contain information such as the

anomaly, the associated error, and a description of the source of the data.

A data set is identified by a seven-character data name and a sequence number,

1 to 225. Each data set is listed as one entry in the data catalog and consists of one

or more tape file (or permanent disk file) copies of the data. Each copy has a uniclue

copy number 1 to 225 and is 1 `.sted as one entry in the file catalog. A tape file con-

sists of a tape label record followed by the data file, while a permanent disk data file

consists of only the data file.

Each data fife contains 1) a data index section, which is a copy of the data index

record in the data catalog; 2) an address section, which is needed only ii unit records

have variable lengths; and 3) a data section, which contains the unit records. Figure 2

is a diagram of a data file.

Each unit record in the GDB contains the data associated with a particular area

on the earth's surface, the earth being divided into unit areas ordered in some

way. For data files with fixea-length unitt records, the order of the records in the

data section corresponds to the order of the unit areas. Missing data do not require

a special code. Each data set has associated with it a string of bits, called the

existence--bit string, which contains one bit for each unit area; the bit is on (or off)

if there is (or is not) a unit record for that area. The GDB locates a unit record in a

data file by counting on-bits in the existence-bit string. For variable-length records,

an indirect addressing system uses the address section of the data file. The address

9

Assume that the bit string 10111100... 1 (N nits; M on-bits) is associated with areas
a1, a2, a3$ "" aN. Then the data file would appear as follows, with fixed-length trait

records:

Data index sectionData Index

Record 1:
data associated with a1

Record 2:
data associated with a3

Record 3:
data associated with a¢

Record M:
data associated with a

M unit records

End of record

The data file would appear as follows, with variable-length unit records:

Data Index

Address and "length of record Z

Address and length of record 2

Address and length of record M

Record 1:
data associated with a1

Record 2:
data associated with a3

Record M:
data associated with aN

Note: There are no data associated with a2.

Figure 2. Data file.

Data index section

Address section: M words

1
Data section: M unit records

in any order
a

J

End of record
i

F

I

10
f

9

section has one packed word for each unit record. Tlus word contains the following
pointers to the unit record in the data section:

1) The number of the physical record unit (PRU) in the data file that contains the
first word of the unit record.

I	 2) The position in that PRU of the first word of the unit record.

3) The length of the unit record in words.

}	 The address of the variable--length record is located by counting the existence bits.
The variable-,length records in the data section are in the order in which they werer.
written by the program that created the file.

The GDB uses pool tapes, data tapes, and catalog backup tapes. The first record
of all tapes is the tape label record, which is a copy of the file index record in the file
catalog: For pool tapes, the tape label record is followed by an end-of-file; for data
tapes, it is followed by the data file and an end-of--file; and for tapes that contain a
backup copy of the data or file catalog, it is followed by a copy of the appropriate direct
accessfile.

3.2 The Catalogs

The data and file catalogs utilized by the GDB to manage the data provide a complete
description of the status of the GDB. Each data set is described by one entry in the data
catalog, and each tape and permanent disk file is described by one entry in the file catalog.

The data catalog is a permanent direct-access file consisting of variable-length
records, each one of which is called a data index record. One data index record exists
for each data set (data name, sequenr.9 number) in the GDB, with the following format:

1) Length of index record in words. Integer.
2) Data name. Seven cb.aracters.
3) Sequence number. Integer 1-255.
4) Creation date. Hollerith, as returned by the function 1T1MER(1).
5) Maximum unit record length in words. Integer.
6) Fixed-length (0) or variable-length (-- 1) unit records.

The physical record unit of a device is the basic information unit for reading or
writing. For the disk, it is 64 words; for magnetic tapes in binary mode, the PRU
size is 512 words.

11

Number of unit records. Integer.
Number of disk PRUs in the index section. Integer.

.., Nun3ber of PRUs an the address section. Integer.
10) Number of PRUs in the data section. Integer.
11) Number of existence bits. Integer.
12) Length of comments in words. Inte;Pr.
13) ... (n) existence-bit array.

n+l) , .. (m) comments including a description of the data, format, and sources.

The data index record is also described in Section 6.1. The first record in the data
catalog contains the following:

1) Length= 12.
2) Data name = 7RDATACAT.
3) Sequence number of the data catalog.
4) Creation date of the data catalog.
5) Maximum length of the data index records.,
6) 1.
7) Number of data index records (including the special data-catalog index record)

that are in the data catalog.
S) 0.
9) 0.

10) 0.
11) 0.
12) 0.

The data catalog is sorted by data name and sequence number.

The file catalog is a permanent direct-access file consisting of fixed-length records,
each one of which is called a file index record. There is one file index record for each
tape and permanent direct-access file associated with the GDB. Each file index record
is eight words long and has the following format;

1) File device., tapo (0) or permanent direct access (--1).
2) File identification (reel number or permanent file name). 10 characters.
3) Data name. Seven characters.
4) Sequence number. Integer 1--255.
5) Copy number. Integer 1-255.
6) Creation date. Hollerith, as returned by the function iTIMER(1).

3
3

-. I

12

_. _.	 I	 _	 I	 I	 I	 !	 I

7) Tape density. Integer.
8) Length of tape in feet. Integer.

The data nine and sequence number of a data set are as given in the data catalog.
For bacImp copies of either- the data or the file catalog, the data name is 7RDATACAT
or 7RFILECAT, while for pool tapes, the name is specified by the owner of the tape.
For tapes, the file identification is the tape number (the visual reel number), L e., the
number printed on the tape. For permanent direct-access files, the file identification
is the permanent file mane (^5 10 characters) . The file index record is also described
in. Section. 6.2. The first record in the file catalog is the special file catalog index
record, with the following format:

1) 1.

2) Permanent-file name of file catalog.
3) 7RFILECAT.
4) Sequence number of the file catalog.
5) Copy number of the file catalog.
6) Creation date of the file catalog.
7) Number of file index records in the file catalog, including the special file-rata-

log index record.
8) 0.

Figure 3 is a diagram of the file organization.

13

Tape label record

Data file

Pool Tape

Tape label record

File index record= Tape label record
Data index record= Data label section

Figure 3. Diagram of file organi

Tape riles

Backup for Data Catalog

Direct-Access Files

Data Catalog

Tape label record

Data catalog

Direct-access index

Backup for file Catalog

Tape label record

File catalog

Direct-access index

Special data index record

Data index records;
one record for
each data set

File Catalog

Special file index record

File index records: one record
for each tape, permanent direct-
access data file, data catalog, and
file catalog

Data Tape	 Permanent or Temporary
Direct-Access Data File

14

E

4. THE GDB SYSTEM

4, 1 User Functions

The GDB system is a collection of Fortran subroutines called by the main pro-

gram, which is written by the user. The subroutines are divided into groups corres-

ponding to the protection passwords. Those subroutines equiring read permission

only are the following:

GDOPEN --- GDB	 en Catalogs

GDRCAT — GDB Release Catalogs

GDADF — GDB Attach Data File

GDRDISK — GDB Return Disk File

GDREAD -- GDB Read Data Record

GDRDIR — GDB Read Data Index Record

GDRFIR — GDB Read File Index Record

GDPCAT — GDB Print Catalog

To read the data in the GDB, the user calls GDOPEN, GDADF, and GDRE AD.

GDRDIR, GDRFIR, and GDPCAT are used to obtain information about the contents of

the GDB. GDRDISK and GDRCAT release disk files from the user's program.

A data fide is written as a temporary disc; file v rl&t:ut any passwords. It does not

become a permanent part of the GDB until it is "created. " The write subroutines

follow:

GDWRIT — GDB Write Sequential Data Record

GDREWR — GDB Rewrite or Random Write

Four subroutines that are sometimes useful in conjunction with the read/write sub-

routines, and for which no passwords are needed, follow:

IBIT — Set Indicated Bit

NETBIT — Retrieve Bit Value

EXBIT — Set Existence Bit

LATLON -- Get Latitude and Longitude

15

The following subroutines require both read and extend permission:

GDCDF - GDB Crate Data rile
GDEUP - GDB End Update
GDDEACT -- GDB Deactivate Pool Tape
GDAPT - GDB Add Pool Tape

To add a data set to the GDB, the user first writes the file using GDWRIT or
GDREWR and then adds it to the system by calling GDCDF aad GDEUP. To alter a
GDB data set, the user creates a new version and purges the old one. Creating a data
set requires a GDB pool tape. GDAPT is used to add pool tapes to the GDB, and
GDDEACT can be utilized to deactivate bad pool tapes.

The subroutines requiring read., extend, and modify permission as follows:

GDPURDS - GDB Purge Data Set
GDRPF - GDB Release Permanent File
GDPFIR - GDB Purge File Index Record
GDPDIR - GDB Purge Data Index Record
GDRDT - GDB Release Data Tape
GDRWDI -- GDB Rewrite Data Index Record
GDRWFI - GDB Rewrite File Index Record
GDAFIR - GDB Add File Index Record
GDWDIR - GDB Write Data Index Record
GDSAVE - GDB Save a Data Tape

These are used to purge old files, maintain the GDB, and recover from system failures.
Normally, GDPURDS would be called to remove a data set completely from the data
base. However, abnormal situations occasionalI- • require the use of one or more of
the other subroutines.

Finally, the following subroutines require read, extend, modify, and control per-
mission:

GDRELQD - GDB Reload Catalog
GDCREAT - GDB Create Catalog

16

r

f

4.2 Data Retrieval

The first step in retrieving data from the GDB is to attach the data and file catalogs.
This causes the GDB to set up an array in core for each catalog. The array contains
one packed word for each entry (index record) in the catalog. A maximum of 100 entries
for each catalog is currently allowed. When a data set is "attached, 11 the. arrays are
searched and the index records for the data set are read from the catalogs. If the cop;
of the data set requested is a magnetic-tape file, the tape is requested, the tape label
is checked with the file index record, and +le tape is copied to a temporary disk file.
If the data file is a permanent disk file, the file is attached to the user , s program..

_

	

	 The data index record is returned to the user from the data catalog when the data
set is attached. The user then passes the index record to the read subroutine, thus
giving the read subroutine the information necessary to retrieve unit records from the
data file. The existence-bit string, included in the index record, contains one bit for
each unit area and the bit is on (or off) if there is (or is not) a unit record for that unit
area. The GDB locates a unit record in a data file by counting on-bits in the existence-
bit string. For data files with fixed-length unit records, the record can be located
directly by multiplying the length of the record by the number of preceding records (on-
bits). For data files with variable-length records, the address and length of the unit
record are located in the same way since the address section of the data file is like a
one--word fixed-length data file. Thus, accessing a data file with variable-length records
is a two-step process and may require two disk reads.

