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ABSTRACT

Riemer, Terry Edmund, Ph.D., Purdue University, December,
1974. Optimum Constrained Image Restoration Filters. Major
Professor: C.D. McGillem

An optimum image restoration filter is developed in

Halbert space by minimizing the radius of gyration of the

overall or composite system point-spread function subject to

constraints on the radius of gyration of the restoration

filter point-spread function, the total noise power in the

restored image, and the shape of the composite system fre-

quency spectrum.

By satisfying a constraint on the radius of gyration of

the restoration filter point-spread function, truncation

errors arising from attempted restoration of incomplete

segments of blurred data are almost completely suppressed.

An iterative technique is introduced which alters the

shape of the optimum composite system point-spread function,

produciTig a suboptimal restoration filter which suppresses

undesirable secondary oscillations which may otherwise

appear in the composite system point-spread function and

introduce "ghosts" in the restored data.

An extensive study of the restoration filter performance

as a function of its parameter variations is wade. Numerous

,J

;` 
3

i	
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xix

examples are provided to demonstrate the fundamental prop-

erties of the restoration filter.

Finally this technique is applied to mult`.ispectral

scanner data obtained from the Earth Resources Technology

Satellite to provide resolution enhancement. An experimental

approach to the problems involving estimation of the effective

scanner aperture and "matching" the ERTS data to available

restoration functions is presented.



1.1 General Discussion

The general problem of image processing has been the

subject of intense investigation within the last decade. This

interest is the result of the need for the highest possible

image quality in the increasing application or imagery to

the solution of various related problems in many fields of

science and engineering. These applications range from x-rays

in medicine to satellite-based multispectral scanner data

collection systems for monitoring earth resources and to a

large degree are made feasible by recent improvements in

digital computer hardware.

Since no image collecting or imaging system will produce

a perfect replica of the original image, some further pro-

cessing is usually required. The area of image restoration

deals primarily with the problem of processing the output of

an imaging system in such a way that the significant parameters

or features of the original image are, in some sense, enhanced

or restored. This processing may be linear or non-linear,

shift-variant or shift-invariant depending upon the type of

degradation produced by the imaging system.

The primary purpose of this research is the development
^.9

of a technique to reduce the effective aperture radius of the

multispectral scanner system used for remote sensing of

earth resources. Because of the finite point-spread function
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of the scanner and the response limitations of the image

sensors and signal conditioning electronics, a two-dimensional

spatial smearing or blurring of the original image is pro-

duced. This type of imaging degradation essentially maps

many points from the original image into a single resolution

element. In other wordsr a single resolution element of the

imaging system output represents a two--dimensional weighted

sum of many points adjacent to the correspondingly located

sample of the original image. Thus, depending upon the

density and shape of the effective aperture and the spatial

and multispectral characteristics of the original image,

this type of imaging degradation may not only introduce

significant error in the visual presentation of this data,

but also introduce serious errors when classification of

this data is attempted.

1.2 Previous Investigations

Historically much of the initial, work directly related

to linear shift or time-invariant restoration filters was

performed in the areas of seismographic data analysis and

!	 radio astronomy. Basically this work considered the prob-

lems associated with defining the restoration filter trans-

fer function as the inverse of the Fourier transform of a

linear shift or time-invariant blurring process, which is

often referred to as a classical "inverse" filter. The

principle problem associated with such a restoration filter

occurs when the Fourier transform of the blurring process

1	
_	

f
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becomes very small or perhaps equals zero. Since the

spectrum of the restoration filter becomes unbounded at such

points, some means of assigning a finite value to the

spectrum at these points is necessary.

Typical of this early work, Harris [9] attempted to

eliminate this difficulty by arbitrarily modifying the

spectrum of the inverse filter to provide a restoration

filter having a transfer function that was continuous and

finite in those regions where the blurring function spectrum

is zero. Bracewell offers an alternative to the problem by

employing finite differences [41 and a technique of suc-

cessive substitutions [5] to define the restoration filter

in the temporal or spatial domain. in a more recent study,

Kinzly [13] circumvents the problem of infinite gain in the

restoration filter by choosing a diffraction-limited system

as the correction goal rather than attempting an ideal

correction. More sophisticated spectral studies by Bercherer

[2] and Horner [101 are based upon minimizing the mean-square

error between the original and restored image data, leading

to a two-dimensional Wiener filter. Although this type of

restoration filter does eliminate the previous problem of

spectral infinities, "Apri.ori" knowledge of the image power

spectral density is required. using a novel approach,

Robinson [181 defines the restoration filter in the temporal

or spatial domain in terms of a series derived from the z-

transform of the blurring function. Rice [17] provides an

i
4

f̀ 	 _



over the shape of this function.
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extension to Robinson's work by defining a restoration filter

based upon minimizing the mean-square error between the

original and restored images. in bath of these procedures

knowledge of signal characteristics is required. Extensive

literature surveys on restoration filter design and related

areas of image processing are provided by Huang, et.al . [11]

and Sondhi [20]. The pre •Jious references represent the

earlier studies most closely related to this investigation.

Although several of the previous studies did attempt to

optimize the restoration filter, resulting in a Wiener filter,

Smith [19] appears to be the first to consider specifying an

optimum restoration filter based upon minimizing the radius

of gyration of the corrected impulse response or point-

spread function subject to a noise constraint. Because no

constraint is placed upon the radius of gyration of the

restoration filter impulse or point-spread function, serious

numerical problems arise. Stull.er 81,211 uses basically

the same constraints as Smith, but formulates the problem in

the spatial domain. By defining the restoration filter using

matrix notation, a restoration filter containing an arbitrary

number of points may be determined. This appears to be the

first attempt to control the duration of the restoration

filter impulse or point-spread function. Although the

duration of the restoration filter impulse response or point-

spread function can be controlled, no control is possible
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The previously cited investigations have in common one

or more of the following deficiencies: no general control

over the shape or durati^^-^i of the restoration filter impulse

response or point-spread function, no general control over

the shape or duration of the corrected impulse response or

j	 point-spread function, no control of the spurious responses

resulting from secondary lobes in the restoration filter

impulse response or point-spread function, and no way to

make tradeoffs among the various conflicting performance

requirements of the filter. The significance of these

controls will be examined in the next chapter.

1.3 Outline of Investigation

An optimum shift-invariant restoration filter is formu-

lated in Chapter 2 based upon minimizing the radius of

gyration of the overall or composite system point-spread

function subject primarily to constraints on the radius of

gyration of the restoration filter point-spread function and

on the total noise in the restored image. In addition, an

iterative technique is developed which suppresses secondary

oscillations in the composite system point-spread function.

For numerical solution convenience, the problem is transformed

into the spatial frequency domain and a system of linear

differential equations which specify the spectrum of the

restoration filter is developed. Finally a comparison is

made between the optimum restoration filter and the classical

"inverse" filter.

t=

t
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Chapter 3 discusses the application of well known digital

computer algorithms to the solution of the previously devel-

oped system of linear differential equations specifying the

spectrum of the restoration filter.

Chapter 4 presents an investigation of the fundamental

properties of the restoration filter. A study of the filter

performance as a function of its parameter variations is made.

In addition, examples are presented to demonstrate the capa-

bility of the restoration filter to suppress truncation

error. These examples also provide a qualitative measure of

the restoration capabilities of the filter.

Chapter 5 discusses the application of this restoration

techniqu:- to ERTS multispectral-scanner data. The problems

of estimating the shape of the scanner aperture and "matching"

the ERTS data to nrevi.ously computed restoration functions are

considered. Finally, examples are presented to demonstrate
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CHAPTER 2

OPTIMUM IMAGE RESTOPLTION FILTER

2.1 Introduction

In this chapter the fundamental equations underlying

the general image restoration filter are defined. From

these equations, a system of equations which specifies the

general two-dimensional restoration filter is formulated

in the two-dimensional spatial frequency domain. To

simplify the analysis of the general problem, two specific

types of aperture functions are considered, separable and

radially symmetric. A system of equations which specifies

the spectrum of the restoration filter for each aperture

class is developed. In order to provide additional control

over the shape of the point-spread function of the

composite imaging system, an iterative technique is

defined. The resulting systems of equations which specify

the frequency spectrum of the restoration filter for both

separable and radially symmetric aperture classes are

formulated in terms of the iterative technique. And

finally, it is shown that when all defined constraints are

removed, the resulting restoration filter is the classical

"inverse" filter.
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2.2 Formulation of Image Restoration Problem

The basic components of the composite imaging system

are defined in Figure 2-1. The fundamental design

criterion for determining the optimum image restoration

filter is to select the restoration filter point-spread

function so that the point-spread function of the composite

imaging system is as compact as possible about the spatial

origin. Since the classical "inverse" restoration filter,

defined by the inverse of the modulation transfer function

of the imaging system, would produce an impulse for the

composite imaging system point--spread function,

representing theoretically the best possible correction,

the basis for the fundamental criterion is evident.

One convenient measure of compactness is the square

of the radius of gyration, r, defined as

Co _ 2 x
1 ^ v { g (v) dv

z r	
O° 2	

(2-1)

J g (v) dv

where g(v) is the point--spread function for the composite

system and v is a two-dimensional spatial vector, g(v) may

be expressed as a tiro-dimensional convolution in terms of

the imaging system point-spread function, hb (v), and the

desired image restoration point-spread function, h r (v)as

g(V) = h  (v) **hr (v) ,	 (2- 2)

An optimum restoration filter based upon minimizing



A
i (V) +nT(q)

PROCESSED
IMAGE

INPUT
IMAGE

h b R)

IMAGING
SYSTEM

n	 hr N)

"
+ RESTORATION

2: 	 FILTER

Figure 2.1.- Composite Imaging System
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Eq. 2-1 would only assure that the composite imaging point-

spread function be as compact as possible but would not

provide control over oscillations or secondary lobes that

might occur and which would lead to ghosts in the restored

image. Some additional control over the rate of decay of

this function away from its centroid is most desirable. By
x

making a slight change to Eq. 2-1, replacing Iv 
1 

by an

arbitrary weighting function, w(v), which will be defined°

later, control over the rate of decay of the composite

imaging system point-spread function becomes possible.

Thus the fundamental criterion may be expressed as the

ratio of two quadratic functionals

z
f w {v) g {v) dv
-00

Fl	 (2-3)

g (v) dv
-00

The optimum restoration filter would be determined by

choosing a restoration filter that will minimize the

numerator of Eq. 2-3 subject to a constraint on the

denominator, which corresponds to the energy in the

composite filter.

In order to avoid two significant shortcomings

envountered with the classical "inverse" filter, two

additional constraints must be considered. The first deals

with the compactness and rate of decay with respect to the

spatial origin of the point-spread function of the optimum

restoration filter. Since the point-spread function of the



restoration filter based upon the "inverse" filter is

generally much less compact than the point-spread function

of the imaging system, and often is of infinite duration as

a result of the infinite energy usually associated with

such a filter, it is advantageous from a data processing

efficiency and cost viewpoint to reduce the duration of

this function, thus reducing the amount of data required

for image processing. in addition since the image to be

restored usually represents only a portion of the original

image presented to the imaging system input, significant

"edge-effect" errors can result. This error is produced by

truncation of the imaging system output, i.e. having only

a finite data record available for restoration. It is

usually greatest at the boundaries or edges of the restored

image and propagates through the restored imageIBy

making the point-spread function of the restoration filter

more compact about the spatial origin, both problems

concerning data processing efficiency and "edge-effect"

errors should be diminished.

Using an analogous development to that of Eq. 2-3,

CO	 2
f s (V—) hr 	dv—

2	 00	 2,
	 (2-4)

W 

hr (v) dv

may be defined, where s(v) is a weighting function similar

in purpose to that of w(V) in Eq. 2-3, and hr	 is the	
i.

See Appendix A as
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restoration filter paint-spread function. By using both
ithe numerator and denominator of Eq. 2--4 as additional

constraints, arbitrary control with regard to compactness

and duration of the optimum restoration filter is possible.

The second additional constraint necessitated by the

performance of the "inverse' filter is a constraint on the

noise power present in the restored image. Because of the

shape of the spectrum of the "inverse" filter, optimum

performance is possible only in a noiseless environment.

The presence of any noise, however small, would in general

be infinitely amplified by such a filter. The additional

constraint provides arbitrary control of the signal-to-

noise ratio of the restored image. This constraint can be

stated as an expectation over nT(v),

x
F3 a E{nT ( v) }
	

(2-5)

where nTM, the total noise in the restored image, is

defined in Figure 2--1.

A final constraint has been found necessary under

certain conditions to control the shape of t hs modulaI.ion

transfer function of the composite imaging system to

guarantee that this function contains no significant

i:. spurious high frequency peaks which could contribute to

	

b	 oscillation near the spatial origin of the composite
'	 z 3b

	

' 	 imaging system point--spread function. This occurs

	

1'	 primarily when the first constraint is removed or is near
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its unconstrained value. This constraint may be defined in

the spatial frequency domain as,

y

	

F4	
f (-T-) 

2 

I G (T) I 

2 

H
 -00	

H

where G(f) is the composite imaging system modulation

transfer function and f h is a frequency weighting

parameter. Since the previous constraints were defined in

the spatial domain, this constraint, as will be shown in

the next section, can be written as.

F4 = - 
—?— f 

40 

g	 (V) dV.	 (2-6)
4-ff lf H 2 --

2.3 Development of Optimum Filter Function

Combining the primary criterion defined in Eq. 2-3

with the constraints of Eq. 2-4 through 2-6, the optimum

restoration filter point-spread function hr (V) is that

function which minimizes the functional

	

F	 f w (V) g (V) dV	 (2-7)
-M
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It should be noted that the constraints related to the energy

of the composite imaging system, i.e. the denominator of Eq.

2-3, and the energy of the image restoration system, i.e. the

denominator of Eq. 2--4, have been dropped since these con-

straints can always be satisfied by appropriate amplitude

scaling of the optimum restoration filter defined by the

constraints of Eq. 2-8 through 2-10.

Lagrange multipliers and the methods of functional

analysis will be used to solve Eq. 2-7 subject to the con-

straints of Eq. 2-8 through 2-10 by forming an augmented

functional which is the sum of the functional to be mini-

mized, Eq. 2-7, and the constraint functionals each multi-

plied by a different Lagrange multiplier (7,8].

Thus the augmented functional, I, which must be mini-

mized with regard to hr (v) becomes,

CO

1	 f^ w(v
_

)g 2 (v) dv + 1 1 f^ s ( v
_

)h 2 (v) dv + A E{nT(v)}

x	 CO

..	
3	 r gf.. (v) 

g (v) dv

4Tr2 f H 
2	 J

= fw(v) fh r, (z)hb (v--z) dz fhr (u)hb (v-u) dudv
-CO
	

-CO
	

_CO 

C*

+ Al f f s (u)s ( u-v)hr (v)hr (u) dodo
_m

	

CO	 CO _ _	 _

+ x 2 E{ f n{v- z}hr (z) dz f n(v-u)hr (u) du}

	

_CO	 _CO



is

-	 x 2 f f d (z-v) fhr (z) hb (T-z) dz f mhr (u)hb (v-u) d^edvdu.
4 fH	 W

(2-II}

Eq. 2-11 may be written in quadratic functional form as

I = f f Al {u,z)hr (z)hr (u) dzdu
-00

00

+ Al f f A2 (u,z) hr (z)hr (;i) dzdu

00

+ 12
. f f A3 (u,z}hr (z)hr (u) dzdu

CO
+ A 3 f f A4 (u,z)hr (z)hr (u) dzdu	 (2-12)

-CO

where	 A1 (u,z) ,A
2 (up Z) ,A3 (u,z) , and A4 (U, F)

are Linear operators defined as [8]

A1 (u,z) = f w(v)hb (v--z)hb (v-u) dv	 (2--13)
-CO

A2 (u,z) = s (u) 6 (u - x)	 (2-14)

A3 (u, Z) = E{n (v - z)n(v - u) }

= Rnn (z-u) , for n(-)  a stationary

ergodic random process	 (2-15)
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The stationary points of the augmented functional of

Eq. 2-•12 will be determined by equating the directional

derivative of this functional to zero. It should be noted

that for a real functional equating the directional

derivative to zero is equivalent to setting the gradient to

zero [8]. The gradient of a quadratic functional

00I1 - f f A (u,z)h(z)h(u) dzdu

is defined as

01 1 = f [A (U, 	 + A"(u,z) Ih(z) di
-00

where A'(u,z) is the adjoint of the linear operator A(u,z).

The adjoint linear operators of Eq. 2 -13 through 2--16

are

j
AZ 	 AZ (u, z)	 (2-18)

a
A^(u,z) = A3 ( u IF)	 (2-19)

and	 A' (u, z) = A^ (u, z) .	 (2-20)

Setting the gradient of Eq. 2-12 with respect to hr(.}

equal to zero, a homogeneous Fredholm integral equation of
j

the second kind, sometimes referred to as a Fredholm

integral equation of the third kind, is obtained as

f [Al (v,z} + 12A3 (v,z) + Jt 3A4 (v,z^ )hr (x) dz
t '
	 -o0

F
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+ Als (v) hr (v) = 0 .	 (2-21) z

The solution of this equation coupled with the constraint

equations, Eq. 2-8 through 2-10, would give the required

point-spread function of the restoration filter, hr(v).

However because of the numerical difficulties which may

arise in the general solution of this type of equation and

in order to more conveniently utilize numerical techniques

}	 which are readily available, the solution for h r (V)will be

E	 formulated in the two-dimensional spatial frequency
1
!	 domain .

Eq. 2-12 may be rewritten using inner product notation

[81, where the inner product of x(t) and y (t) is defined

as

QQ(X, Y)	 f x (t) y* (t) dt

where the asterisk denotes the complex conjugate.

