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Abstract

Approximation of noisy data in the plane by straight lines or elliptic:

or single-branch hyperbolic curve segments arises in pattern recogniticn, data

compaction, and other problems. A number of questions concerning the efficient

search fo_ and approximation of data by such curves are examined. Fecursive

least-squares linear curve-fitting is used, and ellipses and hyperbolas are

parameterized as quadratic functions in x and v. The error minimized by the

algorithm is interpreted. cpu times for estimating parameters for fitting

stra^.ith' lines and quadratic curves are determined and compared. cpu time for

data search is also determined for Oie case of straight line fitting. Quadratic

curve f -tine is shown to require about six tines as much cpu time as does

straight line fitting. Curves relating cpu time and fitting error arc °etermined

for straight line fitting. Lastly, results are derived cn early sequential de-

termination of whether or not the underlying curve is a straight line.
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Introduction

One of the fundamental approaches to pattern recognition in general and

to recognition of line drgwings in particular is a statistical theoretic approach.

Though other, usually heuristic, approaches are also taken, if one is interested

in classification with controlled probability of error or with minimum computation

cost, then a probabilistic approach is necessary. The question of minimizing cpu

time for recognition,is of course, of great importance if one wishes to treat the

recognition of highly complicated patterns and is a subject of growing interest

C1-51. In this paper ere focus on a subproblem of the more general problem of

optimally recognizing complicated line drawings, namely, the problem of recognizing

underlying straight lines and quadratic arcs in line drawings. Before getting down

to the problem at hand, we briefly comment on an approach to recognition of com-

licated line pictures as this will provide motivation for some of the topics we

examine. However, i1; should be emphasized that our interest in approximating data

by straight lines and quadratic curves is for many other applications as well,

e.g., data compression in picture boundary representation, contour, line reprasen-

tation in maps, etc. The methods we discuss are geared to handling very noisy

data. .

We assume.a model for data generation in which there is an underlying

picture, in two dimensions, consisting of straight lines and curves and a datum

is a noisy perturbation of a point on one of the lines. If, e.g., the class of

pictures under consideration is a class of handprinted capital letters, an

appropriate perturbation model might be a second order stochastic process with

the perturbation perpGtrt'.cular to the underlying line and a correlation interval

roughly the length of the underlying line. We assume the two-dimensional field

of.the picture is divided into cells, i.e., quantized in the x and y directions,

and that the picture gray level is hard quantized. Hence, the data available to



the computer is a rectangular array of 1's and 0's -- a 1 if an appreciable por-

tion of a cell is filled by the picture. A probabilistic description of the data

is then given by a distribution for the underlying straight lines and curves and

a distribution for the noisy perturbations of this picture. It is then in theory

possible to construct a Hayes.decision rule (minimum probability of misclassifi-

cation decision rule) for classifying the data as representing a specific member

of a finite number of families of pictures. This or the maximum a posteriori

probability decision function will be of interest to us in the problems we treat.

The maximum a posteriori probability decision function is easier to use and is

essentially equivalent in practice since radical quantization of some of the

variables is necessary in practice to sufficiently simplify the problem probabil-

ity structure in order to use either method.

As an example of a number of considerations, suppose hand-printed capital

letters are the pattern categories of interest. What are the likelihood functions

involved in letter recognition? Let (xi ,yi ) be the ith data point and

w - 0'1 9y1 9x2'y2 0 " "xn	
T

'yn) be the observed data vector. There is a prior dis-

tribution for the occurrence of the 26 capital letters. The maximum a posteriori

decision rule is "choose the letter for which the joint likelihood of the letter

and w is at least as large as the joint likelihoods of each of the other letters

and w". The joint likelihood of H and w might be specified as follows. Let

P(H) denote the a priori probability of the occurrence of H. We assume the data,

when H is true, is a noisy perturbation of three straight lines. Since each line

can be specified by 2 endpoints -- 4 parameters -- the three lines can be speci-

fied by a parameter vector a of 12 components. Let p H (a) denote the probability

density function for the a vector s pecifying, possible underlying }i's. Let

f(wla,H) be the likelihood of the data given H and a, Then, denoting the likeli-
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hood of a and w given H by p(a,wjH), we drfine the Joint maximum likelihood of

H and w to be

max P(H)p(a,wlH)
a

or

max P(H)p(aIH)f(wla,H) 	 (1)
a

If we assume that the noisy perturbations for a line are independent of those for

the other lines, the perturbatf.>n processes are the same for all lines, then (1)

can be rewritten

max P(H)p(ajH)f(wjal)f(wla2)f(wIa3)
	

(2)
a

Here a1 "2 "3 denote the parameter vectors for lines 1, 2, and 3 and we assume

that for each i, the components (x i ,yi ) of w appear in only one of the three

densities f(wla l ), f(w1a2 ), and f(w1a 3 ), specifically, the density which results

in (2) being a maximum. If the f(wla,) are Gaussian, and if, in addition, the

data points are assumed to be independent perturbations of the underlying lines,
-2n .

then f(w^aJ ) is simply (2na 2 )	 ^exp[-(1/2o 2 )q(w,a j )] where n J is the number of

data points appearing in f(wla j ), and q(w,a,) is the sum of the squares of the

distances of these data points to the line determined by the parameters a j . Note

that if p(ajH) were not present, (2) would be maximized by choosing the a,'s such

that the lines they specify are the least squares fits to the associated data

points in w. The presence of p(alH) modifies the best a somewhat and also plays

a role in determining the association of the data points in w and the 3 distribu-

tions f(wlaj ), j = 1,2,3.

The problem with implementing (2) for al l, 26 letters is that the computa-

tion cFAn become costly. Three important considerations arise when one attempts

to raduce the amount of computations. First, how many data points should be used?
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If the data points are assumed to be independent perturbations of underlying,

lines (or curves), the classification error will be a decreasing function of n,

the number of data points. If the data points are not independent perturbations,

classification error decreases and then levels off as n increases. Since compu-

tation cost increases with increasing n, in general it will be desirable to use

only a subset of the available data. Second, computing (2) for all 26 letters is

very costly. Third, determining, the distribution f( • Ia,) with which a data point

should be associated can be costly. This is related to the so called segmentation

problem but in some aspects is more complicated if the recognizes processes only

a subset of the data and hence does not exploit sequential continuity when it

exists. The complexity of these problems has led researchers to turn to sequential

recognition. Here it has been realized that by fitting lines and curves sequen-

tially, it is possible to rule ou t various letters as being highly unlikely along

the way, thus avoiding the second high cost referred to. Se quential recognition

results in other benefits as well.

We examine the preceding three considerations more carefully within the

context of sequential recognition. We assume that recognition starts with the

0,1 quantized data matrix and the goal then is low computational cost recognition.

What is usually considered as preprocessing, e.g., smoothing and determination

of data points constituting a curve through use of local connectivity and curva-

ture, normalization, etc, usually involve processing all the data and are costly

operations and ones we believe should be included in the total recognition cost

and treated within the recognition cost minimization framework. The approach

here, then, is sequential determination of the maximum likelihood function for

the letter classes and the data. Only a subset of the available data is processed

in general. Under the assumption that the f (wla,) are Gaussian, the choice of

;^	 u



letter and parameters for which (2) is a i:sximum is equivalent to the problem of

optimally sequentially fitting straight lines and parameterized arcs to subsets

of the data. (i) Assume the recognition process is at a stage where a straight

line or parameterized curve is to be fit to data entering a. specific local region.

