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AN ALGORITHM AND COMPUTER PROGRAM TO LOCATE REAL ZEROS

OF REAL POLYNOMIALS

David R. Hedgley, Jr.
Flight Research Center

INTRODUCTION

Finding the real zeros of polynomials is a classical problem in almost every
technical discipline (ref. 1). It has assumed major importance in the last two
decades in the treatment of the masses of data that have accompanied the growth of
technology .

Many methods for locating the zeros of real polynomials are being used. How-
ever, all of these methods, which locate the zeros of a real polynomial with no prior
information regarding the location of the zeros, find both the real and the complex
zeros, Moreover, many of the methods have inherent weaknesses. For example,
the polynomial x*® - 1 causes the Newton-Raphson approach to diverge near 1 or -1.
Bairstow's method requires close approximations to a zero; otherwise the results may
be erroneous. Laguerre's method is satisfactory if the polynomial has all real zeros;
however, if it has complex zeros, little can be said about its behavior. Reference 2
discusses these methods in more detail. Finally, the Jenkins-Traub algorithm, which
is considered the most advanced method, has difficulty with zeros which form a clus-
ter.

In addition to these anomalies, the methods are inefficient when only real zeros
are desired. Furthermore, because of possible computational inaccuracies, which
are to a large degree a function of word size limitations of computers, real zeros
can be mistaken for complex zeros when the imaginary part of the zero is small in
absolute value.

The intent of this paper is to present an algorithm which (1) presupposes no
knowledge of the location or number of real zeros and (2) compares favorably with
the standard methods when a polynomial has all real zeros but (3) demonstrates a
pronounced superiority in efficiency when the polynomial has complex zeros.

A computer program to implement the algorithm is presented, and results from
the Laguerre, Newton-Raphson, and Jenkins-Traub methods are compared with
results obtained from the proposed method.



BACKGROUND

Three significant criteria for evaluating a technique which locates real zeros
of a real polynomial are: its inherent rate of convergence, the computational time
required for each iteration, and the probability of convergence. The two-point
secant method for locating real zeros is given by the equation

x, - X
I L i1 p(x)
i+l i p(xi) - p(aci_l) i
in which x; is an arbitrary variable on the real axis, X9 is the next iterate deter-

mined by x; and X 1 and p(xi) is the value of a real polynomial, p(x), at X This

method has an excellent rate of convergence, (1 + ¥5)/2 (ref. 2). The computational
time per iteration is small because only p(xi +1) need be computed after the first

iteration. Furthermore, this formulation of the secant method enhances numerical
stability, since only a few significant digits are required as convergence is neared
(ref. 2). Therefore, because this method satisfies the convergence and computa-
tional time criteria, it was selected for further development of the proposed algo-

rithm.

The following sketch is a geometrical representation of the iterative process of
the two-point secant method:

In the equation for the secant method, initially some estimates for x; and x; o are

made. Geometrically, X1 is the x-intercept of a straight line determined by



[xi, p(xi)] and [xi—l ’p(xi—l)] , which is a secant through the curve p (x). Having

e ined x. . . rat , .
determ i+1° xl and xl+1 are used to generate xl+2 , and so on

Although this process is efficient when it converges, it may not always converge
P(*41)
p(xi)

If the zero, r, is simple, the secant method will converge to r for x, and x;

to a zero. If the curve is peculiar, it may diverge, that is, 21,

-1
sufficiently "close" to r, that is, Ip(xl)l < t, where t is an arbitrary tolerance

limit (ref. 2). However, if r is of multiplicity greater than 1, it may not converge
for any choice of step size, Aj, such that ixi -r|< A]. and |xi_1 -r|< A].. In

fact, it may happen that for x, # X 19 p(xi) = p(xi_l) . This condition obviously

leads to divergence.

On the basis of this analysis of the strengths and weaknesses of the secant
method, the proposed algorithm was developed, as discussed in the next section.

ALGORITHM DEVELOPMENT

Increasing the probability of convergence of the secant method requires a
theorem on the bounds of real zeros of a real polynomial, p(x). The following
theorem was adapted from reference 3:

_ n n-1
Theorem 1. If p(x) = Cnac + Cn_lx

mial (where Ci’i = 0,n are the coefficients of p (x)) and if the first negative coeffi-

.+ Cys (Cn > O) is a real polyno-

cients are preceded by k coefficients which are positive or zero, and if g denotes
the greatest number in absolute value of the negative coefficients, then each positive

real zero is less than the quantity 1 + k’ g/C,.

This theorem makes it possible to find an interval, I, which contains all the
real zeros of p (x), for, by the theorem, the lower bound for the real zeros of p (x)
is the negative of the upper bound for p (-x).

We now define A]. in the following way:

where n = greatest integer less than or equal to log, I/e in which € is an arbitrarily

small constant less than 1, and I = max(lUB!,|LB!) in which max is the larger of



the upper bound, UB, or the lower bound, LB, value of the real zeros of p(x). The
* indicates that the iteration proceeds within the bounded interval in both the posi-
tive and the negative direction and in an alternating manner. This scheme usually
permits the extraction of real zeros in increasing magnitude, thus preserving
accuracy (ref. 2).

Further, we define x; and X 10 the initial choices, with step size as follows:

L=1,2,8,...,kk=2

xi—l = (L - 1)A].

where j is held fixed.