Thus

I = (A1 hr , hr) + A 1 (A2hr , hr ) + A 2 (A3hrrhr)

+ A 3 (A4 hr ,hr ) .	 (2-22)

Eq. 2-22 may also be written as a quadratic functional in

z For derivation see Appendix B.

r^

^w4
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the spatial frequency domain as

1 = (B	 ( B+ Jll ( B 2 Hr r Hr ) + h 2 (B3Hr.Hr)

+ X 3 (B4Hr ' Hr) r	 (2-23)

where

(•) denotes the Fourier transform and B1t B2 , Ba r and B4

are the spatial frequency linear Equators which are the

i
Fourier transforms of the spatial domain linear operators,

i	 Alt A2 , A3 , and AA , respectively. Thus
ii

CO

-j 2wfu j 27rvx

	

B 1 (f,v) _ f f Al (u,Z) e	 e	 du dz 	 (2-24)

which after substituting Eq. 2-13 into Eq. 2-24 may be

simplified to

	

Bl (,y) = H*b () Hb (v) W ('T-V)	 (2-25)

where	 Hb(•} a 9{h b (.)}	 !

and Hb*( • ) is the complex conjugate of A,b(•).

The adjoint of Bl ( ,v), defined as Bi(F,v), may be written
3

as
1

B'1 	- B1 (v,f)

which from Eq. 2-25 becomes

	

B^ ("f,v) = % (v) Hb (Y)W* (v-T) .	 (2-26)

Similarly

	

$2 (.v) = Sfj- v)	 (2-27)

a	 ^e
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f

where	 S(•)	 ;{S(•)Ir

S (v-f)2

3	 nn

where	 inn	 ;{R nn(.)}

B'(?r;)3	 nn

B

	

4 (fv)	 vV)f2
H

and 4
H

(2-29)

(2-30)

(2-31)

(2-32)

The gradient of the quadratic functional of Eq. 2-23

becomes

VI	 (B1 1+B*, )Hr + A1 (B22+B , )H + X 2 (B3 3+B*')H r

X 3 (B 4+13 H	 (2-33). 4 r

which upon expanding the linear operator notation of Eq.

2-33 becomes
CO
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Substituting Eq. 2-25 through 2-32 into Eq. 2-34,

COvi = f IHb* (f )Hb 0)1W(f—U) + w*(v—f)}
—CO

+ A l {s(f--v) + S* (v-x)}IHr (v)dv + 2(a24^nn(f)

+ X ( f ) 2 I Hb (f) zlx^f) = a.	 (2-35)
H

Eq. 2-35 represents the general expression for the

gradient of Eq. 2-23 with respect to Hr ( • ), which then

combined with the constraint equations, completely specified

the spatial frequency spectrum of the restoration filter.

The constraint equations, Eq. 2-8 through 2-10, may be

rewritten in the spatial frequency domain as

K1 = ( $2 r. Hr )	 (2.36)

which after substituting Eq. 2-27 into 2-36 becomes

K 1 = f fS(f—v)Hr (v)Hr (f)dvdf,	 (2-37)
-CO

K 2 = (B3Hr.H)	 (2-38)

after substituting Eq. 2-29 into 2-38 becomes
CO

K2 =f %n(f) 1-1r(f) 1 2 df	 (2-39)
-CO

and

K2 = (B4 rj,Hr)	 ( 2-40)

after substituting Eq. 2--31 into 2-40 becomes

K 3 = f (f ) 2 hTb (f} I^ ! r(f) l 2 df.	 (2-41)
-^ H

5

i
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Before Eq. 2-35 can be reduced to a form more suitable

for the evaluation of the spatial frequency spectrum of the

restoration filter, the penalty weighting functions w(v)

and s(v), introduced in-Eq. 2-3 and 2-4 respectively, must

be further examined. Since w(v) is designed to influence

the solution of hr (v) so that the composite imaging system

point-spread function, g(v), is duration limited, a

possible choice for w(v) would be

w(V) - 1 for v1 —<V—<:F2

= CO, otherwise.

However such a choice fez w(v) would lead to analytical

difficulties in Eq. 2-35, since the Fourier transform of

such a function does not exist. Thus the expression for

w(v) must be chosen in such a manner that it allows enough

flexibility to arbitrarily control the duration or radius

of gyration as well as the rate of decay of g(v) and, in

addition, to have a Fourier transform I251.

One function for w(v) which satisfies the previous

requirements, written in terms of one variable, is (153

W (v) -
	 2v - v  - v2 2k

for	 0 < C < 1

and k a positive integer. This function is shown in

Figure 2-2. For convenience s (v) will also be described by

the same type of function.



k=3
G

I ^k=2

k=

N

V,	 v2
	 v

Figure 2-2: One Dimensional Penalty Weighting Function
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The following analysis is based upon a rectangular

coordinate system. Eq. 2-35 may be rewritten in terms of
a	 _	 _

the x- and y- components of f and V,

QD

ff IH ( fx , fy )Hb (Vx'Vy) [W(fx-Vx,fy Vy ) + W* (Vx-fx ,Vy-fy ) }
_O,

+ x I IS(fx-VX ,fy-`0y ) + S* (V fx ,Vy-fy ) I I Hr (vx ,Vy )dV x d'vy

. f . 2 +.f. 2
+ 2[A 2 (^nn (f'x ,fy ) + A3( xf2 Y ) ^Hb (fx ,fy ) 1 2 ]H1 ( fx , fy, } = 0.

H	 (2-43)

For convenience in handling the analysis with respect to a

rectangular coordinate system both w (v) and s(v) will be

defined as the product of their x-- and y- components, from

Eq. 2-42,

	

W (v) = wx (x) w  (y)	 (2-44a)

[ ^.2x-xwl-xw21 2kwx + cx] [ {

2y-ywl-yw2I2
kwy + c ]

	

w2 wl	 yw2-ywl	 y
(2-44b)

where 0 < e < lx
0 < c < 1

y
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where 0 < dx < 1

0 < d  < 1

and for ksx and ksy positive integers.

Choosing kw, = 1 = k , the Fourier transform ofr	 WY

Eq. 2-44b becomes

W ( fX , fy ) = Vfx)y(fy)	 (2-46)

where
j 2 (x +XW2W ( fx ) =	 1 	 I-	 6--(f  x) _	 w^ w2 V fx)

(X nr2 Xw1) 
2	

W 
2

+ { (w1+xw2) 
2 

+ (XVT2 -xw1 ) 2 C X 1 6 ( fX )1 (2-47)

and

y(fy) ;

	

	 1	
2 ("  z 

6 . '(fy) _ j2(Yw yw2 6-(fy)

(yw2-"yw1)

+ { ( Yw1+yw2 ) 2 + (yw2-Ywy) 2 C 
y 

I S (fy) I (2-48)

A similar expression results from taking the Fourier

transform of Eq. 2 -45b,

S (fx , f y ) = S  (fx) S 
y  

( fy )
	 (2-49)

where
j z (x +x )

sx ( fx ) =	
1	

2 
^_ i S••(fX) _	 s^ s2 S- ( fx)

Iff(xs2-xsl)

+ { (XS1+xs2
) 2 + (xs2-xs1) 2dX} 6 (fX )1	 (2-50)



+ {(ysl+Ys2) 
2 

+ (Ys2-ysl ) 2d v } 
S (:Ey )).	 (2-51)

If it is assumed, as would usually be the case, that the

penalty functions, w(x,y) and s(x,y) are centered about

the origin, then

Xwi=-xw2=xw
t
!
E	 ywl	 yw2 , Xw

xs l = - S2 = ^s

ysl - - ys2	 Ys'	 (2-52)

Substituting Eq. 2-52 into 2-47, 48, 50, and 51,
t

W (f } _ - 	 S" (f ) + c 6(f )	 (2-53)
x x	 A 7r x 2	 x	 x	 x

W

W(fy}	
1 2 S"(f

y } +	 6(f	 (2-54)(2-54)

4 ^r
2
 y

W

_	 1
S(fx x) -
	

47i2xs2 $ ,• (fx } + dx6(f'x)	 (2-55)

and

r}	 •s



I	 .	 I	 -	 I	 I	 I	 - .1,

Substituting Eq. 2-53 through 2-56 into Eq. 2--43

H  (fx'fy)	 a48.^4x ..2_.. 
2	 { 

of z of z b (f x ^ 
fY) Hr (fx ► fy)

W yw	 x y

L-- 4Tr 2 y
w

 2cy	
a 

z Hb(fx,fy)Hr
o f	

(fx,fy}

x

- 4Tr 2 x 2cx	
a22 

%(fxIfy)Hr(fx,fy}
Of
Y

+ 87r 4 xw 2 Yw 2 C-CyHb ( fxI fy ) Hr ( fx , fY ) }

+	
xz	 {	 a4	

Hr(fxIf )
8 7r X  y5 z afx afy z	 y

z
— 

472Y 2d	
a	

H(fIfy)y
s	 of 2 

r x

X

2
- 47T 2 xs x2 d 	 a	

Hr ( fxI fy )

of 2

Y

+ 8 Tr 4 
x  2 y s 

2d 
x 

d 
y 

H 
r  ( f x f  )

I + 2 1X  2 (Dnn ( f xIf y )

(f z+f 2)
+ ^ 3 - - x 

2y	
[ Hb (fx , fy } 1 2 ) Hr (fx , fy} = Or (2-57)

fH

which when expanded in terms of H r (fX ,fy), becomes

a 4H(r x,fy
[A(fx,fY)Hb(fx,fY) +B(fxIfy}]

	

	
2	 2of ofx y

8Hb ( fx , fy	 a 3 Hr ( fX , fY)
+ 2A(fx,fy)	 ,

af	 af2afy	 X y

i

i
i

1

i

3
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	.aHb (fx ,,fY }	 a 3 Hr (fx,fy)

	

x y	 afx	 afxafy2

	

a 2 H ( X r fy )	 r	 ^xa 2 H (fr f)
II	 + 4A(fx rfy )	 --

b
afaf	 afafx y	 x y

PH (f r f ?
+ [A(fxrfy)	

b x« 	 + E( fx,fy)Iib(fx,fy)
ofx

a2 Hr x(frfy )	 PHb(fxrfy)
x+ G(f,f ) J	 + [

A(f. 
r f )

	

Y	 of 2	 x y	 of 2
Y

	

	 Y

P Hr (fxIfy)
+ D ( fx , fy ) Hb { f , , fy } + F ( fx r fy ) ]	

of 2x

3 3 Hb x{f,	 }
+ 12A (f f )	 _..	 y

y	 of 2af
x Y

DH (f , f)	 DH (f , f)
+ 2E (f fy)	 b x y	 r x y

of	 of
Y	 Y

a 3 Hb (f r f )
+ I 2A ( fx I f )	 -	 - x y—

	

y	 afaf 2x y

aHb (fx ,f )	 aHr(fxIf )
+ 2D(fx ,fy )	 ]	 Y

of	 ofx	 x

a `'xb if r f )	 021-1 if r	 )
+ [c(fx ,f ) +	 x y + D(f ,f ) --b-_ x f 

Y-

	

y	 o f 2 af 2	 x y	 of 2
x y	 x

a zHb{fxrf^)E	 + E(f , f ) -	 --	 + H(f ,f ) 3	 H (f ,f ) = 0,

	

x y	 of 2	 x y	 r x y
1	 y

(2--58)

s
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where

Hb	 ( f 	rf )x Y
A(fr

f )	 _ _ ( -2 59a)x y 8hr4xw2Yw 2

^{fxr ObB (fxrfy)
2	 28zr xs Ys

(2-59b)

(f	 z +f	 2)
C(fx ,fy ) - tCX."Y + 2A3	 x	 )	 ^ Hb( fxr fy)	 22

fff

d	 + 2A2^Pnn{fx,fy)+ A 
1 
d (2--59c;
x Y

(f x ' Y )cYD (f I f 	 )	 - (2=59d)

x Y 21r 2 x 2
w

E{fx rfy )
(fxIfY) cx (2-59e)
^2 227i YW

-?L-.  d
F (f I f 	 )	 _ .^— (2-59f)

x y 2Tr2x z
s

- x ,
1
d

(fx rfy )
(2--59g)

.,	 zz
^Tr ys

H(fx,f )	 _ cc dIHb ( fx Ify
) 

1 2 + A1dx ( 2-59h)59h)
Y

x 
Y'	 Y

Similarly in terms of the rectangular spatial frequency

coordinate system the constraint equations, Eq. 2 -37,	 39,

and 41 become,



Hr (fxr fy ) = Hrx(fx)Hr,y(fy).

IDnn (fx r fy ) _ 4)
nnx (fx ) (D nny (fy ) (2-64)

i

r
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^ l =
OD

f f f f s (fX-vX, fy-v
y 

)R ( vx , v
y ) H ( fx , fy) 	 dfxd fydvxdvy

-CO
(2-60)

1	 K	 = ff^Prn(fxrfy) IHr (fx rfy ) 1 2 dfXdfy (2-61)

CO	 f 2 +f 2
R3 = ff	 ( xf2 Y ) IHb(fXrfy)121Hr(fx,fy)j2dfxdfy.

CO
H (2-62)

Thus Eq. 2-53 and 59 in conjunction with the constraint

equations, Eq. 2-60 through 2-62, specify the general form

of the optimum restoration filter in terms of the rectangular

spatial frequency coordinate system.

2.4 Separable Optimum Restoration Filter

The general system of equations defined by Eq. 2-58

through 2-62 represents a formidable solution problem,

which in general would be possible only by a two-dimensional

numerical solution technique requiring a computer system

having very large data storage capabilities. However for a

certain class of aperture functions, which represent a large

class of physically realizable apertures, an enormous

reduction in the computational complexity of the problem is

possible. This class comprises those apertures Which may be

modelled as separable apertures, where it is assumed that

Hb (fx , fy ) = %x(fx)rby(fy)	 (2-63)
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With the assumptions of Eq. 2-63 through 65, the solution

of Eq.2-58 through 62 can be considerably simplified by

use of the method of separation of variables. Instead of

substituting Eq. 2-63 through 65 into Eq. 2-58 and

separating Eq. 2-58 into two differential equations, one

a function of fx and the other a function of fy , a somewhat

more fundamental approach will be used.

Taking the inverse two dimensional. Fourier transform

of Eq. 2.63,

hb(x,Y) = hbx (x)hby (Y)	 (2-66)

Similarly Eq. 2--64 and 2-65 become respectively

Rnn(xry) = Rnnx(x)Rnny(y) 	 (2-67)

and

hr (x, y)	 hrx (x) hry (Y) -	 (2-68)

Writing Eq. 2-7 in terms of the two spatial dimensions,
m

F	 f f w (x, y) g2 (x, y) dxdy	 (2-69)

where from Eq. 2-2,

9(x,Y) = hr(x,Y)**hb(x,Y).	 (2-70)

Substituting Eq. 2-66 and 2-68 into 2-70,

g (x,Y) = [hrx (x) hry (y) ] ** [hbx (x) hby (y)] W gx (x) gy (!

(2-71)
where

9x (X)= hrx ( x) * hbx ( x )	 (2-72)
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and

g  (Y)	 =	 hry (y)	 * hby (Y) - (2-73)

Substituting Eq. 2-44a and 2-71 into 2- 69,

F = FF (2-74a)
x y

where

F 

co

= f wx (x) g' (x) dx (2--74b ;
-M

Fy
M,

=-f W ( y ) g 2 ( y ) dy • (2-74c)Y

Substituting Eq. 2-45a and 2-68 into 2-8,

K1 r KlxKly (2-75a)

where

K1x
co

f sx(x)h2rx(x)dx (2-75b)
-00

and

Kly =	 f sy ( y ) h 2 ry ( y ) dy . (2-75c)
-co

Substituting Eq. 2-64 and 2-65 into Eq. 2-39,

K2 = K2xK2y (2-76a)

where

K

co

2	 -	 f 0nnx (fx) I Hrx ( f x )	 2 dfx (2-76b)

and

K
co

f (D(fy )	 liry (fy)	 2 d fy 
r (2-76c)2	

-co	
nny

F
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and from Eq. 2-15

K 2 _ E{n2 Tx (x) }
	

(2-76d)

and

K 2 = E { n2 Ty (Y) }	 (2-76e)

And finally writing Eq. 2-6 in terms of the two spatial

dimens ions ,
co

__	 lK3 	
2f 2 1 f g ' ^ ( x ,Y) g ( x , y )dxdy (2-77)

4^ H

and after substituting Eq. 2-71 into 2-77,
00	 co1

I`3_
 

- 	z ) gx.. 
(x) gx (x)dx - fgy .. (Y) gy (Y)dY-

47T 2 fH -ar
(2-78)

Using the results of Eq. 2-72, 73, 16, 20, 31, 32, and 41,

K3 - K3xx3y	 (2-79a)

where

f	 2

K3x - { ( "	 IHbx(fx) 12 1"rx(fx) 2 dfx (2--79b)
-co	 Hx

and
f	 2

Kay = - f (Tx--) lHby (fY ) 2 1H y (fY ) 2dfY	 (2-79c)
co	 Y

3.2
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}

Thus the problem of determining the optimum

restoration filter point-spread function, hr (x,y) reduces

to finding the hrx (x) that will minimize Eq. 2-74b subject

to the constraints of Eq. 2-75b, 76b, and 79b, and to

finding the hry (y) that will minimize Eq. 2-74c subject to

the constraints of Eq. 2-75c, 76e, and 79c. The original

two-dimensional restoration problem reduces to two P;ne-

dimensional processes which have similar equations. From

the preeeeding , vector notational analysis used in Eq. 2--7

through 2-41, 2-44, and 2-45, the system of equations

necessary to solve for h rx (x) and hry (y) may be formulated.