The appropriate data subset is not yet known and must be found during the fitting

process. Hence, influenced somewhat by the results of the fit up to the present

stage, the system searches for data in the sp:cified local region, gets a prelim-

inary fit of a straight line or other parametrized curve to this data and then

uses the fitted curve to estimate the location of the next data point to be used.

Starting from the estimated location of the new data point, the nearest data

point is found through a search, the parameters for a better fitting curve to the

augmented data are found, and a now data point then looked for. Hence this

provides a way of exploiting prior knowledge of pattern strt;ture for intelligently

searching for the data subset associated with an underlying parameterized curve.

If the data perturbations are large, the cpu time consumed in data search when

fitting straight lines to data can be comparable to the cpu tk ,-e in computing

parameter values which result in the least squares straight :.se fit to the data.

When the parameterized curve is a quadratic curve, the cost of the data search

is less than the cost of computing appropriate parameter values. This problem

of intelligent data search arises in a variety of contexts, e.g., in ballistic

missle decoy tracking [6]. (ii) There is a least expected cost order in which

to search for the underlying parameterized curves. In otherwords, optimal sequen-

tial parametrized curve fitting can be directed through a least expected cost

decision tree. See [2] as an example of the type of minimum cost decision tree

approach one can consider here. The reason for thisdependency of recognition

cpu time on order of estimation of the underlying curves is twofold. First, the

a priori letter pr•.)babilities and hence probabilities of occurrence of various
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combinations of underlying parameterized curves vary. Second, the four major

operations in curve fitting are: checking to see whether there is an underlying

curve in the vicinity of a specific region of the space; fitting a straight line

to data; checking to see which of a line and a quadratic curve best fits the data;

fitting a higher order parameterized curve to data. These operations require

different amounts of cpu time with the first requiring the least cpu time and

the last requiring many times that amount. Hence, e.g., if recognition can be

accomplished by showing that the joint likelihood of a letter and the data w is

unacceptably low for all 25 of the 26 letters, the recognition decision will be

the remaining letter without actually computing the likelihood of this letter and

its data. Thus, an optimum curve fitting sequence may avoid fitting costly

quadratic or higher order curves and rely more for recognition on fitting, straight

lines, where they exist, checking on whether or not curves are present in specific

regions, and fitting quadratic curves only when absolutely necessary. The optimum

decision tree depends on the various probabilities involved and on the costs of

performing various operations. (iii) Finally, how well does one estimate each

underlying curve? Equivalently, how many data points do we take for estimating

each underlying curve? We have some choice here since determining the best

possible fit to the underlying curves is usually not necessary for acceptable

recognition error rrAte. On the other hand, it is usually true that the better

the curve fit up to a stage, say the ith, the less uncertainty and hence less

costly will be the fit at the following stage; also, the higher will be the prob-

ability of correct underlying curve determination at the ith stage and hence the

lower the probability for incorrect fitting and hence costly backtracking at the

next or other future stages. Consequently, it behooves us to understand the

relationship between goodness of curve fit and associated computational cost in

order to determine how good a fit to compute at each stage. This problem of the
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relation anong computation and resulting uncertainty at a given stage and the

required computation at the next stage is important and arises in a variety of

ways in a pattern recognition problem. See [51 for interesting treatment of the

tradeoffs in the two stages of letter recognition and then word recognition.

We t'o not study the preceding three points within the context of a complex

abstract pattern recognition problem sini,e the application context has a bearing

on how the -.hree points are best t,undled. However, we do provide results on the

three points which are of use when considering a complete pattern recognition

problem. Specifically, we discuss efficient algorithms for sequentially fitting

straight lines and quadratic curves and for searching out the appropriate data.

For straight lines and quadratic curves we estimate the cpu time for computing.

best parameter values, and for lines we also estimate cpu time for the data search.

Thus, the relative data search and parameter estimation costs can be compared and

the relative estimation costs for straight lines and quadratic curves can be

compared. For straight lines, we arrive at graphs for fit error as a function of

computation time. Such design graphs can be prepared for quadratic curves as

well. Finally, we discuss a variety of procedures for early decision on whether

an underlying straight line or nonlinear function best fits the data.

f

'.:.a
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Models

We briefly describe the t, ) curve fitting models of interest in this paper.

Both are linear regression models. (i) First, we are interested in the least

squares fit of a straight line to n data points. The most reasonable error measure

is undoubtedly the perpendicular distance from a data point to the line. However,

results are simpler to o7lAain if we parametrize y as a function of x or x as a

function of y depending on whether the slope of the fitted line, at that time,

has magnitude less than or greater than 1. These parameterizations are

y = ce t clx and x = cc + cly, respectively. Then for the first parameterization,

the error for a given data point (x i , yi ) is the magnitude of the difference in

yi and the height of the approximating line at xi ; the error measure for the second

p..:Ameterization is the obvious analog. In practice, one would start off with the

most reasonable parameterization based on available information, and then retain

this parameterization or change it depending on the data being processed. Since

the sum of the squares of the errors in the best fit of this type is related by

at most a factor of 2 to the corresponding statistic when the perpendicular

er,= from data point to line is used, it can be seen that, visually or by any

reasonable criteria, the resulting line should be perfectly satisfactory.

(ii) The second model of interest is the fitting of data by a quadratic curve.

A portion of an ellipse is most useful for our purposes. The parameterization

x(t) = x  + a cos t, y(t) = yo + b cos t + c sin t has many desirable features

and variations have been used, e.g., [7]. This parameterization is probably the

most convenient to use if successive values of t are chosen first and then appro-

priate data points are searched for. That is, the approach is most useful if the

search for an ith data point is conducted by calculating best estimates for xo,

ye , a, b, and c based on the first i-1 data poin lLs used and then choosing t i and

searching for the data point closest, in the perpendicular direction, to the
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estimated ellipse at t i . However . if one is faced with the problem of fitting

an ellipse to n specific data points, this parameterization is inconvenient since

the appropriate value of t to b(;aissociated with each data point is not known and

the fitting operation then involves some nonlinear programming. An alternative

procedure is to ask for the coefficients for which the sum of the perpendicular

distances squared from n data point to the curve

clx2 + c2xy + c3y2 + c 4 x + c 5y - 1 = 0	 (3)

is a minimum. Again, the solution can be found but the required computation is

considerably greater than if an alternative error measure,uhich we now describe,

is used 1 Let c denote the vector (c 1, c2 , .... C5 )T and z denote the vector

(x2 , xy, y2 , x, Y) T. Let z  denote the z vector for _,he point (xi , yi ). Then we

seek the c vector for which

n (cTzi - 1)2	 (4)
i=1

is a minimum. This formulation can of course be used for a straight line, for

curves of higher order or for other parameterizations as well. What is the curve

resulting from miminization of (4)? The curve can be any ene of an ellipse, a

hyperbola, or a parabola. The chance of the last of these occurring is essen-

tially zero. We would like to obtain an ellipse and in the section on experi-

mental results we discuss ways of coaxing the algorithm to generate an ellipse or

at least a useful hyperbola.

For c fixed, c 
T z is a function of (x,y), and, hence, w-cTz = 0 is a sur-

face in Euclidean w,x,y-space. The error measure (4) is the sum of the squares

of the distances of the points wi =- cTzl , on the surface w-cTz = 0, to the plane

parallel to and one unit above the x,y plane through the origin. See Fig. i.
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The intersection of the surface w-Jz = 0 with a pl.ano parallel to the x,y plane
through the origin is a quadratic curve c T z + d = 0 or is empty -- depending on d.