The process is completed if for A]., j=land L =1, x; and x4 lead to converg-

ence. If not, L = 2 is selected, keeping A fixed, and the process is repeated. If,
however, no choice of L for j = 1 leads to convergence, step size A2 is chosen where
A2 = A1/ 2 by the preceding definition, and the previous steps are repeated. That
is, every L for each A].,j =1, 2, ..., n has the potential for convergence where

A <A <A o <AL

This iterative scheme for choosing initial values x; and x4 increases the

probability that the secant method will converge, provided p (x) has a real zero,
for we know that the secant method will converge to r, a simple zero, for X, and

x: 4 close to r. In fact, it may converge when r is not simple and X, and x, o are
not close to r. Clearly, if x; and x;_qare assured of being close to r by decreasing
A]., the probability of convergence is greater because of the large number of avail-
able choices as well as the fact that at least one pair will be close to a real zero.
Finally, if this scheme is not successful and if the existence of at least one real

zero is assumed, it is highly probable that r is not a simple zero. Then consider
the following reasoning. Let € be such that when A]. < & the secant method is no

longer considered fruitful. If for A. < g, p(xl) does not converge, find b such
that {p(b)| = mlnlp(x )l where min is the minimum value and x; is any value
chosen or computed for which A] < g and divergence occurred for every A] > €.

From the step size and because of the continuity of p (x), we shall assume that a
real zero, r, exists such that |b - r| £ A].. Consider the closed interval

b - A].,b + A]. . Using b as a center and subjecting this interval to the bisection
method whose direction of seek is governed by the absolute value of the end points
at every subsequent subinterval, it is again probable that p(xi) will converge to

p).



Although the combination of the preceding schemes is efficient in locating a real
zero, its efficiency and validity in determining if all the real zeros have been
located or if any real zeros exist can be poor, particularly in higher degree poly-
nomials with complex zeros. Sturm's theorem (ref. 2) removes this difficulty. The
theorem is stated as follows:

Theorem 2. Let {pi }(1 < i £n + 1) be a sequence of polynomials related to
p () of degree n in the following way:

py(x) = p(x) Py (x) = p(x)
pl._l(x) = ql._l(x)pi(x) - pi+1(x) i=2,3,...,m-1<n
Pp-1) = q,,_,@p,, (x)

where qi_l(x) is the quotient when pi_l(x) is divided by pi(x) , and Pisyy (x) is the

negative of the remainder. If [e,f] is any interval on the real axis such that p (e)
and p(f) # 0, then v(e) - v(f) is the number of distinct real zeros in [e,f] where
v (e) and v (f) represent the number of variations of sign of {pi(x)} evaluated at e
and f, respectively.

Since at x = *I, p (x) does not vanish, the implication is that the number of
distinct real zeros of p (x) can be determined by using Theorem 2. Moreover, once
a zero is located and the polynomial is deflated to give, for example, d(x), a new
I is determined using Theorem 1 and, hence, the number of distinct real zeros, if
any, for d(x) can be determined, and so forth.

Thus, for any real polynomial, p (x), the status of completion with respect to
all the real zeros including multiplicities can be ascertained efficiently and accu-
rately with Theorems 1 and 2 by considering subsequent deflated polynomials and
their corresponding interval of bounds in the same way.

IMPLEMENTATION AND RESULTS

The proposed algorithm was implemented by using an assembly of computer
programs. Listings for the programs, together with brief descriptions and flow
charts, are presented in the appendix. The programs were run on a Control Data
Corporation Cyber 73-28 computer. The algorithm was applied to five polynomials:

a fourth-order polynomial with a non-simple zero; a fourth-order polynomial with
both simple and non-simple zeros; a thirteenth-order polynomial with all distinct

real zeros which form a cluster; a fifteenth-order polynomial with complex zeros; and
a twenty-fifth-order polynomial with complex zeros. The results are compared in
tables 1 to 5 with results obtained on the CDC Cyber 73-28 computer for the Laguerre,
Newton-Raphson, and Jenkins-Traub methods. A subroutine called ZPOLYR,
obtained from International Mathematical and Statistical Laboratories, Inc., was

used to implement Laguerre's method. The Newton-Raphson method was imple-
mented by using a subroutine called POLRT from the IBM Scientific Subroutine



Package. The Jenkins-Traub method was implemented by using the subroutine

ZRPOLY, also taken from the International Mathematical and Statistical Laborato-
ries, Inc. The zeros located by each of the methods are listed in the order found.