When the data are read from the disk, a full buffer of information is read. The
buffer for each file is provided by the user, and the length of the buffer is arbitrary. For
data files with variable--length unit records, the buffer is partitioned into one section
to read the address section of the data file and a second to read the data section. The
read subroutine keeps track of which information is in the buffer and accesses the data
file on the disk only if the desired record is not in the buffer. If a disk read is required,
the unit record can be positioned at the beginning, middle, or end of the buffer. The
user has control of this positioning.

The user has two options for specifying which records are to be retrieved: The
record can be identified by the number of its corresponding existence bit or by a bit
string with the bit corresponding to its existence bit turned on.

17

t
i
}3

I

4.3 Data File Creation

To write a new GDS data file, the user must either write the file sequentially in
the same order as the existence-bit string or set up the existence-bit string before
writing the file randomly. The user program calls the write subroutine once for each
record to be written and once to terminate the write.

The sequential-write subroutine fills a buffer with the unit records and writes the
buffer onto the disk whenever it is full. The subroutine leaves space at the beginning
of the data file for the data index section. The user passes the data index record to
the subroutine on the last call, and the data index record is written in the space
reserved for it. If the data file has variable-length records, space is also reserved
for the address section of the data file. The buffer is partitioned into two sections,
one to write the address section of the data file and the other to write the data section.

The random-write subroutine can write a new data file or alter an existing one.
If a new file is being written, blank space is reserved on the disk and the random
write then changes the blank file. The subroutine always reads and writes a. full buffer
of information, and if the information that is to be changed is in the buffer, no disk
access is necessary. For data files with variable-length records, the buffer has one
section to read or write the address section and another one to read or write the data
section of the data file.

The user must set the existence-bit string before calling the random-write sub-
routine for the first time. For data files with fixed-length records, the subroutine
locates the unit record in the data file by counting on-bits in the existence-bit string.
The subroutine changes the record by writing the new record over the old one. For
data files with variable-length records, the address and length of the unit record are
located in the address section. Then the address is changed to that of the end of the
data file, and the new version of the record is written there. The old record remains
in the file but is never used again. If a disk read/write is required, the record to be
changed can be positioned at the beginning, middle, or end of the buffer as designated
by the user.

18

P^
i

^i

is

is

i'

i
The user makes a new data set a permanent part of the data base by calling a

"create" subroutine, which catalogs the file as a permanent disk file or copies the
file to magnetic tape and snakes the appropriate changes in the catalogs.

4.4 Protection Mechanisms

The GDB files are protected by a tape label system, backup procedures, and a
password system roughly corresponding to the CDC 6400 permanent-file password
system.

The first record on all tapes in the GDS is a tape label, which is the same as the
file index record in the file catalog. Whenever a tape is requested by the GDB system,
its label record is checked. If the record does not correspond to the file index record,
a message is written on the computer console instructing the operator to check the
visual reel number of the tape. If the tape label is still incorrect after this check, an
error indicator is set, a diagnostic message ig printed, and control is returned to the

user's program.

It is advisable to back up the catalogs within the GDB system periodically. In
addition, it is wise to have more than one tape copy of any data set that is difficult
to recreate. If the GDB catalogs must be recreated from backup, it is possible, for
example, that a tape containing a data file will be listed in the backup file catalog as
a pool tape. This tape cannot be used by the GDB system until its file catalog entry
has been updated, however, because the tape label will differ from the file index
record.

The GDB passwords follow:

Read	 — read anv data set or catalog.
Extend — create new data sets; add or deactivate pool tapes.	

a

Modify — purge any data set or catalog entry. 	 1

Control — purge catalog.
Turnkey --- any operation.

The passwords are specified when the user attaches the catalogs. if the user calls
a subroutine without having specified the necessary passwords for it, an error flag

message '	 e and control ' returned to the user's r^	 ^s set, an error	 ag is printed,	 ntr as r to	 program
without the subroutine being executed.

This protection system applies to the data base as a whole; files are not protected
on an individual basis. Therefore, it is suggested that all operations requiring modify
or control passwords be carried out by one person. If this is not convenient, the data
base can be divided into several data bases, each managed by a single person. More
than one data base can be used simultaneously. Also, it is a simple process to transfer
files from one data base to another.

This system of protection has been implemented through the permanent-file pass-
word system. Any operation performed on GDB data files is preceded by one on a
GDB catalog. Since the data and file catalogs are permanent files, using the permanent-
file password system to protect the catalogs will, in fact, protect the data files them-
selves. However, to the CDC 6400 operating system, the operations necessary to
create a data file appear the same as those necessary to purge one. Thus, operations
requiring both extend and modify are protected by the operating system through the
extend password only, and the GDB system, not the operating system, checks the
modify password whenever a purge operation is done.

i

y

a
y

20

I

5. USERS' GUIDE TO THE GDB

5.1 Introduction

The GDB system is a Fortran subroutine package. The user writes a main pro-
gram calling the subroutines described in Section 6. Sections 5.2 to 5.5 detail the
common user operations, and Section 5.6 gives some practical information concerning

data-base management.

The GDB files are protected by a password system that utilizes the following
words: read, extend, modify, control, and turnkey. The GDB subroutines

are listed with the passwords required. Users with only read permission cannot alter
the GDB files. Bead and extend permission are required to create new files. Users

should inform the GDB manager whenever a "create , ' program has terminated abnormally.
Although it is impossible for the GDB files to be destroyed, it is possible that some
pool tapes -will hive to be relabeled by the manager. The manager can also help a user
recover a new file that was lost owing to the abnormal termination of the program that
created it. The data--base manager has modify, control, and turnkey permission. A

user who wishes to create a private data base should read Sections 3 and 4, which are
also helpful for dealing with sophisticated applications.

5.2 Read

To read data in the data base, the user writes a main program calling the GDB
subroutines GDGPEN, GDADF, and GDREAP. The GDGPEN attaches the GDB cata-
logs to the user's program; GDADF attaches data files to the program; and GDREAD

retrieves unit records from these data files. These subroutines are described in
Sections 6. 3 : 6. 4, and 6.5. Section 5.4 gives further information concerning the

efficient use of GDREAD.

The first step in any run of the GDB is to call GDGPEN, thus attaching the file
catalog and the data catalog, which are permanent files residing on the dish. The

21

I	 II

user must know both the permanent-file n?.mo of the GDB file catalog and the read
password.

The variable ICOND is an error flag that appears in the calling sequence of most
GDB subroutines. If an error is encountered, the subroutine writes an error comment
on a file specified by the user and returns control to the calling program with ICGlf * 0.
An exception is the condition ICOND = 22 in subroutine GDREAD, for which no error
comment is printed. The user should test ICOND after each call to any subroutine.
Section 6.32 contains a table of ICOND values.

For a data file to be read, it must be "attached" by calling GDADF. The user
must know the data name of the data file. By means of the subroutine GDPCAT, infor-
mation can be obtained about the contents of the data files. Every file in the GDB is
uniquely identified by a data name, sequence number, and copy number, the last two
being integers from 1 to 255. The default condition in GDADF is to attach the file with
the highest sequence number and lowest copy number. However, the user may specify
particular sequence and copy numbers. GDADF returns to the user the data index
record (see Section 6.1) from the data catalog. This record is input to GDREAD, but
since GDREAD does not use the comment section, it is not necessary to retrieve that
part of the index, record in the call to GDADF.

The existence-bit string associated with the file is part of the index record. The
bit string has one bit for each unit area (or key) associated with the file. The bit is
on (or off) if there is (or is not) a unit record in the data file for that unit area. The
GDB locates unit records by counting on-bits in the existence bit string. The user can
determine whether or not a record exists by checking its corresponding existence bit,
using subroutine NETBIT. If a user is not interested in reading the file, the index
record with the existence--bit string should be obtained from subroutine GDRDIR, rather
than GDADF, since GDRDIR, does not attach the data file.

If the We to be attached is on magnetic tape, the tape is copied to a temporary
disk file, and the user must provide a buffer to be used by GDADF for the copy opera-
tion. The buffer should be as large as possible and can be reused.

22

If many data files are to be processed sequentially, it is not necessary, and
probably not advisable, to attach them all at the same time. GDRDISIC will detach the
data file and allow the same file name and temporary disk storage to be used for
another data file.

Once the data files have been attached by calling GDADF, the catalogs are no
longer needed for reading the files and can be released by calling GDRCAT. Only one
set of catalogs can be attached to a program at any one tame. If files from different
data bases are required, the catalogs from one data base must be released by GDRCAT
before those from another can be attached by GDOPEN.

Once the data files have been attached, GDREAD will return individual unit records
from the files to the calling program. The user has two options for specifying which
data record is to be returned: If the variable MODE = 0, then array IBIT, correspond-
ing to the existence-bit string, is used. On each call to GDREAD, NBIT is incremented
to the next on-bit in MIT and the corresponding record is returned. If MODE = 1, on
each call to GDREAD, NBIT is incremented by 1 and the record corresponding to that
bit in the existence-bit string is returned. In either case, if the designated record does
not exist, GDREAD returns with ICOND = 22.

This dual-read system suggests two obvious modes of use. For the "automatic"
mode, the user sets up an IBIT array, sets MODE = 0, initializes NBIT = 0, and calls
GDREAD once for each record specified by MIT. in the "manual" mode, the user sets
MODE = l and then uses NBIT to specify which record is desired. The automatic
mode results in a sequential read of the data file, whale the manual mode may or may
not be sequential.

The user provides GDREAD with a buffer; and a full buffer of information is always
read from the disk. Thus, GDREAD does not access the disk every time it is called.
In the manual mode, a large number of disk reads may be necessary. Each disk read
may take 0. 1 sec of peripheral processor time. It is the responsibility of the user to
estimate the peripheral processor time connected with the job to ensure that it is not
too large. Correct use of the variable ITYPE can reduce the peripheral processor time
significantly (see Section 5.4).

23

5.3 ;A,'rite

To write a data file, the user first writes a main program calling either GDWRIT
or GDREWR once for each record to be written. The catalogs do not have to be
attached in order to call GDWRIT or GDREWR.