Suppose, for example, that (3) is an ellipse. Then as d varies, the curves

cTz + d = 0 consitute a family of ellipses with common center, same major axes

and minor axes, and such that the ratio of the distances of the curve from its

center along the major and minor axes is the same for all d. An alternative and

more useful interpretation of (4) is the following. Consider the ellipse and

data vd (xd ,yd )T in Fig. 2. Let v  a (xo ,yo )T denote the ellipse center and

v
e 

== ( xe ,ye )T denote the intersection of the ellipse with the straight line from

vo to vd. a z-1 can be rewritten as

(v-v0 )T C(v-v0 ) - voCvo - 1	 (5)

where

r	 l

C e cl 2 c2 1 and v=-(1/2)C 1r4l
2 c2c3J
	 o	 5

Upon defining ue to be ve-vo and 6 to be a scalar such that va vo = ue + Aus,

(5) becomes (ve-vo )TC(ve-vo ) - voCvo-1 + 6ueC6ue + 26ueCue , or 6(6+2)u Cu

Finally, since ueCue-voCvo 1 = 0, (5) can be written as

6(6+2)p
	

(6)

where p is the constant 1+voCvo . Note that 1 6 1 is the ratio Ilvd-veil/IIueII

and, hence, is the ratio of the distance of the data point to the ellipse, along

the line from the data point to the ellipse center, divided by the distance from

the ellipse to the ellipse center along, this line. See Fig. 2. Since IIue II is

a maximum in the direction of the ellipse major axis and a minimum in the direction

of the ellipse minor axis, it can be seen that if two data points are equidistant
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from the ellipse but one lies along the ellipse major axis and the other along

the ellipse minor axis, then the contribution to ( 11) of the data point lying along,

the ellipse minor axis will be greater, assuming 161 << 1. Also, for 161 fixed,

(6) has larger magnitude for 6 > 0 than for 6 < 0. The difference in magnitudes

is negligible for 161 << J.

Recursive Estimation

Estimation of the parameters of the models y = o+c 1x and

cix2 + c2xy + c3y2 + c4x + c5y - 1 = 0 is efficiently realized through use of

recursive least squares estimation. Specifically, letting

An = [zl ;z 2 i ... j zn ]T ,	 and b = (Y 1,Y2,...,yn)T

or b = (1,1,...,1)T, n 1's, depending on whether we are dealing with the first or

the second model, respectively, the problem of determining the optimum c is that of

determining the c which minimizes IIA nc - 012 . The solution from [8] or [9] is

C = A+b
n

T	 1 T
where An denotes the pseudo inverse (AnAn ) An . However, from [10] we see

that (AnAn )-I can be computed recursively. Let B  denote AnA n . Then

l
-1 n+1 n+1T 

B -1n
c
+c	T -1	 B z	 z

 All

Bn+1 = ( L zizi )	 = Bnl - n	 n	 (8)T
i=1	 l+zn+l B lzn+l

n

n
Since in = Anbn =	 zlbi, we see that the optimum c

n+1 
is given by

i=1

B-1 z n+lzn+l T B-r
n+l	 -1 n+l 

=[Bn-1
	 n	 nc	 = H 2	 -	 nn+1 n+1n+1 	

1+zn+lTB-1 zn+l Lz 
+b z	 (9)

n

(7)
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Hence,Bnl and Zn are efficiently computed recursively, and cn+1 is computed in

terms of these functions and the latest data, i.e., bn+l and zn+1

The error	 = II Ancn-bn II 7 can also be computed efficiently. 	 Sincen

L

9 n+1

-	 bk -
n+l	 T	 n+l	 T	 2

2 ( £	 bkzk)	 e
n+1 +	

E 
(7k cn+l)

n+1
k=1 k=1	 k=1

it is trivial to show that

^n+1 ° Il
bn+lll2 _ 7n+1T

 _1 Zp+l ° 
IIbn+1112 _ Zn+1Tcn+1	

(10)

where I1b
n+1 11 2 , 

Zn+l, Bn+1 are all trivially recursively updatable so that

en+l is computed in terms of II 0 II 2 , Zn, Bnl ' bn+1' and zn+l Note that almost

all ofp,e domputational effort for cn+l and C n+l is accounted for in the computa-

tion of 
Brll and then Bn+1Zn+l Since this computation is needed for the deter-

mination of both cn+l and en+1' it follows that once one computes one of these

estimates, the other is computed cheaply.

Computation Costs

Since recursive estimation schemes are under consideration, we estimate

the CPU time for one such recursion.

(i) cost of computing, cn+l

We deal with four costs, these being:

(ii) additional cost of computing 8n+l

(iii) cost of predicting best initial search point for new data point search

(iv) new data point search cost given first search point.

All costs are estimated by determining the numbers of various types and associated

CPU realization times for arithmetic, Boolean and memory management operations.

CPU realization times are for assembly language programs and are taken from [113.

The instruction list and associated realization times are given in Table 1.
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Table 2 contains a list of the numbers of the various instructions determining the

four aforementioned costs and the resulting costs. A short explanation of the

details of these calculations is the following. The inversion of Bn+1 is carried

out by first computing Bnlzn+l This vector is then used in the computation of

(8). Since zn+l = (10xn+1)T when fitting a straight line, only two multiplications

are required in computing 
Bnlzn+l in this case. Since Bnl

zn+l zn+1TBn1 is

symmetric, only the diagonal and half the off-diagonal entries must be calculated.

Finally, 3t is not necessary to divide each component of Bnl
zn+lzn+lTBn1 by

1+zn+lTBnlzn+l Dividing the vector Bnlzn+l by 
1+zn+lTBnlzn+l and then computing

[(1+zn+lTBnlzn+l)-1Bn1zn+13zn+1TB-1 is more efficient.

Now consider costs (iii) and Uv). For model 1, a choice is made for xn+l

and then a search made for a data point having this xn+1' If the data is complex

consisting of more than one noisy line and arc, the data point of interest is

that closest to the line determined by c n . If there is only one line and no arcs

presented, the only consideration is a least cost search for the data point and

such a search, for data generated by Gaussian perturbations of a straight line,

involves a good initial estimate Yn+1 
followed by successive examination of cells

above and below those last explored. The necessary estimate in the first case,

which is also the minimum mean squared error estimate to be used in the second

case, is

n+1T n
yn+1 = z
	 c

In practice, xn+l would probably be chosen such that the differences xn+l - xn

are equal, and this constant chosen at the start of the search. For model 2, the

preceding consideratiors also apply. The initial choice we consider in the

search for a zn+l is a point z
n+1 on the curve

i	 cn+lTn = 1 .

(11)

(12)

i.;

f
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Such a point might be found by choosing an xn+l or 
a yn+l and then solving, (12) to

.ne •tcrmine the other and, hence, 2n+1 The search for zn+l is then probably most

cheaply carried out by determd.ning, and then searching in the direction perpendio.ular

to the curve at zn+1 Alternative less accurate choices for 
yn+1 and zn+1 might

be considered, although the saving in costs for computing these estimates is small

compared with the total computational cost of one recursion, and, hence, not a

significant consideration. For example, the cost of calculating Yn+1 = zn+lTcn is

essentially the cost of one multiplication.