TABLE 1.—COMPARISON OF RESULTS OBTAINED FOR A FOURTH-ORDER POLYNOMIAL

WITH A NON-SIMPLE ZERO

Polynomial coefficients:

.10000E+01
~,40000E+01
.60000E+01
-.40000E+01
.10000E+01
Laguerre method Newton-Raphson method Jenkins-Traub method Proposed method
Zeros Zeros Zeros
—— - — e e — Real zeros
Real Imaginary Real Imaginary Real ‘_[ Imaginary
.10000E+01 .80831E-07 .99998E+00 0. .10000E+01 0. .10000E+01
.10000E+01 -.80831E-07 .10000E+01 0. .10000E+01 0. .99996E+00
.10000E+01 ¢. .10000E+01 0. .10000E+01 0. .10000E+01
.10000E+01 0. .10000E+01 0. .10000E+01 0. .99998E+00
Execution time, sec
0.030 0.195 0.030 0.064

TABLE 2.—COMPARISON OF RESULTS OBTAINED FOR A FOURTH-ORDER POLYNOMIAL

WITH ALL REAL ZEROS

Polynomial coefficients:

.58500E+02
-.18000E+02
-.17500E+02
.40000E+01
.10000E+01
Laguerre method Newton-Raphson method Jenkins-Traub method Proposed method
Zeros Zeros Zeros
= Real zeros
Real Imaginary Real Imaginary Real Imaginary
.21231E+01 0. .21231E+01 0. .21008E+01 0. -.21213E+01
-.61231E+01 0. ~.61231E+01 0. -.21213E+01 0. .21231E+01
-.21213E+01 0. -.21213E+01 0. .21436E+01 0. .21213E+01
.21213E+401 0. .21213E+01 0. -.61231E+01 L 0. ~.61231E+01
Execution time, sec
— R
0.042 0.089 0.031 0.047
- S B —_ - —




TABLE 3.—COMPARISON OF RESULTS FOR A THIRTEENTH~-ORDER POLYNOMIAL

WITH ALL DISTINCT REAL ZEROS WHICH FORM A CLUSTER

Polynomial coefficients:

Laguerre method

Newton-Raphson method

Zeros

O .
Zeros
Real Imaginary Real
-.20997E+01 0. -.10000E+01
-.22000E+01 0. ~.11000E+01
-.20011E+01 0. -.12001E+01
-.18970E+01 0. ~.12995E+01
-.18051E+01 0. -.14017E+01
-.16936E+01 0. ~.14965E+01
-.16057E+01 0. ~-.16057E+01
- .14965E+01 0. -.16936E+01
-.14017E+01 0. ~.18051E+01
-.12995E+01 0. -.18970E+01
-.12001E+01 0. -.20011E+01
-.11000E+01 0. ~-.20997E+01
-.10000E+01 0. ~.22000E+01

.30974E+03
.26695E+04
.10563E+05
.25410E+05
.41464E+05
.4B468E+05
.41758E+05
.26849E+05
.12884E+05
.45580E+04
.11554E+04
L19877E+03
.20800E+02
.10000E+01
Jenkins-Traub method Proposed method
Zeros
e Real zeros
imaginary Real Imaginary
0. -.11005E+01 0. - .10000E+01
0. -.99996E+00 0. -.11000E+01
0. ~.13091E+01 0. -.12000E+01
0. -.11976E+01 0. -.13000E+01
0. -.15510E+01 0. - .14000E+01
0. -.15463E+01 0. -.15003E+01
0. -.13829E+01 0. -.15995E+01
0. -.17802E+01 0. - .17005E+01
0. -.19065E+01 0. -.17997E+01
0. -.17277E+01 0. -.15000E+01
0. -.21003E+01 0. -.20001E+01
0. -.19980E+01 0. ~.21000E+01
0. -.22000E+01 0. -.22000E+01
I, A -
Execution time, sec
0.285 0.400
- . —e i -




TABLE 4.—COMPARISON OF RESULTS FOR A FIFTEENTH-ORDER POLYNOMIAL

WITH COMPLEX ZEROS

Polynomial coefficients:

-.10000E+01

.20000E+01

-~ .30000E+01

.40000E+01

-.50000E+01

.60000E+01

-.70000E+01

.80000E+01

-.9006G0E+01

.10000E+02

-.11000E+02

.12000E+02

-.13000E+02

.14000E+02

-.15000E+02

.16000E+02

Laguerre method Newton-Raphson method Jenkins-Traub method Proposed method
Zeros Zeros Zeros
Real zeros
Real imaginary Real Imaginary Real Imaginary
-.5674TE+00 .63594E+00 .80860E+00 0. .80860E+00 0. .80860E+00
~.5674TE+00 -.63594E+00 . 75103E+00 -.30205E+00 -.56747E+00 .63594E+00
.58601E+00 ~.56241E+00 .75103E+00 .30205E+00 ~.56747E+00 ~.63594E+00
.58601E+00 .56241E+00 -.79267E+00 -.38555E+00 -.28130E+00 .T78671E+00
.80860E+00 0. -.79267E+00 .38555E+00 -.28130E+00 ~.78671E+00
-.28130E+00 -.78671E+00 .33562E+00 -.74495E+00 .33562E+00 . T4495E+00
-.28130E+00 -.78671E+00 .33562E+00 .7T4495E+00 .33562E+00 -.74495E+00
-.79267E+00 -.38555E+00 .33212E-01 -.82381E+00 .33212E-01 .82381E+00
-.79267E+00 .38555E+00 .33212E-01 .82381E+00 .33212E-01 -.82381E+00
.33212E-01 -.B2381E+00 ~.56747E+00 ~.63594E+00 ~-.79267E+00 .38555E+00
.33212E-01 .82381E+00 -.56747E+00 .63594E+00 -.79267E+00 ~.38555E+00
.75103E+00 -.30205E+00 .58601E+00 -.56241E+00 .58601E+00 .56241E+00
.75103E+00 .30205E+00 .58601E+00 .56241E+00 .58601E+00 -.56241E+00
.33562E+00 . 74495E+00 ~.28130E+00 -.78671E+00 .75103E+00 .30205E+00
.33562E+00 ~.74495E+00 ~.28130E+00 .T86T1E+00 .75103E+00 ~.30205E+00
Execution time, sec
e )
]
19.910 0.466 0.208 0.068




