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ALGEBRAIC DECOMPOSITION METHODS FOR NONLINEAR SYSTEMS*

Roger W. Brockett
Division of Engineering and Applied Physics

Harvard University
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Abstract

Elegant algebraic theories for decomposing dynamical systems into

elementary pieces have existed for some time in the areas of finite

automata and linear systems. In contemporary physics, algebraic ideas,

especially Lie algebras and Lie groups are used extensively to reveal

and explain structure. This paper is an informal survey bringing

together some of the important view points found in these areas. We

find that although it is usually helpful, in many cases linearity is

not crucial.
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1. Introduction

The main point of this paper is that the utility of the mapping

semigroup discussed by Myhill [1] in the study of the structure of

dynamical input-output models is by no means limited to the finite

state, discrete time case. In many different settings it is the

algebraic structures which one can give this set of maps which reveal

the possibilities for decomposing the system. The type of decomposition

one seeks will, of course, depend on the structure one wants for the

subsystems. The standard structure theorems of algebra provide the

tools. The class of systems we treat are not characterized by linearity

but instead they are characterized by the algebraic structures which

the mapping semigroup admits.

To be sure, the general principles on which this paper is based

are implicit in the literature. However, they do not stand out as

clearly as they might. Perhaps the most impressive specific instance

of the general idea we are discussing here occurs in the work of

Krohn-Rhodes [2], Linear system theory [3,4] itself provides a second

example. And a third example can be extracted from the important work of

Wei-Norman [5]. The hope is that the synthesis undertaken in an informal

way here will make these principles a little more accessible to non-

specialists. Moreover while it is perhaps not necessary to treat the

examples in as much detail as is done here, the hope is that this too will

help lead to a broader understanding of the underlying principles.

In all cases it is the decomposition of the semigroup which reveals

the structure of the system. However, we can adopt different rules in



-3-

effecting the decomposition and in this way get a very flexible theory

meeting a variety of needs. For example, if the mapping semigroup

can be given a group structure, then the theory of group decompositions

can be invoked to get a decomposition of the dynamics. If the mapping

semigroup admits a matrix algebra structure then again theories are

available to effect the decomposition.

The class of systems under discussion here are capable of modeling

a wide variety of phenomena lying outside the scope of conventional

linear systems theory. By way of comparison with linear theory, we might

explain our objective as a search for decomposition procedures which

parallel the partial fraction expansion method. To emphasize this

point we show by example (section 5) how partial fraction expansion

decompositions fall out when this procedure is applied to a linear

system. We also show how Krohn-Rhodes theory leads to a further de-

composition of system structure beyond the partial fraction expansion level.

To many people it has been clear for some time that a broader conception

of system theory — one might say a general system theory — would be

very desirable since technology no longer respects the classical lines

of organizing subject material. Characteristic of this trend has been

a merging of the continuous with the discrete and a concomitant blurring

of the distinction between linear and nonlinear analysis. This paper

may be viewed in this context.

A number of algebraic terms are used in the text and examples. Some

of these are not common in the control literature and are explained in the

appendix. The others can be found in the references cited there.
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2. Automata Theory

Many of the ideas which we want to discuss find their clearest

and most elementary statement in the setting of finite state systems.

In this section we want to recall a few ideas from automata theory

which will help to put subsequent developments in perspective.

Suppose we have finite sets U and X together with an evolution

equation

x(k+l) = X(x(k),u(k)) ; u(k) e U ; x(k) c X

We call such an object a finite state system. An important concept

in the theory of finite state systems is that of the semigroup of

the system. This might be explained as follows.

If X has n elements then the total number of maps of X into itself :

is n . Denote this set of maps by F(X,X). Now the subset of F(X,X)

consisting of

S= U U X(X(X...X(X(-,Ul),u,)...u ,),u ),u ) (2.1)
^.n rt - ' - L i n-z n—l nnW u.eU

can be given a semigroup structure by introducing a multiplication

which is just composition of maps. We use Q to denote multiplication and

denote this semigroup by SP = (S,o). it is often called the Myhill

semigroup. It has only a finite number of elements because F(.x,X) is

finite.

There is a second semigroup of interest here and that is the free

semigroup over U which consists of all finite strings of elements

U.U.... u with the multiplication operation being concatenation.
1 i p

We denote this semigroup by U*. Each element in U* gives rise to exactly



-5-

one element of S according to the rule A*: u,u,,... u •* A(A(...A(*,u,)u_)...u1 2 p 1 Z j

It is immediate that the diagram below is commutative with this definition

of X*. That is to say, A* is a homomorphism of U* into 8?

U* x u* concatenate

A* x A* I I A*
> composition <y

Since A* is onto S? we may say that SP is the homomorphic image of

the semigroup U*.

In semigroups a homomorphism defines a congruence which can be

"divided out" to get a simpler semigroup. This point of view gives

rise to an alternative characterization of the homomorphism X*. If

u.u-...u is a string which takes all states back to themselves12 q

after q steps then the homomorphism A* takes this sequence into the

identity of SP. Moreover no other strings are taken into the identity

of SP so that the kernel of this homomorphism is the set of sequences

which give rise to closed paths in the state space for each initial

state. ̂ In this sense

SP = sequences/ (sequences giving closed paths)

It is exactly the insertion of the semigroup SP into the theory

of finite state systems which makes it possible to study decomposition

theory using algebraic methods. In fact the introduction of algebraic

This statement with its topological implications were pointed out

by me by Prof. D.L. Elliot of Washington University.
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machinery comes about in a very natural way after one more step. Observe

that we may associate with each element u.of U a map X(-,u.). If

s( ) belongs to 9* then the difference equation

s(k+l) = [A(-,u(k))] o s(k) (2.2)

evolves in the semigroup y. The solution of this equation is "fundamental"

in a sense similar to the use of "fundamental solution" in linear theory.

That is, if s( ) is the solution corresponding to an initial state

which is the identity element of &P and an input string u.u.u . ..,

then the solution at time i of the equation

= X(x(k),u(k)) ; x(0) = X ; u(-) - UU » - . -

is the image of x under the map s(i) viewed as an element of F(X,X).

- We call the equation for s the semigroup equation or the Myhill

equation. It is important to emphasize that the solution of the

semigroup equation evolves in a very simple way, regardless of the

complexities of X . If one knows enough about the structure of finite

semigroups the decomposition of this equation into simpler pieces can

be carried out. This step has been carried out by Krohn and Rhodes

in their important study [2]. In the special case where SP is actually

a group the Krohn-Rhodes results on decomposition are not difficult to

explain. The idea is that either the group is simple in which case they

show that in a certain sense the system is irreducible, or else it is not,

in which case the normal subgroups can be divided out to get a decomposed

system. We give an example in the next section.

In the remainder of the paper we investigate to what extent we can

carry over these ideas to infinite state discrete and continuous time systems.
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3. An Example of a Finite Group Decomposition

The examples in this paper progress from the easy to the

difficult. Our first example, illustrating the Krohn-Rhodes

theory, is interesting because it shows that from the point of view

of automata . theory a scalar first order difference equation (over a

finite field) can sometimes be further decomposed.

Consider the system

- ox(k) + 3u(k) ; y(k) - x(k)

where x(k) and u(k) take on the values 0,1,2, and a and 3 are constants

which take on one of these values and arithmetic is done modulo 3.

The total number of maps of the state space into itself is 27 - the

semigroup itself consists of a subset of the following (observe that

a equals <*)

gj^-) ° a(-)

g 2 ( - ) • a(-) + 3

g3(-) - a(O + 32

g7(

88(

g9(

•)

•)

•)

- a
2

-o2

= a2

(

(

(

gA(0 " <**(•) g10(-) - a2(

g5(0 - a2C) + a3

g (•) - a2(-) + a32

gu(

g17(

-)

.)

» a

» a

2

2

(

(

•)

•)

•)

•)

•)

•)

4- 3

+ a3 n

+ a32

+ 32

+ O B H

+ a32

H 8

+ 6

h 32

+ 32

For example, if a = 2 and 3=1 then there are 6 maps which are

distinct. Let's take these as g.^ g2> g3> g^, g5> and gg. A short

calculation reveals that this group is isomorphic to the dihedral

group* D,. We can take g, and g.. to be the generators. Since D_

The dihedral group D is a group of order 2n consisting of all possible
products of two generators x and y subject to the relations
y2=l and y x y =* x-1.
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is not simple we can decompose this semigroup and the resulting system.

-k
By letting z(k) » 2 x(k), we can write the evolution equation in

terms of modulo 3 arithmetic as

- z(k) + cT1w(k)u(k) ; y(k) = w(k)z(k)

- 2-w(k)

The semigroup of the second of these is isomorphic to Z? whereas

the semigroup of the first (regarding w(k)u(k) as the input) is isomorphic

to Z_. The appropriate block diagrams are shown below.

Figure 1 : Linear Sequential Machine Representation of a
Modulo 3 System.

Figure 2 : Decomposed Version of the Modulo 3 System of Figure 1.

Zp denotes the group of integers (0,1,2,...p-1) with addition modulo

p being the group operation.
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4. Bilinear Discrete Time Systems

Even if we abandon the assumptions that U and X be finite sets

it is still possible to utilize the previous definitions for SP and

the semigroup equation itself. Typically f/P will not be finite although

there certainly are interesting cases for which it is and in these cases

the Krohn-Rhodes theory will apply. The structure of infinite semigroups

on the other hand is not well understood and thus to make further progress

it is natural to Ibok at systems for which the semigroup admits additional

structure. In this section we investigate a class of systems for which

it can be given the structure of a matrix algebra.

A significant extension of the linear discrete time system is

the class of systems which evolve in a real vector space R according

to the rule

v v
x(k+l) - (An + I u.(k)A )x(k) + I b u (k) (4.1)

0 i=l * i i-1 X X

Here we have a linear dependence on the initial state but a nonlinear

dependence on the input. What is the semigroup in this case? Since

we have at each step x(k+l) = M(u)x(k) + n(u) it is clear that the set

of all maps of the state space into itself is the composition of such

maps. However, the composition of two such maps is a third map of the

same form. After a calculation one can see that the semigroup for equation

(4.1) consists of maps of the form

p-1 v p-1 p-1 v v
S- H [A + I u (Jl)A ]x+ I n [A + £ uU)][Bu(j) (4.2)

° i * ° X 1

Recall that a map of Tjf into Tfcf is called af f ine if it is of the form of

a translation plus a nonsingular linear transformation. This set of maps

would be affine if the linear transformation part were invertible. There
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is, however, no need to require invertibility at this point. We call

maps of the form Mx+b with M not necessarily invertible, pseudo-affine.

Notice that the semigroup defines an equivalence relation on the input

space whereby u1~u. if they both give rise to the same map.

It is easy to see that it is possible to put the set of pseudo-

affine maps in one to one correspondence with • set of n+1 by n+1

matrices according to the rule

~ g with g(x) = Gx + b

The set of pseudo-affine maps on ITT is, of course, a semigroup under

composition. The correspondence defined above is a semigroup homo-

morphism if we regard the set of matrices as a multiplicative semigroup.

This hinges on the two calculations which give the effect of semigroup

multiplication in the respective cases

l bl¥G2 VIJG1G2 Glb2-*l~

ij[_o i J L o i _
i)

ii)
J. f. f. J. *. i. _L£

We denote the matrix semigroup by

(̂n) = {G:G =

Having a convenient representation for the semigroup associated with

equation (4.1), the next step is to display the semigroup equation itself.

A little thought will verify that the semigroup (4.2) evolves according

to the equation
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/FA o "1 v [~A. bi")\
\ ° + I u.(k) X * )s(k)
M.O ij 1=1 i LO o J/ (4.3)

By a matrix algebra (over a fixed field) we mean a set ef square

matrices which is a vector space with respect to matrix addition and

scalar multiplication and which is closed under matrix multiplication.

Since a lot is known about the structure of matrix algebras

including the extent to which they can be decomposed, the question

naturally arises as to whether or not these results can be brought

to bear. Clearly the semigroup is closed under multiplication; after

all this is the semigroup property. Troubles arise with regard to

the vector space structure. Even in the special case where the evolution

equation is

V
x(k-H) = [ I u (k)A ]x(k)

i=l

and the semigroup equation is

V
S(k+l) = [ I u (k)A,]S(k)

i=l x 1

the semigroup is in general not closed under matrix addition.

Confronted with this situation a natural thing to do is compute

the semigroup and find the smallest matrix algebra which contains it.

In fact this seemingly ad hoc solution can be justified further by

noticing that if we want to obtain bilinear subsystems this is an appropriate

structure. In a complete theory this point will require careful attention.

Decomposing this algebra will, of course, decompose the actual semigroup

although this procedure overlooks the possibility that the semigroup might

admit a decomposition not shared by the smallest matrix algebra which contains it.
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What then is the smallest matrix algebra <J( containing the

set of matrices

n fA +Zu. (k)A. Zu. (k)b. ~|
« ^ = U U n 0 1 i i 1 I

u±eTR n>0 1-0 • L 0 1 .

One can't be more explicit than to display it as

except in special cases. For example if A is n by n and if we have

U U
ueTR niO

n rAou(k)b]

i=0 |_0 lJ

then
— - ot(A ) x ~| a = polynomial of degree n

{M : M
L 0

,, . i .
a(DJ

x e Range b, A b.. .A «*-lb>

as is easily verified by use of the Cay ley-Hamilton theorem.

By bringing standard algebraic decomposition theorems to bear on

this problem we can decompose the semigroup and hence obtain a realization

of the original system which is decomposed. To make this important point

clear, suppose that we can decompose the enlarged semigroup ̂ (( as a direct

sum of say n parts , M. (J) M0 © . . . (±) M . Then we can write the
.L £• n

semigroup equation as

M1(k+l) - [ A * + Z u ± 1

M ruj-iN rA2 j. v / i , \A2 iM f, \ (superscripts are not powers)M2(k+l) » [AQ + Eu

M (k+1) - [A" + Eu.(k)A"]M (k)n u i i n



-13-

with s(k) » EM.(k). Since x(k) « s(k)x this set of systems obviously

simulates the original system but is decomposed in the sense of having

semigroups which are subsets of simple matrix algebras.
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5. An Example of a Matrix Algebra Decomposition

Our objective here is to show what this philosophy yields when

we apply it to a standard situation.

Consider a linear system

x(k-f-l) - Ax(k) + bu(k) ; x(k) e 7Rn ; u eU?1

As we have seen the Myhill equation can be expressed as

[A u(k)E|

[o i J S(k)A J
The set of matrices

u ; r
n>0 k«0 L(

-A u(k)bT
&

k«0 LO 1 J

do not form a matrix algebra since it is not closed under addition.