For the 1st model, the search for (xn+l'yn+l) 
ie the sequence (xn+l'yn+l+A),

-

(xn+l'yn+l-A)' (xn+l'Yn+1+2A), etc., where A is the quantization interval. Under

n+1
T

the assumption that Yn+l-z 	
c is a Gaussian r.v., with c = (c o ,cl )T the true para-

metervector, the specified search is of lowest cost., Assuming the variance o 2 of

Yn+l 
(c 

o 
+c 

1 
x n+l )  given xn+l is much greated than A2 , , an estimate of the expectation

of the number of iterations to finding yn+l 
is obtained as follows. ynvl and

l  iYr+1 ° z
n+l en are independent Gaussian random variables with common e?nectation

T

zn+1 c. The variance of Yn+1 
is of course, c2 , and that of Yn+1 is

var co + (xn+1)2var c  C121. Note that by cp andc i we mean the first and second

components of cn . Hence,
nc

var yn+1 _ a2 En
-1 + (xn+1 - Xn )2 L1(xi "n)2]' 

and a2
	 var
 

var(Yn+l Yn+1)
j  n

c
Ih,	= var Yn+l + var Yn+l = °2Cl+n

-1 + (xn+l - xn)2 /iLl(xi-
xn)27. (xn denotes

I'
n

n 1	 xi.) The expected number of iterations is
i=1

	

	 -

- 1} + 2•P{Yn+l Yn+l -11 + 
34(Yn+1 Yn+1 ° 21 +P{Yn+l Yn+1 

	 ...

which is roughly

`	 21i02iA(2non+1)-1expC-(1/2on+l)i.2A2] 	 4(21)-1/2an+1/A
	 (13)

y,

i

f
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for a/A >> 1. Note that a/A >> 1 	 on+l/A >> 1 which then implies that the

probability of the eveatt Yn+l yn+l + iA and Yn+1 - Yntl - iA are each

approximately A(2rran+l)-1/2exp[ (1/2an+1)i2A23 and the sum in (13) can be

approximated by an integration. When x i-xi-i is a constant for all i 5 n,

an+1 = a2
(
n3 + 12n2 + 20n + 4)/(n 3 + Sn 2 )	 (14)

Then, the expected number of iterations is roughly

4(210-1/2 (a/A)[(n3 + 12n2 + 20n + 4) /(n0 + On2 ) ]1/2	 (15)

As n + -, (15) converges to 4(20 -1/2 WA) and is indeed close to this value

for n >. 5.

From Table 2 note that the sum o` costs (i), (ii), and (iii) is roughly

six times as great for a quadratic are as for a straight line.

Variability In Straight Line Approximation

The variability in the fitted line y = z 
T 
0 depends on the number and

specific choice of the x i I s. In order tc make an intelligent choice for the xi,

a measure of fitted line variability is needed. Under the assumption that tho

yi are perturbations of some line co + clxi , a useful measure of fitted line

variability is

(E[(z1Tcn - z1Tc)2
 + (znTcn - znTc)23)1/2 	 (16)

Ij	 which is the square root of the sum of the variances of the y components of the

fitted line endpoints. (The assumption here is that Jell 6 1; otherwise, the
{i 

variances in the x components of the fitted line endpoints are of interest.)

RThe evaluation of (16) is like that of an+l and is easily shown to be 	 {

2 a

a(2n l + [(xl-zn)z + (xn-xn )2]
/ C (xl-X )2)1/2

e,
i=1	 + f

I^
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which reduces to
n

a[2n-1 + 2(xn-xn ) 2 /	 (ri-xn)2]1/2 ,
	 (17)

3=1

and is

a[2(4n2 + 20n + 4)/(n 8 + en2 )7 1/2	 (18)

when xi-xi-1 is constant for all i ; n. A more useful measure of variability is

(16)/L or (14)/(xn-xl) where L is the length of the approximating line. Since,

for the parameterization under consideration, the slope of the approximating line

has magnitude less than 1, the two measures are essentially equal. Hence, for

convenience, we shall use

n
[o/(xn•xl )J[2n -1 + 2(xn-xn ) 2 /	 (xi-xn )

2 11/2	(19)
i=1

or

[a/(xn-xI)J[2(4n2 + 20n + 4)/(n 3 + 8n2 )71/2 ,	 (20)

when the xi xi-1 are equal for all i, as our measure of straight line fitting,

variability " "error". The advantage of (19) over (17) is that division of (17)

by xn x1 appropriately normalizes the measure of endpoint variability. That is,

as long as the standard deviation of the endpoint of the approximating straight

line iu much smaller than is the approximating., line length, we have a useful

approximation and are justified in characterizing the error or the fitting

variability as being small.

Variability In Straight Line Approximation As A Function of Computation Time

Since most of the computation time in identifying and approximating, by a

parameterized line, a straight line or an are is spent in the approximating process,

we examine the relationship between curve fitting error and computation time. We do

this, however, for straight lines only, and furthermore, for x i is such that xi-xi-1

is a constant for all i. Consequently, for the error measure we use (20). Since
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line fitting is realized recursively with one recursion for each data point used,

the total computation time is the sum of the computation times for each recursion.

There are three com p utation costs which are the same for each recursion, and a

fourth which is a function of the number of recursions previously completed but

which becomes essentially constant after four or five recursions. We denote the

first 3 costs per recursion as t c , te , and t  with t  the cost of computing the

estimate of the parameter vector c, t o the cost of computing the sum of the squares

of the distances from data points used to the latest best line fit, and t  the

cost of computing the best first search point fo:- the new data -point search. The

fourth cost, ts (i), is the cost of searching for the i-th data point given the

best starting point. As mentioned, t s (i) is essentially constant for i >, 5.

If n data points are used in the fitting process, the fitting cost is roughly

n
n(tc + to + tp ) +	 ts(i)	 (21)

i-1

which is approximately

n(tc t to + t  + ts )	 (22)

Before evaluating (21) and ( 22), we make a few observations on the relationship

of error to cost. Among the situations which can be encountered are two extremes:

(i) t  + to + t  >> ts , and (ii) t  + to + t  << ts . Suppose M is true. Then

n is directly proportional to fitting cost. Since error varies roughly as a

constant multiplied by n
-1/2 ,  we see that error varies as (cost) -1/2 multiplied

by a constant and this constant is uniquely determined by the parameter c/(xn-xi).

suppose ( ii) is true. Then for n >> 5, a reasonable approximation to fitting cost

is nt.. However, since is is directly proportional to a, then again using, the

fact that error is roughly constant •n-1/2 , we conclude that error is roughly

constant ( J3/2 (xn x1 )-1 ) (cost)-1/2 . Hence, error then is a function of the

parameter c 3/2A xn-xl). A typical curve of error versus cost is that of Fig. 3.

t
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Stopping Procedures

The process of fitting a line or a quadratic curve to data was treat/A

in the preceding sections. Two questions remain. First, how should the computer

make a decision as to which of a line or quadratic curve best fits a subset of

the data, and how useful is this data subset to the recognition of the entire

pattern? Second, how does the computer decide, during the sequential fitting

process, when to terminate the fitting of a line or quadratic curve because the

latest data being precessed is that for a new lino or curve? Under the assumption

that good line and quadratic curve fits are possible, i.e., parameter estimation

error is small for estimates based on a reasonable number of data points, stopping

decisions can be made at costs smaller than the curve fitting costs. In this case,

attention need be given only to the first question. If a curve fit is carried out

with large estimated variance because an insufficient.number of data points is

used or is available,then terminating the fitting of a curve could be rather costly

and could require processing much of the data used in fitting the intersecting

curve which comes next. we assume that the former case pertains. Thus, the

problem to be considered is to decide as early as possible whether the data used

in a curve fitting is that for a line or for a quadratic curve. How does previ-

ously collected data affect the decision? Roughly for cases (i) aA (ii) treated

in the following paragraphs, based on the previously collected data or on some

function of it, we have a conditional joint distribution for whether the under-

lying curve is a line or a quadratic and for the associated unknown parameters.

