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Abstract

Approximation of noisy data in the plane by straight lines or elliptic
or single-branch hyperbolic curve segments arises in pattern recognition, data
compaction, and other problems. A number of questions concerning the efficient
search fo. and approximation of data by such curves are examined. Recursive
least-squares linear curve-fitting is used, and ellipses and hyperbolas are
parameterized as quadratic functions in x and y. The error minimized by the
algorithm is interpreted. cpu times for estimating parameteps for fitting
stra - " lines and quadratic curves are determined and compared. cpu time for
data search is also determined for ilie case of straight line fitting. CQuadratic
curve £ “ting is shown to require about six times as much cpu time as does
straight line fitting. Curves relating cpu time and fitting error are ‘etermined
for straight line fitting. Lastly, results are derived cn early sequential de-

termination of whether or no* the underlying curve is a straight line.
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Introduction

One of the fundamental approacheg to pattern recognition in general and
to recognition of line drawings in particular is a statistical theoretic approach.
Though other, usually heuristic, approaches are also taken, if one is interested!
in classification with controlled probability of error or with minimum computation
cost,.then a probabilistic approach is necessary. The question of minimizing cpu
time for recognition,is of course, of great importance if one wishes to treat the
recognition of highly complicated patterns and is a subject of growing interest
f1-5]. 1In this paper we focus on a subproblem of the more general problem of
optimally recognizing complicated line drawings, namely, the prcblem of recognizing
underlying straight lines and quadratic ares in line drawings. Before getting down
to the problem at hand, we briefly comment on an approach to recognition of com-
licated line pictures as this will provide motivation for some of the topics we
examine, However, it should be emphasized that our interest in approximating data
by straight lines and quadratic curves is for many other applications as well,
e.g., data compression in picture boundary representation, contour line repreden-
tation in maps, ete. The methods we discuss are geared to handling very noisy
data. -

We assume, 2 model for data generation in which there is an underlying
picture, in fwo dimensions, consisting of straight lineg and curves and a datum
is a noisy perturbation of a point on one of the lines. If, e.g., the class of
pictures under consideration is a class of handprinted capital letters, an
appropriate perturbation model might be a second order stochastic process with
the perturbation perpzi’’cular to the'underlying'line and a correlation interval
roughly the length of the underlying line, We assume the two-dimensional field
of the picture is divided into célls, i.e., quantized in the x and y directions,

and that the picture gray level is hard quantized. Hence, the data available to
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the computer is a rectangular array of l's and 0's -~ a 1 if an appreciable por-
tion of a cell is filled by the picture. A probabilistic description of the data
is then given by a distribution for the underlying straipht lines and curves and
a distribution for the noisy perturbations of this picture, It is then in theory
possible to construect a Bayes.decision rule (minimum probability of misclassifi-
cation decision rules for classifying the data as representing a specific member
of a finite number of families of pictures. This or the maximum a posteriori
probability decision function will be of interest to us in the problems we treat.
The maximum a posteriori probability decision function is easier to use and is
essentially equivalent in practice since radical quantization of some of the
variables is necessary in practice to suffieiently simplify the problem probabil-
ity structure In order to use either method. |

As an example of a number of considérations, suppose hand-printed capital
letters are the pattern categories of interest, What are the likelihood functions
involved in letter recognition? Let (xi,yi) be the ith data point and
W= (xl,yl,xg,yg,...,xn,yn)T be the observed data vector, There is a prior dis-
tribution for the occurrence of the 26 capital letters. The maximum a posteriori
decision rule is "choose the letter for which the 4Joint likelihood of the ;etter
and w is at least as large as the joint likelihoods of each of the other letters
and w". The joint likelihood of H and w might be specified as follows. Let
P(H) denote the a priori probability of the occurrence of H. We assume the data,
when H is true, is a noisy perturbation of three straight lines. Since each line
can be specified by 2 endpoints -~ 4 parameters -~ the three lines can be speci-
fied by a parameter vector a of 12 components. Let pyfa) denote the probability
density funection for the o vector specifying possible underlying H's. Let

£(w|a,H) be the likelihood of the data given H and . Then denoting the likeli-
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hood of « and w given H by p(a,w|H), we define the joint maximum likelihood of

H and w to be
max P(H)pla,w|H)

o
or

max  P(H)pCa |H)EGw|a,H) . (1)
6

If we assume that the noisy perturbations for a line are independent of those for
the other lines, the perturbati i processes are the same for all lines, then (1)

can be rewritten

max P(H)p(aIH)f(wlql)f(w|a2)f(w|a3) . | (2)
o

Heré:”hl,aa,aa denote the parameter vectors for lines 1, 2, and 3 and we assume
that for each i, the components (xi,yi) of w appear in only one of the three
densities f(wlal), f(w|u2), and f(wlus), specifically, the density which results
in (2) being a maximum. If the f(w[aj) are Gaussian, and if, in addition, the
data points are assumed to be independent perturbations of the underlying lines,
then f(wlmj) is simply (2v02)-anexp[—(l/QUQ)q(w,uj)] where ny is the number of
data points appearing in f(wluj), and q(w,aj) is the s?m of the squares of the
distances of these data points to the line determined by the parameterS'aj. Hote
that if p(«|H) were not present, (2) would be maximized by choosing the aj's such
that the lines they specify are the least squares fits to the associated data

points in w. The presence of p(u‘H) modifies the best « somewhat and also plays

a role in determining the association of the data points in w and the 3 distribu-

tiens f{w‘aj), j = 1,2,3.

The problem with implementing (2) for a)l 26 letters is that the computa-

tion csn become costly. Three important considérations arise when one attempts

to reduce the amount of computations. First, how many data points should be used?
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If the data points are assumed to be independent perturbations of underlying

lines (or curves), the classification error will be a decreasing function of n,
the number of data points. If the data points are not independent perturbations,
classification error decreases and then levels off as n increases. Since compu-~
tation cost increases with increasing n, in general it will be desirable to use
only a subset of the available data, Second, computing (2) for all 26 letters is
very costly. Third, determining the distribution f(-luj) with which a data point
should be associated can be costly. This is related to the so called sepmentation
problem but in some aspects is more complicated if the recognizer processes only

a subset of the data and hence does not exploit sequential continuity when it
exists, The complexity of ‘these problems has led researchers to turn to sequential
recognition, Here it has been realized that by fitting lines and curves sequen-
tially, it is possible to rule out various letters as being highiy unlikely along
the way, thus avoiding the second high cost referred to. Sequential recognition '
results in other benefits as well.

We examine the preceding three considerstions more carefully within the
context of sequential recognition. We assume that recognition starts with the
0,1 quantized data matrix and the goal then is low computational cost recognition.
What is usually considered as preprocessing, e.g., smoothing and determination
of data points constituting a curve through use of local coﬁnectivity and curva-
ture, normalization, etc, usually invélve processing all the data and are costly
operations and ones we believe should be included in the total recognition cost
and treated within the recognition cost minimization framework. The approach
here, then, is sequential determination of the maximum likelihood function for

the letter classes and the data. Only a subset of the available data is processed

in general. Under the assumption that the f(wlaj) are Gaussian, the choice of
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letter and parameters for which (2) is a maximum is equivalent to the problem of
optimally sequentially fitting straight lines and parameterized arcs to subsets -
of the data. (i) Assume the recognition process is at a stage where a straight
line or parameterized curve is to be fit to data entering a specific local region.
The appropriate data subset is not yet known and must be found during the fitting
process. Hence, influenced somewhat by the results of the fit up to the present
stage, the system searches for data in the spzcified local region, gets a prelim-
inary fit of a straight line or other parametrized curve to this data and then
uses the Fitted curve to estimate the location of the next data point to be used.
Starting from the estimated location of the new data point, the nearest data
point is found through a search, the parameters for a better fitting curve to the
augmented data are found, and a new data point then looked for. Hence this
provides a way of exploiting prior knowledge of péttern strv ;ture for intelligently
searching for the data subset associated with an underlying parameterized curve.
If the data perturbations are large, the cpu time consumed in data search vhen
fitting straight lines to data can be comparable to thz cpu time in computing
parameter values which result in the least squares straight .ine fit to the data.
When the parameterized curve is a quadratic curve, the cost of the data search