To solve the hrx (x), the augmented quadratic functional

of the form of Eq. 2-11 determined by Eq. 2-74b, 75b, 76b,

and 79b becomes,

CO	 CO

Ix = f «X ( x ) gx 2 (x)dx + x 1 f s  (x) hrxz (x)dx
CO CO_

x	 CO

+ X 2 E{n2Tx (x) } -

	

	 - 3x 2 f gx. (x) gx (x)dx
4 7r fHx -CO

(2-80)

which may be written as a quadratic functional in the

spatial frequency domain from Eq. 2-23 as
i

Ix = {B1xHrx'Hrx) + ^` lx (B	 H2x. rx'rx)

+ A2x(E3xHrx'Hrx) + a3x(B4xHrx'Hrx)
	

(2-81)

where

Blx (fxIV X) = Hbx ( fx) Hbx (vx) Wx ( f x vx )
	

(2-52)

}

J'
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from Eq. 2-26,

B 1x f (fx,vX) Hbx(vx) Hbx* (f x) Wx* (vx-fx) (2-83)

from Eq. 2--27,

B 2x ( fx rvx ) = 5x(fx _IV x ) (2-84)

from Eq. 2-28,

B 2x ' (fx , vx ) = Sx* ( vx-fx) (2-85)

from Eq. 2-29,

E
I

H 3x (fX rvx ) ^' nnx* ( vx )	 13(f 	 vx } (2-86)

6

from Eq. 2-30,

i
F

B 3x '(fx ,vx } = 0	 (fx} 6(vX fx}
nnx (2-87)

z

from Ea. 2-31.
v	

2

B 4x (fx ,vx ) -	 ( f x)
	

^ Hbx (vx)z	 (fx-vx) ( 2-88)
Hx

and from Eq. 2-32,
f	 2

(fB4x, )	 ^x(fx}	 2^ (vx--fx) .(f
 (f-- (2-89)

The gradient of Eq. 2-81 may be written in the form of

Eq. 2-33,

x	 1x lx rx	 Ix 2x 2x rx

+ x2x(B.3x+B3x')H rx  + A 3 (B4x+B4x")H rx  (2-90 )

I{



Substituting Eq. 2-53 and 55 into Eq. 2-91r the following

differential equation results

FI 
rx 

(f x + ^ 
2HbX { fx ) "bx (fx ) xs 2 1 Hbx (fx) 12XS2 +X lx x 

w 
2 H 

rx 
(f 
x

f
22	 Ic +XxFjx (fX) Ibx f x	 4Tr 

W x	 Hbx (fx )s	 3x fHX

1 1 %X ( fX) 12 XS 2+X IXX 21 }H (f )+ X (D	 (f )+d	 xx

	

2x nnx x x	 w	 r

= 0.	 (2-92)4

From Eq. 2-36, 2-55, and 2-75b,
co

	

f	 + H"x (fx )llrix (fx )ldfxK	 (f
lx	 rrX X ) Hrrx: (fx )	 ri

47 2 x 2--S

co

d
x f JHrx (f x )12-df 

x	
(2-93)

-co

4 For derivation, see Appendix D.
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where

H (f ) = H	 (f ) + j H	 (f )rx x:	 rrx x	 rix x (2-94)s

and where rrx(fx) is the real part and rix (fx I is the
imaginary part of Hrx (f x )

Restating Eq. 2-76b,

CO

K 2 - f
-00

and Eq. 2-79b,

03

K 3 x	 f-m

(Pnnx (fx ) 1Hrx (fx ) 12dfx (2-76b)

f	 z

( -) 1Hbx(fx) I2I11rx(f_I zdfx •	 (2-79b)
HX

Thus the simultaneous solution of the differential equation,

Eq. 2-92, and the con:ttaint equations, Eq. 2-93, 2-76b,

and 2-79b, specify the form of the x-component of the

spatial frequency transform, or equivalently the point-

spread function, of the restoration t. 3 t&,.r .

In a similar manner it is possible to solve for hry(y)

by forming an augmented quadratic functional of the form of
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By following an analogous procedure to that used for

determining hrx (x) in Eq. 2-81 through 2--94, the equations

which specify hry (y) may be formulated. Only the results

will be stated since the derivation of the equations for

hry (y) is identical in procedure to that given for hrx(x)

with the appropriate change in variables form x-- to y--

dependency.

The differential equation specifying the form of

Hry (fy ) becomes,

ry(fy ) + {zHby (fy )H^y ( fy )y5 z/Clxby { fy } j zys2+alyyw2])Hry(fy)

^	 2
+ {ys z C"by { fy }%r(fy } - 4zr Z yw z { Ccy+n ay (	 ) ] (Bby(fy) 12

Hy

+ 7^ 2y ^D	 ( f)+d y )] /C Hby (fy ) 1 2 Ys 2 +Xlyyw 2 ] ) ry(fy}

= Or
	

(2-96)

while the constraint equations become,
Co

xlY	 z 2 f CHrry(fy)rry(fy)+Hriy(fy)Hriy(fy)]dfy4^ ys -CO

00

+ d	 J I ^(f) z dfy	(2-97)
y	 y y

-CQ
Co

K 2	 1 (Pnny (fy ) ' xy (fy ) Izdfy	 (2-76c)..
f

to

and
0o f	 x

K ay -^ ( ^) I Hby (fy ) 1 
z 

ry (fy) 1 zdfy •	 (2-79c)
Co
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Thus the simultaneous solution of Eq. 2-96, 2-97, 2--76c,

and 2-79c will specify the y- component of the restoration

filter.

2.5 Radially Symmetric Restoration Filter

Probably the most common type of aperture, because of

physical ease in construction, is the radially symmetric

aperture. For this case it is assumed that

Hb (fx rfy )	 -	 Hbr(fr)	 { 2--98)

(Dnn (fx rfy) -	 0nnr(fr)	 (2-99)

and

r (f x , fy )	 -	 ^rr (fr. )
	

(2-1 00 )

where

f 2+f 2x y

The solution to

for hrx (x) where all

replaced by correspo;

Eq. 2-44a,

fr 2•	 (2-101)

Eq.. 2-58 is analogous to the solution

variables dependent upon x are

ading r dependent variables. From

W (v) W wr (r)	 (2-102a)

2 r--rwZ r.a2 2kwr
w2 w1

for kwr a positive integer and

r2 - x2 + y2 .	 (2-102c)

yf



i

3

for ksr a positive integer.

Choosing

k wr 1 = ksr and

rwl - -rw2 : rw 	 (2-104)

r 8 s -rs2 "-- rs,

the Fourier transforms of Eq. 2-102b and 103b become

	

_	 Z	 ^f
Wr(fr) _
	

4^2r 2	
(fr)	 (2-105)

w

Sr (f	 (2-106)

	

r ) _ _	
2 22 M

fr ( fr ) .
4^r rs

I
j	 To solve for hrr (r), the augmented quadratic

!	 functional of the form of Eq. 2-11 which must be minimized

with respect to hrr (r) becomes,

CO	 CO

zr M f wr (r)gr 2 (r)dr + Alr f sr (r)hrr2(r)dr
_CO	 _CO

a	 ca

+ ^` 2r Eln2Tr(r)} _
	 2f 2	 gr1-(r)gr(r)dr,
4W kir °p

(2-x.07)

By following an analogous procedure to that used for

determining hrx (x) in Eq. 2-81 through 2-94, the equations
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which specify hrr (r) may be formulated. Again only the

results will be stated since the derivation of the

equations for hrr (r) is identical in procedure to that

given for hrx (x) with the appropriate charge in variables.

The differential equation specifying the form of

Hrr (f r) becomes,

Hrr(fr ) + {2Hbr (fr ) %r (fr )rs 2/[IHbr (fr ) 2rs2+Xirrw2l }Hrr(fr)
f	 z

+ (r S21Hbr(fr)%r ( fr ) - 4w rwz3r ( -) I 
Hbr(fr) 

I z

+ A 2r nnr (f r )}l / [1Hbr ( fr 
) 12 r

s 2+a
lr wr 2] }Hrr (f r)

= 0,	 (2-108)

whale the constraint equations become,
CO

1	
ff

Klr	 -	 2 r 2 -m [Hrrr(f
4 ^r	

r)Hrr(fr) + Hrir(fr)Hrir(fr)]dfr
's (2-109)

K 2r _-^ ^nnr (fr ) rr(fr) 12dfr	
(2-110)

and

K 3 - f ( ,r )21Hbr(fr) 1 2 1Frr(fr) 1
2dfr •	 (2-111.)

-M Hr

Thus the simultaneous solution of Eq. 2-108 through 2-111

will give the spatial frequency spectrum of the optimum

restoration filter.

t
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2.5 Additional, Shape Control of Com posite Imaging Function

by a Sub--optimal' Iterative Technique

The third constraint, originally defined by Eq. 2-10,

was chosen to provide control over the composite imaging

function in such a way that the magnitude of secondary

lobes in the immediate vicinity of the primary lobe could

be reduced. These secondary lobes lead to undesirable

ghosts in the restored image. Such a constraint is

necessary because the weighting function, w(v) defined by

Eq. 2-42, of the fundamental design criterion as expressed

by Eq. 2-7 has almost no significant effect on g(v) in the

immediate vicinity of the spatial origin. Thus, without

the third constraint, significant secondary lobes in this

region of the spatial domain could exist.

In order to provide additional control over the shape

of the composite imaging function in the vicinity of the

spatial origin, which is not feasible by the third

constraint alone, an iterative technique is utilized. To

implement the technique, the fundamental design criterion,

defined by Eq. 2-7, is modified to be,

F =	 w(v) [g(v) -m (v)7 2 dv,	 (2--112)

where the criterion function m(v) will be defined shortly.

The procedure for this technique is as follows.

Initially, m(V) is set equal to zero; Eq. 2-112 thus

F	

.y

i5

jt

^j^
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reduces to the original fundamental criterion as defined

by Eq. 2-7. A solution for the restoration filter based

upon minimizing Eq. 2-112 subject to the constraints of

Eq. 2-8 through 2-10 is obtained. The existence of a

unique solution to this system of equations will be

discussed in the next chapter. It should be noted that the

:resulting composite imaging point-spread function, g(v),

is optimal with regard to having a minimum radius of

gyration. However g(v) may still have some undesirable

side lobes in the immediate vicinity of the spatial origin

which were not sufficient-ly suppressed by the third

constraint. In such a case, m(v) is defined to be equal

to the optimum g(v) in the region about the origin

containing the primary response lobe but excluding any

secondary side lobes, and equal to an appropriately chosen

function of the optimum g(v) outside of this region so as

to further constrain against the side lobes.

After choosing an appropriate m(v), the first iteration

is made by minimizing Eq.. 2-112, subject to the constraints

of Eq. 2-8 through 2-10. The resulting composite imaging	 r

function, although no longer optimum with regard to having

a minimum radius of gyration, will not deviate significantly

from the optimum in this respect because of the way in

which m(v) is chosen and-, more importantly, will have
'.7

significantly lower secondary lobe responses due to the

weighting effect introduced by m(v). if necessary, a second
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iteration may be made by choosing an appropriate m(v) based

upon the g(v) of the first iteration, and so on. There

appears to be an almost unlimited number of functions which

may be chosen for defining the criterion function including

the absolute value, and exponential, Gaussian, and poly-

nomial approximations; however the effect of any of these

upon the iterated composite imaging point-spread function

should be similar, because of the way in which m(v) is

chosen.

An example of one possible one-dimensional criterion

function is shown in Figure 2-3. For this case, m(v) is

equal to the optimum g(v) in the region of the primary lobe

about the origin where g(v) is positive. Outside of this

region, m(v) is chosen to be the absolute value of the

optimum g(v). A comparison of the g(v) functions, both

before and after iteration, would reveal that the secondary

side lobes have been heavily constrained, while the general

shape of the primary lobe has remained essentially the same.

Thus this technique provides a very powerful means for

making minor adjustments to the shape of the composite

system point--spread function, g(v). Although g(v) could be

altered in the same manner as that provided with this

iterative technique by the introduction of additional

constraint equations, the complexity of the functions

necessary to produce the same control over g(v) makes this

alternative Less attractive.
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The following analysis is based upon the assumption

of either a separable or a radically symmetric aperture

since these are the most common apertures and are the forms

considered in the remainder of this work. The general

analysis, based upon a non--separable two-dimensional

aperture is straightforward and analogous to that used in

the development of Eq. 2-58 through 2-62 except that

Eq. 2-58 is non-homogenous.

For a rectangularly separable aperture, Eq. 2-112 will

be redefined in an analogous manner to Eq. 2-74 as

F = F x F y	 (2-113a)

where
CO

Fx - f wx(x) E gx ( x )-mx ( x )] 2 dx+px 	(2--113b)
_^

and
CO

Fy = -f wy (y) L gy ( y ) -my (Y)] 2dy+py 	 (2-113c)

where

0 < px ,py << Z,	 (2-113d)

The constraint equations remain as defined by Eq. 2-75, 76,

and 79. Thus for a given mx (x), hrx (x) must be determined

by minimizing Eq. 2-113b subject to the constraints of
!	 `1

Eq. 2-75b, 76d, and 79b and for a given my (y) , hry (y) must

3	 be determined by minimizing Eq. 2-113c subject to the

constraints of Eq. 2-75c, 76e, and 79c.	
.y.

To solve for hrx (x), an augmented quadratic functional

formed from Eq. 2-113b and Eq. 2-75b, 76d, and 79b can be 	 }

a; ^
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written.
COf wx ( x) . [ gx ( x ) -mx ( x ) ] 2dx + p 

-^

00

+ Alx f sx(Y-)hrx2(x)dx_CO

r	 A.	 CO

+ A 2x E{n 2	 x}g (x)dx.
Tr 	

- 
al^zx 

2z -f gX°(x 	
(2-114)fax

r	 Expanding the first integral of Eq. 2-114 gives
CO

z	 Zx = f wx (x)gx 2 (x)dx - 2 f wx (x) gx (x)M (x)dx

	

-CO	 -«O

	

m	 CO

+ - f wx (x)mx 2 (x)dx + px + 
a1x 

- f sx(x )hrx2(x)dx

V
a	 CO

+ X 2x E{n 2 Tx (x} I ^-	 23x 
2 _C0

f g"' (x)-gx (x)dx.
r_	 4zr fHx(2-115)

Since the functional form of Eq. 2-115 is basically

similar to that considered in Eq. 2-80 with the exception

of the second, third, and fourth terms, only these terms

will now be considered. The second term in Eq. 2-115 may

be expanded into operator form as
c

I  = - 2 f w  (x) gx (x) mx (x) dx
-CO

CO	 CO

.. 2 f wx (x) f hrx(z)hbx(x- T )dT mx(x:)dx
CO_ 	 -m



BBx (fx ) - - 2 Bbl ( fx ) -f Wx (v_	 (fx+vx) dvx

where

and

47

where

(2--117)

	Alternately Eq. 2-116 may be written in the frequency	
Y

domain as

1m - 1 B5x (fx )Hrx (fx x)df	
(2-118)

-CO

CO

A5x (T) -- - 2 f wx(x)mx(x)hbx(x--T)dx.
-0,

1''1(•) _	 {m	 6(• )} •	 (2-119)x	 x 

Taking the gradient of the linear functional of

Eq. 2-118 with respect to rx(fx) gives the conjugate

kernel B5x(fx).

az m - B5x(fx)•	 (2-12

Substituting Eq. 2-53 into Eq. 2-119,
w

B 5x ( fx } 	 2Hbx(fx) 1 [-	 z l 2 6,-A(vx) + cx6(vx)I
-- CO	 4 7r 2xw

X (f +v) dvx x x

1	 d 2	 ^'
i' ( fx ) C 2 2	 z x ( fx) - 2cxM^ ( f'x)].

27r xw dfx
(2-121)

° See Appendix F for derivation

i

't

s
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The third and fourth terms of Eq. 2-115 may be

neglected since they are not functions of h rX (-), and thus

the gradient of these terms with respect to hrX (-)is zero.

The gradient of Eq. 2-115 may be written in the form of

Eq. 2-90 as,

VI'X = (B 
lx 

+B 
lX' )H rX + X 

lX 
(B 2x +B 2x" )H rx

+ A 2x (B 3x 
+B 

3x* 
)H rX + X 3x (B 4x +B 

4x' )H rX

+ B 
5X

	 (2-122)

which, when expanded, is similar in form to Eq. 2-92,

except that the resulting differential equation is

nonhomogeneous,

(f )Xs 2 I^rx ' (f X)/ %x (fX 
2 
X S

2

11rx
(f 
X + 2 

I5bX (f X ) Hbx ' x 

21 + X	 *+ X 
lX 

X w 3	 s
2f 

"bx(fx )H bxl"(fx)

- 47r 2 X 2f (C x 
+A 

3x 
(f 
x

/f jX ) 2 IjbX (f X) 1 2
w 

+ 
X 2x 

^' T-Inx 
(f 

X 
)+d x } I 

H rX 
(f 

x 

)/ [ I %, ( fX ) 12X 
s 

2

+ X X 2 3 = 2W 2 X x B * (f
Ix w	 s W 5x X

[ I F bX(fX)12XS2+X].XX 
w 

21_	 (2-123)
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Thus Eq. 2-123 in conjunction with constraint Eq. 2-93,

76b, and 79b specify the shape of the x- component of the

frequency spectrum of the restoration filter. A similar

equation set may be written for the y- axis frequency

spectrum component of the restoration by using Eq. 2-97,

76c, and 79c, and replacing the x- variables in Eq. 2-123

with appropriate y- variables.