Denote this density p(H,clw) where H denotes the hypothesis and takes values Ho

and H1 for line and quadratic, respectively, and c is the parameter vector for the

curve type for the associated hypothesis. w denotes previously accumulated or

reduced data. Given w, the joint likelihood of H,c and the most recently acquired

r
i

Z

I 3

i
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data yl , yo, ..., yn to which we are interested in fitting a curve is

p(H,clw)f(xl , ..., xn 1H,c)
	

(23)

where we are assuming the data as perturbations of the underlying curve is inde-

pendent of w given H,c.

For reasons discussed in the introduction, the stopping rules we briefly

examined are those involving maximum likelihood ratios. Also, in general we are

apt to be interested in a multihypothesis problem involving a decision as to which

of a number of straight lines or arcs bent fits a data subset entering a local

region. Such a decision will be made by comparing each of one or more discriminant

functions with a threshold where a threshold will depend on the discriminant func-

tion being tested and may depend on the number of data points and the extent of

the region over which they are taken.	 (See F133 for some comments on abstract

multihypothesis sequential decision theory.) In practice, the thresholds would

probably be determined partially through experimentation. Model (3) is most easily

studied and an understanding of its stopping behavior should provide a rough under-

standing of the stopping behavior of (4). We consider three versions of the simple

problem of deciding whether the data constitutes a noisy perturbation of a linear

function of x or of a quadratic or perhaps less restricted function of x. The

three versions represent three different assumptions of prior structural knowledge

of the underlying curves in x. Problem (i). We assume the underlying curve is

y = co + clx under Ho and is y = co + clx + c 2 
x 2 with c2 known under Hl.

co and cl are different under Ho and Hl , are unknown and may enjoy large ranges

of possible values. The assumption of c 2 known is made in order that we be able

to devise a test to distinguish between linear functions of x and functions ,

x which have at least some minimum quadratic content of interest. If the tr

is in fact larger in magnitude than the c 2 for which the decision function i,

designed, then the decisions made will have lower error probability than tha

i
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designed for. Problem (ii). We hypotheses as in (i), but c 2 is not considered

known. Problem (iii). A linear function is assumed under H 0 , and no assumption

is made concerning the form of the underlying curve under H1 . Hence, the assump-

tions range from somewhat restrictive in (i) to very unrestrictive in (iii).

the decision pr cedure then for (i) or (ii) is

max p(H1 ,SI"r)f(y1 , .... YnIHl,B)

H1 if	
6	 > 1	 (24)

max p (ffo ,Yiw)f(y1 , ... .ynll'o,Y)
Y

H otherwise.
0

Equivalently, the log of the left side of (24) can be compared with 0. In

practice, p(H,clw) will be of use only if it is of very simple form. This most

likely restricts it to being Gaussian in its dependence on c or a function which

takes constant values over a few simple regions in H,c space. For example, a

particularly simple function, Fig. 4, might treat all lines having leftmost ends

close to vertical A and right most ends in the shaded region as equally likely.

The function might have one or more such regions of fairly high probability and

the remainder of the space have likelihood 0.

A convenient form for viewing (24) is the following. Under our white

Gaussian noise perturbation assumption, p(H o ,Y1w)f(yl" "'YnIHO,'

	

p(HO ,YIw)(2tr02 )
-n/2expC-(1/202 )	 (yi - YO - Ylxi)27

i=1

which can be reformed as

	

P(HO,YIw)exp{-(1/202) 	Coo - Y0 +	 (cl - Y1 )xi l2 ) x
i=1

n

	

(2A02 ) -n/2expC-(1/202 )	 (yi - eo - elxi)2^
i=1
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where cc and e1 are the parameters for a least squares line fit to the data

yl, ... ,yn• Hence, the influence of w on the maximization of (26) with respect to

y appears in the first line of (26). The second line of ( 26) involves only the

latest data subset and the least squares line fit to that data. If the value of

y at which (26) is a maximum is determined largely by the exponential in the first

Line of (26), then p(Ho ,y1w) in the denominator of (2 11) can be placed before the

nrnximization. If p(H 11 61w) can similarly be removed from the maximization in the

numerator of (24), the effect of w is simply to multiply

max f(y1 ,...,yn H1^,6)
a	 (27)

max f(yl , ... synIHo,y)
Y

by a constant. This situation is likely to occur when n is large. (This does

not mean that w has not played an important role. It plays an important role in

guiding the search for yl , .... Yn and then in weighting (27).) Consequently, we

examine some properties of decision making based on (27).

The x values xi , x2 ,.,., at which data points are sought are chosen first,

based on prior knowledge of the lengths of lines or curves likely to be encount-

ered. In practice,eeual increments x i-x1_1 would probably be used and one can

determine a best ( in some sense) increment to use. We do not do that here. The

object of this section is to provide some insight into the structure of good

decision rules for deciding with a minimum number of data points whether the

latest data subset is best fit by a line or a nonlinear arc.

Case (i): For this case we employ a Wald sequential probability ratio

test (SPAT) [lka having the property that the decision for accepting H o or Hl is
I!

made with predetermined probabilities of incorrect decision under H o and H19 set

i^
by the designer, and this performance is achieved by processing the minimum

expected number of data points. The parameter vector c giving the best linear



22

fit to the data has previously been found to be (9), i.e.,

cn =IIn Y.

If the quadratic app-oximation is used with known coefficient c 2 for the second-

power term, the least squares estimate for (c o ,c1 ) is given by

n
c ,:t	 Bnl £ zl (yi c22xi) , ori=1

y np
c' n = c  - Bn` G zic2x2 	(28)

i=1

Then a sequential maximum likelihood ratio test consists of comparison of the log

of the maximum likelihood ratio, (27), with a pair of stopping boundaries. The

log of (27) is (29) multiplied by a constant.

n
(1/2) C-	 (yi -

i=1

(zicn and zic' n t c
2 xi

are me

and quadratic functions which

T n.2	 n
)zic 	

+i=1 (y
i -

^ely the approxima

are least squares

zic' n .- c2xi)2 ]	 (29)

Lions to yi provided by the linear

fits to the n data points.)