is less than the cost of cpmputing appropriate parameter values. This problem
of intelligent data search arises in a variety of contexts, e.g., in ballistic
missle decoy tracking [6]. (ii) There is a least expected cost order in which

to search for the underlying parameterized curves. In otherwords, optimal sequen-

tial parametrized curve fitting can be directed thycugh a least expected cost
decision tree. See [2] as an example of the type of minimum cost decision tree
approach one can consider here. The reason for this dependency of recognition
cpu time on order of estimation of the underlying curves is twofold. First, the

a priori letter prJbabilities and hence probabilities of occurrence of various
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combinations of underlying pavameterized curves vary. Second, the four major
operations in curve fitting are: checking to see whether there is an underlying
curve in the vicinity of a specific region of the space; fitting a straight line
to data; checking to see which of a line and a quadratic curve best fits the data;
fitting a higher order parameterized curve to data. These operations require
different amounts of cpu time with the first requiring the least cpu time and

the last requiring many times that amount, Hence, e.g., if recognition can be
accomplished by showing that the joint likelihood of a letter and the data w is
unacceptably low for all 25 of the 26 letters, the recognition decision will be
the remaining letter without actually computing the likelihood of this letter and
its data. ‘fThus, an optimum curve fitting sequence may avoid fitting costly
quadratic or higher order curves and rely more for rgcognition on fitting straight
lines, where they exist, checking on whether or not curves are present in specific
regions, and fitting quadratic curves only when absolutely necessary. The optimum
decision tree depends on the various probabilities involved and on the costs of
performing varlous operations. (iii) Finally, how well does one estimate each
underlying curve? Equivalently, how many data points do we take for estimating
each undeflying curve? Ve have some choice here since determining the best
posslble fit to tﬁe underlying curves is usually not necessary for acceptable
recognition error rite. On the other hand, it is usually true that the bétter

the curve fit up to a stage, say the ith, the less uncertainty and hence less
costly will be the fit at the following stage; also, the higher will be the prob-
ability of correct underlying curve determination at the ith stage and hence the
lower the probability for incorrect fitting and hence costly backtracking at the
next or other future stages. Consequently, it behooves us to understand the
relationship between goodness of curve fit and associated computational cost in

order to determine how good a fit to compute at each stapge. This problem of the
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relation among computation and resulting uncertainty at a given stage and the
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required computation at the next stage is important and arises in a variety of
ways in a pattern recognition problem. See [5] for interesting treatment of the

tradeoffs in the two stages of letter recognition and then word recognition.
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We <o not study the preceding threce points within the context of a complex

abs{ract pattern recognition problem sinre the application context has a bearing

(B priiiniit e s e

on how the -.hree points are best landled. However, we do provide results on the

three points which are of use when considering a complete pattern recognition

problem. Specifically, we discuss efficient algorithms for sequentially fitting
;; straight lines and quadratic curves and for searching ouf the appropriate data. f |
For straight lines and quadratic curves we estimate the cpu fime for computing o
best parameter values, and for lines ve also estimate c¢cpu time for the data search.
Thus, the relative data search and parameter estimation costs can be compared and ” 4
the relative estlmation costs for straight lines and quadratic curves can be ; :
compared. For straight lines, we arrive at graphs for fit error as a function of :

computation time. Such design graphs can be prepared for quadratic curves as
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well, Finally, we discuss a variety of procedures for early decision on whether

an underlying straight line or nonlinear function best fits the data,
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Models

We briefly describe the t) curve fitting models of interest in this paper.
Both are linear regression models. (i) First, we are interested in the least
squares fit of a straight line to n data points. The most reascnable error measure
is undoubtedly the perpendicular distance from a data point to the line. However,
results are simpler to obtain if we parametrize y as a function of x or x a5 a
function of y depending on whether the slope of the fitted line, at that time,
has magnitude less than or greater than l. These parameterizations are
y=e,t clx and X = cg + 1Y respectively. Then for the first parameterization,
the error for a given data point (xi, yi) is the magnitude of the difference in
Yi and the height of the approximating line at Xs3 the error measure for the second
p.;:'.imeterization is the obvious analog., In practlice, one would start off with the

most reasonable parameterization based on available information, and then retain

this parameterization or change it depending on the data being processed. Since

the sum of the squares of the errors in the best fit of this type is related by
at most a factor of 2 to the corresponding statistic when the perpendicular

erpor from data point to line is used, it can be seen that, visually or by any
veasonable criteria, the resulting line should be perfectiy satisfactory.

(ii) The second model of interest is the fitting of data by a quadratic curve.

A portion of an ellipse is most useful for our purposes. The parameterization
x(t) = x, ta cos t, y(t) = Yo t b cos t + ¢ sin t has many desirable features
and variations have been used, e.g., [7]. This parameterization is probably the
most convenient to use if successive values of t are chosen first and then appro-

priate data points are searched for. That is, the approach is most useful if the

 search for an ith data point is conducted by calculating best estimates for Xy

Yor 2s b, and ¢ based on the first i-1 data points used and then choosing 1:i and

searching for the data point closest, in the perpendicular direction, to the
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estimated ellipse at t;- However 1if one is faced with the problem of fitting
an ellipse to n specific data points, this parameterization is inconvenient since
the appropriate value of t to b& issociated with each data point is not known and
the fitting operation then involves some nonlinear programming. An altermative
procedure is to ask for the coefficients for which the sum of the perpendicular

distances squared from n data point to the curve

2 2 =
e)x" + e Xy + ey textey -1 = 0 (3)

is a minimum. Again, the solution can be found but the required computation is

considerably greater than if an alternative error measure,vhich we now describe,

is used} Let ¢ dencote the vector (cl, Cps snss GS)T and z denote the vector
(32, XYy yz, X, y)T. Let 2z~ denote the z vector for “he point (xi, yi). Then we

seek the ¢ veector for which

? (T2t - 1)? (4)

i=1
is @ minimum., This formulation can of course be used for a straight line, for
curves of higher order or for other parameterizatioﬁs as well. What is the curve
resulting from miminization of (4)? The curve can be any cne of an ellipse, a
hyperbola, or a parabola. The chance of the last of these occurring is essen-
tially zero. We would like to obtain an ellipse and in the section on experi-
mental results we discuss ways of coaxing the alporithm to generate an ellipse or
at least a useful hyperbola.

For ¢ fixed, ¢’z is a function of (%,y), and, hence, w-cTz = 0 is a sur-

face in Euclidean w,x,y-space. The error measure (4) iz the sum of the squares

. ' : U |
of the distances of the points w, = ¢ zl, on the surface w»cTz = 0, to the plane

parallel to and one unit above the X,Y plane through the origin. See Fig. l.
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The intersection of the surface w-cTz = 0 with a plane parallel to the x,y planc

through the origin is a quadratic curve cTz +d =0 or is empty -- depending on d.

Suppose, for example, that (3) is an ellipse. Then as d varies, the curves

cTz +d = 0 consitute a family of ellipses with common center, same major axes
and minor axes, and such that the ratio of the distances of the curve from its
center along the major and minor axes is the same for all d. An alternative and

more useful interpretation of (4) is the following. Consider the ellipse and

data vy F (xd,yd)T in Fig. 2, Let v, (xo,yo)T denote the ellipse center and

v

e (xe,ye)T denote the intersection of the ellipse with the straight line from

Ve to vae cTz—l can be rewritten as

(v-vo)T C(v-vo) - szvo -1 (5)

where

[
14}
0

1
1 7% _ -1 |
and v, = -(1/2)C [; ] .

1
7 © 3 3

Upon defining u, to be Ve~Vo and § to be a scalar such that VatVe T Yo t Aue,

T

T
(5) becomes (ve-vo) C(ve-vo) - vy

T T. T
Cvo-l + GueCGue + 26ueCue, or 6(6+2)ueCue.