However if we enlarge it by inserting a v(k) to get

-v(k)A u(k)b-i

v(k)J

. , n pr(k)
U n I

Then we do get a matrix algebra. More concretely, 8ft. consists of

matrices of the form

rp(A) x -i

JL o p(i)

where p is any polynomial of degree n or less and x is any vector in the

range space of b,ab,...A b with V the degree of p.

We can decompose this matrix algebra to get a decbmpdsition of the original

system. This works in the following way. Notice that if A has a diagonal
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Jordan normal form then by the transformation

-1o-ir* »ir>- o-i
o iJLo ij Lo ij

we can bring A into diagonal form. Thus we have a matrix algebra whose

elements are of the form

0

0

0

0

0

0

p(Xn) n

where x - (x,,x0,...,x )' is a vector in the reachable set £6r the1 f. n

transformed system. Since the matrices of the form

p(Xk) x
.k

p(D

form a one sided ideal, (R̂ p.x) • R̂ (p,x) C. is easily verified that

St -̂

where + indicates a semidirect decomposition in the sense of matrix

algebras. We leave the details of the repeated root ease to the reader.

That is to say the ^2. are ideals which as vector spaces taken all
together span M. However the vector spaces ffi are not necessarily
orthogonal as they would be in a direct sum decomposition.
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6. Bilinear Continuous Time Systems

Carrying these ideas over to the case of ordinary differential

equations is not as difficult as one might suppose. The assumptions

we use to insure that the semigroup will have a manageable form are

very similar to those used in section 4. Instead of matrix algebras,

matrix Lie algebras are the key to understanding the structure.

We consider systems of the form

v v
x(t) = [A + I u (t)A ]x(t) + I b.u.(t) (6.1)

i=l i-1 .

Notice that the input-output maps of such systems are decidedly

nonlinear and this class is not as special as it might look at first

sight. Moreover, this class of models fill an important gap in the

-currently available theory because they allow one to model systems

91/9
for which the Euclidean norm | |x| | = (Ex.) is preserved and also

allow one to model systems for which the £.., norm ||x|| »2|x.| is

preserved. The former condition has significant application in

systems where energy is conserved and the latter is important in modeling

continuous time jump processes where the sum of the probabilities is

necessarily one. Systems in which either constraint is an important

aspect obviously cannot be modeled as

x(t) = Ax + bu(t)

with the system being controllable. **** and Mohler [6] and the author [7]

cite further applications of this model.

A good deal is known about the controllability of equation 6.1 as

the result of Lie algebraic techniques, [7-10]. It follows from the variation
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of constants formula that the set of maps of the state space into

itself are all of the form x*-»Mx+b. The exact set of M's which can

appear here are the set of possible transition matrices

and the set of b's depend on the reachable set. Of course if we

augment x by adding an additional component which is always one, then

we have

_d
dt

j-x(t)-| FA -Hui(t)Ai Zui(t)bi-jrx(t)-jun o o JUJ
This device allows us to think of 6.1 as being a special case of

V
x(t) - U + I u (t)A ]x(t) (6.2)

0 i-1 *

It is clear that the analog df the Myhill equation appropriate

for equation (6.2) is the matrix equation

v
S(t) - [A + £ u.(t)A.]S(t) (6.3)

° i=l * r

The possibilities for decomposing this equation are implicit in the

very interesting work of Wei and Norman [ 5] on the solution of time

varying linear differential equations. What Wei and Norman show is

that the smallest vector space of matrices which is closed under the

operation of commutation.[A,B] - AB-BA, plays a decisive role. This

space is called a Lie algebra and it plays an important role here and in

related work F7-]n ].

The relationship between the commutator and structure of the

solution of linear differential equations may be explained as follows.

First of all it is known (see e.g. Wichmann (nj) that if for each i, 6.±

is a piecewise continuous function of time for -» < t < °° and if
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r
= [ I A1(t)]X(t)

then the transition matrices $ of x(t) = A.(t)x(t); are related

to the transition matrix of the total system via

i 12 "r

with the individual factors on the right commuting, provided that for

all i and j [A ,A.] =0.

The proof of this is easy in the case V = 2 and the general result

follows by an induction.

Secondly, it is known (see Wichmann [11] or Wei-Norman [5]) that

if the Lie algebra generated by a set of constant matrices {A.} is
* ,

solvable then the solution of the differential equation x(t) »

[g1(t)A. + ... g (t)A ]x(t) can be expressed explicitly in terms of

integrals.

The proceeding remarks lead to the conclusion that the basic solution structure

stands revealed in the decomposed version of the Lie algebra generated

by the A.. If this is a semi-simple algebra then
X

SP -

where the ¥. are simple subalgebras, and the previous analysis shows

that the transition matrix is

$-XA 1 •'• Xr

where the factors 31. belong to the Lie groups corresponding to the

simple Lie algebras y.* If the algebra has a radical in addition

See appendix for a definition.
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to the semisimple part then provided that one can compute the solution

for the simple subalgebras one can arrive at an equation involving the

radical which can be solved explicitly. In order to actually solve

the equation when the subalgebras are not solvable Wei and Norman

suggest looking for a solution of the form

g (t)H g2(t)H g H
X(t) = e L e ...e r r

What their method rests on is the demonstration of the following fact.

Let H,,... ,H be a basis for g>. Theni n ' .

r g H 1 -g H n
n e J J H n e J J = £ £ 1L ; r-l,...,n
j=l j-r k=l K1 K

where each of the £, . is an analytic function of g..,g2,...g . Having

this at their disposal it is easy to verify that at least for small

|t| one can find a solution in the given form simply by equating

the coefficients of L on each side of the equation

d «1H1«2H2 8rHr A
 81H1 «2H2 «A-3— e e ... e « Ae e . .. eat
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7. An Example of a Lie Group Decomposition

Consider the electrical network shown in figure 1. This model

illustrates some of the features of a voltage conversion network.

The equations of motion are (u « 0 corresponds to left switch open

and right switch closed, u-1 corresponds to left switch closed,

right switch open)

" UI

= u(E-V1)-«-(l-u)V2

Now if we make the replacements

and let a

T V ; x. = i/cT V and x. - Si I .

E/̂ L, 6

1-U

Figure 3 : An electrical network controlled by switches

then we obtain

xl

X2

X3

.

-

0 0 0

0 0 -a

0 +a 0

xl

X2

_X3_

+ u

0 0 6

0 0 a

-3 -a 0

xl
X2

1

0

6
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We now introduce the affine representation and write

*1
X2

X3

X 4!— i

CB

0 0 0 0

0 0 -a ^

0 -HI 0 0

0 0 0 0

xl

X2

X3

X4

4- u

r~ ~
0 0 B 0

0 0 a 0

-B -a 0 y

0 0 0 0

Xl

X2

X3

X4

The smallest Lie algebra which contains these two matrices is a

6 dimensional algebra whose typical element is

0

-to.

-w,

W

0

2 ]

0 0

"2

wl

0

0

y

v

P
o

This Lie algebra contains as a three dimensional ideal the subalgebra

whose typical element is

0

0

0

0

0

0

0

Thus we can decompose the Lie algebra as

where &2^ indicates the one dimensional Lie algebra and + indicates a

semidirect product. Let S be the solution of the equation
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0 0 0

0 0 a

0 a 0

S^KU
0 0 6

0 0 a

-6 -a 0

sx ; S1(0)

and let l>1 « (0,$,0)' and b2 = (0,0,Y)'. Then the block diagram of

the decomposed system is shown in figure A.

Figure 4 : Showing the decomposed version of systems in block
diagram form

Perhaps it is of some interest to carry this analysis a little bit

further to give a more complete picture of the Wei-Norman method. To

do this we pick a basis for J{ and proceed as follows.
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Let fl., fl, and fL be given by

0 0 0
0 0 - 1
0 + 1 0

; ft., -y£-

0 0 + 1
0 0 0

- 1 0 0
; n, -•I•j

0 - 1 0
+ 1 0 0
0 0 0

Clearly these generate a Lie algebra which is not solvable. We note that

a direct power series expansion together with the identities

^ - [fl2,fi3], R2 - [f lyfl j j , H3 - fOj.Oj], gives

on -oft

and also

2_ cosa + fL sina

-ofl
* fi cosa +

otfl, -afl
e fl.e » R cosa + .

On the other hand,

on, -on.
e Jfl2e

on, -OR,

. - fi,sina
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Now if we try for a solution of

u2(t)fi2)X ; X(0)

in the Wei-Norman form we assume X = e e e we have

.X = g e e e e

Now use the above to get

sing1)X .

Use this idea twice to get

g3e

so the Wei-Norman Equations are in matrix form

Decomposed these become
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g sing

g3 cosg1cosg2 » 0

and finally

1 0 sing2

0 cosgl (-cosg^ing^

0 sing1 (cosg1cosg2)

*1
g2
•

B

Ul

U2
0

Notice that

det
sing.

2 2- cos g1cosg2 -»- sin g^^ cosg2 • cosg2

This set of equations therefore is not meaningful at g2 - ±ir/2.
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9. Appendix on Algebraic Structures

The purpose of this appendix is to collect a few facts about

groups, associative algebras and Lie algebras so as to make it easier

for the reader to make contact with the literature. All the definitions

needed for sections 2 and 3 are contained in Chapter 7 of reference [3 ].

Otherwise the book by Rotman [12] is very readable. For algebras (sections

4 and 5) see for example Greub [16] and Gray [13] and for Lie algebras (sections

6 and 7) Samelson Q.A ] and Jacobson [15] are appropriate.

A groupoid is a pair (S,O where S is a set and • is a binary

operation •: S * S •* S. If this binary operation is associative

i.e. if (sl • s2) • s3 - sl • (s2 • s3), then (S,-) is a semigroup.

A monoid is a semigroup in which there exists an element e such that

for all s in S, es = se « s. Monoids which have the additional property

that for each s in S there exist t in S such that st a ts - e are

called groups. An abelian group is a group such that s * t = t • s

for all s and t in S. A group (R,«) is said to be a subgroup of

(S,-) if R is a subset of S and the multiplication is the same on R as

in S. The order of a group is the number of elements in it.

If (S,-) and (R,*) are semigroups and h is a mapping h : S •*• R

we say that h is a homomorphism if the diagram below "commutes" i.e.

is consistent.

S x s = >S

I h x h h SjSj » s3 •£ h(s1)h(s2) - h(s3)

R x R »R

A homomorphism which is one to one (as opposed to many to one) and onto

is called an isomorphism.
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Now let S be a group and R a subgroup. That is, suppose that

there is an insertion i such that

is one to one. We can see that the statement s.. - s,, if and only if

there exists r in R such that s^r = a-, defines an equivalence

relation on S and hence a partition on S. We call the elements of

this partition cosets. A subgroup R of S is said to be a normal

subgroup if r e R and s e S means srs C R which is to say; sR = Rs

for each s in S. We say that a group is simple if its only normal

subgroups are itself and the trivial group consisting of the identity.

We will not discuss the decomposition theorems available for groups

since this is done in the present context elsewhere [3].

An algebra gp is a triple (S,+,') where (S,+) is a vector space

over a field and • is a bilinear multiplication. If (A-B)-C »

A'(B-C) for all A, B and C in S then the algebra is said to be

associative. Perhaps the most common example of an associative

algebra is the algebra of n by n matrices with + and • being matrix

addition and matrix multiplication. A Lie algebra (discussed below)

is an example of a nonassociative algebra. By a subalgebra of £P we

mean an algebra SP̂ GSP such that ^ • SP̂ C. ff^ and .9^ + ^C

A subalgebra is called an ideal if 3*. 'SPcSP.. Clearly the sum of two

ideals is an ideal. An ideal If. is called nilpotent if for each s in
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{?, there is an n such that s • 0. The sum of all the nllpotent

Ideals is called the radical. By a matrix algebra we mean a set of

matrices which is closed under addition and multiplication which forms

a vector space over its field of definition.

A Lie algebra is an algebra in which (S ,+) is a vector space and in

which the product (denoted by [ , ]) is bilinear, that is, for x, y

and z in S we have [(x4y),z] = [x,z]+[y,z] : [x,(yfz>] = [x,y]+[x,z]

and a[x,y] = [ax,y] = [x, y]. In addition [ , ] is required to satisfy

the conditions fx,x] = 0, [[x,y] ,z]+[ [y,z] ,x]+[ [z,x] ,y] » 0. The latter

condition, known as the Jacobi identity, is the substitute for associativity.

We need only be concerned with Lie algebras for which S is a set

of n by n matrices whose entries are real numbers. The Lie product is

the commutator [X,Y] = XY - YX. It is easy to see that this product

satisfies the above conditions.

Let (H } be a set of n by n matrices; the Lie algebra generated

by {H.} consists of {H. }, all the elements obtained from {H } by

repeated commutations, and all the linear combinations of these. A

subalgebra SP of a given algebra is called an ideal if \SPyg}C.SP

i.e., for all X e^ and Y e 3> the product [X,Y] belongs to £P '.

The set of all elements of 32 which are the result of commutation

of some two elements form the derived algebra. This is denoted by 3>* .

Clearly ,2" is an ideal of <£ . The derived algebra of ̂ " is denoted

by <£". Continuing, we have the derived series

A Lie algebra % is said to be solvable if S? = {0} for some h.
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Th e sum of two solvable ideals is again a solvable ideal. The radical

of 32 is the sum of all of its solvable ideals.

The Lie algebra SB is said to be semisimple if its radical is {O}.

It is called simple if it has no ideal other than S? and {0}, and if

=5? ' ± 0 . The last condition serves to avoid trivial cases.

The main source of knowledge about the structure of associative

algebras comes from Wedderburn's theorem. This result can be found

in reference [13] as a statement about rings.

There are two main structure theorems of Lie algebras. The first,

known as Levi's Theorem states that if ̂  is a finite dimensional Lie

algebra with radical SB , then there exists a semisimple subalgebra

-^C SB such that given X e SB , there exist unique XQ e &Q, and

unique X- e 3?. such that X = X + X.. For the proof of this theorem

see Jacobson, U.5 ] • The second structure theorem explains what happens

to the semisimple part and goes like this. A finite dimensional semi-

simple Lie algebra SB may be decomposed into the direct sum SB'»=

S' @ ^ @ ... SB y where the SB* are ideals which are1 i v-x r 1

simple algebras.
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10. Appendix on Linear Continuous Time Systems

Consider the standard time invariant linear system x(t) e Tfi; ,

u(t) e IT? m

x(t) = Ax(t) + Bu(t) ; y(t) - Cx(t) (10.1)

Suppose that we assume that this system is controllable and observable,

Now consider the set of all possible maps of the state at t - 0 into

the state at sometime later which u can generate. Clearly these maps

are of the form

x(t) - eAtx(0) + [ eA(t"°)Bu(a)da
•'0

which is an affine map. This set of maps,which constitute the semi-

group of the system, satisfy a very simple differential equation of

the form S(t) - U(t)S(t). More specifically,
A«- A<-

Bu(t)-]^ r e x n r A Bu(t) - , r e x n

d t lo i J = L o o J Lo i J

where

xa(t) - [ e
A(t"a)Bu(a)da

The subset of the n-dimensional affine group which consists of

r At -, .
SP'• U 10 * 5 x e Range of {B,AB,...An~iB}

is in general not a group since t is restricted to be nonnegative. It

will be called the semigroup of the linear system by analogy with the

standard definition of the semigroup of a machine in automata theory.