Equations (29) can be rewritten as

n
illyiCzlcn - (zic'° + c2xi)]

n
-(1/2)	 C(zicn )2 - ( zic' n + c2xi)2 ]	 (30)

i=1

This is the usual operation of cross-correlation of the data se quence with a

reference function and then the addition of a number not depending explicitly on

the data. In a classical si_ mple two hypothesis testing problem, cn and c' n are

not functions of the data. The reference function is then a deterministic function

which is the difference of the mean value functions 'under the linear and quadratic

hypotheses. Also, when dealing with simple hypotheses, the second summation is

a constant, i.e., independent of the data. Since we are dealing with composite
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hypotheses, the reference function is a function of the data, and the i — and

summation in (30) is also a function of the data. Thus, the decision function in

(30) is an estimator-correlator. An interesting simplification of (30) can be

made. Through substitution in (30) of (9) and (3), (30) reduces to

iElyi [ ( ziBnl 
Y
lzic2xj) - o2x1

j-	 (31)

J1
-(1/2)[(	

i=1
zIc2xI)Bnl(	 zic2xi) - =1 (c 2xi)2 3 .

i

n
The interpretation of (31) is as follows: Bn1 E zic2xi is the coefficient vector

i=1

for a least squares linear fit to the sequence c2x2 , c?x2, ..., c2x2 . Thus, the
line having ith x,y values xi and ziBnl L zic2xi is 	 the line which differs from

the quadratic function c 2 
x 2 , at the points xi , .... xn , least Sn a sum of error

squares sense. Consequently, the decision function reduces to that which would

be used for testing the hypothesis that the data is a perturbation of c2 x2 ageinst

the alternative that the data is a perturbaation of the line which is most like

c2x2 at the points x1 , x2 , .... xn . The linear hypothesis used here is the most

conservative possible! The test is intuitively reasonable since on the one hand,

the user is only certain of the c 2 x2 portion of the quadratic hypothesis, and on

the other hand, the user knows only that the alternative hypothesis is linear and

a worst case hypothesis is therefore a safe one to use. The resulting error rate

will of course be higher than if the parameters in the two hypotheses were known.

The question that than remains is whether the data is such that the test performs

as would a test for hypotheses which were truly simple. The answer is yes, and

this is justified in the Appendix.

In summary, then, the stopping test reduces to the test of a simple hypothe-

sis against a simple alternative and the stopping thresholds are set in accordance

with the classical theory [14J for such hypotheses.
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Case (iii): Case (i) was a stopping rule based on considerable a priori

information concerning, the problem probability structure. In Case (iii) we

function with minimal prior information. The mean value function is assumed to

be linear under hypothesis Ho and nonlincL: , under hypothesis 111 . No additional

information is assumed about the mean value function under the alternative hypoth-

esis. A standard approach then would use a chi-square test on the sum of the

squares of the errors in the best linear fit to the data. This would involve

fixing n and a > 0 and deciding, H e or H1 depending on whether the sum of the

squared errors in the best linear fit to n data points lay within or outside a

1 - a confidence interval. The drawback of such a test is that if the- confidence

interval is large and if 11 1 is true, the probability of the decision being, H o may

be large, i.e., the power of the test may be small. If we wish to design the test

to operate with some specified minimum power, then we Are back to Case U).

A compromise is to choose n such that the 3,Qngth of the 1 - a confidence interval

can be fixed at a value we consider to be reasonable for H0 . Then if the confi-

dence interval is not violated, we can be quite certain that if is true. A reason-

able choice for the length d of the confidence interval might be the following.

Let c(n) denote (E
n 
/n) 1/2

(sum of squared errors in linear fit to n data points/n)1/2

That is, e(n) is the average error in the linear fit to a data point. A smooth

curve of length R might be considered to be a line if it lay within a rectangle

of length R and width d with d/E << 1. Since the data for our curves may exhibit

considerable fluctuation, we shall consider n data points to have been generated

under H if
0

c(n) < d.	 (32)

9

ri

!	 a
ii

w
s`
B
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Hence, we choose d such that any fairly smooth curve of length roughly R which

lies within a rectangle of size d by R is in appearance what we are prepared to

call a line. Since the variation in lengths of curves of interest may be consid-

erable, we choos^ an appropriate number p and then determine d from

dp	 b .	 (33)

Of course, a meaningful d must be greater than the noise standard deviation o.

In summary, then, a donfidence interval length d is chosen in terms of specified

p and L by (33) and n is then determined in order that a 1 a confidence interval

under Ho have this length. This provides us with a mechanism for being reasonably

sure that if our decision is Ho , the associated mean value function is indeed

linear, and, furthermore, the probability a of deciding H 1 when Ho is true, is

small. We might choose R to be somewhat smaller than the a priori expected lengths

of the lines which could be present or simply choose R to be of minimal size yet

sufficiently large that n is not excessive. Finally, we mention that these results

can be used as a guide for devising a sequential test in an obvious way if the

a priori uncertainty in the possible value for k is great.

Case (ii): We point out that prior knowledge of the nature of the mean

value function under H1 which is intermediate between that used in Cases W and

(iii) can be assumed. Namely, we can assume that the mean value function under

H1 is co + c 1 
x + c2x2 with c2 unknown and arbitrary. Then the log maximum likeli-

hood ratio test becomes the comparison of

0
-2[c n  T Anbn-	 c'n 

T 
A ITbn 7	 (34)

with 0 where en and An apply to the quadratic model z = (1,x,x 2 )T , and c' n and

An apply to the line model z' = (1,x) 
T. Since the test statistic is chi-square

distributed with 1 degree of freedom, the test can be designed for a specified

probability of error when He is true. However, if one is willing, to assume a

quadratic mean value function under H 1 , then one may as well treat the problem

as Case U) and we therefore do not investigate Case (ii) further.
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Further Comment on Dependence of Goodness of Fit on t(umbor of Data Points

For those applications where the J21nt likelihood of curve parameters

and data is used, it is generally desirable that the functional dependence of

this likelihood on the parameter vector be highly peaked in the vicinity of the

true underlying, parameter vector. Some insight into this dependence on number

of data points is provided in this section. The joint likelihood function may

be carried along as a performance functional in a sequential pattern recoeni-

tion problem and it also appears in the simpler problem of recognizing which

of two underlying curves of the same degree (or families of such curves) is

associated with the data.

We discuss the case of an underlying straight line (the same discussion

holds for a higher order curve). Assume the line is parameterized with y as

a function of x. The joint density of line parameters and data is that of

(25) and (26). The second exponential in (26) is not a function of C.

Taking the natural logarithm of (26), we see that

n
(-n/2)ln (2na2 ) - (1/20) E	 (yi - co _ a  xi)2

i=1

is not a function of y, and has well known behavior since

na-2	
2 is chi square distributed with n-2 degrees ofE	 (yi - co - cl xi )2 

i=1

freedom. The remainder,

2	 2in Cp(Ho , y 1w)a - (1/20) E	 Cco - Yo + (cl - Yl ) xi )]	 (35)
i=1

is of course a function of y, and would be the only part of the logarithm of

(26) entering into a test as to which of two underlying lines rw families of

i
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lines best represented the data. Hence, such c test might be thought of as a

comparison of how well the maximum like Mood line Yits the lines or families

of lines associated with the two hypotheses.

Denote by y  
the true and rlying parameter values. ':ran

	

- (1/2o2 ) E	 E	 [co - Yo + ( cl - Yl ) xi 72 I Yt F
i-1	 JJ

2 ) E	
E{[co - Yet + ( cl - Ylt ) xi 7 2 lYt} -(1/2c2 ) E [YO - Yet + (Yl - Ylt)xi72

i=1	 l	 i=1

(36)

The nature of the dependence of (36), the mean of (35), on n shows up on the

right of the equality. As a portion of a performance function, (35) becomes

useful for those n for which it is small. I. can be seen that n should be

at least as large as is necessary for the first summation on the right of (36)

to be small in magnitude compared with the magnitude of the sum of

ln[p(Ho ,Ylwl and the second summation on the right of (36). Note that the first

summation on the right of (36) is related to the measure of line fit used in

the previous section and graphed in Fig,. 3. The error measure used there is

the first and last terms in the first summation on the right of (30).