Finally, since uZCue-vZCvo-l = 0, (5) can be written as

§(6+2)p (6)

where p is the constant 1+vg

Cv_. Note that |6| is the ratio ||vd-ve|l/]|ue||
and, hence, is the ratio of the distance of the data point to the ellipse, along
the line from the data point to the ellipse center, divided by the distance from

the ellipse to the ellipse center along this line, See Fig. 2. Since ]|ue|| is

a maximum in the direction of the ellipse major axis and a minimum in the direction

of the ellipse minor axis, it can be seen that if two data points are equidistant
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from the ellipse but one lies along the ellipse major axis and the other along

the ecllipse minor axis, then the contribution to (4) of the data point lying aleng ;
the ellipse minor axis will be greater, assuming |6| << L, Also, for |8| fixed, :é
(6) has larger magnitude for § > 0 than for § < 0. The differcnce in magnitudes
is neglipgible for |6| << 1,

Recursive Estimation

Estimation of the parameters of the models y = e ey % and
c1x2 +cyxy + c3y2 tox toegy - 1 = 0 is efficiently recalized through use of

recursive least squares estimation. Specifically, letting
! 251 4as iszT , andb = (yl,y?‘,...,yn)T

er b = (1,1,...,1)T, n 1's, depending on whether we are dealing with the first or .
the second model, respectively, the problem of deterﬁining the optimum ¢ is that of i
determining the ¢ which minimizes Ilhnc - bll?. The solution from [8] or [3] is
e = A'b 7)
—lAT

where A; denotes the pseudo inverse (A:ﬁn) However, from [10] we see

that (A:hn)"i can be computed recursively., Let Bn denote A:An' Then

RPN ST Lt B S R T
.

T
n+l T -1 gl ntl,ntl p-l
L i1i _ =l n n
B =() z'22) =B~ - . (8)
ntl " i n o417 -1 ne2
1+z Bn zZ

n . :
Since 2" = Aﬁbn = Z zlbi, we see that the Optimum‘cn+l is given by

i=l
T - o
B-lzn+lzn+l B-l L
Nl B-l gntl _ lp=1 _ ’n n +1 n+1] ;
n+l n T . [IZ"+bn 2" ] . (9) ﬁ
' 14z p-1,n+l

n
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Hence, B;l and 7" are efficiently computed recursively, and cn+l is computed in
terms of these functions and the latest data, i.e., bn+l and zn+l.
The error é:n z ||Ancn-bn||? can also be computed efficiently. Since
n+l n+l T n+l T 2
£.n+l = ] bi -2 (] bkzk) AL ) (¢ My ;
k=l k=1 k=l

it is trivial to show that

T T
eg; _ Ilbn+ll|2 _ zn+l B-l zn+1 - llbn+l|12 i zn+l cn+l

+1 ° n+l (10)

where }lbn+l||2, Zn+l, B;il are all trivially recursively updatable so tha*

. D)2 ~1 +1 .
6?;+1 is computed in terms of ||b [I , 20, By bn+1’ and 2", Note that almost

all of «yi¢ computational effort for cn+l and is accounted for in the computa-

n+l
1 1l . .ntl

tion of B;+l and then B;+lz + Since this computation is needed for the deter-
n+l

mination of both ¢ and

oy it follows that once one computes one of these

estimates, the other is computed cheaply.

Computation Costs

Since recursive estimation schemes are under consideration, we estimate

the CPU time for one such recursion. We deal with four costs, these being:

(i) cost of computing Mt

(ii) additional cost of computing é.n +1
(11i) cost of predicting best initial seaﬁch point for new data point search

(iv) new data point search cost given first search point.
All costs'are estimated by determining the numbers of various types and associated
CPU realization times for arithmetic, Boolean and memory management operations.

CPU realization times are for assembly language programs and are taken from [11].

The instruction list and associated realization times are given in Table 1.
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Table 2 contains a list of the numbers of the various instructions determining the
four aforementioned costs and the resulting costs. A shért explanation of the

details of these calculations is the following. The inversion of B"l is carried

n+l
out by first computipg B lzn+l. This vector is then used in the computation of

n+l
- (l’xn+1

are required in computing B

(8). Since z ) “when fitting a straight line, only two multiplications

T
-4 n+l in this case. Since B lzn+l n+l Bnl is

symmetric, only the diagonal and half the off-diagonal entries must be calculated.

-1 n#2 1’ -1
Finally, it is not necessary to divide each component of B Bn by

n+l -1 n+l -1 n+l

T
14z Bn z . Dividing the vector B z by 1+zn+l B-lzn+l

and then computing

T
[(l+zn+l nl n+1)-l ;l n+l] ntl nl is more efficient.

Now consider costs (iii) and (iv). For model 1, a choice is made for X4l
and then a search made for a data point having this Xoel® If the data is complex

consisting of more than one nolsy line and arc, the data point of interest is

that closest to the line determined by c”. If there is only one line and no arcs

presented, the only consideration is a least cost search for the data point and

such a search, for data generated by Gaussian perturbations of a straight line,

involves a good initial estimate Y1

above and below those last explored. The necessary estimate in the first case,

followed by successive examination of cells

which is also the minimum mean squaved error estimate to be usid in the second

_ T _
~ _ . n+l' n
Yot1 = z c . (11)

In practice, X4l

are equal and this constant chosen at the start of the search. For model 2, the

would probably be chosen such that the differences %41 " *n

preceding consideratiors also apply. The initial choice we consider in the

. PR (L
search for a zn+l is a point "L on the curve

- T
20 ., (12}
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Such a point might be found by choosing an ¥aa1 OF @ Yp4 and then solving (12) to

L ™) {s then probably most

cheaply carried out by determining and then searching in the direction perpendinular

“n+l n+l “n+l

to the curve at z ., Alternative less sccurate choices for y and z might

be considered, although the saving in costs for computing these estimates is small

compared with the total computational cost of one recursion, and, hence, not a
T

ntl” n

significant consideration. For example, the cost of calculating Ve = 2 c is

essentially the cost of one multiplication.
For the lst model, the search for (xn+l’yn+l) ie the sequence (x l’yn+1 +4},

-4), (»

(= n+l’yn+l

R A +2A), ete,, where A is the quantizaticn interval. Under

T
the assumption that yn+l-zn+l ¢ is a Gaussian r.v., with e = (co,cl)T the true para-

meter vector, the specified search is of lowest cost., Assuming the variance 02 of

. 2, .
Y41 ~(c o Fey% n+1) given % ., is much greated than A”,'an estimate of the expectation
of the number of iterations to finding Yo+l is obtained as follows, Ynal and
a T
Yo = zn+l c? are independent Gaussian random variables with common eupectation

T
n+l s . 2 - :
z ¢. The variance of Y4y 18 of course, ¢, and that of Yne1 IS
n

n 2 n . n .
var c  + (xn+l) var ¢, [22]. Note that by c, and ¢, we mean the first and second

components of cn, Hence,

var ¥..q ° 02En'1 (L, - x )2/ X (x.-x )1, and a2 41 E var(y, =¥, .)
i=1
. , s 20wl ) 3 -
=vary .. tvary ., =0 [l+n — + (x x ) /1§l(x x ) 1. (xn denotes
-1 B
n" X;.) The expected number of iterations is
i=l
P{yn+l ntl = = 1} + 2-P{yn+l yn+1 -1} + 3¢ P{yn+1—yn+l =2} + ,..
which is roughly
;
T -1 2 N -1/2,
)=: 18(2m0” ca) Texpl-(1/207 ) 821 = u(an) o 41 /0 (13) |

T S -
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for a/i >>» 1, lote that o/A »> 1 = °n+1/A »>> 1 which then implies that the

probability of the events Yoel 5 Yper t iA and Ynel = Ypey ™ iA are each
approximately A(2ﬂ02 )“l/2exp[—(l/2a2 )i2A2] and the sum in (13) can be

n+lx n+l 1
approximated by an integration. Waen Xe=Rs is a constant for all i ¢ n,
2

_ 2,8
O 4y = O (n® + 12n

2y 20n + u)l(n3 + 8n2) . (14)

Then, the expected number of iterations is roughly

u(2n)'1/2(o/A)[(na + 12n2 + 20n + u)/(n3 + an9>31’? . (15)

)wl/2

As n + =, (15) converges to 4(2w (o/A) and is indeed close to this value

forn 2 5.

From Table 2 note that the sum of costs (i), (ii), and (iii) is roughly

six times as great for a quadratic arc as for a straight line.

Variability In Straight Line Approximation

The variability in the fitted line v = zTcn depends on the nunher and

specific choice of the xi‘s. In order t¢ make an intelligent choize for the Xss

a measure of fitted line variability is needed. Under the assumption that the

y; are perturbations of some line e, + ¢y%;, A useful measure of fitted line

variability is

2T T T T '
(E0CE @ - 22 ) 4 (2P P - 2 22 (16)

which is the square root of the sum of the variances of the ¥ components of the

fitted line endpoints. (The assumption here is that |c.| s 1; otherwise, the

|
variances in the x components of the fitted line endpoints are of interest.)