Notice that having the solution of the semigroup equation
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o o
s12(t)-2(t)-|

i J
with the initial condition being the identity matrix (the identity

gives the solution of equation (10.1) via the rule

rx(t)-] pc(0)-|
1 - S(t)
c1 J L 1 J
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INTRODUCTION
t

Many problems in control and other areas of applied mathematics lead to

stability questions for dynamical systems which are described bv mathematical models

Involving time-varying parameters. Frequently one may assume that these time-

varving parameters are stochastic processes with known statistics. Tvoical examples

of interesting applications which lead to such stochastic stability ouestlons are

the stability analysis of numerical computations in the face of round-off error,

systems Involving the human operator, sampled data systems with Jitter in the sampl-

ing rate, mechanical systems subject to random vibrations, and economic systems

which model some of the uncertainties as variable lags.

Essentially all of the above examples lead to mathematical models in which the

stochastic processes enter the model in a multiplicative way. It is for this class

of systems that the stochastic stability question becomes Interesting and challeng-

ing. In contrast, when the stochastic processes enter the model in an additive way

as, for example, in the linear quadratic theory, then the stochastic stability

question usually reduces to the stability of the deterministic svstem obtained by

putting the stochastic processes equal to zero.

In this paper we will analyze a class of stochastic systems and obtain various

explicit stability criteria. Before we describe the model let us introduce the

following notation: R denotes the real number system, R denotes n-dimensional

real Euclidean space, R denotes the real mxp matrices, prime denotes transpose,
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^0 (> 0) means chat a symmetric matrix is nonnegatlve (positive) definite, *[•!

denotes an arbitrary eigenvalue of a matrix, whereas X [•] (X [•]) denotes themax rain

maximum (minimum) eigenvalue of a matrix with real eigenvalues, Re denotes the real

part of a complex number, max [-,•) (mln [-,-]) denotes the maximum (minimum) of two

real numbers, and <?{•} denotes the expected value of a random variable.

We will study the stability of the linear system I described by the differential

equation:

I : i • Ax - BK(t)Cx ,

where x e Rn and A e Rnxn, B e RnXm, and C e RPXn are constant matrices and K(t) is

a time-varying function taking values In Rmxp. The differential equation E will be

viewed as describing the closed loop dynamics of the feedback interconnection of the

stationary linear system

: *1 " * Bu * Cxl l l

in the forward loop, and the memory less time-varying linear system

E2 : y2 » K(t)u2

in the feedback loop. The feedback interconnection equations are given by:

u. • ~V2' U2 " yl" IC *s easi*y verified that we Indeed have T. » E.xl.l feedback.

This feedback system is shown in Figure 1.

0 -K

I :

r^
i. » Ax. -l- Bu.

I :
vl ° Cxl

•

2 2 2

,,

U2

Figure 1; I viewed as I xl j feedback.

We will assume throughout, for simplicity, that I. » {A,B,C} is minimal

(i.e., (A,B) is controllable and (A,C) is observable). The transfer function of T.^

is Riven by fi(s) = C(Is-A)~ B. The gain matrix K(t) is assumed to be a stochastic

process whose properties will be described in more detail later. We seek conditions
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on the statistics of K(t) which guarantee the stability of I (to be defined later).

If we consider the equation for £ from a state space point of view then it Is

apparent that the case where K(t) is a colored process is quite distinct from the

case that K(t) is white. If K(t) is white noise then the system behaves pretty much

like a linear one and we may use most of the theory on stochastic differential

equations directly as for example the Lyapunov techniques for stochastic systems

(see e.g., Kushner [1967], Chapter 2). If on the other hand K(t) is a colored pro-

cess then we should model T. as something like:

z - Tz + fiw ; K » Hz

x = Ax - BKCx

with w white noise. This case is thus inherently nonlinear. The results obtained

in this paper fall into two categories. In the first class we consider the colored

case and show how one may use what are essentially linear technlflues to obtain con-

ditions for almost sure asymptotic stability of I. The method of nroof uses

Uazewski's inequality previously exploited in this context by Infante f19681. These

criteria are thus Independent of the autocorrelation function of K(t).

The second class of results considers the white noise case and shows how

one may use the frequency-domain stability criteria for linear svstems In order to

obtain criteria for mean square stability of E. This question has been studied

extensively in the literature and the results obtained here comnlement those obtain-

ed bv Willems and Blankenship [19711 and Wlllems [1°721.

1. AVERAGE VALUF CRITERIA FOR ALMOST SURE STOCHASTIC STABILITY

In this section we will assume that the entries of the gain matrix K(t) c R

are stationary stochastic processes satisfying an ergodlcitv hypothesis which ensures

the almost sure equality of time averages and ensemble averages. Thus if F : R -*R

is integrable then we assume that almost surelv:

1 CE +T
^fF(K(t))> = ̂ fF(K(n))> = Hm ± | ° F(K(T»dT .

T-« Jt
o

We will consider almost sure asymptotic stability. This is defined as:

Definition 1; T. is said to be almost surelv asi^toticallu stable if the enualitv
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lin x(t) • 0 holds with probability one for all given Initial conditions *(*/,)•
t-»

1.1 A Stability Criterion for Completely Symmetric Systems

Consider the system £.. There are various wavs of describing its response

function from the inputs to the outputs. The most commonly used input/output des-

criptions of £ give either its transfer function G(s) • C(Is-A) B or Its -impulse

response W(t) - Ce B (t ̂  0). There is however an alternative input/output des-

cription which, although it has roots going back at least as far in time as do the

concepts of transfer function and imoulse response, has become particularly pre-

velant In the last half decade. This descrintion gives the so-called Hankel matrix

of £ defined by:

H A

CB

CAB

• •

CANB

•

CAB

CA2B

;

CAN+1B

•

...

:::

• • •

CANB

CAN+1B

•

CA^B

•

...

i i i

• » •

It turns out that many qualitative input/output properties of £iare most easilv des-

cribed in terms of H.

It is well-known that there exist manv minimal realizations fA,B,C> of a given

G(s), W(t), or H, but that they all may be recovered from one of them by the transfor-

mation group {A.B.C} * (SAS ,SB,CS~ } with S an arbitrary invertible element of

Rnxn. The dimension of a minimal realization of a given transfer function is called

the McMillan degree.

We will consider the following class of systems £^:

Definition 2: £, is said to be completely symmetric if m«p and H = H' >_ 0.

*The infinite matrix H is said to be nonnegative definite (denoted by _> 0) if all its
N

finite truncations are nonnegative

N
N and for all sequences ( Z Q -

definite, i.e. if \ z'CA Bz > 0 for. all
Il3"n
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The following lemma gives a very useful alternative characterization of

completely symmetric systems. Its proof, which is not germane to our purposes, is

an Immediate consequence of some known facts In realization theory and is left to
*

the reader.

Lemma 1: E ie completely symmetric if and only if its transfer function G(s) •

C(Is-A)~ B admits a realization (A ,B ,C } uith A • Aj and B - C'.

Thus I. is completely symmetric if and only if there exists a nonslngular (nxn)

matrix S such that SAS » (SAS )' and SB • (CS )'. Completely symmetric systems

have the property that the eigenvalues of A are all real. This is in fact also the

case after applying symmetric feedback and it may be shown that E is completely

symmetric if C(s) - O'(s) and if A-BKC has real eigenvalues for all K • K'. Note

also that E is completely symmetric if and only if its transfer function admits the
k Rt

partial fraction expansion G(s) - T . with R. • R! > 0. If m»p»l thenE, is
i-1 8+Ai * i ~ . 1

completely symmetric if and only if the poles and the zeros of the transfer function

G(s) are real and interlace, i.e. if X,,X,,...,X are the poles and if z,,z_,—,z1 i n i / r

are the zeros of G(s), then r » n-1, X and z are real, and X > z_> X_ > ... >

z , > X . This pole-zero pattern Is illustrated in Figure 2.n—1 n

*—«—*-
X2 zl X

Re

Figure 2: Typical pole/zero pattern of a completely eyrmetric system.

Completely symmetric systems are a natural generalization of relaxation systems

(see Will ens [1972]) which are completely symmetric systems which satisfy the

additional stability requirement Re X[A] <_ 0. Thus £- is a relaxation system if and

only If its transfer function admits a realization (A.,B.,C.} with A. « A' £ 0 and

B. ~ C.. There are various other ways of defining a relaxation system. It mav be

The backgroundmaterial of realization theory used here may be found in Brockett
{1970], Chapter 2, or Kalman fl<*6°], Section 10.11.
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shown that T. defines a relaxation svstem If and only if H • H' ̂  0 and OH • Oil1 <_ 0,

where OH denotes the shifted Hankel matrix of £ , I.e., H with the first block row

(or column) deleted. Alternatively, I defines a relaxation system if and onlv if

Atits impulse response W(t) • Ce B is a completely monotonic function on fO,°°), i.e.
. k

W(t) - W'(t) and (-1) -^- W(t) > n for all t > 0 and k • 0,1,2 ..... Relaxation
dtk

systems play an important role in physics. They describe the response of various

classes of systems such as R-C and R-L electrical networks, viscoelastlc materials

thermal systems, and chemical reactions.

We now state the main result of this section.

Theorem 1: Assume that £. is completely symmetric and that K • K' almost surely.

Let T • <?{A [A-BKC]}. Then £ is almost surelii asurxptoticaliu stable ifmax max ^

I < 0.
max

Proof; The proof of Theorem 1 follows an argument due to Wazewskl adapted to the

case under consideration (as in Brockett [1970], Section 32, Exercise 6).

Since £. is completely symmetric, there exists a nonsinpular matrix S such that

At - SAS'
1 = (SAS'1)' - A' and B - SB - (CS'1)' = C'. Let x - Sx. Then ^ satis-

fies the equation:

Let V(x.) - x!xj. Then along solutions of the above equation. we have:

which, since A^-B^KftJB' is symmetric, shows that:

Since A1-B.K(t)B.[ and A-BK(t)C - s'̂ Aj-B K(OBj)S are similar matrices, this vields:

V(x) <_ 2Amaxt,

Thus

V(x.(t)) <_ V(x (t ))exn(2l X___ [A-BK(T)C]dT> .
° Jt

Finally by the ergodic hypothesis

If''lim ^ -X [A-BKCOCldT - X
T T i max max
f-KO I £
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is almost surely negative, which shows that llm V(x1(t)) • 0 almost surely. Thus

t—>llm x.(t) » S llm x(t) • 0 almost surely, which proves the theorem. •
t-»» t-«»

Note; 1. Theorem 1 predicts stability if Re A (A) < 0 and K • K1 ̂  el > 0 almost

surely. It then reduces to a special case of the multivarlable circle criterion.

The major difficulty in applying Theorem 1 is that as a rule X will bemax

difficult to compute from the distribution of K since X [A-BKC]'is a very nonlinearmax

function K which does not even admit a general analytic expression. This difficulty

may however be overcome in the Important special case that there is only one stochastic

gain in I:

Theorem 2: Assume that m-p-1 and that I. is completely symmetric with transfer

function g(s) » C(Is-A) B. Let z. be the largest zero of g(s) and assume that K(t)

possesses the density function p(K). Then I is almost surely asymptotically stable

if:

r da

Proof; By Theorem 1 It suffices to nrove that the integral In the theorem statement

equals -X. Consider therefore X fA-BKC]. Since the eigenvalues of A-BKC aremax max

the poles of the system obtained after putting the constant feedback gain K around

Ej, it follows that these eigenvalues are the zeros of l-HCg(s). Since the poles and

zeros of g(s) are real and Interlacing it follows from a simple root-locus consider-

ation that the maximum zero of l+Kg(s) is a monotone decreasing function of K which

varies from z, for K - • to +"» for K • -». The gain K and X fA-BKCl are in fact
I max

related by g(X [A-BKC]) » - — . Thus, bv a standard formula from orobabilitv theorymax K

we have that:

do

which yields the desired result. •

Notes; 2. Figure 3 shows the behavior of the functions g(o), -l/g(a), and

X (A-BKC). The qualitative behavior of these functions is very well understood as
max

a result of exhaustive analvsls of R-C and R-L electrical networks (see, e.g.,

Ruillemin [1957], Chanter 4).
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f(o)

X (A-BKC)
max

Figure 3; Sketch of g(a), f (a)

3. Theorem 2 indicates the destabilizing effect of the stochastic gain. To see this,

let us assume (essentially without loss of generality) that <?(K).- 0. It may be

shovn that X (A-BKC) is a strictly convex function of K which by Jensen's in-
max

equality (see Feller [1966], p. 151) implies that Xmax 1
 X
x
 wlth equality holding if

and only If K • 0 almost surely. Note also that Theorem 2 is easily extended to the

case where K does not possess a density function,

q
A. Let g(s) - and let and ZB l

and the zeros of g(s). Thus \1 > > \2 > ...> zn-1> Let

denote the poles

X^K) > ...>

X (K) denote the zeros of p(s)+Kq(s). From root-locus considerations it is easilv seen
n
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that z < X (K) < X (0) < X (-K) < z, for K > 0 and 1-1,2,...,n (where we have put
n n

ZQ » <"> and zn « -<=). Since - [ X + KR • - I X.(K) we thus obtain the follow-

ing uoper bound for X (see Figure 3):max

{ X, for K ̂ 0
X <
max ~ ' X.-K* . for K < 01 n—J. —

This shows that E Is almost surely asymptotically stable if:

X K-X
<?{min[ — , ]} > 0

which requires in particular that X. < 0.

Examples; 1. If K is uniformly distributed between the limits K and K then I is

almost Surely asymptotically stable If:

_ _
R(O " g(z ) g(a)

+

where z. • X (K.) and z -X (K ). This Inequality is easily verified directly•*• max •*• - max -

from the graph of f (a) • j—r .

2. The limiting behavior of X as K * + » is given by (see Flpure 3):max

for K *
X

maX ' -Kq ,-Hx for K
n-1

n n-1 q
where a - J \^ - £ z - —— p . Thus as K becomes more and more distributed

at large absolute values we see that almost sure asymptotic stability results if:

'ip++< j/i - T «t)p. - vi r
i"l 1=1 '-•>

< 0

where P+ = P(K > 0) and P_ «• P(K < 0). For the uniformly distributed case studied in

Example 1 with K+ > 0 and K_ < 0 this condition requires

ZIK+ + < j^i - "^ zi)K-+ "n-i -r * ° •

3. Consider the equation studied by Infante [19fi8], p. 11:

• f (t)-S ^ , B .n • . — n-t-Xc : c - j n - X c



-42-

where 6, i, X > 0. This equation describes the kinetics of a simple nuclear reactor

problem. It is easily seen that Theorem 2 applied to this case with

s(s++X)
and

Thus almost sure asymptotic stability results if:

0 a

where p(-) denotes the density function of f.