GDWRIT writes data files sequentially. It must receive records in the order
required for the output file. However, it is not necessary to specify the existence-bit
array until after the file has been written. Initially, the GDWRIT subroutine uses only
the length of the data index record, the data type indicator, and, if the data file has
variable-length records, a maximum for the number of records to be written. After
the last record has been written, the user makes a final call to GDWRIT, providing
the data index record. Each record written in the data file .must have the correspond-
ing existence bit turned on (=1). The subroutine IBIT can be used to turn on the bits
in the existence-bit string.

GDREWR allows .Lsers to do random--access writing of data files. However, the
existence-bit array must be set up before the first call to GDREWR. The user provides
GDREWR with a buffer so that GDREWR does not access the dish every time it is
called. However, if the records are not at least partially ordered, GDREWR could
take up to U. 2 sec of peripheral processor time for each record written. The user
must estimate the peripheral processor time connected with the job to ensure that it
is not too large. Correct use of the variable 1TYPE can reduce that amount of time
significantly- (see Section r.4).

If GDREWR is employed to write a data file with variable-length records, the
resulting file will have an address section arranged in the same order as the existence-
bit string and a data section arranged in the order in which it was written, a system
that may or may not be satisfactory for future use. To sort such a file written by
GDREWR, the file could be read with GDREAD and then rewritten sequentially by
GDWRIT (or GDREWR).

With GDREWR, changes can also be made to an existing GDB file. The user must
call GPOPEN to attach the catalogs, call GD 3DF to attach the file as a temporary disk
file, and then call GDREWR for each record to be changed. For fixed-length records, the

24

I	 _1	 I	 I	 I	 I	 I

new version of the record must be the same length as the old one. For variable-length

records, the new version can be any length since it will be written at the end of the file.

Note that the old version of the record remains in the file and the file will be longer than

necessary. Also, the records will not physically be in order on the tape. If necessary,

this situation can be corrected by rewriting the file sequentially with GDWRIT or GDREWR

To add to an existing GDB file, the file must be rewritten. The user calls GDOPEN

and GDADF and then writes a new file by copying the old records and including the new

records, using either GDWRIT or GDREWR.

In any case, the newly written file does not automatically become part of the data

base; to become permanent, it must be entered in the catalogs, as described in

Section 5.5.

5.4 Ek tclent Use of Read/Write

If a user wishes to read or write many large files in the GDB, efficient use of

those files becomes important, with the choice of buffer sizes and of the algorithm that

positions data in the buffers (ITYPE) being most important. Also, alterations in the

data files or in the procedures for processing the files may be necessary.

Iii order to attach a data file residing on tape, the GDB copies the tape to a direct-

access disk file. Likewise, to create a new data file, a disk file is copied to tape.

In these cases, the I/O buffers, supplied by the user, should be as large as possible,

especially if the files are large or if many files are being processed. While the exact

time to copy the file varies with the system environment, the buffer size greatly affects

the efficiency. Since tape is the slower device, the minimum buffer size should be two

or three tape PRUs (512 words each). For optimum efficiency, the buffer size might be

as high as 20K„ This buffer can be reused after the data file is attached or created.

To read and write data files, the user must supply an 1/0 buffer that is passed

to the read/write routines, the optimum length of the buffer depending on the specific

3-
application. If it is too short, I/O will be inefficient; if it is too long, buffer space may

I	 be wasted. Thus, in order to choose an appropriate buffer length, both I/O efficiency

3 and the amount of central memory available for buffers must be considered.}

25

i

The goal, in choosing a buffer size for the read/write routines is to minimize the
actual number of disk accesses. The GDB accesses the disk only when the desired
unit record is not already in the buffer. Thus, for files being read or written
sequentially, the buffer should be as large as possible. On the other hand, if the file
is to be read or written randomly (i. e. , the next record is so far from the last one
that it cannot possibly be in the buffer), then making the buffer larger than the minimum
would be a waste of space. For examples

Unit record size = 3 words
Nurr_ :.,er of unit records = 60, 000

Call to GDREAD	 Unit record number
1	 1
2	 60000
3	 2
4	 59999
5	 3

In this case, no matter how big the buffer is, a disk access will be necessary on each
call to GDREAD, so the user might as well set the buffer size to the disk PRU size of
64 words (or the next multiple of 64 words greater than the unit record size).

It is important to note that a disk access can take 0.1 sec of 1/0 time. Since a
tape without record marks holds about 1, 500 1 000 words of data, the effect of buffer
lengths is as follows:

Peripheral processor time to read
Buffer length	 or write (from the disk)

Swords)	 a full tape's worth of data (min)

	3200	 7.8

	

1600	 15.6

	

512	 46.8

The peripheral processor time cannot be reduced further by using a buffer greater
than a half-track (3200 words) because the disk head must be repositioned if more than
half a track of data is acces,-::d.

26

The user can control which Wormation is read or written into the buffer by the
t	 variable ITYPE. The desired record can be positioned in the beginning (ITYPE = 1),

end aTYPE = 2)., or middle (ITYPE = 3) of the buffer. ITYPE should reflect the
E	 order of the accessed data records in the data file:

i '	 ITYPE = 1 , forward read/write
>

	

	 ITYPE = 2 , reverse read/write
ITYPE = 3 , random read/write .

For example,

Subroutine call 1 2 3	 4 5 6 7 8 9 10

	

NBIT 1 2 3 10 9 8 7 4 5	 6
ITYPE 1 1 1	 2 2 2 2 1 1	 1

If the data records are not to be read or written in any particular order, set ITYPE = 3.

5.5 Creation of a Data Set

To create a data set, a user writes a main program calling first GDWRIT nr
GDREM and then GDOPEN, GDCDF, and GDEUP. Either of the first two subroutines
writes a temporary disk file, as described in Section 5.3, which must be cataloged as
a permanent disk file or copied to tape in order to make it a permanent part of the
data base. The catalogs must be attached by calling GDOPEN with both read and extend
passwords. Then GDCDF is called to make changes to the catalogs and make the new
data file permanent.

At the end of a job that creates new data sets, the user must call GDEUP to
make the changes permanent by extending the catalogs, to sort and print the new cata-
logs, and to create backup for the catalogs. When writing or cataloging a data set,
users should always check ICOND, and if ICOND * 0, GDEUP should not be called. As
long as GDEUP has not been called, no permanent changes to the GDB catalogs are made.
For example, the file catalog still lists tapes written by GDCDF as pool tapes, and those
tapes cannot be used until the entry in the file catalog agrees with the tape label. Such
inconsistencies muss; be fixed by the data-base manager. However, the pool tape can
be removed from active status with the subroutine GDDEACT, and new pool tapes can
be added with GDAPT.

27

s;

5.6 Maintenance of a Data Base

The maintenance of a data base should be the responsibility' of only one person, who
will perform all the operations that require modify or control passwords $ including
creating the data base, normal purging of data sets, and recovery from user errors or
operating--system failures. Anyone who will be maintaining a data base should read
Sections 3 and 4.

To set up a private data base, it is first necessary to create both an initial data
catalog and an initial file catalog, accomplished by calling subroutine GDCREAT from
a user-supplied main program. Once the catalogs exist as permanent files on the disk,
the user can add pool tapes to the file catalog by calling GDAPT and then proceed to
create data files.

It is advisable to dump the catalogs to tape periodically in case the permanent-file
versions are accidentally destroyed. This is done by calling GDEUP at the end of any
GDB run with the backup--copy flags turned on. If many changes are made to the catalogs
during the day, it is wise to back up the catalogs with GDEUP. Reloading from data-
base backup tapes involves calling subroutine GDRELOD with the visual reel numbers
of the backup tapes. In reloading, note that the data sequence numbers of the data 2md
file catalogs must always match.

The catalogs should be dumped to tape periodically by GDEUP and reloaded by
GDRELOD. This procedure deletes inactive entries from the permanent disk files
and therefore reduces the amount of disk space required.

Although a data set is normally removed from the data base by calling the sub-
routine GDPURDS, some situations require the use of the other subroutines. Once a
data set has been completely purged from the data base, it cannot be recovered, because
the data tapes have been relabeled as pool tapes. However, if only the catalog entries
are changed, the data set can be recovered by rewriting the catalog entries. No tape
in the GDB can be used unless its tapes label corresponds to the file index record in the
file catalog.

28

In certain cases the GDB manager might want to reference entries in the file and
data catalogs without specifying the data name, sequence number, or copy number.
This might be necessary if an entry with a "bad" data name or number got into the cata-
logs by accident. Therefore, certain GDB routines that normally require data name,
sequence number, and copy number as input will, instead, use the position of the
entry in the catalog. This is specified as follows:

NDNAME = IOH blank
NSEQ	 = position of the entry in the catalog (including special file catalo g-

or data catalog index record)

The routines that follow this convention are as follows:

GDP FIR — GDB Purge File Index Record
GDPDIR. — GDB Purge Data Index Record
GDRFIR — GDB Read File Index Record
GDRDIR — GDB Read Data Index Record
GDRDT
GDRPF
	 These routines follow the same convention but should be used only

GDRVIDI
	 internally by the GDB system.

GDRWFI

To delete a bad GDB data file that cannot be deleted by normal means, the mana-
ger writes a GDB main program and calls GDPFIR and GDPDIR as described. If the
file is a tape file, the tape can be reentered into the file catalog with GDAPT. If it is
a permanent disk data file, the. file must be purged by direct use of the system
permanent-file control cards.

The manager can recover a data file whose data and file catalog entries are missing
by calling subroutine GDSAVD- . As long as the tape file itself is intact, the file does not
have to be recreated. GDSAVE gets the file index record and data index record of
tape and enters them in the catalogs.

29

6. SUBROUTINE DOCUMENTATION

6. 1 The Index Array

The index array is used to store the index record of the data catalog. 	 The length

of the index record as specified by the user will limit the number of words retrieved.

Thus, for example, storage does not need to be supplied for the comments unless they

are to be used in the progrcan.

INDEX (1)	 = length of index record in words.	 Integer.

(2)	 = data name.	 R format, seven characters, with the first character
nonblank.

(3)	 = data sequence number. Integer 1-255.

(4)	 = creation date. Hollerith, as returned by the function ITIMER (1).

(5)	 = maximum unit record length in words. Integer.

(6)	 = 0 for fixed-length records.
1 for variable-length records.

(7)	 = number of unit records.	 Integer.

(8)	 = number of disk PRUs in index section. 	 Integer.