For a radially symmetric aperture, Eq. 2-112 may be

defined as
CD

F = l wr (r) Igr ( r) -mr (r ) 1 2dr ,	 (2-124)

where wr (r) is a5 previously defined in Eq. 2-102. The

augmented functional to be minimized is similar in form to

Eq. 2-107,
Go	 00

I  - f wr ( r ) gr
2 (r)dr - 2 f wr(r)gr(r)mr(r)dr

_C,

CO	 CO

+ -^ Wr (r)mr 2 (r)dr + X1r f sr (r)hrr 2 (r)dr- 

+ X 2 E{n 2Tr (r)} - _ 3r
 -CO

f gr'(r)gr(r)dr.
47r f	 -

	

Hr	 (2-125)

Following a similar development to that for Eq. 2-115, the
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H r(fr ) + {2%r(fr}xbr(fr)rs2 /( ^ Hk,r ( fr ) 2r s2 +Alrrwz] 
}Hrr 

(fr)

f	 z

+ Irs2CHbr(fr)Hbr(fr) - 4
7zrwz{A3r(fr } ^Hbr(fr)1z

Rr

+ ^2r^nnr (fr }} 	 Hbr(fr) 1 2 r.S ^ +7l srrw 2 ] 1 112r

	

27r 2r 2 37 2S^ (f^ } / I Hbr(fr) 
1 2 rS 2 + X 1rrw 2 ]	 (2. 126)

where

B5r(fr)	 Hbz (f 
2}	

d2 M^, ( fr ) .	 (2M12i}

2^ rw	 dfr

The constraint equations remain as defined by Eq. 2-109

through 2--111.

;i



wr (r) = (r )z.
w

(2-128)
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2.7 Classical "Inverse" Filter

Intuitively one would expect that if the constraints

are removed and if the parameters of the weighting

function, w(v), are appropriately chosen so that only the

origin is unweighted thus producing an impulse for the

composite system point-spread function, then the resulting

filter should have the form of the classical "inverse"

filter.

For notational convenience, the following analysis

will be made in terms of the radially symmetric aperture.

From Eq. 2-102 for kwr=1 and for a symmetric weighting
function as defined by Eq. 2--104,

it is clear that as r  approaches zero, only the origin

remains unweighted in Eq. 2-107. From Eq. 2--108 which

specifies the optimum restoration filter in the frequency,

domain, if r  approaches zero and all the constraints are

relaxed, the resulting differential equation becomes

H" (f ) + 2%r(fr) + br(fr)Hrr(fr) = 0
rr r Hb^) 	 Hbr r

or

Hbr(fr )Hrr(fr) + 2xbr(fr)Hrr {fr} + %r ( fr ) Hrr ( fr ) = 0.

(2-129)

If it is assumed that

Hrr ( fr ) = k Hbr-1 ( fr ),	 (2-130)



where k is an arbitrary constant, then it can be shown that

Eq. 2-129 is satisfied. Since .there exists a unique solution

for a given differential equation of the form of Eq. 2-1291

then Eq. 2-130 represents the only solution to Eq. 2-129

[16,241.

Thus the "inverse" filter represents that hr ( • ) function

which provides the best restoration possible for any com-

bination of constraints by producing a composite imaging

system point-spread function having the smallest radius of

gyration.
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CHAPTER 3

SYSTEM EQUATION SOLUTION TECHNIQUE FOR

OPTIMUM RESTORATION FILTER

3.1 Introduction

The general system of equations defining the restoration

filter aperture are examined to establish that a global

minimum to the minimization problem exists, thus assuring a

unique solution for a given set of constraints. The second-

order differential equations of the previous chapter are

reduced to a system of first-order differential equations to

facilitate numerical solution, a minimization technique

based upon the solution of the system of first-order

differential equations subject to the constraint equations

is described, and the effect of the initial conditions of

the system of first-order differential equations upon the

restoration filter aperture is examined.



3.2 Existence of Global Minimum to Restoration Filter

Equation System

In the following discussion, direct reference will be

made to the system of equations which specifies the optimum

restoration filter for the x-axis component of a separable
i
I	 aperture, Eq. 2-92,93,76b, and 791). However, the results are

completely general and may also be applied to the systems

of equations defining the y-axis component as well as the

general restoration filter apertures.

In order to guarantee that the equation system, Eq. 2-92,

93,76b,and 79b, has a unique solution, all the defining

functionals, that is the functional to be minimized as well

as the constraint functionals, must be convex [14,15]. The

r
	 property of convexity allows the theory of local extrema for

general nonlinear functionals to become a global theory,

Since the augmented functional Ix , Eq. 2-$0, is a linear

combination of the defining functionals, it must also be

convex. Thus, there exists only one stationary point of the

augmented functional and consequently Eq. 2-92,93,76b,and 79b

have a unique solution for a given set of constraints. It

can be shown [22] that quadratic functionals which are

squares of norms are convex. Since all the defining functionals

are of this class, convexity is assured.
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3.3 Numerical Solution Techni ue

As in the previous section, for convenience, specific

reference will be made to the equation system defining the

x--axis component of a separable restoration filter aperture.

However the results of this section are equally applicable to

the radially symmetric restoration aperture. To include the

results of the iteration technique described in Section 2.6,

Eq. 2-92 will be replaced by Eq. 2-123. In order to take

advantage of the many numerical techniques available for solving

first-order differential equations, it is convenient to

convert Eq. 2-123 to the normal form which is done in the

following manner. Eq. 2-123 may be written as

Hrx (fx ) + A(fx ) Hrx (fx ) + B (fx ) Hrx (fx ) = C (fx ) '	 (3 - 1)

where

A(fx) = 2Hbx (fx )Hbx (fx) x /[ ( Hbx (fx) z xs 2 +X ixxw 2 ] (3-2)

B(f ) = x 2 [H (f )H" (f ) - 47r 2x 2 ^c +^ (f /f ) z]x	 s bx x bx x	 w x 3x x Hx

Hbx (fx ) 12 + x2x(Dnrnx (fx) + dx 1 ] Hrx (fx ) /

f lHbx (fx ) 1 2XS2 + a lxxw 2 ]	 (3-3)
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and

2n2xs2X 2B*x (fx ) 	(3-4}C(f } =x	
Hbx (f X )1 2 x$ 2 + XlxXW2

Defining the complex quantities in terms of the

corresponding real and imaginary components,

Hrx (fx) _ hrxr (fx ) + 7 Hrxi (fx)	 (3-5)

A(fx) = Ar '[ fx ) + j Ai (fx )	 (3-6)

B (fx ) = Br (fx ) + j B  (f 
X)

( 3 -7)

and

C(fx) = Cr (fx ) + j Ci (fx ) .	 (3-8)

Eq. 3-1 may be rewritten as

[His 
(fx )+j 

Hrxi(fx)) + [Ar (fx)+j Ai(fx)]rxr

.	
[Hfxr (fx)+j HTi (fx ) 3 + [ Br ( fX )+j $i (fx ) l

[H	 (f	 )+j H	 (f	 ) j
rxi	 _..

C	 (f	 )	 + j C	 (f }	 (3-9)
S'

rxr	 x r	 x	 i 	 x

t< or by collecting the read. and imaginary components Eq. 3-9 

may be written as

H 	 (f }	 + A	 (f ) H'	 (f	 )	 -x	 r	 rxr	 xx A, (f	 ) H'	 (f	 )x	 rxi	 xrxr
r< -

+B (f )H (f	 }	 - B, (fx )H	 (f	 }	 -- C	 (f	 )x	 r	 xrxir	 x	 rxr x	 i
t

s
+ j	 [Hrxi.(fx)

+ Ai (f'x )Hrxr
(f

x ) + Ar (fx )11L (fx)

,a + 
Bi (fx ) "rxr

(fx )	 + Br (fx ) Hrx% (fx )	 - Ci (fx ) 3	 8.
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t=

Eq. 3-10 may be separated into two differential equations

{	 [16} formed by the real and imaginary components of Eq. 3-10

1

Hrxx (fx) + Ar (fx ) Hrxr (
fx ) - Ai (fx) H^,xi (fx)

+ B (f )H	 (fx)  - B. (fx ) 	 (fX) - Cr 	 ) = 0r x rxr 	 z x rxi x	 r x	 (3 -11)
and

Hrxi (fx) + Ai (fx) Hrxr(fx) + Ar (fx) H;xi(fx)

+ B. (f ) H	 (f ) + B (f ) H	 (f ) - C . (f ) = 0.i x rxr x	 r x rxi x	 z x	 (3-12)

Eq. 3-11 and 12 may be reduced to a system of first-

order differential equations [16] by introducing the

variables,

H1 (fx ) = Hrxr (
fx )

H2 (fx) = Hrxr (fx)

H3 ( fx ) = Hrxi (fx)

H 4 (fx ) = Hrxi (fx)

By substituting Eq. 3-13 into Eq. 3-11 and 12, the

(3-13)

t

y -

L _. d

following system of first-order differential equations is

formed,

Hj (fx ) = H2 ( fx)

H^ (fx ) = -Br(fx)HI(fx)  - Ar (fx ) H 2 (fx)

+ B  (fx ) H3 (fx ) + Ai ( fx ) H 4 (fx ) + Cr (fx)



H (fx )	 - Bi (fx )Hl (fx) - Ai{fX)H2{fx)

-- Br (fx) H3 (fx - A  (fx ) H4 (f x ) + C  (fX ) ,	 (3-14)

where

Hrx (fx) = H1 (fx ) + j H3 (f X ).	 (3-15)

Thus the second-order differential equation represented by

Eq. 2-123 has been reduced to a system of fist-order

differential equations, Eq. 3-14.

The technique for determining a solution to the system

of equations defined by Eq. 3-14, 2-93,76b, and 79b is

based upon treating the constraint equations, Eq. 2-93,76b,

and 79b, as a system of nonlinear equations and using a

modified version of the subprogram SECANT [23] which is

designed to handle a system of nonlinear equations. From

an initial estimate for the Lagrange multipliers, a

modified version of the subprogram DHPCG [12] , a subroutine

designed to solve a system of first-order linear

differential equations, is used to solve Eq. 3-14 for

HrX (fx). The constraint equations, Eq. 2-93,76b, and 79b,

are then checked and any resulting error forms the
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Since SECANT has control over DHPCG by varying the

Lagrange multipliers, it is important to reexamine Eq. 3-14

1 to determine the conditions for which no solution to this

equation exists. It may be shown [16,24] that as long as

the coefficients of Eq. 3-14, that is Ar , Ai , Br , Bit Crt

and C  are continuous functions, then for a given set of

initial conditions one and only one set of solutions exist.

Thus theoretically for any set of finite value Lagrange

multipliers, a solution to Eq. 3-14 should exist.

To complete the solution for the optimum x--axis

component of the restoration aperture, appropriate initial

conditions for Eq. 3-13 must be supplied and are defined

as,

H1(0) = Hrxr(0)

H2 (0) = HLr(0)

H3 (0) = Hrxi (0)

H4 (0) = Hrxi (0) .

For hrx (x) to be a real function, then

m
Hrxr (fx) W f hrX (x) cos 2nfx x d%

Hrxr (f	 2v= 2n f x hrx (x) sin 2 n fx x dx
_GO

(3--16)
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and

CO
H 
rxi (fx 	 2w,f x h (x) cos 2wfx x dx.rx 

From Eq. 3-17,

H 
rxr
V (0)	 0 = Hrxi (0).

The remaining initial conditions may be used to

control the shape of h= (x). For hrx (x) to be an even

function about the x-axis origin, then

Hrxr (0) ^ 0

(3-17)

(3-18)

and

H rXi (0) = 0.	
(3-19)

To preserve the DC gain, or average value, of the blurring

system,,

H	 (0) =	
1	 r	 (3-20)

Re I H bx (0) 1

where Re[.] denotes the real part of the complex argument.



OPTIMUM RESTORATION FILTER

4.1 Introduction

This chapter presents experimental results demonstrating

the restoration filter performance as a function of the con-

straint parameters and from its application to a series of

blurred test patterns. These results are based upon the

assumption of a Gaussian--shaped blurring aperture. Since

the principle application for this restoration technique

was the resolution enhancement of the multispectral_ scanner

system used for ERTS data collection, and since no specific

information concerning the shape of the multispectral scanner

aperture was available, a Gaussian model was chosen. This

assumption was based upon two primary considerations.

Because of the advantages in correcting a separable aperture

as previously described in section 2.4, the first consid-

eration for choosing a Gaussian blurring aperture was that

such a model, if chosen to be symmetric about each axis,

could also provide a separable blurring function which was

also radially symmetric, thus approximating the radial

symmetry of the actual scanner aperture. The second con-

sideration for choosing a Gaussian blurring aperture model

was for mathematical convenience. Since the frequency

spectrum of a Gaussian blurring aperture is also Gaussian,

this spectrum may be explicitly computed, thus eliminating

­-7-	 7	 Lj

x4
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any errors which would have otherwise been introduced into

the computation of the blurring aperture spectrum, %x or

Hby as defined in Eq. 2 . 92 or 2-96 respectively, by a sub-

;	 routine such as FORT.

Based upon a Gaussian blurring aperture model, an

investigation of the performance and shape of the restoration

filter as a function of its fundamental parameters and con-

straints is made. Also the composite system performance as

a function of blurring aperture error is examined.

In addition, the blurring effects of a specific Gaussian

aperture on a series of test patterns are examined to

qualitatively demonstrate the degree of resolution enchance-

ment possible for a given set of constraints. Also the true-

'	 cation error effects for the "classical" inverse and con-

strained restoration filters are compared.

4.2 Parameter and Constraint Control of Restoration Filter
Performance

The following is an investigation of the controlling

effect demonstrated by the defined parameters and constraints

upon the restoration filter's shape and performance. The

constraint variations considered were directed by two

primary goals: the first to investigate how parameter

variations affect the restoration filter, and the second

to apply the restoration filter to a specific enhancement



i

63

restoration filters for three Gaussian blurring apertures

having radii of gyration of 1, 3, and 5, respectively, will

be examined and compared to the unconstrained or classical

"inverse" restoration falter. since a separable blurring

aperture is assumed, the following results may be interpreted

as either x-axis solutions to the system of operations

defined by Eq. 2-123, 121, 93, 76b, and 79b, or as y-axis

solutions defined by a similar equation system where x-

dependent parameters are replaced by corresponding y-

dependent parameters.

Figure 4.1 shows a Gaussian shaped blurring aperture

with a radius of gyration of one. The frequency spectrum

of the classical "inverse" restoration filter, is shown in

Figure 4.2. It should be noted that this spectral data was

obtained not by inverting the spectrum of the blurring

aperture of Figure 4.1 but rather by imposing the conditions

stated in section 2.7 which define the classical "inverse"

filter in terms of the parameters of the constrained resto-

ration filter, Eq. 2-123, 121, 93, 76b, and 79b, and was

performed as a test to verify the accuracy of the overall

numerical algorithm described in Chapter 3. The correspond-

ing point-spread function of the classical "inverse"

restoration filter is shown in Figure 4.3. As a further

check on the overall accuracy of the algorithm, the composite

system point-spread function, representing the convolution

rk ,
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of the blurring aperture of Figure 4.1 with the "inverse"

restoration function of Figure 4.3 is shown in Figure 4.4.

As previously stated in section 2.2, the classical "inverse'=

filter will produce an impulse for the composite system

point-spread function. Thus Figure 4.4 should represent a.

digital approximation to an impulse. Since the base line

of the function shown in this figure should be zero, the

differences approximately 7 x 10 -6 , represents a measure

of the round-off error within the algorithm.

Figure 4.5 represents the restoration filter frequency

spectrum for the blurring aperture of Figure 4.1 when the

constraint, Kl , is employed to limit the radius of gyration

of the resulting restoration filter point-spread function

to 0.5 that of the unconstrained or classical "inverse"

filter. Figure 4.6 shows the resulting restoration filter

point-spread function having a radius of gyration of 0.5

that of the classical "inverse" restoration function shown

in Figure 4.3. The resulting composite system point-spread

function produced by convolving the blurring aperture of

Figure 4.1 with the restoration point-spread function of

Figure 4.6, is shown in Figure 4.7. The resulting radius

of gyration of the composite system point--spread function

is approximately 67% of that of the blurring aperture.

Particular attention, however, should be paid to the signif-

icant secondary responses which are approximately 10% of
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the magnitude of the primary lobe. As described in section

2.6, these secondary responses are highly undesirable since

ghost images in the corrected image may result.

By applying the iteration technique described in section

2.6 to the restoration function previously described by

Figure 4.5-4.7 and using nine iterations with an exponential

criter;

quency

Figure

spread

radius

F igure

Lon function, the resulting restoration filter fre-

spectrum for the same constraint on X 1 is shown in

4.8. The corresponding restoration filter point-

function is shown in Figure 4.9 and has the same

of gyration as the restoration function shown in

4.6. The composite system point-spread function,

resulting from convolving the function of Figure 4.1 with

that of Figure 4.9, is shown in Figure 4.10. By comparing

the composite system point-spread function shown in Figure

4.7 with that of Figure 4.10, the effectiveness of the

iteration technique to suppress secondary side-lobe re--

sponses is evident. The radius of gyration of the composite

system point-spread function of Figure 4.10 is approxiivately

74% of that the blurring aperture. Thus, as expected, the

restoration function resulting from the iteration technique

is somewhat less effective for image enhancement. It

should be noted that although nine iterations were used,

there is little change in the restoration function after

about three iterations and that the iteration technique
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appears to converge rapidly.

Figure 4.11 through 4.16 and 4.17 through 4.22 represent

the resulting restoration and composite system functions

when the constraint in the radius of gyration of the resto-

ration filter, K 1 is further reduced to 0.2 and 0.1 of the

radius of gyration of the "inverse" filter, respectively.

The radii of gyration of the composite system point-spread

functions shown in Figure 4.13, 4.16, 4.19, and 4.22 are 81,

97, 89 and 90 percent of the radius of gyration o^.: the

blurring aperture of Figure 4.1, respectively.

The preceding figures demonstrated the effect of the

constraint on the radius of gyration of the restoration

filter in a noiseless environment for a Gaussian blurring

aperture with a radius of gyration of one. To demonstrate

the influence of noise on the restoration filter, an

additive white noise with a spectral density of 10-5

volts 2/Hz was assumed. In addition, the output noise power

constraint, K 2 , was chosen to equal approximately 0.149% of

the corresponding output noise power of the "inverse" filter.