The evaluation of (16) is like that of Gfx 4 @nd is easily shown to be

. n
ot 4 [(xp-3 )7 + (xn-;n)23/izlcxi-§n)2}1/2

¥
,
j
i
;
T
;
;
3
E
.
%

:
k
k
4
;
i
k
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which reduces to ‘é
n

ofon™ + 2(x -% )%/ T (x,-% )21M2 (17)

n n 1l n ;

. :

and is g
o[2(lm2 4+ 20n + u)/(n3 + 8n2)]1/2 (18) \g

when Ro=Xs g is constant for all i £ n. A more useful measure of variability is fﬁ
(16)/L or (14)/(xn~xl) where L is the length of the approximating line. Since, f ?
;|

for the parameterization under consideration, the slope of the approximating line ; %
has magnitude less than 1, the two measures are essentially equal. Hence, for ; |
eonvenience, we shall use ﬁ E
: ,

: =1 = 2 = 42.1/2 b

F - - - b

To/(x %, Y1020 4 2(x =% ) /izl(xi x )] (19) i

-
[o/(x_~x,)02(un® + 200 + 4)/@® + an”)3*/? (20)

when the XX, 4 are equal for all i, as our measure of straight line fitfing
variability ov "error". The advantage of (19) over (17) is that division of (17)
by ® "%y appropriately normalizes the measure of endpoint variability. That is,
as long as the standard deviation of the endpoint of the approximating straight
line iu much smaller than is the approximating line length, we have a useful
approximation and are justified in charanterizing the error or the fitting

variability as being small.

Variability In Straight Line Approximation As A Function of Computation'Time

Since most of the computation time in identifying and approximating, by a

TN

R T I L Py T S & N TP RS SN 1Y T T O O T T VL.t P L Ty

p&rameterized line, a straight line or an arc is spent in the approximating process,
we examine the relationship between curve fitting error and computation time. We do
this, however, for straight lines only, and furthermore, for X3 is such that Xev®s g

is a constant for all i. Consequently, for the error measure we use (20). Since
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line fitting is realized recursively with one recursion for each data peint used,
the total computation time is the sum of the computation times for each recursion,
There are three co;  utation costs which are the same for each recursion, and a
fourth which is a funetion of the number of recursions previously completed but
which becomes essentially constant after four or five vecursions. We denote the
first 3 costs per recursion as tc, te, and tp with tc the cost of computing the
estimate of the parameter vector c, t_ the cost of computing the sum of the squares
of the distances from data peints used to the latest best line fit, and tp the
cost of computing the best first search point for the new data-ﬁoint search. The
fourth cost, ts(i), is the cost of searching for the i-th data point given the
best starting point. As menticnéd, ts(i) is essentially constant for i 2 5.

If n data points are used in the fitting process, the fitting cost is roughly

n
n{t, +t, + tp) + i-X-l t (1) (21)
which is approximately
n(tc tt, 4 tp + ‘ts) . (22)

Before evaluating (21) and (22), we make a few observations on the relationship
of error to cost. Among the situations which can be encountered are two extremes:

(i) t,ott, vt > t ., and (ii) t, T, +'tp <« t_. Suppose (i) is true. Then

D
n is directly proportional to fitting cost. Since error varies roughly as a

1/2 -1/2

constant multiplied by n ~’/“, we see that error varies as (cost) multiplied

by a constant and this constant is uniquely determined by the parameter a/(xn-xl).

Suppose (ii) is true. Then for n >> 5, a reasonable approximation to fitting cost

is nt.. However, since t_ is directly proportional to o, then again using the

fact that error is roughly constant-n_l/z

, we conclude that error is roughly
3/2 1/2 |

constant (o (xn-xl)-l) (cost)” Hence, error then is a function of the

parameter 03/2/(xn-xl). A typical curve of error versus cost is that of Fig. 3.
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Stopping Procedures

The process of fitting a line or a quadratic curve to data was treatnd
in the preceding sections. Two questions remain. First, how should the computer
make a decision as to which of a line or quadratic curve best fits a subset of
the data, and how useful is this data subset to the recognition of the entire
pattern? Second, how does the computer decide, during the sequential Fitting
process, when to terminate the fitting of a line or quadratic curve because the
latest data being precessed is that for a new line or curve? Upder the assumption
that good line and quadratic curve fits are possible, i.e., parameter estimation
error is small for estimates based on a reasonable number of data points, stopping
decisions can be made at costs smaller than the curve fitting costs. In this case,
attention need be given only to the first question. If a curve fit is carried out
with large estimated variance because an insufficient.number of data points is
used or is available,then terminating the fitting of a curve could be rather costly
and could require processing much of the data used in fitting the intersecting
curve which comes next. We assume that the former case pertains. Thus, the
problem to be considered is to decide as early as possible whether the data used
in a curve fitting is that for a line or for a quadratic curve. How does previ-
ously collected data affect the decision? Roughly for cases (i) aud (ii) treated
in the following paragraphs, based on the previously collected data or on some-
function of it, we have a conditional joint distribution for whether the under~
lying curve is a line or a quadratic and for the associated unknown parameters.
Denote this density p(H,c|w) where H denotes the hypothesis and takes values H,
and Hl'for line and quadratic, respectively, and ¢ is the parameter vector for the
curve type for the associated hypothesis. w denotes previously accumulated or

reduced data. Given w, the joint likelihood of H,c and the most recently acquired
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data Vi3 Fas ceen Yy to which we are interested in Fitting a curve is
p(H,clw)f(xl, cees xn|H,c) (23)

where we are assuming the data as perturbations of the underlying curve is inde-
pendent of w given H,c.

For reasons discussed in the introduction, the stopping rules we briefly
examined are those involving maximum likelihood ratios. Also, in general we are
apt to be interested in a multihypothesis problem involving a decision as to which
of a number of straight lines or arcs best fits a data subset entering a local
region. Such a decision will be made by comparing each of one or more discriminant
functions with a threshold where a threshold will depend on the discriminant func-
tion being tested and may depend on the number of data points and the extent of
the region over which they are taken., (See [13] for some comments on abstract
multihypothesis sequential decision theory.) In practice, the thresholds would
probably be determined partially through experimentation. Model (3) is most easily
studied and an understanding of its stopping behavior should provide a rough under-
standing of the stopping behavior of (4). Ve consider three versions of the simple
problem of deciding whether the data constitutes a noisy perturbation of a linear
function of x or of a quadratic or perhaps less restricted function of x. The
three versions represent three different assumptions of prior structural knowledge
of the underlying curves in x. Prohlem (i). Ve assume the underlying curve is

2

y=c ¢t c % under Ho and is y = e, t egx + ex with c, known under Hl.

c, and c, are different under Ho and Hl, are unknown and may enjoy large ranges

of possible values. The assumption of <, known is made in order that we be able
to devise a test to distinguish between linear functions of x and functions of

x which have at least some minimum quadratic content of interest, If the true ¢,
is.in fact larger in magnitude than the <, for which the decision function is

designed, then the decisions made will have lower error probability than that
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designed for. Problem (ii). Two hypotheses as in (i), but ¢, is not considered
known., Problem (iii). A linear function is assumed under H , and no assumption
is made concerning the form of the underlying curve under Hl. Hence, the assump~
tions range from somewhat restrictive in (i) to very unrestrictive in (iii).

The decision pr cedure then for (i) or (ii) is

mgx p(Hl,Blw)f(yl,...,ynlﬂl,B)

max p(Ho,y|w)f(yl,...,anHO,Y)
Y

H, 1if > 1 (24)

1

Ho otherwise.

Equivalently, the log of the left side of (24) can be compared with 0. In
practice, p(H,c|w) will be of use only if it is of very simple form. This most
likely restricts it to being Gaussian in its dependence on c or a function which
takes constant values over a few simple regions in H,é space, For example, a
particularly simple function, Fig. %, might treat all lines having leftmost ends
close to vertical A and right most erds in the shaded repion as equally likely.
The funetion might have one or more such regions of fairly high probability and
the remainder of the space have likelihood 0.