1.2 A Frequency-Domain Stability Criterion

In this section we will derive another criterion for almost sure asymptotic

stability of the system I. We first recall the definition of a positive real

function:

Definition 3; Let H(s) be a matrix of real rational functions of the complex variable

s. It is said to be positive real if H(s) + H'(s) >^ 0 for all Re s ̂  0, s f poles

of H(s).

There exist various equivalent conditions for positive realness. Such conditions

may be found in most books on electrical network synthesis (see, for example, Cuillemin

[1957], Chapter 1, or Newcomb [1966]). Positive real functions plav a fundamental

role in the theory of passive systems, particularly In the analysis and synthesis

of electrical networks. They have recently also shoun to be an essential tool for

obtaining frequency-domain stability criteria for feedback systems. A time-domain

condition for positive realness is given in the following lemma, the celebrated

Kalfnan-Yacubovich-Popov lemma:

Lemma 2: Consider the minimal system:

z - Fz + Gv ; w • Hz,

and let a be a real number. Then H(I(s-o)-F) r, is positive real if and only if

there exists a solution 0 » 0' > 0 to the relations:

F'Q + QF £ -2oO ;

OC - H' .

For a proof of Lemma 2 we refer the reader to Willems C1972].
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. The value of the above lemma In stability analysis lies in the fact that the

quadratic form induced by the matrix 0 yields a very suitable candidate for a

Lyapunov function. It plays a crucial role In the following theorem which is the

main result of this section:

Theorem 3: Let m • p. Then E is almost surely asymptotically stable if there exists

a constant (-earn) matrix A and a real number o such that:

(i) A + A1 > 0 ;

(ii) F(s-o) - G(s-a)<I-A(s-a)G(s-o))~1 is positive real;

and (iii) <£{min[a,X . [ (K+K'XA+A1)'1]]} > n .mm

Proof; We will assume that (I-ACB) Is invertible and that the McMillan degree of

F(s) is n. The general case may be resolved by a subsequent limiting argument which

is left to the reader.

It is easily seen that F(9) is the transfer function of the system:

z • Az 4- B(v+Aw) ; w » Cz ,

or

z • (A+B(I-ACB)~1ACA)r+-B(I-ACB)~1v ; w • Cz .

This system is minimal since the McMillan degree of F(s) is assumed to be n. Thus

by condition (ii) and Lemma 2 there exists a matrix 0-0' > 0 such that

[A+B(I-ACB)"1ACA]'0+Q[A+B(I-ACB)~1ACA] <_ -2aQ

and

QB(I-ACB)"1 . C'

Let S be an invertible (nxn) matrix such that S'S - Q and let x. ° Sx. The

equation for x. is given by:

where AX • SAS"
1, BX - SB, and (^ = CS"

1. Moreover, Bj^ • Cjd-ACjBj) and

(A.+C'AĈ )' + (Aj+CjACjÂ  <_ -2ol. Consider now the derivative of VCx^ • xjx^

y'Ay , where y. • C.x., along solutions of the above differential equation. A simple

calculation using the above relations shows that:



-44-

Lct A ( t ) <• X m i n [ (K(t )+K' (OKA+A1)"1] and let P be a nonsingular matrix such that

P'P -A +A' . Since X ( t ) - x
mlntP~1(K<t)+K' (t)) (P1)"1] It thus follows that y^K(t)y _>

X(t)y^Xy 1 for all y . Hence

V(x1) £ -20V (Xl) + 2(0-X(t))v^Ayi .

We now distinguish tvo cases:

(1) X ( t ) ^ a which implies V(x ) £ -2aV(x ) ;

and (ii) X ( t ) £ a which, since V(x,) >_ y^ A y implies:

V(xx) < -2aV(Xl) + 2(o-X(t))V(x1) - -2X(t)V(X l) .

Hence

V(xx) <_ -2min[a,X(t)]V(x1)

and

(- 2 I min{X,o(t)]dt) .
ft
I min{X,

By the ergodlc hypothesis and condition (ill) this indeed implies that lim V(X (t))«0

almost surely. Thus lim x.,(t) = S lim X(t) - 0 almost surely, which proves the

theorem. •

Notes: 5. If K + K* >_ el > 0 almost surely and if G(s) is positive real then

Theorem 2 predicts almost sure asymptotic stability by considering the limit c •» 0

and A •+• 0. In this sense Theorem 2 is thus a generalization of the circle criterion.

The advantage of the theorem is that it allows the gain K(t) to become negative

provided however this is compensated by K(t) being sufficiently positive at some

other time.

One of the disadvantages of Theorem 3 is the Inherent difficulty In verifying

the average value condition from the distribution of K since A A {[(K+K')(A+A') ]}

is a very nonlinear function of K. In the scalar case however one may resolve the

various conditions In Theorem 3 much further. Thus we arrive at the following

more ejcplicit criterion for systems with a single stochastic parameter:

Theorem 4: Assume that m <* p » 1 and let g(s) » C(Is-A) B - — —^

denote the transfer function of £ . Then £ is almost surely asvmptotteaZZv stable

if there exists a real constant.p such that

(i) <?{«in[e,K]} > n ;



-45-

(ii) the poles of r,(s) lie in Re a < -o , 8 ;n—1

<

intersect the closed disc centered on the negative real axis of

(iti) the locus of G(Jio-q .%), -*> < w < % Joes not encircle or
n—1

the complex plane and passing through the origin and the point - -g .

Proof; By Theorem 3 it suffices to show that there exists a constant X > 0 such

that F(s-o) - g(s-o)(l-X(s-o)g(s-0))~ is positive real and «?(min[oX,k]} > 0. Note

that this implies O > 0. Now F(s-o) is positive real if and only If F (s-O) »

g(s*a) - X(s-o) is positive real. Since F~1(s-o) - (—— - X)(s-o) + r q̂') vlch

n~1 1 ' -1r(s) a polynomial of degree at most (n-1) it follows that X < and that F (s-o)
- "n-1 t

. will be positive real for some X If and onlv if it is positive real for X » ,
Vi

which is thus the optimal value of X to consider. The condition a . > 0 followsn—1

from the frequency domain condition (ill) as a result of the behavior of g(ju-O) for

to * oo. Pick now o • Bq ,.
n—1

In order to complete the proof of the theorem it suffices to show that F (s-0)»

s + 6 is positive real. By one of the test of positive real-— -7—̂ - gT --
n— 1 n— 1

ness this can be achieved by proving that Re F (s-o)] . ^ 0 and (since F (s-0)

has no more zeros than poles) that the roots of q (s-o) lie in Re s < 0. The real part

condition comes down to asking g(s-o)] to have the non-intersection property

stated in condition (ill). By the non-encirclement condition the roots of o(s-o)+

kq(s-o) lie In Re s < O for k > 8. By letting k •* °° this implies that the roots of

q(s-O) lie indeed in Re s _< a. By the non-intersection property g(jw-o) j 0 for .

-oo < 0) < oo and we conclude that the roots of q(s-o) indeed lie in Re s < a as desired. •

Notes: 6. It may be shown that conditions (ii) and (111) of Theorem 4 will be veri-

fied for 8 £ S. if they are verified for 8.. Thus the optimal 8 to consider is the

smallest number which satisfies condition (1) of the theorem.

7. If K has density function p(K) then condition (1) of Theorem 4 requires that:

f'B
p(K)dK +

'6

A /" fS
h(6) - 8 p(K)dK -l- Kp(K)dK > 0

If. J-co

Now > 0 , h(0) > 0 and h(») - <§"{K}. Thus there exists a 8 such that h(fi) > 0
utS — —

if and only If <£•{&} > 0, and If so, then there exists a 8 such that h(ft) > 0 for

6 > 8*. - Thus Theorem 4 will predict almost sure asymptotic stability of T.
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if «?[K] > 0, if the poles of g(s) lie in Re s < q^B* and if gCju-q̂ B*) satisfies

the frequency domain condition of Theorem 4. This procedure lends itself very nicely

to the graphical analysis Illustrated in Figure 4.

4MB)

«• Im

Figure 4; Illustrating the application of Theorem 4.

Examples; 4. Assume that K is uniformly distributed between K and K with K <_ <1

and K + K ^ 0. Then 6* » K — \/K?~K • Expressed in terms of the spread AK-K -K
~ V -K -r V -f- — - . T —

4- -• A / AV 9 '
and the mean M - — =~~ this yields 6 = ty— r - >^i ) which in the range of interest

^ — M i 0 shows that 6 increases with AK for fixed M.. This again indicates the

destabilizing effect due to the uncertainty In K.

5. Let £. be a completely symmetric system as defined in Section 1.1. Then con-

ditions (ii) and (111) of Theorem 4 will be satisfied as long as q < -X, with X

1
the largest pole of g(s). The stability condition then becomes <? (mln[ ,K]} > 0

which is similar to, but more conservative than, the condition obtained in Note 4. Thus

Theorem 2 which only applies to completely symmetric systems gives a sharper stability

estimate than Theorem 4 which applies to general systems.

2. ANALYSIS OF THE MF.AN AND THE COVARIANCE EQUATIONS

This last section of the paper Is concerned with the stability analysis of the

mean and the covarlance of the state of £ where K(t) is assumed to be a white

stochastic process. For simplicity we will consider only the case In which the
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process K(t) Is scalar valued, but we will treat the non-stationary case. If we

denote the mean of K(t) by k(t) and the variance by o (t) then E is described by

the stochastic differential equation:

£' : dx - (A-"k(t)bc)x dt + q"(t)bcx dB ,

where A e Rnxn, b e Rnx , c e R Xn, and B denotes a Wiener process with zero mean

and unit covariance. This stochastic differential equation is to be interpreted in

the sense of I to and we will take It as the starting point of our analysis.

It Is well-known that if k(t) and q(t) are sufficiently smooth (e.g., locally

Integrable) then for all given x(t ) there exists a unioue. solution to I' foro

t > tQ. Let W(t) - <?{x(t)}, T(t) = «?{x(t)x'(t)}, and R(t) - <? {(x(t)-w(t))

(x(t)-u(t))'} denote respectively the mean, the second moment matrix, and the

covariance matrix of x(t). These are governed by the equations:

13 - (A-k(t)bc)p :

f - (A-iT(t)bc)r+F(A-'k(t}bc)'-Hj2(t)bcrc1b1 ;

and R(t) - F(t)-v(t)u'(t),

with initial conditions V(tQ) - x(tQ) and r(tQ) - x(to>x'(to).

We will be concerned with the asymptotic properties of these variables. The

relevant stochastic stability concepts are now defined:

Definition 4: £' is said to be asymptotically stable in the mean, in the mean

square, or in the covariance if, respectively, lim y(t) • 0, llm F(t) • 0, or

llm R(t) • 0 for all given initial conditions x(t ).
f*co °

It Is easily seen from the relations T(t) - R(t)-Hj(t)p' (t) and R(t) • R'(t) >_ 0

that mean square asymptotic stability implies stability in the mean and in the

covariance. The stability of the mean is a standard deterministic stability

problem for which many criteria have been derived. These criteria Involve the trans-

fer function g(s) • c(Is-A) D and properties of k(t) as, for example, Its bounds

(e.g. In the circle criterion: see Brockett [1970], Section 35), bounds on its

derivative, or its periodicity. The stability of the differential equation which

expresses the evolution of the second moment matrix T(t) Is much more intricate
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to analyze and we will show how criteria like the multlvariable circle criterion

may be used. If q (t) <* 0 then its stability is equivalent to the stability of

the mean equation, whereas if q (t) j* 0 then more stringent conditions will have

to be imposed.

2.1 Multilinear System Theory* \

It is easy to see that if x, and x_ are vectors which satisfy the linear

equations:

and

xl e R
n

X e R

then the product x.x' satisfies also a linear equation, namely:

By taking x- • x. we see that if x satisfies a linear equation, then so does

xx1.

This idea generalizes from Quadratic forms to homogeneous p-th degree forms.

These facts have been known at least since Lyapunov's thesis, but they have to

the present time been used very little in system theory. They may for example be

exploited in the minimization of homogeneous performance measures of degree p > 2

for linear dynamical systems.

The above ideas may be used in setting up transfer functions for a class of

bilinear systems. We will make some use of the Kronecker product denoted here by

<g) . Thus the Kronecker product of M e R1™" and R E RPXq Is the element

M ® R e Rnp3tnq defined by:

M

mnR

mnR

•

m ,R
P.1

m12R

m22R

•

mp2R

...

• • •
• • *

...

%*

"V

•

m Rpq

The main use of this notation is that if an (nxn) matrix Q is written in lexo-

graphic notation as the n -vector
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Oy - «,̂ ,,n, M12, .... n̂, .... <,nl, Sn2,

then (MQ)v - (I ® M)0v.

• Consider now the following lemma:

lemma 3: Let {A,b,c} be a minimal realization of the transfer function g(s) •

c(Is-A) b. Then the differential equation:

6 - AQ + OA + bv1 + vb' ; w « cO ,

defines a minimal realization on the -̂ z—*• dimensional space of symmetric (nxn)

matrices of the transfer function:

T21 -1
g '(s) - (c® I+I® c)(ls-I® A-A® I) (b®I+I®b) .

We will not give a detailed proof of this lemma. The proof exploits the fact

that the above matrix equation describes the bilinear system

-7^ xx1 <• Axx' •»• xx'A' + bux' + xu'b' ;
at

yx' • cxx'

where x " Ax + bu; y • ex.

The dynamical system identified In the statement of Lemma 3 plavs an imnortant

role In the analysis of the covariance eouation under consideration. We know

from this lemma that controllability and observability will be preserved. The

poles of g (s) are given by {X (A)-t-A (A)}, i,j=l,...,n. There appears to be no

convenient general formula for deriving g (s) from g(s). In a specific case

however, it is a relatively straightforward matter to calculate p (s).

Example: fc. Let [A,b,cl be the standard controllable representation (see Brockett

(1970], p. 106) of 0(s) = -=-̂  • Then
s -fas+b

2(s-t-2a) j 4

s(s-i-2a)

2.2 The Circle Criterion for the Covariance Equation

We now return to the covariance eouation:

? • (A-k(t)bc)T + r(A-k(t)hc)' +
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which we model as the feedback system:

£' : Q - AO + QA'+bv'-Mj'+bwb1 ; y • cO, z • cOc1 ,

1'2 : v - -k(t)y, w -?*(t)z .

It follows from Lemma 3 that T.' is completely controllable and completely observable.