This particular value was chosen to approximate a signal-

to--noise ratio of 20 dB when appl..ed to the multispectral

scanner data to be described in a later section. Figure

4.23 and 4.24 show the frequency spectra of the restoration
i

filters when the constraint on the radius of gyration of
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Figure 4.20 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.1 for K = 0.1
Unconstrained Value with Ten Iterations Uling an
Exponential Criterion Function
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Figure 4.22 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.1 with the Restoration
Function of Figure 4.21
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and 0.2 times the value of the "inverse" filter, respective-

1y.

The following discussion will be with reference to a

Gaussian blurring aperture w?.th a radius of gyration of

three, as shown in Figure 4.25. The restoration filter

frequency spectrum, point-spread function, and the composite

system point-spread function for the classical "inverse"

restoration filter are shown in Figure 4.26, 4.27 and 4.28,

respectively. When the radius of gyration of the resto-

ration filter point-spread function is constrained to 0.5

of the unconstrained value, or value of the "inverse" filter,

the resulting restoration and composite system functions

with and without criterion function iterations are shown

in Figure 4.29 to 4.34. Figure 4.35 to 4.40 show correspon-

ding results when the radius of gyration of the restoration 	
i

filter is further constrained to 0.2 of the value of the

"inverse" filters. The radii of gyration of the composite

system point-spread functions of Figure 4.31, 4.34, 4.37 and

4.40 are 14.3, 19.8, 88.5, and 89.3 percent of the radius

of gyration of the blurring aperture of Figure 4.25.

Figure 4.41-4.52 demonstrate the effect of a white

j	 noise power spectral density upon the restoration function

for the same input and output signal-to-noise ratios as

employed with the filter previously considered. Figure

4.41-4.46.show the frequency spectrum of the restoration

9

t
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Figure 4.26 Classical "Inverse" Restoration
Filter Frequency Spectrum for Blurring Aperture
of Figure 4.25
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Figure 4.28 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
Function of Figure 4.27
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Figure 4.29 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.25 for K = 0.5
Unconstrained Value with No Criterion FuncLon
Iteration
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Figure 4.32 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.25 for K = 0.5
Unconstrained Value and Four Iterations wi'ih ar.
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Figure 4.34 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
Function of Figure 4.33

Or1313
13.013	 16.013	 ^er00 	 ^fe.00	 64-UID

NORMALIZED FREQUENCY
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Unconstrained Value with No Criterion Function
Iteration

`a



86

1.000

0.000

-1.000
0.00	 18.00	 '3e .00	 48.00	 64.00

NORMALIZED DISTRNCE

Figure 4.36	 Restoration, Filter Point-Spread
Function Having Spectrum of Figure 4.35

1.000

.500

0.000

Figur+
Funct
Apert'
Funct,



1_	 r__1%

87

P-0.013

10.00

I u rr '% I ; , ; Tz

0.00	 16.00	 3e.013	 48.00	 64.00
NORMPLIZED FREQUENCY

Figure 4.38 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.25 for K = 0.2
Unconstrained Value and Four Iterations wish an
Exponential Criterion Function
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Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
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Figure 4.41 Restoration Filter Frequency spectrum
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Aperture of Figure 4.25 with the Restoration
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Figure 4.45 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
Function of Figure 4.45
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i 1

filter and the point-spread functions for both the resto-

ration filter and the composite system for both K 1 = 0.5

and 0.2 of the unconstrained value for a white noise power

spectral density of 10-5 volts 2/Hz. Figure 4.47-4.52 show

the effect of increasing the noise power spectral density

to 10 -4 and 10 -3 volts 2/Hz for Kl = 0.5 of the unconstrained

value. The radii of gyration of the composite system point-

spread functions shown in Figure 4.43, 4.46, 4.49 and 4.52

are 60.2, 88.5, 66.2, and 76.9 percent of the radius of

i	 gyration of the blurring aperture of Figure 4.25.

Thr•oint-s read function for a Gaussian blurringp	 p	 g

aperture having a radius of gyration of five is shown in

Figure 4.53. Figure 4.54 shows the resulting "inverse"

restoration Filter frequency spectrum, while the correspon-

ding "inverse" restoration filter point-spread function is

shown in Figure 4.55. The overall composite system point-

spread function, resulting from correcting the blurring

aperture of Figure 4.53 with the "inverse" restoration

function of Figure 4.55, is shown in Figure 4.56..

When the radius of gyration of the point-spread function

of the restoration filter is constrained to 0.5 of that of

the "inverse" filter, the resulting restoration filter

frequency spectrum, point-spread and composite system point-

spread function are shown in Figure 4.57-4.59, respectively.

By further reducing this constraint to 0.2 of that of the
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Figure 4.50 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.25 for K = 0.5 and
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volts 2/Hz and Two Iterations Using an Exponential.
Criterion Function
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Aperture of Figure 4.25 with the Restoration
Function of Figure 4.51

0.00	 16.00	 3e.00	 48.00	 64.00
NORMALIZED DISTANCE

Figure 4.53 Gaussian Blurring Aperture Having
a Radius of Gyration of Five



16.0E	 32.00	 48.00
NQRMPLIZED FREQUENCY

200.0

100.0

0.0
0.00 64.00

1.003

0.000

•-1.000

h r-fI

I_	 _ i__ I _	 I	 J_	 I__	 I	 ^

9s

Figure 4.54 Classical "Inverse" Restoration
Filter Fregnency Spectrum for Slurring Aperture
of Figure 4.53

0.00	 16.00	 32.40	 "m	 64.00
NORMALIZED DISTRNCE



97

1.000

.600

0ro00
5J . U0	 1^ r ^1U	 7^ r 00	 T^ . Li0	 C3-f' . ^lU

NOWL I ZED! D I STRNGE
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Figure 4.57 Restoration Filter Frequency Spectrum
for Slurring Aperture of Figure 4.53 for K = 0.5
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"inverse" filter, the resulting restoration filter frequenc-y

spectrum, point-spread function and composite system point-

spread function are shown in Figure 4.60-4.62, respectively,

Figure 4.63--4.65 show the restoration filter frequency

spectrum, point-spread function, and composite system point--

spread function when the constraint on the radius of gyration

of the restoration filter point-spread function is 0.1 of

that of the "inverse" filter. The radii of gyration of the

composite system point-spread functions shown in Fiyare 4.59,

4.62, and 4.65 are 15, 21, and 50 percent of the radius of

gyration of the blurring aperture of Figure 4.53.

The preceding results corresponding to the blurring

aperture of Figure 4.53 were for a noiseless environment.

The following results are based upon two types of noise

power spectral densities: white and exponentially increasing

functions. The white noise power spectral density will be

considered first. Results for four spectral density levels

are shown: 10-5 , 10 -4 , 5x1.0 -4 , and 10-3 volts 2/Hz. The

output noise level constraint in the restored image is

adjusted for a signal-to--noise ratio of approximately 20 dB,

Figure 4.66-4.68 show the restoration filter frequency

spectrum, point-spread function, and composite system

point-spread function for K l , the restoration filter point-

spread function radius of gyration constraint equal. to 0.5

that of the "inverse" filter, and K 2 , the output noise



-	 I	 ^ 	--. I-. - - 	 ji	 . 	 ....I

100

100.0

60.0

0.0
0.00

1 u r4 1 I ;" Au

NORMALIZEDWFREQUENCY	
^.uu

Figure 4.60 Restoration Filter Frequency
Spectrum for Blurring Aperture of Figure 4.53
for K -0.2 Unconstrained Value and Two
Iterations With An Exponential Criterion
Function



1.01

1.1300

0.0013

1.000

0.000

-1.000 0.00	 NORMAL I ZD 0D I STANCE
Figure 4.611 Restoration Filter Point-Spread
Function Ha'v'ing Spectrum of Figure 4.60

ef. aU

-^ .000	
TT	 y^ ^y}y	 {^^ ^y	 Fyn

^w^^	 1^wLa	 .7G.LlY	 -[vw13L7	 ^wtEU

NOWLIZED DISTANCE
Figure 4.62 Composite System. Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.61



102

10{1.0

50.4

V a4

4.40	 16.44	 3ea04	 48.00	 64.00
NORMALIZED FREQUENCY

Figure 4.63 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4,53 for K11 = 0.1
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Figure 4.65 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.64
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Figure 4.66 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.53 for K = 0.5 and
K = 2.10 x 10-13 ( SIN -- 20dB) Unconstrainld Values
f9r a White Noise Power Spectral Density of 1.0-5
volts2/Hz and Ter_ Iterations with an Exponential.
Criterion Function
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Function of Figure 4.67



105

power constraint, adjusted for a 20 dB output signal-to-

noise ratio when the noise power spectral density level is

10
-5
 volts 2/Hz. Figure 4.69--4.71 show similar results when

KZ = 0.2 that of the "inverse" filter. Figure 4.72-4.74,

4.75-4.77, and 4.78-4.80 show the restoration filter fre-

quency spectra point-spread functions, and composite system

point-spread functions for K Z = 0.5 that of the "inverse"

filter and for noise power spectral densities of 10-4,
i

5x10-4, and 10
-2
 volts 2/Hz, respectively.

The exponentially increasing noise power spectral

densities are shown in Figure 4.61, 4.85, and 4.89. Figure

4.82-4.84, 4.85-4.88, and 4.90-4.92 show the corresponding

restoration filter frequency spectra, point-spread functions

and composite system point-spread functions, respectively

for K l = 0.5 that of the "inverse" filter and K 2 adjusted

for a signal--to-noise ratio of 20 dB, for each noise

spectrum.

Tables 4.1 and 4.2 summarize the basic restoration filter

and composite system performance parameters for the con-

straint and noise power spectral density variations described
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Figure 4.69 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.53 for K = 0.2 and
K = 2.10 x 10-13 (SIN z 20dB) Unconstrain&d Values
f9r a White Noise Power Spectral Density of 10-5
volts 2 /Hz and Four Iterations with an Exponential
Criterion Function
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Figure 4.71 Composite System Point Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.70
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Figure 4.72 Restoration Filter Frequency Spectrum
for Blurring Ap rture of Figure 4.53 for K = 0.5 and
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Figure 4.73 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.72
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Figure 4.75 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.53 for K = 0.5 and
K -'21.05  x 10- 15 (SIN m 20dB) Unconstrain1d Values
f9r a White Noise Power Spectral Density of 5 x 10-4
volts 2/Hz and Four Iterations with an Exponential
Criterion Function
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Figure 4.77 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.76
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Figure 4.78 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.53 for K = 0.5 and
K 

­2
2.10  x 10-15 (SIN z 20dB) Unconstrainld Values

f9r a White Noise Power Spectral Density of 10-3
volts2/Hz and Four Iterations with an Exponential.
Criterion Function
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Figure 4.80 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.79
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Figure 4.84 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.83
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Figure 4.88 Composite System Point-Spread
Function Resulting from Correcting the Blurring
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Table 4,1: Basic Restoration Filter and Gd
Performance Parameters As A Fun
and White Noise Spectral. Densi.

l	 1
blurring aperture radius of gyration

x l constraint as a fraction of the unconstrained value 	 0.5	
0.2

K 2 constraint for approximate 20d8 output signal-to -noise ratio	 Unconstrained	 Unconstrained

input signal-to-noise ratio for specified white noise power 	 °°, 0	 m' 0
spectral density amplitude

criterion function iteration	 none	 4, exponential	 none	 4^

I
composite system radius of gyration as percentage of blurring 	 67	 74	 81	 I,j
aperture radius of gyration I

maximum peak of secondary oscillations as percentage of primary 	 -6.3	 -5.2 x 10-3	 -9.0

lobe in composite systam point-spread function	 T

	

3	 3

blurring aperture radius of gyration

K 1 constraint as a fraction of the unconstrained value 	 0.5	 0.5

X2 constraint for approximate 20dB output signal-to -noise ratio	 5	 5

input signal-to-noise ratio for s pecified white noise power	 52. 6468, 10
-4 

v2 /Hx	 42.84d8, 10 ^!
spectral density amplitude

criterion function iteration	 none	 4, exponential	 none	 2e

composite system radius of gyration as percentage of blurring 	 60	 6612	 72.7
aperture radius of gyration

maximum peak of secondary oscillations as percentage of primary 	 -12.4	 -2 . 06	 -4.98
lobe in composite system point-spread function

	

3	 3 Q'

blurring aperture radius of gyration

x l constraint as a fraction of the unconstrained value 	 0.5	 0.2 .?

K 2 constraint for approximate 20d8 output signal-to -noise ratio	 5	 5

input signal-to-noise ratio for specified white noise power 	 62.8468, 10-5 v2/;12	 62.84dB, 10_^s
spectral density amplitude

criterion function iteration 	 none	 4, exponential	 none	 4`,

composite syster= radius of gyration as percentage of blurring 	 59.8	 60.2	 75.8
aperture ra';us of gyration

maximum peak of secondary oscillations as perc entage of primary	 - 15,5	 •1.74	 -1.35
lobe in composite system point-spread function

PRECEDING PAGE BLANX NM PHIM
OLDp &	

10%qa4^, PSG ,
	 j



	

1
	 I

	

0.2
	

0.1

Unconstrained
	

Unconstrained

m , 0
	 ., 0

al none 4, exponential none 4, exponential

81 97 89 90

^10-3 -9.0 -10-3 -1.7 -8.7 x 10-2

3	 3

ration Falter and Composite System
`Parameters As A Function of Constraint
si.se Spectral, Density Variatio-lls

1

0.2

5

62.84d8, 10-5 
V2 /Hz

	

none	 4, exponential

	

82	 97

	

-9.2	 -3.6 x 10-3

3

C.5

5

42.84dB, 10-3 V2 /Hz

Lai	 none	 2, exponential

72.7	 76.7

-4.08	 -0.55

3

0.2

5

62.84dB, 10-5 v2/Hz

.al	 none	 4, exponential

75.8	 88.5

-1.35	 -0.84
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Table 4.1, cont.

blurring aperture radius of gyration

K 1 constraint as a fraction of the unconstrained value

K 2 constraint for approximate 20dB output signal-to-noise ratio

input signal-to-noise ratio for specified white noise power
spectral density amplitude

criterion function iteration

composite l,ystem radius of gyration as percentage of blurring
aperture radius of gyration

maximum peak of secondary oscillations as percentage of primary
lobe in composite system point-spread function

5	 5

0.2	 0.5

5	 5
i

	

62.84dB, 10-5 v2/Hz	 52.84dB, 10-4A,
;i

i

none	 4, exponential	 none	 4, e3

61.4	 70.7	 54.4

-12.9	 -4.3	 -7.16

blurring aperture radius of gyration

K 1 constraint as a fraction of the unconstrained value

K2 constraint for approximate 20dB output signal-to-noise ratio

input signal-to-noise ratio for specified white noise power
spectral density amplitude

criterion function iteration

composite system radius of gyration as percentage of blurring
aperture radius of gyration

maximum peak of secondary oscillations as percentage of primary
lobe in composite system point-spread function

	

5	 5	 3

	

0,5	 o.2
1

Unconstrained	 Unconstrained

	

m, 0	 W, 0

none	 2, exponential	 none	 2r.

13.3	 15	 16.6

-14.5	 3.36	 -16.2
-K

7



	

5
	

5

	

0.2	 0.1

Unconstrained	 un"nstrained

	

., 0	 -, 0

.ial	 none 2, exponential nine 10, exponential
16.6 21 47 50

-16.2 -0.3 -14.9 -2.9
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!able 4. 1, cont.

5

52.84dB, 10- 4 v2 /Hz

none	 4, exponential

54.4	 61.6

-7.16	 -3.4

5

0.5

5

45.85dB, 5 x 10- 4 v2 
/Hz

none	 4, exponential

59.4	 67.2

-13	 -3.6

5

42.84dB r 10- 3 v 2 /Hz

none	 4, exponential

66.9	 70.1

-3,9	 -3.4

0.5

5

62.8463, 10-5 V2 
/HZ

n ,.)Pe	 10, exponential

50.1	 54.3

-14.1	 -3.4

X̂DO



Table 4.2: Bask Restoration Filter and Conti
Performance Parameters As A Func1
and Exponential Noise Spectral. D'

s
blurring aperture radius of gyration

K 1 constraint as a function of the unconstrained value

x 2 constraint for approximate 20dB output signal-to -noise ratio

power spectral density function

input signal -to-noise ratio

criterion function iteration

composite system radius of gyration as percentage of blurring
aperture radius of gyra,;.oa

maximum peak of secondary oscillations as percentage of primary
lobe in composite system point-spread function

0.5

5

1 M = 10 -6 
f1.85 V2 /Hz	 I

nn

2g.57dB

none	 4, exponential

60	 66

-1.38	 •-0.38
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ition r-jIter and Composite System
'arameters As A Function of Constraints
-al Noise Spectral Density Variations

5	 5

3.5	 0.5

5	 5

6 f l. 85 v2/Ilz	 0 n ( f ) = 10-5 f v2/Hz

.57d8	 47.72d8

4, exponential	 none	 4, exponential

fib	 6E	 73

-0.38	 -1.42	 -0.39

0.5

5

4'nn(f) = 10-5 f1.95 v2/Hz

19.57d$

none	 4, exponential

89	 94

_0.62	 -3.4 x 10-3
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4.3 The Effect Of Error Between Actual. And As
Gaussian Blurring Apertures On Composite
Performance

umed
vste

The results of the preceding section assumed that the

blurring aperture function was explicitly known. When this

function is not known, the composite system performance

based upon an erroneous blurring function can deviate

significantly from the optimal response. The purpose of

this section is to demonstrate the effect upon the composite

system point-spread function produced when a restoration

filter computed for a Gaussian blurring aperture of spe-

cified radius of gyration is used to correct data blurred

by a Gaussian aperture having a different radius of gyration.