A convenient form for viewing {(24) is the following. Under our white

Gaussian noise perturbation assumption, p(Hc,Y|w)f(yl,...,yn|Ho,Y) is

n
'"/Qexp[-(lfzoz)_i (y; = Yo - lei)2] (25)

p(HO,Y|w)(2n02)
i=1

which can be reformed as

2, % ° - 2,
p(H_,v|w)exp{-(1/20 )izl[co-— Yo + (eg = v)x;17} %

(2962)"™2 2, 7 a2
no”) expl-(1/2a )_zl(yi ey - clxi) 1, (286)
i= '
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where ;o and ;l are the parameters for a least squares line fit to the data
Yyreeos¥y Hence, the influence of w on the maximization of {26) with respect to
vy appears in the first line of (26). The second line of (26) involves only the
latest data subset and the least squares line fit to that data. If the value of
vy at which (26) is a maximum is determined largely by the exponential in the first
line of (26), then p(Ho,y|w) in the denominator of (24) can be placed before the
mikimization. If p(Hl,Blw) can similarly be removed from the maximization in the
numerator of (24), the effect of w is simply to multiply

mgx f(yl,...,ynlﬂl,ﬂ)

(27)
max f(yl,...,anHo,Y)
T

by a constant. This situation is likely to occur when n is large. (This does
not mean that w has not played an important role. It plays an important role in
guiding the search for ¥y,...,y, and then in weighting (27).) Consequently, we
examine some properties of decision making based on (27)}.

The % values X)s Xpseens at which data points are sought are chosen first,
based on prior knowledge of the lengths of lines or curves likely to be encount-
ered, In practice,equal increments xi-xi-l would probably be.used and one can
determine a best (in some sense) increment to use. We do not do that here. The
object of this section is to provide some insight into the structure of good

decision rules for deciding with a minimum number of data points whether the

latest data subset is best fit by a line or a nonlinear arc.

Case (i): For this case we employ a Wald sequential prebability ratio

‘test (SPRT) [14] having the property that the decision for accepting H_ or H, is

made with predetermined probabilities of incorrect decision under H, and Hl, set
by the designer, and this performance is achieved by processing the minimum

expected number of data points. ‘The parameter vector " giving the best linear
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fit to the data has previously been found te be (9}, i.e.,

If the quadratic approximation is used with known coefficient e, for the second-

power term, the least squares estimate for (co,cl) is given by

§he 1 i - 2
c B iZl 2 (y; = cyx;) , op
et =t E 2le, x? (28)
no;2 o S _

Then a sequential maximum likelihood ratio test consists of comparison of the log
of the maximum likelihood ratio, (27), with a pair of stopping boundaries. The

log of (27) is (29) multiplied by a constant.

(1/2) [- Z (y; T ny 2 Z (yi - z.c'n.- CoX] )23 (29)
(zgcn and zzﬁ'n + czxi are merely the approximations to ¥y provided by the linear

and quadratic functions which are least squares fits to the n data points.)

Equations (29) can be rewritten as

n
I YICZT L (z Tar? 4 e Xy )]
i=1
-(1/2) Z [(z - (z; Tem ¢ ¢ x2)2] (30)
i=1

This is the usual operation of crossecorrelation-of the data sequence with a

reference function and then the addition of a number not depending explicitly on
the data. In a classical simple two hypothesis testing problem, c” and ¢'" are

not functions of the data. The reference function is then a deterministic function
which is the difference of the mean value functions under the linear and quadratic
hypotheses. = Also, when dealing with simple hypotheses, the second summation is

a constant, i.e., independent of the data. Since we are dealing with composite
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hypotheses, the reference function is a function of the data, and the r'-ond

L

summation in (30) is also a function of the data. Thus, the deeision functisn in
(30) is an estimator-correlator. An interesting simplification of (30) can be

made. Through substitution in (30) of (9) and (3), (30) reduces to

n
T T 2
izlyi[(zi Z zjczxj e x; )

n , (31)
2
-(1/2)¢( Z Z, chi)B (.Z z,Q xi) - z (czxi) ] .
i=1 i=1 i=l
The interpretation of (31) is as follows: X 210232 is the coefficient vector

i=1

for a least squares linear fit to the sequence czxi, c?xg, cony czxﬁ. Thus, the
line having ith x,y values X, and ZEB;l ) ziczxg is the line which differs from

the quadratiec function ¢ x2, at the points KysereaRoy least in a sum of error

2
squares sense. Consequently, the decision function reduces to that which would
be used for testing the hypothesis that the data is a perturbation of c2x2 apeinst
the alternative that the data is a perturbution of the line which is most like

C

2x2 at the points Ris Xy sees Xpo The linear hypothesis used here is the most

conservative possible! The test is intuitively reasonable since on the one hand,

the user is only certain of the c2x2 portion of the quadratic hypothesis, and on
the other hand, the user knows only that the alternative hypothesis is linear and
a worst case hypothesis is therefore a safe one to use. The resulting error rate
will of course be higher than if the parameters in the two hypotheses were known.
The question that than remains is whether the data is such that the test performs
as would a test for hypotheses which wefe truly simple. The answer is yes, and
this is justified in the Appendix. |

In summary, thén, the stopping test reduces.to the test of a simple hypothe-
sis against a simple alternative and the stopping thresholds are set in accordance

with the classical theory [147] for such hypotheses.
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Case (iii): Case (i) was a stopping rule based on considerahle a priori
information concerning the problem probability structure, In Case (iii) we

function with minimal prior infermation. The mean value function is assumed to

. be linear under hypothesis Ho and nonlinet:r under hypothesis Hl' No additional

information is assumed about the mean value function under the alternative hypoth-
esis., A standard approach then would use a chi-square test on the sum of the
squares of the errorsiin the best linear fit to the data. “This would involve
fixing n and a > 0 and deciding H, or Hy depending on whether the sum of the
squared errors in the best linear fit to n data points lay within or outside a

1 - a confidence interval. The drawback of such a test is that if the confidence
interval is large and if Hl is true, the probability of the decision being Ho may
be large, i.e., the power of the test may be smail, If we wish to design the test
to operate with some specified minimum pover, then we are back to Case (i).

A compromise is to choose n such that the length of the 1 - a confidence interval
can be fixed at a value we consider to be reasonable for H . Then if the confi-
dence interval is not violated, we can be quite certain that Hy is true. A reason-

able choice for the length d of the confidence interval might be the following.

Let e(n) denote (é?n/n)l/2

(sum of squared errors in linear fit to n data points/n)1/2.

That is, e€{n} is the average error in the linear fit to a data point. A smooth
curve of length £ might be considered to be a line if it lay within a rectangle
of length & and width d with d/% << 1. Since the data for our curves may exhibit
considerable fluctuation, we shall consider n data points to have Lcen generated
under H_ if

e(n) < d, ' (32)
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Hence, we choose d such that any fairly smooth curve of length roughly £ which
lies within a rectangle of size d by & is in appearance what we are prepared to
call a line. Since the variation in lengths of curves of interest may be consid-
erable, we choose an appropriate number p and then determine d from

dp = ¢, (33)
0f course, a meaningful d must be greater than the noise standard deviation o,
In summary, then, a c¢onfidence interval lengzth d is chosen in terms of specified
p and & by (33) and n is theq determined in order that a 1~ a confidence interval
under Ho have this length. This provides us with a mechanism for being reasonably
sure that if our decision is Hyo the associated mean value function is indeed
linear, and, furthermore, the probability a of deciding Hl when Ho is true, is
small. We might choose % to be somewhat smaller than the a priori expected lengths
of the lines which could be present or simply chouse £ to be of minimal size yet

sufficiently large that n is not excessive. TFinally, we mention that these results

can be used as a guide for devising a sequential test in an obvious way if the

L a priori uncertainty in the possible value for £ is great.