Let

G(s) S
nu(s)

where

and

y(s> - Gn(s)v(s)

z(s) - G21(s)v(s) + C22(s)w(s) ,

denote the transfer function of T.'. It Is easllv calculated that C(s) is given bv:

G(s) -
c® c

(Is-A ® I-I ® A)"1 [b ® I+I ® b | b®b]

Thus the stability of the covariance equation is equivalent to the stability of a

deterministic feedback system with (n+1) feedback loons, with transfer function

G(s) In the forward loop and gain matrix

F(t)
k(t)I

-q2(t)

in the feedback loop.

The multivarlable circle criterion and its various generalizations is thus

immediately applicable to this situation. We will illustrate this only in the

simplest case. Let ||'l| denote some norm on R and let matrix norms be

induced norms. The small loop gain theorem due to Zames (1466] thus leads to:

Theorem 5: Assume that Re X[Al < 0. Then T.' is asymptotically stable in the mean

square if:

( sup ||G(JiD)||)( sup | JF(t)ll) < 1. .

Unfortunately it does not appear to be an easy matter to express the above

criterion as direct conditions on the original transfer function ff(s) and the

__ _ ̂  — —0
functions kft) and q (t). In the case that k(t) or q (t) are time-invariant
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however it la possible to obtain a criterion which is a great deal more specific:

Corollary 1; Assume that k(t) « k is constant. Then £ ' is asymptotically stable

in the mean square if:

8up q2(t))(f (ce(A-kbc)tb)2dt)
X t«= 1 0-OX t«= 1 0

Proof: The equation for F may be modelled as the feedback system:

0 - (A-kbc)Q+O(A-kbc) ' + bwb ' ; z - cOc' ,

w - q2(t)r .

The first system has (ce^A~kbc^ tb)2 as impulse response. Since this is always

nonnegative it follows that ite Fourier transform attains it maximum for u> - 0.

Since this maximum is given by I (ce b) dt we obtain the corollary by
J 0

applying the circle criterion in the scalar case, g

—2 2Corollary 2: Assume that q (t) » q is constant and let

G(s) - (c® 1+1® c)(Is-A® I-I@ A - <i2(b ®b)(c® c))~1(b@ I+I <g b) .

then £' is asymptotically stable in the mean square if:

(i) q (ceAtb) dt < 1 ;

and (ii)( sup k(t))( sup | |0(Jio) ! I) < 1
-ce<t<°°

Proof; The equation for f may be modelled as the feedback system:

Q - AO + OA' + bcQc'b' + bv' + vb ' ; y - CO ,

v = -k(t)y .

The first system has <". (s) as transfer function and Is stable if condition (1)

is satisfied. The corollary thus follows from the multivariable circle criterion

(see Brockett [1970], Section 33) . •

Notes; 8. The conditions of Corollary 1 may be expressed In terms of frequency-

domain data. They then lead to conditions very similar to the deterministic circle

criterion (see Wlllems and Blankenship [1971)).

9. J.L. Wlllems [19721 has obtained a number of criteria for svstens as the one

studied here. His criteria uhlch are In the vein of Corollarv 1 are sharper and
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more explicit Chan chose studied here.

10. 1C in well-known ChaC Che circle cricerlon Rives Che besC conditions which

may be proven by means of a quadraclc Lyapunov funcClon. However In the case under

consideration one can obtain results by using "linear" Lyapunov functions. Indeed,

one may view Che equation describing T as a differencial equaclon on Che space P of

nonnegaCive definice symmecric (nxn) raacrlces. Restricting our accencion Co chis

subsec of Che vector space S of symmecric (nxn) matrices does noc buy us anvchlng

as far as sCabillCy Is concerned (i.e. scabillcy on V is equivalent Co scabllicy on

S). However 1C enhances Che likelihood ChaC a particular funcClon will be definice

and chus greacly enlarges Che class of Lyanunov funcclons. For example Che funccion

Trace [?T] wich P = P' > 0 Is positive definice on P buc noc on S. Ic hence defines

a suitable Lyapunov funccion for scudying Che mean square scabillcv question. This

meChod is exploiced In Willems [1972].

CONCLUSIONS

We have nrestnced here a number-of resulcs on Che stability of linear systems

wich stochastic coefficients. Two average value criceria for almost sure scabllicy

were derived and we showed how one may use deCerminiscic scabillcy resulcs like Che

mulcivarlable circle crlcerion in order Co obcaln mean square scabilicy criteria in

Che case Che stochastic parameters are whice noise processes.
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Abstract

Because many systems of practical interest fall outside the scope

of linear theory it is desirable to enlarge as much as possible the

class of system for which a complete structure theory is available.

In this paper a class of finite state sequential systems evolving in

groups is considered. The concepts of controllability, observability,

minimality, realizability, and the isomorphism of minimal realizations

are developed.

Results which are analogous to — but differ in essential details

from — those of linear system theory are derived. These results are

potentially useful in such diverse areas as algorithmic design and

algebraic decoding.
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1. Introduction

The purpose of this paper is to discuss certain questions related

to the modeling of the input-output behavior of dynamical systems.

We work in the context of systems with finite input, output, and state

sets which admit group operations. The motivation for this study comes

from a desire to understand better the key results in linear system

theory (linear sequential machines included), and, more importantly,

it comes from a desire to embrace in an analogous theory a broader class

of input-output models than has here-to-fore been possible. Our results

are potentially useful in optimizing the basic recursions occuring in

certain elementary numerical processes, the mechanization of algebraic

decoding procedures, etc.

This paper might be regarded as a contribution to the investigation

of system theory in the context of universal algebras. It does not

include the vector space results as a special case but it does shed

new light on the previous proofs in that context, in that it makes clear

which results depend only on the additive group structure inherent in

a vector space. We have not worked for the weakest hypothesis for each

individual theorem but rather have sought to place all theorems in a

common framework — one motivated by linear theory.

Thus, a number of the results and proofs have direct analogs in

linear theory, and the proofs are presented to emphasize the universality

of these arguments. That is, one should read these results keeping the

following in mind. In the theory of algebra, there are a few basic

isomorphism theorems for groups, rings, vector spaces, etc., and one
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obtains the results In one setting from those in another simply by

replacing the key words with their analogs - e.g. group for ring and

normal subgroup for ideal. The results here indicate that the same

type of universal structure and isomorphism results will hold in a system-

theoretic framework.

One of the most difficult steps in constructing a realization of

input-output maps is the state assignment problem. This step is crucial

in the design of recursive algorithms, filters, etc. One of the

essential features of our work is that we give a recipe for solving some

problems of this type.

2. Finite Group Homomorphic Sequential Systems

Of course an empirical theory should avoid making assumptions

which cannot be verified experimentally. However it is nonetheless

useful to be able to anticipate the consequences of various assumptions

about the internal mechanism of a phenomena under study, even if we are,

in principle, incapable of verifying or denying the assumptions-on the

basis of experimentation. In this paper we want to investigate

the properties of certain finite state systems which evolve in state

spaces which admit a group structure and we verify in a constructive

way the existence of this structure given the input-output data.

Specifically, we consider a class of dynamical models of the form

x(k+l) = b[u(k)] o a[x(k)] ; y(k) = c[x(k)]

where the input, output, and state spaces are the finite groups

W • (U,-), ̂ = (Y,*), SC *• (X,°), respectively. The maps a : 0C •+&:,
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b : <%£•*• 3C and c : 9C-+??/ are assumed to be group homomorphisms .

Invoking an analogy with linear sequential systems, which are a special

case, we call this a finite group homomorphic sequential- system.

This class of systems has manv things in common with discrete time linear

systems. The most obvious is the following result.

Theorem 1 : The input, initial state, and output of a finite group

homomorphic sequential system

- b[u(k)] o a[x(k)] ; y(k) -

are related by

x(k) - b[u(k-l)] o a[b[u(k-2)]] «> ... ° â b̂luCO)]] o a
k[x(0)J

^- k{ H a - b t u U ) ] ] } o a [x(0) ]
1=0

y(k) - c[b[u(k-l)l* c[a[b[u(k-2)]]]*...*c[ak"1[b[u(0)]]]*c[ak[xo]]

A M I . c[ak"1"1[b[u(i)l]]}*cak[x(0)]

where a denotes k compositions of a with itself.

Proof; This result follows directly from the system equations and

the fact that a and c are homomorphisms.

£. Realizability Criteria

In this section we give necessary and sufficient conditions for

an input-output map to have a sequential realization of the type under

consideration here.
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Recall that a sequence of linear maps of E™ into Eq is realizable as

the weighting patterns of a finite dimensional discrete time linear

system if and only if the sequence satisfies a linear recursion.

What we find here is that a sequence of homomorphismsof Qt into

<& is realizable as the "weighting pattern" of a finite group homomorphic

sequential system if and only if the sequence satisfies a homomorphic

recursion.

Let Ql "•* (U,-) and ̂ =- (Y,*) be finite groups. We then define

T(W;<&) to be the finite set of maps of <%l into ̂  . F(3/,3O is a

semigroup under the operation

' (fg)(u) - f(u)*g(u) f.g e F(<*,30

A r
Suppose TT is a homomorphism of <& * . . . x <& (r factors) * ̂  into ̂

Then TT naturally induces a homomorphism fl of F(<2̂ ;3O into

tt(Ar...,Ar)(u) ~ TT(A1(u),...,Ar(u)) Vu

Theorem 2 : Let ̂  and & be finite groups. Given a sequence of group

homomorphisms T : ̂  -»• %/ , i = 0,1,2 ..... there exists a finite group 8

and group homomorphisms a :̂ T-*-̂ T, b : <%£ •+ 0C, and c : 2£ .-»• fy such that

if and only if there is an integer r > 0 and a homomorphism

•̂It has recently been pointed out to us that for the special case of abelian

groups a realizability result is given in reference [6].
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p : ̂  +

such that for i = 0,1,2,...

Proof : (Sufficiency) Suppose tbch a homomorphism exists. We

construct the analog of what has, in the context of linear system

theory, been called the standard observable realization [1]. Consider

the map of 'S/1 into itself defined by

3 . {.X, >X- , . • » , X _i »̂ r' "*" V^2»^o » • • • >^_»Pv^i >^o » • • • '"»•' '

This is clearly a homomorphism if p is. Now define b, taking

<%£ into 3^r by

b : u -». (TO(U),TI(U) .....
 T
r_i

(u))

and again this is a homomorphism if each of the T's is. Define c

taking 3^r into ̂  according to

c : (y1,y2»---»yr) -* yx

This too is a homomorphism. We claim that c[a [b(-)]] ° T (•)•

This is true because of the recursion given by p :

(.),T1(-),...,Tr_1(.)) - To(-)

The rest of the relations follow in a similar manner by applying

the recursion.



-62-

(Necessity) Suppose that T^-) - c[a [b(-)]J for some set of homo-

morphisms a,b, and c with a: SK •*-̂ FT>eing defined on a finite group.

Since the set of all maps of ££ into itself is a finite set, we see that
\f vŝ m \e -i*n

ar » a for some r > k * 0. Then a = a for all m * 0. Then

defining p as the projection onto the (k+l)st component of an r-tuple

yk

we see that

We remark that the proof shows that the only sequences of homomorphisms

{T̂ } which can be realized by a finite state system are those which are

periodic after a finite number of terms (see figure 1). The next result

shows that a is an automorphism if and only if there is no "tail."

Corollary : Under the hypotheses of Theorem 2, there exists a realization

with a an automorphism if and only if T_ „ ** T, for some I and all

k - 0,1,2,...

Proof : This follows from the fact that a is an automorphism of a

kfinite group if and only if a is the identity automorphism for some

k > 0.
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In automata theory, one usually considers systems described by

maps of the form f : U* -»• Y where U* is the set of all finite strings

of elements in U and f(u ,...,u _.) is the output of the system at time

n following the application of the input string u ,...,u _. (in this

order). One can then ask which f's come from finite group homomorphic

sequential systems .

Theorem 3 : Given finite groups W= (U,-) and & ~ (Y,*), and an input-

output map f : U* -*• Y. This can be realized as a finite group

homomorphic sequential system if and only if: '!.:<%£•*•'&, defined by

T±(u) = f

i identity inputs

are horaomornhisms satisfying the conditions of Theorem 2. and

Proof : The proof is a straightforward calculation. £

Note that the second condition in Theorem 3 is equivalent to the

following: if to., w_ £ U* and the length of w^ is k, then

fOflj.Uj) • f(o)2)*f (Gi1>e
k)

k
where e e U* is the string of k identity inputs.

For an input-output map f corresponding to a finite group horoomorphic

sequential systems, one should think of the map from U

into Y given by

yr = f(uof . . . ,Vl) - VV:T1(V2>*...*Wuo>

*!+! = f(uo"-"Vre) = Tl(Vl)*T2(V2)*"-*Tr(uo)

y2r-l = f(«0.---.Vl»er"1) = Tr-l(ur-l)*Tr(ur-2)*"-*T2r-2(uo)
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as being the analog of the map corresponding to the Hankel matrix. As

will be shown, the number of elements in the image space of this map equals the

number of states in the "minimal realization" just as the rank of

the Hankel matrix determines the dimension of the state space of a

minimal linear realization.

4. Controllability, Observability, and Minimal Systems

One of the crucial results in linear system theory is that a

system is minimal if and only if it is controllable and observable

and any two controllable and observable realizations of the same

input-output map differ at most by a choice of basis for the state

space. This result has a natural analog here but the analog of a

related result, namely the fact that any input-output map which has a

linear realiaation has a controllable and observable linear realization,

fails. This means we must characterize all those systems which have

controllable and observable realization and this is done in Theorem g

below. We note that finite dimensional vector spaces over the same

field are isomorphic if and only if they are of the same dimension^

whereas finite groups can have the same number of elements and not be

isomorphic. Thus the state space isomorphism theorems are decideliy

more interesting here.

We say that the homomorphic sequential system

x(k+l)-b[u(k)] o a[x(k)] ; y(k) = c[x(k)]

which evolves in the group ££"=(X,o) is controllable from x. e X if

for any x9 e X there exists a sequence of controls in the input group

such that the state is driven from x.. to x« by this sequence. The system

is said to be controllable if it is controllable from all x e X. Two
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states x-, x« e X are said to be indistinguishable if, given any input

sequence, the corresponding output sequences from the initial states x. and x_

are identical. Otherwise, x. and x_ are said to be distinguishable, and an input

sequence that yields different output sequences from x. and x« is said to distinguish

between x. and x«. We call the system observable if any distinct pair

of states are distinguishable.

Theorem A : Consider the finite group homomorphic sequential system

x(k+l) = b[u(k)] o a[x(k)] ; y(k) = c[x(k)]

with state group £T= (X,°). Let e e X be the identity in SC'. Then

the system is controllable if and only if it is controllable from e .

