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ALGEBRAIC DECOMPOSITION METHODS FOR NONLINEAR SYSTEMS

Roger W. Brockett
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Abstract

Elegant algebraic theories for decomposing dynamical systems into
elementary pieces have existed for some time in the areas of finite
automata and linear systems. In céntemporary physics, algebraic ideas,
especially Lie algebras and Lie groups are used extensively to reveal
and explain structure. This paper is an informél survey bringing
together some of the important view points found in these areas. We
“find that although it is usually helpful, in many cases linearity is

not crucial.
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1. Introduction

The main point of this paper is that the utility of the mapning
semigroup discussed by Myhill [1] in the study of the structure of
dynamical input-output models is by no means limited to the finite
state, discrete time case. In many different settings it is the
algebraic structures which one can give this set of maps which reveal
the possibilities for decomposing the system; The type of decomposition
one seeks will, of course, depend on the structure one wants for the
subsystems. The standard structure theorems of algebfa provide the
tools. The class of systems we treat are not characterized by linearity
but instead they are cﬁaracterized by the algebraic structures which
the mapping semigroup admits,

To be sure, the general principles on which this paper is based
are implicit in the literature. However, they do not stand out as
clearly as they might. Perhans the most impressive specific instanée
of the general idea we are discussing here occurs in the work of
Krohn-Rhodes [2}. Linear system theory [3,4] itself provides a second
example. And a third example can be extracted from the important work of
Wei-Norman [5]. The hope is that the synthesis undertaken in an informal
way here will make these principles a little more accessible to non-
specialists. Moreover while it is perhaps not necessary to treat the
examples in as much detail as is done here, the hope is that this too will
help lead to a broader understanding of the underlying principles.

In all cases it is the decomposition of the semigroup which reveals

the structure of the system. However, we can adopt different rules in



effecting the decomposition and in this way get a very flexible theory.
meeting a variety of needs. For example, if the mapping semigroup
can be given a group structure, then the theory of group decompositions
can be invoked to get a decomposition of the dynamics. If the mapping
semigroup admits a matrix algebra structure then again theories are
available to effect the decomposition.
The class of systems under discussion here are capable of modeling
a wide variety of phenomena lying outside the scope of conventional
linear systems theory. By way of comparison with linear theor&, we might
explain our objective as a sea:ch for decomposition procedures which
parallel the partial fraction expansion method. To emphasize this
point we shoﬁ by example (section 5) how partial fraction expansion
decompositions fall out when this procedure is applied to a linear
-system. We also show how Krohn—RhodesAtheory leads to a further de-
composition of system structure bevond the partial fraction expansion level.
To many people it has been clear for some time that a broader conception
of system theory -- one might say a general system theory -- would be
very desirable since technology no longer respects the classical lines
of organizing subject material. Characteristic of this trend has been
a merging of the continuous with the discrete and a concomitant blurring
of the distinction between linear and nonlinear analysis. This paper
may be viewed in this context.
A number of algebraic terms are used in the text and examples. Some
of these are not common in the control literature and are explained in the

appendix. The others can be found in the references cited there.



2. Automata Theory

Many of the ideas which we want to discuss find their clearest
and most elementary statement in the setting of finite state systems.
In this section we want to recall a few ideas from automata theory
which will help to put subsequent developments in perspective.

Suppose we have finite sets U.and X together‘with.an evoiutien '
equation

x(k+1) = A(x(k),u(k)) ; fu(k).e_u s x(k) € X
We call such an object a finite;state'systeﬁ. An‘important coscept
in the theory of finite state systems is that of the semigroup of
the system. This might be explained as follows.

If X has n elements then the total number of maps of X into itself
is n". Denote this set of maps by F(X,X). Now the subset of»F(X,X)

consisting of

s=U U ra..aoc ,u) u2)...u )ou ) (2.1)

_p)su _
nx0 u el n-2 n-1

can be given a semigroup sttuetere_by introdueing~a:@ultiplicstion
which 1is just compositios of.mass; We use e'to denote msltiplication and
denote this semigroup bylé7 ='(S,O). It is often ca;led the Myhill
semigroup. It has only a finite'numper of elements Secause F(x,x) is
finite. | |

Tﬁere is a second semigroup of interest here and that is the free
semigroup over U which consists of all finite strings of elements
ui“Z"' up with the multiplicatien operation being concatenation.

We denote this semigroup by U*. Each element in U* gives rise to exactly



one element of S.according to the rule A*: 4 .o up - A(A(.;.A(=,ul)u2)

1%2
It is immediate that the diagram below is commutative with this definition

of X*, That is to say, A\* is a homomorphisin of U%* into &

concatenate
Ur x Uk 443?*

A% x )% l \L A%
PP composition NG

Since A* is onto & we may say that &% is the homomorphic image of
the semigroup U*.

In semigroups a homomorphism Aefines a congruence which can be
"divided out" to get a simpler semigroup. This point of view gives
rise to an alternative characterization of the homomorphism A%, I1f
u1u2...uq is a string which takes all states back to themselves
after q steps then the homomorphism A* takes this sequence into the
identity of &%#. Moreover no other strings are taken into the identity
of & so that the kernel of this homomorphism is the set of sequences

which give rise to closed paths in the state_space for each initial

state.f In this sense

& = sequences/(sequences giving closed paths)
It is exactly the insertion of the semigroup & into the theory
of finite state systems which makes it possible to study decomposition -

theory using algebraic methods. In fact the introduction of algebraic

fThis statement with its topological implications were pointed out

by me by Prof. D.L. Elliot of Washington University.

ew ol &
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machinery comes about in a very natural way after one more step. Observe

that we may associate with each element u, of U a map X(-,ui). If

i
s( ) belongs to ¥ then the difference equation

s(k+l) = [A(-,u(k))] o s(k) ' (2.2)

evolves in the semigroup .#. The solution of this equation is "fundamental"
in a sense similar to the use of "fupdamental solution" in linear theory.
That is, if s( ) is the solution corresponding to an initial state

which is the identity element of % and an input string u

-

1u2u3. LN ] »
then the solution at time i of the equation

x(HD) = A(x(,u(0) 5 x(0) = x, 5 u(-) = wuu...

is the image of X under the map s(i) viewed as an element of F(X,X).

- We call-the equation for s the semigroup equation'ot ;he Myhill
equation. It is important to emphasize that the solution of thé
semigroup equation evolveé in a very simple way, regardless of the
complexities of A. If one knows enough about the structure of finité
semigroups the decomposition of this equation into simpler pileces can -
be carried out. This step has been carried out by Krohn and Rhodes
in their important study [ 2]. In the special case where & 1is actually
a group the Krohn-Rhodes results on decomposition‘are not difficult to
expléin. The idea is that either the group is simple in which case they
show that in a certain sense the system is irreducible, or else it is not,
in which case the normal'subgroups can be divided out to get a decomposed
gsystem. We give an example in the next section.

In the remainder of the paper we investigate to what extent we can

carry over these ideas to infinite state discrete and continuous time systems.



3. An Example of a Finite Group Decomposition

The examples in this paper progress from the easy to the
difficult., Our first example, illustrating the Krohn-Rhodes
theory, is interesting because it shows that from the point of view
of automata theory a scalar first order difference equation-(over a
finite field) can sometimes be further decomposed.

Consider the system

x(k+1) = ox(k) + Bu(k) ; y(k) = x(k)

where x(k) and u(k) take on the values 0,1,2, and @ and B arg‘constants
which take on one of these values and arithmetic is dome modulo 3.

The total number of maps of the state space into itself is 27 - the
éemigtoup itself consists of a subset of the following (observe that

a3 equals @)

g,(+) = a(*) g,(*) = a®(*) + B

8y(*) = a(*) +8 g8g(*) = a’(*) +af + B
g83(+) = a(+) + B2 gg() = a®(+) + oB2 + 8
g,(+) = o) gg() = o) + B2

g(+) = a°(*) + B 8y, (") = a%() + a8 + B2
gg(*) = a’(-) + oB2 81,() = o%(-) + aB2 + B2

For example, if a= 2 and B= 1 then there are 6 maps which are
distinct. Let's take these as 81> 85> B3s B,» Bes and 8¢ A short
calculation reveals that this group is isomorphic to the dihedral

group* D We can take 8¢ and g, to be the generators. Since D3'

3.

*
The dihedral group Dn is a group of order 2n consisting of all possible

pgoducts of two generators x and y subject to the relations xM=1
y4=1 and y x y = x-1.



is not simple we can decompose this semigroup and the resulting system,
By letting z(k) = Z-kx(k), we can write the evolution equation in

terms of modulo 3 arithmetic as

2(k+1) = 2(k) +o Twuk) ;3 y&) = wik)z(k)

Cw(kHl) = 20w (k)

*
The semigroup of the second of these is isomorphic to 22 whereas
the semigroup of the first (regarding w(k)u(k) as the input) is fsomorphic

to 23. The appropriate block diagrams are shown below.

1
2 Dy

+

le .

(2
W,

Figure 1.: Linear Sequential Machine Representation of a
Modulo 3 System,

v

Figure2 : Decomposed Version of the Modulo 3 System of Figure 1.

*
Zp denotes the group of integers (0,1,2,...p-1) with addition modulo
p being the group operation.
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4. Bilinear Discrete Time Systems

Even if we abandon the assumptions that U and X be finite sets
it is still possible to utilize the previous definitions for R and
the semigroup equation itself. Typically 3? will not be finite although
there certainly are interesting cases for which it is and in these cases
the Krohn-Rhodes theory will apply. The structure of infinite semigroups
on the other hand is not well understood and thus to make further progress
it is natural to look at systemg for which the semigroup admits additional

structure. In this section we investigate a class of systems for which

it can be given the structure of a matrix algebra.

A significant extension of thé linear discrete time system is
the class of systems which evolve in a real vector space R" according

to the rule

vV v
x(k+1) = (A + 121 u (KA (k) + 121 biuifk) (D)

Here we have a linear dependence on the initial state but a nonlinear

dependence on the input. What is the semigroup in this case? Since

-we have at each step x(k+1l) = M(u)x(k) + n(u) it is clear that the set

of all maps of the state space into itself is the composition of such
maps. However, the composition of two such maps is a third map of the

same form. After a calculation one can see that the semigroup for equation

(4.1)consists of maps of the form

T g § T g o ]
s= 1 [A+ Ju@Alet § T [A+3 u @] Ibu @) (4.2
g0 © 4211 1 qa0pey %1 1 gt

Recall that a map of'ﬁ? into'ﬁ? is called affine if it is of the form of
a translation plus a nonsingular linear transformation. This set of maps

would be affine if the linear tramsformation part were invertible. There



-10-

is, however, no need to require invertibility at this point. We call ' e
maps of the form Mx+b with M not necessarily invertible, pseudo-affine.
Notice that the semigroup defines an equivalence relation on the input

space whereby u if they both give rise to the same map.

172
It is easy to see that it is possible to put the set of pseudo-
affine maps in one to one correspondence with a set of mtl by n+tl

matrices according to the rule

G b |
[0 l]~ g with g(x) = Gx +b

The set of pseudo-affine maps on'ﬁ? is, of course, a semigroup under
composition. The correspondence defined above is a semigroup homo-
morphism 1f we regard the set of matrices as a multiplicative semigroup.
This hinges on the two calculations which give the effect of semigroup

multiplication in the respective cases
5 Gl bl -Gz b, ) G1G2 Glb2+b1
0 1]Jo 1 0 1

ii) Gl{c2+b2]+bl = G,6, +G1b2+b1

We denote the matrix semigroup by
s(n) = {G:G = [S x] }
01
Having a convenient representation for the semigroup associated with S
equation (4.1), the next step is to display the semiéroup equation igself,
A little thought will verify that the semigroup (4.2) evolves according

to the equation
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a0 v Ay Py
S(k+1)=(Lo° ‘ 1] + izl u, (k) [o . ])S(k) .3
By a matrix algebra (over a fixed field) we mean a set of square
matrices which is a vector space with respect to matrix addition and
scalar multiplication and which is closed under matrix multiplication.
Since a lot is known about the structure of matrix algebras
including the extent to which they can be decompdsed, the question
naturally arises as to whether or not these tesults“can be grought
to bear. Cleérly the semigroup is closed under multiplication; after
all this is the semigroup property. Troubles arise with regérd to
the vector space structure. Even in the special case‘whefe the evolution
equation is |
v
x(ktl) = [ ] u (A Ix(K)
i=1
and the semigroup equation 1is
v
S(k+1) = [} u, (k)A, 1S (k)
i=1
the semigroup is in general not closed under matrix addition.
Confronted with this situation a natural thing to do is compute
the semigroup and find the smallest matrix algebra which contains it.
in fact this seemingly ad hoc solution can be justified further by
roticing that if we want to obtain bilinear subsystems this is an appropriate
structure. In a complete theory this point will require careful attention.

Decomposing this algebra will, of course, decompose the actual semigroup

although this procedure overlooks the possibility that the semigroup might

admit a decomposition not shared by the smallest matrix algebra which contains it.
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What then is the smallest matrix algebra .+ containing the -

set of matrices

= J U 1

n A°+Zui(k)Ai Zui(k)bi1
uie"R ns0 i=0-

0 1

One can't be more explicit than to display it as
M= {M: M= Zaisi’ai € 1R, S, € &}

except in special cases. For example if Ao is n by n and if we have

n Ao u(k)b
=Y U 1
uelR n30 i=0 |0 1

then

(Ao) x o = polynomial of degree n
; x € Range b, Aob...AO“"lb}

o
MM = {M:M=[
0 a(l)

as is easily verified by use of the Cayley-Hamilton theorem.

By bringing standard algebraic decomposition theorems to bear on
this problem we can decompose the semigroup and hence obtain a realization
of the original system which is decomposed. To make ﬁhis importanf point
clear, suppose that we can dec?:mpose the enlarged semigroup .# as a direct
sum of say n parts, M, ® M, ® ... ® M . Then we can write the
semigroup equation as

M, (k1) = [A} + Zu, Goalm, ()
1 i i1

o
2 (superscripts are not powers)
o

M, (k+1) = [A> + xui(k)Af]Mz(k)

n n .
M (k#1) = [Ag + Tu, (AT M_(K)
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with s(k) = ZMi(k). Since x(k) = s(k)xo this set of systems obviously
simulates the original system but is decomposed in the sense of having

semnigroups which are subsets of simple matrix algebras.
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5. An Example of a Matrix Algebra Decomposition -

Our objective here is to show what this philosophy yields when
we apply it to a standard situation. _ >

Congsider a linear system

x(ktl) = Ax(K) + bu(k) ; x(k) € R® ; ueRw

As we have seen the Myhill equation can be expressed as

. A u(k)
S(k+l)= [0 1 ﬂ S(k)

The set of matrices

n A u(k)b
y=Un[ ]

n30 k=0 Lo 1

do not form a matrix algebra since it is not closed under addition.

Howevér if we enlarge it by inserting a v(k) to get

n v(k)A u(k)b
g 1[0
n30 k=0 0 v(k)

Then we do get a matrix algebra. More concretely, 92 consists of

-matrices of the form

[P(A) x ]
0 p(l)

where p is any polynomial of dégree n or less and x is any vector in the -

range space of b,ab,...Avb with v the degree of p.

We can decompose this matrix algebra to get a decompésition of the original

system, This works in the following way. Notice that if A has a diagonal .
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Jordan normal form then by the transformation

I

we can bring A into diagonal form. Thus we have a matrix algebra whose

elements are of the form

P(ll) 0 .o 0 X,
0 p(Az) ss e 0 Xz
0 0 oo p(A“) L
0 0 0 p(1) |

where x = (xl,xz,...,xn)' is a vector in the reachable set fér the

transformed system. Since the matrices of the form

— . -]

.o p(Ak). .« o
R (p,x) = :

e 0 0 g Vb

es e

L_.-.O o...p(l.)_

form a one sided ideal,(Rk(p,x) . Rz(p,x) CLRk(p,x)),it is easily verified that

R -9?1+%2f ...+9?n

: : * C J
where + 1indicates a semidirect decomposition in the sense of matrix

algebras. We leave the details of the repeated root case to the reader.