(9)	 = number of disk PRUs in address section. Integer.

(10)	 = number of disk PRUs iji data section. 	 Integer.

(11)	 = number of existence bits. 	 Integer.

(12)	 = length of comments in words.	 Integer.

(13)... (n)	 = existence-bit array.

(n+l)... (m)	 = comments.

'	 where

n	 = (INDEX(11)-1)/60 + 13.

m	 = INDEX(12) + n.

l	 1

G. 2 rile Index Record

The array IFNDEX is used to store the file index -record.

IFNDFX(J-) file device. tape = 0 or permanent direct access =1.

(2) = file identification. L format. For tape, reel number is given;
for permanent file, permanent-file nanie is given.

(3) = data name. R format.

(4) = data sequence number.

(5) = data copy number.

I	 (8) = creation date. Hollerith, as returned by the function ITIlVIER(l.).

(7) = tape density.	 Integer.

(8) = length of tape in feet.	 Integer.

-1- ­[-	 I	 I	 I	 I

6.3 GDOPEN — GDB Open Catalogs (R)

GDOPEN attaches the data and file catalogs, which are permanent files residing
on the disk.

CALL GDOPEN (I'CNAME, FCPASS, POOL.,, ICOND)

where

FCNA,^JE	 = permanent-file name for the file catalog. L format.

FCPASS	 = five-word array containing the permanent-file passwords for
the file catalog and the data catalog. The user mist specify all the
passwords required by subroutines to be called in this run. If the
GDB is only to be read, only the read password needs to be given.
Permanent-file passwords are in L format, and the order is not
significant. If less than five passwords are given, the last one
should be followed by a zero word.

POOL	 W data name of the user's pool tapes. R format.

ICOND	 = condition code.

GDOPEN assumes that labeled common block GDLFNS has been set up and
initialized in the calling program as follows:

LFNS(1)	 = logical-file name for data catalog. $

LFNS(2)	 = logical-file dame for file catalog.

LFNS(3)	 = logical-file name for mounted input tape.

LFNS(4)	 = logical-file name for mounted output tape.

LFNS(5)	 = logical file name for error-comment output.

LFNS(6)	 = logical-file name for regular printed outlrut.

The GDB passwords are abbreviated as follows: R = read, E = extend, M = modify,
and C = control (see Section 4.4).

fAll data names in thr. GDB are seven characters in R format, the first of which must
be nonblank.
All logical-file names in the GDB are left-justified with zero file. LFNS(% LFNl)(2),
LFNS(5), and LFNS(6) must be mentioned on the PROGRAM card since they are
handled with Fortran. All other GDB files are handled outside of Fortran, and
therefore must not appear on the PROGRAM card.

33

a

Attach	 'e6. 4 GDADF -- GDB _t^t ch Data File (R)

GDADF attaches a data file. If the file resides on the disk as a permanent file,

it is attached as a temporary disk file. If it resides on a magnetic tape, the tape is

mounted, its GDB label is checked, and it is copied to a temporary disk file. If the

data files are to be processed sequentially in the run, it is not necessary (and probably

not advisable) to attach them all at the beginning of the run.

CALL GDADF (NDNAME, NSEQ, NCOPY, FNAME, DFPASS, FET, IBUF,
LBUF, INDEX, LINDEX, ICOND)

where

NDNAME = data name of fide to be attached. R format.

NSEQ = data sequence number:

0 means attach highest sequence number.
> 0 means attach NSEQ.

NCOPY = data copy number:

0 means attach highest copy number.
> 0 means attach NCOPY.

FNAME = logical-file name of temporary disk file on which the data file is
to reside after it is attached or copied to the disk.	 This file name
must not appear on the PROGRAM card. L format.

DFPASS = not used.

FET = eight-word array to hold the file environment liable 	 (FET) for
disk file FNAME.

IBUF = buffer (array) used in copying tape to disk. 	 The buffer can be
reused after the call to GDADF.

LBUF = length of IBUF. LBUF must be a minimum of 513 words.

INDEX = array containing the data index record for NDNAMC NSEQ.
This is returned by GDADF.	 (See Section 6. 1.)

LINDEX = number of words to be returned in INDEX.

ICOND = condition code.

*A file environment table is a storage area set up in central memory. It is used by
the CDC 6400 operating system and a user program to communicate about the
status of a file being read or written.

34

6. GDREAD — GDB Read Data Record (R)

GDREAD returns data records to the calling program, one record at a time. In
automatic made, the user specifies which data records are to be returned by setting
up an array][BIT that is similar to the existence-bit portion of the data index record.

s if a bit in MIT is set to 1, the corresponding data record will be returned by GDREAD
if the record exists. IBIT is not used in the manual mode. The user sets NBIT to one
less than the number of the bit in the existence-bit array corresponding to the desired
record and calls GDREAD.

CALL GDREAD (FNAME, FET, INDEX, MODE, IBIT, NBIT, IBUFF,
LBUFF, IREC, LREC, MREC, ISTOIi ITYPE, LUERR,
ICOND)

where

FNAME	 = logical-file name of the file to be read (name with which it was
attached in GDADF). L format.

PET	 = eight-word array set up by GDADF with the PET for dish file
FNAME.

INDEX	 = array containing the data index record for the data file (Section 6. l).
The comments section of the index record is not used by GDREAD.
The data index record is returned by GDADF.

MODE	 = 0 means automatic mode.
= I means manual mode.

IBIT	 = array containing bits specifying the data records to be returned.
IBIT corresponds to an existence-bit array and is used in the
automatic mode only.

NBIT	 = on input, one less than the bit number in IBIT at which searching is
to begin. In the automatic mode, GDREAD increments NBIT until it
finds a bit in IBIT that is on and returns the corresponding data
record. For the automatic mode, NBIT is initialized to zero (or
some other starting point) and is not altered between calls to
GDREAD. On output (both modes), NBIT corresponds to the data
record returned or not found.	 a

IBUFF	 = read buffer. Each file being read at the same time by GDREAD
must have its own read buffer.The buffer for a given file must
not be altered by the user until. reading is done on that file. For
files with variable-length records, IBUFF is partitioned into two
parts: The first is the read buffer for the data themselves, and the
second is the read buffer for the address pointers for the file.

35

1

IREC

LREC

MRE C

ISTOR

ITYPE

LUERR

IC OND

1.	 .	 . I	 -	 I	 I	 I	 -	 I

= buffer sizes:

LBUFF(1) = length of data section. of IBUFF, in words.
LBUFF(2) = length of address section of , IBUFF. The user must

set LBUFF(2) = 0 for fixed-length record data files.
LBUFF(1) and LBUFF (2) must each equal at least 64 words.

The larger they are (3200 words), the more
efficiently the GDB will operate.

= data record returned to calling program.. IREC can be any data
type.

= number of words of data record to return in IRE C.

actual number of words read.

= eight-word scratch array used by GDREAD. Each file being
read at the same time by GDREAD must have its own ISTOR array,
which must not be altered between calls to GDREAD. ISTOR must
be initialized to zero before the first call to read for the file.

= read mode for the file (see Section. 5.4):
= 1 means forward.
= 2 means reverse.

3 means random.

= logical-file name for error comments = LFNS(5).

= condition code.

36

r

6.6 GDWRIT — GDB Write Data Record

GDWRIT sequentially writes the data records associated with a GDB data file onto
a temporary disk file. The user makes repeated calls to GDWRIT, feeding it data
records one at a time. GDWRIT must receive data records in the order desired for
the output file.

CALL GDWRIT (FNAME, FET, INDEX, IBUFF, LBUFF, IRE C, LREC,
ISTOR, LUERR, ICOND)

where

FNAME	 = logical-file name of the temporary disk file on which to write the
data. L format.

FET	 = eight--word array to hold the FET for FNAME.

INDEX	 = array containing the data index record for the data file (Section 6. 1).
On the first call to GDWRIT for the file, set:

INDEX(1) = length of INDEX.
INDEX(6) = fixed (=0) or variable (=1) length.

Before the final call to GDWRIT (LREC=O), the user must set all
other elements of INDEX except INDEX(S), INDEX(9), and INDEX(10)
to the correct values.

IBUFF	 = write buffer. Each file being written at the same time by GDWRIT
must have its own write buffer. The buffer for a given file must not
be altered by the user until writing is done on that file. For files
with variable--length records, IBUFF is partitioned into two parts;
the first is the write buffer for the data themselves, and the second,
the write buffer for the address pointers for the file.

LBUFF	 = buffer sizes;
LBUFF (1) = lengthof data section of IBUFF.
LBUFF(2) = length of address section of IBUFF. The user must

set LBUFF(2) = 0 for fixed-length record data files.
LBUFF(1) and LBUFF(2) must each equal at least 64 words. The

larger they are (:53200 words), the more efficiently
the GDB will operate.

IREC	 = record to be written. IREC can be any data type.

LREC	 = length of IREC. After the last call to GDWRIT to write a data
record, it is necessary to make a final call with LREC = 0 in order
to flush the write buffers and perform other final operations on the
file.

37

]	 ..I	 - .- - .,. 	- I	 ,	 I

ISTOR

LUERR

M OND

eight-word scratch array used by GDWMT. Each file being
written at the same time must have its own ISTOR array, which
must not be altered between calls to GDWRIT. ISTOR(l) must be
initialized to zero and ISTOR(4) to the maximum number of records
to be written for this file. Setting ISTOR(4) is necessary only when
dealing with variable-length records.

logical-file name for error comments = LFNS(5).

condition code.

i

6.7 GDREWR — GDB Rewrite Data Record

GDREWR writes the data records associated with a GDB data file onto a temporary
disk file. Unlike GDWRIT, however, it does not require the records to be input
sequentially. Furthermore, GDREWR allows the user to rewrite selected data records
on an existing data file (not a permanent file) without copying the entire file.

In writing a new file, GDREWR is called once for each data record in the fine.
The records can come in any order since direct-access methods are used and the
calling program gives GDREWR the relative position of the data record jr the file.

To make changes to an existing GDB file, the user need only attach the file with
GDADF and then call GDREWR for each record to be changed. For fixed-length 	 '.
records, the new version of the record must be the same length as the old one, and
for variable-length records, the new version can be any length.

GDREWR will operate most efficiently if the incoming data records are at least
partially ordered. If the records sldp around with no orders GDREWR could have to do
one random-access read and one random-access write for each data record.