Case (ii): We point out that prior knowledge of the nature of the mean

rairtimr g

value function under Hl which is intermediate bhetween that used in Cases (i) and : i

(iii) can be assumed. Namely, we can assume that the mean value function under

? Hl is e, teyxt c2x2 with e, unknown and arbitrary. Then the log maximum likeli-

' hood s'atio test becomes the comparison of
T T
o~%c" A:b“ -c A;}Tb“] (34)

Tt L R R i e bt A

with 0 where ¢® and An apply to the quadratic model z = (l,x,xz)T, and ¢'" and

Aﬁ apply to the line model z' = (l,x)T. Since the test statistic is chi-square

[ R ST R

distributed with 1 depree of freedom, the test can be designed for a specified
probability of error when Ho is true., However, if one is willing to assume a
quadfatic mean valuz function under Hl’ then one may as well treat the problem L

as Case (i) and we therefore do not investigate Case (ii) further, :
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Further Comment on Rependence of Goodness of I'it on liumber of Data Points

For those applications where the joint likelihood of curve parameters
and data is used, it is penerally desirabtle that the functional dependence of
this likelihood on the parameter vector be highly peaked in the vicinity of the
true underlying parameter vector., Some insight into this dependence on number
of data points is provided in this section., The joint likelihood function may
be carried along as a performance functional in a sequential pattern recogni-
tion problem and it also appears in the simpler problem of recognizing which
of two underlying curves of the same degree (or families of such curves) is
associated with the data.

We discuss the case of an underlying straipht line (the same discussion
holds for a higher order curve). Assume the line it parameterized with y as
a function of x. The joint density of line parameters and data is that of
(25) and (26). The second exponential in (26) is not a function of c,

Taking the natural logarithm of (26), we see that

2 2, o A 2
(-n/2)1n (270°) ~ (1/20%) (y:. ~¢c_ ~ ¢, %)
i=1 1 Q 1
is not a function of Y, and has well known behavior since
-2 0 ~ 2
G I (y, ~c_ = ey Xe) is chi square distributed with n-2 degrees of
i=2 Y ° *

freedom. The remainder,

- 2. P . e 2

. In [P(Ho, Y|W)] - {1/2¢%) ifl [co ol P (cl -'Yl) xi)] (35)

is of course a function of ¥y, and would be the cnly part of the logarithm of

(26) entering into a test as to which of two underlying lines & families of
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lines best ripresented the data. Henze, such ¢ test might be thought of as a
comparison of how well the maximum likeiihood line ¥its the lines or families
of lines associated with the two hypotheses.
Dencte by Yy the true undzrlying parameter values. Tian
n

- (1/ga2) E {iil [30 - ¥, t (31 - Tl) xi]2 l Yy }

- ~ 2 2, 0
E{[co - Yor ¥ (cl - Ylt) xi] |Yt} -(1/20 )_E [Yo - Yot t (Yl - Ylt)xi]

=(1/20%) &
= i=l

i=y
(36)

The nature of the dependence of (36), the mean of (35), on n shows up on the
right of the cquality, As a portion of a performance function, (35) becomes
useful for those n for which it is small., I% can be seen that n should be
at least as large as is necessary for the first summation on the right of (36)
to be small in magnitude compared with the magnitude of the sum of

ln[p(Ho,ylw] and the second summation on the right of (36), Note that the first
summation on the right of (36) is related to the measure of line fit used in

the previous section and graphed in Fig. 3. The error measure used there is

the first and last terms in the first summation on the right of (36).

Experiment@l Results on Fitting Ellipses to Noisy Data

Experiments were run using the proposed method for fitting quadratic ares
te noisy data which appeared to be appropriate for approximation by an ellipse.

Two phenomena of interest occurred. First, the optimum quadratic curve
was on occasion a hyperbola with each branch fitting a portion of the data.

Since no constraint is imposed to restpict the parameters to those for an ellipse,

the fitted curve can be an ellipse,
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a parabola, or a hyperbola. The parabola essentially never occurs, being a
degenerate ellipse or hyperbola. A hyperbola will sometime result in smaller
fitting error than an ellipse .,, especially if the sampling interval is not
uniform along the curve and the data to be fit is somewhat clustered as in
Figure 5. Since a single branch of a hyperbola is a satisfactory representa-
tion for our purposes, but an approximation involving two branches is not,
the problem is to force the best fitting quadratic to be an ellipse or single
branch of a hyperbola without giving up the computational advantages of the
linear regression methodology. Two approaches to this problem have been
tried. The first is to take data points at reasonably equaliy spaced intervals
along the curves being fitted, and then, if necessary, to introduce one or a

few artificial data points at appropriate locations to force the desired type

of curve without sipnificantly influencing the parameters for the curve of

desired type. The approach works in some instances.

In the section on Models, we interpreted the data point error measure
when the approximating arc is a portion of an ellipse, A similar interpreta-
tion is possible when the approximating curve iIs a hyperbola. Note that the
determinant of the € matrix in that section determines whether the curve
(5) = 0 is that for a hyperbola or an ellipse. The curve is an ellipse vhen
the determinant of € is positive and is a hyperbola when the determinant
is negative. Suppose C defines a hyperbola and a data point of interest is
vy = (xd, yd)T shown in region I of Figurels. Then, upon letting v, denote
the point of intersection of the line from v, to v, with the hyperbola, we

define & by

vq - Vh = 6('vh - vo) . (37)
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For two data points each a small pe;wendicular distance d from the hyperbola,
the one furthest from v, contribute: more heavily to the error messure, (u)
or the square of (5). If the data point falls in region II in Figure 6, the
contribution to (4) is interpreted as follows. If,in the equation defining the

2 and y2 are interchanged, the

hyperbola of Figurn 6, the coefficients of x
resulting hyperbola, shovn in dashed lines in the figure, will be referred to }
as the complementary hyperbola. Let v4 be the data point shewn in region II,

? and denote by Ve the intersection with the complementary hypérbola-of the

line from v, to v, Ther; upon defining & to be the complex ccalar satisfying

i Vg miv, =.6 1 Vs (38) g ;

AR

(5) again can be reduced to (6)}. MNote that for (37) and (38), (6) can be

rewritten as

(xd/xh)2 -1, equivalently, (yd/yh)2 -1 (39)

and

.(x-d/xc)2 -1, equivalently, -(yd/yc)2 -1, (40)

respectively. If, for example, the desired fit to data lying ab.. - the x axis I

- e i L i s S L e A M

o e ey e e e

is an ellipse with major and minor axes more or less parallel to the x and ?

y axes, but the algorithm has fit a hyperbola as in Fig 5 instead, the introduc-
tion of a few appropriately placed artificial data points along the line of :
symmetry lying outside the two branches of the hyperbola (y axis in Fig. 6)

will usually then force tﬁe best fitting curve to be an ellipse. Good locations
for the artificial data points are easily chosen based on_(ﬁ), for the ellipse,
and (39) and (40). The results hold for hyperbelas of abritapy orientation. . |

Figure 7 is an example of a éingle branch hyperbolic fit resulting simply

from the use of data points taken at more uniform intervals along the curve
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A second and generally successful approach to the problem is the addi~

tion of a penalty function to (4) if the L~g’ fitting curve consists of portions

of two branches of a hyperbola or of an exceedingly small ellipse. For 11 Sy

cg as in (4), the penalty function used was

N(522 - 4 cl ca) (u‘l)

for (c22 -4 °3) > 0 and where N is a positive large constant,large compared

with the diseriminant function (c22 -l c ca). With (4) augmented by (ul),
the equations for the optimal ¢ are still linear. Note that for N large, if