Figure 4.93-4.9G show both the composite system fre-

quency spectra and point-spread functions when restoration

filters computed for Gaussian blurring apertures having
i
!	 radii of gyration of three and five, respectively, are used

to correct a Gaussian blurring aperture having a radius of

E	

gyration of one. Figure 4.97 and 4.98 show the composite

system frequency sepctrum and point--spread functions when

a restoration filter computed for a Gaussian blurring aper-

ture having a radius of gyration of five is used to correct

j	 a Gaussian blurring aperture having a radius of gyration
i

of three. These preceding mismatch combinations of actual

and assumed blurring apertures correspond to an overcorrec--

tion of the data as demonstrated by the peaks in the com-

PREUBWG B'jG'W BTANX N9T
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Figure 4.93 Composite System Frequency Spectrum
Resulting from Correcting the Blurring Aperture of
Figure 4.1 with the Restoration Filter of Figure
4.45
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Figure 4.95 Composite System Frequency Spectrum
Resulting from Correcting the Blurring Aperture of
Figure 4.1 with the Restoration Filter of Figure
4.70
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polite system frequency speetri

4.97. The resulting composite

as shown in Figure 4.94, 4.96,

tory - the greater the assumed

to the actual, the greater the

system point-spread functions.

3 of Figure 4.93, 4.95, and

system point-spread functions,

and 4.98 are highly oscilla--

blurring aperture relative

oscillations in the composite

Figure 4.99--4.104 show corresponding composite system

spectra and point-spread functions for the opposite situation,

where the radius of gyration of the actual blurring aperture

is larger than that of the assumed aperture. These blurring

aperture mismatch combinations correspond to undercorrection

of the data.

Of the two types of mismatch conditions considered, the

least desirable is the overcorrection condition; since it

would introduce ghosts into the "corrected" image. In con-

trast, the undercorrected condition produces a stable system

response which would not introduce any oscillatory error;

however, less than optimal image enhancement could be

expected.

The recognition of the overcorrection condition by a

peak in the frequency spectrum of the "corrected" data or

by the presence of oscillations about transients in the

"corrected" image could provide a criterion for determining

when a blurring aperture match has been achieved for data

where the radius of gyration of the actual. Gaussian--shaped

aperture is unknown.

i
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Figure 4.99 Composite System Frequency Spectrum
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4.4 Application of the Restoration Filter to T_Mages Blurred

The data presented in this section was chosen to qual-

itatively demonstrate the fundamental properties of the

optimum restoration function as previously described analyt-

ically in Chapter 2 and experimentally presented in section 2

of this chapter. Figure 4--105 thru 107 demonstrate the

resolution improvement possible when a given test pattern

initially blurred by a known aperture function is reconstructed

under essentially noiseless conditions. It should be men-

tioned that round-off errors within the restoration program,

resulting principally from FORT, are primarily responsible

for the noise present. The input image to the blurring

system is shown in Figure 4-105. This pattern is described

by a two dimensional array of 512 x 512, as are all the

images shown and is composed of a series of rectangular

wedges whose periodicity ranges from 16 pixels/cycle to 2

pixels/cycle in 2 integer increments. This frequency

variation was chosen to provide a simple qualitative com-

parison of the resolution of the blurred image to that of

the restored image. In addition, the 8 increment grey level

pattern was included to demonstrate any changes to the

dynamic range of the blurred and restored images. Figure 4--

106 represents the output of an imaging system having a

Gaussian blurring aperture with a radius of gyration of 3,

as shown in Figure 4-25. It is evident  from this figure

that the constrast of even the lowest frequency wedge has



Figure 4,105	 Resolution_ Bar Test Pattern

Figure 4.106	 Figure 4.105 Blz)rred by a Gaussian
Aperture with a Radius of Gyration of Three

V
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been significantly reduced and that the highest frequency

present in this pattern has a period of approximately 12

pixels/cycle.	 By applying the restoration function of

Figure 4-42 to the data of Figure 4-106 a significant im-

provement in picture quality is produced as shown, in Figure

4-107.	 The highest frequency present in the restored image

has a period between 6 and 4 pixels/cycle, thus providing

more than a 2 to I resolution improvement.

The restoration function chosen for this resolution

improvement test provided a high output signal-to-noise

ratio, over 40dB, for the round-off error noise introduced

by the restoration program.	 Had the round-off error noise

been less, a more powerful restoration filter could have

been employed giving a greater improvement in resolution for

the same output signal-to-noise ratio.	 It should also be

noted that had no round-off error noise been present, the

classical "inverse" filter would have provided perfect

restoration of the blurred image.

The test results shown in Figure 4-108 thru 111 demon-

strate the "ghost" effect produced by restoring a blurred

image with a restoration function not specifically designed

to control secondary oscillations about the origin of the

composite system point-spread function. This control, as

described in Chapter 2, was obtained by application of the

criterion function iteration procedu4e. The input image,

Figure 4-108, represents a bar pattern having a period of
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Bar Pattern
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100 pixels/cycle. Figure 4 -109 represents the output of an

imaging system having a Gaussian blurring aperture with a

radius of gyration of 3, the same as used in the previous

set of figures. Figure 4-110 represents a restoration of

Figure 4-109 with the noniterated version of the restoration

function of Figure 4-42. A "ghost" image or oscillation on

each side of the discontinuities cf the bar pattern is

apparent. However, when the iterated restoration function

of Figure 4-42 is used to correct the image of Figure 4-109,

the resulting image, Figure 4-111, shows no evidence of any

"ghosts".

The final fundamental property of the .jptimum restoration

filter, and possibly the most significant is the reduction of

truncation error as compared to that produced by the classi-

cal "inverse" filter and which is produced by restoration of

a truncated version of the original blurred image. This 	 `a

effect will first be demonstrated by a one-dimensional

example. Figure 4-11.2 represents a rectangular test function

which when blurred by the Gaussian aperture of Figure 4.53 	 _ <!

having a radius of gyration of 5 produces the data of Figure 	 i

4-113. Figure 4-114 is obtained by truncating, or setting

to zero, the first 10 points of Figure 4-113. By applying	 =S

the classical "inverse" restoration filter of Figure 4-55

to the truncated data set of Figure 4-114, the data of Figure 	 =;
^. 3

4-115 results. At no point in the data record does the

truncation error become small enough to resolve the original

i	 ,



Figure 4.109	 Figure 4.108 Blurred by a Gaussian
Aperture with a Radius of Gyration or --'hree

Figure 4.110	 Figure 4.109 Restored by the Uniterated
Ver^ion of the Restoration Function of Figure 4.42
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test function. When the restoration function of Figure 4-67

is applied to the same truncated data set of Figure 4-114 the

result, shown in Figure 4--116,.is obtained and indicates

significant error at the edges of the restoration. However,

because the radius of gyration of the restoration filter

point-spread function was constrained negligible error is

present at the center of the data record.

Figure 4-117 thru 4-120 demonstrate this same effect

for a two--dimensional example. Figure 4-117 represents a

bar pattern with a spatial period of 10 pixels/cycle. When

the Gaussian aperture of Figure 4-25 is used to blur the

image of Figure 4-117, the result is shorn in Figure 4-118.

By truncating, i.e. setting to zero, all but the center

256 x 256 portion of Figure 4-118 and applying the classical

"inverse" restoration filter to the result, the image of

Figure 4-119 is produced. Although the truncation error is

smallest at the center of this image, no significant res-

toration of the original Liar pattern is apparent. However,

when the restoration function of Figure 4-42 is applied to

the same truncated version of Figure 4-118, the result is

shown in Figure 4--120. It is clearly evident that this

truncation error rapidly becomes negligible inside the inter
	 • 9

256 x 256 portion of this figure and that significant res- 	 '.i

`i

toration of the original bar pattern is apparent.	 i



Figure 4.117	 High Frequency Square Bar Pattern



Figure 4.119	 Restoration of a 256 2 Center Portion
of Figure 4.118 by the Classical "Inverse" Restoration
Function of Figure 4.27

Figure 4.120	 Restoration of a 256 2 Center Portion
of Figure 4.118 by the Restoration Function of
Figure 4.42

1
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i C IMPTER 5

APPLICATION OF OPTIMUM IMAGE RESTORATION FILTER

1=	 TO ERTS MULTI SPECTRAL SCANNER DATA

5.1 Introduction

The primary motivation for this research was the devel-

s `°

	

	 opment of an optimal resolution enhancement technique for

application to remotely sensed mul.tispactral scanner data.

The fundamental properties of the resulting optimal resto-

rationfilter examined in the previous chapter indicated

that the shortcomings of the classical "inverse" filter,

which formed the basis for defining most of these properties

as discussed in Chapter 2, had been resolved. However,

until this restoration technique was applied to actual ERTS

data, it would not be known whether there existed any

significant deficiencies which had not been previously

anticipated.

This chapter desc=.bes the application of this resto-

ration technique to a specific ERTS data set. The problems

encountered in estimating the multispectral scanner blurring

aperture, defining the noise present in the data, and per-

forming the correction to the data are examined. Finally

conclusions are drawn concerning the quality of the resto-

ration achieved and the effect of numerical error both in
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corrections to the selected ERTS data set.

5.2 Estimation of Blurring Aperture

As mentioned earlier, since no specific information

concerning the blurring aperture of the multispectral

scanner was available, a mathematical model had to be defined.

As discussed in the introduction to Chapter 4, a Gaussian

model was ultimately chosen in order to make possible certain

simplifying assumptions. These assumptions include defining

a separable blurring process to substantially reduce proces-

sing cost and time and to permit explicit computation of the

blurring aperture spectrum, so that numerical round--off

errors may be reduced.

It should also be noted that an alternative to choosing

a model for the blurring aperture would be the estimation

of the aperture directly from the data. However, in view

of the extremely large quantization noise present in all the

ERTS data examined and which will be discussed shortly, it

seemed unlikely that this procedure would provide any better

estimate of the blurring process.

By re--examining the results of Table 4.1 and 4.2, it is

apparent that the more data samples per blurring aperture

width, the more effective the restoration procedure for a

given set of constraints. For example in the extreme case

where the blurring aperture is described by only one sample

point, then regardless of the constraints on the restoration

filter the resulting composite system point-spread function
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t

	 can contain no Jess than one sample point. Thus for this
i

case it is clear that no resolution improvement is possible.

However, if the blurring aperture could be sampled more often,

increasing the number of sample points per blurring width,

then a resolution improvement should be possible.

This problem of having relatively few samples per

blurring aperture width exits with the ERTS data. The

scanner aperture has an effective ground diameter of approx-

imately 80 meters. The data is collected so that a rectan-

gular array of points is generated with an effective ground

distance between adjacent vertical points in the array of

79 meters and an effective ground distance between adjacent

horizontal points in the array of 55 meters. Thus it is

unlikely that there are more than 3 sample points within a

circle of three a radius centered at the blurring aperture,

In order to obtain significant resolution improvement, it is

necessary to have a larger number of samples per blurring

width than this. One way to obtain more samples is to

interpolate additional values between the original data

points. The idea is not to create information where no

information originally existed buth rather to provide suf-

ficient sample values to allow use of an effective restoration

filter function. The procedure that will be used is to

increase the number of points per blurring aperture until
'	 3

they correspond to one of the aperture functions for which

the optimum restoration filter has been determined. The
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The restoration can then be carried out and the final data

set can be compressed back to the original size if desired.

The use of interpolation -;allows the data set to be matched to

the restoration function experimentally which is very desirable

because precise values for the actual blurring function are

not known.

At the same time that the interpolation is performed to

increase the number of points per blurring aperture, the

scale factor differences of the vertical and horizontal image

axes can be corrected. This scale factor difference arises

from the fact that the effective ground distances between

adjacent prints along the vertical and horizontal axes are

not equal. If these points are displayed as if these dis-

tances were equal, then resulting distortion produces an

image which is compressed vertically. Thus to correct this

distortion, a somewhat greater degree of interpolation, or

magnification, is required along the vertical axis. By

magnifying the vertical axis, 79/56 with respect to the

horizontal axis, this distortion should be corrected.

A third-order polynominal interpolation function was

used because of its relative smoothness compared to other

forms, including trigonometric and sine functions. The

j	 restoration filter corresponding to a blurring aperture of

radius of gyration of 5 is the largest that has been computed

due to limitations imposed by rour.f.1-off errors in the

computations. In this blurring function, there are approx-	i

t
1

i
a.
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i mately 45 samples (pixels) within the 1% amplitude levels

of the blurring function along each axis. Therefore, it is

necessary to interpolate the ERTS data to obtain this same

number of points in the estimated width of the ERTS aperture.

As a first approximation, the width of the ERTS aperture was

taken to be 3 as discussed above and accordingly the required

interpolation factor is 45/3 = 15. In addition, to correct

the geometric distortion, the ratio of the vertical to

horizontal interpolation factors should be 79/56 z 1.411.

The only integer ratio which satisfied both the interpolation

factor for matching the effective data scanner aperture to a

Gaussian blurring aperture with a radius of gyration of five

and the geometric distortion correction interpolation ratio

was 17/12 w 1.417. In other words, an interpolation of 17

along the vertical axis and 12 along the horizontal axis

would not only correct the geometric distortion but also

approximately match the effective ERTS data scanner aperture

to the restoration function computed for a Gaussian aperture

with a radius of gyration of five. Several additional

interpolation ratios were used to determine whether a better

aperture match could be obtained. However, as will be

explained latex, this ratio provided the best performance.

it appears likely that restoration functions computed

for larger radii oz gyration then five would provide even

better results when matched to the ERTS data by appropriate

interpolation factors. However, because of the excessive
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5.3 Composite System Noise

The composite system noise is defined as the total noise

process including both the noise introduced by the ERTS data

collection system and that introduced by the restoration pro-

cess. The noise introduced by the ERTS data collection system

arises from three primary sources: the sensors of the multi.-

spectral scanner, the signal conditioning electronics, and the

A/D conversion process. The noise introduced by the resto-

ration process arises principally from numerical round-off

errors.

The predominant data collection system noise source is

introduced in the quantization stage of the A/D process. The

data is quantized into six bits producing a signal dynamic

range from 0 to 63. The total noise power, n 2 , introduced

by uniform quantization may be approximated by the expression

13,6]

where Av represents the quantization increment, in this case

it is 1 unit. Thus the total quantization noise power is

approximately

M2 = 3^2 Z 0.08333 volts 2 .
	

(5-2)

This noise process may be shown to have an essentially

flat spectrum extending to many times the sampling "-_iquency.

A conservative estimate of the power spect yul^ density of

the quantization noise can be obtained by assuming that it

lies entirely within the band occupied by the signal. The
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resulting one sided noise spectral density is given by

inn (f) < 12 (f ; = 6f	 f > 0	 (5--3)
S	 s

where f  is the sampling frequency of the A/D process. The

magnitude of f  depends on the units of measurement being

employed. For convenience it will be assumed that f 	 128
S

which is the number of samples used to define the restoration

filters along each axis. With this convention the noise

spectral density is then

`Dnn (f) < 6(128)  = 1.302 x 10-3 .	 (5-4)

Because the ERTS data does not occupy the full 54 level

dynamic range defined by the quantization process, the

quantization noise is made even more significant due to the

reduced input signal-to-noise ratio. The ERTS data sets

examined have a dynamic range of approximately ± 15 units,

producing an input signal-to-noise ratio of less than 34 dB.

In view of the fact that the restoration process will be

enhancing the high frequency components of the ERTS data and

from the assumption that the quantization noise spectral

density is flat, the quantization noise presents a very

serious problem to obtain significant restoration and a high

signal-to-noise ratio in the deblurred image.

The second source of composite system noise is introduced

by computational round-off errors. These errors arise

principally within the FORT Fast Fourier Transform algorithm.

A double precision version of this algorithm is employed both
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in the computation of the restoration function and in the

M1

	 application of this function to a blurred image. This

algorithm is used to perform the spatial deconvolution by

multiplication of the spectral components of the blurred

image with the corresponding components of the restoration

function and then talking the inverse Fourier transform of

the product. By using this algorithm to compute the spectrum

of one of the Gaussian blurring apertures previously de-

scribed in Chapter 4 which should also be Gaussian shaped,

it was found that the magnitudes of the resulting spectrum

never become less then approximately 10-5 when normalized

with respect to the DC term. Consequently, this noise process

is assumed to have a flat spectral density of approximately

10-5 below the DC level of the data being corrected. Since

the ERTS data sets examined typically had a DC value of

approximately 30, the round-cuff error noise spectral density

amplitude was assumed to be approximately 10 -4 v2/Hz.

The severity of this problem is made evident by con-

sidering the application of the classical "inverse" resto-

ration filter to the image of Figure 4.105 as discussed in

SecO.on 4.4. Using the exact inverse one would expect to

obtain a perfect restoration. However, because of the noise

introduced by the round-off errors within the FORT algorithm,

the actual restoration obtained consisted only of a random

noise pattern with none of the original features being

evident.
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Since this noise source appears to be a function of the

numerical accuracy of the computations within the FORT

algorithm it is probable that it could be reduced to a

negligible level by increasing the precision of the com-

putations. However, it was not possible to employ more than

double precision accuracy because of computer limitations.

5.4 Resolution Enhancement of ERTS Data

The ERTS data set to be enhanced had to satisfy two

primary criteria. The first, and possibly the most important,

was that the data set had to be free of any obvious noise so

as to permit maximum restoration. The second was that the

data set had to include a known topographical feature to

provide a degree of "a priori" knowledge of the original
f

image before blurring by the multispectral scanne. for com-

parison to the restored results. Figure 5.1 and 5.2 show
i

the ERTS data set selected. This data was taken frorc ERTS
3{
f	 frame TD no. 1080-15192 collected on October 11, 1972, and

reformatted as TARS run number 7'04190U, Ch. 3, lines 916-

1427, columns 986-1497. This area includes a portion of

Washington, D.C. The topographical feature selected for

enhancement was the Pentagon Building which appears at the

center of Figure 5.1 and the upper center of Figure 5.2, a

2X linear magnification of Figure 5.1. This feature was

chosen not only because its shape is well defined but also 	 {

because the luminance intensity of a single scan line passing

through the center of the building for a scanner with 	
a

`4
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Figure 5.2	 2X Linear Enlargement of Figure 5.1
Showing Pentagon in Upper Center

Figure 5.1	 ERTS Multispectral Scanner Data
of Washington, D.C. Area with Pentagon at Center.
(LARS Run No. 72041500, Ch 3, Lines 916-1427,
Columns 986-1497)
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infinite resolution would appear as two closely spaced

rectangular pulses with the level between the pulses re-

presenting the "hole" in the center of the building. Thus

by comparing the luminance signal for a single scan line

passing through this area, a qualitative measure of the

resolution enhancement is possible.