CALL GDREWR (FNAME, FET, INDEX, MUFF, LBUFF, IREC, LREC,
ISTOR, NBIT, ITYPE, LUERR, ICOND)

where

FNAME	 = logical-file name of the temporary disk file on which to write the
data. If the file already exists and is to be altered, FNAME is
the logical--file name with which it was attached in GDADF. L
format.

FET	 = eight-word array to hold the FET for FNAME.

INDEX	 = array containing the data index record for the file (Section 6.1).
INDEX must be completely set up before the first call to GDREWR
(except that if FNAME is a new file, then INPEX(8), INDEX(9),
and INDEX(10) are set up by GDREVVIR). This means that the
existence-kit array must be set up before the first call to GDREWR.

IBUFF	 = read/write buffer. Each file being written at the same time must
have its own buffer and it must not be altered by the user until
writing has been completed on that file. For files with variable-
length records, MUFF is partitioned into two parts: The first part
Is the buffer for the data themselves, and the second, the buffer for
the address pointers for the file.

t

39

r

LBUFF	 = buffer sizes:
LBUFF(1) = length of data section of ISUFF.
LBUFF(2) = length of address section of IBUFF. The user must

set LBUFF (2) = 0 for fixed-length record data files.
LBUFF(1) and LBUFF(2) must each equal at least 64 words. In

general, the larger they are (--3200 words), the
more efficiently the GDB will operate.

IREC	 = record to be written.

LREC	 = length of IREC. After the last call to GDREWR to write a record,
it is necessary to make a final call to GDREWR with LREC = 0 in
order to flush the buffers and perform other final operations on the
file (i. e., 3NDEX(10) is recomputed and INDEX is rewritten at the
start of the file).

ISTOR	 = eight--word scratch array used by GDREWR. Each file being
written at the same time must have its own ISTOR array, which
must not be altered between calls to GDREWR. ISTOR must be
initialized to zero before the first call to GDREWR.

NBIT	 = existence-bit n7xmber of record to be written.

ITYPE	 = signal telling current order of data records (write mode):
= 1 means forward.
= 2 means reverse.
= 3 means random.

This signal should be changed during the writing of the file as the
order of the data records dictates (see Section 5.4). If the data
records are not ordered in any particular way, set ITYPE = 3.

LUERR	 = logical unit for error comments = LFNS(5).

ICOND	 = condition code.

40

6. 8 GDRDIR — GDS Read Data Index Record (R)

GDRDIR reads the data index record for a data file from the data catalog..

CALL GDRDIR (NDNAME, NSEQ, INDEX, LINDEX, ICOND)

Where

NDNAME = data name. R format.

NSEQ	 = data sequence number:
= 0 means highest sequence number.
> 0 means NSEQ.

INDEX	 = array containing the data index record (Section 6.1).

LI DEX	 = number of words of data index record to return in INDEX.

ICOND	 = condition code.

41

42

E

G. 9 GDRFIR --- CDB Read. File Index Record (R)

GDRFIR reads the file index record for a GDB file from the file catalog.

CALL GDRFIR. (NDNAME, NSEQ, NCOPY, IFNDEX, LFNDEX, ICOND)

where

NDNAME = data name. R format.

NSEQ = data sequence number:
= 0 means highest sequence number.
> 0 means NSEQ.

NCOPY = data copy number:
= 0 means highest copy number.
> 0 means NCOPY.

IFNDEX = array containing the file index record.

LFNDEX = length of IFNDEX.

MOND = condition code.

t

r

6. 10 GDPCAT -- GDB Print Catalogs (R.)

GDPCAT prints the data or file catalog. The catalog can be optionally sorted

before printing.

CALL GDPCAT (ICAT, ISORT, NCOPY, IPRINT, INDEX, LINDEX, ICOND)

where

ICAT =	 l means file catalog.
= 2 means print data catalog.

ISORT = 0 means no sort first.
= l means sort before printing.

NCOPY = number of print copies desired (not implemented).

IPRINT = applies to data catalog only:

0 means minimum printout.
W I means limited (minimum plus comments).
= 2 means kill (minimum plus comments plus existence bits).

INDEX = scratch array used by GDPCAT to hold the file index records or
data index records to be printed.

LINDEX = length of INDEX.	 Size of a file index record or largest data index
record.

ICOND = condition code.

r

I,

43

6. 11 GDRCAT — GDB Release Catalogs (R)

GDRCAT allows the user to return one version of the GDB catalogs so that a new

one can be attached by calling GDOPL'N again.

CALL GDRCAT

rhere are no arguments in the calling sequence.

44

k

6. 12 GDRDISI?. — GDB Return Disk File (R)

GDRDISIK allows the user to return the disk file on which a data file resides when
work on it is completed so that another data file can then be attached with the same
logical-file name and file environment table.

.CALL GDRDI,SK (FNAME, FET)

where

FNAME	 logical-file name of the temporary disk file to be returned.

FET	 eight-word array containing the file environment table associated
with FNAME.

t'

3

zw^

45
iy

1

6. 13 GDCDF — GDB Create Data File (R, E)

GDCDF makes the temporary file written by GDWRIT a permanent part of the
GDB. It is cataloged as a permanent disk file or copied to tape. GDCDF must be

followed by a call to GDEUP.

CALL GDCDF (FNAME, FET, IBUF, LBUF, INDEX, NPERM, DFPASS,
PFID, NC OPY, IC OND)

where

FNAME = logical-file name of temporary disk file on which the data file
resides.	 L format.

FET = eight-word array containing the FET for FNAME.

IBUF = buffer (array) used ia copying disk to tape. The buffer can be
reused after the call to GDCDF.

LBUF = length of IBUF. LBUF must be a minimum of 513 words.

INDEX = array containing the data index record for the data file (see
Section 6.1).

NPERM = "name" means catalog FNAME as permanent-file "name.
L format.

= 0 means no permanent-file copy.

DFPASS = not used.

PFID	 = permanent-file identification of the user, which is necessary
to catalog a new permanent file (NPERM o 0). L format.

NCOPY	 = number of tape copies of FNAME to be made.

ICOND	 = condition code.

i
46

6. 14 GDEUP — GDB End Update (R., E)

GDEUP closes (updates) the data and file catalogs and creates backups for the new
versions. The last operation performed must be a call to GDEUP in any run that
changes the GDB.

CALL GDEUP (M1, M2, N1 1 N2, INDEX, LINDEX, ICOND)

where.

M1 = number of bacImps of file catalog to be made.

M2 = number of backups of data catalog to be made.

N1 = print signal for file catalog:
0 means minimum.

= 1 means limited.
= 2 means full.

N2 = print signal for data catalog:
= 0 means minimum printout.
= 1 means limited (minimum plus comments).
= 2 means full print (minimum plus comments plus existence bits).

INDEX = array large enough to hold the largest data index record in the
data catalog (see Section 6. 1).

LINDEX = length of INDEX.

ICOND = condition code.

%i

Y.

4E, .15 GDAPT r GDB Add Pool Tape (R, D)

GDAPT adds a magnetic tape to the GDB as a pool tape by adding it to the file
catalog and writing a GDB tape label on the tape.

CALL GDAPT (NTAPE, EENS, LEN? IC©ND)

where

NTAPE	 = visual reel number of the tape. L format.

IDENS	 = density at which the tape is to be read and written. The value is
an integer, usually 556 bpi.

LEN	 = length of the tape in feet. Integer.

ICDND	 = condition code.

Currently, IDENS and LEN are not used by the GDB but are retained in the file
catalog.

48

'tt

F!

is

6. 16 GDDEACT — GDB Deactivate Pool Tape (R, E)

GDDEACT deactivates a pool tape so that it will not be requested in future GDB
runs.

CALL GDDEACT (NDNAME, NSEQ, NCOPY, IFNDEX, LFNDEX, ICOND)

where

NDNAME = data name. R format.

NSEQ	 = data sequence number.

NCOPY	 = data copy number.

IFNDEX	 = array containing the file index record written in the file catalog.
This is returned by GDDEACT.

LFNDEX = length of IFNDEX.

MOND	 = condition code.

GDDEACT changes the data name of a bad pool tape to BADPOOL. The GDB
manager should periodically delete BADPOOL entries from the file catalog.

Note that GDDEACT requires only read and extend permission.

49

I^

^i

6. 17 GDWD7R — GAB Write Data Index Record ('R, E)

GDWDIR adds a data index record to the.data catalog, first checking to see that
the data name and sequence number in INDEX are not duplicates.

CALL GDWD1R (INDEX, ICOND)

where

PMEX	 = array containing the data index record to be vAded to the data
catalog (see Section 6. 1).

ICOND	 = condition code.

50

F

r

j

^i

1 6. 18 GDA.FIR. — GDB Add Fie Index Record (R, E)

GDAFIR, adds a file index record to the file catalog, first making sure that the Me
'	 index record does not: duplicate an existing data name, sequence number, or copy number.

CALL GDAFIR (FNDEX, LFNDEX, ICGND)
i

where

IFNDEX	 = array containing the file index record to be added.

LFNDEX = length of IFNDEX.

MOND	 = condition code.

51

f^4

7

6. l.9 GDPURDS — GDB Purge Data Set (R, E, M)

GDPURDS, the basic file-removal routine for the GDB, removes an entire data
set from the GAB system.

CALL GDPURDS (NDNAME, NSE% PASS, ICOND)

where

NDNAME

NSEQ

PASS

MOND

= data name. R format.

= data sequence number:
= 0 means remove all NDNAME entries except that with the

highest sequence number.
-1 means remove all NDNAME entries.

not used.

condition code.

GDPURDS tapes care of the entire purging operation by: 1) removing data index
record(s) from the data catalog, 2) reassigning data tapes as POOL tapes, 3) purging
permanent--file versions of the data file from the disk, and 4) making appropriate
changes to the file catalog.

::
52

3

I	

I	 I	 I	 I

6. 20 GDRDT -- GDB Release Data Tape (R, E, M)

GDRDT sets data tapes back to pool-tape status by altering the file catalog and
rewriting the GDB label on the tape.

CALL GDRDT (NDNAME, NSEQ, NCOPY, ICOND)

where

NDNAME = data name.	 R format.

NSEQ = data sequence number:
0 means remove all NDNAME entries except that with the
highest sequence number.
--1 means remove all NDNAME entries.

NCOPY = data copy number:
= 0 means remove all entries with data name NDNAME and

sequence number NSEQ except that copy with the highest copy
number.