Experiment(^I -RYsults on Fitting Ellipses to Noisy Data
^,	 .,

Experiments were run using the proposed method for fitting quadratic arcs

to noisy data which appeared to be appropriate for approximation by an ellipse.

Two phenomena of interest occurred. First, the optimum quadratic curve

was on occasion a hyperbola with each branch fitting a portion of the data.

Since no constraint is imposed to restrict the parameters to those for an ellipse,

the fitted curve can be an ellipse,
°r

a	 ^!
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a parabola, or a hyperbola. The parabola essentially never occurs, being a

degenerate ellipse or hyperbola. A hyperbola will sometime result in smaller

fitting error than an ellipse ... especially if the sampling interval is not

uniform along the curve and the data to be fit is somewhat clustered as in

Figure 5. Since a single branch of a hyperbola is a satisfactory representa-

tion for our purposes, but an approximation involving, two branches is not,

the problem is to force the best fitting quadratic to be an ellipse or single

branch of a hyperbola without giving up the computational advantages of the

linear regression methodology. Two approaches to this problem have been

tried. The first is to take data points at reasonably equally spaced intervals

along the curves being fitted, and then, if necessary, to introduce one or a

few artificial data points at appropriate locations to force the desired type

of curve without significantly influencing, the parameters for the curve of

desired type. The approach works in some instances.

In the section on Models, we interpreted the data point error measure

when the approximating arc is a portion of an ellipse. A similar interpreta-

tion is possible when the approximating curve is a hyperbola. Note that the

determinant of the C matrix in that section determines whether, the curve

(5) = 0 is that for a hyperbola or an ellipse. The curve is an ellipse when

the determinant of C is positive and is a hyperbola when the determinant

is negative. Suppose C defines a hyperbola and a data point of interest is

vd = (x d9 y_)i shown in region I of Figure 6. Then, upon letting vh denote

the point of intersection of the line from v  to v  with the hyperbola, we

define d by

v  - vh = 6(vh	vo ) .	 (37)
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For two data points each a small pet:iendicular distance d from the hyperbola,

the one furthest from v  contribute; more heavily to the error measure, (4)

or the square of (5). If the data po4 t falls in region II in Figure 6, the

contribution to (4) is interpreted as foAlows. If,in the equation defining the

hyperbola of Figure 6,the coefficients of x2 and v2 are interchanged, the

resulting hyperbola, shovm in dashed lines in the figure, will be referred to

as the complementary hyperbola. Let v  be the data point shown in region II,

and denote by v  the intersection with the complementary hyperbola of the

line from v  to vd . Ther, upon defining 6 to be the complex scalar satisfying

v 	 v  =• 6 i vc ,	 (38)

(5) again can be reduced to (6). Note that for (37) and (38), (6) can be

rewritten as

(xd/xh ) 2 - 1 ,	 equivalently,	 (yd/yh )2 - 1	 (39)

and

(xa/xc)2 - 1 ,	 equivalently, -(yd/yc )2 - 1 ,	 (40)

respectively. If, for example, the desired fit to data lying ab^-.- the x axis

is an ellipse with major and minor axes more or less parallel to the x and

y axes, but the algorithm has fit a hyperbola as in Fig 5 instead, the introduc-

tion of a few appropriately placed artificial data points along the line of

symmetry lying outside the two branches of the hyperbola (y axis in Fig. 6)

will usually then force the best fitting curve to be an ellipse. Good locations

for the artificial data points are easily chosen based on (6), for the ellipse,

and (39) and (40). The results hold for hyperbolas of abritary orientation.

Figure 7 is an example of a single branch hyperbolic fit resulting, simply

from the use of data points taken at more uniform intervals along the curve



A second and generally successful approach to the problem is the addi-

tion of a penalty function to (4) if the ivs' fitting curve consists of portions

of two branches of a hyperbola or of an exceedingly small ellipse. For c 1 , c2,

c 3 as in (4), the penalty function used was

We22 - 4 c  c3 )	 (41)

for (c22 - 4 c  c3 ) > 0 and where N is a positive large constant,large compared

with the discriminant function (c22 - 4 c  c3 ). With (4) augmented by (41),

the equations for the optimal c are still linear. Note that for N large, if

c2 2 - 4 c  c3 > 0, (41) can impose a large penalty on (4). Hence, the use of

this penalty function tends to drive c 2 2 - 4 cl c3 to 0. Unfortunately, this

can happen by forcing all of c l ,c2 ,c 3 to be small, and,in fact, this is what

happens in practice. That is, an appropriately shaped and sized ellipse seems

to be prevented by use of (41), and instead the best fitting curve is forced to

'	 be a single branch of a hyperbola with the other branch pushed out toward

a
infinity for large N. This is a satisfactory solution for many p„rposes. In

4i

practice, if (41) is required for a set of n data points, the inversion of Bn

at that stage cannot be carried out recursively in terms of B n-l . However, if

N is then held fixed, Bn+1' Bn+2' etc. can be computed recursively from B.
i-

A reasonable procedure then is to compute two sequences of cnI s, one with

a penalty function and fixed N and one without penalty function. When the one

without settles down to that for an elliptic curve fit, the sequence based on

the penalty function can be discontinued.

j;	 The curves in Fig. 8 illustrate the use of (41) in the sequential fit of

^l	 quadratic curves to data. Data points are found in sequence starting at the

^

f

i	
upper y-axis and proceeding through the second quadrant down through the third
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quadrant. The points were generated as Gauusian perpendicular perturbations of an

ellipse. The basic sequential algorithm (9) fits hyperbolas to the first sets of

6 and 7 data points. Both branches are involved in a fit. By use of (41),

hyperbolic fits involving only a single branch result. These single branch curves

are shown in the figure. The same N was used in both. The choice of N affects

the separation of the two branches of the resulting hyperbola. Furthermore, since

single branch hyperbolic fit to the data usually involves that portion of the

branch of greatest curvature, N has an affect on the shape of the resulting fit.

He see that the fit to six data points is flatter then it really should be thus

indicating that a smaller N should have been used which would not have pushed the

two branches as far apart and would have permitted the branch used to have greater

curvature. Beginning with the ninth data point, the basic algorithm (9) fit an

ellipse. Note that beginning with the fit to seven data points, the resulting

curves are useful for locating the next data point.

The second phonomenon requiring comment is the following. Suppose data in

the vicinity of the origin is best fit by an elliptical arc. Then if the data is

translated in the x and y directions by x' and y', respectively, the elliptical

are which best fits the new data is not the translation by (x',y') of the elliptical

arc fitting the original data. More specifically the dependence of (6) on p, which

is a function of vo and C, leads us to understand that the best fitting ellipse to

data removed from the origin will have major and minor axes rotated and scaled dif-

ferently than would result were the data in the vicinity of the origin. Figure 9

contains overlays of the elliptical arc fits for data at the origin and for the same

data translated by (25,25). The solution to the removal of this distortion is to

produce a rough elliptical curve fit to the data removed from the vicinity of the

origin, then subtract

_ - lB.,,__ _-
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the coordinates of the center of the rough-fit ellipse from the data points

to be used in the fitting process, and then proceed as usual to curve fitting

on the translated data. Analogous statements apply if single branch hyperbolic

fits are involved.