The states x^ and x_ are distinguishable, if and only if the identity

control sequence distinguishes between them. Also x. is indistinguishable

from x2 if and only if x̂ x. is indistinguishable from ex<

Proof : These results are obtained by straightforward calculations. |

Thus, as in the case of linear systems, the test for controllability

reduces to a test for controllability from the identity, and the test

for observability to a test for indistinguishability from the identity.

The next theorem gives a formula for the set reachable from

the identity and the set indistinguishable from the identity.
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Theorem 5 : If the finite group homomorphic sequential systeir

= b[u(k)] o a[x(k)] ; y(k) = c[x(k)]

evolves in a group $C « (X,9) with n elements then the set of states

reachable from the identity is

a[b(u,)] o ... o an"1[b(u )]{u. ,...,u e U)
*• n • i n

b (U) o ab (U) o ... o a"'̂  (U)

The set of states indistinguishable from the identity is

JC <* Ker c( ' )f i Kerc [a ( - ) ] f l . . . O Ker c[an~1(-) ]

The set yt is not necessarily a group but 3{ is a normal subgroup of 0C .

Proof : With respect to the reachable set, this result is immediate

from the formula

x(k+l) - b(u(k))o a[b(u(k-l))]o ... oa
k"1[b(u(l))]o ak[x(l)]

and the observation that because of the stationarlty of the system,

any state reachable from the identity is reachable along a trajectory

that contains no state more than once and thus is of length less than

or equal to n.

If the input sequence is a string of identity elements then the

output sequence from the identity state is simply a string of identity

elements in & . If the output from the state x is to be indistinguishable

from this string then it must happen that
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c(x) » c[a(x)] - ...» c[an ] = identity

Can it happen that this set of equalities holds but c[ap(x)] t identity

for some p >, n? Clearly not because for any x, a (x) » a (x) for

some n > i > j > 0 because there are only n elements in X. This means

that for any x and any positive integer p we have ap(x) - a (x) with

0 * k f n-1, where k, of course, depends on x and p. (Actually for

n i 2, we can replace n-1 by n-2 in the expressions for 01 and 3( , but

while this is easy to prove for 9t , the result for <# is more

cumbersome and we have thus omitted it).

To see that M is a normal subgroup we need only observe that

the map of St? into &n defined by

x -»• (c(x),c[a(x)],...,c[an (x)])

is a homomorphism and M is its kernel. That CR need not be a subgroup

of STwill be shown by example later. m

Corollary : Under the hypotheses of Theorem 5 the set ̂  is a subgroup

if (X is an abelian group.

Proof : We need only note that for all m * 0^ a^OJ) is a subgroup and

that the product of two subgroups of an abelian group is itself a

subgroup. f

We now recall some of the concents of abstract realization theory

([2], Ch. 10). If A ST"* " are sets and we have an input-output map

f : A -»• B, a factorization of f through a state set C is a pair of

maps a : A -»• C and 6 C -*• B such that f = B°a - i.e. the following

diagram commutes:

f
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This factorization is canonical if a is onto and $ is one-to-one.

In this case, the l:size" of C is minimal in some sense. For

instance if A, B, and C are vector spaces and f, a, and B are
^ /\

linear maps, and if C, &, 6 is any other, not necessarily canonical, factorization,

then dim C < dim C. Also, if A, B, C, and C are finite sets, with C

corresponding to a canonical and C to any other factorization, then card(C) f

card(C).

Suppose we have an input group <5/= (U,*) an output group 3<= (Y,*),

and an input-output map f : U* •*• Y that has at least one realization

as a finite group homomorphic sequential system:

x(k+l) = b[u(k)] o a[x(k)], y(k) = c[x(k)]

with finite state group SK" » (X,°). Suppose SK has n elements, and

define F : U* •*• Y by F(u ,... ,u, ) » (f(u ,...,u. ), f (u ,...,u, ,e),...,
O K . O K . O K

F(u ,...,u. ,en )). We then have a factorization of F :

U* 1 >^n

&\

where

,uk) = b (uk) o ab (û ĵ ) ° ... ° aj (UQ)

m(x) = (c(x),ca(x),...,can (x))

We immediately see that the above factorization is minimal if and only if

the system is controllable and observable. in this case we say that the

triple of homoroorphistns (a,b,c) defines a minimal realization.
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Another result of abstract realization theory is the following:

given f : A -»• B and two canonical factorizations - that is two sets
A ^

C and C and corresponding maps a : A -»• C, a : A -»• C, both onto,
" f, f- •*•

and B : C -*• B, B : C -»• B, both one-to-one, such that f : B°ct = B°a - -

then the two are equivalent , in that there exists a unique one-to-one and
/i *•

onto map Y : C -»• C, such that 6t = y°a and B = P°Y-

When we apply this result to the problem of finite group homomorphic

sequential systems, we obtain stronger results, as in linear theory,

because of the structure of the systems.

Theorem 6 : Suppose ^= (U,-) and 3̂ *> (Y,*) are finite groups, and

f : U* -*• Y is an input-output map that has two controllable and observable

finite group homomorphic sequential realizations

x(fcfl) = b[u(k)] °a[x(k)] ; y(k) - cfx(k)] (1)

g[u(k)]«f[z(k)] ; y(k) = h[z(k)] " (2)

where the system (1) evolves in a finite state group 2£ = (X,°) and

system (2) evolves in a finite state group £" = (Z,»). Then there

f̂  -1exists a group isomorphism p : ̂T-*- ? such that f = pap , g = pb, and

h = cp . The two realizations are said to be con-jug ate.

Proof : Suppose the cardinality of ££ is n. Then the same is true of

$ by the comments preceding rthe theorem. Let F : U* -*̂ n , S3: U* -*£T,

and m : 9C + ̂ nbe as before, and define <&: U* -* % and q : ̂  -+ &n by

®(uo,...,uk) = g(uk) o fgCu^p^,

q(z) = (h(z),hf(z),...,hfn~1(z))



-70-

Then, by controllability and observability we have two canonical

factorizations of F and the commutative diagram

where p is the unique one to one and onto map such that the diagram

remains commutative .

Let X, ,x» e X. Then we have

Since q is one-to-one p(x..0x2) » p(x.) o p(x_). Thus p is an isomorphism.

It is then a simple computation to arrive at the relation between (a,b,c)

and (f,g,h). •

Note that in the theorem, the group structure ofW is never used,

however the group structure of <& and the fact that m and q are both

one-to-one homomorphisms is used to show that p is an isomorphism.

This lack of symmetry in the arguments is discussed in the next section.

As was mentioned in Theorem S,^ - the set of states reachable from

the identity - need not be a subgroup. Thus, given a finite group

homomorphic sequential system, there need not exist a controllable system

of this type with the same input-output description. In fact, one

might expect that a homomorphic sequential system has a minimal realization

as a homomorphic sequential system if and only if the set -3? of states
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reachable from e is, in any particular realization, a subgroup. The

example below shows that this need not be the case. If &l is a subgroup,

we can restrict our homomorohisms to ^? , modulo the kernel of

(c,ca,... ,can~ ) : ££ •* 3̂ n, and thus construct

a controllable and observable homomorphic realization (a simple

check shows that one can redefine the homomorphisms in a well-defined

manner after extracting the kernel — therefore there always exists an observable

homomorphic realization). Thus, for example, if there exists a homomorphic realiz-

ation with an abelian state group, there exists a controllable and observable homo-

morphic realization.
An example will illustrate these ideas. The dihedral group,

0 , is a group of order 2n generated by two elements x and y which

satisfy the relations

xn = e, y - e ; xyx - y

where e is the group identity. The cyclic group of order n will be

denoted as 2 , and its elements are {0,1, . . . ,n-l}. Consider the finiten

group homomorphic sequential system

- a[x(k)] ; y(k) - cl

where «*- 9 - V « ' V and *' "* and C "* hom0ffiorphi8m8

uniquely determined by

- y

a<x) - e, a(y) = xy

c(x) - 0, c(y) - 1
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The set of states reachable from e may be shown to be

31= {e,y,xy,x3}

which is not a subgroup.

However if we compute the input-output homomorphisms T » ca brZ- •* Z«,

we find that

T - identity for all k > 0

Although the above nonminimal realization has an identity - reachable

set which is not a group, there still exists a minimal homomorphic

sequential system. In fact such a realization is found by taking

^/o gc m <& m i and a » b « c « identity. The reason we can find such

a realization is that our original system is not observable. It is easy to see that

there exists a controllable and observable homomorphic sequential realization of a

given input-output map if and only if the identity-reachable set in any particular

observable realization is a group. An example of an observable system for which^ is

not a group is found by modifying the previous example. Let °U , 0Cy a, and b

be as above, but let <$/'- SC - n^ and c - identity (i.e.. state output). This

is observable, and 0t is the same as before.

There are conditions under which 0t is a subgroup, in which case we

do have a controllable and observable homomorphic realization. The following

theorem indicates one such condition.

Theorem 7 : Under the hypotheses of Theorem 5 the set £% of states reachable

from the identity is a subgroup of 9C if a is an automorphism.
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Proof : The group of automorphisms of a finite group is itself a finite

group with function composition as the group operation. Thus there

exists a k > 0 such that

k
a • identity automorphism

From Theorem 1 we see that the set &l of states reachable from the

identity can be written in the form

^ - U n a

- U [b(U) o ab(U) o ... o a
m*l

where U is the input group and for H C X

Hm • {h. o h,o ... oh |h. e H}L i m ' i

Thus if x, y e3£ , we have that x e [b(U) o ab(U) o ... o a^HdJ) ]mi

and y e [b(U)°ab(U)o ... „ â Hw]̂  for some m and m2. Then

lr 1 "*l'̂ "¥»

xoye [b(U) o ab(U) o ... o a*~T>(U)] Z. We see that for all

n>0 xne^ifxe^?. Since ST is a finite group, there exists an

'~1 N «
N > 0 such that x - x . Therefore 9t is a subgroup. J

The next theorem completely characterizes those sequences of input-

output homomorphisms which have controllable and observable finite-group

homomorphic sequential realizations. To do this, we must define what

we mean by a free response of a system. If a system is given
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in resursive form (as our first equation^ a free response is the identity-input

response of the system from some initial state. If the system is

given in input-output form, it is the response to an input sequence

which consists of the identity only from some point onward and where

the response is observed from the point in time where the non-identity

inputs stop. Thus we apply a (possibly) non-identity input up to time

k and record the output from time k+1 on. Note that the set of

free responses of an input-output map corresponds to the set of free

responses of a homomorphic realization of that map started in a state reachable

from the identity state. In what follows.free responses refer to the input-

output system description. Note that we can consider the set of free

responses as a subset of the infinite direct product group ̂ x^x ...

Theorem 8; Let the sequence of homomorphisms T. : Of + & , i«0,l,2,...,

with -?/ and <?J finite groups^satisfy the hypotheses of Theorem 2.

Then there exists a controllable and observable finite group homomorphic

sequential realization if and only if the set of free responses form a

subgroup of the infinite direct product group.

Proof : (Sufficiency) Let SF be the group of all free responses.

Let & be defined as followsn

yn-l>

Obviously & is a subgroup of ̂ n if ̂ r is a

subgroup of the infinite direct product.

it• • •»yn-l are the

first n elements of a

free response c &



-75-

Consider the standard observable realization given in the proof

of Theorem 2. In that realization, the state space is ̂  ,

and it is easy to see that the set &l of states reachable

from the identity is just 2? . Then, restricting our homonorphisms to

& , we have a minimal homomorphic realization.

(Necessity) Suppose we have a minimal homomorphic realization of the T :

x(k+l) - b[u(k)] o a[x(k)} ; y(k) - c[x(k)]

Since every state is reachable from the identity, the set of free

responses in the input-output sense is identical to the set of free

responses in the state space sense. Consider the map from 0C into the

infinite direct product group '^x^x...x^x... given by

k
x -*• (c(x),ca(x),...,ca (x),...)

This is obviously a homomorphism, and its image is & , which therefore

must be a group. *

Corollary : Under the hypothesis of Theorem 8, if & is a group, & is

isomorphic to Sf for some n.

Proof : Suppose a is the state transition homomorphism for a minimal

realization. Then there exist k > p ̂  0 such that a « a , and then

(c(x),ca(x),...,can(x),...) » (c(x),ca(x),...ca (x),cap(x),...,ca (x)

and the isomorphism is obvious. Note that even if & is not a group, there

exists an n such that the elements of & and & are in one-to-onen

correspondence. •
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5. Some Comments on State Space Reduction

A number of questions were raised in the preceding sections.

We have derived the standard observable realization - what about a

"standard controllable realization" in the sense of reference [1]?

The set of states indistinguishable from the identity is a (normal)

subgroup - why isn't the set of states reachable from the identity a subgroup?

In Theorem 6 we used the fact that m and q are homomorphisms - what about

&$ and ® ? We have seen that gR need not be a group, arid for similar

reasons S& and 'S aren't homomorphisms and there is no standard controllable

realization.

Note that these difficulties arise from the following consideration.

Suppose we have a set of homomorphisms c,, i=l,2,...,m mapping a

finite group 8£ into a finite group ?J . Then the "fan out" map taking 2£
into

is always a homomorphism.

but the "fan in" map taking 0Cn into

need not be a homomorphism. (For

example, the map of ^Tx^Tinto ^T defined by group multiplication is

typically not a homomorphism).

In the rest of this section, we will discuss these problems in some

depth. We will also present some additional conditions wMch enaM.« us to

circumvent some of the difficulties.

Even if &t is a group, we cannot be sure that the map 131 is a homomorphism.

If SK" has n elements, then the map 3$ defined by



-77-

. x^T (n times) -"^

) - b(un_l
) ° ab(un-2) ° •" ° "

is onto. We would like to investigate putting a semi-direct product

structure on W x ... x<?/ in order to make 3? a homomorphism. We have

the following necessary condition:

Theorem 9 : Consider a finite group homomorphic sequential system. If

there exists a semidirect product structure on #/* ... *<?/ (n times)>

such that 55: W* ... x<W -»• <2T is a homomorphism, then the set of

states reachable from the identity in k steps is a group for all k > 0.

Proof : Choose k e {l n}. Consider the set of input strings

^k= {(eu"k 'U0 Vplv-'-'Vi6 u}

For any semidirect product structure on <?/x ... *^ , this is a

subgroup. Thus 3B0&) is a subgroup if ̂ 3? is a homomorphism and

£8(9?,) is just the set of elements reachable from the identity in k

steps. For k > n use Theorem 5. m

We now modify the earlier example. We concern ourselves with

the input-state side of the system only. Again let ̂ /= Z-, ̂ "- D, ,

and let b be as before, but redefine a by

a(y) - xy , a(xy) - y

It is easy to check that a is an automorphism of D,, and thus by

Theorem 7 ^? is a subgroup. However

{e.y.xy.x3}
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which is not a group, and thus SB is not a homomorphism for any semi-

direct product structure on 3fc* . . . *W.

These examples illustrate an asymmetry in the theory. Unlike linear

system theory - or even the abelian group case here, where it is clear

that none of these difficulties appear - we do not have a naive duality

theory without additional assumptions.

An assumption that avoids some of these difficulties

is that of requiring a to be a normal endomorphism. A homomorphism f

of a group fS into itself is called a normal endomorphism if for all

x, y e®

xf(y)x » f(xyx )

Theorem 10 : Consider the finite group homomorphic sequential system

b[u(k)] o a[x(k)] ; y(k) - c[x(k)]

evolving in a finite group SK of order n. Suppose a is a normal

endomorphism. Then there exists a semidirect product structure on

^/x . . . x<?/ (n times) such that the input-state map SS is a homo-

morphism, and thus the identity-reachable set SK is a subgroup.

Proof : Define the binary operation on ̂x . . . x<W (n times)

(Vui ..... V̂ W-'-'Vi* "

(v̂ .v'1. . . . ' V̂ v̂ - . . . -VjVjV̂ v'1. . . . 'V̂ v̂ . . . .v3v2v

-1 %
. . . ,V -U -V -V ,,U ,V )n-1 n-2 n-1 n-2' n-1 n-1
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Direct computation verifies that this does define a semi-direct

product structure on ̂ x ... *̂  (n times), and another computation,

using the fact that a is normal verifies that ,39 is a homomorphism. •

Thus, in this case, we can reduce our system to a minimal homo-

morphic realization by first restricting the homomorphisms to c% and

then taking Sit modulo the kernel of m, the state-output map (see

Theorem 6)• We then have the following canonical factorization of

the input-output map

where % is the reduced state group, and !$? and m' are the reduced

input-state and state-output homomorphisms, with5?' onto and m' one

to one.

Another question arises in the case where SR is not a group. When

this happens, we have x , x.e SK such that x.°x- $ dt . Thus this

particular group multiplication never occurs in the operation of the

system and is irrelevant information. One can then ask whether or

not we can redefine these irrelevant multiplications in such a manner

as to make 8ft a group, while at the same time requiring that a,b, and

c remain homomorphisms when restricted to Sft . The example given

previously shows that, at least in some cases, this can be done. Again

let <%"= ̂  - Z2, 9C ~ DA with a,b,c defined by b(l) • y; a(x) » e,
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a(y) - xy; c(x) » 0, c(y) « 1. We saw that

0P- {e.y.xy.x3}

3 3The superfluous multiplications are (xy) o y, (xy) o x , x o y, and

x o x . If we define these as follows

, , A 3 3 A
(xy) o y » x x o y = xy

, . 3 A 3 3 A
(xy) o x = y x o x » e

then (R is the Klein-4 group, and it is easy to check that a, b, and c

are still homomorphisms. In fact, since the Klein-4 group is abelian,

a is a normal endomorphism and we can reduce our system as described above.

6. Conclusions

In this paper we have considered a broader class of input-output

relations than those found in linear system theory and have derived results

analogous to some of the more crucial properties of linear systems.

In particular, we have considered dynamical systems of the form

x(k-fl) - b[u(k)] o a[x(k)] ; y(k) - c[x(k)]

where the input, state, and output spaces are finite groups, and

a, b, and c are homomorphisms. The concepts of controllability, obser-

vability, and minimality are developed, and conditions for the realization

of an input-output map by such a system are given. As in the linear

case, the equivalence of any two minimal homomorphic realizations is

established.
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In addition, several problems, all directly or indirectly

related to duality, arise in considering this broader class of systems.

These are discussed, and it is shown that an additional assumption

removes these problems.

The analogy with linear theory has by no means been completely

exploited. Concepts such as transform theory have not been considered

at all. Also, extensions of some of these results to infinite group

problems can be made, possibly making contact with the study of

dynamical systems on topo logical groups [7].
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Abstract

We show in this paper that in constructing a theory for the most

elementary class of control problems defined on spheres, some results

from Lie theory play a natural role. In particular to understand con-

trollability, optimal control, and certain properties of stochastic

equations, Lie theoretic ideas are needed. The framework considered

here is probably the most natural departure from the usual linear system/

vector space problems which have dominated the control systems literature.

For this reason our results are compared with those previously available

for the finite dimensional vector space case.
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1. Introduction

Specific results about control systems whose state spaces are

spheres have been useful in understanding problems in energy conversion,

controlled rigid body dynamics, etc. Some examples are mentioned in

our earlier paper [1]. Here we work out in more detail, and in greater

generality, the theory for a class of problems of this type and compare

out results with the case where the state space is a vector space. To

carry out this program requires some results from Lie theory, Lie groups

acting on spheres, etc. There has been no attempt here to discuss the

most general setting in which techniques which we use are applicable.

Instead we have taken the sphere problems as a model and have studied a rarge

of control-theoretic questions in that setting. A number of possible

generalizations will be apparent.

To begin with we mention some well known facts about linear system

theory. We do this to make the paper a little more accessible to those

not familiar with control problems and to sensitize the reader to certain

issues important in control. For a more complete account and references

to the literature one can consult [2] for the deterministic results and

[3] for the stochastic results.

Linear system theory deals with the pair of equations

x(t) = Ax(t) + Bu(t) ; y(t) = Cx(t) (1.1)

where x denotes a time derivative. It is assumed that x(t) e TR , u(t) e T*?

and y(t) e 7/^ . For simplicity we take A,B,C to be constant matrices.

One calls u the control, x the state and y the output. The theory of linear
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n

system is extensive but for our present purposes we point out only

the following five results.

i) (1.1) is said to be controllable if for every x and x. in

and every t. > 0 there exists a piecewise continuous control u(-) such

that if x(0) = x then x(t.,) = x.. A necessary and sufficient condition

for controllability is that Rank(B,AB,...A B) = n where , indicates a

column partition.

ii) (1.1) is said to be observable if for every x. <t x« and every

t. > 0 the outputs corresponding to x. and x« differ on the interval

[0,t.]. A necessary and sufficient condition for observability is that

rank (C;CA;...CA ) = n where ; indicates a row partition.

ill) If (1.1) is controllable then for every given x and x. in "#?

and every t.. > 0 there exists a piecewise continuous control u defined on

[0,t.] which transfers the state from x at t » 0 to x. at t « t- and

minimizes

f * u'(t)u(
Jf\

n(t) = A u'(t)u(t)dt (1.2)
'0

relative to all other piecewise continuous controls which accomplish

the same transfer.

iv) If there exists a linear feedback control law u = Fx such that

x = (A+BF)x has a null solution which is asymptotically stable then there exists a

control law u » Kx such that lim x(t) = 0 and the functional

I
J

u'(t)u(t) + y'(t)y(t)dt

is minimized by setting u(t) = Kx(t).
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v) If (1.1) is controllable and if the differential equation x » Ax

is asymptotically stable then the associated stochastic equation (for

notation see [3]).

dx(t) = Ax(t)dt + Bdw(t) (1.3)

has a unique invariant Gaussian measure which has zero mean and variance

Q satisfying

OA -I- A'Q - -BB1 (1.4)

In this paper we establish analogs for each of these results for

systems of the type

- ' - • m '

x(t) - (A-K £ u (t)B )x(t) ; y(t)'- Cx(t) (1.5)
1-1

where A,B.,B2,...,B are skew symmetric matrices and the system can be

thought of as evolving on the sphere I|x(t)|| = j|x(0)||.

One significant point in the linear theory is that the matrix B is

generally not invertible and cases for which it is invertible are so infrequent

as to be virtually without interest. If B is invertible then by an

appropriate choice of basis equation (1.1) becomes

x(t) - Ax(t) + u(t) (1.6)

and controllability is automatic. Moreover, in this case problems iii)

and iv) are easily reduced to variational problems of the classical type

f ' l f f •I L(x,x
i f \

x)dt (1.7)

with L quadratic in x and x and L.. positive definite. Control theory
JUC

works with the more general "degenerate" case where L.. is only nonnegative
XJv

definite but certain constraints are in effect. If the above integral is
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thought of as the action integral in a mechanics problem then the case

treated in control theory allows for the possibility of certain zero

masses provided there are appropriate linear constraints between position

and velocity. It can also be thought of as a limiting case of an uncon-

strained dynamical problem where certain masses and associated energies go

to infinity. >: This second interpretation is generally more useful. Remarks

of the same type apply to equation (1.3) where existance of a smooth

transition density is well known if B is invertible whereas the same is true,

but for rather more subtle reasons, if we assume controllability instead

of invertibility of B.
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.̂ Controllability

One of the main areas of applicability of Lie theory in control has

been that of determining the set of points reachable along solution

curves of x(t) « f (x(t) ,u(t) ,t) for the set of all piecewise continuous

controls u(«)« For studies of this kind see references [4-10]. If the

control equations are of the form

m
x(t) - (A + I u (t)B )x(t) ; x(t) e 77? n (2.1)

i=l x x

then the system typically evolves on a manifold in -jĵ  . The determination

of the set of points reachable from a given point x can be accomplished

by the determination of the set of matrices reachable from the identity

for the matrix equation

5
X(t).-(A + I u.(t)B )X(t) ; X(0) - I (2.2)

1=1

and then letting this set act on x via ordinary matrix-vector multiplication.

Equation (2.2) can be thought of as defining a control problem on a matrix

Lie group. The^est*-011 of determining what matrices are reachable from

the identity along solutions of (2.2) has been the subject of a number of

papers [1, 7-10]. Following Jurdjevic and Sussmann, we term systems of the

form of (2.2) right invariant. This is appropriate because the vector fields

defined on the 0£(n) by the right side of (2.2) are invariant under the trans-

lation defined by right multiplication with an element of G£(n) . We will say

that equation (2.2) is controllable on a group g if any two points in f£ can

be joined by a solution curve generated by some piecewise continuous control

u(-).
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Suppose that A and B.,B.,...,B are all skew symmetric. Then

regardless of the choice of u the solutions of equation (2.1) remain

on the sphere defined by ||x(t)|| = ||x(0)||. We will say that the

system (2.1) is controllable on the sphere if any two points on the sphere

be joined by a solution curve generated by some piecewise continuous

curve u(*)- Phrased another way, the system is controllable if the set

of matrices reachable from the identity along solutions of (2.2) act

transitively on S . From earlier results [10] we know that since the

motion is confined 'to a subgroup of S0(n) the set of matrices reachable

from I is the matrix Lie group consisting of all the matrices which can

be expressed as products of the form exp H, exp H_,...expH where H,,L i n i

H.,. . . ,H belong to the Lie algebra generated by A,B,,B,, . . .B ./ n i i. n

Now of course the orthogonal group S0(n) acts transitively on S

so that if the algebra generated by A,B. ,B_, . . . ,B is the full set ofJL i m

skew symmetric matrices then the system (2.1) is controllable on S .

However there are certain subgroups of S0(n) which act transitively on S

as well. The real compact forms of the classical Lie groups are all

candidates. The results are well known [11] but we repeat them here.

For example, it is clear that both the full unitary group and the special

unitary group of dimension n act transitively on the set of complex n-vectors

whose Hermetian length is one. But this set is just a set of vectors with

components (x.+/̂ T y.) such that

I (*? + y.2) - i (2.3)
i=l * 1

which is a 2n-l dimensional sphere. Thus by defining the realiflcation [12]
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of the unitary algebras by the Lie algebra homomorphism

ReB ImB
Bl - >

-ImB ReB
(2.4)

we obtain a set of real matrices whose associated group acts transitively
O#\— 1

on S . The real compact form of C is the intersection of specialn

unitary group and the symplectic groups. Naturally this representation

is in terms of matrices of even dimension so that they can act on even

dimensional complex vectors only. Thus, by analogy with the unitary case, the real

An—1compact form of C acts on the sphere of dimension S . This action is known

to be transitive and of course we can add to the algebra real multiples of /-
-v

to get the "full quaterion-unitary group" which acts transitively as well.

These four cases each valid for all integer n, together with three particular

ones account for all possibilities. The particular cases may be explained

as follows. The exceptional algebra G« admits a 7 dimensional skew-

symmetric representation whose exponential acts transitively on S . The

spin representation of SO(7) is 8 dimensional and it acts transitively

on S . The spin representation of SO(9) is 16 dimensional and it acts

transitively on S . With this explanation we can state the following result.

Theorem 1; Let A,B̂ ,...Bm be a collection of n by n skew symmetric

matrices. The control system

m
x(t) = (A + I u (t)B )x(t) (2.5)

i-1 x

is controllable on Sn~ if the algebra generated by A,B,,B_,...,B is
1 / m

i) S0(n) for n = 0 mod 2 ^

11) S0(n) or the realification of SU(n/2) or U(n) for n - 1 mod(2)

ill) The realification of Sp(n/2) for n - 1 mod(4)

iv) G2 if n = 6, Spin (8) if n - 7 or Spin (16) if n - 15
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Moreover, if the Lie algebra is not one of these cases the system (2.8)

is not controllable.

If the system is not controllable on S it is sometimes of interest

to compute exactly what points can be reached from a given initial state.

The determination of what points belong to this set is facilitated by

a knowledge of the structure of the representation defined by the matrices

in the algebra generated by A,B.,B_,...B • If this representation is not

irreducible then its reduction is clearly the first step in the determination

of the reachable set. The properties of the irreducible pieces may reveal

the form of the reachable set in a straightforward way. For example, if

the evolution equation can be decomposed as

1 2 ? 1 ?
x= [I® A +A (X) I + I u (I ®B^ + B^® I)]x(t) (2.6)

then the Kronecker product of the reachable group for

. m 1

X(t) = (A1 + I u.(t)BpX(t) (2.7)
1=1 V

and the reachable group for

2•
X(t) = (A + u.(t)Bj)X(t) (2.8)

1=1

contains the reachable group for equation (2.2). The reachable group will

not^ in general simply be the Kronecker product of the reachable groups unless

the effects of the u's are decoupled.

For the linear evolution equation (1.1) it happens that if it is possible

to transfer any state to any other state then this transfer can be done

in arbitrarily small time. This is not the case for systems defined by
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equation (2.1). Jurdjevic and Sussmann [9] give an example of a system

2
defined on S which is controllable but certain transfers cannot be

made in less than 1 unit of time. Thus if (1.1) is controllable on S

the strongest statement we can make on the basis of the present analysis

is that for t. sufficiently large every state can be transferred to every

other state in t.. units of time. Estimates on this time have not yet been

worked out.

In the vector space case controllability is closely related to the

concept of observability as mentioned in the introduction. In the present

setting this is not the case at all. We say that the system

m
x(t) = (A + I u±(t)B1)x(t) ; y(t) - Cx(t) (2.9)

is observable on Sn if no two distinct initial states on Sn~ give rise

to the same response y for all controls u(«). The following theorem gives

a necessary and sufficient condition for observability.