= --1 means remove all entries with data name NDNAME and
sequence number NSEQ.

ICOND = condition code.

GDRDT does not alter the data catalog.

i

,a

53

fI
t

6. 21 GDRPF --- GDB Release Permanent File (R, E, M)

TDRPF releases the permanent-file version of a GDB data file by removing its
file index record from the file catalog and purging the permanent tiles This does not
alter the data catalog.

CALL GDRPF (NDNAME, NSEQ, NCOPY, PASS, 1COND)

whey: a

NDNAME = dai:_ name. R format.

NSEQ	 = data segpence number:

0 means remove all NDNAME entries except that with the
highest sequence number.
-1 means remove all NDNAME entries.

NCOPY	 = data copy number:

= 0 means remove all entries with data name NDNAME; and
sequence number NSEQ except that copy with the highest copy
number.
-1 means remove all entries with data name NDNAME and
sequence number NSEQ.

PASS	 = not used.

MOND	 = condition code.

6.22 GDPDIR --- GDB Purge Data Index; Record (R, E j.M)
E

GDPDIR purges an entry from the data catalog by assigning it data name DELETE.
i.
I

CALL GDPDIR (NDNAME, NSEQ ; ICOND)

3

where

NDNAME = data name. R format.

NSEQ	 = data sequence number:
0 means rem.ovp all NDNAME entries except that with the
highest sequence number.

= -1 means remove all NDNAME entries.

ICOND	 = condition code.

i

l

8

i' ^	
1

1

f

^i

s

E	

^{{

1	 dddd

?	 a

j

i•.

Y

•

55

is

56

I	 6.23 GDPFIR — GDB Purge File Index Record (R, E, M)

GDPFIR purges an entry from the file catalog by assigni.ng'it data name DELETE.

CALL GDPFIR (NDNAME, NSEQ, NCOPY, ICOND)

where

NDNAME = data name. R format.

NSEQ	 = data sequence number:
= 0 means remove all NDNAME entries except that with the

highest sequence number.,
= -1 means remove all NDNAME entries.

NCOPY	 = data copy number:
4 means remove all entries with data name NDNAME and
sequence number NSEQ except that copy with the highest copy
number.
-1 means remove all entries with data name NDNAME and
sequence number NSEQ.

MOND	 = condition code.

i '	 G, 24 GDRWDI — GDB Rewrite Data Index Record (R, E, M)
i

GDRWDI overwrites a data index record specified by NDNAME and NSEQ with INDEX.

i	 CALL GDRWDI (NDNAME, NSEQ, INDEX, ICOND)

where

NDNAME = data name. R format.

NSEQ	 = data sequence number:

0 means remove all NDNAME entries except that with the
highest sequence number.

= -1 means remove all NDNAME entries.

INDEX	 = array containing the data index record to be written in place of the
old one (see Section G. 1).

MOND	 = condition code.

t

57

t
	

6.25 GDRWFI -- GDB Rewrite File Index Record (R, E, M)

GDRWFI overwrites the file index record for a data file specified by NDNAME,
NSEQ, and NCOPY with the contents of IFNDEX.

CALL GDRWFI (NDNAME, NSEQ, NCOPY, IFNDEX, LFNDEX, ICOND)

where
NDNAME = data name. R format.

NSEQ = data sequence number:
= 0 means remove all NDNAME entries except that with the

highest sequence number.
-1 means remove all NDNAME entries.

NCOPY = data copy number:
= 0 means remove all entries with data name NDNAME and

sequence number NSEQ except that copy with the highest copy
number.

_ -1 means remove all entries with data. name NDNAME and
sequence number NSEQ.

IFNDEX = array containing the new file index record (see Section 6.2).	 The
contents -)f LFNDEX replace the old file index record.

LFNDEX = length of IFNDEX.

MOND = condition code.

58

59

6.26 GDSAVE — GDB Save a Data Tape (R, E, NI)

GDSAVE allows the GDB manager to recover a data tape file if its data catalog
entry and file catalog entry are missing but the tape file itself is intact. This might
occur if the catalogs are reloaded from backups that were created before the data file
was created. It might also occur if the program that created the data file failed after
the file was created by GDCDF but before GDEUP was called. GDSAVE requests the
tape on which the data file resides and copies the file index record and data index
record from the tape into the file catalog and data catalog, respectively, Only one tape
copy in a data set can be recovered in this manner.

CALL GDSAVE (NVIS, IFNDEX, LFNDEX, INDEX, LFNDEX, ICOND)

where

NVIS

IFNDEX

LFNDEX

INDEX

LFNDEX

IC OND

= visual reel number of the tape on which the data file resides.
A format.

= buffer for file index record.

length of IFNDEX.

buffer large enough to hold the entire data index record.

= length of INDEX.

= condition code.

1

6.27 GDRELOD — GDB Reload Catalog (R, E, C)

GDRELOD reloads the data or file catalog from a backup tape specified by the

user. The tape is copied to the disk, the old version of the catalog is purged (if it

exists), and the new version is cataloged as a permanent file. GDRELOD might be

called for two reasons: The data or file catalogs may be too large or their permanent

files may have been destroyed owing to system failure. Repeated use of the GDB causes

the permanent files to get cluttered with inactive entries and to keep growing in number

of disk PRUs occupied, even though their apparent sizes have not increased very much.

Dumping the catalogs to tape and then reloading enable all the inactive .;retries to be

deleted. This process should be done periodically so the user's permanent-file allotment

is not exceeded. To dump the catalogs to tape in a normal run of the GDB, the user calls

GDEUP with Ml and M2 (number of backups) equal to 1. Then, in a separate ran of the

GDB, GDRELOD is called. If both catalogs are to be reloaded, GDRELOD can be

called twice in one run. Reloading the catalogs must be performed in a separate,

special job in which GDOPEN and GDEUP are not called.

CALL GDRELOD (NDNAME, PFNAME, PFID, PASS, NVIS, INDEX,
LINDEX, ICOND)

where

NDNAME = 7RFILECAT or 7RDATACAT.

PFNAME = permanent-file name of the catalog to be reloaded. L format.

PFID	 = permanent-file identification of the user (needed to catalog a new
permanent file).

PASS	 = five word array containing the permanent-file passwords needed to
attach and purge the old version of NDNAME and then to catalog
the new version. L format.

PASS(l) = turnkey, set to zero if password is not to be specified. 	 ?
PASS(2) = control, set to zero if password is not to be specified.
PASS(3) = modify, set to zero if password is not to be specified.
PASS(4) = extend, set to zero if password is not to be specified.
PASS(5) = read, set to zero if password is not to be specified.

9

Note that the sequence numbers of the data and file catalogs must always match.

s

60

}

NVIS	 = visual reel number of the tape on which the backup resides.
A format.

INDEX	 = array large enough to hold largest data index record or file index
record (see Section 6.1).

LINDEX	 = length of INDEX.

MOND	 = condition code.

62

ti	 _.

u

6.28 GDCREAT — GAB Create Initial Data and File Catalog (R, E, M, C)

GDCRRAT sets up an initial data and file catalog for a new GDB. Once this is
done, any other GDB subroutines can be used as usual in subsequent runs.

GDCREAT (NAMEFC, NAMEFC, PFID, PASS, ICOND)

where

NAMEFC = permanent--file name for file catalog.	 L format.

NAMEFC = permanent-file name for data catalog. L format.

PFID = identification for user's permanent-file allotment.	 L format.

PASS = five-word array containing the permanent-file passwords for the
catalogs.	 L format.

PASS (I) = turnkey = 0.
PASS (2) = control.
PASS(3) = modify.
PASS(4) = extend.
PASS(5) = read.

ICOND W condition code.

GDCREAT is called in the same way as any other GDB subroutine, except that

GDOPEN and GDEUP must not be called.

6.29 EXBIT

EXBIT sets the existence bit corresponding to LAT. and LONG in an array.

CALL EXBIT (IDEX, NEX, LAT, LONG, NBIT, ISIG)

where

IDEX = array in which bit is to be set.

NEX = number of. bits in IDEX.

LAT = latitude (degrees).

LONG = longitude (degrees).

NBIT = existence-bit number corresponding to LAT, LONG. Output.

ISIG = 0 means normal exit.
= 1 means bad exit.

LAT and LONG are the latitude and longitude of the northwest corner of the 1° X 1°

square corresponding to NBIT. The order of these squares is assumed to be longitude

1° to 360' within latitude 90° to --89 ° .

3

1

e,

4

63 s

j	 6.30 LATLON
1

LATLON gets the latitude and longitude from the e^dstence-bit number.

GALL LATLON (MBIT^ LA.T, LONG)

j
where

€	 NBIT	 = existence-bit number.
i

LAT	 = latitude (degrees).

LONG	 = longitude (degrees).

LAT and LONG are the latitude and longitude of the l ° X I* square corresponding
to NBIT. The order of these squares is assumed to be longitude 1° to 360° within

latitude 90° to -89°.

E

1

j	 64

e

65

E;	 IBIT is a function that sets a bit in an array to 0 or 1.

i
ISIG = IBIT (ITEM, IWRDS, NBITS, II)

t

where

ISIG

ITEM

IWRDS

NBITS

Il

0 means normal wdt.
1 means bad exit.

= bit number.

array.

= number of bits in IWRDS.

value to which bit number "item" is to be set (= 0 or 1).

6.32 NETBIT

NETBIT is a function that gets a bit from an array.

I`TAL = NETBIT (ITEM, IWRDS, NBITS, ICODE)

value of bit retrieved (-- 0 or 1).

bit to be retrieved.

array.

number of bits in IWRDS.

0 means normal exit.
1 mei.s bad exit.

where

IVAL

ITEM

IWRDS

NBITS

ICODE

f

66

6.33 Error Codes

The variable ICOND is an error flag that appears in the calling sequence of most
GD'3 subroutines. If zcu error is encountered, the subroutine prints an error comment
and returns control to the calling program. The user should test ICOND after each
call to a GDB subroutine. The following table lists ICOND values.

ICOND	 - 0 = O. K. No error.
1 = general bad exit code.
2 = call to attach a permanent file failed.
3 = bad data name, sequence number, or copy number.
4 = file catalog already full.
5 = data catalog already full.
6 = cannot find (data name, sequence number, copy number) in

file catalog.
7 = cannot find (data name, sequence number) in data catalog.
8 = duplicate (data name, sequence number) in data catalog.
9 = trouble packing or unpacking identification word.