*

That is to say the /&, are ideals which as vector spaces taken all
together span .. However the vector spaces /2, are not necessarily
orthogonal as they would be in a direct sum decomposition.
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6. Bilinear Continuous Time Systems

Carrying these ideas over to the case of ordinary differentia;
equations is not as difficult as oﬁe might suppose. The assumptions
we use to insure that the semigroup will have a managéable form are
very similar to those used in section 4. Instead of matrix algebras,
matrix Lie algebras are the key to understanding the structure.

We consider systems of the form

V v
x(t) = [A_+ ) u ()A)x(t) + § b,u (L) (6.1)
o =1 1 i . 131 b . |

.ﬁétice that the input—output maps of such systems are decidedly.
nonlinear and ﬁhis class 1is not as spécialvas it might look at first
sight; Moreover, this class of models f£ill an important gap in the
- .—currently available theory because they allow one to model systems
1/2

for which the Euclidean norm l|x||=(2xi) is preserved and also

allow one to model systems for which the £, norm ||x|| n2|x1| is

1
preserved. The former condition has significant application in

systems where energy is conserved and the latter is important in modeling
continuous time Jump processes where the sum of the probabilities is

necessarily one. Systems in which either constraint is an impoftant

aspect obviously cannot be modeled as
x(t) = Ax + bu(t)

with the system being controllable. Rink and Mohler [6] and the author [7]

cite further applications of this model.
A good deal is known about the controllability of equation 6.1 as

the result of Lie algebraic techniques, [7-10]. It follows from the variation
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of constants formula that the set of maps of the state space into
itself are all of the form x+—>Mx+b. The exact set of M's which can
appear here are the set of possible transition matrices
and the set of b's depend on the reachable set. Of course if we
augment x by adding an additionalAcomponent which is always one, then

we have

d x(t) ) A°+Zui(t:)A1 Zui(t)bi x(t)
e | 4 0 0 1

This device allows us to think of 6.1 as being a special case of
A \Y/
x(t) = [A + ] u ()A ]x(t) (6.2)
o i=1 i

It is clear that the analog o6f the Myhill equation appropriate
for equation (6.2) is the matrix equation
\
$(t) = [A_+ ) wu, (t)A ]s(t) 6.3)
o i i
i=1
The possibilities for decomposing this equation are implicit in the
very interesting work of Wei and Norman [ 5] on the solution of time
varying linear differential equations. What Wei and Norman show is
that the smallest vector space of matrices which is closed under the
operation of commutatioq)[A,B] = AB-BA, plays a decisive role. This
space is called a Lie algebra and it plays an important role here and in

related work [7-10 ],

The relationship between the commutator and structure of the
solution of linear differential equations may be explained as follows.
First of all it is known (see e.g. Wichmann [ 31]) that if for each 1, Ai

is a piecewise continuous function of time for - < t < = and if
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. .
x(€) = [ ] A (£)]x(t)
i=1

then the transition matrices QA of x(t) = Ai(t)x(t); are related
i

to the transition matrix of the total system via

with the individual factors on the right commiting, provided that for
all i and j [Ai’Aj] = 0.

The proof of this is easy in the case v = 2 and the general result
follows by an induction.

Secondly, it is known (see Wichmann [11] or Wei-Norman [ 5]) that
if the Lie algebra generated by a set of constant matrices {Ai} is
_solvable*then the solution of the differential equation x(t) =
[gl(t)A1 + ... gv(t)Av]x(t) can be expressed explicitly in terms of
integrals.

The preceeding remarks lead to the conclusion that the basic solﬁtion structure
étands revealed in the decomposed version of the Lie algebra generated

by the‘éi. If this is a semi-simple algebra then

PAI, DI Dy oo BT
where the 171 are simple subalgebras, and the previous analysis shows
that the transition matrix is

X

¢ = S SRR

where the factors gi belong to the Lie groups corresponding to the

simple Lie algebras an. If the algebra has a radical in addition

*
See appendix for a definition.
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to the semisimple part then provided that one can compute the solution
for the simple éubalgebras one can arri&e atvan equation involving the
radical which can be solved explicitly; In order to actually solve

the equation when the subalgebras are nof solvable Wei and Norman
suggest looking for a solution of the form

g, (t)H, g, (t)H g H
X(t) = e 1 1e 2 2 reY

What their method rests on is the demonstration of ﬁhe following fact.

Let Hl""’Hn be a basis for %. Then
r g,H l1 -g.H n

N e 33 H1 I e 33 . 2 gki“k ;s r=1,...,n
j=1 j=r k=1

where each of the Eki is an analytic function of 818928 Having
this at their disposal it is easy to verify that at least for small
Itl one can find a solution in the given form simply by equating

the coefficients of Li on each side of the equation

a &1 &, s M) 8 H) g, B H
dt e e ceot = Ae e Y-
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7. An Example of a Lie Group Decomposition

Consider the electrical network shown in figure 1. This model

5y

illustrates some of the features of a voltage conversion network.
The equations of motion are (u = 0 corresponds to left switch open
and right switch closed, u=l corresponds to left switch closed,

right switch open)

Clv]. = uI3
o e = =(l-u)I, + I
CZV2 3

LI3 =’u(E—V1)+(1-u?Y2

Now if we make the replacements x;, = »/(':_l_v1 ;X = JC_Z'V

and let a = 1//IC,, B = 1//iC., Y = E/7L, 6= 1/,

, and %= 613

s *i- ol

|=‘ +
]
&

Figure 3 : An electrical network controlled by switches

then wé obtain

- j - ar o — T 77 .
il 0 0 0 X 0 0 8 Xy 0

*2 = |0 0 -a X, +ul 0 0 aff x| + é J
X 0 +a 0}l x -8B -a 0] x u
_xs.J L —4-3—‘ L _J_g.. . Y—.J




7

4

-21-

We now introduce the affine representation and write

7 - ar — aAr 7
Xy 0 0 0 0 .x1 0 0 B 0 xl
> - é

x2 0 0 o x2 0 0 a 0 x2

m 4+ u

x3 0 40 0 0 x3 -8 -0 0 Y x3
x o o o o]}x 0o 0 o0 x

4L J1L74 i R

The smallest Lie algebra which contains these two matrices is a

6 dimensional algebra whose typical element is

0 w3 w, U
-w3 0 ml \V)
-wz -wl 0

0 0 0
L —

This Lie algebra contains. as a three dimensional ideal the subalgebra

whose typical element is

0 w3 m2 0
-m3 0 wl 0
—w2 -ml "0 0

0 0 0 0

Thus we can decompose the Lie algebra as
L& =% +3el<+d€1 +3?1

where 991 indicates the one dimensional Lie algebra and + indicates a

semidirect product. Let S; be the solution of the equation
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0 0 0 0 0 g
Sl =10 0 a|Stu 0 0 a Sl : Sl(O) = I
o a 0 -8 -« O

and let b, = (0,6,0)' and b, = (0,0,Y)". Then the block diagram of

the decomposed system is shown in figure 4.

Y

S1 = (A°+uA1)S1

N/

o %= sl(bl-_"ubZ) —Dx

Figure 4 : Showing the decomposed version of systems in block
diagram form

Perhaps it is of some interest to carry this analysis a little bit
further to give a more complete picture of the Wei-Norman method. To

do this we pick a basis for . and proceed as follows.
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= Let Ql, 92 and 93 be given by
. —_
0 0 0 0 0 +#1 0 -1 0
9 = (0 0 -1]; 9,=/0 0 0f; Q,=|+ 0 0
0 4 0 -1 0 0 _ 0O o o

Clearly these generate a Lie algebra which is not solvable. We note that
a direct power series expansion together with the identities

' 12
R, + alf,,] + 57 o 12, [2,,8,1] + ...

®

NO
®
u

1 2 1 3
924'0.03-'5:—(192 -3! aQ3+~.-

92 cosqa + 93 sino

and also

3 = 93 cosa + leinn

1 = Ql cosa + stina

e Qe o chosu - leina
e Q.e 1 = ) _cosg = §.,.sing
3 3co8a 2

2
e Qle = Qlcosa - Q3sina .



_24-

Now if we try for a solution of

X = (u) (£)Q) + u, (D)R)DX 5 X(0) = I

g.52, g0, 8.8
in the Wei-Norman form we assume X= e 1 le 2 2e 33 we haye

. g, g0, g.0 g.8 g.fl, g.0 g, g g5
X = élgle 1 le 2 2e 33 +e 1 lézﬂze 2 2e 33, e 171 =2 2é3n3e 33

Now use the above to get

810, BNy 84fly 0 gy
gZQ e =g e

€ 2 2 2

= gz(chos g, + 93 singl)X .

Use this idea twice to get

g.8 ) g0 g.f g2, g.0
g.e 1 293e 33. é3e 1 1(Q3cosg2 + leingz)e 22,3 3

1 82
3 e
= g3[Q1 sing2 + cosg2(93cosg1-ﬂzsing1)]x

so the Wei-Norman Equations are in matrix form
élgl + gz(chosg1 + 93 singl) +

é3(leing2 + Q cosglcosgz-ﬂzcosgzsingl) = u1Q1 + u292

3

Decomposed these become

[
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gy + 83 sing; = u)
éz cosg, - g3 cosgzsingi = u,

gy s:lng1 + g, cOsg, cosg, = 0

!

and finally
1 0 sing, él u
0 cosg, ecosgzsingl) éz ={u
0 sing 1 (cosg 1988 2) g 3 0
Notice that
cosg1 -cosgzsingl 2 2
det = cos'g,cosg, + sin g, cosg, = cosg,

sing, cosg, cosg,
This set of equations therefore is not méaningfui at g, = /2.
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9. Appendix on Algebraic Structures

The purpose of this appendix is to collect a few facts about
groups, associative algebras and Lie algebras so as to make it easier
for the reader to make contact with the literature. All the definitions
needed for sections 2 and 3 are contained in Chapter 7 of referénce [3].
Otherwise the book by Rotman [12] is very readable. For algebras (sectioﬁs
- 4 and S) seé for example Greub [16] and Gray [13].§nd for Lie ngebtaé (sections

. 6 and 7) Samelson [14] and Jacobson [15] are.appropriate.

A groupoid is a pair (S,*) where S is a set and : is a binary
operation +: § X § + S. If this binafy.operation is_asséciative
i.e. 1f (s . s5,) * 8§53 = 8, * (s, ° s,), then (S,*) is a semigroup.
A monoid is a semigroup in which there exists an element e such that
for all s in S, es = se = s. Monoids which have the additional property
that for each s in S there exist t in S such that st = ts = e are
called groups. An abelian group 1is a group such thaf s t=t s
for all s and t in S. A group (R;-) is said to be a subgroup of
(S,*) if R is a subset of S and the muffiplication is the same on R as
in S. The order of a group is the number of elements in it.

If (S,*) and (R,*) are semigroups and h is a mapping h : S =+ R
we say that h is a homomorphism if the diagram below "commutes" i.e.
is consistent.

5§ x§—=—>§

hxh . h = >h h(s,) = h
. l, 8,8, = S84 (sl) 8, (33)

R X Bmmrm—m>

A homomorphism which is one to one (as opposed to many to one) and onto

is called an isomorphism.
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Now let S be a group and R a subgroup. That is, suppose that
there is an insertion i such that

R——i-—?s

is one to one. We can see that the statement S; ~ 8, if and only if

there exists r in R such that s,r = 32, defines an equivalence

1
relation on S and hence a partition on S. We call the elements of
this partition cosets. A subgroup R of S is said to be a normal
subgroup if r € R and s € S means .srs-1 € R which is to say; sR = Rs.
for each s in S. We say that a grdup is simple if its only normal
subgroups are itself and the trivial group consisting of the identity.

We will not discuss the decomposition theorems available for groups

since this is done in the present context elsewhere [3].

An algebra # is a triple (S,+,°) where (S,+) is a vector space
over a field and * is a bilinear multiplication. If (A:B):C =
A*(B:C) for all A, B and C in S then the algebra is said to be
associative. Perhaps the most common example of an associative
algebra is the algebra of n by n matrices with + and : being matrix
addition and matrix multiplication. A Lie algebra (discussed below)
is an example of a nonassociative algebra. By a suba;gebra of ¥ we
mean an algebra QIC & such that .?1 . 5”1 C f/l and -?1 + J/l < ,711.
A subalgebra is called an ideal 1if e93 -JWCL93. Clearly the sum of two

ideals is an ideal. An ideal <91 is called nilpotent if for each s in
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93 there i; an n such that s” = 0. The sum of all the nilpotent
ideals is called the radical. By a matrix algebra we mean a set of
matrices which is closed under addition and multiplication which forms
a vector space over its field of-definition.

A Lie algebra is an algebra in which (S,+) is a vector space and in
which the product (denoted by [ , ]) is bilinear, that is, for x, y
and z in S we have [(x+y),z] = [x,z]+[y,z] : [x,(v+2)] = [x,yl+[x,z]
and alx,y}] = [ax,vy] = [x, y]. In addition [ , ] is required to satisfy
tﬁe c0nditi§ns [x,x] = 0, [[x,y),2z)+[[y,2]),x)+([z,x],y] = O. The latter
condition, known as the Jacobi identity, is the substitute for associlativity.

We need only be concerned with Lie algebras for which S is a set
of n by n matrices whose entries are real numbers. The Lie product is
the commutator [X,Y] = kY - YX. It is easy to see that this product
satisfies the above conditions.

Let {Hi} be a set of n by n matrices; the Lie algebra generated
by {Hi} consists of {Hi}’ all the elements obtained from {Hi} by
repeated commutations, and all the linear combinations of these. A
subalgebra # of a given algebra is called an ideal if [ ¥, Z)1& ¥
i.e., for all X e @ and Y € & the product [X,Y] belongs to Z.

The set of all elements of ¥ which are the result of commutation
of some two elements form the derived algebra. This is denoted by Z'.
Clearly %' is an ideal of %. The derived algeﬁraAOf &' is denoted

by #". Continuing, we have the derived series

(h) (h+1)

P e 2" oo Z < 7 coe

A Lie algebra # is said to be solvable if éf(h) = {0} for some h,
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The sum of two solvable ideals is again a solvable ideal. The radical
of & is the sum of all of its solvable ideals.

The Lie algebra % 1is said to be semisimple if its radical is {0}.
It is called simple if it has no ideal other than & and {0}, and if

L' +# 0. The last condition serves to avoid trivial cases.

The main source of knowledge about the structure of associative
algebras comes from Wedderburn's theorem. This result can he found

in reference [13] as a statement about rings.

There are two main structure theorems of Lie algebras. The first,
known as Levi's Theorem states that if ¥ is a finite diﬁensional Lie
algebra with radical é?o, then there exists a semisimple subalgebra
5?1<:<Q? such that given X ¢ £, there exist unique X_ € 5?6, and

For the proof of this theorem

-unique X, € 5?1 such that X = X, + X

1 1°
see Jacobson, 115]. The second structure theorem explains what happens
to the semisimple part and goes like this. A finite dimensional semi=
simple Lie algebra % may be decomposed into the direct sum Z.=
yl @ 92 @ !Zr , where the Qi are ideals which are

simple algebras.
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10. Appendix on Linear Continuous Time Systems

n
Consider the standard time invariant linear system x(t) € TR ,
u(t) € R" |
x(t) = Ax(t) + Bu(t) ; y(t) = Cx(t) (10.1)

Suppose that we assume that this system is controllable and observabie.