Conclusions

For the transformed-data linear regression approach to quadratic curve

fitting studied in this paper, we interpreted the measure of curve fit error

minimized by the procedures. This error is not the sum of squares of the

shortest distances between data points and the approximating curve. Nevertheless,

the experimental results indicate that the resulting fit is visually satisfactory,

our error is small when the standard perpendicular distance error is small, and

the measure should be perfectly satisfactor;, for almost any use.

For straight line fitting, we showed that the data search cost can be an

appreciable portion of the total line-fitting cost. The data search cost here

was minimal becuase of the tacit assu%,.p`ion of data connectedness so that a data

search along a straight line would eventually locate a data point. When such an

assumption is no longer true, the data search would have to be over a region

rather than along aline and would be more costly.

Though the basic curve-fitting algorithm is fast and requires little

computation, our experimental results revealed occasional undesired behavior such

as the fitting of two branches of a hyperbola rather than an are of an ellipse, 	 s

and distortion in ellipse orientation and shape when the data is noisy and far

removed from the origin. Note, neither problem arises if the data contains little

noise and the underlying curve is an ellipse. However, when the problem does

occur, we found that a satisfactory curve fit involving a single-branch of a

hyperbola could be forced through use of a penalty function, and as the curvature

;I
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in the data being processed becomes apparent, the original algorithm without

penalty function begins to fit an ellipse. The distortion problem was also

handled simply as discussed in the section on experimentation.

Curves relating straight-line fitting costs and fitting error were prepared.

Asymptotically, error varies as (cost) -1/2 as expected. It is assumed here that

the length of the data interval being treated is fixed and the option under in-

vestigation is the choice of number of data points. The curves shown are para-

meterized by two parameters: noise standard deviation divided by cell size, (7/A,

and by noise standard deviation divided by the x interval (or y interval) over

which the approximation is made, a/(xn-xl ). The curve parameter computation costs

are derived for straight lines and quadratic curves. It is seen that the latter

costs are roughly six times the former. If noisy data search costs are included,

the ratio probably will not change much since the line fitting cost may increase

by up to 50%, but the quadratic curve fitting cost may almost double due to the

peculiarities previously noted. Thus, quadratic curve fitting is relatively ex-

pensive. However, for the purpose of recognition of highly variable pictures,

curve fitting is often necessary and quadratic curve fitting may be much more

useful than piecewise linear fitting followed by polygon recognition and manipu-

lation. Finally, since recognition can often be accomplished using other tech-

niques, e.g., by comparisons, not involving multiplications or divisions, with

stored templates, in any recognition cost evaluation an effort must be made to

include all significant costs and not just an indication of numbers of multipli-

cations and divisions. Our fitting costs could be reduced by exploiting the fact

that the intervals xi-xi-1 used would often be constant and by using truncated

variable values and thus perhaps replacing multiplications and divisions by opera-

tions requiring less computation time.

The data modeled in this paper consists of thin lines. Thick line

drawings can be handled in a number of ways using the methods of this paper or
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natural variations. The simplest modification, which should be satisfactory

in a variety of applications, would be to replace the data points in a perpen-

dicular slice across a thick line by the center point and then apply the methods

of this paper to the transformed data. More efficient methods or more sophisti-

cated methods can be developed depending on how one wishes to model the data

generation.

r
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APPENDIX

We show here that the test (31) behaves as if the two hypotheses are

simple. The Gaussian distributions under these simple hypotheses have mean

vectors (
c2 x1 1 c2x2, ... ) c

2xn )T and ( zic' n , z2c ' n ,..., znc'n ), respectively,

where the latter is a least squares linear fit to the former and

T	 n
c' n =_ (con, 

cln)T is given by -B n
1 zlc2xi	 Hence, all the

.,	 i=1

components of the mean value vector for the latter hypothesis are functions of

n. Justification for the conclusion that the test performs as though the

hypotheses are simple is as follow. We first show that the linear portion of

the mean value function of y i in the test statistic (31) does net contribute to

the value of (31). Denote by rn thN n vector having i-th component

n
zTBnl n z^c2xi , and by sn the n-vector having, i-th com ponent c2xi. Because rn is

=1
n

a linear., least squares fit to sn, the sum 	 (ri - si) is 0 and the inner product
i=l

of rn with rn - an is 0. Since the linear portion of the mean value of yn can

be written as a constant vector plus a scalar multiple of rn , it follows that

the inner product of the linear part of the mean value of y  with rn - s  is 0.

Hence, ( 31) would have exactly theisame value if 
Y  had zero mean value vector

under Ho and mean value vector ( c2 11 ... ,c 2xn )T under Hl . Indeed, ( 31) would

have exactly the same value if the mean value of 
Y  

were rn under Ho and

(c2xl ,...,c2xn ) T under Hl . But ( 31) is the SPRT for these hypotheses, thus

concluding the proof.

lh. i
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TABLE 1

Assembly Language Instructions and Average

s	 Realization Times for IBM 360/65

Instruction

Add memory to register

Add rag.. to rag.

Branch on index low or
equal rag. to mem.

Compare logical

Divide rag. to rag.

Load from mem. to rag.

Load multiple

Load rag. to rag.

Multiply rag. to mem.

Multiply rag. to rag.

Subtract mem. to rag.

Shift left single logical

Subtract rag. to rag.

Shift right single logical

Store from rag. to mem.

Store multiple

Average Approximate
Mnemonic	 Realization Time (u secs)

	

A	 2

	

AR	 1

	

BXLE
	

2

	

CLR
	

1

	

DR
	

9

	

L
	

1

	

LM
	

1 + R/2*

	

LR
	

1

	

M
	

5

	

MR
	

4

	

S
	

2

	

SLL
	

1

	

SR
	

1

	

SRL
	

1

	

ST
	

1

	

STM
	

1 + R/2*

* R is the number of registers stored or loaded.

it
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TABLE 2

j	 Numbers of Major Operations and Total CPU Times Per Recursion for

Computing en , en , y° for Straight Lines and Quadratic Arcs

Quadratic Arc	 Straight Line

n+l	
86AR+5DRt74LR+80Mt83SRL 	 5AR+2DR+12LR+10MR+1ISRL

t c	 + others = 800U secs.	 + others = 120U secs.

cntl	 4A+5M+others kz 41U secs.	 3AR+3MR+3SRLtothers = 20p secs,

3A+DR+SM+5SRL + othersYn+1 
= 52U secs.	

2A+M+L+SRL = 10y secs.

search	 8+(i-1)3u secs.
i pts

Programs are written using fixed point arithmetic and it's assumed

that ail 16 32-bit registers are available.
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Figure Captions

Figure 1 Illustration Of The Error Measure In Expression (4).

Figure 2 Illustration Of The Pzrmeters In Expression (6).

Figure 3 Fitting Cost ( cpu time) As A Function Of Error Standard Deviation

For Straight Line Fitting To Noisy Data.

'	 Figure 4 Region Of Constant Prior Probability Density For Underlying Lines

For Succeeding Data.

Figure 5 Tao-Branch Hyperbolic Fit To Noisy Perturbations Of An Elliptic Arc.

i

Figure 6 Illustration Of The Error Measures In Expressions (39) And (40).

f

Figure 7 Single Branch Hyperbolic Fit To Noise Perturbations Taken At Roughly

Equal Intervals Along An Elliptic Arc.

Figure 8 Sequential Curve Fitting Using A Penalty Function To Force Single

i! Branch Hyperbolic Fits In The Initial Stages.

Figure 9 Overlay Of Elliptic Fit To Data Near The Origin And Elliptic Fit

?!. To The Same Data Translated From the Origin.
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