10 = duplicate (data name, sequence number, copy number) in file
catalog.

11 = trouble requesting a tape (systein routine REQUEST).
12 = visual reel number or data name on tape label does not Snatch

file catalog; wrong tape may be mounted.
13 = data catalog or file catalog does not have copy number equal

to I.
14 = new record is longer than old record, so random.-access

rewrite is illegal.
15 = call to extend a permanent file failed.
16 = call to open a random-access disk file with OPENRA failed.
17 = not used.
18 = call to catalog a permanent file failed.
19 = buffer to copy to or from tape is too small (< 513 words).
20 = tail to RDBUF or WRBUF failed to read or write a tape.
21 = call to PRIMRA package failed.
22 = user wants a data point that does not exist in the data file.

24 = call to purge a permanent file failed.
25 = attempt to read past end of information on a random file.
26 = nonzero code and status in call to CIV .
27 = buffer too small to hold the data or file index record.
28 = attempt to rewrite in place on a permanent file.
29 = illegal attempt to purge file or data index record; no

modify permission.
30 = at-tempt to deactivate a, nonpool tape.
31= duplicate visual reel number in file catalog.
32 = no modify permission.

68UO ?

t
}

I

.
3

^	 I_	 l_	 I_	 I_	 I__	 l	 l

7. SAMPLE USER PROGRAMS (code only)

i.

i
i

3=:

E.

i

E

i
s:	 9

i;

69

PRDCRAM TE5T01(INPUT*OUTPUT,TAPEI$TAPE2 ► TAPE99=OUTPUTI
C	 WRITE: A NEW GDB DATA FILE WITH FIXED LENGTH RECOkD5
C	 SEQUENTIAL WRITE
C	 ONE TAPE COPY ONLY
C	 BACKUP DATA AND FILE CATALOGS
C

COMMON/GDLFN5/LFNS(6)
DIMENSION FCPASS(5)
DATA FCPA5S/7LREDWOOD,3LELM,3*O/
DATA FCNAME,POOL/6LGDFILE97RGDBPOOL/
DIMENSION IFNDEX(81 ► INDEX11500)
DATA LFNDEX ►LINDEX ►LIND/8,1500,99/
INTEGER FET(81
DATA FNAME/6LTAPE60/
DATA LFN5/5LTAPELr5LTAPE2,5LTAPE305LTAPE496LTAP£99,6LTAPE991
DATA NZERO/-0/
DIMENSION IBUFF(3200) ►LBUFF(2)
DATA LBUFF/3200,0/
DIMENSION I5TOR183
DATA ISTOR/8*0/
DATA NP£RM,14COPY/Oi1/
DIMENSION IRECI3)
DATA LREC/3/
LUERR=LFNS(5)

C	 OPEN DATA AND FILE CATS.
CALL GDOPEN(FCNAMEoFCPASS ► POOL,ICOND)
IFtICOND.GT.0) GO TO 900

C
C	 CREATE DATA INDEX RECORD

INDEX(1)=LING
INDEX(2)=7RSAFPL£1
INDEX(3)=1
INDEXl4)=1TIMER(1)
INDEX(5)=3
INDEX(6)=O
INDEX(7)=5000
INDEX(8)=0
INDEX(91=0
INDEX(101=0
INDEX(11)=5000
INDEX(L21=3
DO 100 1=1984
INDEX(I+12)=MZERO

100 CONTINUE
INDEX(97)=IOHEXISTENCE
INDEX(981=10HBITS ARE A
IND EX(99) = 30HLL ON

C
C
C	 WRITE DATA FILE

DG 200 I=115000
IREC(I)CO
IREC (2)=0
IREC(3)=I
CALL GDWRIT(FNAME ► FET,INDEX91SUFF,LBUFF ►
1IREC ► LREC ► ISTOR,LUERR9ICOND)
IF(ICOND.GT.D) GO TO 900

200 CONTINUE
CALL GDWRIT(FVAME,FET ► INDEX,IfIUFF,LBUFF,
LIREC ► O.ISTOR ► LUERR,ICOND)

IFIICOND.GT.D) GO TO 900
C
C
C	 CREATE GDB DATA FILE

CALL GDCDF(FNAME,FET,IBUFF ► LBUFF,INDEX,NPERM„DFPASS,PFID ►
1MCOPY ► ICOND)
IF(ICOND.GT.0) 60 TO 900

C
C	 CLOSE DATA AND FILE CATALOGS
C	 BACKUP DATA AND FILE CATALOGS

CALL GDEUP(1,1o1 ► 1 ► INDEX,LINDEX@ICOND)
STOP

900 CONTINUE
CALL ASNORML
END

ORIGINAL
 'AGE TsOF p-	

OUR Q^^,^1

f '
 ^ ^
mr,1 4, NG PAGE BLANKK NOT F

i'

OF
1>00.	 (S

72

e,

(

^E

i;.

I	 I	 I	 II	 I	 I	 -	 '^

PROCRAM TEST02(INPUT.OUTPUT,TAPEI.TAPE2,TAPE99=OUTPUT)
C	 READ AND PRINT TWO GDB DATA FILES
C	 AUTOMATIC MODE
C	 FORWARD READ
C	 FIXED LENGTH UNIT RECORDS
C

COMMON/GDLFNS/LFNS(6)
DIMENSION FCPASSIS)
DATA FCPASS17LREDWOOD9440/
DATA FCNAME,POOL/6LGDFILE.7RGDBPDOL/
DIMENSION IFNDEX(81,INDEX(1500)
DATA 1FNDEX,LINDEX/891500/
DATA LFNS/5LTAPEI95LTAPE2,5LTAPE3,5LTAPE4,64TAPE99,6LTAPE99/
INTEGER FET W
DATA FNAME/6LTAPE6D/
DIMENSION IBUFF1320D)
DIMENSION LBUFF(2)
DATA LBUFF/3200,0/
DIMENSION ISTOR(81
DATA ISTOR/8*0/
DIMENSION IREC(3)
DATA LREC/3/
DIMENSION IBIT(I500)
EDUIVALENCE(iBIT.INDEX(13))
DIMENSION NONAME(2),NSEO(2),NCOPY(2)
DATA NDNAME/7R SAMPLE It7RSAMPLE2/
DATA NSEO/I,l/
DATA NCOPY/0,0/
DATA MDDE+NBIT,ITYPE/O,O,I/
LUERR=LFNS(5)

C	 OPEN DATA AND FILE CATS.
CALL GDOPEN(FCNAME,FCPA559POOL.ICOND)
IFIICOND.GT.0) GO TO 900

C

C	 ATTACH DATA FILE (AND GET DATA INDEx RECORD)
OC 300 J=1.2
CALL GDADF(NDNAME(J),NSE01J),NCOPY(J1,FNAME.DFPASS,FET.
IIBUFF,LBUFF,INDEX,LINDEX,ICOND)
IFIICCND.GT.0) GO TO 900

C	 READ AND PRINT ALL EXISTING UNIT RECORDS IN THE FILF
NRECS=INDEX(71_
NBIT=O
DG 220 JJ=1.8

220 ISTCR(JJ)=D
DC 200 I=L,NREC5
IREC(11=0
IREC(2)=0
IREC(3)=D
CALL GDREAD(FNAME,FET,INDEX,MODE,IBIT,NBIT.IBUFF,LbUFF,
IIREC,LREC,MREC,ISTOR,ITYPE,LUERR,ICONDI
IF(ICCND.GT .0) 60 TO 900

PRINT 210,NBIT,MREC,IREC
210 FORVAT(5I101
200 CONTINUE

C	 RELEASE DISK FILE FNAME 50 IT CAN BE REUSED
CALL GDRDISKIFNAME,FET)

300 CONTINUE
STOP

900 CONTINUE
CALL ABNORML
END

1

-	 1 __ .	 I	 1	 ^	 t	 ^	 t

{

{

j,	 PROGRAM TESTOBCINPUTPOUTPUT.TAPEI9TAPE2+TAPE99=DUTPUT)
"	 C	 GOB TEST - CREATE GOB DATA FILE WITH VARIABLE LENGTH REC5.

C	 RANDOM WRITE
C	 REVERSE ORDER
C	 ONE TAPE COPY
C
C

COMMON/GDLFNS/LFNS(6)
DIMENSION IFNDEXIB),INDEXIL500)
flATA LFNDEX+LINDEX9LINO/8+I500t17/
DAiP LFNS/5LTAPEls5LTAPEZ,5LTAPE395LTAPE4+6LTAPE9916LTAPE99/
DLMENSi?T Fl FCPA55(5)
DATA FCPA55/7LREDWOODs3LELH.3w0/
DATA FCNAME.PDOL/6LGDFILE*7RGD8POOL/

Z.	 INTEGER FET(8)
DATA FNAME/GLTAPE60/
DIMENSION LBUFF11024)oLBUFF(2)
DATA LBUFF/5L29512/
0114EN5ION ISTOR(8)
DATA ISTOR/8*0/
DATA NPERM/0/
DIMENSION IREC(100)

C
L0T0T=LBUFF(1)+LBUFF(2)
LUERR=LFN5(51
MCOPY=1

t'	 MZERO=777777777777777777778
C
C	 OPEN CATALOGS

CALL GDOPENtFCNAME.FCPA55*PODL.iCONDI
IF(ICOND.GT.01 GO TO 900

C
C	 SET UP DATA INDE X RECORD

INDEX(1)=LIND
INDEX(2)=7RVAR000L	 ^I
INDEX(3)=1
INDEX(4)=ITIMER(1)
INDEX(5)=100
INDEX(6)=1
INDEX(7)=100
INDEX(8)=0
INDEXI9)=0
INDEXIIO)=0
INDEX(11)=100
INDEX(12)=3
INDEX(13)=MZERO
INDEX(14)=MZERO