Now consider the set of alllpossible maps of the state at t = 0 into
the state at sometime later which u can generate. Clearly these maps
are of the fomm
At t A(t-0)
x(t) = e x(0) + J e Bu(o)do
0
which is an‘affine map. This set of maps,which constitute the semi-

group of the system, satisfy a very simple differential equation of

the form é(t) = U(t)S(t). More specifically,

d [éAt xa] [A Bu(t)] [eAt xa]
dt | o 1 0o o 0 1
where
t A(t-0)
xa(t) @ ! e Bu(o)do
0

The subset of the n-dimensional affine group which consists of

At
F= 0 [e x] H x € Range of {B,AB,...An-lB}

g0 LO 1
is in general not a group since t is restricted to bg nonnegative. It
willvbe called‘thé semigroup of the linear system by analogy with the
standard definition of the semigroup of a machine in automata theory.

Notice that having the solution of the semigroup equation
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[A Bu(t)][sll(t) slz(t)]
0 o 0o 1

with the initial condition being the identity matrix (the identity in _#(n))

__é [Sll(t) slz(t)]g
dt | o 1

gives the solution of equation (10.1) via the rule

[X(t)] [x(o) '
= S(t)
N



AVERAGE VALUE CRITERIA FOR STOCHASTIC STABILITY
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INTRODUCTION
v

Many problems in control and other areas of anrplied mathematics lead to
stability questions for dynamical svstems which are described bv mathematical models
involving time-varving parameters. Fteguentlv one mav assume that these time-
varving parameters are stochastic processes with known statistics. Tvpical examples
of interesting applications which lead to such stochastic stability auestions are
the stability analysis of‘numerical computations in the face of round-off etrdr.
systens involving the human overator, sampled data systems with jitter in the sampl-
ing rate, mechanical svstems subject to random vibrations, and economic svstems
which model some of the uncertainties as variable lags.

Essentially all of the above examples lead toc mathematical models in which the
stochastic processes enter the model i{n a multinlicative way. It is for this class
of systems that the stochastic stability question becomes interesting and challeng-
ing. In contrast, when the stochastic processes enter the model in an additive.way
as, for example, in the linear quadratic theory, then the stochastic stability
question dsually reduces to the stabilitv of the deterministic svstem obtained by

. putting the stochastic nrocesses equal to zero.

In this paper we will analyze a class of stochastic svstems and obtain various
explicit stabilitv criteria. Before we descride the model iet us introduce the
following notation: R denotes the real number svstem, R" denotes n-dimensional

mx
real Euclidean space, R ® denotes the real mxp matrices, prime denotes transpose,
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> 0 (> 0) means that a symmetric matrix is nonnegative (positive) definite, A[‘]
denotes an arbitrarv eigenvalue of a matrix, whereas Amax[-] (Amin[-]) denotes the
maximum (minimum) eigenvalue of a matrix with real eigenyalues, Re denotes the real
part of a complex number, max [-,:] (min [.,-]) denotes the maximum (minimum) of two
real numbers, and £{.} denotes the expected value of a random variable.

We will study the stabilitv of the linear system I described by the differential
equation:

I : x = Ax - BK(t)Cx ,

where x € R® and A € R, B € RT™, and C ¢ R

are constant matrices and K(t) is
a time-varying function taking values in Rme.. The differential equation I will be
viewed as describing the closed -loop dynamics of the feedback interconnection of the
stationary linear system

Zl Pxg= Ax, + Bu1 A Cx,y

in the forward loop, and the memoryless time-varying linear system
22 Ty, = K(t)u2

in the feedback loop. The feedback interconnection equatibns are given by:
vy . =¥y Uy =Y. It is easily verified that we indeed have J = Zix22| feedback.

This feedback system is shown in Figure 1.

xl = Axl + B“l_ y1

v, » Cx

Figure 1: I viewed as lezz) feedback.

We will assume throughout, for simplicity, that £, = {A,B,C} is minimal

1
(i.e., (A,B) is controllable and (A,C) is observable). The transfer function of El
is given by G(s) = C(Is—A)-lB. The gain matrix K(c).is assumed to be a stochastic.

Vprocess whose properties will be described in more detail later. We seek conditions

Ry
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on the statistics of K(t) which guarantee the stability of £ (to be defined later).
If we consider the equation for I from a state space point of view then it is
apparent that the case.where K(t) 1s a colored process is quite distinct f;om thé
case that K(t) is white. If K(t) is white noise then the svstem behaves pretty much
like a linear one and we may use most of the theory on stochastic differential
equations directly as for example the Lyapunov techniques for stocha;fic svstems
(see e.g., Kushner [1967], Chapter 2). 1If on the other hand K(t) is a colored pro-

cess then we should model 7 as something like:

2=Fz+0w; K= Hz

= Ax - BKCx

M-

with w white noise. This case is thus inherently nonlinear. The results obtained
in this paper fall into two categories. In the firstc ;lass we consider the colored
case and show how one mav use what are essentially linear techniaues to obtain con-
ditions for almost sure asvmntotic stability of I. The method of nroof uses
Wazewskl's inequality previously exploited in this context bv Infante [1968}. These
criteria are thus independent of the autoco;relation function of K(t).

The second class of results considers the white noise case and shows how
one may use the frequencv-domain stability criteria for linear gvstems in order to
obtain criteria for mean square stabilitv of I. This aquestion has been studied
extensivelv in the literature and the results obtained here comnlement those obtain-

ed bv Willems and Blankenship (1971) and Willems {1972].

1. AVERAGE VALUF CRITERIA FOR ALMOST SURE STOCHASTIC STABILITY

mXD
In this section we will assume that the entries of the gain matrix XKft) £ R

are stationarv stochastic nrocesses satisfving an ergodicitv hynothesis which ensures

mxo
the almost sure equalityv of time averages and ensemble averages. Thus 1f F : R~ =R

is integrable then we assume that almost surelv:

(=]

t 4T
! F(K(1))dT .

EIF(K(t))Y = E{FKO)} = 1im %

T t

[
We will consider almost sure asymptotic stabilitv. This is defined as:

Definition 1: £ is said to be almost sureln aswurptoticallu stable if the eaualitv
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lim x(¢) = 0 holds with probability one for all given initial conditions x(to).

£-»c0

1.1 A Stabilitv Criterion for Completelv Symmetric Svstems

Consider the system Zl. There are various wavs of describing its res#onse
function from the inputs to the outputs. The most commonlv used input/output des-
criptions of I give either its transfer function G(s) 4 C(Is-A)-lB or its impulse
response W(t) 4 CeAtB (t > 0). There is hovever an alternative input/output des-
cription which, alrhough it has roots éoing back at least as far in time as do the
concepts of transfer function and impulse response, has become particularly pre-
velant in the last half decade. This descrintion gives the so-called Fankel matrix

of Zl defined by:

A -
CB | caB cANB
caB | caZ | ... | ¥k | ...

w & : = : n | e w0y
ca¥s Mly L g .

It turns out that many qualitative input/output properties of 7) are most easilv des-
cribed in terms of H.

It is well-known that there exist manv minimal realizations {A,B,C} of a given
C(s), W(t), or H, but that thev all mav be recovered from one of them by the transfor-
mation group {A,B,C} 3 {SAS-I,SB,CS-I} with S an arbitrary invertible element of
R™*™,  The dimension of a minimal.realization of a glven transfer function is called
the Mcillan degree. '

We will consider the following class of s?scems 21:

: , *
"Definition 2: I, is said to be completely symmetric if m=p and. H = H' > 0.

*The infinite matrix H is said to be nommegative definite (denoted by > 0) if all its
N

i+
finite truncations are nonnegative definite, i.e. if Z z!CA szJ > 0 for all
i,j=n

N and for all sequences {zi}g.
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The following lemma gives a very useful alternative characterization of
completely symmetric systems. Its proof, which 13 not germane to our purposes, is
an immediate consequence of some known facts in realization theory and is left to

*
the reader.

Lemma 1: I i{s completely symmetric if and only if its tramsfer function G(s) =

-1 . . . . ' '
C(Is-A) B admits a realization {Al'Bl'cl} with A=Al and B, =Cl.
Thus Zl is completely symmetric if and only if there exists a nonsingular (nxn)

1)'. Completelvy svmmetric systems

matrix S such that SAS-1 - (SAS-I)' and SB = (CS~
have the property that the eigenvalues of A are all real. This is in fact also the
case after applving symmetric feedback and it may be shown that Zl is completelv

symmetric if G(s) = G'(s) and i{f A-BKC has real eigenvalues for all K = K'.- Note

also that I is completely svmmetric if and only if its transfer function admits the

k R
partial fraction expansion G(g) = Z ——%— with R, = R! > 0, 1If mepsl then{_ is
{=1 s+ ‘ i i- 1

completely symmetric if and only if the poles and the zeros of the transfer function

G(s) are real and interlace, {.e. if Xl.kz,...,kn are the poles and {f Z192yseees2,

are the zeros of G(s), then r = n-1, Ai and 2, are real, and Al > z, > Az > ie. >

LY > Xn. This pole-zero pattern is illustrated in Figure 2.

Im

— Y N\ e — O — Re
z, A

N p S S |

Figure 2: Typical pole/zero pattern of a completely eymmetric system.

Completely symmetric systems are a natural generalization of relaration systems
(see Willems [1972]) which are completelvy svmmetric systems which satisfy the

additional stabilitv requirement Re A[A] < 0. Thus 21 is a relaxation svstem if and

" only if its transfer function admits a realization {Al,Bl,Cl} with A1 = Ai < N and

B, = C There are various other ways of defining a relaxation svstem. It mav be

1 1°

*The backgrourdmaterial of realization theory used here may be found in Brockett
[1970], Chapter 2, or Kalman [1969], Section 10.1l.
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shown that Xl defines a relaxation gvstem if and only 1f H = H' > N and ot = oH' < 0,
where OH denotes the shifted Hankel matrix of Zl' {.e., H with the first block row

(or column) deleted. Alternativelv, I defines a relaxation system if and onlv if

1
its impulse response W(t) = ce™ts is a completely monotonie function on [0,=), {i.e.
k
W(E) = W' (e) and -D)* L w(e) > 0 for all £ > 0 and k = 0,1,2,... . Relaxation
dt

gystems play an important role in phvsics. They describe the response of various
classes of systems such as R-C and R-L electrical networks, viscoelastic materials
thermal systems, ;nd chemical reactions.

We now state the main result of this section.
Theorem 1: Asswme that 21 18 completely summetric and that K = K' almost surely.
Let X;;; 4 g{kmax[A-BKC)). Then L is almost surely asyrmptotically stable if
X:;<o.
Proof: The proof of Theorem 1 follows an argument due to Wazewski adanted to the
case under consideration (as in Brockett [1970], Section 32, Exercise £).

Since Zl is completely symmetric, there exists a nonsingular maﬁtix S such that
ap = sas™h = (sas?
fies the equation:‘

'c"
) Al and B 1 1

1" SB = (CS_I)' = Ci. Let x. = Sx. Then x, satis-

. o - .
X, (A1 BlK(t)Bl)x .

Let V(xl) = xixl. Then along solutions of the above equation we have:

V(xl) a 2x1(A1—31K(t)Bl)xl ,

which, since Al_BlK(t)Bi is symmetric, shows that:
V(x;) < 22 TA; =B K()BIIV(x,)
Since Al-BlK(t)Bi>and A-BK(t)C = S-l(Al-BlK(t)Bi)S are similar matrices, this vields:

V(x) < meax[A-BK(:)C]V(xl)
Thus

t
V(xl(t)) < V(xl(to))exp(Zj Xmax[A-BK(T)C]dT)

t
6]

Finally by the ergodic hvpothesis

o

1m 2 X

{t +T
Tosco T

X [A-BK{T)CldT =
max max

t
(o]
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18 almost surely negative, which shows that lim V(xl(:)) = 0 almost surely. Thus
[

1im xl(t) = S 1im x(t) = O almoast surely, which proves the theorem.
L+ | Saad

Note: 1. Theorem 1 predicts stability {f Re A(A) < 0 and K = K' > €I > 0 almost
surely. It then reduces to a special case of the multivariable circle criterion.

The major difficulty in applying Theorem 1 is that as a rule )\_m-;- will be
difficult to compute from the distribution of K since Xmax[A-BKC] ‘is .a very nonlinear
function K which does not even admit a general analytic expression. This difficulty
may however be overcome in the important special c;lse that there is only one stochastic
gain in I:

Theorem 2: Asswme that mep=l and that Zl ta completely symmetric with transfer
function g(s) = C(Is-A)’lB. Let 2z, be the largest zero of g(s) and assume that K(t)

poasesses the demsity function p(K). Then L ts almost surely asymptotically stable

if:

1 g (0) /3o
op(- ) do >0 .,
[: r(0) 32(0)

Proof: By Theorem 1 it suffices to nrove that the integral in the theorem statement
equals -Amax . Consider therefore )‘maxrA-BKc]' Since the eigenvalues of A-BKC are
the poles of the system obtained after putting the constant feedl-;ack gain K around

z it follows that these eigenvalues are the zeros of 14Kg(s). Since the noles and

1’
zeros of g(s) are real and interlacing it follows from a simple root-locus consider-

ation that the maximum zero of 1+Kg(s) is a monotone decreasing function of K which

varies from 2z, for K = ® to +® for K = —», The gain K and Xmax[A-BKC] are in fact

1
related by g()‘max[A-BKC]) - - % . Thus, bv a standard formula from nrobability theory

we have that:

1
g(o

ag(0)/3c0
’ sz(c)

é’{kmax[A-BKC]} = E op(- ) ) | do

which yields the desired result. B
Notes: 2. Figure 3 shows the behavior of the functions g(o), ~1/g(0), and
Xmax(A-BKC). The qualitative behavior of these functions is very well understood as

a result of exhaustive analvsis of R-C and R-L electrical networks (see, e.gp.,

Guillemin [1957], Chanter 4).
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t g £(0)

Xmax(A-BKC)

Figure 3: Sketch of g(o), i(0) = - E%ET , and Amax(A-BKC)

3. Theorem 2 indicates the destabilizing effect of the stochastic gain. To see this,
let us assume (essentially without loss of generality) that &(K).= 0. - It mav be
shown that Amax(A-BKC) 1s a strictly convex function of K which by Jensen's in-
equality (see Feller [1966], p. 151) implies that T;;; > Al with equality hol?ing if
and only if K = 0 almost surely. Note also that Theorem 2 is easily extended to the
case where K does not possess a density function.

n-1
n—ls +...+q°

n n-1
sMp__ 8" H. 4

q

and let Xl,...,kn and ZyseenaZn denote the poles

4, Let g(s) =

and the zeros of g(s). Thus Al >z, > Xz > L An. Let Xmax(K) - Xl(K) > L.