Figure 5.3 shows the Pentagon and surroundings of Figure

5.1 after the application of a third-order two-dimensional

polynomial interpolation. As previously discussed, in order

to correct the axis scale factor difference and als-) to

approximately match the ERTS scanner aperture to the most

powerful restoration functions computed for a Gaussian blur-

ring aperture with a radius of gyration of five, the hori-

zontal axis was interpolated or magnified by a factor of 12

while the vertical axis was interpolated by a factor of 17.

Figure 5.4 represents a 2X linear enlargement of the upper

left quadrant of Figure 5.3.

Figure 5.5 represents a plot of the luminance level for

a scan line passing through the center of the Pentagon of

Figure 5.3, i.e. data line 110. The left most side of the

Pentagon is centered at the 60th sample, the "hole" at the

85th sample, and the right most side at the 110th sample.

The frequency spectrum corresponding to this line is shown

in Figure 5.6. The information provided by these two graphs

will form the primary basis for selecting the "best" resto-

ration function of those computed in Chapter 4 for a Gaussian

i

i

t

E

E

-	 'a
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Figure 5.3	 Polynomial Interpolation of
Figure 5.1 Using an Interpolation Factor of
17 for the Vertical Axis and 12 for the Horizontal
Axis

1

1-

1Z.P
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Figure 5.4	 2X Linear Enlargemert of the Upper
Left Quadrant of Figure 5.3
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0.0	 128.0	 266.0	 354.0	 612.0

NORMALIZED 0I6TANCE

Figure 5.5 Graph of Data Line 110 of Figure 5.3

4.000

2.000

i

0.00	 '
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0.0	 61f.0	 126.0	 192.0	 256.0

NORMALIZED FREQUENCY
Figure 5.6 Frequency Spectrum of Data Line 110
of Figure 5.5
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aperture with a radius of gyration of five.

The restoration function selection procedure was as

follows. Several restoration functions were computed based

upon white noise spectral density amplitudes approximating

the spectral density amplitude estimates of the system noise

processes previously described. The data of Figure 5.3 was

restored by each function. Then the graph of data line 110

and the corresponding frequency spectrum were compared to

those of Figure 5.5 and 5.6. The spectrum of line 110 for

each restoration was examined to determine if the fundamental

frequency components of Figure 5.5, approximately the first

22 normalized frequency components of Figure 5.6, had been

amplified without introducing higher frequency noise com-

ponents of comparable magnitude. In addition, the graphs of

data line 110 for each restoration were compared to that of

Figure 5.5 to determine the degree of resolution enhancement

by estimating the rise time associated with the luminance

level change between the left most side and the "hole" of 	 7

the Pentagon.

Figure 5.7 and 5.8 represent the graphs of data line

110 and its spectrum when the restoration function based on

flat noise spectrum ^b nn(f)	 10 5 (Figure •.67) is applied

to the data of Figure 5.5. The spectrum shoum in Figure 5.8

indicates that significant high frequency spectral components	 '0

have been introduced during the restoration procedure.

Since these high frequency components have the same general

r.
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Figure 5.7 Graph of Data Line 110 of Figure 5.5
after Restoration with the Filter of Figure 4.67
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shape as the spectrum of the restoration filter, shown in

Figure 4.65, it is reasonable to assume that these spectral

components are the result of amplification of the system

noise by the restoration filter. in other words, the assumed

noise spectral density amplitude of 10
-5
 for the computation

of this filter was much less than that of the composite

system noise process. Figure 5.9 shows the result of this

restoration to Figure 5.3. Figure 5.10 is a 2X linear

magnification of the upper left quadrant of Figure 5.9.

By increasing the assumed noise spectral density

amplitude to 10 -4 a new restoration function shown in Figure

4.73 is obtained. Figure 5.11 and 5.12 show the graph of

data line 110 and its corresponding spectrum when this

restoration function is applied to Figure 5.3. 1t is clear

that the high frequency noise components, shown in Figure

5.12, are of less amplitude then those of Figure 5.8. It

should again be noted that the shape of the noise spectrum

in Figure 5.12 is determined by the spectrum of the resto-

ration filter. Figure 5.13 represents the result of a pply-

ing the restoration function of Figure 4.73 to the data of

Figure 5.3. Figure 5.14 is a 2X linear magnification of the

upper left quadrant of Figure 5.13.

By ,further increasing the noise spectral density

amplitude to 10 -3 , the restoration function of Figure 4.79

is obtained. Figure 5.15 and 5.16 re present the graphs of

data line 110 and its corresponding frequency spectrum when
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Figure 5.9	 Restoration of Figure 5.3 with the
Filter of Figure 4.67
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Figure 5.10	 2X Linear Enlargement of the Upper
Left Quadrant of Figure 5.9
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Figure 5.11 Graph of Data Line 110 of Figure
5.5 after Restoration with the Filter_ of Figure
4.73
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Figure 5.12 Frequency Spectrum of Data Line
110 of Figure 5,11
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Figure 5.13	 Restoration of Figure 5.3 with the
Filter of Figure 4.73
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Figure 5.14	 2X Linear Enlargement of the Upper
eft Quadrant of Figure 5.13
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Figure 5.15 Graph of Data Line 110 of Figure
5.5 after Restoration with the Filter of Figure
4.79
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the restoration function of Figure 4.79 is applied to the data

of Figure 5.3. Although the high frequency noise components

are still evident in Figure 5.16, the effect on the data, as

shown in Figure 5.15, appears negligible. Figure 5.17 re-

presents the restoration of Figure 5.3 by the restoration

function of Figure 4.79. Figure 5.18 is a 2X linear magni-

fication of the upper left quadrant of Figure 5.17.

Additional restoration functions were computed based on

various other amplitudes and shapes of the noise spectral

density. These correspond to Figure 4.70, 4.73, 4.75, 4.83,

4.87, and 4.91, and each was applied to the data of Figure

5.3. However, no significant improvement was achieved com-

pared to the results of Figure 5.17 and 5.18 obtained by the

restoration function of Figure 4.79. It should also be noted

that additional interpolation ratios were applied to the image

of Figure 5.1 to determine if a better "match" could be

obtained than that of 17 for the vertical axis and 12 for the

horizontal axis. These ratios included 10/7, 14/10, and

20/14. However, no improvement was obtained over the 17/12

ratio for any of the restoration functions previously dis-

cussed.

A comparison of the graph of data line 110 for this

restoration, Figure 5.15, with that of the original inter-

polated image, Figure 5.5, shows that the rise time for the

restoration as measured for the transition between the left

most side of the Pentagon and the "hole" is approximately one
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Figure 5.17	 Restoration of Figure 5.3 with the
Filter of Figure 4.79
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Figure 5.18	 2X Linear Enlargement of the Upper
Left Quadrant of Figure 5.17
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half that of the original. In addition, the sides of the

Pentagon as shown in Figure 5.17 and 5.18 are displayed with

fewer grey levels, the transition defining the sides is more

sharp and the "hole" is somewhat larger than as shown in

Figure 5.3 and 5.4, as would be expected by a resolution

enhancement. There is also better delineation between the

sides of the Pentagon and the topographical features imme-

diately surrounding it in the restored images of Figure 5.17

and 5.18. Also an examination of the other topographical

features of Figure 5.3 and 5.4 shows that these features are

displayed with greater contrast and are less amorphous in

shape in the restored images of Figure 5.17 and 5.18.

One of the most significant results of the restorations

'.	 shown in Figure 5.17 and 5.18 is with regard to the data

truncation error. For the classical "inverse" restoration

'	 filter, with no constraint of the radius of gyration of its

point-spread function, this error would have propagated

throughout the corrected data set substantially reducing

image quality. As shown by the restorations in these figures,

this error though noticeable at the extreme edges, becomes
i	

negligible after about 25 points into the data record from

each edge. In addition to reducing the data truncation

error, the constrF..int in the radius of gyration of the point--

spread function of the restozation filter also produced a

function which contained less than 30 point's of significant

amplitude as compared to the classical "inverse" restoration	
i

i

e
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point-spread function which would have required as many points

as the data record to be corrected, which for the corrections

of Chapter 5 would have been 512 points. This reduction in

the size of the restoration function should also increase

data processing efficiency.

5.4 Problems of ERTS Data Collection System

As a consequence of this study, two significant problems

were encountered that are inherent in the ERTS data collection

system. The first problem is the poor signal-to-noise ratio

of the ERTS data. This problem could be reduced by both

reducing the quantization level increment and by increasing

the dynamic range of the data prior to quantization. The

second problem, the need for relatively large interpolation

ratios to match the effective blurring aperture of the ERTS

data system to the available restoration functions, could be

minimized by increasing the data sampling rate. Since less

interpolation would be required, both greater interpolation

accuracy and increased processing efficiency could be

achieved. By addressing both of these problems, more power-

ful restoration functions may be applied to the data thus

producing even greater resolution improvement.

"x
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

6.1 Conclusions

This study has demonstrated that it is possible to design

a restoration fl_lter based upon minimizing the radius of

gyration of the composite system point-spread function while

constraining the radius of gyration of the point-spread

function of the restoration filter and the noise power in the

restored image. By assuming that the blurring aperture and

composite system noise process are separabie,a significant

reduction in solution complexity was introduced. Transforma-

tion of the defining spatial equations into the frequency

domain led to a further simplification in that a system of

linear differential equations results for second-order

spatial weighting funcations in both the radii of gyration

of the composite system and restoration filter point-spread

function. Through application of well-known numerical,

solution techniques to this system of equations, a solution

which satisfied the original constraints was obtained.

Additional control over secondary oscillations in the com-

posite system point-spread function was made possible by

the introduction of an iterative techniques It was further

shown that the resulting restoration filters satisfied the

fundamental design criteria: reduction ^f the radius of
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i	 gyration of the restoration falter point--spread function.

One of the most significant results of this study was

the successful application of this restoration technique to
r
r
4

data which was blurred by an unknown function. By asstuning a

I
	 Gaussian model for the ERTS mul.tispectral scanner aperture

and employing a interpolation technique to match the effective

scanner blurring aperture to the Gaussian aperture for which

the most powerful restoration functions had been computed, a

!	 significant restoration of truncated ERTS data was obtained.

In addition, because of the constraint on the radius of

gyration of the restoration filter point spread function, the

truncation error was almost entirely limited to a small_ region

near the edges of the image. Thus substantial restorations

'paving a high signal.-to-noise ratio and negligible truncation

error were achieved.

6.2 Suggestions for Further Study

As a consequence of this investigation, several areas of

additional study may be defined. First by compressing the

enhanced interpolated data to its original scale, classifi-

cation studies may be peri.Drmed to determine the effect of

f	 resolution enhancement in classification accuracy. Secondly,	 ]

s
	 by increasing the numerical precision of the restoration 	 {

function computation program, more powerful restoration

functions computed for blurring functions having more points

per blurring aperture width than that for the Gaussian aper-

ture with a radius of gyration of five could be applied to
f



i

1S$
V

the ERTS data. Thirdly, the design of a restoration filter

which would have a spatially variant constraint on the radius

of gyration of the point--spread function of the restoration

filter should provide greater resolution enhancement near the

center of a truncated image while simultaneously controlling

truncation error at the edges of the restoration than the

spatially invariant constraint on the filter of this study.

Fourthly, the development of a similar falter using finite

difference equations rather than differential equations may

reduce the numerical errors and resulting solution in-

stabilities encountered with differential equation solution

algorithms. Finally the analysis of blurring apertures for

other than Gaussian functions should provide useful results,

particularly for rectangular functions where linear motion

blur correction is desired.
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APPENDIX A

DERIVATION OF RELATIONSHIP BETWEEN DATA RECORD i
TRUNCATION ERROR AND RESTORATION FILTER POINT-

SPREAD FUNCTION

For clarity, the following analysis is based upon

one-dimensional blurring and restoration functions.

Figure A-1 defines the parameters of the basic system under

consideration. The blurring system output, y(t), can be

expressed as
co

Y (t) -- ! x (-r )hb (t- ,r )dz	 (A-1)
-00

where s(t) is the original signal and h b (t) is the blurring

function. A truncated record of y(t) could be defined as

yT (t) = y(t) u (t-to)

y (t) - y (t) u (t o-t) .	 (A-2)
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which after substituting Eq. A-3 into A-2 becomes
CO

z (t) = f hr ( t—O) [y(0)-•y(a)u(t0- P)Id$
-CO

CO

f hr ( t— a)y (s) dO -- eT(t)	 (A-Q)
_CO

for

to :j t < CO

where eT (t) represents the error resulting from a

truncation of y(t) and may be expressed as

t0.

eT (t) = f hr (t-0) y (a)dO	 (A-5)
_CO

f or

to <t < -

Define hrl (t-R) , a duration limited form of hr (t--0) so that

hrl (t-$) = m (t-^) hr (t-6 )	 (A-6)

where m(t-0) is a monotomically decreasing weighting

function such as exp [- [t-B) 2, 1 so that

m(0) = 1	 (A-7)

and

lim 	 m(t-S) = 0	 (A-8)

From Eq. A5 and.6 defint, the truncation error resulting

from a restoration with a duration limited form of h r ( • ) as
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t0
e TI	 f h rl (t-o)yow

-to

for

t < t < CO Q 	('h-9)

From Eq. A-6 and 9,

to
R Te T1 

2(t )) = E	 f m(t-O)h r (t-s)y(0)dB_W

td

f m (t-a)h r (t-a)y (a) da I
_CO

t8

E { f  m(t-a)m(t-a)h r (t-5)h r (t-a)y(6)y(a)dadO)
-CO

(A-10)

which because of the shape of the weighting function,

Eq. A-7 and 8, may be upper bounded

0
2(t )} < M2(t)FE {e TI	 ff h r (t-O)h r (t-a)y(s)y(a)dad5l.

-Cc	

(A-11)

Assuming that y (•) is a sample function from a wide-sense

stationary random process, then Eq. A-11 may be rewritten

as	 t

E {e Tl 2 (t)} < M 2 (t)ff h (t-s)h r (t-ct)R Ty (a-O)dadO
-CO 

< 
m2 ( t ) R yy (0)

to
L_f h

CO

(A-12)



Since there is a constraint on the energy of the

restoration function, the right side of Eq. A-12 is finite

for all t. Taking the limit with respect to t of both

sides of Eq. A-12,

limt-)-W E{eT1 z (t)}	 0,	 '(A-13)

since

limt,^00 m z (t) = 0, from Eq. A- S.

Thus as the distance from the truncation point approaches

infinity, the variance of the truncation error produced by

a duration limited restoration function approaches zero.

^i

i

t
i

P

x

G

F^
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APPENDIX B

DERIVATION OF EQUATION 2-21

The gradient of Eq. 2-12 may be written as

VI = f [A1 (u, z) + A- (u, z) ] hr (z) dz
_CO

co

+ X1 f [A2 (urz) + AZ(urz)]hr(z)dz
_00

co _

+ ^2 f (A3 (urz) + A'(urz)]hr(z)dz
_cc

+ A	 f [A4 (urz) + A4 (urz)]hr ( z )dz .
_CO

(B-1)

Substituting Eq. 2-14, 2--17 through 2-20 into Eq. B-1,
co

f [A1 (u,z) + X A (urz) + a A 4 (u,z)]h (z)dz
-CO

co

+ Al f s(h)S(u
_

-
_

z)hr(z)d
_

z = 0

or
co

f [A1 (u,z) + A 2A3 ( u ,z) + A3A4(urz)]hr(z)dz
—co

+ 71 1s (u)hr (u) = 0.	 (B-2)

Ij

z

!.i

l

5

1-
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APPENDIX C

DERIVATION OF EQUATIONS 2-25, 27r 29, and 31

Substituting Eq. 2-13 into 2-24,

"0

	 _	 _

B 1 (f, V) = f ff w(v)hb (y- z)hb(v-u)dv
_C,

e- j 27rfu e j 2frvs du dz . (C-1)

Introducing a change of variable into Eq. C-1 where

v - u - a	 (C-2)

B 1 (f,V) = fff w(v)hb(v-z')hbWe--j2frf(v-a)
-CO

ej2Trvz dv da dz

Hb (f) f fwty}hb(v-z)e-j2zrfv ej2^rvzdv dz
(C-• 3 )

and introducing another change of variable into Eq. C-3

where

v w z = (C-4)

BI (frV) - Hb (f) f f w(v)hb(^)e j2zr vej2rrv(v-s) dv ds

m

I'b( 

)Hb( v ) f w(;-)e--j2wv(f-v)dy

Hb ( f )Hb (V)W(f- V). 	(C-5)

t



.i 81

Following a similar devel.opmentr

CO	 -	 - _ _

B { f, v } = f f A2 {u, z } 
e_^ 2zrfuej 27rvzdadz 	 (C-6)

and substituting Eq. 2-14 into Eq. C-6,

CO ^-j 2^rfu j 2wv z
B 2 (f,v) - ff s(u)S(u-a)e 	 a	 dudz	

3_C

CO

f s(-Z)e	 dz
-CO

i	 -- S(f-v).	 (c-7)

B^(f V} -- ff A3 (u,z) e- ^ 2zrfue j2zrvZdudz 	 (C-8)v

E

I	 1

which after substituting Eq. 2-15 into Eq. C-8 becomes,

CO	

}

f

B3 (f,v) - ff Rnn (z-u)e-j 2zrfue j2ztvzdudz.	 (C-9) E

Introducing the change of variable,

z - u - u	 (C-1^ )

into Eq. C-9,
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i

j	 And finally,

	

--	 -j2Trfu j2 7rvzB 4 (f, v) - f f A4 (u, z) e	 e	 d;dz	 (C-12)
-Co

Substituting Eq. 2-16 into Eq. C-12,
_	 CO	 _

B4(f,V) - _	
Z 1 z ff hb A (V-z)hb(V-u}dv

	

4 Tr f H
	

CO-

- 
ewj 2Trixej 2VZdudz. 	(C-13)

By introducing a change of variable into Eq. C-13 where

v - z -a,	 (C-14)
M	 CO	 _

s3d(,v) 	

al z ff	 f hb• 
(a)e- ^2Trvada

47r 
fH _00_C0

hp (v-u) e 
j 2Trfue j 2Trv^rdudv

{C-15 )

and recognizing that

fh
.. (a }e-j2Trvada - f ihb(u)a..{a)}e-jTrvada r (C-16)

-CO	 -W

and using the convolution property of the Fourier

transform,

fh. '. We j2Trvada=	 4w'-V2Hb(v) .	 (C-17)

Substituting Eq. C-17 into C-15,

$4 (Irv) =	 yz Hb (v) f fhb (v-u)e -j27rfue j2Trvvdudv (C-18)

and introducing another change of variable where



v - u
	

(C-19)

Eq. C-18 becomes,

z CO_	 _ _

B 4 (ft y ) --

	

	
v 2 fr 

hb (^)e^2^v{u+^)e-j2^r udW

fH -CO

z

H 

Hb

z

H

CO -- -
r e- j 2wu (f-v) du

-00

(C-20)

'j
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APPENDIX D

DERIVATION OF EQUATION 2--92

Substituting Eq. 2-47 and 50 into 2-91,
OD

V1 -	 [,x ( x)Hbx(vx 	
2^ 2 

a°'(x vx)
-00 4 •^ xw

+ cxd ( fvx	
2

) --	 1 S' (vx)"	 + cx8 (vx ax) }
4^ x 2

w

+
ix {- 

4^r2x 2 6r.
 (f -Vvx) + xs (fx vx) 47r 2X z.. 