22 -4 e, ¢4 ? 0, (41) can impose a large penalty on {4). Hence, the use of

this penalty function tends to drive c22 - i bl ¢y to 0. Unfortunately, this

can happen by forcing all of €y 465,64 to be small, and,in fact, this is what

Cc

happens in practice. That is, an appropriately shaped and sized ellipse seems

to be prevented by use of (41), and instead the best fitting curve is forced to

be a single branch of a hyperbola q;th the other branch pushed out toward
infinity for large N. This is a satisfactory solution for many purposes. In
practice, if (41) is required for a set of n data points, the inversion of Bn
at that stage cannot be carried out recursively in terms of Bn~l' However, if
N is then held fixed,.B;il, B;i2, etc. can be computed recursively from B;l ‘
A reasonable procedure then is to compute two éequences of cn's, one with

a penalty function and fixed N and one without penalty function. When the one

without settles down to that for an elliptic curve fit, the sequence based on

the penalty function can be discontinued,
The curves in Fig. 8 illustrate the use of (4l) in the sequential fit of
quadratic curves to data. Data points are found in sequence starting at the

upper y-axis and proceeding through the second quadrant down through the third
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quadrant. The points were generated as Gaussian perpendicular perturbations of an
ellipse. The basic sequential algorithm (9) fits hyperbolas to the first sets of
6 and 7 data points. Both branches are involved in a fit. By use of (41),
hyperbolic fits involving only a single branch result. These single branch curves
are shown in the figure. The same N was uced in both, The choice of N affects
the separation of the two branches of the resulting hyperbola. Furthermore, since
single branch hyperbolic fit to the data usually involves that portion of the
branch of greatest curvature, N has an affect on the shape of the resulting fit.
We see that the fit to six data points is flatter then it really should be thus
indicating that a smaller N should have been used which would not have pushed the
two branches as far apart and would have permitted the branch used to have greater
curvature, Beginning with the ninth data point, the basic algorithm (9) fit an
ellipse. Note that beginning with the fit to seven data points, the resulting
curves are useful for locating the next data point, | ;
The second phonomenon requiring comment is the following. Suppose data in |

the vicinity of the origin is best fit by an elliptical arc. Then if the data is

ST S S

translated in the x and y directions by x' and y', respectively, the elliptical

e b e

are which best fits the new data is not the translation by (x',y') of the elliptical
arc fitting the original data., More specifically the dependence of (6) on p, which
is a function of Vo and C, leads us to understand that the best fitting ellipse to ;5
data removed frem the origin will have major and minor axes rotated and scaled dif-
ferently than would result were the data in the vicinity of the origin. Figure 9
ccnfains overlays of the elliptical arc fits for data at the origin and for the same
data translated by (25,25). The solution to the removal of this distortion is to
produce a rough elliptical curve fit to the data removed from the vicinity of the

origin, then subtract
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the coordinates of the center of the rough-fit ellipse from the data points
to be used in the fitting process, and then proceed as usual to curve fitting
on the translated data. Analogous statements apply if single branch hyperbelic

fits are involved.

Conclusions

For the transformed-data linear regression approach to quadratic curve
fitting studied in this paper, we interpreted the measure of curve fit error
minimized by the procedures. This error is not the sum of squares of the
shortest distances between data points and the approximating curve. Nevertheless,
the experimental results indicate that the resulting fit is visually satisfactory,
our error is small when the standard perpendicular distance error is small, and
the measure should be perfectly satisfactory for almost any use.

For straight line fitting, we showed that the data search cost cah be an
appreciable portion of the total line-fitting cost. The data search cost here
was minimal becuase of the tacit assuirion of data connectedness so that a data
search along a straight line would eventually locate a data point. When such an
assumption is no longer true, the data search would have to be over a region
rather than along a line and would be more costly.

Though the basic curve-fitting algorithm is fast and requires.little
computation, our experimental results revealed occasional undesired behavior such
as the fitting of two branches of a hyperbola vather than an arc of an ellipse,
and distortion in ellipse orientation and shape when the data is noisy and far

removed from the origin. Note, neither problem arises if the data contains little

noise and the underlying curve is an ellipse. However, when the problem does
oceur, we found that a satisfactory curve fit involving a single-branch of a

hyperbola could be forced through use of a penalty function, and as the curvature
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in the data being processed becomes apparent, the original algorithm without
penalty function begins to fit an ellipse. The distortion problem was also
handled simply as discussed in the section on experimentation.

Curves relating straight-line fitting costs and fitting error were prepared.

Asymptotically, error varies as (cost) /2

as expected., It is assumed here that
the length of the data interval being treated is fixed and the option under in-
vestigation is the choice of number of data points. The curves shown are para-
meterized by two parameters: noise standard deviation divided by cell size, o/A,
and by noise standard deviation divided by the x interval (or y‘interval) over
which the approximation is made, c/(xn-xl). The curve parameter computation costs
are derived for straight lines and quadratic curves. It is seen that the latter
costs are roughly six times the former. Ifrnoisy data search costs are included,
the ratio probably will not change much since the ling fitting cost may increase
by up to 50%, but the quadratic curve fitting cost may almost double due to the
peculiarities previously noted. Thus, quadratic curve fitting is reiatively ex~
pensive, However, for the purpose of recognition of highly wvariable pictures,
curve fitting is often necessary and quadratic curve fitting may be much more
useful than piecewise linear fitting followed by polygon recognition and manipu-
lation. Finally, since recognition can often be accomplished using other tech-
niques, e.g., by comparisons, not inveolving multiplications or divisions, with
stored templates, in any recognition cost evaluation an effort must be made to
include all significant costs and not just an indication of numbers of multipli-
cations and divisions. Our fitting costs could be reduced by exploiting the fact
that the intervals X;-X. , used would often be constant and by using truncated
variable values and thus perhaps replacing multiplications and divisions by opera-
tions requiring less computation time.

The data modeled in this paper consists of thin lines. Thick line

drawings can be handled in a nunber of ways using the methods of this paper or
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natural variations. The simplest modification, which should be satisfactory
in a variety of applicaticns, would be to replace the data points in a perpen-
dicular slice across a thick line by the center point and then apply the methods
of this paper to the transformed data, More efficient methods or more sophisti-
cated methods can be developed depending on how one wishes to model the data

generation,
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APPENDIX

We show here that the test (3l) behaves as if the two hypotheses are

gsimple., The Gaussian distributions under these simple hypotheses have mean

T T.n T .n T (n
vectors (cle, CoXpreees czxn) and (zlc' , zzc' heavnsy znc' ), vespectively,

where the latter is a least squares linear fit to the former and

T n
L (cén, cin)T is given by -1 } o= caxg . Hence, all the

| ic1

o]

components of the mean value vector for the latter hypothesis are functions of
n. Justifization for the conclusion that the test performs as though the
hypotheses are simple is as follow. We first show that the linear portion of
the mean value function of y, in the test statisﬁic (31) does nct contribute to

the value of (31). Denote by r" the n vector having i~th component

T,-1 % T .2 n, s 2 n .
z.B Z z.C,X: 5 and by s the n-vector having i-th component c¢,x;. Because r 1is
i'n 351 37279 271

n % ..n n
a linear least squavres fit to s, the sum ) (ri - si) is 0 and the inner product

i=1

" is 6. Since the linear portion of the mean value of yn can

of " with " - s

be written as a constant vector plus a scalar multiple of rn, it follews that

n

the inner product of the linear part of the mean value of yn with £ - s" is 0.
' 1

Hence, (31) would have exactly theisame value if yn had zero mean value vector

]

under H and mean value vector (czkl,...,czxnj? under Hl‘ Indeed, (31} would
have exactly the same value if the'mean value of yn were r under Ho and
(cle,...,c2xn)T under Hl. But (31) is tﬁe SPRT for these hypotheses, thus
coneluding the proof,
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Asserbly Language Instructions and Average
Realization Times for IBM 360/65

Instruction

Add memory to register
Add reg. to reg.

Branch on index low or
equal reg. to mem.

Compare logical
Divide reg. to reg.
Load from mem. to reg.
Load multiple

Load reg. to reg.
Multiply reg. to mem.
Multiply reg. to reg.
Subtract mem. to reg.

Shift left single logical

Subtract reg. to reg.

Shift right single logical
Store from reg. to mem,

Store multiple

* R is the number of registers stored or loaded.

L

TABLE 1 L
Average Approximate §

Mnemonic Realization Time (u secs) . E
A
"
|

BXLE 2
CLR 1 1
DR 9 !
L 1 |
M 1 4 R/2% o
LR 1
M 5 -
MR 4
s 2
SLL 1 5
SR 1 L
ST 1 -
STH 1 + R/2* .
B
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TABLE 2
Numbers of Major Operations and Total CPU Times Per Recursion for
Computing <", c", §“ for Straight Lines and Quadratic Arcs
Quadratic Arc Straight Line
n+l 86AR+5DR+74LR+80M+835RL SAR+2DR+12LR+10MR+11SRL

€ + others = 800 secs. + others = 120y secs. ; g
cn+1 4A+S5M+others v Uly sees, 3AR+3MR+38RL+others = 20u secs, %
.psy | IAHDRESMHSSRL + others
y = 52y secs 2A+M+L4+SRL = 10y secs. :
A ks v e duml NS et A womey [ feted gy Wi ks G TSRS e AW Y %
search B+(i-1)3p secs, f
i pts ' :
Programs are written using fixed point arithmetic and it's assumed §
that all 16 32-bit registers are available. é
i
-‘%
i
3
i
i
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L
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Figure Captions

Illustration Of The Error Measure In Expression (4),
Illustration Of The Pzrmeters In Expression (6).