Theorem 2: Let A, B.,B0,...,B be a collection of skew symmetric
1 i- m

matrices and let c be a unit vector. The control system

m
x(t) = (A + I ui(t)Bi)x(t) ; y(t) = cx(t)

is observable on S if and only if the set of matrices (A,B, ,B,,,.. .B ,cc'}
1 / m

are irreducible.

For a proof of this theorem and more general results of this type

see [13].
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3. Optimal Control

Consider again the evolution equation (2.2) defined on matrix

group <@. Let there be given a time t., > 0 and boundary conditions

of the form X(0) = X ; X(t ) = X . Suppose that in addition there

is given a functional which is of the action type

, rt m
nl °T I ^ VOdt (3.1)

o

as opposed to the geodesic type

ffc! 5 ? \l">
H2 - J

 L ( I û (t)r̂ dt (3.2)

o

Our problem is to determine if there exists a control u(-) such that

the boundary conditions are met and the given functional is minimized and,

if such a control exists, to characterize it. Just as with controllability,

there is an obvious connection between problems defined on a group and problems

defined on a manifold on which that group acts. This would no longer be

the case if r) dependend on x in a general way.

We will use the formalism of the maximum principle of Pontryagin [14)

rather than the calculus of variations to attack this problem because it

handles the degeneracy which is built into the problem in a natural way.

Applied to the present problem, Pontryagin's maximum principle asserts that

if u(-) is an optimizing control then there exists a matrix P such that

m
P(t) = -A'P(t) - I u (t>B!P(t) (3.3)

1=1 X

and Hj defined by

"} ? 1 2
H(P,X,u) - <P,AX> + I u .<P,B X> + £ -± u7" . (3.A)

i=l 1=1
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is minimized with respect to u by the optimal control. Thus we have the

optimal control given by

u±(t) = <-P(t),B1X(t)>

This choice of u gives a pair of differential equations with split

boundary conditions

(3.5)

d
/I*ut

x(t)

P(t)
3

A 0

0 -A1

X(t)

_P(t)

m
7 <P,B,X>L * 1. .

~B 0
J.

0 -B'

X(t)

P(t)_

1=1
' K(t)>(B.K(t)-K(t)B!) (3.7)

(3.6)

The problem can be reduced to a single quadratic equation with split

boundary conditions by introducing K > XP'. An easy calculation shows

that

.K(t) - AK(t) -K(t)A' -

So far everything is valid for an arbitrary subgroup of G£(n) . If

A,B1 ,B., . . .B are self contragredient then a simplification occurs.

In that case any solution of the differential equation for P can be

expressed in terms of a solution of the differential equation for X with

nonsingular boundary conditions; ie.P(t) = NX(t)M for some constant matrices

M and N. Specializing to the skew symmetric case gives the following result.

Theorem 4; Suppose that A,B. ,B~, . . .B are skew symmetric n by n matrices

and suppose that there exists a piecewise continuous control u(«) which

transfers the state of the matrix system

m
X(t) - (A + I u ( t)B )X(t)

i=l X

from X at t » 0 to X, at t = t. > 0. Then there exists constanto 1 1

matrices M and N such that the solution of

(3.8)
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m
X(t) = (A + I <B. >X(t)MX

I(t)N>B )X(t) ; X(0) =X (3.9)
1=1 * *

passes through X. at t = t1. Moreover, there exists one such pair

M,N which minimizes n, relative to any other continuous u(-) which

steers the system to X. from X in the same period of time.

Proof: That there exists an optimal control follows from theorem 6 of

Cesari [15]. The rest follows from the maximum principle as discussed

above.

There is an alternative point of view available for these problems

which makes a little closer contact with both physics and Lie theory

but which is not so useful here. Consider the right-invariant control

equation in S0(n) with control fi

X(t) = H(t)X(t) ; X(0) = XQ (3.10)

Let the problem be to pick n in the space of skew symmetric matrices

such that X(tJ) = X- and the trace form

n - f X-tr (I'Vdt (3.11)

is minimized. Elementary .variational arguments with due regard for the

admissibility of variations lead to the Euler equation

n = filf21~1-r1£>l!n (3.12)

In SO(3) this matrix equation is equivalent to the familiar Euler

equations for a rigid body

I,w, = (I0~I.)b)0b)0 (i T\\1 1 2 3 2 3 \j*i.jj
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which, after all, come from minimizing the action integral on S0(3).

(Note that the kinetic energy of a rigid body can be expressed by

the trace form (det I)tr(I ") where I is the usual inertia tensor.

See [2] page 64. Incidentally, this also serves to define the degree

of difficulty of actually solving the control problem mentioned above.

Since it is well known that the solution of the Euler equations generally

involves elliptic functions, the solution of the optimal control problems

cannot be expressed in terms of elementary functions except in special

cases.

By far the simplest special case on S0(n) occurs when n, is the

negative of the integral of the Killing form. That is given X(0) and

X(l) and given the evolution equation

n(n-l)/2
X(t) = I u (t)B X(t) ; X e S0(n) (3.14)

i=l

where B± » -B' and for all i and j

<B1,Bj> = tr B±B^ = 6tj (3.15)

one finds that the optimal trajectory is

X(t) - eQtX(0) (3.16)

s*

where & is the solution of e" - X(1)X~1(0) which has the smallest Frobenius

norm.

We turn now to applying the above results to the problem of

optimizing trajectories on spheres- Note that trajectories on spheres can be

optimized for fixed end points by solving an associated right invariant

group problem and then picking the minimizing element in the group for
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transferring x to x . The following theorem expresses this.

Theorem 5: Let A,B.,B.,...,B be skew symmetric matrices. Suppose

that the system

n
i(t) - (A + I u (t)B )x(t) (3.17)

1-1

is controllable on S . Then given a sufficiently large time t. > 0 and given points

x and x- in S , there exists a control which transfers the system from

x at t « 0 to x, at t = t, and minimizeso 1 1

n - f1 .'
•'n

(t)u(t)dt (3.18)

Moreover, there exists a matrix K such that the optimal

control is given by u.(t) = <K(t),B.> where K is defined by the matrix

differential equation

m
K(t)= [A,K(t)] + I <K(t),Bi>[K(t),Bi] ; K(0) = KQ (3.19)

We complete this section on optimal control with a result of the

type which plays a major role in linear system theory in connection with

the regulator problem.

Theorem 6; Let A and B be n by n skew symmetric matrices and consider

the system

x(t) - Ax(t) + u(t)Bx(t) (3.20)

£
Let a be a unit vector in the null space of A such that A and Baa'B* are a

pair of matrices which act irreduciBly on the orthogonal complement of
r-

the one dimensional subspace defined by a. Then the control law u(t) «

a'Bx(t) steers the system from any initial state x j -a to a and minimizes

the integral
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r-Jr\
2(t) 4- [a'Bx(t)]2dt

'0

relative to any other continuous control u(O-

Proof: We can write r\ as

rin
since Aa = 0 we have

n - f
Jo

2 2u (t)-2a'x(t) + [a'Bx(t)rdt+2afx(t)

oo

(u(t)-a'Bx(t))2dt+2a'x(t)
0

Thus if the control law u(t) = a'Bx(t) actually drives the state x to

a then it is optimal. However, observing that a'x(t) has a derivative

2
along the given solution which is equal to -[a'Bx(t)] , we see by

LaSalle's theorem (see e.g. [2]) that the solution x « a can fail to be

stable if and only if a*Be x vanishes identically for some x ̂  ±a.

By looking at the derivatives at t » 0 we see that this can happen if

and only if (Ba,ABa,...A Ba) fails to span the orthogonal complement of the one

dimensional subspace defined by a.
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4. Stochastic Differential Equations

We consider now a third aspect of control theory on spheres.

This Has to do with the analog of property (v) mentioned in the intro-

duction. What we show is that controllability implies the exlstance

of a unique invariant measure for a stochastic equation on S .We use

Ito notation for stochastic differential equations. Wong [3] can be

consulted for an explanation of both the mathematics and the notation.

Let w. ,w0,...,w denote independent Wiener (Brownian motion)i z m

processes of unity variance. In giving a precise meaning to differential

equations in which something like "white noise" appears K. Ito [16]

invented what has proven to be a very successful calculus in which the

standard differentiation rule is significantly modified Insofar as

differentials of Wiener processes are concerned. In this calculus dw.dw
2

6. .dt, a first order term; dw dt, and (dt) are both higher than first

order. We discuss the implication of this in one important special case.

If x and y are vectors satisfying the Ito differential eouations

dx(t) = Ax(t)dt + Bx(t)dw(t) (4.1)

dy(t) . » Fy(t)dt + Gy(t)dw(t) (4.2)

Then z(t) = x(t)y' (t) satisfies the Ito equation

dz(t) = (Az(t)+z(t)F' + Bz(t)Gl)dt + (Bz(t)+z(t)rf)dw (4.3)

The only other fact we need about Ito equations concerns the associated

mean equation. If x and y satisfy equations (4.1) and (4.2) then

x(t) = cTx(t) and y(t) = <£y(t) satisfy the ordinary differential equation

-£ x(t) = Ax"(t) (4.4)
dt

- J (t) - Fy(t) (4.5)
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We will see that these two results nermit the derivation of equations

for all moments and imply that the moment equations are decoupled from

each other.

Recall that the number of linearly independent degree p forms in

n variables is given by

N(n,p)

We can therefore associate with each n tuple (Xj.Xj, ... ,xn) a N(n,p)-tuple

xtp] - (xp ^p~ XP~
1x2,...,x̂ ) where the coefficients are chosen in such a

way as to validate the equality

2 2 " (4-7>

It is clear that if x satisfies an ordinary differential equation which

is linear, say

~ x(t) - Ax(t) (A. 8)

then xlpj also satisfies a linear differential equation

= A[plx(t) (4.9)

We regard this as a definition of AIPJ. It is related to the classical

idea of an induced representation. Of course if there are controls present

a similar set of equations follow; i.e. equation (2.1) implies

m

Q L P J / \ »!T*J_^LUj/\ T* Xv iT^l L P l x v

Similar remarks hold for stochastic equations of the type under

consideration here, provided suitable allowance is made for the Ito

calculus. Associated with the Ito equation

m
dx(t) « Ax(t)dt + I B x(t)dw (A.11)

i-1 *
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is the family of equations

dx[pl(t) = ((A- I ^B. 2 ) t p l + 1 | (B. [p l)2)x [p l(t)dt+ £ B. [p lx [p l(t)dw. .
1=1 x 1=1 £ 1 i«i V 1

(4.12)

The derivation of this is a straightforward exercise using the properties

of dw. outlined above. Finally, we have the moment equations associated

with (4.11)

d — fnl , \ //» r 1 i»2\ Ip] . V — fnfPM^»lp^ (L "\V\— xl* (t) = ((A ~ / "T °4' * L •) ^D-t ' VH.AJ^
dt 1=1 L 1 1=l

where xlpj(t) -^x PJ(t). Compare with reference 17.

In terms of the Ito calculus when can the matrix stochastic equation

m
dX(t) - AX(t)dt + I dw (t)B X(t) (4.14)

1-1 L X

be thought of as evolving the orthogonal group? This will be the case

when the associated vector equation (4.11) evolves on the sphere defined

by ||x(t)|| » ||x(0)|| for all x(0). Using the facts outlined above

we see that d(x'x) *> 0 if and only if for all i

m 1 2 m 1 2

Thus these are the conditions under which equation (4.14) evolves in the

orthogonal group and the conditions under which (4.11) evolves on the

sphere.

It is apparent that the measure associated with the uniform density

on the sphere is an invariant measure for the process defined by equation

(4.11). Since the area of the (n-l)-sphere is 2irn'2/F(n/2) the uniform density

is

Po(x) - T(n/2)/2iTn/2
 (4
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The corresponding values of the odd moments are zero by symmetry but the

even moments are not. The following theorem claims that all the moments

approach the moments associated with a uniform distribution if we have

controllability. Incidentally, equation (4.13) provides a means for actually

computing the moments for all time in terms of their values at t » 0.

Theorem 7; Suppose that A,B ,B-,...B are all skew symmetric and suppose that

x(t) = (A+ I u (t)B )x(t) (A. 17)

is controllable on S . Then the solution of the Ito differential

equation defined on the sphere by

m
dx(t) '- (A + I ± B')x(t)dt + I B±x(t)dw (4.18)

m m
'

is such that all moments approach the moments associated with a uniform

distribution on the n-1 sphere as t approaches infinity.

Proof; First of all, note the shift in notation from (4.11) to (4.18).

1 2In (4.11) A- -^ IB^ is playing the role played by A alone here. It is

not difficult to show that because A,B ,B2 , . . .B are skew symmetric it

follows that A , B.P ,BiP ,.. .B l p^ are also skew symmetric. A second1 i m

observation concerns stability. If A - -A1 and B » -B' then all

solutions of the ordinary differential equation

m 1 7
x(t) - (A + I ~ B̂ )x(t) (4.19)

i-1 Z x

are bounded. Moreover, each solution approaches zero as t approaches

Atinfinity provided B^e x does not vanish identically for any x ̂  0 and

Atthere will exist nonzero vectors such that Be x vanishes identically

if and only if A and B can be put in*the form
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A n~
1

0 A2

e 'B.e -i

B 0
*•

0 0
e'A6

To prove the first of these facts we notice that since A =« -A1

12 v i IT, /^\ i i 2

(4.20)

- - I I|B±x(t) (4.21)

Thus by LaSalle's theorem (see e.g. [2]) the solution either goes to zero

or else there is a solution along which ||B.x(t)|| vanishes identically

Atfor all i. That solution would have to be of the form e x . As for theo

conditions on A and B., they follow from considering the subspace of

Atvectors such that Be x vanishes, together with its orthogonal complement,

making use of the skew symmetry of A,B,,B_,...B ." l / m

Clearly controllability implies that all solutions of the mean

equation approach zero as t approaches infinity because controllable

systems cannot be decomposed as indicated. As for the higher moments,

we must distinguish between the even and odd cases. For the odd cases

if there-'is a decomposition then controllability of the equation (4.17)

is clearly impossible. For the even moments, ve have in view of

the identity | |x | | » |jx|| ^, a decomposition of the type given by

equation (4.20) but with the zero block in B. being one dimensional.

The one dimensional subspace defines the steady state value of the

even moments. On the orthogonal complement the equation (4.18) is

asymptotically stable. These remarks are related to some well known

properties of orthogonal representations of Lie algebras.
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As is well known, the moments x p are related to the spherical

harmonics in a direct way. Thus by working with equation (4.13) it

is possible to obtain a full solution to the Fokker-Plank equation

associated with the Ito equation (4.18). The interpretation of the

moments in terms of spherical harmonics also allows one to establish

some qualitative features of the probability density. In particular

its smoothness and convergence to the steady state can be easily

studied.
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