'	 INDEX(15)=10HTHI5 IS A
INDEX(16)=10HTE5T OF VA
IAOEX(17)=10HRIABLE LEN	 f

C	 j
C	 WRITE UNIT RECORDS IN REVERSE ORDER
C

LAST-INDEX(7)	 j
ITYPE=2
DC 110 II=I,,LAST
NI;IT=LAST-II+i
LREC=NBIT

_	 DO 50 J=1.LREC
IREC(J)=O

50 CONTINUE
IREC{LREC)=LREC

s

CALL GDREW)t(F1FAME,FET.INOEX,IBUFF,LBUFF,IREC,LRKr
II5TCRvNBIT,ITYPE.LUERR,ICOND)
IFIICOND.GT.0) GO TO 900

110 CONTINUE
CALL GDREWR(FNAMEiFETiINDEX#IBUFF*LBUFF.IREC.Or
115TCR9NBIT.ITYPEeLUERRsICOND)
IF(ICOND.GT.D) 60 TO 900 	 1

C
C	 CREATE GDB DATA FILE
C

CALL GDCDFIFNAME.FETIIBUFFrLBTOT.INDEX$NPERMIDFPA55.PFID.
1MCOPY21CONDI
IFIICOND.GT.01 GO TO 900 	 -

C
x	 C

CALL GDEUP(O.Or1+1t1N0EXiLINDEXoICONU)
STOP	 ^

900 CONTINUE
CALL ABNORML
END

ORIGINAL PAGE IS
OF POOR QUALRY1

73

PROGRAM TEST04(INPUT,OUTPUT,TAPEI,TAPE2,TAPE99=OUTPUT)
C	 READ AND PRINT GOB DATA FILE
C	 VARIABLE LENGTH UNIT RECORDS
C	 READ IN REVERSE ORDER (MANUAL MODE)
C

CCMNON/GDLFNS/LFNS(6)
DIMENSION FCPASS(S)
DATA FCPASS/7LREDWOOD,4*0/
DATA FCNAME,PODL/6LGDFILE,7RGDBPDDL/
DIMENSION IFNDEX(8)*INDE%(1500)
DATA LFNDEX,LINDEX/8,I500/
DATA LFNS/5LTAPEI,5LTAPE2,5LTAPE395LTAPE4,6LTAPE99.6LTAPE99/
INTEGER FET(8)
DATA FNAME/6LTAPE60/ 	 1
DIMENSION IBUFF(1024),LBUFF(2)
DATA LBUFF/512,512/
DINENSION ISTOR(8)
DATA 1STOR/8*0/
DIMENSION IREC(IOD)
DATA LREC/100/
LBTCT=LBUFF(SI+LBUFF(2)
LUERR=LFNS(5)

C	 OPEN DATA AND FILE CATS.
CALL GOOPEN(FCNAME,FCPASS,POOL.ICOND)
IF(ICOND.GT.01 GO TO 900

C

C	 ATTACH DATA FILE (AND GET DATA INDEX RECORD)
NCNAME=7RVAR0001
N5Ec=1
NCOPY=1
CALL GDADF(NDNAME.NSEO,NCOPY,FNAME,DFPAS:,FET.IBUFF,LSTOT,INDEX.
1LINDEX9ICOND)
IF(1COND.GT,O) GO TO 900

C	 READ AND PRINT FILE IN REVERSE ORDER
C	 MANUAL MODE- IBIT IS NOT USED

MODE=l
ITYPE=2
NRECS=INDEXI7)
00 200 1-l,NREC5

C FOR READ, SET WIT TO ONE LESS THAN THE DESIRED UNIT RECORD
NBIT=100-1
CALL GDREAD(FNAME,FET,)NDEX,MODE.IBIT,NBIT,IBUFF,LHUFF,
IIRE;C.LREC.MREC,IS TOR, ITYPE,LUERR.ICOND)
IF(ICOND.E0.22) GO TO 200
IF(ICOND.GT.0) GO TO 400
PRINT 2109MREC4IREC(MREC)

210 FORPAT12I51
200 CONTINUE

STOP
900 CONTINUE

CALL ABNORML
END

0̂ ^ ^L

t

74

i

APPENDIX A

STRUCTURE DIAGRAMS OF THE GDB SYSTEM ORGANIZATION

4

APPENDIX A

STRUCTURE DIAGRAMS OF THE GDB SYSTEM ORGANIZATION

The following 'kilock diagrams describe the organization of the GDB subroutines.
Some of these were not mentioned in the previous documentation since they are inter-
nal to the GDB system and are never called by the user. Note that many GDB sub--

-	 routines that the user may call are also called by other subroutines.

Internally to the GDB, each entry in the data catalog or file catalog is identified
by a unique ID word. Subroutines DNAM, MAKEID, GETID, and LOOKUP manipulate
this ID word, which contains the following information packed into one 60-bit computer
word:

Sequence	 Copy
Data Name	 No.	 No.

Content
59	 57	 16	 15	 8	 7	 0	 Bit Number

Most of the names given in the diagrams are individual subroutine or function
names. However, some represent a package of routines. These are described below.

FORTRAN random--access routines:

OPENMS — open file

READMS — random read

WRITMS — random write

RDBUF package, which performs regular sequential input/output, avoiding Fortran
completely:

OPBUF -- open file

RDBUF — read

WRBUF — write

j

E{{

	 A-4
f

RWBUF — rewind

EOFBUF --- write end of file

UNLOD — unload

PRIMRA package, which performs random-access input/output, avoiding Fortran:

OPENRA — open the file

READRA — random read

WRITRA — random write

REWRRA — random rewrite in place

Subroutine EPRINT is called by nearly all the GDB routines and is therefor! not
mentioned on the diagrams. Whenever an error is detected by a GDB subroutine
(ICOND > 0), it calls EPRINT to print an error message and then returns control to
the user.

I

k,
is

i'
i

GDOPEN

a

open
data and

Me catalogs

GDAFC GDAFC
attach data attach file

catalog	 catalog

GDATT GDPCAT	 Fortran MAKEM
,attach print file random- make

permanent file or data access routines ID word
catalog

3

GDADF
attach

f
data file i

.spy'

r GDATT	 GDCOPY PRLMRA.	 GDRD]R	 GDLABEL

a

RDBUF

attach disk/tape random- read data request non-Fortran
` permanent copy I access index record tape and check read/write ?

file package	 GDB label routines

a

j<

i
A-5

GDRE"
read

data record

GDRD
read word
string from
random file

PRUARA
random-
access
package

GDWRIT
write a

data record
(sequential)

PRE RA RESERVE GDWR.
random-- reserve write word
access space on string to
package disk random file

GDRE WR
random^.
write

data record

i
PRIMRA RESERVE GDRW

a
GDWR

random- reserve rewrite word write word
r access space on string to string to
r	 package click random file random file

i

f

r

GDRF}R GDRDYR.
read file read data

index record index record

LOOKUP Fortran
find ID random--
word in access
catalog routines

a

t

a

J

A-7

I

I	 I

GDRCAT
print file
or data
catalog

GDRCAT Fortran
sort file random-
or data access
catalog routines

GDRCAT
release
catalogs

i

i

GDRDISK

return
diF c file

a

RDBUF
non.-Fortran
read/write
routine 5

I
i	 3

a
9

GDCDF

i

i

create
data file

GDWDIR GDWFIl3.	 GDCOPY GDLABELRDBUF GDCATLG
write data non-Fortran write file disk/tape catalog request

index record read/write index record copy permanent tape and check
in data routines in file file GDB label
catalog catalog

A-9

:DEUP
end update

by closing

catalogs

a	 GDCDC IGDCrCI

close data	 close file

CD	 catalog	 catalog

	

GDRLVFI GAI XT	 GDWFIR	 LTDAT I GD:.ABI:I	 GDRl'Di	 (iRTIi}	 RDBUF	 RANOFF	 GbSCAT	 GDPCAT E

d7rewrite	 extend	 write file	 requez-t tape	 read fileunpack	 on-Fortranturn off	 sort data	 pr 1t
file index permanent index record 	 and check	 index record ID word read/write random hitor file 	 ile data

acordfilein file c ^ralagGD13 IEheI	 routines	 in rET	 catalog f oatalog
L	 J

I	
I	 l

GDAPT
add pool

tape to file
catalog

GETDAT
get
date

GETM	 RDBUF
unpack	 non-Fortran
ID word	 read/write

routines

GDAFIR	 GDREQ
add file	 request

index record	 tape
to file catalog

GDDEACT
deactivate
pool, tape

GETDAT
get
date

GDRF R	 GETED
read	 unpack

file index	 ID word
record

GDRW FI
rewrite

file index
record

A-11

GDWDIR
write data

index record
in data
catalog

MAIMED Fortran
make

I I
random--access

ID word routines

GDAFIR
add file

index record
to file catalog

MAIMED	 Fortran
mare	 random-access

ED woad	 routines	 -

A-12

GE TD) GETDAT
unpack get

I

ID word date

GDPDIR
purge data

index record

GDPURDS
purge data

set completely

GDRDT
release

data tapes

GDR.P?+
release

permanent
files

GDR„DT
release

data
tapes

LOOK-UP rGDLABEL GDRM	 POOL	 RDBUF	 GDRWFI	 j
I

find ID	 request	 read file	 change file	 non--Fortran	 rewrite	 J
word in	 tape and	 index	 index record	 read/write	 file index	 e `
catalog	 check	 record	 to pool tape	 routines	 record

GDB label

A-13

GDRPF
release

permanent
files

LOOKUP GDPURG GDRFIR RDBUF GDPFIR GDATT
find ID purge read file non-Fortran purge file attach
word in permanent index read/write index permanent
catalog file record routines record file

i GDPDIR
purge

data index
record

LOOKUP GETID GDRr^ M GDRWFj.
find ID unpack read file rewrite
woad in ID word index file index
catalog record record

A

GDRWDI
rewrite

data index
record

LOOKUP GETMOD
find ID get permanent-
word in file modify
catalog permission

bit

A-15

GDRWFI
rewrite 7

file index

record

a

MAKEID Fortran
make random-
ID word access

routines

i

GDRELOD
reload data

or file catalog
from tape

GDLABEL	 RDBUF	 Fortran	 GDATT	 GDPURG	 GDPCAT	 GDCATLG RANOFF
request	 non-Fortran	 random	 attach	 purge	 print file	 catalog	 turn off

tape and check	 read/write	 access	 permanent	 permanent	 or data	 permanent	 random bit
a	 GDB label	 routines	 routine	 file	 file	 catalog	 file	 in FET

!_. _I	 I	 I	 !	 I	 11

GETMOD
get permanent-

file modify
permission. bit

I SEEFET
get copy

of Fortran
FET for

file

GDLABE L
request tape
and check
GDB labol

GDREQ	 RDBUF
request	 non-Fortran

tape

	

	 read/write
routines

A-18

_l	 I	 I	 I	 !

LOOKUP

find ID
word in
catalog

MMO D

make
1D word

MAKEED

snake
ID word

DNAM

data name/
number

conversion