[ A >
n-1

Xn(K) denote the zeros of p(s)+Kq(s). From root-locus considerations it is easilv seen
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for K> 0 and 1=1,2,...,n (where we have put

that z, < xi(x) < xim) < A‘('Kl <_zi—1 . :
z Q@wand 2 @ -»), Since - z A, + Kg - - Z A, (K) we thus obtain the follow-
o n =1 i n-1 (=] i

ing upper bound for Amax (see Figure 3):

‘ kl for k> 0
max )
I' A KRy for K < 0
This gshows that [ {s almost surelv asvmptotfcally stable if:
A K-A
1’_'—1]))0
n-1 n-1

&{min[-

which requires in particular that Al < 0.
Examples: 1. 1If K is uniformly distributed between the limits K_ and K+ then L is

almost surely asymptotically stable 1f:

z, z_ z. 4
g(z) ~ 2(z) !z R0y > °
+

A a
vhere z, = Amax(K+) and z_ = kmax(K_). This inequality is easily verified directly

1
from the graph of f(g) = - 2@y

2. The limiting behavior of Amax as K+ + ® {g given by (see Figure 3):

1
A -
max I -Ka__.+a for K » ~=»
n-1
n n-1 9.9
wherea= ] A - J 2z = - p_,. Thus as K becomes more and more distributed
a1 gt 9y

at large absolute values we see that almost sure asymptotic stability results if:

' E nil fﬂ
z,P+ () A, - zJP_ - q__ K p(K)dK < 0
1+ =1 i 11 17 - a1,

where P, 2 P(K > 0) and P_ € P(K < M. For the unifornly distributed case studied in

Example 1 with K+ > 0 and K_ < 0 this condition requires

le ni‘ 1 KE
z,K + () A, - z)K +q _, <0
17+ 11 i a1 1 n-1 2

3. Consider the equation studied by Iafante [1968}, p. 1ll:

. f(t)-8 . .o B
i= =y n + Ac : é 7 0 Aec
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wvhere 8, £, A > 0. This equation describes the kinetics of a simple nuclear reactor

problem. It is easily seen that Theorem 2 applied to this case with

g(s) _% ———sﬂe— and k(t) = -f(t).
S(S+E+ X)

Thus almost sure asymptotic stability results if:
f" (0-nyp( LTETB) 0 Lyl g
0 ° o?

vhere p(‘) denotes the density function of f.

1.2 A Frequency-Domain Stabilitv Criterion

In this section we will derive another criterion for almast sure asymptotic
stability of the system I. We first recall the definition of a positive real
function:

Definition 3: Let H(s) be a matrix of real rational functions of the complex variable
8. It is said to be positive reai if H(s) + H'(8) > 0 for all Re s > 0, s ¥ poles
of H(s).

There exist various equivalent conditions for positive realnessL Such conditions
may be found in most books on electrical network synthesis (see, for example, Guillemin
[1957), Chapter 1, or Newcomb [1966]1). Positive real functions play a fundamental
role in the theory of passive systems, particularly in the analysis and synthesis
of electrical networks. They have recently also shown to be an essential tool for
obtaining frequencv-domain stabilitv criteria for feedb#ck systems. A time-domain
condition for positive realness is piven in the following lemma, the celebrated
Kalman-Yacubovich-Popov lemma:

Levma 2: Conaider the minimal system:

i - Fz‘+ Cv ; w = Hz,
and let o be a-real mumber. Then H(I(s—c):F)-lc 18 positive real if and onluy if
there exists a solution O = 0"> 0 to the relations:
F'Q + QF < -200 ;
oG = H' .

For a proof of Lemma 2 we refer the reader to Willems [1972].
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. TheAvalue of the above lermma in stability analysis lies in the fact that the
duadratic form induced by the matrix 0 yields a very suitable candidate foria
Lyapunov function. It plays a crucial role in the following theorem which is the
main result of this section:

Theorem 3: Let m = p. Then L is almost surely asymptotically stable if there erists

a congtant (mom) matrixz A and a real number © such that:

(1) A+A'>0 ;
(11) F(s-0) £ G(s-0) (1-A(s-0)C(s-0))"1 is positive real;

and  (11i) é’{min[o,xmm[(x+x')(A+A')‘11]}‘>n.

Proof: We will assum; that (I-ACB) is invertible and that the McMillan degree of
F(s) is n. The general case may be resolved by a subsequent limiting argument which
18 left to the reader.
It 18 easily seen that F(s) is the transfer function of the system:
z2=Az + B(vtAw) ; w=Cz,

or

£ = (A+B(I-ACB) IACA)z+B(I-ACB) >y ; w=cCz .
This system is minimal since the McMillan degree of F(s) is assumed to be n. Thus

by condition (ii) and Lemma 2 there exists a matrix O = 0' > O such that

[a+B(T-ACB) "MAcA) 'o+ara+B (1-AcB) "IAca) < -200
and
OB(I-ACB)-I =C'

Let S be an invertible (nxn) matrix such that S$'S = Q and let X, = Sx. The

equation for x, is given by:

1
X = (I\I-BlK(t)cl)x1

where A = SAS™), B, = SB, and €, = CS”'. Moreover, B, = C](I-AC;B)) and

1 1 1

' ' ' - » - x!
(A1+C1AC1A1) + (A1+C1AC1A1) < -20I. Consider now the derivative of V(xl) x %+

yiAyl, where v, - Clxl, along solutions of the ahove differential equation. A simple

calculation using the above relations shows that:

Q(xl) 5.-20xix1-2yik(:)yl - —20V(x1)+2yi(cA—K(t))Y1 .
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Let A(t) = Xmin[(K(t)+K'(t))(A+A')-1] and let P be a nonsingular matrix such that
P'P =A #A', Since A(t) = kmin{Phl(K(t)+K'(t))(P')-l] it thus follows that yiK(t)yl >

X(t)yikyl for all ¥vy- Hence

V(x)) < -20V(x)) + 2(0-) (©))vihy,

We now distinguish two cases:

(¢9)] A(t) > o which implies 6(x1) < -20v(x1) :

and 1) A(t) < o which, since V(xl) > yi A yl, implies:

Vex)) € =20V(x)) + 2(0-A(E)V(x)) = =AWV,

Hence -
\'r(xl) < -Z01n[0,A(2) W (x,)
and
t v ..
V(xl(t)) < V(xl(to))exp(— 2 IA min{A,0(t)]de) .
t
© o
By the ergodic hypothesis and condition (1ii) this indeed implies that lim V(xl(t))-o
A L. . e
almogt surely. Thus lim xl(t) = S 1im x(t) = 0 almost surely, which proves the
) t e g
theorem. B

Notes: 5. If K+ K' > €l >.0 almost surely and if G(s) is positive real then
Theorem 2 predicts almost sure asymptotic stability by considering the limit o -+ O
and A - 0. 1In this ;ense Theofem 2'15 fhus a generalization of the circle criterion.
The advantage of the theorem i3 that it allows the gain K(t) to become negative
provided however this 1s compensated by K(t) being sufficiently positive at some
other time. '

One of the disadvantages of Theorem 3 is the inherent difficulty in verifving
the average value condition from the distribution of K since Xmin{{(K+K’)(A+A')-1]}
is a very nonlinéar function of K. In the scalar case however one may resolve the
various conditions in Theorem 3 much further. Thus we arrive at the following

more explicit criterion for systems with a single stochastic parameter:

n-
qn_ls l+...+ao

Theorem 4: Asawme that m = p = 1 and let g(s) = C(1s-a) 1B =
2peprem 4 n n-1
] +nn_ls +...+p

denote the tramafer fumction of Zl. Then I 18 almost surely asumptotically stable

]

{f there exists a real constant.f such that

(1) E{min(R,k}} >0 ;
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(#i)‘ the poles of G(s) lie in Re s < —on_ls H
and (111) the locus of G(jubqn_lg), —~ < @ < o, does not encircle or

intersect the closed disc centered on the megative real axie of
the complex plane and passing through the origin and the point - % .

Proof: Bv Theorem 3 it suffices to show that there exists a constant X > 0 such
that F(s-0) = g(s-c)(l-k(s-c)g(s-c))-l 15 positive real and &{min[oX,k]} > 0. Note

that this implies o > 0. Now F(s-0) is positive real if and only if F-I(S-G) =
L. A(s-0) is positive reél. Since F-l(s-c) = ( 1

g(s-0) -1

r(s) a polynomial of degree at most (n-1) it follows that A <

r(s-0)
q(s-0)

- M) (s-0) + with

and that F L(s-0)

n~-1
.will be ‘positive real for some X if ‘and onlv if it is nositive real for A = L ,
. . . o n-1
which is thus the optimal value of A to consider. The condition qn-l > 0 follows

" from the frequency domain condition (1i1) as é‘resuit of the behavior of g(jw-o) for

1
In order to complete the proof of the theorem i::suffices to show that F-l(s-c)-
1 1

w-+®, Pick now o = Bqn_

s + 8 1s positive real. By one of the test of positive real-
n-1 :

ness this can be achieved by proving that Re F—l(s-o)];sjm > 0 and (since F-l(s-c)
has no more zeros than poles) that the roots of d(s-q) lie in Re 3 < ¢. The real part

condition comes down to asking g(s;o)] to have the non-intersection property

s=jw
stated in condition (ii11). 3y the non—eﬁéifclemen;'condition the roots of n(s-0)+
kq(s-0) lie in Re s <0 for k >'B. By letting k + = this implies that the roots of
é(s-U) iie indeed in Re s < g. By the ﬁon-infersecgion property g (jw-c0) # N for

-» < i < o and we conclude that the roots of q(é-o) indeed lie in Re 8 < ¢ as desired.
Notes: 6. It may be shown that conditions (i1) and (i1i) of Theorem 4 will be veri-
fied for B :_81 if they are verified for Bl. Thus th optimal 8 t§ consider is the

smallest number which satisfies condition (1) of the theorem.

7. 1If K has density function p(K) then condition (i) of Theorem 4 requires that:

8
he) £ 8 fm p(K)dK + I Kp(K)dK > 0
B8 -
Now ﬂgéﬁl‘Z 0, n(0) >0 and h(®) = £{K}. Thus there exists a B such that h(2) > N

*
if and only if <&{K} > 0, and 1f o, then there exists a 8 such that h(f) > Q for

B > B*.. Thus Theorem 4 will predict almost sure asymptotic stabilitv of I
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if &£[K] > 0, if the poles of g(s) lle in Re 8 < qn_lﬁ* and 1f g(juhqn-lﬁﬁ) satisfies
the frequency domain condition of Theorem 4. This procedure lends itself very nicely

to the graphical analysis illustrated in Figure 4. -

Re

h(B)

Im

-1/8*

*
g(ju-q _,8)

Figure 4: Illustrating the application of Theorem 4.

Examples: 4. Assume that X is uniformly distributed between K_ and K, with K <n
and K, +K_2> 0. Then 8* = K, - EZ-KE . Expressed in terms of the spread AK-K+-K_

KK * * * oK 2
and the mean M = 3 this yields 8" = - M )° which in the range of interest

*
é% 2 M > 0 shows that B 1increases with AK for fixed M.. This again indicates the

destabilizing effect due to the uncertainty in K.

5. Let I, be a completely symmetric system as defined in Section 1.l. Then con-

1
ditions (i1) and (1ii) of Theorem &4 will be satisfied as long as qn_lﬁ < —Xl with 11
A o
the largest pole of g(s). The stability condition then becomes ¢ {min[- El— ,K1} > 0
n-1

which is similar to but more conservative than, the condition obtained in Note 4. Thus
Theorem 2 which only apﬁlies to completely symmetric systems givés a sharper stability

estimate than Theorem 4 which applies to general systems.

2. ANALYSIS OF THE MEAN‘AND THE COVARIANCE EOUATIONS
This last section of the paner 1is concerned with the stability analysis of the
mean and the covariance of the state of I where K(t) 1is assumed to be a white

stochastic process. For simplicitv we will consider only the case in which the
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process K(t) 1is scalar valued, but we will treat the non-stationary case. If we
denote the mean of K(t) by %(t) and the variance by ;z(t) then I 1s described by

the stochastic differential equation:

I' : dx = (A-k(t)bc)x dt + q(t)bex.dB ,

where A € Rnxn. b e RnXI, cE Rlxn, and B denotes a Wiener process with zero mean

and unit covariahce. This stochastic differential equation 15 to be interpreted in
the sense of Ito and we will take it as the stafting point of our analysis.

It 1s well-known that if k(t) and q(t) are sufficiently smooth (e.g., locally
integrable) then for all given x(to) there exists a uniaue solutioy to L' for
£2 e . Letu(e) & £ix(v)), T() & Elx()x'()}, and R(e) & [ (x(0)-1 ()
(x(t)-u(t))'} denote respectively the mean, the second moment matrtx, and the

covariance matriz of x(t). These are governed bv the equations:

U = (A-k(t)be)u ;

F e (AR(E)bOTHT (A-K(0)be) +a2(t)beTe'd"
and . R(t) = T(t)-u(e)u’ (o),
with initial conditions u(t ) = x(t ) and'r(to) - x(to)x'(to).
We will be concerned with the asymptotic properties of these variables. The
relevant stochastic stability concepts are now defined:
Definition 4: L' is said to be asymptotically stable in the mean, in the mean
square, or in the covariance if, respectively, 1lim u(t) = 0, 1lim I'(t) = 0, or

to | Saad
1im R(t) = O for all given initial conditions x(to).

40
: It 1s easily seen from the relations I'(t) = R(t)+u{t)u'(t) and R(t) = R'(t) > 0
that mean square asymptotic stability implies stabilitv in the mean and in the
covariance. The stability of the mean i1s a standard deterministic stability

problem for which manv criteria have been derived. These criteria involve the trans-
fer fﬁnction g(s) = c(Is-A)-lb and properties of k(t) as, for example, its bounds
(e.g. in the circle criterion: see Brockett {1970), Section 35), bounds on its

derivative, or its periodicity. The stability of the differential equation which

expresses the evolution of the second moment matrix T'(t) is much more intricate



-48-

to analyze and we will show how criteria like the multivariable circle criterion
may be used. If 32,(:) = 0 then its stability is equivalent to the gtability of
the mean equation, whereas if ;z(t) $ 0 then more stringent conditions will have
to be imposed. .

2.1 Multilinear System Theory

\.

It is easy to see that if 3 and x, are vectors which satisfy the linear
equations:
. : n,
X = Al(t)x1 iox € R N

"2
and X, = Az(t)x2 i Xy € R °,

then the product xlxi satisfies also a linear equation, namely:

e %%y = AORXS + xyxiAL(e)
By taking xy - x, we see that if x satisfies -a linear equation, then so does
xx'.

This idea generalizes from quadratic formg to homogeneous p-th degree forms;
These facts havétbeen known at least since L&apunov's tﬁesis, but théy héye to
the.preseng time been used very little in system theory. 'They may for example be -
e;ploiced in the'miniﬁization of homogeneoug performﬁnce'méasutes of degree.p > 2
~ for linear dynamical svstems.

The above ideas may be psed in setting up transfer functions for a class of
bilinear systems. We will make some use of the Kronecker product denoted here by .

® . Thus the Kronecker product of M € R™™ and R ¢ Roxq is the element

M ® R e RP™ gefined by:

r A
mllk mlzR ces mlqR
m,.R m, . R ‘oo -m, R
21 22 2
M@ RS A
R e ' R
mle mpz ' mpq L

The main use of this notation is that if an (nxn) matrix O is written in lexo~

2
graphic notation as the n -vector
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OV - C°1(q11' q12' coey qln’ sy qnl' qnzt ceey qnn)

then (HQ)V = (I @ M)Ov.
Consider now the following lemma:
Lemma 3: Let {A,b,c)} be a minimal realization of the transfer function g(s) =

c(Is—A)-lb. Then the differential equation:
0 = AQ+ 0A+bv' +vb' ; w=co,

defines a minimal realtization on the Eigill dimensional space of symmetric (nxn)

matrices of the transfer function:

3[2](8) 2 (c@IHI @ )(Is-IRA-AR® I)_l(b@ +I®b)
We will not give a detailed proof of this lemma. The proof exploits the fact

that the above matrix equation describes the hilinear svstem

E% xx' = Axx"' + xx'A' + bux' + xu'b' ;

yx' = exx'

where x = Ax + buj v = cx.

The dynamical svstem identified in the statement of Lemma 3 plavs an imnortant
role in Ehe analvsis of the covariance enuatign under consideration. We know
from this lemma that controllabilitv and observabilitv will be preserved. The

poles of g[zl(s) are given by {XI(A)+X (A)}, 1,j=1,...,n. There appears to he no

3

convenient general formula for deriving glz](s) from g(s). In a specific case

however, it is a relatively straipghtforward matter to calculate g[zl(s).

Example: K. Let [A,b,c) be the standard controllable representation (see Brockett
1

(19701, p. 106) of G(s) = - - Then
s +as+b
2(s+2a) | 4 ]
212 (sy = - 1 [ ’

53+3332+(2a2+4h)s+bab Lé(s+23) ! ?sJ

2.2 The Circle Criterion for the Covariance Fquation

We now return to the covariance eauation:

T = (A-K(t)be)T + T(A-k(£)he)' + q2lt)belc'h*
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which we model as the feedback system:
Zi : 6 = A0 + QA'+bv'4vb'+bwb' ; v = O, z = cOc',
' - =2
Zz tve -k(t)y, w=gq(t)z

It follows from Lemma 3 that Xi is completelv controllable and completely observable.

Let )
- G.,(s) G (s)]
&(s) é[ 11 ! 12 ],
chl(s) | G229)]
where v(8) = 6, (s)v(s) + 6 ,(s)w(s)
and - z(8) = G, (8)v(s) + C,o(s)w(s)

denote the transfer function of Zi. It is easilv calculated that G(s) is given bv:

- c®@I+1 vac- ’ -1 -
G(s) = ® (Is-A@ 1-I1® A) (bPI+IHL| b ®Db)
c c ’ 7 ) .

Thus the stability of the covariance equation is equivaient to the stability of a
deterministic feedback svstem with (n+l) feedback loops, with transfer function'

G(8) in the forward loov and gain matrix

B !—E(t)lv i n ]
F(t) = [ 5 l -Ez(tﬂ

in the feedback loop.

The multivariable circle criterion and its various generalizations is thus
immediatelv applicable to this situation. We will illustrate this onlv in the

o+l and let matrix norms be

simplest case. Let ||-]| denote some norm on R
induced norms. The small loop gain theorem due to Zames [1966]‘thus leads to:
Theorem 5: Assume that Re A[A]l < 0, Then L' is asymptoticallu stable in the mean

square if:

( sup ||5(jm)||)( sup IIP(;)!I) <1,

-0y 00 -~ £ <o
Unfortunately {t does not appear to be an easy matter to express the above
criterion as direct conditions on the original transfer function g(s) and the

functions E(t) and Ez(t). In the case that k(t) or Hz(t) are time-invariant



Q

-51-

however it is possible to obtain a criterion which is a great deal more specific:
Corollarv 1: Assume that k(t) = k is constant. Then I' is asymptotically stable

in the mean square if:

( sup 32eN(] (ce® IG5y 1
—oo¢ tee 0

Proof: The equation for ' may be modelled as the feedback system:

0 = (A-kbc)Q+O(A-kbc)' + bwb' ; z = cOc' ,
Ve qz(t)z .

The first system has (ce A KPE)ty,2

as impulse response. Since this is always
nonnegative it follows that iw Fourier transform attains it maximum for w = 0,
Since this maximum is given by'[w (ce(A-kbc)tb)zd: we obtain the corollary by

0

applying the circle criterion in the scalar case. g

Corollary 2: Asswme that ;2(t) a q2 ig constant and let

82) L (@M@ IUs-ARI-IRA - 2B @)@ ) 1@ I+IE D) .
then L' i8 asymptotically stable iﬁ the mean equare if:
(1) 9° r('ce“b)zdc <1 ;
0
and (11)( sup K(t))( sup |[GQw)ID< 1
—col g™ =00 <o

Proof: The equation for T may be modelled as the feedback system:

é = AD + OA' + beOe'b' + bv' + vb' ; y = CO ,

v e =k(t)y .
The first system has E(S) as transfer function and is stable if condition (1)
is satisfied. The corollary thus follows from the multivariable circle criterion
(see Brockett [1970]), Section 33). B
Notes: 8. The conditions of Corollary 1 may be expressed in terms of frequency-
domain data. They then lead to conditions very similar to the deterministic circle
criterion (see Willems and Blankenshi$ [1971)).
9. J.L. Willems [1972] has obtained a number of criteria for svstems as the one

studied here. His criteria which are in the vein of Corollarv 1 are sharnmer and
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more explicit than those stu&ied here.

10. It is well-known that the circlg criterion gives the best conditions which
may be proven by means of a quadratic Lvapunov function. However in the case under
consideration one can obtain results by using "linear" Lvapunov functions. Indeed,
one may view the equation describing T as a differenéial equation on the space P of
nonnegative definite symmetrie (nxn) matrices. Regtricting our attention to this
subset of the vecfot space S of symmetric (nxn) matrices does not buy us anvthing
as far as stability 1s concerned (i.e. stability on P is equivalent to stabilitv on
S). However it énhances the likelihood that a marticular function will be definite
and thus greatly enlargeg the class of Lyanunov functions. For example the function
Trace [PT) with P = P' > 0 ig positi;é definite on P but not on S. It hence defines
a suitéble Lyapunov function for studying the méan square stabilitv aquestion. This

method is exploited in Willems [1972].

CONCLUSIONS
wé have presented here a number -of fesults on the stability of linear svstems
with stochastic coefficients. 7Two average valﬁe criteria for alhost sure stability
were derived and we showed how one may use deterministic stability results like the
multivariable circle crite?ion in order to obtain mean square stability criteria in

the case the stochastic parameters are white noise processes.
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Abstract

Because many systems of practical interest fall outside the scope
of linear theory it is desirable to enlarge as much as possiblg the
class of system for which a complete structure theory is available.
In this paper a class of finite state sequential systems evolving in
groups is considered. The concepts of controllability, observability,
minimality, realizability, and the isomorphism of minimal realizations
are developed. .

Results which are analogous to -~ but differ in essential_details>
from ~- those of linear system theory are derived. These results are
potentially useful in such diverse areas as algorithmic design andr

- algebraic decoding.
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1. Introduction

The purpose of this paper is to discuss certain questions related
to the modeling of the input-output behavior of dynamical systems.

We work in the context of systems with finite input, output, and state
sets which admit group operations. The motivation for this studv comes
from a desire to understand better the key results in linear system
theory (linear sequential machines included); and, more importantly,

it comes from a desire to embrace in an analogous theory a broader class
of input-output models than has here-to-fore been poésiblé. Our results
are potentially useful in optimizing the basic recursions occuring in
certain elementary numerical processes, the mechanization of algebraic
decoding procedures, etc.

This paper might be regarded as a contiibution to the investigation
of system theory in the context of universal algebras. It does not
include the vector space results as a special case but it does shed
new light on the previous proofs in that contexq'in-that it makes clear
which results depend only on the additive group structure inherent in
a vector space. We have not worked for the weakest hvpothesis for each
individual theorem but rather have sought to place all theorems in a
common framework -- one motivated by linear theory.

Thus, a number of the results and proofs have direct analogs in
linear theory, and the proofs are presented to emphasize the universality
of these arguments. Tha? is, one shéuld read these results keeping the
following in mind. In the theory of algebra, there are a few basic

igsomorphism theorems for groups, rings, vector spaces, etc., and one
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obtains the results in one setting from those in another simpiy by
replacing the key words with their analogs - e.g. group for ring and
normal subgroup for ideal. The results here indicate that the same

type of universal structure and isomorphism results will hold in a system-
theoretic framework.

One of-the most difficult steps in constructing a realization of
input-output maps is the state assignmant problem. This step is crucial
in the design of recursive algorithms, filters, etc. One of fhe
essential féatures of oﬁr work 1is .that we give a recipe for.solving some

problems of this type.

2. Finite Group Homomorphic Sequential Systems

Of course an empirical theory should avoid making'assumptions
which cannot be verified experimentally. However it is nonetheless
useful to be able to anticipate the consequences of various assumptions
about the internal mechanism of a vphenomena under study, even if we ére,
in principle, incapable of verifying or denving the assumptions.on the
basis of experimentation. In this paper we want to investigate
the properties of certain finite state systems which evolve in state
spaces which admit a group structure and we verify in a constructiQe
way the existgnce of this structure given the input-output data.

Specifically, we consider a class of dynamical models of the form
x(k+1) = blu(k)] o alx(k)] ; y(k) = e[x(k)]

where the input, output, and state spaces are the finite groups

U= (U,*), = (Y,*), & = (X,°), respectively. The maps a4 : & -+,
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b :%+ X and ¢ : A +% are assumed to be group homomorphisms.
Invoking an analogy with linear sequential systems, which are a special

case, we call this a finite grour homomorphic seaquential system.

This class of systems has manv things in common with discrete time linear .
systems. The most obvious 1is the following result.
Theorem 1 : The input, initial state, and output of a finite group

homomorphic sequential system

x(k+1) = blu(k)] o alx(k)] ; y(k) = clx()]
are related by _‘_ | j
X() = blu(k-1)] o apluk=-2)]] o --- °a° [b{u(®]] o a“[x(0)]
A k-l

8 ey 1) o a¥Ix(0)]
1::0 . - _ .

y() = c[blu(k-111* clalblul-2)111*...*c[a“ " [blu(ON] 1*c[a [x )]

k-1 : o
8in el b lua)] ) 1reakx(0) ]
i=0 : i

where ak denotes k compositions of a with itself.
- Proof: This result follows ditectly'from-the system equations and

the fact that a and ¢ are homomorphisms.

3. Realizabilitv Criteria

In this section we give necessary and sufficient conditions for
an input-output map to have a sequential realization of the type under

consideration here.
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Recall that a sequence of linear maps of E" into EY s realizable as
the weighting patterns of a finite dimensional discrete time linear

system if and only if the sequence satisfies a linear recursion.

What we find here is that a sequence of homomorphismsSof %/ into
% 1s realizable as the '"weighting pattern" of a finite group homomorphic
sequential system if and only if the sequence satisfies a ﬁémomorphic
recursion.

Let %= (U,*) and &= (Y,*) be finite groups. We then define
F(%;%) to be the finite set of maps of % into & . F(O?Z,fy) is a

seinigroup under the operation
, A
- (fg)(u) = f(u)*g(u) f,g € F(%,%)

A o
Suppose T is a homomorphism of % x ,.. X% (r factors) *= @r' into %
' r
Then T naturally induces a homomorphism f of F(%,%)  into

F(u,%) :
R(Ags..nr8,) (u) g T(AL (W), AL (W) Vu €W, ApA e P, %)

Theorem 21: Let % and % be finite groups. Given a sequence of group

homomorphisms T, :%# +% , 1 = 0,1,2,..., there exists a finite group &

i
and group homomorphisms a:X+A, b :U+X, and ¢ : X+ ¥  such that

T, () = cla’[b()]]

if and only if there is an integer r > 0 and a homomorphism

llt has recently been pointed out to us that for the special case of abelian

groups a realizability result is given in reference (6].
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p: %" +¥
such that for 1 = 0,1,2,...

p(Ti,...,T ) =T

i+r-1 i+r

Proof : (Sufficiency) Suppose shch a homomorphism exists..‘We
congtruct the analog of what has, in the context of linear system
theory, been called the standard observable realization [1]. Consider

the map of %" into itself defined by
a: (xl,xz,...,xr_l,xr) -> (xz,x3,...,xr,p(xl,?z,.;.,xr))

This 18 clearly a homomorphism if p is. Now define b, taking

W into ¥T by

b:u -+ (To(u),T (u)’°"’Tr~1(“))

and again this is a homomorphism if each of the T's is. Define c

taking %" into % according to
c (yl’yz,uo"yr) -»> yl

This too is a homomorphism. We claim that c[ai[b(-)]] a Ti(-).
This is true because of the recursion given by p :
elb (N = e(T (+),T)()seen,T 1 (+)) = T (+)
clalb(:)1] = e(T (), Tp(+)see e BT LT 50 s T 1) ()
= C(Tl(.)’TZ(');...,Tr(')) = Tl(')

c[ar-llb(')]] = C(Tr_l(')’Tr(.)’“"Tzr-z(.)) = Tr_l(')

The rest of the relations follow in a similar manner by applying

the recursion.



-62-
(Necessity) Suppose that Ti(-) = c[ai[b(-)]] for some set of ﬁoho-‘
morphisms a,b, and c with a:£2‘+£l;being defined on a finite group.
Since the set of all maps ofé%’iﬁto itself is a finite set, we see that

al = ak for some r > k > 0. Then ar+m = ak*m for all m 2 0. Then

defining p as the projection onto the (k+l)st component of an r-tuple
P(Y seresYog) =¥
we see that

5 ) = cla™™*b ()11 = efa’’"

BT LT, e Ty D) = Ty BN =1, O F

We remark that the proof shows that the only sequences of homomorphisms
{Ti} which can be realized by a finite astate system are those which are
periodic after a finite number of terms (see figure 1). .The next result

shows that a is an automorphism if and only if there is no "tail."

_ Cotollagz :'Under the hypotheses of Tﬁeorem 2, there exists a realization
with a an automorphism if and only if.Tk+£ = Tk for some £ and all

k = 0,1,2,... | |

Proof : This followé from the fact that a is an automorphism of a

finite group if and only i1if ak is the identity automorphism for some

k > 0. ‘~ "
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In automata theory, one usually considers systems described by
maps of the form f : U* > Y where U* is the set of all finite strings
of elements in U and f(uo,...,un_i) is the output of the'system at time
n following the application of the input string Ugseeost g (in this
order). One can then ask which f's come from finite group homomorphic
sequential systems.
Theorem 3 : Given finite groups %= (U,*) and %= (Y,*), and an input-
output map £ : U* > Y, This caﬁ be realized as a finite group

homomorphic sequential system if and only if: Ti 2 +% , defined by

A Ti(u) = f(u,e,...,e)
o . ;

i identitv inputs

are homomorohisms satisfying the conditions of Theorem 2)and

' = E3 . * *
f(uo"f"un) To(un) Tl(un_l) e Tn(uo)
Proof : The proof is a straightforward_calculation. 'l
Note that the second condition in Theorem 3 is equivalent to the
following: 1f ., w

9 € U* and the length of'w2 is k, then

1’
flw,,w,) = f(w,)*f (» ek) |
172 2 1’
where ek € U* is the string of k identity innuts.
For an input-output map f corresponding to a finite group homomorphic
sequential systems, one should think of the map from u*
into Y© given by
= ese = *
Yr f(uo’ ’ur—l) To(ur-?*Tl(ur-z) "'*Tr-l(uo)
Va1 = f(uo,...,ur_l,e) = Tl(ur_l)*Tz(ur_Z)*...*Tr(uo)

: _ r-1, _
Yor-1 © f(uo""'ur-l’e ) = Tr—l(ur-l)*Tr(ur—2)*"'*TZr-Z(uo)
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as being the analog of the map corresponding to the Hankel matrix. As

will be shown, the number of elements in the image space of this map equals the
number of states in the '"minimal realization' just as the rank of
the Hankel matrix determines the dimension of the state space of a

minimal linear realization.

4., Controllability, Observability, and Minimal Systems

One of the crucial results in linear system theory is that a
system is minimal if and only if it is controllable and observable
and any two controllable and observable realizations of the same
input-output map differ at most by a choice of basis for the state
space. This result has a natural analog here but the analog of a
related result, namely the.fact that any input-output map which has a
linear realiaation has a controllable and observable linear realization,

fails. This means we must characterize all those systems which have

controllable and observable realizatioms and this is done in Theorem 8
below. We note that finite dimensional vector spaces over the same
field are isomorphic if and only if they are of the same dimension,
whereas finite groups can have the same number of elements and not be
isomorphic. Thus the state space isomorphism theorems are decidediy
more interesting here.

We say that the homomorphic sequential svstem

x(k+1)=blu(k)] o alx(k)] ; y(k) = c[x(k)]

which evolves in the group £ =(X,o) is controllable from X, € X if
for any X, € X there exists a sequence of controls in the input group
such that the state is driven from X, to x, by this sequence. The syétem

is said to be controllable if it is controllable from all x £ X. Two
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states Xy, Xy € X are said to be indistinguishable if, given any input

sequence, the corresponding output sequences from the initial states 3 and X,

1 and x, are said to be distinguishable, and an input

sequence that yields different output sequences from %, and x, is said to distinguish.

are identical. Otherwise, x

between X and Xye We call the system observable if any distinct pair

of states are distinguishable.

Theorem 4 : Consider the finite group homomorphic sequential system

x(k+1) = blu(k)] o alx(k)] ; y(k) = c[x(k)]
with state group = (X,°). Let e € X be the identity 1n'gr. Then
the system is controllable if and only if it is controllable from e,
The states Xy and x, are distinguishable, if and only if the identity
control sequence distinguishes between them. Also Xy is indistinguishable
from X, if and only if xlx;1 is indistinguishable from e,.

Proof : These results are obtained by straightforward calculations. |

Thus, as iﬁ the case of linear systems, the test for controllability
reduées to a test for controllability from the identity, and the test
for observability to a test for indistinguishability from the identity.
The next theorem gives a formula for the set reachable from

the identity and the set indistinguishable from the identity.
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Theorem 5 : If the finite group homomorphic sequential systeﬁ
x(k+l) = blu(k)] o a[x(k)] ; y(k) = c[x(k)]

evolves in a group 24 = (X,%) with n elements then the set of states

reachable from the identity is

T = n"l
R {b(ul) ° a[b(uz)] ° ... oa [b(uh)]{ul,...,uh e U}
A ) n—]_b
= b (U) o 8b (U) °. eee O g (U)
The set of states indistinguishable from the fdentity is-

K = Ker c(*) N Ker cla(+)]N ... N Ker c[an-l(')]

The set 72 is not necessarily a group but ¢ is a normal subgroup of & .
Proof : With respect to the reachable set, this result is immediate

from the formula
x(ct1) = b(u(k)) o alb(u(k-1))]o ... o 8 b (1)) ] o a¥[x(1)]

and the observation that because of the stationarity of the system,
any state reachable from the identity is reachable alohg a trajectory
that contains no state more than once and thus is of length less than

or equal to n.

If the input sequence is a string of identity elements then the
output sequence from the identity state is simply a string of identity
elements in # . 1If the output from the state x is to be indistinguishable

from this string then it must happen that
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-1
c(x) = cla(x)] = ... = cla” "1 = identity

Can it happen that this set of equalities holds but c[ap(x)] # identity
for some p > n? Clearly not because for any X, ai(x) = aj(x) for

some n 3 1 > § 3 0 because there are only n elements in X. This means
that for any x and any positive 1ﬁteger p we have ap(x) = ak(x) with

0 € k € n-1, where k, of course, depends on x and p. (Actually for

n 2 2, we can replace n-1 by n-2 in the expressions for & and ¥ , but
while this is easy to prove for $£ , the result for -4 is more

cumbersome and we have thus omitted it).

To see that o4 is a normal'Subgtoup we need only observe that

the map of 2 into %" defined by

x + (c(x),cla®)],...,cla® H(x)])

is a homomorphism and J%¢ is its kernel. That .7 need not be a subgroup

~of 24"will be shown by example later. _ '

Corollary : Under the hypotheses of Theorem 5 the set # is a subgroup
if & is an abelian group.

Proof : We need only note that for all m > 0' amb(U) is a subgroug)and

thatAthe product of two subgroups of én abelian group is itself a
subgroup. | .

We now recall some of the concents of abstract realization theory
([2], Ch. 10). If A ard ® are sets and we have an input-output map

f : A> B, a factorization of f through a state set C is a pair of

maps & : A+ C and 8 C + B such that f = Boa =~ 1.e. the following

diagram commutes:

A—1I 33

N/

c
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This factorization is canonical if a is onto and B is one-to-one.

In this case, the ''size' of C is minimal in some sense. For
instance if A, B, and C are vector spaces and f, a, and B are
linear maps, and if 6, a, é is any other, not necessarily canonical, factorizatién,
then dim C € dim C. Also, if A, B, C, and C are finite sets, with C
corresponding to a canonical and 6 to any other factorization, then card(C) € -

card(a).

Suppose we have an input group 9/ = (U,+) an output group # = (Y,*),
and an input-output map £ : U* » Y that has at least one realization

as a finite group homomorphic sequential system:

x(k+1) = blu(k)] o a[x(k)], y(k) = clx(k)]
with finite state group & = (X,°). Suppose & has n elements, and.
define F : U* » y" by F(uo,...,uk) a (f(uo,...,uk), f(uo,...,uk,e),...,

-1

F(uo,...,uk,en )). We then have a factorization of F :

T S . V7

B m

where
Blu,s.norn) = blw) o abluy Do ... °ablu)

m(x) = (e(x),cax),...,ca"  (x))

We immediately see that the above factorization is minimal if and only 1if

the system 1s controllable and observable. In this case we say that the

triple of homomorphisms (a,b,c) defines a minimal realization.
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Another result of abstract realization theory is the following:
given f : A + B and two canonical factorizations - that is two sets
C and E and corresponding maps o : A=>C, & : A > 6, both onto,
and B : C + B, E : E -+ B, both one-to-one, such that f : Roa = éoa - -
then the two are equivalent, in that there exists a unique one~to-one and
ontomap Y : C »> 6, such that & = y°a and B = é°Y.

When we apply this result to the probleh of finite group homomorphic
sequential svstems, we obtain stronger results, as in linear theory,
because of the structure of the systems. -

Theorem 6 : Suppose % = (U,:) and %= (Y,*) are finite groups, and
f : U* > Y is an input-output map that has two controllable and observable

finite group homomorphic sequential realizationms

x(ktl) = blu(k)] oalx(k)] ; y(k) = clx(k)] )

z(k+1l) = glu(k)) e £[z(k)] : y(k) = h[z(k)] ) (2)

where the systeﬁ (1) evolves in a finite state group & = (X,°) and
system (2) evolves in a finite state group F = (Z,¢). Then there

exists a group isomorphism p : gra-gr such that f = pap_l, g = pb, and

h = cp-l. The two realizations are said to be conjugate.

Proof : Suppose the cardinality of & is n. Then the same is true of

5 by the comments preceding -the theorem. Let F : U* +@7n, B : Uk >,

and m : & + ¥"be as before, and define ¥: U* >3 and q : 7 + Y™ by

Glugseenru) = 8Cu) @ fglu,_do...of R(u,)

a(z) = (h(z),hf(2),...,hf" 1(2))
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Then, by controllability and observability we have two canonical

factorizations of F and the commutative diagram

'R

N
/

o]

»*

Q
=

N

W

where p is the unique one to one and onto map such that the diagram
remains coﬁmutative.

Let xg5%, € X. Then we have
qlp(x,°%,)1 = m(x,°x,) = m(x,)*n(x,) = qalp(x)1*alp(x,y)] = alp(x,)ep(x,)]

Since q is one-to-one p(x1°x2) = p(xl) o p(xz). Thus p is an isomorphism.
It is theh a simple computation to arrive at the relation between (a,b,c)
and (f,g,h). v "
Note that in the theorem,the group structure of % 1is never used,
however the group structure of % and the fact that m and q are both
one-to-one homomorphisms is used to show that p 1s an isomorphism.
This lack of symmetry in the arguments is discussed in the next section.
As was mentioned in Theorem 5, % - the set of states reachable from
the identity - need not be a subgroup. Thus, given a finite group
homomorphic sequential system, there need not exist a controllable system
of this type with the same input-&utpui description. In fact, one
might expect that a homomorphic sequential system has a minimal realization

as a homomorphic sequential system if and only if the set & of states
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reachable from e, is, in any particular realizatiom, a subgroup. The
example below shows that thisneed not be the case. If # is a subgroup,
we can restrict our homomorohisms to @, modulo the kernel of
n-1 n
(c,ca,...,ca ) : & + %", and thus construct
a controllable and observable homomorphic realization (a simple
check shows that one can redefine the homomorphisms in a well-defined
manner after extracting the kernel -- therefore there always exists an observable

homomorphic realization). Thus, for example, if there exists a homomorphic realiz-

ation with an abelian state group, there exists a controllable and observable homo~

morphic realization.
An example will illustrate these ideas. The dihedral group,

Dn’ is a group of order 2n generated by two elements x and y which

satisfy the relations
X = e, y =e H Xyx = y

where e is the group 1dentity. The cyclic group of order n will be
denoted as zn, and its elements are {0,1,...,n-1}. Consider the finite

group homomorphic sequential system
x(ktl) = blu(k)] o alx(©] 5 y(&) = elx(®)]

vhere #=¥ = 1,, A = D,» and a, b, and c are homomorphisms

uniquely determined by

b(l) =y
a{x) = e, a(y) = xy

c(x) =0, c(y) =1
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The set of states reachable from e may be shown to be

R = {e’Yaxy’x3} )

which is not a subgroup.

However if we compute the input-output homomorphisms T1 = caib:Z2 4,22,
we find that

Tk = identity for all k 3 0

Althougﬁ the above ﬁonminimal realization has an ideﬁtity - reachasle

set which is not a group, there still exists a minimal homomdrphic

sequential system. In fact such a realization is found by taking

Un X =% = 22 and a = b = ¢ = identity. The reason we can find such

a realization\is that our original system is not observable. It is easy to see that
there exists a controllable and observable homomorphic sequential realization of #
given input-output map if and only if the ideht;ty-reachable set in én& ;;;ticular
observable realization is a group. An example of an observable system for which % is

not a group is found by modifying the previous example. Let % , &, a, and b
be as above, but let ¥ '= g = Da and ¢ = {dentitv (i.e. state cutput). This

is observable, and 9% is the same as before.

There are conditions under which & 1s a subgroup, in which case we’
do have a controllable and observable homomorphic realization. The following

theorem indicates one such condition.

?heorem 7 : Under the hypotheses of Theorem 5 the set & of states reachable

from the identity is a subgroup of & 1if a is an automorphism.
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Proof : The group of automorphisms of a finite group is itself a finite
group with function composition as the group operation. Thus there

exists a k > 0 such that

ak = identity automorphism

From Theorem 1 we see that the set % of states reachable from the

identity can be written in the form

m
2= U 1 " Hw
n30 1i=0

- U [b@o ab@) o ... o abO)I®
a3l

where U 1s the input group and for HC X

m A
B = {hjo hpo ... o h |h, € H}

Thus if %, y € , we have that x € [b(U)o ab(U)o ... o ak.]‘b(U)]ml

and y € [b(U)cab(U)o .., o ak°]'b(U)]m2 for some m, and o,. Then
k=1 o P12
xoy€ [b(U) o ab(U) o ... o a )] . We see that for all
n ~
n>0 x eR 1f x €R . Since X 1is a finite group, there exists an
‘ -1

N > 0 such that x ~ = xN. Therefore 7 is a subgroup. '

The next theorem completely characterizes those seauences of input-
output homomorphisms which have controllable and observable finite-group

homomorphic sequential realizations. To do this, we must define what

We mean by a free response of a system. If a system is given
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in resursive form (as our first equation) a free response 15 the identity-input
response of the system from some initial state. If the system is

given in input-output form, it ig the response to an input sequence

which consists of the identity onl% from some point onward)and where

the response is observed from the point in time where the non-identity

inputs stop. Thus we apply a (possibly) non-identity input up to time

k and record the output from time k+l on. Note that the set of

free responses of an input-output map corresponds to the set éf free

responses of'a homomorphic realization of that map started in a state reachable
from the identity state. In what follows)free responses refer to the input-
output system deagription. Note that we can consider the set of free

responses as a subset of the infinite dir;'ect product group ¥x ¥ x .., x¥ x ,,,.
Theorem 8: Let the sequence of homomorphisms '1‘i t AU > Y, i=0,1,2,...,

with % and ¥ finite groups, satisfy the hypotheses of Theorem 2,

Then there exists a controllable and observable finite group homomorphic
sequential realization if and only if the set of free responses form a

subgroup of the infiﬁite direct product group.

ggggg»: (Sufficiency) ALet_gf be the érOup of all free responses.

Let 3% be defined as follows

Yo,}'l, sew ’yn_l are the

F = \Igs¥preeesVpq) ed" first n elements of a

free response € %

Obviously Z is a subgroup of Y™ F F 1s a

subgroup of the infinite direct product.
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Consider the standard observable realization given in the proof
of Theorem 2. In that realization, the state space is fyr,

and it is easy to see that the set /# of states reachable
from the identity is just 92. Then, restricting our homomorphisms to

3@, we have a minimal homomorphic realization.

(Necessity) Suppose we have a minimal homomorphic realization of the Ti:

- x(k+1) = blu(k)] o alx(k)] ; y(k) = clx(k)]

Since every state is reachable from the identity, the set of free

' responses in the input-ohtput sense is identical to the set of free

responses in the state space sense. Consider the map from & into the

infinite direct ﬁroductrgroﬁﬁ Yx Y x ... x Y x ... given by

x> (c(i),ca(x),..,,cak(x),...)

This is obviously a.Homomprﬁﬁish, and'ité_image is SF, vhich therefore

" must be a group. S o AT |

Corollary : Under'thé'hybdthésié_of:Thebrém 8, if ¥ is a group, ¥ is
isomorphic to 92 for some n. -
Proof : Suppose a is the state transition homomorphism for a minimal

realization. Then there exist k > p > 0 such that ak = ap, and then

k-1 k-1
(c(x),ca(x),...,can(x),...) = (c(x),ca(x),...ca 4(x),cap(x),...,ca (x),ec. )
and the isomorphism is obvious. Note that even if % is not a group, there
exists an n such that the elements of % and 49; are in one-to-one

correspondence. ' '
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5. Some Comments on State Space Reduction

A number of questions were raised in the preceding sections.
We have derived the standard observable realization - what about a
"standard controllable realization" in the sense of reference [1]?
The set of states indistinguishable from the identity is a (normal)
subgrou;; - why isn't the set of states reachable from the identity a subgroup?
In Theorem 6 we used the fact that m and q afg homomorphisms - what about
B and € ? We have seen that Z need not be a group, and for similar
reasons A énd % aren't homomorphisms and there is 1;'10 standard controllable
realization.

Note that these difficulties arise from the following consideration.
Suppose we have a set of homomorphisms Cys i=1,2,...,m mapping a

finite group 2 into a finite group % . Then the "fan out" map taking &
into @M

x * (¢;(x),...5c (x))
is always a homomorphism.

but the "fan in" map taking & into ¥

(xl, cee ,xn) > Y (xl) "ey (xz)-. . .‘t:u (x“)
need not be a homomorphism. (For

example, the map of Z'*X I into A" defined by group multiplication is

typically not a homomorphism).

'In the rest of this section, ‘we,will discuss these problems‘ in some
depth. We will also present some additional conditions which enshle us to
circumvent some of the difficulties.

Even if 4 1is a group, we cannot be sure that the map % is a homomorphism.

If & has n elements, then the map % defined by
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B:RU*% ... X (n times) +R
A -
%(uo’.‘.’un“l) = b(un—l) o ab(un_z) o eees O A& lb(uo)

is onto. We would like to investigate putting a semi-direct prbduct
éttucture on 2 x ... X9 in order to make & a homomorphism. We have
the following necessary condition: .

Theorem 9 : (Consider a finite group homomqrphic sequential system. If
there exists a semidirect product structure on %x .., XQU'$n times)
such that B: Ux ... XU -+ is a‘homomorphism, then the set of

states reachable from the identity in k steps is a group for all k > 0.

Proof : Choose k € {1,...,n}. Consider the set of input strings

-k
Wk = {(e: ’uo!""uk_l)luo-’...'uk"l € U}

For any semidirect product structure on % ... x% , this is a
subgroup. Thus 336%&) is a subgroup if & is a homomorphism and
38(@%%) is just the set of elements reachable from the identity in k
steps. For k > n use Theorem 5. .
We now modify the earlier example. We concern ourselQes with
the input-state side of the system only. Again let %= 22, X'= D4 s

and let b be as before, but redefine a by

a(y) = xy , a(xy) =y
It is easy to check that a is an automorphism of D&’ and thus by

Theorem 7 % is a subgroup. However

%@’é) = {e»y’x}"x:,}‘
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which is not a group, and thus 8 is not a homomorphism for any semi-
direct product structure on %X e XU ,

These examples illustrate an asyemmetry in the theory.. Uniike linear
system theory - or even the abelian group case here, where it is clgar
that none of these difficulties appear - we do not have_a naive duality
theory without additional assumptions. |

An assumption that avoids some of these difficulties
is that of requiting a to be a normal enddmorphism. A homomorphism f
of a group ¥ into itseif is called a normal endomorphism if for all

X, y €9

XE(y)x L = £(xyx 1)

Theorem 10 : Consider the finite group homomorphic sequential system

x(k+1) = blu(k)] o a[x(k)] ; y(k) = c[x(k)]

évolving in a finite group & of order n. Suppose a is a normal
endomorphism. Then there exists a semidirect product structure on
A% ... XU (n times) such that the input-state map # 1is a homo-
morphism, and thus the identity~reachable set 9% is a subgroup.

Proof : Define the binary operation on %% ... x% (n times)

A

(uo’ul""’uh-l)(vo’vl""’vn-l)

( -1- _1- . -1 uv . VL,V V v-lv-l- -v-1 v . v,V Vv
V1 V2 Ve n-1"0 00 V2V Yo V2 V3 e V1M1 Va1 V3V 2Ny

'""vn-lun-Zvn-lvn-Z’un—lvn-l)



-79-

Direct computation verifies that this does define a semi—diréct
product structure on %% ... XQU‘ (n times), and another computation,
using the fact that a is normal verifies that % is a homomorphism. i
) Thus, in this case, we can reduce our system to a minimal homo-
morphic realization by first restricting the homomorphisms to 22 and
then taking 72 modulo the kernel of m, the state-output map (see
Theorem 6). We then have the following canonical factorization of
'~ the input-output map m#PB |

nag -
B e XY wayx - XY

B’ m'

.where 3 is the reduced staté group, and ' and m' are the reduced
input-state and state-output homomorphisms, with ' onto and m' one
to one.

Another question arises in the case where &4 is not a group. When

this happens, we have x xze X such that X 9%, ¢32. Thﬁé this

1’
particular group multiplication never occurs in the operation of the

system and 1s irrelevant information. One can then ask whether or

not we can redefine these irrelevant multiplications in such a manner
as to make & a group, while at the same time requiring that a,b, and

c remain homomorphisms when restricted to 92 . The example given
previously shows that, at least in some cases, this can be done. Again

let U= % =12 with a,b,c defined by b(l) = y; a(x) = e,

2’

“n
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a(y) = xy; c(x) = 0, c(y) = 1. We saw that
3
R = {e,y,xy,x"}

The superfluoous multiplications are (xy) o y, (xy) o x3, x3 o y, and

x3 o x3. If we define these as follows

A 3 3 A
(xy) o y = x X oy=Zxy.

(xy) o x3 é y X o X

then &£ is the Klein-4 group, and it is easy to check that a, b, and ¢
are still homomorphisms. 1In fact, since the Klein-4 group is abelian,

a is a normal endomorphism5and we can reduce our system as deacribéd above.

6. Conclusions

| In.this paper we have considered a broader class of input-output
relations than those found in linear system theory and have derived results
aﬁalogous to some of the more crucial properties of linear systems.

In particular, we have considered dynamical systems of the form

x(k+1) = blu(k)] o a[x(k)] ; y(k) = c[x(k)]

where the-input, state, and output spaces are finite groups, and

a, b, and c are homomorpﬁisms. The concepts of controllability, obser-
vability, and minimality are developed, and conditions for the realization
of an input-output map by suéh a system are given. As in the linear

case, the equivalence of any two minimél homomorphic realizations is

established.
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In addition, several problems, all directly or indirectly

These are discussed, and it is shown that an additional assumption

removes these problems.

exploited.

at

The analogy with linear theory has by no means been completely
Concepts such as transform theory have not been considered

all. Also, extensions of some of these résults to infinite group

problems can be made, possibly making contact with the study of

dynamical systems on topological groups [7].

~
.
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Lie Theory and Control Systems Defined on Spheres

R.W. Brockett*

Abstract

We show in this paper that in construcfing a theory for the most
elementary class of control problems defined on spheres, some results
from Lie theory play a natural role. In particular to understand con-
trollability, optimal cpntrol, and certain properties of stochastic
equations, Lie theoretic ideas afé needed. The framework considered
here is probably the most natural departure from the usual linear system/
vector space problems which have dominated the control systems literature.
For this reason our results are compared with those previously available

for the finite dimensional vector space case.
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1. Introduction

Specific results about control gsystems whose state spaces are
spheres have been useful in understanding problems in energy conversion,
controlled rigid body dynamics, etc. Some examples are mentioned in
our earlier paper [1]. ﬁere we work out in more detail, and in greater
generality, the theory for a class of problems of this type and compare
out results with the case where the state space is a vector space. To
carry out this program requires some results from Lie theory, Lie groups
acting on spheres, etc. There has been no attemp£ here to discuss the
most general setting in which techniques which we ugse are applicable.
.Instead we have taken the sphere problems as a model and have studied a rarge
of control-theoretic questions in that setting. A number of possible
generalizations will be apparent.

To begin with we mention some well known facts about linear system
theory. We do thié to make the paper a little more accessible to thosé
not familiar with control problems and to sensitize the reader to certain
issues important in control. For a more complete account and referénces
to the literature one can consult [2] for the deterministic results and
[3] for the stochastic results.

Linear system theory deals with the pair of equations

x(t) = Ax(t) + Bu(t) ; vy(t) = Cx(t) (1.1)

where % denotes a time derivative. It is assumed that x(t) € IRn, u(t) ¢ Tﬁm

and y(t) e'ﬁ?p. For simplicity we take A,B,C to be constant matrices.

One calls u the control, x the state and y the output. The theory of linear
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system is extensive but for our present purposes we point out'only
the following five results.

i) (1.1) is said to be controllable if for every X and Xy in 7Rp

and every t, > 0 there exists a piecewise continuous control u(:) such

1

that if x(0) = x then x(tl) = x A necessary and sufficient condition

1°
for controllability is that Rank(B,AB,...An_lB) = n where , indicates a
column partition.
1i) (1.1) is said to be observable if-for every x, ¢ X, and every
tl > 0 the outputs corresponding to Xy and X, diffef on the interval
[0,t1]. A necessary and sufficient condition for observability is that
rank (C;CA;...CAn-l) = n where ; indicates a row partition.
i11) If (1.1) is controllable then for every given X, and Xy in 'W?n
and every ty > 0 there exists a plecewise continuous control u defined on
[0,:1] vhich transfers the state from X, at t =0 to x, at t = t, and
minimizes
1
n(t) = j u' (t)u(e)de A (1.2)
0
relative to all other plecewise continuous controls which accomplish
the same transfer.
iv) 1If there exists a linear feedback control law u = Fx such that
X = (A+BF)x has a null solution which is agymptotically stable then there éxists a

control law u = Kx such that lim x(t) = 0 and the functional
-0

n = j: u' (t)u(t) + y'(t)y(t)dt

is minimized by setting u(t) = Kx(t);
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v) If (1.1) is controllable and if the differential equation % = Ax
is asymptotically stable then the associated stochastic equation (for

notation see [3]).
dx(t) = Ax(t)dt + Bdw(t) (1.3)

has a unique invariant Gaussian measure which has zero mean and variance

0 satisfving
0A + A'Q = -BB' - , (1.4)

In this paper we estaﬁlish:ahalogs for each of these results for

systems of the type
k(t) = (A+ ] u (£)B)x(t) ;5 y(t) = Cx(t) (1.5)
i=1 o :

where A,BI,BZ,...,Bm are skew symmetric matrices and the system can be
thought of as evolving on the sphere.llx(t)ll = ]lx(O)ll.

Ohelsignificaﬁt poinf in the linear theory is that the matrix B is
generally not invertible and cases'for which it'is inver;ible are so infrequent
as to be virtually without intefgst. 'vaB is invertible then by an

appropriate choice of basis equation (1.1) becomes
x(t) = Ax(t) + u(t) o , (1.6)

and controllability is automatic. Moreover, in this case problems 1iii)
and iv) are easily reduced to variational problems of the classical type
1
n= J L(x,x)dt a.7)
- 70
with L quadratic in x and x and Liﬁ positive definite. Control theory
works with the more general "degenerate" case where Leo is only nonnegative

definite but certain constraints are in effect. If the above integral is
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_thought of as the action integral in a mechanics problem then-the case
treated in control theory allows for the possibility of certain zero
masses provided there are appropriate linear constraints between position
and velocity. It can algo be thought of as a limiting case 6f an uncon-
strained dynamical problem vhere cértaih masses and associated energies go
to infinity.: This second interpretation is generally more useful. Remarks
of the same type apply to equation (1.3) where existance of_a smooth
transition density is well known if B is invertible whereas the same is true,
but for rather more subﬁle reasons, i1f we assume controllability instead

of invertibility of B.
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2. Controllability

One of the main areas of applicability of Lie theory in control has
been that of determining the set of points reachable along solution
curveé of x(t) = f£(x(t),u(t),t) for the set of all piecewise continuous
controls u(+). For studies of this kind see references [4-10]. If the

control equations are of the form

n .
x(t) = (A + 121 u (O)BIx(E) 5 x(t) e R" (2.1)

“then the system typically evolves on a manifold in 7kP. The determination
of the set of points reachable from a given point xa can be accomplished
by the determination of the set of matrices reachable from the identity

for the matrix equation

. . m
X(t) = (A+ [ u (£)B)X(E) ;3 X(0) = I (2.2)
i=1

and then letting this set act on X via ordinary matrix-vector multiplication.
Equation (2.2) can be thought of as defining a control problem on a matrix
Lie group. Thequestion of determining what matrices are reachable from

the identity along solutions of (2.2) has been the'subject of a number of
papers [1, 7-10]. Following Jurdjevic and Sdssmann, we term systems of the

form of (2.2) right invariant. This is appropriate because the vector fields

defined on the G2(n) by the right side of (2.2) are invariant under the trans-
lation defined by righé multiplication with an element of GL(n). We will say

that equation (2.2) is controllable on a group ¢ 1if any two points in % can

be joined by a solution curve generated by some piecewise continuous control

u(-).

‘
wd
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Suppose that A and Bl’BZ""’Bm are all skew symmetric. Then
regardless of the choice of u the solutions of equation (2.1) remain

on the sphere defined by ||x(t)|] = ||x(0)|]. We will say that the

system (2.1) is controllable on the sphere if any two points on the sphere

be joined by a solutipn curve generated by some piecewise continuous
cﬁrve u(*). Phrased another way, the system is controllable if the set
of matrices reachable from the identity aloﬁg solutions of (2.2) act
transitively on S#-l. From earlier results [10] we know that since the
motion is confined to a subgroup of SO(n) the set of matrices reachable
from I is the matrix Lie group consisting of all the matrices which can
be expressed as products of the form exp Hl exp HZ,...epon where Hl,
Hz,...,Hn belong to the Lie algebra generated by A’BI’BZ""Bn° 7
Now of course the orthogonal group SO(n) acts transitively on Sﬂ-1
so that ;f the algebra generated by A’BI’BZ""’Bm is the full set of

skew symmetric matrices then the system (2.1) is controllable on Sn-;.

However there are certain subgroups of SO(n) which act transitively on Sn'-1
as well. The real compact forms of the classical Lie groups are all
candidates. The results are well known [11] but we repeat them here.

For example, it is clear that both the full unitary group and the special
unitary group of dimension n act transitively on the set of complex n-vectors
whose Hermetian length is one. But this set is just a set of vectors with
components (xi+J:T y,) such that

tf (xf + yf) =1 (2.3)

i=1

which is a 2n-1 dimensional sphere. Thus by defining the realification [12]
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of the unitary algebras by the Lie alpebra homomorphism . ~
ReB ImB
B—> (2.4) [
ImB  ReB |

we obtain a set of real matrices whose associated group acts transitively

on SZn—l. The real compact form of Cn is the intersection of special

unitary group and the symplectic groups. Naturally this representation

is in terms of matrices of even‘dimension so that they can act on even
dimensional complex vec;ors only. Thus, by analogy with the unitary case, the real
. compact form of Cn acts on the sﬁhere of dimension S4n-1. This action is known
.to‘bentrénsitive and of cou;sé we can add to the algebra real multiples of %:T I
to get the "full quaterion—unitar; group" which acts transitively as well.
__Theqe”four cases,each valid for all integer n, together with three particular
ones account fér all possibilities. The particular caseé may be explained

as follows. The exceptional algebra G2 admits a 7 dimensional skew-

- symmetric representation whose exponential acts transitivel& on 86. The

Spiﬁ representation of 80(7) is 8 dimensional and it acts transitively

on S7. The spin representation of S0(9) ig 16 dimensional and it acts

15

| transitively on S°~. With this explanation we can state the following result.

Theorem 1l: Let A‘Bl""Bm be a collection of n by n skew symmetric

matrices. The control system

' m
x(t) = (A+ J u, (£)B,)x(t) (2.5)
1=1

is controllable on S“‘"1 if the algebra generated by A,Bl,Bz,...,Bm is

i) SO(n) for n = 0 mod 2 : -
i1) SO0(n) or the realification of SU(n/2) or U(n) for n = 1 mod(2)
- 114) The realification of Sp(n/2) for n = 1 mod(4)

iv) G2 if n = 6, Spin (B) if n = 7 or Spin (16) if n = 15
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Moreover, if the Lie algebra is not one of these cases the syétem (2.8)
is not controllable.

1 it is sometimes of interest

If the system is not controllable on il
to compute exactly what points can be reached from a given initial state.
The determination of what points belong to this set is facilitated by
a knowledge of thé structure of the representation defined by the matrices
in the algebra éenerated by A’Bl’BZ""Bm' If this representation is not
irreducible then its reduction is clearly the first step_ih the determination
.of the teacﬁéble:sét. The propefﬁies of the-irre&ucible ;iéces may reveal
the form of the reachable set in a straightforward way. qu gxample, 1f
- the evolution'eqﬁafioﬁ can be'deéomposed as
i- @A+ A2®1; tf §1(1®Bi +'Bi® 1) 1x(t) (2.6)

i=1 B

 then the Kfonecker'érqduc;.of'tﬁe reachable group for S

m

_ i(t) = (A1 + .Z ui(t)Bi)X(t) ' .7
~ and the reachable group for
: 2, § 2. o\
X(8) = (AT + ] u (©)B)X(E) _ (2.8)
i=1

contains the reachﬁble group for equation (2.2). The reachable group will
not, 1ﬁvgeneral,simply be the Kronecker product of the reachable groups unless
the effects of the u's are decoupled.

For the linear evolution equation (1.1) it happens that if it is possible
to transfer any state to any other state then this transfer can be done

in arbitrarily small time. This is not the case for systems defined by
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Jurdjevic and Sussmann [9] give an example of a system

defined on S2 which is controllable but certain transfers cannot be

made in less than

1 unit of time. Thus 1f (1.1) is controllable on st

the strongest statement we can make on the basis of the present analysis

is that for t, sufficiently large every state can be transferred to every

1

other state in tl

worked out.

units of time. Estimates on this time have not yet been

In the vector space case controllability is closély.related to the

concept of observability as mentioned in the introduction. In the present

setting this is not the case at all. We say that the system

x(t) =

m
(A+ ] u (0)B)x(t) ; y(t) = Cx(t) (2.9)
1=1

is observable on Sn-1 if no two distinct initial states on S“_1 give rise

to the same response y for all controls u(:). The following theorem gives

a necessary and sufficient condition for observability.

Theorem 2: Let A, B

matrices and let

x(t)

is observable on
are irreducible.

For a proof

see [13].

1,B,,,...,Bm be a collection of skew symmetric

c be a unit vector. The control system:

m
(A+ ] u (B)BIxX(E) 5 y(t) = ex(t)
i=1

Sn-l if and only if the set of matrices {A,Bl,Bz,...Bm,cc'}

of this theorem and more general results of this type
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3. Optimal Control

Consider again the evolution equation (2.2) defined on matrix
group ¢. Let there be given a time tl > 0 and boundary conditions

of the form X(0) = Xo H X(tl) = X Suppogse that in addition there

l.
is given a functional which is of the action type
t n
n, = e f 1 ) Uf(t)dt (3.1)
t i=1 '
o
as opposed to the geodesic type
t m .
2 1/2
n, = f Ly ug(e)) 24 (3.2)
t i=1
o
Our problem is to determine if there exists a control u(-) such that
the boundary conditions are met and the given functional is minimized and,
if such a control exists, to characterize it., Just as with controllability,
there is an obvious connection between problems defined on a group and problems
defined on a manifold on which that group acts. This would no longer be
the case if n dependend on x in a general way.

We will use the formalism of the maximum principle of Pontryagin [14]}
rather than the calculus of variations to attack this problem because it
handles the degeneracy which is built into the problem in a natural way.
Applied to the present problem, Pontryagin's maximum principle asserts that
if u(-) is an optimizing control then there exists a matrix P such that

. m
p 1
P(t) = -A'P(t) = ] u, ()B{P(t) : (3.3)

i=1
and H defined by

m m 1 2
H(P,X,u) = <P,AX> + ] u <P, BX>+ J S ul (3.4)
=1 i i =1 21
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is minimized with respect ¢o u by the optimal control. Thus we have the v

optimal control given by

<.

ui(t) = <—P(t),BiX(t)> (3.5)

This choice of u gives a pair of differential equations with split

boundary conditions

q X(t)- A ol X(tj m B, _0-- —X(t)
= - ] <P,BX> : (3.6)

E'E_ P(t) 0. =A'l]P(t) i=1 0 -B[|P(t)

The problem can be reduced tO*a.single:quédratic equatiqn with split
boundéry'conditidné by introduciné K:t:kf'.”'An'easy calcﬁlation‘shows
that _ : _

. o : m - : 4
| K(E) = AR(E) -R(OA" = ] <BLE(D>(BRE-KOB) (.7
- Sé far e&erything is valid for én'arbitraff éubgroup of}Ci(nj.'~If |
A,Bl,ﬁz,...Bm are self contraérédient-thehva simplification occurs.
In that case any solution of the diffé?éntial.eqqationffbr P can be ..
expfésééd in terms of a solutioﬁ oflthe differen£131 equafion fo¥ X with
nonsinéular boundary conditions; n$P(;) = NX(t)M for some constant matrices
M and N, Spe¢1alizing'to thé skew-s&mhetric cése givés-the'following'result.
" Theorem 4: Suppdse that A,B‘,Bz,...Bm are skeﬁ'syﬁﬁetric n by n matrices

and suppose that there exists a piecewise continuous control u(:) which

transfers the state of the matrix system

. m -4
X(t) = (A+ [ u (£)B)X(t) (3.8)
1=1

1 at t = tl > 0. Then there exists constant

matrices M and N such that the solution of

from Xo at t =0 toX
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m .
X(t) = (A+ ] <B X(OMX(£)N>B)X(t) ; X(0) = X, (3.9)
i=1

1 at t = tl. Moreover, there exists one such pair

M,N which minimizes Ny relative to anv other continuous u(-) which

passes through X

steers the system to X, from Xo in the same period of time.

1

. Proof: That there exists an optimal control follows from theorem 6 of

Cesari [15]. The rest follows from the maximum principle as discussed
above.

There is an alternative point of view available for these problems
which makes a little closer contact with both physics and Lie theory
but which is not so useful here. Consider the right-invariant control

equation in SO(n) with control Q
X(t) = 2(OX(L) ;3 X(0) = X_ (3.10)
Let the problem be to pick Q in the space of skew symmetric matrices

such that X(t? = Xl and the trace form

o )
n =n! Ler "ty 2ae (3.11)
0o

is minimized. Elementary variational arguments with due regard for the

admisgibility of variations lead to the Ruler equation

o = gror -1 lomo (3.12)

In SO(3) this matrix equation is equivalent to the familiar Euler

equations for a rigid body
Loy = (IyIzdugws (3.13)
Loy = (I5-1))wwq

I3m3 = (Il-Iz)wlw2
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which, after all, come from minimizing the action integral on S0(3).
(Note that the kinetic energy of a rigid body can be expressed by
the trace form (det I)tr(I-IQ)2 where I is the usual inertia tensor.
See [2]) page 64. Incidentally, this also serves to define the degree
of difficulty of actually solving the control problem mentioned above.
Since it is well known that the solution of the Euler equations generally
involves ;lliptic functions, the solution of the optimal control problems
cannot be expressed in terms of elementary functiops except in special
~ cases.

ﬁy far the simplest ;pecial case on SO(n) occurs when nl is the

negative of the integral of the Killing form. That is given X(?) and

X(1) and given the evolution equation

. n(n-1)/2 . _
X(t) = ) ui(t)BiX(t) ; X € S0(n) - (3.14)
i=1
where B, = -Bi and for all 1 and j
= ' =
<Bi,Bj> tr B,B; . 61j (3.15)

one finds that the optimal trajectory is

X(t) = etx(0) | (3.16)
where ! is the solution of eQ = x(1)x’1(0) which has the smallest Frobenius
norm.

We turn now to applying the above results to the problem of

optimizing trajectories on spheres. Note that trajectories on spheres can be
optimized for fixed end points by solving an associated right invariant

group problem and then picking the minimizing element in the group for
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transferring X, to Xy The following theorem expresses this.

Theorem 5: Let A,B BZ""’Bm be skew symmetric matrices. Suppose

1’
that the system

n
x(t) = (A + ) u, (£)B,)x (t) (3.17)
i=1

1s controllable on S". Then given a sufficiehtly large time tl > 0 and given points
X and %, in Sn-l, there exists a control which transfers the system from

x at t =0 tox, at t = t. and minimizes
o 1 1

t 1 ’ .
n= f u' (t)u(t)dt (3.18)
N

Moreover, there exists a matrix Ko such that the optimal
control is given by ui(t) = <K(t),Bi> where K is defined by the matrix
differential equation
. m
K(t)= [A,X(t)] + 121 <K(),By>[R(E),By] 5 K(0) = K, (3.19)
We complete this section on optimal control with a result of the
type which plays a major role in linear system theory in connection with

the regulator problem.

Theorem 6: Let A and B be n by n skew symmetric matrices and consider

the system

x(t) = Ax(t) + u(t)Bx(t) ‘ (3.20)

Let a be a unit vector in the null space of A such that A and Baa'B' are a
pair of matrices which act irreducibly on the orthogonal complement of

the one dimensional subspace defined by a. Then the control law u(t) =
a'Bx(t) steers the system from aﬁy initial state X, ¥ -a to a and minimizes

the integral
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n = Im u2(t) + [a"Bx(t)]%dt
0

relative to any other continuous control u(.).

Proof: We can write n as

n e [m u2(t)-2a"%(t) + [a'Bx(t)]zdt+2a'x(t)|
0 : 0

since Aa = 0 we have

n = j“ (u(t)-a'Bx(t))2dt+2a'x(t)'
. 0 ) 0

Thus 1f the control law u(t) =>a'Bx(t) actually drives the state x to

a then it is optimal. Howevef, oBserving that a'x(t) has a derivative
_élongvthe given solution which is equal to -[a'Bx(t)]z, we see by
LaSalle's theorem (sée e.g. [2]) fhat the solution x = a can fail to be
stable if and only if a'BéAtx vanishes identically for some x # *a.

By looking at the derivatives at t = 0 we see that this can happen 1if

and only if (Ba,ABa,...Anlea) fails to span the orthogonal complement of the one

'dimensional subspace defined by a.
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4, Stochastic Differential Equations

We consider now a third aspect of control theory on spheres.
This has to do with the analog of property (v) mentioned in the intro-
duction. What we show is that controllability implies the existance
of a unique invariant measure fqr a stochastic equation on Sn-l. We use

Ito notation for stochastic differential equations. Wong [3] can be

consulted for an explanation of both the mathematics and the notation.

Let wl,wz,...,wﬁ denote independent Wiener (Brownianm motion)
processes of unity variance. In giving a precise meaning to differential
equations in which éomething like "white noise'" appears K. Ito [1¢]
invented what has proven to be a very successful calculus in which the

standard differentiation rule is significantly modified insofar as

differentials of Wiener processes are concerned. In this calculus dwidwj

Gijdt, a first order term; dwidt, and (dt)2 are both higher than first

~order. We discuss the implication of this in one important special case.

If x and y are vectors satisfying the Ito differential equations

dx(t) = Ax(t)dt + Bx(t)dw(t) (4.1)

dy (t). = Fy(t)dt + Gy(t)dw(t) 4.2)

Then z(t) = x(t)y'(t) satisfies the Ito equation

dz(t) = (Az(t)+z(t)F' + Bz(£)C)dt + (Bz(t)+z(t)q)dw (4.3)

The only other fact we need about Ito equations concerns the associated
mean equdtion. If x and y satisfy equations (4.1) and (4.2) then

x(t) = Ex(t) and y(t) = Ey(t) satisfy the ordinary differential equation

DX = Axn) | (4.4)

;,% F(t) = Fy(t) (4.5)
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We will see that these two results pnermit the derivation of equations
for all moments and imply that the moment equations are decoupled from
each other.

Recall that the number of linea;ly independent degree p forms in

n variables is given by
N(n,p) =<:n+z-{) (4.6)

We can therefore associate with each n tuple'(xl,xz,...,xn) a N(n,p)-tuple

-1
x[p] = (xi, p xg xz,...,xﬁ) where the coefficients are chosen in such a
way as to validate the equality

2p ' 4.7
P12 = 1)) 4.7

It is clear that if x satisfies an ordinary differential equation which

is linear, say

d
5 x(t) = Ax(t) - (4.8)
" then x[p] also satisfies a linear differential equation
2Py @ alPleqey (4.9)

We regard this as a definition of A[p]. It is related to the classical
idea of an induced representation. Of course if there are controls present

a similar set of equations follow; i.e. eqﬁation_(Z.l) implies

d

| .
45000y« APl ey & T onlPlelPT (4.10)

i=1
Similar remarks hold for stochastic equations of the type under
consideration here, provided suitable allowance is made for the Ito

calculus. Associated with the Ito equation

m
dx(t) = Ax(t)dt + 151 Bix(t)dwi : (4.11)
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1s the family of equations

m
R iul i=1 i=1 .

(4.12)

The derivation of this is a straightforward exercise using the properties
of dwi outlined above. Finally, we have the moment equations associated

with (4.11)

m
ey - - I bl s Z 1Py 7] (4.13)
dt i=1 -

where ;[p](t) =g x[p](t). Compare with reference 17.
In terms of the Ito calculus when can the matrix stochastic equation
dX(t) = AX(t)dt + Z dw, (t)B, X(t) (4.14)
i=1
be thought of as evolving the orthogonal group? This will be the case
when the associated vector equation (4.11) evolves on the sphere defined
by le(t)ll = ||x(0)|| for all x(0). Using the facts outlined above

we see that d(x'x) = 0 if and only if for all i

1.2 T 1.2
3 By = —(A- ) 5 B! (4.15)

B, = -B! A -
i b4
i=1

i

0 ~18

i=1
Thus these are the conditions under which equation (4.14) evolves in the
orthogonal group and the conditions under which (4.11) evolves on the
sphere.
It is apparent thaf the measure associated with the uniform density
on the sphere is an invariant measureifor the process defined by equaﬁion

(4.11). Since the area of the (n-1)=sphere is 2ﬂn/2

is

p (x) = I'(n/2)/2n™ 2 (4.16)

/T(n/2) the uniform density
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The corresponding values of the odd moments are zero by symmetry but the

even moments are not. The following theorem claims that all the moments
approach the moments associated with a uniform distribution 1f we have
controllability. Incidentally, equation (4.13) provides a means for actually

computing the moments for all time in terms of their values at t = 0.

Theorem 7: Suppose that.A,Bl,Bz,...Bm are all skew symmetric and suppose that

m
x(t) = (A+ J u (£)B)x(t) (4.17)
A = S

is con;rollable.oﬁ Sn-l. Then the solution of the Ito differential

equation defined on the sphere by‘
I m 1 2 - m :
dx(t) = (A+ [ SBO)x(t)dt + ] B x(t)dw (4.18)

- o gm 2 =1 1 .

is such that all moments approach the moments assocliated with a uniform
distribution on the n-1 sphere as t approaches infinity.

Proof: TFirst of all, note the shift in notation from (4.11) to (4.18).

In (4.11) A—'% ZBi~ is playing the role played by A alone here. It is

not difficult to show that because A,B Bz,..gBmvare skew symmetric it

A o 1’
follows that A[p], B{p],ng],...Bip] are also skew symmetric. A second

observation concerns stability. If A = -A' and B, = -Bi then all

i
solutions of the ordinary differential equation

. T 1.2
k() = A+ ] 3 By )x(t) (4.19)
1=1

are bounded. Moreover, each solution approaches zero as t approaches
infinity provided BieAtx does not vanish identically for any x % 0 and

there will exist nonzero vectors such that B eAtx vanishes identically

i
if and only if A and B, can be put in%the form
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A1 " ‘ ,’éi o
6'A6 =| ~ B’Bie = (4.20)
0 4, b o
To prove the first of these facts we notice that since A = -A'
d 2 T 2
5 =@ 19 == T 11Bx)]] (4.21)
i=1

Thus bv LaSalle's theorem (see e.g. [2]) the solution either goes to zero
or else there is a solution along which IIBix(t)l[ vanishes identically

for all 1. That solution would‘have to be of the fom eAtxo. As for the
1 tﬁey foliow from considering the subspace of

vectors such thét BieAtx vanishes, together with its orthogonal complement,

conditions on A and ﬁ

‘making use of the skew symmetry of A’Bl’BZ"°’Bm’

-Clearly controllability implies that all solutions of the mean
equation approach zero as t approaches infinity because controllable

systems cannot be decomposed as indicated. As for the higher moments,

we must distinguish between the even and odd cases. For the odd cases

if there/is a decomposition then controllability of the equation (4.17)

is clearly impossible. For the even moments, we have in view of

[p]I!Z ||2p’ a decomposition of the type given by

the identity ||x = ||x
eqﬁation (4.20) but with the zero block in Bi being one dimensional.
The one dimensional subspace defines the steady state value of the
even moments. On the orthogonal complement the equétion (4.18) 1is
asymﬁtotically stable. These remarks are related to some well known

properties of orthogonal representations of Lie algebras.
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[p]

As 1s well known, the moments x are related fo the spherical
harmonics in a direct way. Thus by working with equation (4.13) it
is possible to obtain a full solution to the Fokker-Plank equation
associated with the Ito equation (4.18). The interpretation of the
moments in terms of spherical harmonics also allows one ;o"establish
some qualitative features of the probability density. In particular

its smoothness and convergence to the steady state can be easily

studied.

<~
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