TABLE 5.—~COMPARISON OF RESULTS FOR A TWENTY-FIFTH-ORDER POLYNOMIAL

WITH COMPLEX ZEROS

Polynomial coefficients:

Laguerre, Newton-Raphson, and Jenkins-Traub methods when the polynomial has
all real zeros, and is more efficient when the polynomial has complex zeros. More-~

. 10000E+01 .14000E+02
.20000E+01 .15000E+02
.30000E+01 .16000E+02
.40000E+01 .17000E+02
-.44000E+02 .18000E+02
.60000E+01 .19000E+02
.T0000E+01 .20000E+02
.80000E+01 .21000E+02
.90000E+01 .22000E+02
.10000E+02 .23000E+02
.11000E+02 .24000E+02
.12000E+02 .25000E+02
.13000E+02 .26000E+02
Laguerre method Newton-Raphson method Jenkins-Traub method Proposed method
Zeros Zeros Zeros
P e el = Real zeros
Real Imaginary Real Imaginary Real Imaginary
No solution No solution ~.32799E+00 0. -.57462E-01 .35331E+00 -.32799E+00
-.57462E-01 ~.35331E+00 -.57462E-01 ~.35331E+00 .59100E+00
~.57462E-01 .35331E+00 ~-.32799E+00 0. .73831E+00
.59100E+00 0. .59100E+00 0.
.7T3831E+00 0. LT9772E+00 .61254E+00
-.10511E+01 ~.15500E+00 LT97T72E+00 -.61254E+00
-.10511E+01 .15500E+00 .T3831E+00 0.
.33707E+00 ~.98054E+00 -.54917E+00 .90186E+00
.33707E+00 .98054E+00 -.54917E+00 -.90186E+00
.91694E+00 -.33985E+00 .40625E-01 .10441E+01
.91694E+00 .33985E+00 .40625E-01 ~.10441E+01
~.54917E+00 -.90186E+00 .59772E+00 .83228E+00
-.54917E+00 .90186E+00 .39772E+00 ~.83228E+00
-.96101E+00 -.45127E+00 .33707E+00 .98054E+00
-.96101E+00 .45127E+00 .33707E+00 ~.98054E+00
- .26412E+00 -.10172E+01 -.78862E+00 LTOTETE+00
~.26412E+00 .10172E+01 -.78862E+00 -.70767E+00
.58772E+00 ~.83228E+00 ~.26412E+00 .10172E+01
.59772E+00 .83228E+00 -.26412E+00 ~.10172E+01
.79772E+00 -.681254E+00 .91694E+00 .33985E+00
.79772E+00 .61254E+00 .91694E+00 -.33985E+00
-.78862E+00 -.70767E+00 ~.96101E+00 .45127E+00
-.78862E+00 .70767E+00 -.96101E+00 -.45127E+00
.40625E-01 -.10441E+01 -.10511E+01 .15500E+00
.40625E-01 .10441E+01 -.10511E+01 ~.15500E+00
1 o _
Execution time, sec
————— 1.559 0.438 0.238

These results show that the proposed method compares favorably with the

over, as shown in table 1, Laguerre's method identifies complex zeros when in

fact the zeros are real. This discrepancy is possible with any method that locates
real and complex zeros, thus demonstrating the advantage of a method which locates

only real zeros.




EVALUATION OF ALGORITHM

The proposed algorithm, by using Theorem 1 and Theorem 2 in combination,
significantly reduces the difficulty of determining the number of real zeros of a
polynomial and, hence, the status of completion. Additionally, the modified bisec-
tion method, which is used when the secant method used iteratively does not lead
to convergence for non-simple zeros, appreciably improves the probability of con-
vergence. Since the predominant method is the secant method which has near
quadratic convergence and small computational time per iteration, the proposed
algorithm satisfies the previously stated criteria on rate and probability of converg-
ence and computational time.

Flight Research Center
National Aeronautics and Space Administration
Edwards, Calif., February 24, 1975
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APPENDIX — COMPUTER PROGRAM
PROGRAM DESCRIPTION

The digital computer programs which implement the proposed algorithm were
written in FORTRAN IV and occupy approximately 1000 decimal words excluding
FORTRAN system routines. A user-written program calls the REALRT subroutine,
which calls the remaining subroutines.

SAMPLE /({F USER-WRITTEN CALLING PROGRAM

The following pro%ram , an example of a user-written program, constructs the
polynomial-x? - 8000x® + 3x? + 10x - 30 000 = p(x) and computes all the real
zeros of this polynomial. :

PROGRAM PET(INPUT,CUTPUT,TAPE3=OLTPUT,TAPEL=INPUT)
CIMENSION A(30),8(30),ROCT(30)
DIMENSION C(30)
22 FCRMAT(2F1244)
5 A(1)=-30G00
A(2)=10 .
A1 AL = 3
Als)=-8000
AlS) =1
10 N=4
CALL REALRT (AsNsROCToNI)
WRITE(3,7550)
7550 FCRMAT(1H1)
NN=N+1
15 WRITE(3s24)
DO 194 J=1,NN
191 WRITE(3,78)A(J)
WRITE(3,25)
00 190 J=1,NI
20 WRITE(3,77)ROOT()
190 CONTINUE
24 FCRMAT(10X,23HPOLYNOMIAL COEFFICIEATS/)
25 FORMAT(//10X,20HREAL ZEROES FOR P (X)/)
78 FORMAT (3X4E15,5)
25 77 FORMATI3X,E15.%)
sTOP
END

11



Purpose:

Flow chart:

APPENDIX — Continued

SUBROUTINES

Subroutine REALRT (A, N, ROOT, NI)

Subroutine arguments:

A

N
ROOT
NI

To locate all the real zeros of a real polynomial of degree less than 30
and greater than 1

Compute interval
for real zeros
of p (x)

P

Compute number
of distinct zeros

Is
number
of zeros

Compute
all the real
Zeros

array of coefficients of p (x)
degree of p (x)

array containing the real zeros
number of real zeros in array root

Subroutine listing:

10

15

20

12

D000 O0OO00

120

SUBROQUTINE REALRT{A4NyROOT,NI)

SUBROUTINE REALRT LOCATES ALL REAL ZERCES OF A REAL
POL YNOMIAL WHOSE DEGREE IS LESS THAN 30 AND GREATER THAN 1.

THE *A* ARRAY IS THE ARRAY CF COEFFICIENTS ARRANGED IN
ASCENDING CRODER.

N IS THE DEGREE OF THE POLYNOMIAL

THE ROCT VARIABLE IS THE ARRAY WHICH WILL CONTAIN THE REAL
RCOTS.,

NI INDICATES THE NUMBER OF REAL ZEROQES FOUND,

DIMENSION A(1)+RCOT{1),8(30)
NI=D

CALL BCUNE(A,N,BOUND,B)

CALL CHECK (A,N,BOUND,IER)
IF{TIER.EQ. 0G0 TO 120.

NI=IER

CALL ROOE(A,ByN,BOUNDyROOT4NT)
RETURN

END



APPENDIX — Continued
Subroutine BOUNE (A, N, BOUND, B)

Purpose: To determine an interval on the real axis that contains all the real zeros
of p (x)

Flow chart:

Is
leading
coefficient
negative?

p(x) = -p(x)

No %=
No @
Yes

( Compute bound macxgzgr:t:of
fo.
rpx) two bounds

) p(x) = p(-x)

‘ Return )

Subroutine arguments:

A array of coefficients for p (x)

N degree of p (x)

BOUND closed interval [-BOUND,BOUND] which contains all the real
zeros of p (x), an arbitrary polynomial

B work array

13



Subroutine listing:

14

10

15

20

25

30

35

Lo

45

50

585

60

65

70

(223X eX~]

OOOOOO0

1€

[sXeNe)

22
190
100

200¢C

(=X Ne]

1200

18080

OO

19
10

20
12

187

OO0

11
200

APPENDIX — Continued

SUBROUTINE BOUNE(AsN,BOUND,)

THIS ROUTINE DETERMINES THE INTERVAL CONTAINING THE ROCTS,
IF ANY, (REFER TO CORRESPONINC *TNX*",)

DIMENSION E(1),A(1) rE
HHH=10.%%6 - 71 .7
K=N+1

00 15 J=1,.K
B(J)=ALN)

RS AVEER

FIND F(=-X) AND SUBSEQUENTLY CCUNT THE NO. OF COEFFICIENTS

PRECEDING THE FIRST NEG COEFFICIENT.
THEN D0 LIKEWISE FOR F (X)e
D0 16 J=2,K

TL=(MOD(J+2))=e5
B(II=B(JI*(SIGN(1.,TL))

IF LEADING COEFFICIENT IS NEG,THEN CONSIDER =-F(X).

IF(B(X).GT.0)GO TO 190
DO 22 J=1,k-

8(J1==B8(J)

CCNTINUE

1=

DO 2000 J=1,K
IF(B(K=J+1},LT.0)60 TO 1200
I=T+1

CONTINUE

COMPUTE MAXIMUM NEG COEFFICIENT OF F(=X).

R=0

DO 1800 J=1,K
IF(B(J)sGEL0)GO TO 1800
S=A8S(B(J)}
R=AMAX1(R4S)

CONTINUE

W=1./1
BT=1,+{R/B(K))**H

COMPUTE MAXIMUM NEG COEFFICIENT CF F(X)

T=0

IF(A(K) GT.0)GO TO 10
T=1

00 19 J=1,K

Al ==A(N)

I=0

DO 20 J=1,K
IF(A(K~J+1) LT«0)GO TO 12
I=1+1

CONTINUE

R=Q

DO 180 J=1.K
IF(A(JY.GEL0)GO TO 180
S=ABS(A(J))
R=AMAX1(R,S)

CONTINUE

H=1,/1
BOUND=14+ ( {R/A(K)) **N)

DETERMINE THE LARGER OF THE BOUNCS.
CONTAINING ROOTS.

BOUND=AMAX1(BOUND,BT)
IF(T.NEL1)IGO TO 200
00 11 J=1,K
AtJ)==Atd)

RETURN

END

THIS WILL BE THE INTERVAL



Purpose: To compute the number of distinct real zeros of p (x)

‘Flow chart:

APPENDIX — Continued

Subroutine CHECK (A, N, BOUND, IER)

BO = BOUND

BI = ~-BOUND

I=0,j=0
m=1

——

Evaluate p (x)
and p’(x) at
x = BO,x = BI

%

s = pm(BO)pm+1 (BO)
t = pm(Bl)p (BI)

m+1

pm+2(x) - —r‘(pm/p
r = Remainder

m+1)

Subroutine arguments:

A
N

array of coefficients for p (x)
degree of p (x)

15




APPENDIX — Continued

BOUND closed interval [-BOUND,BOUND] which contains all the real zeros
of p (x), an arbitrary polynomial
IER total number of distinct real zeros of p (x)

Subroutine listing:

SUBROUTINE CHECK(AsNyBOUND,IER)

THIS ROUTINE CONSTUCTS THE STURM SEQUENCE CF POLYNOMIALS
HAVING DETERMINED THIS SEGUENCE, IT THEN EVALUATES EACH
POLYNOMIAL AT BOUND AND =-BOUND ANC SUBSEQUENTLY CCUNTS THE NUMEER OF
VARIATIONS OF SIGNS AT EACH EXTREMITY. THE DIFFERENCE
Of THESE SUMS REPRESENTS THE NUMBER OF REAL DISTINCT ZEROES
OF P(X)e (I.Es V(AI=VI(BN)
DIMENSION A{1),8(30),C(30),D(30)
10 1J=0
K=N+1
NN=K=1
XX=1,7ABS (A (1))
D0 22 JX=1,K
15 22 DUIXY=ALIXNI*XX
FF=.1%%10
HH=10.%%10
DO 44 JX=1,K
GG=ABS(D(JX))
29 HH=AMIN1 (HH,GG)
L4 CCNTINUE
EPS=HH/4
EPS=AMINL(EPSsFF)
CALL PDER(B4NN»A,K)
25 I=0
J=0
80=BOUND
BI==-B0ND
CALL PVALI(S,B04A,K)}
30 CALL PVAL(S0,BI,4A4K)
S=SIGN{1445)
SC=SIGN(1.,S0)
12 CALL PCIVIC,NIsDsKs8yNN,EPS,IET)

w
QOO OOO0

35 IF THERE IS NO REMAINDER, THEN COMPLETE ARGUMENT AND EXIT

[z XsX <]

IF(K.LE.0)IU=1
CALL PVAL(T,80:8,NN}
CALL PVALITC,BI,B,NN)
48 T=SIGN(1.,T)
T0=SIGN(1.,TO)
S=5*T
S0=S0*T0
IF{S.GT,0,)G0 To 20
45 I=I+t
20 IF{SC«GT+043G0 TO 21
J=d+1
21 CONTINUE
IF{IJ.EQ.1)60 TO 10
50 SC=T0
S=T
DC 17 JUX=1.KN
17 CIX)¥=B(JIX}
DO 18 JX=1,K
55 18 B(JIX)I==D(JX)
00 19 JX=14NN
19 DEJIXI=CCIX)
L=K
K=NN
60 NN=L
GO0 70 12
10 NG=J-I
IER=NG
RETURN
65 END

16



APPENDIX ~ Continued
Subroutine PDER (Y, IDIMY, X, IDIMX)
Purpose: To find the derivative of a polynomial

Subroutine arguments:

Y array of coefficients, ordered from smallest to largest power for
the derivative

IDIMY dimension of Y

X array of coefficients for the original polynomial

IDIMX dimension of X

Subroutine listing:

SUERQUTINE POER(Y,IDIMY.XeIDI¥X)
OIMENSION X(1),Y{(1}
IFC(IDIMX=1)34341
1 EXPT=0
S DO 2 I=1,ICIMY
EXPT=EXPT+1,
2 Y(INI=X(I+1)*EXPT
Go TG 4
IDIMY=0
RETURN
END

F ]

10

Subroutine PVAL (RES, ARG, X, IDIMX)
Purpose: To evaluate a given polynomial at any given value using nested arithmetic

Subroutine arguments:

RES resultant value (i.e., P(ARG))

ARG given value of the independent variable

X vector of coefficients, ordered from smallest to largest
IDIMX degree + 1

Subroutine listing:

SUBROUTINE PVAL(RES+ARGyX,I0IMX)

THIS SUBROUTINE EVALUATES A GIVEN POLYNOMIAL AT
ANY VALUE USING NESTED ARITHMETIC

(s NNy NoXel

OIMENSION Xx(1)
RES=D
J=IDIMX
IF(J)3,3,2
RES=RES*ARG+X(J)
J=y-1
G0 70 1

3 RETURN
15 END

14

[N

17



APPENDIX — Continued
Subroutine PDIV (P, IDIMP, X, IDIMX, Y, IDIM&, TOL, IER)
Purpose: To divide two polynomials

Subroutine argunients:

P resultant vector of integral part

IDIMP dimension of P

X vector of coefficients for dividend polynomial, ordered from
smallest to largest; replaced with remainder after division

IDIMX dimension of X

Y vector of coefficients of divisor polynomial ordered from smallest
to largest

IDIMY dimension of Y

TOL tolerance value below which coefficients are eliminated

IER error code; 1 denotes zero divisor, 0 denotes normal

Subroutine listing:

SUBROUTINE PDIV (P, IDIMF,XyIDINX,Y,IDIMY, TOL, IER)
THIS ROUTINE DIVIDES TWO POLYNOMIALS RETURNING
THE QUOTIENT AND THE REMAINDER
DIMENSION P{1),X{(1),Y(1)
5 10 IDIMP=IDIMX-IDIMY#1
IF(IOIMP)204+30,60
20 IDIMP=D
30 IER=D
40 RETURN
10 B0 IER=1
. GO TO 40}
60 IDIMX=IDIMY=-1
I=IDIMF
70 II=I+IDIMX
15 PCI}=X(II)/Y(ICIMY)
DO B0 K=1,IDIMX
J=K-1+41
80 X(JI=X(J)=-P(II*Y(K)
I=I-1
20 IF(I)90,90,70
90 CALL PNORM(X,IDIMX,TCL}
GO TO 30
END

(2R ]

Subroutine PNORM (X, IDIMX, EPS)
Purpose: To normalize coefficients of a polynomial

Subroutine arguments:

X array of coefficients for p (x)
IDIMX dimension of X; replaced by final dimension after normalization
EPS tolerance below which coefficient is eliminated

Subroutine listing:

SUBROUTINE PNORM(XsIDIMX,EPS)
OIMENSION X (1)

1 IFUIDIMX)4,44,2

2 TF(ABS(X(IOIMX)I)-EPS)3,3.4

5 3 IDIMX=IDIMX-1

G0 10 t

4 RETURN
END

18




APPENDIX — Continued

Subroutine ROOE (A, B, N, BOUND, ROOT, NI

Purpose: To compute all the real zeros of p (x)

Flow chart:

Determine a zero
of p(x), using
secant and bi-

section methods

f

Deflate p (x) by
1 degree
p(x) = q(x)

!

Call BOUNE
Call CHECK
for deflated
polynomial

Subroutine arguments:

A
B
N
BOUND

ROOT
NI

array of coefficients for p (x)

work array

degree of p (x)

closed interval [-BOUND,BOUND] which contains all the real
zeros of p(x), an arbitrary polynomial

array containing the real zeros

number of real zeros in array root

19



Subroutine listing:

20

190

15

20

25

30

35

40

45

50

55

OO0 O0OO0

c
c

APPENDIX — Continued

SUBROUTIM ROOE(A¢ByNeBOUND,RCLT4NI}
DIMENSION E(1),A(1),R00T (1)
DIMENSION Y(30)

REAL LX

THIS RCUTINE ACTUALLY COMPUTES THE REAL ROOTS,

E+DRyXLs ARE TOLERANCES UFON WHICH CONVERGENCE IS BASEDITHEIR
ORDER INDICATING THEIR SEVERITY, MORE THAN ONE IS USEQ TO IMPRCVE
PROBABILITY OF CONVERGENCE WHEN ACCURACY IS LOST AND/OR PRESENCE
OF MULTIPLE ROQQTSe

JJ=N+10
KB=NI L4
E=.1%*16
T .
,0=0.1,
. XL=.1%%6 @
7 pag
- G=,1%%10
_~DR=Q *
. NI=0
LX=N+1
Li=LK
DO 190 J=1,LK
190 B(JI=A ()
xXx=1/81(1)
Vv=xX
DO &4k J=1,LK
L4y B =B (I)2XX
I=0
183 Ly=2
IJ=K8~1
ANS=0
G=0
IF({IJoNEL1)GO TO 25€6
JH=ALOGL1O {EOQUNLC)YZ/ALOGL2,.)
Iv=JH/6

IF ONLY ONE DISTINCT ZERO REMAINS, THEMN ISCLATE IT,

DO 117 J=1,1000-
G=BOUND=(BCUND/ (2, **(J*IN)))
SS=B0UND-G.
IF(SS.LT.100.160 TO 1000
CALL CHEGK(B,LK=~1,G,IER)
IF(IER.NE.0)GO TO 1000
117 CONTINUE

1800 CONTINUE
G=BOUND- (BOUND/ (2. *¥* [{J=1)*IM)))

2566 CONTINUE
X=BOUND=G

1182 CONTINUE

DETERMINES STEP SIZE,.DEG.

DEG= (23X)/ (2% (LJ=11)
LG=2*X/DEG



60

€5

78

75

80

85

0

95

i00

108

110

[sX2X+]

(el X)

[eNs X2

[+ XXy

(s Xr N2}

150
22

20

97
i0

122

10

APPENDIX — Continued

T=0
L=2
LX=MOD(L,2)~1.

COMPUTES INITIAL GUESSES WITH STEF SIZE.DEG.

X0=SIGMN(Gy LX)} =(SIGMNIDEG,LX)®((L/2)~1))
X1=2SIGN{Gy LX) = (SIGNIDEG, LX) *(L/2))

CALL PVAL(Z,X1,B,LK)
Z=ABS(2) +1 0.

CALL PVAL(R+X0,B8,LK)
CONTINUE

EVALUATES F(X) AT COMPUTED ITERATE

CALL PVAL{SsX14BsLK)
IF(IJ.NEL1)GO TO 103
I1=K8=1

IF(II.GT,131G0 T0 103
F=SIGN(1¢4%5)
H=SIGN (1, ,R)
IF(F*H,GT.C)GO TO 103
XM= (S=R) /{X1=X0)
CT=ABS (X1-X0)
IF(CT4GT4a51G0 TO 97
IF(CTe6T.o01*ABS(X1))GO TO 97
XMM=S=XM¥X{
ANS==XMM/ XM

GC TO 206

CONTINUE

CONTINUE

DETERMINES MINIMUM F(X) IF DIVERGENCE QCCURS FOR ALL ITERATES.

IF(T.EQ. 0160 TC 122
IF(ABS(S).CT.TIGC 1O 10
CCNTINUE

T=ABS(S)

G1=X1

CONTINUE

IF F{X) CONVERGES , THEN ISOLATE ZERO AND REODUCE P (X)

IF(ABS(S)LT.EIGO TO 125
IF((ABS(S)eGTe2Z),AND. (AAS(S)«LTLDRYIGO TO 125
IF(ABS(S) LT, XL)P=x1 )

CHECKING FOR DIVERGENCE

IF(ABS(S).GT4Z)G0 TO 120

Z=A8S(S)

v=x1 :

IF(S~R.EQ.0)GO0 TO 120

FG6={X1-X0) /{S=R)

X1=X1~ (FG*S)

IF(ABS(X1) (GT.BOUNDIX1=SIGN{BCUNC,X1}

21
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APPENDIX — Continued

11% IF(ABS (X1) o LT« G} X1=SIGM(G, X1)
Xo=v
R=S
GO TO 20
125 I=I+1
120 ANS =0
P=g
NI=I
23 CONTINUE
RCOT{INI=X1
125 IF(I.EQ.N)GO TC 206
IF(GK.NE.D.)GO TO 105

COMPUTES DEFLATED POLYNOMIAL,USING SYNTHETIC DIVISION, ODETERMINE
NEW INTERVAL.

2N s NaXe)

130
550 CONTINUE
CALL SYNTH(BsLKsX1)
IF(LK-1.EQ.2)60 TO 100
LK=LK=1
135
DETERMINE BOUND FOR ZERO AND HENGE THE NO. OF DISTINGT ZEROES
FOR THE RECUCED FOLYNOMIAL .

aOO0

CALL BOUNE (ByLK=~1,BOUND,Y)
140 CALL CHECK(B,tX-1,B0UND,IER}

INTERRCGATES THE STATUS OF CCMPLETION.

o000

IF(I.LT.KBIGO TO 2300
145 IF((IER.EQ.0) +AND, {I.GE.KB)})GO TO 206
2300 CONTINUE
vv=1/811)
D0 355 J=1,LK
355 8(JY=B(J)*VY
150 69¢ CONTINUE
60 To 183
100 X1=-8B(1)/B(2}
60 TO 125
120 L=L+t
155
COMPUTES THE NEXT INITIAL GUESS IF INTERVAL IS NOT EXHAUSTED.

Qoo

IF(L.LT4LGIGO TO 22
CIX=IX+L
160 IF(P.EQ.0)GO TO 1212
X1=P
G0 TO 125
1242 CONTINUE

IF STEP SIZE IS SMALL ENOUGH,SUBJECT PCLYNOMIAL TQ BISECTICN,
OTHERWISE,CHOOSE A SMALLER STEP SIZE.ETC,

1€5

o N RoNy)

IF(DEG.LT441)G0 TO 1E5€
Ly=LJ+l
170 GO TO 182
155€ CONTINUE

BEGIN SISECTION ARGUMENT BASED ON Gi AND DEG.

Ooo

175 X1=61
D=DEG"
JH=ALOGA 0 (CEG) /ALOG10 (24}
JH=JH+18
00 18 J=1,JH

180 XC=X1+9
XG=X1-0
CALL PVAL(S,XCsAsLL)
S=ABS(S)

CALL PVAL{T,XGyA,sLL)

185 1=A85( T
X1=X1=(SIGMN(D/2,S-T))
CALL PVAL(H,X1sAsLL)
H=ABS (H)

IF(HsLT.XLIGO TO 125

190 D=0/2

18 CCNTINUE

20€ CONTINUE
IF(ANS.EQ.0)G0 TO 105
X1= ANS

195 6K=1

GO TO 125 i

CONTINUE

RETURN

END

10

wn
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APPENDIX — Concluded

Subroutine SYNTH (B, K, X)
Purpose: To deflate a polynomial by one degree using synthetic division

Subroutine arguments:

B array of coefficients for a polynomial, p (x)
K degree + 1
X zero of p (x)

Subroutine listing:

SUBROUTINE SYNTH(B,K,X)
OIMENSION B8(1),C(30)

THIS ALGORITHM DEFLATES THE PCLYNCMIAL USING SYNTHETIC DIVISION,

OO0

L=K=-1
CLK)=8(K)
0C 17 J=1,L
17 CUK=JI=X*C(K-J¢t1) +B(K=J)
10 00 18 J=1,L
18 8{J)=C(J+1)
RETURN
END

23
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