(vim fix}

S	 s

+ xd (vim fx ) 1] 1 x (vx)dvx + 2
[X 2x%=( X)

f 2

+ x3x(f ) l'bx( x)1 2 1'1x ( x) = 0,	 (D-1)

or

^ W dfx fJX2 

^	 2
+ 2 J %x(fx) f Z xzx() - zit	

d2 
Hrx{fx)

27f 2-x
 ^

f 2

+ 2d^ H^.x ( ^) + 2 ['2x,'nnx ( f) + X3x (-2L)
Hx

^x(fx) 12] r ( x) 0'	 (D-2)
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or
%t (fx).(f

vix	 [kQ(f )H (f ) + 2%x(:[^)Ir
27r2 x 2	

x rx x	 I:x x

w

	+ 'bx I-rr^ { x)l	 2 
Ham(

2U2 
Xs

f
+ 2[((-	

2	 j + X
+XF

X ) j %X(:y2 	 2X(,nM,f

	

x 3x[ 
_:A	

x
HK

(D-3)

^x (f x ) = 0 ,

114	
(f .) 12 	 X

bx x	 +	 ix	 (:fx)

20 XW2	
2Tr 

XS

or

(f	
I'bX (fx)

rx x	
27r2x

w

	

2 ({Cx+?L3x(
f 

x
	 Ix(x)1 2

 1 + X2xOrmx (f + d

Hk 
	 x	 x

	

0 J^x (f x ) = 0,	 (D-4)



or

Chi	 - _ "Hbx(fXd 
-2xs 2+,?^ .Z.xxa2 .Hr. (f )x	 2w2xw2xs2	 rx x

TF2x 2	 rx x
w

2'r 2 x 2	 x x x x	 w	 x 3 x x Hx
w

I Hbx (fx ) 1 2 + A 2x"nnx (fx ) + dx}] rx (fx)

-. 	 o f	 (D-5)

which may be written in normalized form as

Dix u Hrx ( x) + 2Hbx(fx) bx(fx)xs2Hrx(fx)

/ [lHbx(fx)12xs2 + lxxw 2 ] + xs2(Hbx(fx)Hbx(fx)

WXw 2 { (cx+x3x(fx/fHx)2] IHbx(fx) 1 2

+ 
x 2x

4)
nnx (fx ) + dx}]Hrx(tx) /C j%X(fx)1 2xs2

+ ^lx wz]
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APPENDIX E

DERIVATION OF EQUATION 2-93

From Eq. 2-37, 2-50, and 2-75,
co
f f a .. ( —v )H (f )H (v )dv dfix	

—	
2 2 ^co* x x rx x rX x x x

+ d f f S ( -v )H* (f )H (v )dv df

	

x W	 x x rx x rx x x xm 

co

	

l	 ^
2 2 J Hrx(fx)Hrx(fx)dfxs

	

Off x	 —oa

+ d 	 f J rx ( fx ) 2 dfx .	 (E-1)
-00

k

x

From Eq. 2-94,

Hrx(fx) — Hrrx(^x) +	 Hrix(fx)	 (E- 2)	 b

and

H
rx x	 rrx x(f ) - H	 (f ) 	 Hrix (f x	 ( E-3)

Multiplying Eq. E-2 and E-3,

HA

	

rx (f )H (f	 H	 (f )xrxx ) — rrxxH	 (f3rrxx)



-_^__i	 I	 I	 I	 I_I
3.88

,Substituting Eq. E-4 into E-1,
CO

Klx	 4ft2x 2 _to rrx ( x ) rrx (fx)
s

+ Hrix(fx) rix(fx)}dfx+j-f 
{Hrix(fx)

00

H	 (f ) - H"'* (f )H	 (f )}df ] + d	 J 1 H (f ) 1 z df .
rrx x rrx x rix x	 x	 x -CO rx x	 x

(E-5))
Since hrx (x) is assumed to be a real function, then

I^rx (fx ) is an even function

and

Hr^x (fx ) is an odd function.

Thus the second integral in Eq. E--5 is zero, and

__	 1

lx	 M 4^2x z -J xrrx( fx)Hrrx(fx)+Hrix(fx)Hrix(fx)
) dfx

s

00

+ dx f xx (fx ) 1 2 dfx o	 (E-6)
-CO
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APPENDIX F

DERIVATION OF EQUATION 2 - 119

Substituting

	

"'I	 °°	
j 2 7r f Thrx (T} _	 { rx (fx )} =	 rx (fx }e 	 X dfx 	(F-1)

into Eq. 2-116,

Ina = -2 ff wx(x)mx(x)hbx(x-T) f rx(fx)e72WfxTdfxdTdx.
-CO	 _Co

(F-2)

Introducing the change of variables into Eq. F-2,

X - T = a r
	 (F-3)

then

Im = _2 r Hrx(fx) ff w,(x)mx(x)hbx(a)ej27rfx(x-r,)dxdadfx
-CO	

-01

Co	 Co	
j27rf_ 

-2f Hrx (£x )Hbx (fx ) _fwx(X)mx(x)exxdxdfx. (F-•4)
_ 

By making the substitution,

Co

w	 Wx(x (X) -	 { vx)} =f Wx (v 	 ^ 2^v Xx )e	 X dvx	(F-'5)
-Co



190

into Eq. F-4r

M	 Go

I m	 -2f 11 rx (f x )Bbx (fx ) ff WxN.)m.(x)e j27x(f x +v X)_
co	 -63

dxdv dfx x

co	 00

—2f H rx(f.,-)7bx('x) f Wx(vx)Mx(fx+vx )dv x df x - (F-6)_
W	 —CO

Finally Eq. P-6 may be written in the form of Eq. 2-118,

I m

	

	 f B 5x (f x )H rx (f x )df x	 (F-7)
-ca

where
00

B 5x (fx 11b x-2	 (fx f Wx (v xx)M* (fx +v x )dvx .	 (F-8)
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APPENDIX G

TABULATION OF RESTORATION POINT-SPREAD FUNCTIONS

OF FIGURES 4.67, 4.70, 4.73, 4.76, 4.79,

4.83, 4.87, :and 4.91

A



r	 f^

e Figure 4..67 Figure 4.70 Figure 4.73 Figure 4.76

I RESTUPATI (iN PSF I RESTORATION PSF I RESTORATI ON PSF 2	 RESTORATION PSF

(^] 1 6.4630331.[- 02' 1 I.ODODOOCE GG 1 5.9836630E-02 1	 5:U303914	 02
2	 5:33787496-.012 3 86G855:E--01 Z

3
3.4C+43962E-01

-7.9094410E-*01
2
3

4.9497211	 01
3.6912531.E-02.3

4
3.33114415E-0Z
6.0345.0E-OL 4 8.9TCOSME-04 4 8.5'9859196^O1

3	 3.817E-591E^02
4	 1.0O2GOCCE OC	

f5 i.GVCCO3C5 =C 5 -9aC:77874E-02 5 -1.0009049E 00 5	 8:1527650	 01
6 l'Ka	 BVE-01 6 2.234541,5E-C2 6

I-
-6.33500[2E-01 6	 7:64316326-01

7 90261363E-01 7 -2.1264467E-C2 7 1.6410d16E-01 7	 1„1I4CZ45E-C1
H 2.6$7.414_-02 d 2.31193T1E- - 02 8 -9 . 04321400E-02 6	 1 . 424.1391E-Q1	 I
9 1.I4361t12E-7:1 9 -3.2533004E-03 9 1.11726I0F-01 9	 ai57C194ZE-02

10 5.672230ttc-03 10 1.9363283E-02 10 -1..6274631E-0?. 10	 4.2731431E-02
11 7,1557045E-6Z ?1 1.0264155E-03 Il 8...1335813E=-02 11	 7.0096731E-CZ
12 1:489.4S,tF-03 12 1.+r154073E-02 12 -1.30IC993E-03 12	 -1 :218137,19E--CZ --=
13 3.ST031!	 OZ 13 4.1795615E-04 13 5.5773973E-OZ 13	 5 5111080E-0214 9.73s_IsC 74	 C3 14 8. B61916SE-03 14 -3.5637289E-03 14	 4 134Z719E-03'
15 1	 91 332E G2 15 -1.63SH949G--03 15 3 . 413688tsE-02 15	 4,419ICd0E-?3216 1.7^l1FSOfa Ce": 16 4a5920254E-03 16 ^1,0243732£-C2 16	 5 1627643E-03
17 4.e1257114E-03 17 -3.437336,5E-03 17 . 1.7737661E-CZ 17	 2.65113004E-02
18 -1.9t. 12T4E--C2 18 1.652,6102E-03 18 --1.5619420E-OZ 18	 9.058754SE-03
19 7.2562565E-C4 19 -4.Z122751E-03 19 7.5G77079E-03 19	 1:'55CZ508E-02
20
2.1

-i.580.Y56 r^-:2
2.N.1931 3 -63

20
21

3.3696639E--04
-3.8958665E--03

20
21

-1.7375469E-CZ
3.1.163509E-03

20	 1.24543uBE-92
21	 8.CaI93.91E-C3

22 -1.C.:72de4F-G2 22 3.52121d9E-04 22 -1.5518233E-02' 22	 -1:3959154F--D2
.23 5.4409616E-23 23 -2.874.7749E-03 23 2.9871317E-03 23	 4:3179765--C3
24 -k.BTSS$!6>:-C3 24 9.4138482E-04 24 -1.1488939E-02 24	 -1.2962949E-OZ.
25 7.T762iaZ&-03 25 -1.7031$ItsE^03 25 4.9101748E--03 25	 3:-25095466-03
20 -1 902'73 	 3- 26 1-:1.25 <r.2E-03 26 -7.17..84679E-C3 25	 -1:.0497965E-42
27 7:a737251E.-C3 27 -8.350284dc-04 27 6.8394664E-C3 27	 4.Z482242E-03
28 -1544=61^.e-03

1... 1217444E--03
28 I 4427139E-03 28 -4.0579252E-03 28	 -7.5393654-c-G3

.29 29 -4.6472707E-G4 29 7,62C1484E-03. .29	 5.4647475E-03
3C
31

-2.b£Z1832F-1.3
-,77Z4411E-C3

30
31

1.73292224E-03
-5a20E2442E-04

30
31

-2.7023044E-03
6.9756173E-03

3D	 -5dG412752E-03
31	 6 222+s455E-1.3 	 N

32 -5.1215434E-03 32 1.2930771]64-03 32 -2.8137926E-03 32	 -3.5242976E-03
33 2.08573'iZE-C3 33 -7.7551117E-04 33 5.ti.5445G8F-C3 33	 6.2750114E-03
34 -4.5777 380E-03 34 6.48537v8E-O4 34 -3 . 6072868E-03 34	 -3.0137073E-03
a5 1.:T4uaS7E u3 35 -9.98342^;IE-- (14 35 3.8454C34E^03. -35	 5.4431171E-03
36 4.01CG82OE-C3' 36 5.52110118E-04 36 -4.29699ci4E-03 36	 -3.1616z,^9E-03

!

37 1.96777415E-03 37 -1.0532134E-03 37 2.7530365E-03 37	 4.40524t)2E-03
3a 2.92703;bE-03 38 4.6488247E-04 38 -4.4396701.E-G3 38	 -3.579561.?E-C3
39 2.6_a11CbE•C3 39 -9.38759G8E-04 39 2.37313 9r--03 39	 3.4552317E-02
40 -2.9342171E-G3 40 5.3-.51,t17E-04 40 -4.0241 12E-03 40	 -3.84732.3&E-03
41 .02.:135:+6^03 41 -7.41IC•5.99E-C4 41 2.527c)6JZE--C3 41	 2.838.1356E--03
42 1.575!021:E-1.3 42 6-5290023£-04 42 -3,3147.4,2E-G3 42	 -3.U2124:;E-C3
43
44

2.6543578E-03S .ti^i..8.. SSLr03
4344 `1.635V6b1E-04-7. Cd	 3 lE-0,' 44	 4

43.4 4 ?.6654E10E-03
-	 52.6613. llc-03

43	 Z.6CO3257x-1.3
4 C,	 3 53Lc'6JcF^-s3

45 Z.34Z7917E+-03' 45 -4.691Yd ZE-C4
RE-04

45 3.0794 :98E-03 45	 7.621.E -r^}s -03
46 -2.CZZZI31E+-G3 46 6.V4466 46 -2.2780360E-03 4(3	 3.`31643^ZE-03

HE-0347 1.8141664E-03 47 -.6154467E-044 47 3.C370967E-C3 47	 2.75163
+4E -Z. 2 Sal G35E-03 48 I^ 1951182E-0i h a -2.19330G3F.-03 48	 -2.7354632E-03
4.9 1.5341633E-83 49 ^5.02C06n2E-C4 49 2.7834594E-G3 49	 2.8301959E-03
50 -2-23146977.E-03 50 5.298411^E-04 SC. -2.2951155E^03 50	 -2.A851'945E-03
51 145376692E-.C3 51 -5.42652J9E-04 SI 2.n5119575E-03 51	 2.8203629E-03
52 1.93bti935E-03 52 s.6ti4w0y1 -04 52 -2.4295^#66E-03 52.	 --2.3H2256SE-03
53 1	 73655411.03 53 -.52,5401144 -04 53. 2.1979Se5E-33 532.6759361E-033
54 1 70+7175~ 03 54 4.411796LE-ej 54 -2.43',33 Une-03 54	 -2+331119';E-C3

` 55 .0678344EC;3 55 -5.3385925E-04 55 2.C6671141E-G3 55	 2.5L4367bE-03
56 1.:5]5r899'sE-03 56 4:4741435E-04 56 -2.44 9 1,)6E-c'3 56	 -2.41431s,?E-03'
57 1.iL840tf5G-1.3 57 -4.987116CE-04 57 2.CS6I44c+E-03. 57	 2.37760:5E-93:
58 1.4744Gh4E-03 58 4.6375185E-C4 58 -2.3222759E-03 58	 -2..4257636E-03
59 1: 8138506E--03 59 -4.6774535E-04 59 2.1137918E-03 59	 2.2979905E^03

M 60 1.56545^LE-03 60 4.7455961E-04 60 -2.1876302E-9'B 64	 -2.41021:t36E-03
6;1. 1.649F019E-03 -61 -4.5056152E-04 61 2%1851116E-OS 61	 2.27.3461LE-03

• 62 - 03..4.6985284E 62 4. 7399059E-04 62 -2 . 0815376E- 03 AZ	 -2.3705554E-03'
63 1.5046535E--I,3 63 -4.15293.03E-04 63 2.2361232E-03 63	 2.2782609E-03

- ;64• -1.7895314E-03 64 4.7360151E-04 64 -2.0256396E-93. 64'.	 +2.3398731E-03
j 65 1.1482363E-03 65 --44477032E-04-	 _ 65 2.2539189E-03' 65	 2.2833595E-03

i
- -	 ^ ,.......^..-....--=..w-.-r-	 ^..-,...,.-.^._......-=^c^:r^= ^sr_.^r-.^.^^r^-+ vAan,a^iv:ride.:.^:-^.:scc^e.-,•̂^.:a^:^e._.:.^.,:.^-_.:rimer ,.eac_•.^e---...-o.-,.-,...-- 	 - ----



l
f.

t
Figure 4.79 Figure 	.8^g r	 d Figure 4.97 Figure 4.91

i	 RESTCRATIOri A5F I R>rSTCRrTION ASF I RkSTORATIUN A5E I itES7GRATIOY PSF I
r

1	 1.5585303E,O 1 9.1055882E-01 1 3:46I6739E-01 I 14000OOOOE 00
t-i 2:	 4.7L3Z194E•-01 2 I.COUSOJO E 00 2 5:525351ZE-OL 2 8.5625076E-01
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