Fitting Cost (cpu time) As A Function Of Error Standard Deviation
For Stralight Line Fitting To Noisy Data.

Region Of Constant Prior Probability Density For Underlying Lines
For Suceeeding Data.

Two-Branch Hyperbolic Fit To Noisy Perturbations Of An Elliptic Arc.
Illustration Of The Error Measures In Expressions (39) And (40},

Single Branch Hyperbolic Fit To Noise Perturbations Taken At Roughly
Equal Intervals Along An Elliptie Are, '

Sequential Curve Fitting Using A Penalty Function To Force Single
Branch Hyperbolic Fits In The Initial Stages.

Overlay Of Flliptic Fit To Data Near The Origin And Elliptic Fit
To The Same Data Translated From the Origin.




-]l -
f
]
]
W
&,
/
¢ /
7
" i
/
Vi
d




! - b3 o

s

E

i

e
FI%Q.
4
: g




vIA W OYR O HISST ¥ 144
CIS1 9% W3 X 8 MILIWILNID 3HL OL 01




—ts +-

IR SRS S S N S e S BEEs She

L opiia i

- Wl

B e B e

) | - i i .
. | M +
. : - - - - t el e —— Y t * t . :
: 3 B - ! : e . tag e ks 2EE 58
3t - e IBOEE SESEE SPURET SEEE SRS S S s :

"0D WISSI ¥ 1A44NIN

e VER u M. SIHONI OI X £
EZEL B HONI L, OLOI X O}

A







3 o SRS SREEE PRBEE BRREE ee s Lo
S . B

- a ey

e e
i
+
'

b e apmeaedg
-

4=

.
- —y

I

]
et

4

1]

. . .

'

I}
I

1

.

‘

1}

+

'
At

] | ] U O \.~ i _- e (radl IR HEW R COTHL ET R TREESFRER)CRRHH FESE ERE ERD R &
| e R 0 R B
! m i 44 1o rebad el bR “..”. | . i ....n...:'!.::-“.‘o..ol i .lt i

. A7 | i i [ R B el i s
b m‘lll.\“ ll‘l, r'”‘L‘ ok BT TSR lll\l“ ‘ .4 t ”- 1 .m. “‘ ' .L
28511333 thesgititdiiiipeiiy e et st taem et o

: i : e :

3 38521, .mm it w 881 12252 321 LIR31 £2551 BR222 10041 Sadtd -3..1.:
' TRy pERR ¥ T J;.A.a..i.Wﬂ 3 : . i
: - — , fie
=] ' , 1 Hi n m 53 bsdh SEE1 0001 1R238 RIREE SRS 30300 et ahass aoa s e ees get yrey e e S SETet

: T e 5331 ITRSY "33 13 it 1 :14&- H ; . i :
M . I .d.

FGed IEAEE 600 FRSRE LTS

i .
H FRBSE SREEE RS o as snnne Sl —
EE . 'z . e .
FE T - : :
4 pORES B84 e $ :
5504 FRERE SSURS BENSS SoC e, st - :
11 1§51 8 . - ‘e . “H
H i ! . ‘e . ha : it
: 84 e . . i .
0 ..
e | - -
] R ERR S
i . ——tf ey
i H | - PR B g
ST SESET FRTe
14 SN Laons renst
et Hifer =
2! $ +1 11t
St

--.Oll.! ‘ﬂv.nv!.-ﬂ-ln
€2C1 9F HONIL{ OLOI X 01 Wov_




— — =

- 47 -

N

BRI 3383 13451 LA T3 LS | T ' T b m- ™ w ' ' T M 37T
& 4 ' “ t . ] ' L] 1
s |
. Sl _ . _ ‘ _
| ¥ MER i R ot A B N S
7 m_,.sr A e
i o il [ kit i
| o...ps,_ i 5 e A
8 | ell | Wi i e
| ol 2 0 e i I e
+ _m : - i , . W " ., —* ” b : . .......... e “ k- L
/) : , M ! m t h : ﬂ t {
. {1 T TS ST EEELFERD S R M R i L
o ¢ _ | | _ m | “ tod _ M
m : 41 4SO [ L 1 ki i i AR il i
e u |
m :\ 5 L A L AL L | 18 EE D e i Ll
i | 0
Pl e | | | | i ” _ _ " "
: \ m { ’ } ! @ 141 tEe2d HHIEHT Al S ch gt LI RL Ben: b2
” \ 1 1 i 7 i { i { | m “ {
1z T\ B T = | A L
o © 3 frfin i T LT ] A R 3 T
fifisie ~ 1 { | it | i
M L f A i EE i B SREES ISR SEEHL SRR HSk! HAH IR B2 L 14 138E
8 _ i H D 5
, ; 1 ARG o R R
L _ 41 18 U REE A AR VLA RE R gt
| v\v i O 0 0 S 0 S AR il
! H | $i3 ] i3 i i .
; : 1.-’*“ / 1T AR Lt 13221 331 B21 50003 1 _. t e
323 . 1 | } I | B 14 ¢ ” H ! H
L W e oot et e 14, e e 3 TR TSR 1SR A GERTNELS) i
R o 1 # ._ i T e
m ::_:iiw. i 1_. i m I A e S LA 80 A i
£ R A | ,p i A G R
. ” | i | | { i | i i i 3k
..... - p2si ...->~— V..’*m b M» : 4180220 : ," : : I :
| w i M i M . h “ P i 1 # w _, i — o ' 1 =i i 8 1 A P




- 4B =

10O X VWO O L 1] 46 1323

EEUFFEL & ES%AR CO :
SrEiEe 33 534 13381 23231 BE331 1L : 43 BEEEH i1 31 5 | 353i 5385 $8s138% | [ §133
il M ! | | I (R IR giH] EHE 44 b _, M L....__.“ ...... H 5t i i
$5353 39337 FI34T SRS 1IURT EREI FISES SRRE1 FRTL] RERI [4UNY IRUEL (3334 B3 M 1 Tl B . § i ! "

{ 1 { i H ” m ! ' ko ] a9 M Hi 1 | | _ 4
O 1 e A R
vl.lalmllbn ..A“WDIW‘ *o.ﬂ .nmab*“.‘x.ﬁ’. : ..Ah“l.ww Tw.v n.u‘...”..- L-. Tﬂ.. . B W e St teess sestd piees soted senat sesod SSSs SOSSS SOt e ‘.o.w. i/ -.”
- ] ‘ 4 . ’ * ] Ivtllil}l‘ , B3 L3 | - ' ]

T LSS (6 RS O R ST b CRE SO "N TR IO 09" i i) e B A R I |
!-.m:.- oki b 4] 19554 $a0as reata ¢ ? i -:M:fi-: ,Jr.,..:. E4544 Sadad SR4R0 FRRST Raia] Ba28d BOARE ROSEL Ratel tias) mean ,”.,- Y
+ . =1 4 ‘ L 14 *

T | o 1 s R O D |

| : 135
|

?lw:i:.r 1 BE23Y ESRRE IS0N i .-.-m-q- -.L*..-T . ..ﬁq /ff-- 231 LEIEI BRIRLAILES LIRRRIRRLL 2020 basdt Ladsa dRNLL daaL
8 { , SRR DR LR
i {111 * ittt SEE B3 st H e R R T 3 1353 S
s s n..C 1 w 28 IIEH B3 1S Ih: 8381 HIZS i3ess 143 NeH 3 H3L) s ror. 3223 E£S31 12281 1228
. : i g [t 4 e fht1 i /w 881 1828l HEL SRl beaRt b _ ji i
fmuﬁ.;ﬁ.o.\ i _ sttty .-.,H 8231 82020 L3012 2454 1334 0331 IVJ tésa1ld28d L3%a0 H L.:_:i 134
£ : : h i
B rTE
: ! i ..qm " -h m i1t
snERgEANEn i
tzgisy . 33 T TR R
.r-w .,!A.:...UJ; v ..-.J.mﬂ¢ 3337 1183
HE |
b
—
i1 3 : i




	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C03_.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf

