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ABSTRACT

Riemer, Terry Edmund, Ph.D., Purdue University, December,
1974. Optimum Constrained Image Restoration Filters. Major
Professor: C.D. McGillem

An optimum image restoration filter is developed in
Hilbert space by minimizing the radius of gyration of the
overall or composite system point-spread function subject to
constraints on the radius of gyration of the restoration
filter point-spread function, the total noise power in the
restored image, and the shape of the composite system fre-
guency spectrum,

By satisfying a constraint on the radius of gyration of
the restoration filter point-~spread function, truncation
errors arising from attempted restoration of incomplete
segments of blurred data are almost completely suppressed.

An iterative technique is introduced which alters the
shape of the optimum composite system point-spread function,
producing a suboptimal restoration filter which suppresses
undesirable secondary oscillations which may otherwise
appear in the composite system point-spread functiom and
introduce "ghosts" in the restored data.

An extensive study of the restoration filter performance

as a function of its parameter variations is made. Numerous




xix

examples are provided to demonstrate the fundamental prop-
erties of the restoration filter.

Finally this technique is applied to multispectral
scanner data obtained from the Earth Resources Technology
Satellite to provide rasclution enhancement. An experimental
approach to the problems involving estimation of the effective

scanner aperture and "matching" the ERTS data to available

restoration functions is presented.




CHAPTER 1

INTRODUCTION

1.1 General Discussion

The general problem of image processing has been the
subject of intense investigation within the last decade. This

interest is the result of the need for the highest possible

image quality in the increasing application of imagery to
the solutioun of various related problems in many fields of
science and engineering. These applications range from x-rays

in medicine to satellite-based multispectral scanner data

collection systems for monitoring earth resources and to a §
large degree are made feasible by recent improvements in %
digital computer hardware.

Since no image collecting or imaging system will produce

a perfect replica of the original image, som=z further pro-

cessing is usually required. The area of image restoration
deals primarily with the problem of processing the output of
an imaging system in such a way that the significant parameters

or features of the original image are, in some sense, enhanced

or restored. This processing may be linear or non-linear,
shift-variant or shift-invariant depending upon the type of

degradation produced by the imaging system. :

The primary purpose of this research is the development
of a technique to reduce the effective aperture radius of the
multispectral scanner system used for remote sensing of !

earth resources. Because of the finite point-~spread function




of the scanner and the response limitations of the image

sensors and signal conditioning electronics, a two-~dimensional

spatial smearing or blurring of the originél image is pro-
duced. This type of imaging degradation essentially maps
many points from the original image into a single resolution
element. In other words, a single resolution element of the
imaging system output represents a two-dimensional weighted
sum of many points adjacent to the correspondingly located
sample of the original image. Thus, depending upon the
density and shape of the effective aperture and the spatial
and multispectral characteristics of the original image,
this type of imaging degradation may not only introduce

significant error in the visuval presentation of this data,

but also introduce serious errors when classification of

this data is attempted.

1.2 Previous Investigations

Historically much of the initial work directly related
to linear shift or time~invariant restoration filters was
performed in the areas of seismographic data analysis and
radip astronomy. Basically this work considered the prob-
lems associated with defining the restoration filter trans-
fer function as the inverse of the Fourier transform of a
linear shift or time-invariant blurring process, which is
often referred to as a classical "inverse" filter. The
principle problem associated with such a restoration filter

occurs when the Fourier transform of the blurring process




becomes very small or perhaps egquals zero. Since the
spectrum of the restoration filter becomes unbounded at such
points, some means of assigning a finite value to the
spectrum at these points is necessary.

Typical of this early work, Harris [9] attempted to
eliminate this difficulty by arbitrarily modifying the
spectrum of the inverse filter to provide a restoration
filter having a transfer function that was continuous and
finite in those regions where the blurring function spectrum
is zero. Bracewell offers an alternative to the problem by
employing finite differences [4] and a technigue of suc-
cessive substitutions [5] to define the restoration filter
in the temporal or spatial domain. In a more recent study,
Kinzly [13] circumvents the problem of infinite gain in the
restoration filter by choosing a diffraction-limited system
as the correction goal rather than attempting an ideal
correction. More sophisticated spectral studies by Bercherer
[2] and Horner [10] are based upon minimizing the mean-square
error between the original and restored image data, leading
to a two~dimensiohal Wiener filter. Although this type of
restoration filter does eliminate the previous problem of
spectral infinities, "Apriori" knowledge of the image power
spectral density is required. Using a novel approach,
Robinson [18] defines the restoration filter in tne temporal
or spatial domain in terms of a series derived from the z~-

transform of the blurring function. Rice [17] provides an




extension to Robinson's work by defining a restoration filter
based upon minimizing the mean-~square error between the
original and restored images. In both of these procedures
knowledge of signal characteristics is required. Extensive
literature surveys on restoration filter design and related
areas of image processing are provided by Huang, et.al. [11]
and Sondhi [20]. The previous references represent the
earlier studies most ciosely related to this investigation.
Although several of the previous studies did attempt to
optimize the restoration filter, resulting in a Wiener filter,
Smith [19] appears to be the first to consider specifying an
optimum restoration filter based upon minimizing the radius
of gyration of the corrected impulse response Or point-
spread function subject to a noise constraint. Because no
constraint is placed upon the radius of gyration of the
restoration filter impulse or point-spread function, serious
numerical problems arise. Stuller |1,21] uses basically
the same constraints as Smith, but formulates the problem in
the spatial domain. By defining the restoration filter using
matrix nofation, a restoration filter containing an arbitrary
nunber of points may be determined. This appears to be the
first attempt to control the duration of the restoration
filter impulse or point-spread function., Although the
duration of the restoration filter impulse response or point~
spread Ffunction can be controlled, no control is possible

over the shape of this function.




The previously cited investigations have in common one
or more of the following deficiencies: no general control
over the shape or duraticn of the restoration filter impulse
response or point-spread function, no general control over
the shape or duration of the corrected impulse response oOr
point~spread function, no control of the spurious responses
resulting from secondary lobes in the restoration filter
impulse response or point-spread function, and no way to
make tradeoffs among the various conflicting performance
requirements of the filter. The significance of these

controls will be examined in the next chapter.

1.3 Outline of Investigation

An optimum shift-invariant restoration filter is formu-~
lated in Chapter 2 based upon minimizing the radius of
gyration of the overall oxr composite system point-~spread
function subject primarily to constraints on the radius of
gyration of the restoration filter point-spread function and
on the total noise in the restored image. In addition, an
iterative technique is developed which suppresses secondary

oscillations in the composite system point-spread function.

For numerical solution convenience, the problem is transformed

into the spatial frequency domain and a system of linear
differen?ial equations which specify the spectrum of the
restoration filter is developed. Finally a comparison is
made between the optimum restoration filter and the classical

Tinverse" filter.,




Chapter 3 discusses the application of well known digital
computer algnrithms to the solution of the previously devel-
oped system of linear differential equations specifying the
spectrum of the restoration filter.

Chapter 4 presents an investigation of the fundamental
properties of the restoration filter., A study of the filter
performance as a function of its parameter variations is made.
In addition, examples are presented to demonstrate the capa-
bility of the restoration filter to suppress truncation
error. These examples also provide a qualitative measure of
the restoration capabilities of the filter.

Chapter 5 discusses the application of this restoraticon
techniqu.- to ERTS multispectral scanner data. The problems
of estimating the shape of the scanner aperture and "matching"
the ERTS data to previously computed restoration functions are
considered. Finally, examples are presented to demonstrate
the effectiveness of this technigue in the ERTS data.

Chapter 6 presents conclusions made in this study and

suggests related work for further investigation.
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CHAPTER 2

OPTIMUM IMAGE RESTORRTION FILTER

2.1 Introduction

In this chapter the fundamental equations underlying
the general image restoration filter are defined. From
these equations, a system of equations which specifies the
general two-dimensional restoration filter is formulated
in the two~dimensional spatial frequency domain. To
simplify the analysis of ¢he general problem, two specific
types of aperture functions are considered, separable and
radially symmetric. A system of equations which specifies
the spectrum of the restoration filter for each aperture
class is developed. In order to provide additional control
over the shape of the point-spread function of the
composite imaging system, an iterative technique is
defined. The resulting systems of equations which specify
the fregquency spectrum of the restoration filter for both
separable and radially symmetric aperture classes are
formulated in terms of the iterative technique. And
finally, it is shown that when all defined constraints are
removed, the resulting restoration filter is the classical

"inverse" filter.




2.2 Formulation of Image Restoration Problem

The bagic components of the composite imaging system
are defined in Figure 2-1. The fundamental design
criterion for determining the optimum image restoration
filter is to select the restoration filter point-spread
function so that the point-spread function of the composite
imaging system is as compact as possible about the spatial
origin. Since the classical "inverse" restoration filter,
defined by the inverse of the modulation transfer function
of the imaging system, would produce an impulse for the
composite imaging system point-spread function,
representing theoretically the best possible correction,
the basis for the fundamental criterion is evident.

One convenient measure of compactness is the square

of the radius of gyration, r, defined as

w2 2 _ _
, [ |¥] ¢ 0 &¥

r = (2~1)

oo

2
[ g (v) av

where g(v) is the point-spread function for the composite
system and v is a two-dimensional spatial vector. g(v) may
be expressed as a two-dimensional convolution in terms of
the imaging system point-spread function, hb(F), and the
desired image restoration point-spread function, hr(V) as

gl¥) = hy (V) **n,_ (v). (2-2)

An optimum restoration filter based upon minimizing
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Eg. 2-1 would only assure that the composite imaging point-~
spread function be as compact as possible but would not
provide control over cscillations or secondary lobes that
might occur and which would lead to ghosts in the restored
image. Some additional control over the rate of decay of
this function away from its centroid is most desirable. By
making a slight change to Eq. 2-1, replacing lx_r'l2 by an
arbitrarv weighting function, w(v), which will be defined:
later, control over the rate of decay of the composite
imaging system point-spread function becomes possible,

Thus the fundamental criterion may be expressed as the

ratio of two guadratic functionals
[~ . 2 -
J wivig (%) av
Fl - 0 2 r (2‘—3)
[ g () a7

The optimum restoration filter would be determined by
choosing a restoration filter that will minimize the
numerator of Eg. 2-3 subject to a constraint on the
denominator, which corresponds to the energy in the
composite filter.

In order to avoid two significant shortcomings
encountered with the classical "inverse" filter, two
additional constraints must be considered. The first deals
with the compactness and rate of decay with respect to the
spatial origin of the point-spread function of the optimum

restoration filter. Since the point-spread function of the
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restoration filter based upon the "inverse" filter is
generally much less compact than the point-spread function
of the imaging system, and often is of infinite duration as
a result of the infinite energy usually associated with
such a filter, it is advantageous from a data processing
efficiency and cost viewpoint to reduce the durztion of
this function, thus reducing the amount of data required
for image processing. 3In addition since the image to be
restored usually represents only a portion of the original
imege presented to the imaging system input, significant
"edge~effect" errors can result. This error is produced by
truncation of the imaging system output, i.e. having only

a finite data record available for restoration. It is
usually greatest at the boundaries or edges of the restored
imﬁge and propagates through the restored imagel!. By
making the point-spread function of the restoration filter
more compact about the spatial origin, both problems
concerning data processing efficiency and "edge-effect"
errors should be diminished.

Using an analogous development to that of Eg. 2-3,

o 2

[m s(F)hr(?) dav

F, = = (2-4)
f h_ (V) dv

e &2

may be defined, where s(v) is a weighting function similar

in purpose to that of w(v) in Egq. 2-3, and hr(?) is the

! see Appendix A
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restoration filter point-spread function. By using both
the numerator and denominator of Eg. 2-4 as additional
constraints, arbitrary control with regard to compactness
and duration of the optimum restoration filter is poassible.
The second additional constraint necessitated by the
performance of the "inverse® filter is a constraint on the
noise power present in the restored image. Because of the
shape of the spectrum of the "inverse" filter, optimum
performance is possible only in a noiseless environment.
The presence of any noise, however small, would in general
be infinitely amplified by such a filter. The additional
constraint provides arbitrary control of the signal~to-
noise ratio of the restored image. This constraint can be

stated as an expectation over né(?),

2
Fu = E{n, (V) } (2-5)

where nT(?J, the total noise in the restored image, is
defined in Figure 2-1.

A final constraint has been found necessary under
certain conditions to contrxol the shape of the modulation
transfer function of the composite imaging system to
guarantee that this function contains no significant
spurious high fregquency peaks which could contribute to
oscillation near the spatial origin of the composgite
imaging system point-spread function. This occurs

primarily when the first constraint is removed or is near

ARV e s ) sens s

I
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its unconstrainad value. This constraint may be defined in
the spatial fregquency domain as,
0

2 2
F, = J (-%?) |G (®) | af

where G(Ef) is the composite imaging system modulation
transfer function and fh is a frequency weighting
parameter. Since the previous constraints were defined in
the spatial domain, this constraint, as will be shown in
the next section, can be written as,

1 ® -, g —, —
anip 2 [ 9" (¥)g(¥) av. (2-6)
H

Fy = -

2.3 Development of Optimum Filter Function

Combining the primary criterion defined in Eg. 2-3
with the constraints of Eq. 2-4 through 2-6, the optimum
restoration filter point-spread function hr(V) is that
function which minimizes the functional

o 2
F = fm w(vig (¥v) av (2-7)

where g(¥v) is defined in Eg. 2-2,

subject to the following constraints,

K, = {w s(?}h;m av (2~-8)
K, = E{nZ(v)} (2-9)
Ky = - —2— [ ¢”" (W@ av. (2-10)
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It should be noted that the constraints related to the energy
of the composite imaging system, l.e. the denominator of Eq.
2-3, and the energy of the image restoration system, i.e. the
denominator of Eg. 2-4, have been dropped since these con-
straints can always be satisfied by appropriate amplitude
scaling of the optimum restoration filter defined by the
constraints of Eg. 2~8 through 2-10.

Lagrange multipliers and the methods of functional
analysis will be used to solve Eq. 2-7 subject to the con~
straints of Eg. 2-8 through 2-10 by Torming an augmented
functional which is the sum of the functional to be mini-
mized, Eg. 2~7, and the constraint functionals each multi-
plied by a different Lagrange multiplier [7,8].

Thus the augmented functional, I, which must be mini-

mized with regard to hr(;) becomes,

Im w(v)g?(v) dv + Ay {m s(%)hi(a) av + AZE{n;(G)}
Aq o0 L
— [ g7 (¥)g(v) av

a7 fH —oco

I

= [ w(¥) {mhrcé)hb(§~5) az {mhr(ﬁ)hb(G—EJ dudv

* Ay {wf s (u)s (u-v)h (V)h (1) dﬁd§

+ A,E{f n(v-2)h_(2) dz [ n(v-u)h (1) qu}

- 00
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My {m] §°° (T v){whr(z)hb(T z) dz {mhr(u)hb(v ) dTavau
? (2-11)

Eg. 2-1) may be written in guadratic functional form as

I=/{faz)h_(z)h () dzdu
+ Ay :f_mj A, (Ti,i')hr (z)h_(u) dzda
+ A, L[ A, (G,Z)h (Z)h (4) dzdd

+ Ay {mf A, (W,Z)h_(z)h_(¥) dzdu (2-12)

where Al (Ep-z-) 'Az (1_1';5) fA3 (EfE) r and A.4 (E,E)

are linear operators defined as [8]

AI(E,E} = {w W(F)hb(GFE}hb(GLE) dv (2-13)
a,(a,z) = s(@s - 2) (2~14)

Ay (u,2) = E{n(v - Z)n({v ~ )}

= Rnn(i?ﬁ), for n(+) a stationary

ergodic random process  (2-15)
and
- 1 ® — - - — —_ — e
A, (T,2) = = —=—— [ [ §°°(T ~ ¥V)h, (T-2) b, (V -~ ©) dTav
Am2fp? —w
i w
O esoee——— - _-—_. H—_ ‘_‘. —l
4w2fH2 £mhb (v z)hb(v u) dv (2-16)
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The stationary points of the augmented functional of
Eg. 2--12 will be determined by equating the directional
derivative of this functional to zero. It should be noted
that for a real functional egquating the directional
derivative to zero is equivalent to setting the gradient to

zero [8]. The gradient of a quadratic functional

I, = [ [ A@,Z)h(Z)h(0) dzau

iz defined as

Vi, = [ [A(u,z) + A°(q,2)1h(Z) dz

-0

where A”{(u,z) is the adjoint of the linear operator A(w,z).

The adjoint linear operators of Eg. 2-13 through 2-~16

are
a7 (@,z) = A, (q,z) (2-17)
i a7 (W,%) = A,(3,7) (2-18)
Ag (u,z) = A, (1,z) (2-19)
% and A (u,z) = A, (T,2). (2-20)

Setting the gradient of Eq. 2-12 with respect to hr(-)

equal to zero, a homogeneous Fredholm integral equation of

the second kind, sometimes referred to as a Fredholm

integral equation of the third kind, is obtained as

[~ +]

[ A7) + 2,2,(¥,2) + A58, (v,z)1h _(z) dz
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+ Als(‘w’r“)hrﬁ) = 0. (2-21)2

The solution of this equation coupled with the constraint
equations, Eqg. 2-8 through 2-10, would give the required
point-spread fﬁnction of the restoration filter, hr(F).
However because of the numerical difficulties which may
arigse in the general solution of this type of equation and
in order to more conveniently utilize numerical techniques
which are readily available, the solution for hr(F) will be
formulated in the two-dimensional spatial freguency
domain .

Egq. 2-12 may be rewritten using inner product notation
[8], where the inner product of x(t)} and y(t) is defined

as
w

(x,y) = [ x(£)y*(t) at

where the asterisk denotes the complex conjugate.
Thus
= )]
I (A h_,h_) + Al(Azhr.hr) + A2(33hr,hr}

17" 'r

+ A;(Ah k). (2-22)

Eq. 2-22 may also be written as a quadratic functional in

2 ror derivation see Appendix B.
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the spatial frequency domain a=s

I = (BlHr,Hr) + AI(BzHr,Hr) + l2(B3Hr,Hr}

+ AB (B4Hr;Hr) r (2"23)
where
- = 3 -
B () = #{h_(-)}
#(+) denotes the Fourier transform and Bl' Bz, BB' and B4
are the spatial frequency linear eguatorgs which are the
Fourier transforms of the spatial domain linear operators,

Al' Aps A3, and Ays respectively. Thus

B, (E%) = [ [ A @528 2TV g7 a7 (2-24)
which after substituting Eg., 2-13 into Eg. 2-24 may be
simplified to

By (F,v) = it (1) Hy (VYW (E-V) (2-25)
where Hb(-) = 3{hb(-)}
W(*) = Flw(-)1}

and Hb*(~) is the complex conjugate of Hb(°).
The adjoint of Bl(f,F), defined as Bi(f}?), may be written

as
| By (F,¥) = B; v, )

which from Eg. 2-25 becomes

B, (E,9) = B, (MH, (DW (F-1). (2-26)

Similarly

B, (F,v) = s{f-v) (2-27)
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where S(e) = F{s()},
BE(E,G) = s*(G-E) (2~28)
B3c§,5) = @nn(53(§—5) (2-29)
where @nn(') = ?{Rnn(')}
Bg(E,BJ = @nncf)a(s-f) (2-30)
- - C a2 - - -
B, (£,9) = iz |5, (V)26 (£-v) (2-31)
H
d “(£,v) = £ 7 (£)]28(v-E 3
an By (£,v) = — |5, }]E8(v-E). (2-32)
H

The gradient of the guadratic functional of Eqg. 2-23
becomes

VI = (B1+B1)Hr + AI{B2+B2)Hr + 12(33+33)Hr

-~
+ 13(84+B4)H£ {2-33)

which upon expanding the linear operator notation of Eq.

2=-33 becomes

Lade]

Vi = [ [B;(E,V) + B](E,5) + A, {B,(E,V) + BJ(E,0)}
+ Az{BB(f,G) + BS(E,G)} ,

+ A3{34(E,G) + BZ(E,G)}jﬁr(G) dv = 0.
(2-34)

3 See Appendix C for a derivation of these spatial freguency

linear operators.
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Substituting Eg. 2-25 through 2-32 into Eq. 2-34,

]

vi= f 18" (®E GHEES) + W G-F)) |

+ A 18(ES) + 8" G-DINH_(FI&F + 21h,0_(F)

+ lg(gg)zlﬂb(f)lzlagE) = 0. (2-35)
Eg. 2-35 represents the general expression for the
gradient of Eg. 2-23 with respect to Hr(‘), which then
combined with the constraint equations, completely spécified
the spatial frequency spectrum of the restoration filter.
The constraint equations, Eq,., 2-8 through 2~1§, may be

rewritten in the spatial frequency domain ag
Ky = (Bzgr,Hr) (2~36)

which after substituting Eg. 2-27 into 2~36 becomes

il

Ky {mfs(ﬁ“;)ﬁr(;)ﬂr*(f)d;df, (2~37)

K, = (ByH_,H.) (2-38)
after substituting Eg. 2-29 into 2~38 becomes

K, =_£ o () |m (%)|*dF (2-39)

= -4
K, (B4Hi’Hr) (2-40)
after substituting Eg. 2~31 into 2-40 becomes

-7 En e B 2 4F
Rq —mi (ﬁg) |m (£)]% |8, () |*aE. (2-41)
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Before Eq. 2-35 can be reduced to a form more suitable
for the avaluation of the spatial fregquency spectrum of the
restoration filter, the penalty weighting functions w{v)
and s(v), introduced in Eg. 2-3 and 2-4 respectively, must
be further examined. Since w{¥) is designed to influence
the solution of hr(33 so that the composite imaging system
point-spread function, g(v}, is duration limited, a

possible choice for w({v) would be

wi{v) =lforv) <V<v,
= o, otherwise.
However such a choice for w(V¥v) would lead to analytical
difficulties in Eg. 2-35, since the Fourier transform of
such a functicn does not exist. Thus the expression for

w{v) must be chosen in such a manner that it allows enough

flexibility to arbitrarily control the duration or radius

of gyration as well as the rate of decay of g(v) and, in
addition, to have a Fourier transform [25].

One function for w(v) which satisfies the previous
requirements, written in terms of one variable, is [15]

v - vy
w(v) = [ —
Va7 V1

- vy, 2k

1 + € (2-42)

for 0<ec<l

and k a positive integer. This function is shown in
Figure 2-2. For cenvenience s(v) will also be dzscribed by

the same type of function.
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The following analysis is based upon a rectangular
coordinate system. BEg. 2-35 may be rewritten in terms of
the x- and y- components of £ and 3,

o % | .
_J;! {Hb (fX'fY)Hb(vX’vY){W(fx-v}{'fy—vy) + W (\)X—f};'vy’_fy)}

. . * _ _ i ‘
+ Al{S(t -v_,E =-u ) + S (vX fx,v fy)}]Hr(vx,vy)dux dvy

x x'7y Ty Y
_fx2+f.2 \
+ z[xz¢nn(fx,fy) + A3(——E;~¥—)Iﬁb(fx,fy)l 3Hr(fx,fy) = 0,
H

(2-43)
For convenience in handling the analysis with respect to a
rectangular coordinate system both w(v) and s(v) will be
defined as the product of their x-~ and y- components, from

Eq. 2-42,

I

w(v) = w_(x) W, (¥) (2-44a)

_ [{2x-xfi-xwz}2kwx .o [{2y-Yyl‘sz}2kwy ‘o1
2" w1 x Yw2 Ywl Y
(2-44b)
whera 0 < ¢ < 1
X
0 < ¢c <1
y
and for kwx and kwy positive inteyers,
Similarly
s(v) = s_(x) sy(y) (2~457x)
DL - -— -
- e ey e g g 2 s Ve ey g
Xs2"%s1 X Y527 ¥s1 b4

{2-45hb)

;
i
i
$
!
4
;

K}
%
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where 0 < dx < 1
< d < 1
0 Y

and for ksx and ks positive integers.

Y
Choosing k= 1 = kwy' the Fourier transform of

Eg. 2-44b becomes

W(fx'fy) = Wk(fx)wy(fy) (2-46)
where
' F2(x . +x )
w_(£) =—.—-l—-——-- [~ "';'—GH(f ) - wl “w2 §° (£ )
* X (x =% )2 w2 x m X
w2 “wl

* {(le+xW2)2 + (xw2nxwl)zcx} 6(fx)] (2-47)

and

W (£) = —21—0 [~ %
(sz"le) W

J2(y 11Y,,5)
™

“U(E - S (£
6" ( Y) ( y)
* {(S‘lrwl'*'yw2)2 + (YWZ—le)zcy}S(fy)I'(2~48)

A similar expression results from taking the Fourier

transform of Eg. 2-45b,

S(fx,fy) = Sx(fx)sy(fy) (2~49)
wvhere |
j2(x_,+x
82 “sl1

+ {(Xslhi-xs2)2 + (xs2-xsl)2dx}5(fx)] (2-50)

e o e £ S
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T e
S b AL 0

and

1 N SOPU 120y 3+ygy)
—_ 2 2 Y i
(Ys2 Ysl) m

S (£} =

6’
Y Y (fY)

+o{lygptyg)t b (vgymygy)fa, TSR (2-51)

If it is assumed, as would usually be the case, that the
penalty functions, w(x,y) and s(x,y) are centered about

the origin, then

It
I

Yoz = Yg o (2-52)

Substituting Eq. 2-52 into 2-47, 48, 50, and 51,

_ - 1 . -
W (£) = Z;;;;;- §77(E,) + o B(E)  (2-53)
l e
W(E) = -~ —t 2-54
L (£, o 877(g,) + e (E) )
~ 1
S E) = - —— (2-55)

2, 2 -
Amex, 877 (£, + dxﬁ(fx)

and

= e e—— e 2=
Snyy) § (fy) + dyG(dy). (2-56)
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Substituting Eq. 2-53 through 2-56 into Eqg. 2-43

Pl g )
r [
g b4 { 2 H (£ £ )H (£ ,£ )
B'IT,*X 2y 2 9F 28f 2 X Y r b4 v
w W X v
- apy 2o 27 (£ ,E )H (£ ,£ )
Yw %y T Hy (Eye virix'"y
p.4
- 4wy 2¢ 82 (£ ,E£)H_(f £ )
NE 2 Hy (s v rix'y
Yy

L 2 2 .-
+ 8 X yw cxpyHb(fx,fy)Hr(fx,fy)}

A 4
+ 1 { d

gn*x %y % 9f_23f ?
s *s b4 ¥

H(£,05)

2, 21 32
- 4ty _“4d
S Y 3 2

X

Hr(fx'fy)

32

of 2
v

rix'y

& 2 2
SCLAE Y dxdyHr(fx,fyl} + 2[A2¢nn{fx,fy)

(fx2+f 2y . ,
= 2~
3 ~——E—;¥—— B, (£ £ [P1H (£, £) = 0 (2-57)
B
which when expanded in terms of Hr(fx,fy), becomes

+ A

a“Hr(fx,fy)
[A(fxrfy)Hb(fxrfY)+B(fxrfy)] —23g 2
X Ty

3
Hﬁ(fx'fylA 0 Hr(fx,fy)

3
+ 22 (£, £,)

af af 23f
v x Uy
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3
BHb(fx,fy) 9 Hr(fx,fy)

+ 2A(fx,fy) >
fo foafy

2 2
3 Hb(fx'fy) 2 Hr(fx’fy)

e LY Ay A TR R I 1T A S

+ 4A(fx,fy)

9f 3f 3f 3f ‘
Xy Xy §
32Hb(fx,fy) i
+ [A(f ,f + '
[A(f, y) = ? E(fx'fy)Hb(fx'fy) §
X %
3%H_(f ,f ) 3%2H. (£ _,f.) %
* G(E £ )] Y X Y 4 [a(f ,f) DR XV
o 92 * ¥ 3f 2
4 4
azHr(fx,fy)
+ D(fx,fy)Hb(fX,fy) + F(fx,fy)] 5 -
X
3%m, (£ ,F
+ [2A(f_,f ) —B_ X ¥ |
X Y 5f 23F
X ¥
oH, (£_,f ) ©98H (£ _,£) ;
+2E(f ,f ) DX ¥ _xr x'y 5
k4 af 3f
y y
%W (£, £ {
+ [2A(fx,f ) b ’ %
4 Bf 3f 2 é
Y :
3 (f , F ) 8H (Ff ,£ )
+ 2D(£,,£) b Y _—r 'y a
H
af, CE 3
3%, (£ ,£) 9%H. (£ ,F )
+IC(E, £) + B Fxrty) D(£,,£,) b x" 7y
of 2af 2 aF 2
Y X
a2 H (£,
+ xCy) = i
E(fx,fy) 7 2 + H(E f )1 Hr(fxrfy) 0, %

¥

e e

(2-58)
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where

A(fx'fy)

B(£,£)

C(fx,fy)

D(fx,fy)

E(fx’fy)

F(fx'fy)

G(fx,fy}

H(fx,fy)

28

. . 2 d .
cxgyJHb(fx'fy)I + Aldx v

2¢nn(fx'fy)

(2-59a)

(2-59b)

(2-59c}

(2-594)

(2-59%e)

(2-59fF)

(2~599)

L3 2 2
8w X ys
(fx2+f 2 .
[cxfy + 22, -——;?7§L—w] ]Hb(fx,fy)l
B
+ A.dad + 2A
1 xy
¥ £ ,E
"H-b ( X! Y) CY
2, 2
2m xw
(£, f
“Hy (Ey y)cx
2 2
2% Y
—A34
2l 2
s
—Ay e,
z,n.zys2

(2-5%h)

Similarly in terms of the rectangular spatial freguency

coordinate system the constraint equations, Eg. »-37, 39,

and 41 hecome,
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[+
*
Ky {i!j B(Ey=vyr 7V VB (/v ) E (£, (£ )aF aF dv dvy

Xy X
(2-60)
— 2 _
K, —‘lj b (Er £ | B (£, £ ) |%aE aF (2-61)
o £ P4f 2 \ ,
Ry = JJ (—~;;;JL-) RNCATRILI L NCWE ) dfxdfg.ez)
H -

Thus Eg. 2-53 and 59 in conjunction with the constraint
equations, Eq. 2-60 through 2-62, specify the general form
of the optimum restoration filter in terms of the rectangqular

spatial freguency coordinate system.

2.4 Separable Optimum Restoration Filter

The general system of equations defined by Eq. 2-58
through 2-62 represents a formidable solution problem,
which in general would be possible only by a two-dimensional
numerical solution techrnique requiring a computer system
having very large data storage capabilities. However for a
certain class of aperture functions, which represent a large
class of physically realizable apertures, an enormous
reduction in the computational complexity of the problem is
possible. This class comprises those apertures which may be

modelled as separable apertures, where it is assumed that

B (£, E) = By (£ )6 (£) (2-63)
@nn(fx,fy) = @nnx(fx)@nny(fy) (2-64)
= H (£ )H_ (£ ). (2-65)

Hr(fx’fy) rx Tx'ry Y

i

‘3

)
-
a
3
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With the assumptions of Eg. 2-63 through 65, the solution
of Eqg.2-58 through 62 can be considerably simplified by
use of the method of separation of variables. Instead of
substituting Eq. 2-63 through 65 into Eg. 2-58 and :
separating Eg. 2-58 into two differential equations, one
a function of fx and the other a function of fy’ a somewhat
more fundamental approach will be used.

Pfaking the inverse two-dimensional Fourier transform
of Eg. 2~-63,

h (x,y) = hbx(x)hby(y) (2-66)

Similarly Eg. 2-64 and 2-65 become respectively

Rnn(x,y) = R (X)Rn

nnx {v) {2-67)

ny

and

it

hr(x,y) hrxtx)hryty)- (2-68)

Writing Eg. 2-7 in terms of the two spatial dimensions,
3 =_j3 wix,y) 9°%(x,y) dxdy (2-69)
where from Eq. 2-~2,
g(x,y) = h_ (x,¥}**h (x.y). (2-70)
Substituting Eg. 2-66 and 2-68 into 2-70,

9(x,y) = [h (h (¥)I**[h, Ky, (V)] = Iy (x}9, (¥)
(2-71)

where

9.(x) = h  (x) * h  (x) (2-72)
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and

= * .
_gy(y) hry(y) hby(y)

Substituting Bg. 2-44a and 2-71 into 2-69,

P = FXFY

where
= LIC'S
Py -i w, (x)g2(x) dx

(=]
F = | w 2(+)dy .
v _{0 g (Y e (y)dy

Substituting Eq. 2~45a and 2-68 into 2-8,

Kl = leKly

where
= 2
, le _i SX(X)h rx(X)dx
and

K, = 2 dy.
1y i sy(y)h rY(y) g

-

Substituting Eg. 2-64 and 2-65 into Eq. 2-39,

K, = K, _K

2 2x 2y
where
@
Kox 7 _£ anx(fx)ler(fx)lzdfx
and
K = ? o (£ )|H_ (£ )|%ag_.

2y % nny 'y ry 'y y

(2-73)

{2-74a)

(2-74b)

(2-74c)

(2~75a)

(2~75b)

(2-75c)

(2-76a)

{2-76b)

(2-76c)

SPEAT

A s SRR T it T 2T
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and from Eq. 2-15

K

i

% E{nsz(x)} (2~764)

and

Ry, = E{nzTy(y)} ] | (2~76e)

And finally writing Eg. 2-6 in terms of the two spatial
dimensions,

K3 = oo i ff g” " (x,y)g(x,y)dxdy (2-77)
00

4“.2sz
and after substituting Eq. 2-71 into 2-77,

1 co
Ky = = —=— [ g

- - d -
e L (X g (x)dx _igy (y)gy(y) \'g

(2-78)

Using the results of Egqg. 2-72, 73, 16, 20, 31, 32, and 41,

Ky = KBXKBY (2-79a)
where
=] f 2
_ bl 2 2
Ky, = _i (f%;? |B (£ |2 |B  (£)[*AE (2-79b)
and
o £ 2
- X . 2 2
Kyy = _i ‘fg;’ |Hby(fy)| [Hry(fy)| at, (2-79¢)
where
fHZ = = 4w2fo2ny2. \ (2-794)

1 Ao it A e Y fan s s

ey i s s e
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Thus the problem of determining the optimum
restoration filter point-spread function, hr(x,y) reduces
to finding the hrx(x) that will minimize Eg. 2-74b subject
to the.constraints of Eg. 2-75b, 76b, and 79, and to
finding the hry(y) that will minimize Eqg. 2-74c subject to
the constraints of Eq. 2-75c¢, 76e, and 79c. The original
two-dimensional restoration problem reduces to two wne-
dimensional processes which have similar equations. From
the preceeding vector notational analysis used in Eq. 2-7
through 2-41, 2-44, and 2-45, the system of equations
necessary to solve for hrx(x) and hry(y) may be formulated.

To solve the hrx(X)' the augmented gquadratic functional

of the form of Eq. 2-11 determined by Eq. 2-74b, 75b, 76b,

and 79b becomes,

co [+2]
— 2 2
I, = _0{ w (x)g *(x)dx + A, _n{ s, (x)h * (x)dx
ABx i
2 _— ——— -,
+ A,, Eln o (X0 3 YR _Ofo g,” " (x) g, (x)dx
Hx (2-80)

which may be written as a gquadratic functional in the

spatial frequency domain from Eg. 2-23 as

Iy = (leer’er) * Alx{Bzxﬁrx’er)
t Aox BaxHpyrHryg) F Ay 2 Pagles Fry) (2-81)
where
By (£,v) = B (E)E (V)W (£-v ) (2-82)

Y gt S 95 B b R e £ o T L e et LS A e
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from Eq. 2-26,

lea(fx’vx) = be(vx) be*(fx) Wx*(vxﬁfx) (2-83)
from Eq. 2-27,

By (£.rv.) = S (£-v.) (2-84)
from Eq. 2-28,

-~ — * -
By (fx,vx) = 5, (vx fx) (2-85)

from Eq. 2-29,

*
Bay (£ rVy) = &y (V) S(E.-v.) {(2-86)

from Eg. 2-30,

B3x’(fx'vx) = @nnx(fx) 6(vx—fx) (2-87)

from Bg. 2-31.
2

v
- (X 2 _
B4x(fx’vx) B (fo) ]be(vx)l a(fx vx) (2-88)
and from Eq. 2-32,
£ 2
- X
B4X (fxrux) = ('E;I—};‘) ‘be(fx) |25 (Ux"fx). (2"‘89)

The gradient of Eg. 2-81 may be written in the form of
qu 2-33 r

va = (le+le )er + Alx(BZX-FB2x )er

Y

2x BaxtBax Vg ¥ A3x (Bax™Bax Yy (2-90)
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which may be expanded to the form of Eq. 2-35,

it * *
= [ B (EE (W (E-v,) + W (v, ~F 0]
{Sx(fX vx) + S (v -f }}]H (\J)dvx

f
+ 2[A (£.) + Aqyy [be(fx)lz]er(fx) = 0,

Hx (2-91)

2x nnx

Substituting Eg. 2-53 and 5% into Eg. 2~91, the following

differential equation results

-, f { *
%x(x)+ Z%KW

X)be(fx)xsz/[lﬁﬁx(fx)lz 2+A X 2]}H (fx)

£ 2

, * o 4 X -

* {xsz[be(fx)be(fx) - 4Tr2Xw {cx+133(f ) ]Ibe(fx)lz
. .

+ A (£,0+d 31 / T8 (£ )%= 24d, x P13H_(£)

2x nnx ix
= 0. (2-92)*
From Eg. 2-36, 2-55, and 2-75b,

le - Z;h;u_ I LR rx(fx)Hrrx(fx) + Hrlx(fx)Hrlx(fx)]df

+ d f |5 () |2df (2-93)

* wor derivation, see Appendix D.
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where

er(fx) : Hrrxffx) + j Hrix(fx) (2._94)5

and where H&rx(fx) is the real part and H_ ., _(f )} is the
imaginary part of Hix(ij.
Restating Eg. 2-76b,

@«

Kox = / anx x’IH (fx)lzdfx (2-76b)

-0

and Eg. 2-79b,

o 2
Ky = f (Ei;) [be(fx)lal X x)ladf * (2-7%Db)

Thus the simultaneous solution of the differential eguation,
Eg. 2-92, and the constraint equations, Eq. 2-%3, 2-76b,

and 2-79b, specify the form of the x-component of the

; spatial frequency transform, or equivalently the point~

] spread funation, of the restoration £ilitsr.

E In a similar manner it is possible to solve for hr {v)
by forming an augmented quadratic functional of the form of

Eq. 2-11 determined by Eq. 2-74c, 75¢, 76e, and 79%c,

- T 2
5 I, = jw (v)g,* (Yday + Ay, [ s (v)n  *(viay

-0

i i £ Ysmmormactin

+ Ay, E E{n? <y}}-———-i’——

f g,” " (¥)g, (y)ay.
4m?E o0

Hy (2-95)

ST AT LA

® PFor derivation, see Appendix E.
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By following an analogous procedure to that used for
determining‘hrx(x) in Eg. 2-81 through 2~94, the equations
which specify hry(y) may be formulated. Only the results
will be stated since the derivation of the egquations for
hry(y) is identical in procedure to that giveﬁ for hrx(x)
with the approﬁriate change in variables form x- to y-
dependency.

The differential egquation specifying the form of

Hiy(fy) becomes,

- - * - -~
Ho (E,) + 128 (£ VH (£0)y P/ 1B (£0) Py Poh g oy PTHEL (£

£ 2
2y .o - Ay 2 = ¥ 2
Ay fIR (FOB(E ) - dnfy {rcy+n3y<fﬂy) 18, (5]
+ A, 0 £ _)y+d £ )%y _2+A 2 £
2y Pnny (Ey A, T ZTTE (£0) [Py Ay oy 210E ()
= 0, (2~96)
while the constraint equations become,
l e - -~
= e —r H £f )H F )+R'T (£ )H . (£ £
KlY 4mly 2 _i [ rry( y) rry( y) Hfly( y) rly( y)]d y
s
w0
+ [ |8 (£ )*daf (2-97)
dY _i l rY( Y) b4
- 2
Koy "_£ @nny(fy)lﬂiy(fy){ dfy (2~76c)
and
Y fx 2 2 2
K3y =_£ {ny) IHby(fyH |Hiy(fy)| dfy' (2~79¢c)
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Thus the simultaneous solution of Egq. 2-96, 2-97, 2~76c,

and 2-7%c will specify the y~ component of the restoration
filter.

2.5 Radially Symmetric Restoration Filtexn

Probably the most common type of aperture, becanse of
physical ease in construction, is the radially symmetric

aperture. For this case it is aggumed that

Hb(fx,fy) = B (£) (2-98)

@nn(fx,fy) = @nnr(fr) (2-99)
and

Hﬁ(fx'fy) f Hir(fr) (2~-100)
where

fX2+fy2 = £°*. (2-101)

The solution to Eg. 2-58 is analogous to the soclution
for h _ (x) where all variables dependent upon x are

replaced by corresponding r dependent variables. From

Eq » 2‘44& r

wiv) = w, (x) (2-102a)
2r-r _-I 2k
r .-r
w2 “wl

for kwr a positive integer and

2 =

xr

%% + y2. (2-102¢)
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From Egq. 2-45a,

s (V)
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= s,(x) (2-103a)
_ [2r~rsl—r52]2ksr -
Te2 Tl (2-103b)
for ksr a positive integer.
Choosing
kwx = ] = ksr and
Twl = "Fw2 T Ty (2-104)
Tgi = "Fg2 T *g

the Fourier transforms of

Wr(fr)

il
1

&r(fr)

To solve for hrr(r):

functional of the form of

Eg. 2-102b and 1l03b become

— 8§77(£ ) (2-105)
2 2 r
4m rw
l » e -
8§77 (£.) . (2-106)
ar2r 2 T
s

the augmented guadratic

Eg. 2-11 which must be minimized

with respect to hrr(r) becomes,

I, =
-

oA, E{nzTr(r)} -

By following an analogous

determining hrx(x) in Eq.

Jw (r)g Blr)dr + A, -i s (r)h  *(r)dr

X @
—3E [ g _""(x)g_(r)dr.
aqiE 2 —w T r
Hr (2-107)
procedure toc that used for

2-81 through 2-~94, the equations
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which specify hrr(r) may be formulated. Again only the

results will be stated since the derivation of the

equations for hrr(r) is identical in procedure to that

given for hrx(x) with the appropriate charge in wvariables.
The differential equation specifying the form of

H . (f_ ) becomes,

-, * - -~
Hrr(fr) + {2Hbr{fr)Hbr(fr)rsz/[ler(fr)lzrsz+}‘1rrw2]}ﬂrr(fr)
+ {r 2[H (£ VHIZ(E) ~ 4 2{x (fr )zl (£.)]?
Ts Ebr Hor m rw 3r f;; Hbr r
+ A £ /7 LB (E)]Pr 2+ x 213H(£)

2r nnr r lriw rr''r

=0, (2-108)

while the constraint eguations become,

Thus the simultaneous solution of Eg. 2-108 through 2-111

K, = - I;ﬂ_zi—_a_..{, (B (F_)H__(£) + E27 (£ )M, (£)\E

- S (2-109)

Kor =_£ anr r}lH (fr)lzdfr (2-110) Z
and %
o £

;[ ( |Hbr(f | *|H_(£)]2af . (2-111)

will give the spatial frequency spectrum of the optimum 3

restoration filter.

D re bttty gLt
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2.6 Additional Shape Control of Composite Imaging Function

by a Sub~optimal Iterative Technique

The third constraint, originally defined by Eq. 2-10,
was chosen to provide control over the composite imaging
function in such a way that the magnitude of secondary
lobes in the immediate vicinity of the primary lobe could
be reduced. These secondary lobes lead to undesirable
ghosts in the restored image. Such a constraint is
necessary because the weighting function, w(v) defined by
Eq. 2-42, of the fundamental design criterion as expressed
by Eg. 2-7 has almost no significant effect on g(v) in the
immediate vicinity of the spatial origin. Thus, without
the third constraint, significant secondary lobes in this
region of the spatial domain could exist.

In order to provide additional control over the shape
of the composite imaging function in the vicinity of the
spatial origin, which is not feasible by the third
constraint alone, an iterative technique is utilized. To
implement the technique, the fundamental design cviterion,

defined by Eq. 2-7, is modified to be,
ce

F= [ w@)lg-n)]idv, (2~112)

s

where the criterion function m(v) will be defined shortly.
| The procedure for this technique is as follows.

Initially, m(v) is set equal to zero; Eg. 2-112 thus
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reduces to the original fundamental criterion as defined
by Bq. 2~7. A solution for the restoration filter_based
upon minimizing Eg. 2-112 subject to the constraints of
Eg. 2-8 through 2-10 is obtained. The existence of a
unique solution to this system of equations will be
discussed in the next chapter. It should be noted that the
resulting composite imaging point-~spread function, g(?),
is optimal with regard to having a minimum radius of
gyration. However g{v) may still have some undesirable
side lobes in the immediate vicinity of the spatial origin
which were not sufficiently suppressed by the third
constraint. In such a case, m(v) is defined to be equal
to the optimum g(x_r) in the region about the origin
containing the primary response lobe but excluding any
secondary side lobes, and equal to an appropriately chosen
function of the optimum g(v) outside of this region so as
to further constrain against the side lobes.

After choosing an appropriate m(v), the first iteration
is made by minimizing Eq. 2~112, subject to the constraints
of Eg. 2-8 through 2~10. The resulting composite imaging
function, although no lenger optimum with regard to having
a minimum radius of gyration, will not deviate significantly
from the optimum in this respect because of the way in
which m(v) is chosen and, more importantly, will have
significantly lower secondary lobe responses due to the

weighting effect introduced by m(v). If necessary, a second
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iteration may be made by choosing an appropriate m{v) based

upon the g¢(v) of the first iteration, and so on. There

appears to be an almost unlimited number of functions which §
may be chosen for defining the criterion function including

the absolute value, and exponential, Gaussian, and poly-

nomial approximations; however the effect of any of these

upon the iterated composite imaging point-spread function

should be similar, because of the way in which m(v) is

chosen.

An example of one possible cne-dimensional criterion
function is shown in Figure 2-3. For this case, m(v) is
equal to the optimum g(v) in the region of the primary lobe
about the origin where g(%) is positive. Outside of this
region, m(v) is chosen to be the absolute value of the
optimum g(%). A comparison of the g(%) functions, both
before and after iteration, would reveal that the secondary
side lobes have been heavily constrained, while the general
shape of the primary lobe has remained essentially the same.
Thus this technique provides a very powerful means for
making minor adjustments to the shape of the composite

| system point-spread function, g{v). Although g(v) could be
altered in the same manner as that provided with this
iterative technique by the introduction of additional
constraint equations, the complexity of the functions

necessary to produce the same control over g(v) makes this

alternative less attractive.
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Figure 2-3: One Dimensional Criterion Function Based
Upon Absolute Value of Optimum Imaging
System Point-Spread Function
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The following analysis i1s based upon the assumption
of either a separable or a radically symmetric aperture
since these are the most common apertures and are the forms
considered in the remainder of this work. The general
analysis, based upon a non-separable two-dimensional
aperture is straightforward and analogous to that used in
the developﬁent of Eg. 2-58 through 2-62 except that
Eg. 2-58 is non-homogenous.

For a rectangularly separable aperture, Eg. 2-112 will

be redefined in an analogous manner to Eg. 2-74 as

F = FF, (2-113a)
where
- _ 2
F, = _i w, (%) [g, (x)-m (x)]*dx+p (2-113b)
and
F = [ 2d + -
v ..o{ Wy (¥) [g, (y)-m (y)]*dy+p, (2-113c)
where
0 < PyrP, << Ly (2-113d)

The constraint equations remain as defined by Eq. 2-75, 76,
and 79. Thus for a given mx(x), hrx(x) must be determined
by minimizing Eq. 2-113b subject to the constraints of
Eg. 2-75b, 76d, and 79b and for a given my(y), hry(y) must
be determined by minimizing Eqg. 2-113c subject to the
constraints of Eg. 2-75c, 76e, and 75c.

To solve for hrx(x), an augmented quadratic functional

formed from Eg. 2~113b and Eg. 2-75b, 76d, and 79b can be
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written

I
I

._i w_(x)[g, (x)-m_(x)1%ax+ p_

+ A, f sx(x)hrxz(x)dx

. -]

Ay, ®
gy Blntg ) - =2 [ g2’tag, (x)ax.

4n2fo2 (2-114)

Expanding the first integral of Eg. 2-114 gives

I, f Wx(x)gxz(x)dx - zmi w, (x)g_ (x)m,(x)dx

2
{ sx(x)hrx (x)dx

-0

2 .
+ _i w (x)m 2 (x)dx + p, + A,

A @
2 - 3x . )
+ A, Bl (%)} PETy _i g, (x)g, (x)ax.
Bx (2-115)

Since the functional form of Eq. 2-115 is basically
similar to that considered in Eg. 2-80 with the exception
of the second, third, and fourth terms, only these terms
will now be considered. The second term in Eg. 2-115 may

be expanded into operator form as

I = 2 f w_ (x)g, (x)m_(x)dx

-

= 2 mi wx(x) _i hrx(T)hbx(x—T)dT mx(x)dx

= f A {oh (1) dr, (2-116)
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where

A (T) = -2 _i w (x)m (x)h, _ (x-~7)d=x. (2-117)

Alternately Eqg. 2-116 may be written in the frequency

domain as

I, o= _£ By, (£ VH_ (£)af (2-118)
where
@ #
Be (E,) = - 28 _(£) _i W, (VM (£,4v_)dv_
and
Wy = . 2-119)8
M () = Fim (). (

Taking the gradient of the linear functional of
Eg. 2~118 with respect to Hix(fx) gives the conjugate
kernel B (f ).

VI. = B. (£ ) (2-120)
m X

Substituting Egq. 2-53 into Eg. 2-119,

=]

B, (£.) = - 2B (£ ) _i [- —— P §77(v,) + o 8(v, )]
w
*
M (£ +v_)dv
X X X X
_ 1 a2 * %
= B (F I M (£.) - 2e, M (£)1-

272x %2 af 2
W * (2-121)

See Appendix F for derivation
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The third and fourth terms of Eg. 2~115 may be

neglected since they are not functions of hrx(-), and thus

the gradient of these terms with respect to hrx(-)is Zero.
The gradient of Eg. 2-115 may be written in the form of

Eq. 2-90 as,

VIx = (B lx )Hix (B 2x )Hix
+ (BBx+BBx )H£x (B4x+ 4x )er
*
+ BSx (2-122)

which, when expanded, is similar in form to Eg. 2-92,
except that the resulting differential equation is

nonhomogeneous,
H_CC(E) + 2E (£ )H_(f)x_2B__"(£)/[|B__ (£ )]?x_?
rX X be b4 be XXS rx X be X X
+ A, ¥ %1 4+ ox 2 * (£} “T(E)
1x"w s Hox xl%x

4ﬂ2xwz{[cx+13x(fx/fHX)2]lex(fx)lz

1

2
+ A2x nnx(fx)+d }]H (fx)/”be(fx)I x32
2 —
+ Alx ] = 272 X x B (f Yy /
2 2 2
LB, (£ )P x 0, % *T, (2~123)
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Thus Bg. 2-123 in conjunction with constraint Eg. 2~93,
76b, and 79b specify the shape of the x- component of the
frequency spectrum of the restoration filter. A similar
eguation set may be written for the y- axis frequency
spectrum component of the restoration by using Egq. 2-97,
76c, and 7%c, and replacing the x- variables in Eg. 2-123
with appropriate y- variables.

For a radially symmetric aperture, Eg. 2-112 may be

defined as

F = ! Wr(r)[gr(r)-mr(r)]zdr, (2-124)

-—{g

where wr(r) is as previously defined in Egq. 2-102. The
augmented functional to be minimized is similar in form to

Eg. 2-107,

I
r

_i wr(r)grz(r)dr -2 Wr(r)gr(r)mr(r)dr

-0

o

+ wr(r)mrz(r)dr + AL f sr(r)hrrz(r)dr

- OO -0

l3r %
~—— [ gZ7(r)g (r)ar,

22
AT (2-125)

2
+ A, E{n Tr(r)} -

Following a similar development to that for Eq. 2-115, the

resulting differential equation in terms of Hrr(fr)

becomes,
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- * - -
Hrr(fr) + {ZHbr(fr)Hbr(fr)rsz/I ‘ Hbr(fr) ' 2r82+}‘1rrwz] }Hrr(fr

£, 2
* {rsz[agr(fr)gé;(fr) - 4W2rw2{k3r(f§;) 'Iﬂ]}:n:(fr”2

* Ayl AEDN / DIB (E )| Pr 2y x FITE(£))

r
_ 2 2. 2% 2. 2 2
= 2n%x_*r B, () / [ B, (£ [2r 2424, x 2] (2-126)
where
(£.) 2
B (£.) = "o A Mg ). (2~127)
t 2m?r *  ag® * T

The constraint equations remain as defined by Eg. 2-109%

through 2~111.

)
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2.7 Classical "Inverse" FPilter

Intuitively one would expect that if the constraints
are removed and if the parameters of the weighting
function, w(v), are appropriately chosen so that only the
origin is unweighted thus producing an impulse for the
composite system point-spread function, then the resulting

filter should have the form of the classical "inverse"
filter.

For notational convenience, the following analysis
will be made in terms of the radially symmetric aperture.

Yrom Eq. 2-102 for kwr=l and for a symmetric weighting
function as defined by Eg. 2-104,

- r .2 -
wr(r) = (f;) . (2-128)

It is clear that as Ty approaches zero, only the origin

remains unweighted in Eg. 2-~107. From Eq,., 2-108 which

specifies the optimum restoration filter in the frequency

domain, if T, approaches zero and all the constraints are

relaxed, the resulting differential equation becomes

2H£ (£) Hﬁ’(f JH (£ )
HYZ (£ ) + r''r + r_rirr r’o_ g
X Hbr: r} Hbr(fr)

oxr

ﬂbr(fr)H;;(fr) +‘2H£r(fr)ﬂér(fr) + Hﬁé(fr)ﬂrr(fr) = 0.

(2-122)
If it is assumed that

_ -1 -
Hrr(fr) =k Hbr (fr), (2-130)

A T T e A [

b
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where k 1s an arbitrary constank, then it can be shown that
Eq. 2-129 is satisfied. Since there exists a unigque solution
for a given differential equation of the form of Eq. 2-129,
then Eg. 2~130 represents the only solution to Egqg. 2-1289
[16,24]1.

Thus the "inverse" filter rebresents that hr(-) function
which provides the best restoration possible for any com-
bination of constraints by producing a composite imaging

systein point-spread function having the smallest radius of

gyration.
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CHAPTER 3
SYSTEM EQUATION SQLUTION TECHNIQUE FOR

OPTIMUM RESTORATION FILTER i

3.1 Introduction §

The general system of equations defining the restoration
filter aperture are examined to establish that a global
minimum to the minimization problem exists, thus assuring a
unique solution for a given set of constraints., The second-
order differential equations of the previous chapter are
reduced to a system of first-order differential equations to
facilitate numerical solution, a minimization technique
based upcn the solution of the system of first-order
differential equations subject to the constraint equations
is described, and the effect of the initial conditions of
the system of first-order differential eguations upon the

restoration filter aperture is examined.
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3.2 Existence of Global Minimum to Restoration Filter

Equation System

In the following discussion, direct reference will be
made to the system of equations which specifies the optimum
restoration filter for the x-axis component of a separable
aperture, Eq. 2-92,93,76b, and 79b., However, the results are
completely general and may alsc be applied to the systems
of equations defining the y-axis component as well as the
general restoration filter apertures.

In order to guarantee that the equation system, Eg. 2-92,
93,76b,and 79b, has a unigque solution, all the defining
functionals, that is the functional to be minimized as well
as the constraint functionals, must be convex [14,15]. The
property of convexity allows the theory of local extrema for
general nonlinear functionals to become a global theory.

Since the augmented functional Ix' Eg. 2-80, is a linear
combination of the defining functionals, it must also be

convex., Thus, there exists only one stationary point of the
augmented functional and conseguently Eg. 2-92,93,76b,and 79b
have a unique solution for a given set of constraints. It

can be shown [22] that quadratic functionals which are

squares of norms are convex. Since all the defining functionals

are of this class, convexity is assured.
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3.3 Numerical Solution Technigue

As in the previous section, for convenience, specific
reference will be made to the equation system defining the
x-axis component of a separable restoration filter aperture.
However the results of this section are equally applicable to
the radially symmetric restoration aperture. To include the
results of the iteration technique described in Section 2.6,

Eg. 2-92 will be replaced by Eg. 2«~123. In order to take
advantage of the many numerical techniques available for solving
first-order differential equations, it is convenient to

convert Eq. 2-123 to the normal form which is done in the

following manner. Eqg. 2-123 may be written as

HIL(E,) + A(E)HL (£,) + BIEIH_(£,) = ClE). (3-1)

where

*
A(E) = 20 (£ )H! (f) xI/[[H _(£)]%x_*+a, x *1 (3-2)

+

%*
B(fx) = xszIbe{fx)be(fx) - 4ﬂ2x;{[cx+h3x(fx/fﬁx)2]

|be(fx)|2 + A (£,) + d }1 H_(£)/

2x¢nnx

{|be(fx)|2xsz + Alxxwal (3-3)
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and
2 2 2e
2m*x tx “BE (L) . (3-4)

C(fx) = "

2., 2
Ibe(fx)I xs + Alxxw

Defining the complex quantities in terms of the

corresponding real and imaginary components,

Hop (B) = B (8,0 + 3 Hppy (£)) (3-5)
R(£,) = A (£) + J A, (£) (3-6)
B(f,) = B.(£.) + J B;(£) (3-7)
and
C(fx) = Cr(fx) + 3 Ci(fx)° (3-8)

Eg. 3-1 may be rewritten as

[H'! (F

rxr B3 Hip s (E0] + [A (£)+] A, (£)]

=
! . {Héxr(fx)+j H%xi(fx)] + [Br(fx)+j Bi(fx)]

. [err(fx)+j eri(f$)] = cr(fx) + j Ci(fx) {3-8)

or by collecting the real and imaginary components Eg. 3-9

may be written as

Hrgr (Bg) + 2 ()R (£ - AL IHL 5 (£))

+ BL(EIE (E) - B (£ M, (£) ~ C (£

+ 3 [BLL(E) + AJ(EEL (£ + A (£)HL - (£)

+ Bi(fx)err(fx) + Br(fx)eri(fX) B ci(fx)] =0 (3-10)
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i
l
E Eg. 3-10 may be separated into two differential equations

% [16] formed by the real and imaginary components of Eg. 3-10
}

Héér(fx) + Ar(fx)Héxr(fx) - A EHL(E

)

X

+ Br(fx)err(fx) - Bi(fx)eri(fx) - cr(fx) =0
(3-11)
and
193 1 T
eri(fx) + Ai(fx)err(fx) + Ar(fx)eri(fx)
+ Bi(fx)err(fx) + Br(fx)eri{fx) - Ci(fx) = 0.
(3-12)
@ Eg. 3-11 and 12 may be reduced to a system of first-
| order differential egquations [l6] by introducing the
variables,
§ Hl(fx) - err(fx)
R
g Hz(fx) err(fx)
? H3(fx) = eri(fx)
H4(fx) = Héxi(f }. {3~13)

By substituting Eg. 3~13 into Eg. 3~ll and 12, the
following system of first-order differential equations is

formed,

i

HY(£,) = H,(£,)
HY(£,) = -B(£,)H, (£,) - A_(£,)H,(£,)

+ Bi(fx)Hsifx) + Ai(fx)H4(fx) + Cr(fx)
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]

Hé(fx) H4(fx)

i

Hy(E,) = - By (£.)H, (£) - A; (£)H,(£,)

Br(fx)HB{fx) - Ar(fX)H4(fx} + Ci(fx), {3-14)

where
er(fx} = Hl(fx) + 3 H3(fx). (3-15)

Thus the second-order differential equation represented by
Egq. 2-123 has been reduced to a system of first-order
differential equations, Eq. 3-14,

The technique for determining a solution to the system
of equations defined by Eq. 3-14, 2-83,76b, and 79b is
based upon treating the constraint equations, Egq. 2-93,76b,
and 79b, as a system of nonlinear equations and using a
modified version of the subprogram SECANT [23] which is
designed to handle a system of nonlinear equations. From
an initial estimate for the Lagrange multipliers, a
modified version of the subprogram DHPCG [12] , a subroutine
designed to solve a system of first-order linear
differential eguations, is used to solve Eg. 3-14 for
er(f }. The constraint equations, Eg. 2-93,76b, and 79D,
are then checked and any resulting error forms the
basis for another iteration of SECANT and subsequent choice
of Lagrange multipliers. Although SECANT only converges
lineaxly, no derivatives of the functions defining the

constraint equations are regquired.

i
!
|
;
i
;
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Since SECANT has control over DHPCG by varying the
Lagrange multipliers, it is important to re-examine Eg. 3-14
to determine the conditions for which no solution to this
equation exists. It may be shown [16,24] that as long as
the coefficients of Eg. 3-14, that is A.s Ay Br' B, Cr’
and Ci are continuous functions, then for a given set of
initial conditions one and only one set of solutions exist.
Thus theoretically for any set of finite value Lagrange
multipliers, a solution to Eg. 3-14 should exist.

To complete the solution for the optimum x-axis
component of the restoration aperture, appropriate initial
conditiens for Eg. 3-13 must be supplied and are defined

as,

H,(0) =8 (0)

Hz(O) = H;:xr“”

H3(0) = Hppy (O

It

ey (O e (3~16)

Hq(o) rxi

For hrx(x) to be a real function, then

o
err(fx) = mi hrx(x).cos ?wfx.x ﬁ;
m
' = -
rxr(fx) 2ﬂ_£ X hrx(x) sin 2mf, x dx
eri{fx) = “i hrx(x) sin 2ﬂfx x dx
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ard
(=]
1 — -
HI  (E) = Z“Li x h (x) cos 2wf x dx. (3-17)
From Eg. 3-17,
¥ — — —
err(O) = 0= eri(OJ. (3-18)
The remaining initial conditions may be used %o

control the shape of hrx(xJ. For hrx(x} to be an even

function about the x-axis origin, then

err(G} # 0

and

eri(ﬂ) = Q. (3-19)

To preserve the DC gain, or average value, of the blurring

system,

1 {3-20)
H {0) = '
rRY
Rel beto) 1

where Re{.] denotes the real part of the complex argument.

ey p A M YO e £ A T S A AT R - e (- St e T 4 e we TS wasto sos e

e reame .
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CHAPTER 4
EXPERIMENTAL VERLFICATION OF FUNDAMENTAL PROPERTIES OF

OPTIMUM RESTORATION FILTER

4.1 Introduction

This chapter presents experimental results demonstrating
the restoration filter performance as a function of the con-
straint parameters and from its application to a series of
blurred test patterns. These results are based upon the
assumption of a Gaussian-—shaped blurring aperture. Since
the principle application for this restoration technique
was the resolution enhancement of the multispectral scanner
system used for ERTS data collection, and since no specific
information concerning the shape of the multispectral scanner
aperture was available, a Gaussian model was chosen., This
assumption was based upon two primary considerations.

Because of the advantages in correcting a separable aperture
as previously described in section 2.+, the first consid-
eration for choosing a Gaussian blurring aperture was that
such a model, if chosen to be symmetric about each axis,
could also provide a separable blurring function which was
also radially symmetric, thus approximating the radial
symmetry of the actuval scanner aperture. The second con-
sideration for choosing a Gaussian blurring aperture model
was for mathematical convenience. Since the frequency

spectrum of a Gaussian blurring aperture is also Gaussian,

this spectrum may be explicitly computed, thus eliminating
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any errors which would have otherwise been introduced into
the computation of the blurring aperture spectrum, be or

Hby as defined in Eq. 2~92 or 2-96 respectively, by a sub-
routine such as FORT.

Based upon a Gaussian blurring aperture model, an
investigation of the performance and shape of the restoration
filter as a function of its fundamental parameters and con-
straints is made. Also the composite system performance as
a function of blurring aperture error is examined.

In addition, the blurring effects of a specific Gaussian
aperture on a series of test patterns are examined to
qualitatively demonstrate the degree of resolution enchance-
ment possible for a given set of constraints. Also the trun-
cation error effects for the "classical" inverse and con-

strained restoration f£ilters are compared.

4.2 Parameter and Constraint Control of Restoration Filter
Performance

The following is an investigation of the controlling
effect demonstrated by the defined parameters and constraints
upon the restoration filter's shape and performance. The
constraint varlations considered were directed by two
primary goals: the first to invertigate how parameter
variations affect the restoration filter, and the second
to apply the restoration filter to a specific enhancement

problem which will be discussed in the next chapter. The
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restoration filters for three Gaussian blurring apertures
having radii of gyration of 1, 3, and 5, respectively, will
be examined and compared to the unconstrained or classical
"inverse" restoration filter. Since a separable blurring
aperture is assumed, the following results may be interpreted
as either x-axis solutions to the system cf operations
defined by Eg. 2-123, 121, 93, 76b, and 7%, or as y-axis
solutions defined by a similar equation system where x-
dependent parameters are replaced by corresponding y-
dependent parameters,

Figure 4.1 shows a Gaussian shaped blurring aperture
with a radius of gyration of one. The frequency spectrum
of the classical "inverse" restoration filter, is shown in
Figure 4.2. It should be noted that this spectral data was
obtained not by inverting the spectrum of the blurring
aperture of Figure 4.1 but rather by imposing the conditions
stated in section 2.7 which define the classical "inverse"
filter in terms of the parameters of the constrained resto-
ration filter, Eg. 2-123, 121, 93, 76b, and 79b, and was
performed as a test to verify the accuracy of the overall
numerical algorithm described in Chapter 3. The correspond-
ing point-spread function of the classical "inverse"”
restoration filter is shown in Figure 4.3. As a further
check on the overall accuracy of the algorithm, the composite

system point-spread function, representing the convelution
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of the blurring aperture of Figure 4.1 with the "inverse"
restoration function of Figure 4.3 is shown in Figure 4.4.
As previously stated in section 2.2, the classical "inverse"
filter will produce an impulse for the composite system
point-spread function. Thus Figure 4.4 should represent a
digital approximation to an impulse. Since the base line
of the function shown in this figure should be zero, the
difference, approximately 7 x 10_6, represents a measure
of the round-off error within the algorithm,

Figure 4.5 represents the restoration filter frequency
spectrum for the blurring aperture of Figure 4.1 when the

constraint, K is employed to limit the radius of gyration

1!
of the resulting restoration filter point-spread function
to 0.5 that of +he unconstrained or classical "inverse"
filter. Figure 4.6 shows the resulting restoration filterx
point-spread function having a radius of gyration of 0.5
that of the classical "inverse" restoration function shown
in Figure 4.3. The resulting composite system point-spread
function produced by convolving the blurring aperture of
Figure 4.1 with the restoration point-spread functioﬁ of
Figure 4.6, is shown in Figure 4.7. The resulting radius
of gyration of the composite system point-spread function
is approximately 67% of that of the blurring aperture.

Particular attention, however, should be paid to the signif-

icant secondary responses which are approximately 10% of
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the magnitude of the primary lobe. As described in section
2.6, these secondary responses are highly undesirable since
ghost images in the corrected image may result.

By applying the iteration technique described in section
2.6 to the restoration function previously described by
Figure 4.5-4.7 and using nine iterations with an exponential
criterion function, the resulting restoration filter fre-
quency spectrum for the same constraint on Kl is shown in
Figure 4.8. The corresponding restoration filter point-
spread function is shown in Figure 4.9 and has the same
radius of gyration as the restoration function shown in
Figure 4.6. The composite system point-spread function,
resulting from convolving the function of Figure 4.1 with
that of Figure 4.9, is shown in Figure 4.10. By comparing
the composite system point-spread function shown in Figure
4.7 with that of Figure 4.10, the effectiveness of the
iteration technique to suppress secondary side-lobe re-
sponses is evident. The radius of gyration of the composite
system point-spread function of Figure 4.10 is approximately
74% of that the blurring aperture. Thus, as expected, the
restoration function resulting from the iteration technigue
is somewhat less effective for image enhancement. It
should be noted that although nine iterations were used,
there is little change in the restoration function after

about three iterations and that the iteration technique
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Figure 4.9 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.9
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Figure 4.10 Composite System Point-Spread
Function Resulting from €orrecting the Blurring
Aperture of Figure 4.1 with the Restoration
Function of Figure 4.9
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appears to converge rapidly.

Figure 4.11 through 4.16 and 4.17 through 4.22 represent
the resulting restoration and composite system functions
when the constraint in the radius of gyration of the resto-
ration filter, Kl is further reduced to 0.2 and 0.1 of the
radius of gyration of the "inverse" filter, respectively.
The radii of gyration of th< composite system point-spread
functions shown in Figure 4.13, 4.16, 4.19, and 4.22 are 81,
87, 89 and 90 percent of the radius of gyration of the
blurring aperture of Figure 4.1, respectively.

The preceding figures demonstrated the effect of the
constraint on the radius of gyration of the restoration
filter in a noiseless environment for a Gaussian blurring
aperture with a radius of gyration of one. To demonstrate
the influence of noise on the restoration filter, an
additive white noise with a spectral density of 10_5
voltsz/Hz was assumed. In addition, the output noise power
constraint, Kz, was chosen to equal approximately 0.149% of
the corresponding output noise power of the "inverse” filter,
This particular value was chosen to approximate a signal-
to-noise ratio of 20 dB when applied to the multispectral
scanner data to be described in a later section. Figure
4.23 and 4.24 show the frequency spectra of the restoration
filters when the constraint on the radius of gyration of

the restoration filter point-spread function K, equals 0.5

1
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Figure 4,11 Restoration Filte: Frequency Spectrum
for Blurring Aperture of Figure 4.1 for K., = 0,2
Unconstrained Value with No Criterion Fundtion
Iteration

i
£%.00

0.000

-1.000 ' , ,
0.00 16,00 2¢.00 48.00
NORMALIZED DISTANCE

Figure 4.12 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.11

i
B%.00




73

.600 —

0.000 =~
0.0 16,00 3200 48,00 B4.00
NORMALIZED DISTANCE

Figure 4.13 Composite System Point-Spread
Function Resulting from Correcting the Blurring

Aperture of Figure 4.1 with the Restoration
Function of Figure 4.12
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Figure 4.20 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.1 for K., = (0.1
Unconstrained Value with Ten Iterations Uéing an
Exponential Criterion Function
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Figure 4.22 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.1 with the Restoration
Function of Figure 4,21
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Figure 4.25 Gaussian Blurring Aperture Having
a Radius of Gyration of Three
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and 0.2 times the value of the "inverse" filter, respective-
ly.

The following discussion will be with reference to a
Gaussian blurring aperture with a radius of gyration of
three, as shown in Figure 4.25. The restoration £filter
frequency spectrum, point-spread function, and the composite
system point-spread function for the classical "inverse"
restoration filter are shown in Figure 4.26, 4.27 and 4.28,
respectively. When the radius of gyration of the resto-
ration filter point-spread function is constrained to 0.5
of the unconstrained value, or value of the "inverse" filter,
the resulting restoration and composite system functions
with and without criterion function iterations are shown
in Pigure 4.29 to 4.34. Figure 4.35 to 4,40 show correspon-
ding results when the radius ¢f gvration of the restoration
filter is further constrained to 0.2 of the walue of the
"inverse” filters., The radii of gyration of the composite
system point-spread functions of Figure 4,31, 4.34, 4.37 and
4,40 are 14.3, 19.8, 88.5, and 89.3 percent of the radius
of gyration of the blurring aperture of Figure 4.25.

Figure 4;41—4.52 demonstrate the effect of a white
noise rower spectral density upon the restoration function
for the same input and output signal-to-noise ratios as
emploved with the filter previously considered. Figure

4,.41-4,.46 show the frequency spectrum of the restoration
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Figure 4.28 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
Function of Figure 4.27 .
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Iteration
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Figure 4.30 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.23
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Figure 4.31 Composite System Point-Spread
Function Resulting from Correcting the Blurring
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Figure 4.32 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.25 for K, = 0.5
Unconstrained Value and Four Iterations wi%h ar
Exponential Criterion Function
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Figure 4,34 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
Function of Figure 4.33
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for Blurring Aperture of Figure 4.25 for K. = 0.2
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Figure 4.36 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.35
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Figure 4.37 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
Function of Figure 4.36
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Figure 4.38 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.25 for K%h= 0.2
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Unconstrained Value and Four Iterations wi
Exponential Criterion Function
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Figure 4.40 Comp051te System Point-S8pread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
Function of Figure 4.39
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Figure 4.41 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.25 for K, = 0.5 and
= 1.61 x 10~7 (S/N = 20dB) Unconstrained Values

f%r a Whlte Noise Power Spectral Demsity of 1075
volts2/Hz and Four Iterations Using an Exponential
Criterion Function
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Figure 4.44 Restoration Filter Fregquency Spectrum
for Blurring Aperture of Figure 4.25 for K, = 0.2
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Criterion Function
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Figure 4.46 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
Function of Figure 4,45
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Figure 4.47 Restoration Filter Freguency Spectrum
for Blurring Aperture of Figure 4.25 for K, = 0.5 and
= 1,61 x 1078 (S/N = 20d4B) Unconstralne& Values

fgr a Whlte Noise Power Spectral Density of 107
volts?2 -/Hz and Four Iterations Using an Exponential
Criterion Function
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filter and the point-spread functions for both the resto-

ration filtexr and the composite system for both K. = 0.5

1
and 0.2 of the unconstrained value for a white noise power

5

spectral density of 10" voltsz/Hz. Figure 4.47-4.52 show

the effect of increasing the noise power spectral density

3

to 21.0_4 and 10 voltsz/Hz for K. = 0.5 of the unconstrained

1
value. The radii of gyration of the composite system point-
spread functions shown in Figure 4.43, 4.46, 4.49 and 4.52
are 60.2, 88.5, 66,2, and 76.9 percent of the radius of
gyration of the blurring aperture of Figure 4.25.

Thr point-spread function for a Gaussian blurring
aperture having a radius of gyration of five is shown in
Figure 4.53. Figure 4.54 shows the resulting "inverse”
restoration filter frequency spectrum, while the correspon-
ding "inverse" restoration filter point-spread function is
shown in Pigure 4,55, The overall composite system point-
spread function, resulting from correcting the blurring
aperture of Figure 4.53 with the "inverse" restoration
function of Figure 4.55, is shown in Figure 4.56.

When the radius of gyration of the point-~spread function
of the restoration filter is constrained to 0.5 of that of
the "inverse" filter, the resulting restoration filter
frequency spectrum, point-spread and composite system point-

spread function are shown in Figure 4.57-4.59, respectively.

By further reducing this constraint to 0.2 of that of the
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Figure 4.50 Restoration Filter Freguency Spectrum
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Figure 4.52 Composite System Point~Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.25 with the Restoration
Function of Figure 4.51
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Figure 4.53 Gaussian Blurring Aperture Having
a Radius of Gyration of Five

1
&64.00

i
;

i
H
H
;
H




96

208.0 - H_(£)| in dB

100.0
0.0 B 1 I |
.00 16.00 32.00 4g.00 64 .00
NORMALIZED FREQUENCY

Figure 4.54 Classical "Inverse" Restoration
Filter Frequency Spectrum for Blurring Aperture
of Figure 4.53
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Figure 4.55 Classical "Inverse" Restoration
Filter Point-Spread Function for Blurring Aperture
of Figure 4.53
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Figure 4,56 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.55
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Figure 4,57 Restoration Filter Freguency Spectrum

for Blurring Aperture of Figure 4.53 for K. = 0.5
Unconstrained Value and Two iterations witﬂ an
Exponential Criterion Function
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Figure 4.58 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.57

0.0o

1.000 - g {x}

.500

B 9UDD \rhv%hv‘—‘f i | T |
0.00 48.00 £4.00

16.00 32.00
NORMALIZED DISTANCE

Figure 4.59 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.58
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"inverse" filter, the resulting restoration filter frequency
spectrum, point-spread function and composite system point-
spread function are shown in Figure 4.60-4.62, respectively.

Figure 4.63-4.65 show the restoration filter frequency
spectrum, point-spread function, and composite system point-
spread function when the constraint on the radius of gyration
of the restoration filter point-spread function is 0.1l of
that of the "inverse" filter. The radii of gyration of the
composite gsystem point-spread functions shown in Figure 4.59,
4.62, and 4,65 are 15, 21, and 50 percent of the radius of
gyration of the blurring aperture of Figure 4.53.

The preceding results corresponding to the blurring
aperture of Figure 4.53 were for a noiseless environment.,
The following results are based upon two types of noise
power spectral densities: white and exponentially increasing
functions. The white noise power spectral density will be
considered first. Results for four spectral density levels

are shown: lOHS, 10_4

, 5x10°%, and 1073 volts?/Hz. The
output noise level constraint in the restored image is
adjusted for a signal-to-noise ratio of approximately 20 4B,
Pigure 4.66~4.68 show the restoration filter frequency
spectrum, point-spread function, and composite system
point-spread function for Kl' the restoration filter point-

spread function radius of gyration constraint equal to 0.5

that of the "inverse" filter, and Kyr the output noise
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Figure 4.60 Restoration Filter Fregquency
Spectrum for Blurring Aperture of Figure 4.53
for K.,=0.2 Unconstrained Value and Two
Itera%ions With An Exponential Criterion
Function
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Figure 4.61 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.60
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Figure 4.62 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.61
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Figure 4.63 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4,53 for X, = 0.1
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Figure 4.65 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.64
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Figure 4.66 Restoration Filter Fregquency Spectrum
for Blurring Aperture of Figure 4.53 for X, = 0.5 and
= 2,10 x 1013 {(S/N = 20d4B) Unconstraln%d Values
fgr a Whlte Noise Power Spectral Density of 10-3
volts? /Hz and Ten Iterations with an Exponential

Criterion Function
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Figure 4.67 Restoration Filter Point-~Spread
Function Having Spectrum of Figure 4.66
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Figure 4.68 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.67
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power constraint, adjusted for a 20 dB output signal-to-
noise ratio when the noise power spectral density level is

-5

10 voltsz/Hz. Figure 4.69-4.71 show similar results when

Kl = 0.2 that of the "inverse" filter. Figure 4.72-4.74,
4,75~4.77, and 4.78-4.80 show the restoration filter fre-
guency spectra point-spread functions, and composite system
point-spread functions for Kl = 0,5 that of the "inverse"

filter and for noise power spectral densities of 10"4,

4, and 1073 voltsz/Hz, respectively.

The exponentially increasing noise power spectral
densities are shown in Figure 4.81, 4.85, and 4.895. Figure
4,82-4,.84, 4,.86-4.88, and 4.90-4.92 show the corresponding
restoration filter freguency spectra, point-spread functions
and composite system point~spread functions, respectively
for K1 = 0.5 that of the "inverse" filter and K2 adjusted
for a signal-to-noise ratio of 20 dB, for each noise
spectrum,

Tables 4.1 and 4.2 summarize the basic restoration filter
and composite system performance parameters for the con-

straint and noise power spectral density variations described

in this section.
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Figure 4.69 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.53 for K, = 0.2 and

K, = 2,10 x 10-13 (S/N = 20d4B) Unconstrainéd Values
f%r a_White Noise Power Spectral Density of 1073

voltsz/Hz and Four Iterations with an Exponential
Criterion Function
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Figure 4.70 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.69
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Figure 4.71 Composite System Point Spread
Function Resulting from Correcting the Blurring
Bperture of Figure 4.53 with the Restoration
Function of Figure 4.70
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Figure 4.72 Restoration Filter Frequency Spectrum
for Blurring Apirture of Figure 4.53 for K, = 0.5 and
= 2,10 x 10 (8/N =~ 204B) Unconstralnéd Va&ues

fgr a Whlte Noise Power Spectral Density of 107
volts? /Hz and Four Iterations with an Exponential
Criterion Function
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Figure 4.73 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.72
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Figure 4.74 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4,53 with the Restoration
Function of Figure 4,73
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Figure 4,75 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.53 for K. = 0.5 and
= 1.05 x 10-15 (8/N = 2048B) Unconstraln%d Values
fgr a Whlte Nolse Power Spectral Density of 5 x 10—4
volts?2 /Hz and Four Iterations with an Exponential

Criterion Function
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Figure 4.77 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.76
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Figure 4.78 Restoration Filter Freguency Spectrum
for Blurring Aperture of Figure 4.53 for K., = 0,5 and
= 2,10 x 10715 (s/N = 204B) Unconstraindd vValues
fgr a White Noise Power Spectral Density of 10-3
volts2/Hz and Four Iterations with an Exponential

Criterion Function
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Figure 4.80 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.79
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Figure 4.82 Restoration Filter Frequency Spectrum
for Blurring Aperxrture of Figure 4.53 for Noise Power
Spectral Density of Figure 4.81 and K. = 0.5 Uncon~
strained value and K, = 5 (8/N = 20(:18} for Four
Iterations with an Efponential Criterion Function
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Figure 4.83 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.82
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Figure 4,84 Composite System Point~Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.83




114

- -5 2 .
20.00 @nn{fx) 10 °f v*/Hz in dB

1G.00

0.00 ,

I 1 1
0.00 1600 32.00 48.00 £4.00
NBRMALIZED FREQUENCY
Figure 4.85 Noise Power Spectral Density for
o () = 1073 £ v2/Hz
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Figure 4.86 Restoration Filter Frequency Spectrum
for Blurring Aperture of Figure 4.53 for Noise
Power Spectral Density of Figure 4.85 and Kl = 0.5
Unconstrained value and K, = 5 (5/N = 204B) for Four
Iterations with an Exponeﬁtial Criterion Function
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Figure 4,87 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4.86
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Figurg 4,88 Composite System Point-Spread
Function Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.87
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Figure 4.89 Noigse Power Spectral Density for
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Figure 4.90 Restoration Filter Fregquency Spectrum
for Blurring Aperture of Figure 4.53 for Noise
Power Spectral Density of Figure 4,89 and K, = 0.5
Unconstrained Value and K, = 5 (S/N * 20dB) for Four
Iterations with an Expone%tial Criterion Function
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Figure 4,91 Restoration Filter Point-Spread
Function Having Spectrum of Figure 4,90
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Figure 4.92 Composite System Point-Spread
FPunction Resulting from Correcting the Blurring
Aperture of Figure 4.53 with the Restoration
Function of Figure 4.91
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Table 4.1:

blurring aperture radius of gyration

Kl constraint as a Zractien of the unconstrained value
Ky constraint for approximate 2048 output signal-to-noise ratio

input signal-to-noise ratio for specified white noise power
spectral density amplitude

criterion function itezation

composite system radius of gyration as parcentage of blurring
aperture radius of gyration

maximum peak of seccndary oscillations as percentage of primary
lobe in composite systam point-spread function

blurring aperture radius of gyration

Kl constraint as a fraction of the unconstrained value
X, constraint for appreximate 2048 ocutput signal-=to-naise ratio

input signal-to-noise ratio for specifiad white noise power
spectral density amplitude

eriterion function iteration

composite system radius of gyration as percentage of blurring
aperture radius of gyratien

maximum peak of secondary oscillations as percentage of primary
lobe in composite system peint-spread function

blurring aperture radius of gyration

Ky conetraint as a fraction of the unconstrained value

X, constraint for approximate 20dB output signal~to-nolse ratio

input signal-to-noise ratio for specified white noise power
spectral density amplitude

eriterion function iteration

composite systar radius of gyration as parcantage of blurring
aperture ra”ilus of gyration

maximum peak of seconasry oscillations as percentade of primazy
lobe in composite system peint-spread function
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hlurring aperture radius of gyration

K, constraint as a fraction of the uneco istrained wvalue

Rz constraint for approximate 204B output signal-to-ncise ratie

input signal-to-noise ratio for spesified white noise power
spectral depsity amplitude

criterion function iteration

composite tystem radius of gyration as percentage of blurring
aperture radius of gyration

maximum peak of secondary cscillations as percentage of primary
lobe in composite sysitem point~spread Ffunction

blurring aperture radius of gyration

Kl constraint as a fraction of the unconstrained walue

K, constraint for approximate 2048 output signal-to-noise ratio

input signal-to-noise ratio for specified white noise power
spectral density amplituds

criterion function iteration

composite system radius of gyration as percentage of blurring
aperture radius of gyration

maximum peak of seecondary oscillations as percentage of primary
lobe in composite system point-spread function
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Table 4.2: Basic Restoration Filter anc
Performance Parameters As A
and Exponential Noise Spectr

blurring aperture radius of gyration

Kl constraint a5 a function of the unconstrained value
K2 constraint for approximate 204B output signal-to-noise ratio

povwer spectral density function
input signal-to-noise ratio
criterion function iteration

composite system radius of gyration as percentage of hblurring
aperture radius of gyracion

maximum peak of secondary oscillations as percentage of primary
lobe in composite system point-spread function
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4.3 The Effect OFf Error Between Actual And Assumed
Gaussian Blurring Apertures On Composite System
Performance

The results of the preceding section assumed that the
blurring aperture function was explicitly known. When this
function is not known, the composite system performance
based upon an erroneous blurring function can deviate
significantly from the optimal response. The purpose of
this section is to demonstrate the effect upon the composite
system point-spread function produced when a restoration
filter computed for a Gaussian blurring aperture of spe-
cified radius of gyration is used to correct data blurred
by a Gaussian aperture kaving a different radius of gyration.

Figure 4.93-4.96 show both the composite system fre-
quency spectra and point-spread functions when restoration
filters computed for Gaussian blurring apertures having
radii of gyration of three and five, respectively, are used
to correct a Gaussian blurring aperture having a radius of
gyration of one. Figure 4.97 and 4.98 show the composite
system freguency sepctrum and point-spread functions when
a restoration filter computed for a Gaussian blurring aper-
ture having a radius of gyration of five is used to correct
a Gaussian blurring aperture having a radius of gyration
of three. These preceding mismatch combinations of actual
and assumed blurring apertures correspond to an overcorrec—

tion of the data as demonstrated by the peaks in the com-
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Figure 4.93 Composite System Frequency Spectrum

Resulting from Correcting the Blurring Aperture of

Figure 4.1 with the Restoration Filter of Figure
4,45
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Figure 4.94 Composite System Point-Spread
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123

100.0 |G(£,)| in 4B

60.0+4 -

0-0

i 1 ] 1
16.00 32.00 46.00 64.00
NORMALIZED FREQUENCY
Figure 4,95 Composite System Frequency Spectrum
Resulting from Correcting the Blurring Aperture of

Figure 4.1 with the Restoration Filter of Figure
4,70
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Figure 4.3 Composite System Frequency Spectrum

Resulting from Correcting the Blurring 2Zperture of
Figure 4.25 with the Restoration Filter of Figure
. 4,70
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posite system frequency spectra of Figure 4.93, 4.95, and
4,97, The resulting composite system point-spread functions,
as shown in Pigure 4.94, 4,96, and 4.98 are highly oscilla-
tory - the greater the assumed blurring aperture relative

to the actual, the greater the oscillaticns in the composite
system point-spread functions.

Figure 4.99-4,104 show corresponding composite system
spectra and point-spread functions for the opposite situation,
where the radius of gyration of the actual blurring aperture
is larger than that of the assumed aperture. These blurring

aperture mismatch combinations correspond to undercorrection

i
|
:
;
i
|
'

of the data. ]
Of the two types of mismatch conditions considered, the

least desirahle is the overcorrection condition; since it

would introduce ghosts into the "corrected" image. In con-~
trast, the undercorrected condition produces a stable system
! response which would not introduce any oscillatory error;
however, less than optimal image enhancement could be

expected.

The recognition of the overcorrection condition by a

peak in the frequency spectrum of the "corrxected" data or

by the presence of ogcillations about transients in the

"corrected" image could provide a criterion for determining
when a blurring aperture match has been achieved for data

where the radius of gyration of the actual Gaussian-ghaped

aperture is unknown.
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Figure 4,99 Composite System Frequency Spectrum
Resulting from Correcting the Blurring Aperture of
Figure 4.25 with the Restoration Filter of Figure
4,24
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Figure 4,101 Composite System Frequency Spectrum
Resulting from Correcting the Blurring Aperture of

Figure 4,53 with the Restoration Filter of Figure
4,24
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Figure 4.103 Composite System Freguency Spectrum

Resulting from Correcting the Blurring Aperture of

’i‘igure 4.53 with the Restoration Filter of Figure
«45

l
0.00 64.00

1.000—~, E&(x)

0.000 +

-1.000 1] H |

0.00 16.00 3e.00 48,00
NORMALIZED DISTANCE
Figure 4.104 Composite System Point-Spread
Function Having System of Figure 4.103

e S BAAT IS e

7
i
Pl
2
5
Iy
?
¥
:
3

i
i
§
i

5

;

Rt s




129

4.4 Application of the Resto
by a Known Gaussian Aperture

The data presented in this section was chosen to gual-
itatively demonstrate the fundamental properties of the
optimum restoration function as previously described analyt-
ically in Chapter 2 and experimentally presented in section 2
of this chapter. Figure 4-105 thru 107 demonstrate the
resolution improvement possible when a given test pattern
initially blurred by a known aperture function is reconstructed
under essentially noiseless conditions. It should bhe men-
tioned that round-off errors within the restoration program,
resulting principally from FORT, are primarily responsible
for the noise present. The input image to the blurring
system is shown in Figure 4-105. This pattern is described
by a two dimensional array of 512 x 512, as are all the
images shown and is composed of a series of rectangular
wedges whose periodicity ranges from 16 pixels/cycle to 2
pixels/cycle in 2 integer increments. This frequency
variation was chosen to provide a simple qualitative com-
piarison of the resolution of the blurred image to that of
the restored image. In addition, the 8 increment grey level
pattern was included to demonstrate any changes to the
dynamic range of the blurred and restored images. Figure 4-
106 represents the output of an imaging system having a
Gaussian blurring aperture with a radius of gyration of 3,
as shown in Figure 4~-25, It is evident from this figure

that the constrast of even the lowest frequency wedge has




Figure 4.105 Resolution Bar Test Pattern

Figure 4.106 Figure 4.105 Blurred by a Gaussian
Aperture with a Radius of Gyration of Three
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been significantly reduced and that the highest frequency
present in this pattern has a period of approximately 12
pixels/cycle. By applying the restoration function of
Figure 4-42 to the data of Figure 4-106 a significant im-
provement in picture quality is produced as shown in Figure
4-107. The highest frequency present in the restored image
has a pariod between 6 and 4 pixels/cycle, thus providing
mere than a 2 to 1 rescolution improvement.

The restoration function chosen for this resolution
improvement test provided a high ouﬁput signal-to-noise
ratio, over 404B, for the round-off errorrnoise introduced
by the restoration program. Had the round-off error noise

been less, a more powerful restoration filter could have

been employed giving a greater improvement in resolution for

the same output signal-to-noise ratio. It should also be
noted that had no round-off error noise Eeen present, the
classical "inverse" filter would have provided perfect
restoration of the blurred image.

The test results shown in Figure 4-108 thru 111 demon-
strate the "ghost" effect produced by restoring a blurred
image with a restoration function not specifically designed
to control secondary oscillations about the origin of the
composite system point-spread function. This control, as
described in Chapter 2, was obtained by application of the

criterion function iteration procedure. The input image,

Figure 4-108, represents a bar pattern having a period of

e e b vt g T e (TR B AT D T LR b
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Figure 4.107

Figure 4.106 Restored by the

Restoration Function of Figure 4.42

Figure 4,108

Low Frequency Square Bar Pattern
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100 pixels/cycle. Figure 4-~109 represents the output of an
imaging system having a Gaussian blurrihg aperture with a
radius of gyration of 3, the same as used in the previous
set of figures, Figure 4-110 represents a restoration of
Figure 4-109 with the noniterated version of the restoration
function of Figure 4~42. A "ghost" image or oscillation on
each side of the discontinuities cf the bar pattern is
apparent. However, when the iterated restoration function
of Figure 4-42 is used to correct the image of Figure 4-109,
the resulting image, Figure 4-~111, shows no evidence of any
"ghosts".

The final fundamental property of the uptimum restoration
filter, and possibly the most significant is the reduction of
truncation error as compared to that produced by the classi-
cal "inverse" filter and which is produced by restoration of
a truncated version of the original blurred image. This
effect will first be demonstrated by a one-dimensional
example. Figure 4-112 represents a rectangular test function
which when blurred by the Gaussian aperture of Figure 4.53
having a radius of gyration of 5 produces the data of Figure
4-113, Figure 4-114 is obtained by truncating, or setting
to zero, the first 10 peoints of Figure 4-113. By applying
the classical "inverse" restoration filter of Figure 4-55
to the truncated data set of Figure 4-114, the data of Figure
4-115 results. At no point in the data record does the

truncation error become small enough to resolve the < riginal




Figure 4,109

Figure 4.108 Blurred by a Gaussian

Aperture with a Radius of Gyration of Three

Figure 4.110
Ver~ion of the
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Figure 4.109 Restored by the Uniterated
Restoration Function of Figure 4.42



Figure 4.111 Figure 4.109 Restored by the
Restoration Function of Figure 4.42
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Figure 4.112 Rectangular Test Function
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Figure 4,113 Convolution of the Function of
Figure 4.112 with the Function of Figure 4-53
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Figure 4,114 Truncation of First 10 Points of
Figure 4,113
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Figure 4.115 "Restored" Function Obtained By
Correcting the Truncated Data of Figure 4.114 With
the Classical "Inverse" Restoration Function of
Figure 4.55
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test function. When the restoration function of Figure 4~67
is applied to the same truncated data set of Figure 4-114 the
result, shown in Figure 4-116, is obtained and indicates
significant error at the edges of the restoration. However,
because the radius of gyration of the restoration filter
point-spread function was constrained negligible error is
present at the center of the data record.

Figure 4-117 thru 4-120 demonstrate this same effect
for a two-dimensional example. Figure 4-117 represents a
bar pattern with a spatial period of 10 pixels/cycle. When
tile Gaussian aperture of Figure 4-25 is used to blur the
image of Figure 4-117, the result is shown in Figure 4-118.
By truncating, i.e. setting to zero, all but the center
256 x 256 portion of Figure 4~118 and applying the classical
"inverse" restoration filter to the result, the image of
Figure 4~119 is produced. Although the truncation error is
smallest at the center of this image, no significant res-
toration of the original Lar pattern is apparent. However,
when the restoration function of Figure 4-42 is applied to
the same truncated version of Figure 4-118, the result is
shown in Figure 4-120, It is clearly evident that the
truncation error rapidly becomes negligible inside the - 'nter
256 X 256 portion of this figure and that significant res-

toration of the original bar pattern is apparent.
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Figure 4.117 High Frequency Square Bar Pattern

Figure 4.118 Figure 4.117 Blurred by a Gaussian
Aperture with a Radius of Gyration of Three




Figure 4.119 Restoration of a 2562 Center Portion
of Figure 4.118 by the Classical "Inverse" Restoration
Function of Figure 4.27

Figure 4.120 Restoration of a 2562 Center Portion
of Figure 4.118 by the Restoration Function of
Figure 4.42




CHAPTER 5
APPLICATION OF OPTIMUM IMAGE RESTORATION FILTER

TO ERTS MULTISPECTRAL SCANNER DATA

5.1 Introduction

The primary motivation for this research was the devel-
opment of an optimal resolution enhancement technique for
application to remotely sensed multispectral scanner data.
The fundamental properties of the resulting optimal resto-
ration filter examined in the previous chapter indicated
that the shortcomings of the classical “"inverse" filter,
which formed the bhasis for defining most of these properties
as discussed in Chapter 2, had been resolved, However,
until this restoration technique was applied to actual ERTS
data, it would not be known whether there existed any
significant deficiencies which had not been previously
anticipated.

This chapter describes the application of this resto- é
ration technique to a specific ERTS data set. The problems
encountered in estimating the multispectral scanner blurring é
aperture, defining the noise present in the data, and per- i
forming the correction to the data are examined., Finally %
conclusions are drawn concerning the quality of the resto-
ration achieved and the effert of numerical error both in
the calculation and implementation of the restoration
function. An IBM 360 model 67 computer was used to compute

the restoration filters of Chapter 4 and to apply these
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corrections to the selected ERTS data set.

5.2 Estimation of Blurring Aperture

As mentioned earlier, since no specific information
concerning the blurring aperture of the multispectral
scanner was available, a mathematical model had to be defined.
As discussed in the introduction to Chapter 4, a Gaussian
model was ultimately chosen in order to make possible certain
simplifying assumptions. These assumptions include defining
a separable blurring process to substantially reduce proces-
sing cost and time and to permit explicit computation of the
blurring aperture spectrum, so that numerical round-~off
errors may be reduced.

It should also be noted that an alternative to choosing
a model for the blurring aperture would be the estimation
of the aperture directly from the data. However, in view
of the extremely large quantization noise present in all the
ERTS data examined and which will be discussed shortly, it
seemed unlikely that this procedure would provide any better
estimate of the blurring process.

By re—examining the results of Table 4.1 and 4.2, it is
apparent that the more data samples per blurring aperture
width, the more effective the restoration procedure for a
given set of constraints. For example in the extreme case
where the blurring aperture is described by only one sample
point, then regardless of the constraints on the restoration

filter the resulting composite system point-spread function
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can contain no less than one sample point. Thus for this
case it is clear that no resolution improvement is possible.
However, if the blurring aperture could be sampled more often,
increasing the number of sample points per blurring width,
then a resolution improvement should be possible.

This problem of having relatively few samples per
klurring aperture width exits with the ERTS data. The
scanner aperture has an effective ground diameter of approx-
imately 80 meters. The data is collected so that a rectan-
gular array of points is generated with an effective ground
distance between adjacent vertical points in the array of
79 meters and an effective ground distance between adjacent
horizontal points in the array of 56 meters. Thus it is
unlikely that there are more than 3 sample points within a
circle of three o radius centered at the blurring aperture.
In order to obtain significant resolution improvement, it is
necessary to have a larger number of samples per blurring
width than this. One way to obtain more samples is to
interpolate additional values between the original data
points. The idea is not to create information where no
information originally existed buth rather to provide suf-
ficient sample values to allow use of an effective restoration
filter function. The procedure that will be used is to
increase the number of points per blurring aperture until
they correspond to one of the aperture functions for which

the optimum restoration filter has been determined., The
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The restoration can then be carried out and the final data
set can be compressed back to the original size if desired.
The use of interpolation allows the data set to be matched to
the restoration function experimentally which is very desirable
because precise values for the actual blurring function are
not known.

At the same time that the interpolation is performed to
increase the number of points per blurring aperture, the
scale factor differences of the vertical and horizontal image
axes can be corrected. This scale factor difference arises
from the fact that the effective ground distances between
adjacent points along the vertical and horizontal axes are
not equal. If these points are displayed as if these dis-
tances were egqual, then resulting distortion produces an
image which is compressed vertically. Thus to correct this
distortion, a somewhat greater degree of interpolation, or
magnification, is required along the vertical axis., By
magnifying the vertical axis, 79/56 with respect to the
horizontal axis, this distortion should be corrected.

A third-order polynominal interpolation function was
used because of its relative smoothness compared to other
forms, including trigonometric and sinc functions. The
restoration filter corresponding to a blurring aperture of
radius of gyration of 5 is the largest that has been computed
due to limitations imposed by rourdwoff errors in the i

computations. In this blurring function, there are approx-
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imately 45 samples (pixels) within the 1% amplitude levels
of the blurring function along each axis. Theresfore, it is
necessary to interpolate the ERTS data to obtain this same
number of points in the estimated width of the ERTS aperture.
As a first approximation, the width of the ERTS aperturs was
taken to be 3 as discussed above and accordingly the required
interpolation factor is 45/3 = 15. In addition, to correct
the geometric distortion, the ratioc of the vertical to
horigzontal interpolation factors should be 79/56 = 1.411,
The only integer ratio which satisfied both the interpolation
factor for matching the effective data scanner aperture to a
Gaussian blurring aperture with a radius of gyration of five
and the geometric distortion correction interpolation ratio
was.17/12 % 1.417. In other words, an interpclation of 17
along the vertical axis and 12 along the horizontal axis
would not only correct the geometric distortion but also
approximately match the effective ERTS data scanner aperture
to the restoration Ffunction computed for a Gausslan aperture
with a radius of gyration of five. Several additional :
interpolation ratios were used to determine whether a better
aperture match could be obtained. However, as will be
explained later, this ratio provided the best performance.
It appears likely that restoration functions computed
for larger radii or gyration then five would provide even
better results when matched to the ERTS data by appropriate

interpolation factors, However, because of the excessive
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round-off errors encountered in the restoration function
computation program, the largest radius of gyration which
would provide reliable results was five. In addition,

excessiﬁg interpolation of under sampled data may be desir-

R/
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T

able because of the effect of aliasing errors on the inter-
polation accuracy. However, for the ratios chosen, this

error did not appear significant.
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5.3 Composite System Noise

The composite system noise is defined as the total noise
process including both the noise introduced by the ERTS data
collection system and that introduced by the restoration pro-
cess. The noise introduced by the ERTS data collection system
arises from three primary sources: the sensors of the multi-~
spectral scanner, the signal conditioning electronics, and the
A/D conversion process., The noise introduced by the resto-
ration process arises principally from numerical round-off
errors.

The predominant data collection system noise source is
introduced in the quantization stage of the A/D process. The
data is quantized into six bits producing a signal dynamic
range from 0 to 63. The total noise power, n?, introduced
by uniform quantization may be approximated by the expression

[3,6]

2 _ Av -
n = 33 (5-1)

where Av represents the quantization increment, in this case
it is 1 unit. Thus the total guantization noise power is

approximately

2 ~ 0.08333 volts. (5-2)

n

E—l
Nh‘

This noise process may be shown to have an essentially
flat spectrum extending to many times the sampling 7:_:Jguency.
A conservative estimate of the power spectrum deneity of
the guantization noise can be obtained by assuming that it

lies entirely within the band occupied by the signal. The
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resulting one sided noise spectral density is given by

11
'™ STrEy ceEr 20 (5-3)

!

where fs is the sampling frequency of the A/D procass. The
magnitude of fS depends on the units of measurement being
employed. For convenience it will be assumed that fs = 128
which is the number of samples used to define the restoration
filters along each axis, With this convention the noise
spectral density is then

i
6(128)

3

@nn(f) < = 1.302 x 10 ~. (5-4)

Because the ERTS data does not occupy the full 64 level
dynamic range defined by the quantization process, the
quantization noise is made even more significant due to the
reduced input signal-to-noise ratio. The ERTS data sets
examined have a dynamic range of approximately * 15 units,
producing an input signal-to-noise ratio of less than 34 dB.
In view of the fact that the restoration process will be
enhancing the high frequency components of the ERTS data and
from the assumption that the quantization noise spectral
density is flat, the guantization noise presents a very
serious problem to obtain significant restoration and a high
signal-tc-noise ratio in the deblurred image.

The second source of composite system noise is introduced
by computational round-off errors, These errors arise

principally within the FORT Fast Fourier Transform algorithm.

A double precision version of this algorithm is employed both
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in the computation of the restoration function and in the
application of this function to a blurred image. This

algorithm is used to perform the spatial deconvoluticn by

multiplication of the spectral components of the biurred
image with the corresponding components of the restoration

function and then talking the inverse Fourier transfcorm of

the product. By using this algorithm to compute the spectrum
of one of the Gaussian blurring apertures previously de-
scribed in Chapter 4 which should also be Gaussian shaped,
it was found that the magnitudes of the resulting spectrum
never become less then approximately 10"5 when normalized
with respect to the DC term. Consequently, this noise process
is assumed to have a flat spectral density of approximately
10—5 below the DC level of the data being corrected. Since
the ERTS data sets examined typically had a DC value of
approximately 30, the round-off error noise spectral density
amplitude was assumed to be approximately 1074 vz/Hz.
The severity of this problem is made evident by con-
sidering the application of the classical "inverse" resto-
ration filter to the image of Figure 4.106 as discussed in
Section 4,4. Using the exact inverse one would expect to ;
obtain a perfect restoration. However, because of the noise |

introduced by the round-off errors within the FORT algorithm,

the actual restoration obtained consisted only of a random
noise pattern with none of the original features being

evident.
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Since this noise source appears to be a function of the
numerical accuracy of the computations within the FORT
algorithm it is probable that it could be reduced to a
negligible level by increasing the precision of the com-
putations. However, it was not possible to employ more than

double precision accuracy because of computer limitations.

5.4 Resclution Enhancement of ERTS Data

The ERTS data set to be enhanced had to satisfy two
primary criterxia. The first, and possibly the most important,
was that the data set had to be free of any obvious noise so
as to permit maximum restoration. The second was that the
data set had to include a known topographical feature to
provide a degree of "a priori" knowledge of the original
image before blurring by the multispectral scanne. for com-
parison to the restored results. Figure 5.1 and 5.2 show
the ERTS data set selected. This data was taken from ERTS
frame ID no. 1080-~15192 collected on October 11, 1972, and
reformatted as LARS run number 77041900, Ch. 3, lines 916-
1427, columns 986-1497, This area includes a portion of
Washington, D.C. The topographical feature selected for
enhancement was the Pentagon Building which appears at the
center of Figure 5.1 and the upper center of Figure 5.2, a
2X linear magnification of Figure 5.1. This feature was
chosen not only because its shape is well defined but also
because the luminance intensity of a single scan line passing

through the center of the building for a scanner with
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Figure 5.1 ERTS Multispectral Scanner Data

of Washington, D.C. Area with Pentagon at Center
(LARS Run No. 72041500, Ch 3, Lines 916-1427,
Columns 986-1497)

Figure 5.2 2X Linear Enlargement of Figure 5.1
Showing Pentagon in Upper Center
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infinite resolution would appear as two closely spaced
rectangular pulses with the level between the pulses re-
presenting the "hole" in the center of the building. Thus
by comparing the luminance signal for a single scan line
passing through this area, a qualitative measure of the
resolution enhancement is possible.

Figure 5.3 shows the Pentagon and surroundings of Figure
5.1 after the application of a third-order two-dimensional
polynomial interpolation. As previously discussed, in order
to correct the axis scale factor difference and als» to
approximately match the ERTS scanner aperture to the most
powerful restoration functions computed for a Gaussian blur-
ring aperture with a radius of gyration of five, the hori-
zontal axis was interpolated or magnified by a factor of 12
while the vertical axis was interpolated by a factor of 17.
Figure 5.4 represents a 2X linear enlargement of the upper
left gquadrant of Figure 5.3.

Figure 5.5 represents a plot of the luminance level for
a scan line passing through the center of the Pentagon of
Figure 5.3, i.e. data line 110. The left most side of the
Pentagon is centered at the 60th sample, the "hole" at the
85th sample, and the right most side at the 110th sample.
The fregquency spectrum corresponding to this line is shown
in Figure 5.6. The information provided by these two graphs
will form the primary basis for selecting the "best" resto-

ration function of those computed in Chapter 4 for a Gaussian




Figure 5.3 Polynomial Interpolation of
Figure 5.1 Using an Interpolation Factor of
17 for the Vertical Axis and 12 for the Horizontal

Axis

Figure 5.4 2X Linear Enlargement of the Upper
Left Quadrant of Figure 5.3
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FPigure 5.5 Graph of Data Line 110 of Figure 5.3
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aperture with a radius of gyration of five.

The restoration function selection procedure was as
follows. Several restoration functions were computed based
upon white noise spectral density amplitudes approximating
the spectral density amplitude estimates of the system noise
processes previously described. The data of Figure 5.3 was
restored by each function. Then the graph of data line 110
and the corresponding frequency spectrum were compared to
those of FPigure 5.5 and 5.6. The spectrum of line 110 for
each restoratinn was examined to determine if the fundamental
frequency components of Figure 5.5, approximately the first
22 normalized frequency components of Figure 5.6, had been
amplified without introducing higher frequency noise com-
ponents of comparable magnitude. In addition, the graphs of
data line 110 for each restoration were compared to that of
Figure 5.5 to determine the degree of resolution enhancement
by estimating the rise time associated with the luminance
level change between the left most side and the "hole" of
the Pentagon.

Figure 5.7 and 5.8 represent the graphs of data line
110 and its spectrum when the restoration function based on
flat noise spectrum ¢_(f) = 107° (Figure 4.67) is applied
to the data of Figure 5.5. The spectrum shown in Figure 5.8
indicates that significant high frequency spectral components
have been introduced during the restoration prccedure.

Since these high frequency components have the same general




R

5‘*-00_

£7.00 +

0.00 — ,

1 1
0.0 384.0 512.0

128.0 265.0
NORMALIZED DISTANCE

Figure 5,7 Graph of Data Line 110 of Figure 5.5
after Restoration with the Filter of Figure 4.67
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shape as the spectrum of the restoration filter, shown in
Figure 4,65, it is reasonable to assume that these spectral

components are the result of amplification of the system

noise by the restoration filter. In other words, the assumed

noise spectral density amplitude of 10“5

for the computation
of this filter was much less than that of the composite
system noise process. Figure 5.9 shows the result of this
restoration to Figure 5.3. Figure 5.10 is a 2X linear
magnification of the upper left quadrant of Figure 5.9.

By increasing the assumed noise spectral density
amplitude to 10_4 a new rescoration function shown in Figure
4,73 is obtained. Figure 5.11 and 5.12 show the graph of
data line 110 and its correspcnding spectrum when this
restoration function is applied to Figure 5.3. It is clear
that the high frequency noise components, shown in Figure
5.12, are of less amplitude then those of Figure 5.8. It
should again be noted that the shape of the noise spectrum
in Figure 5.12 is determined by the spectrum of the resto-
ration filter. Figure 5.13 represents the result of apply-
ing the restoration function of Figure 4.73 to the data of
Figure 5.3. Pigure 5.14 is a 2X linear magnification of the
upper left guadrant of Figure 5.13.

By further increasing the noise spectral density
amplitude to 10"3, the restoration function of Figure 4.79

is obtained. Pigure 5.15 and 5.16 represent the graphs of

data line 110 and its corresponding fregquency spectrum when
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Figure 5.9 Restoration of Figure 5.3 with the
Filter of Figure 4.67

Figure 5.10 2X Linear Enlargement of the Upper
Left Quadrant of Figure 5.9
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Figure 5.11 Graph of Data Line 110 of Figure
5.5 after Restoratior with the Filter of Figure
4.73
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Figure 5.12 Frequency Spectrum of Data Line
110 of Figure 5.11




Figure 5.13 Restoration of Figure 5.3 with the
Filter of Figure 4.73

Figure 5.14 2X Linear Enlargement of the Upper
Zeft Qunadrant of Figure 5.13
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Figure 5.15 Graph of Data Line 110 of Figure
5.5 after Restoration with the Filter of Figure
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the restoration function of Figure 4.79 is applied to the data
of Figure 5.3. Although the high frequency noise components
are still evident in Figure 5.16, the effect on the data, as
shown in Figure 5.15, appears negligible. Figure 5.17 re-
presents the restoration of Figure 5.3 by the restoration
function of Figure 4.79. Figure 5.18 is a 2X linear magni-
fication of the upper left quadrant of Figure 5.17.

Additional restoration functions were computed based on
various other amplitudes and shapes of the noise spectral
density. These correspond to Figure 4,70, 4.73, 4.75, 4.83,
4,87, and 4.91, and each was applied to the data of Figure
5.3. However, no significant improvement was achieved com-
pared to the results of Figure 5.17 and 5.18 obtained by the
restoration function of Figure 4.79. It should also be noted
that additional interpolation ratios were applied to the image
of Figure 5.1 to determine if a better "match" could be
obtained than that of 17 for the vertical axis and 12 for the
horizontal axis. These ratios included 10/7, 14/10, and
20/14,. However, no improvement was obtained over the 17/12
ratio for any of the restoration functions previously dis-
cussed.

A comparison of the graph of data line 110 for this
restoration, Figure 5.15, with that of the original inter-
polated image, Figure 5.5, shows that the rise time for the
restoration as measured for the transition between the left

most side of the Pentagon and the "hole" is approximately one



Figure 5.17 Restoration of Figure 5.3 with the
Filter of Figure 4.79

Figure 5.18 2X Linear Enlargement of the Upper
Left Quadrant of Figure 5.17
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half that of the original. 1In addition, the sides of the
Pentagon as shown in Figure 5,17 and 5.18 are displayed with
fewer grey levels, the transition defining the sides is more
sharp and the "hole" is somewhat larger than as shown in
Figure 5.3 and 5.4, as would be expected by a resolution
enhancement. There is also better delineation between the
sides of the Pentagon and the topographical features imme-
diately surrounding it in the restored images of Figure 5.17
and 5.18. Also an examination of the other topographical
features of Figure 5.3 and 5.4 shows that these features are
displayed wiEh greater contrast and are less amorphous in
shape in the restored images of Figure 5.17 and 5.18.

One of the most significant results of the restorations
shown in Figure 5.17 and 5.18 is with regard to the data
truncation error. For the classical "inverse" restoraticn
filter, with no constraint of the radius of gyration of its
point-spread function, this error would have propagated
throughout the corrected data set substantially reducing
image guality. As shown by the restorations in these figures,
this error though noticeable at the extreme edges, becomes
negligible after about 25 points into the data record from
each edge., In addition to reducing the data truncation
error, the constreint in the radius of gyration of the point-
spread function ¢f the restoration filter also produced a
function which contained less than 30 points Qf significant

amplitude as compared to the classical "inverse" restoration
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point-spread function which would have required as many points
as the data record to be corrected, which for the corrections
of Chapter 5 would have been 512 points. This reduction in

the size of the restoration function should also increase

data processing efficiency.

5.4 Problems of ERTS Data Collection System

As a consequence of this study, two significant problens
; were encountered that are inherent in the ERTS data collection

¢ system, The first problem is the poor signal-~to-noise ratio

of the ERTS data. This problem could be reduced by both
reducing the quantization level increment and by increasing
the dynamic range of the data prior to guantization. The

f second problem, the need for relatively large interpolation
ratios to match the effective blurring aperture of the ERTS
data system to the available restoration functions, could be
minimized by increasing the data sampling rate. Since less

interpolation would be required, both greater interpolation

accuracy and increased processing efficiency could be
achieved. By addressirg both of these problems, more power-
: ful restoration functions may be applied to the data thus

producing even greater resolution imprcvement.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

|
|
E

6.1 Conclusions

This study has demonstrated that it is possible to design
a restoration filter based upon minimizing the radius of
gyration of the composite system point-spread function while
constraining the radius of gyration of the point-spread
function of the restoration filter and the noise power in the
restored image. By assuming that the blurring aperture and
composite system noise process are separable,a significant
reduction in solution complexity was introduced. Transforma-
tion of the defining spatial equations into the frequency
domain led to a further simplification in that a system of
linear differential equations results for second-order
spatial weighting funcations in both the radii of gyration
of the composite system and restorPtion filter point-spread
function. Through application of well-known numerical
solution techniques to this system of equations, a solution
which satisfied the original constraints was obtained.
Additional control over secondary oscillations in the com-
posite system point-spread function was made possible by
the introduction of an iterative technique. It was further
shown that the resulting restoration filters satisfied the
fundamental design criteria: reduction ~f the radius of
gyration of the composite system point-spread function, and

reduction of truncation error by constraining the radius of




et ey g -y e

167

gyration of the restoration filter point-spread function.

One of the most significant results of this study was
the successful application of this restoration technique to
data which was blurred by an unknown function. By assuming a
Gaussian model for the ERTS multispectral scanner aperture
and employing a interpolation technique to match the effective
scanner blurring aperture to the Gaussian aperture for which
the most powerful restoration functions had been computed, a
significant restoration of truncated ERTS data was obtained.
In addition, because of the constraint on the radius of
gyration of the restoration filter point~spread function, the
truncation error was almost entirely limited to a small region
near the edges of the image. Thus substantial restorations
having a high signal-to-noise ratio and negligible truncation

error were achieved,

6.2 Suggestions for Further Study

As a consequence of this investigation, several areas of
additional study may be defined. ¥irst by compressing the
enhanced interpolated data to its original scale, classifi-
cation studies may be performed to determine the effect of
resolution enhancement in classification accuracy. Secondly,
by increasing the numerical precision of the restoration
function computation program, more powerful restoration
functions computed for blurring functions having more points
per blurring aperture width than that for the Gaussian aper-

ture with a radius of gyration of five could be applied to
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the ERTS data. Thirdly, the design of a restoration filter
which would have a spatially variant constraint on the radius
of gyration of the point-spread function of the restoration
filter should provide greater resolution enhancement near the
center of a truncated image while simultaneously controlling
truncation error at the edges of the restoration than the
spatially invariant constraint on the filter of this study.
Fourthly, the development of a similar filter using finite
difference equations rather than differential equations may
reduce the numerical errors and resulting solution in-
stablilities encountered with differential egquation solution
algorithms. Finally the analysis of blurring apertures for
other than Gaussian functions should provide useful results,

particularly for rectangular functions where linear motion

blur correction is desired.
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APPENDIX A
DERIVATION OF RELATIONSHIP BETWEEN DATZ RECORD
TRUNCATION ERROR AND RESTORATION FILTER POINT-~

SPREAD FUNCTION

For clarity, the following analysis is based upon
one-dimensional blurring and restoration functiéns.
Figure A-1 defines the parameters of the basic system under
consideration. The blurring system output, y(t), can be

expressed as

o0

y(t) = fx('r)hb(t—'r)d'r (A~1)

- OO

where x(t) is the original signal and hb(t) is the blurring
function. A truncated record of y(t) could be defined as

YT(t) = y(t} u(t-to)

m

y(t) - y(t) ulty-t). (a-2)

Define z(t) to be the restored version of x(t) which is

obtained from a correction of yT(t) as

2(t) = [ h_(t-B)y,(B)as (2-3)

-

|
i
1
!
i
i
!
i
{




hb(i) hr(f)

-
=~
U

x(t) _[BLurrnGg | ¥ () RESTORATION|  z (1)
.___‘:_‘";
FUNCTION FUNCTION

Figure A~1l: One Dimensional Composite Imaging
System
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which after substituting Eq. A-3 into A-2 bacomes

Z(t)

]

[ h_(t-8)[y(B)-y(B)ulty~R)]1dB

Ll

[ b (e-B)y(B)AB - eg (%) (a-4)

for

where eT(t) represents the error resulting from a
truncation of y(t) and may be expressed as

&

e (t) = _i h {t-B) y(B)dB (A~5)

for

Define hrl(t—S), a duration limited form of hr(t-B) so that

h(t-8) = m(t-B) h (t-8) {A-6)
where m(t-B8) is a monotomically decré&sinq wedighting
function such as exp-(t-R)?2] so that

| m{0) = 1 (A-7)
and
lim

(t-B)+eo (E-B) =0 (A-8)

From Eq. A5 and 6 define the truncation error resulting

from a restoration with a duration limited form of hr(-) as
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£y

ep (&) = [ b, (t-B)y(B)aE

for

From Eg. A-6 and 9,
£
E {ele(t)} = E‘{_i m(t~g)h (t-B)y(B)AB

g
f m(t—a)hr(t—a)y(a)du}

t
0
=B { [[ m(t-8)m(t-a)h _(t-B)h _(t-0)y(B)y(x)dedp}

- OO

(A-10)
which because of the shape of the weighting function,
Eq. A=7 and 8, may be upper bounded

E
[

E {eq ()} ¢ m®* (£)E{ [[ h_(t-B)h _(t-a)y(B)y(e)dadB}.
- (A=~11)

Assuming that y (-) is a sample function from a wide-sense

stationary random process, then Eq. A-11 may be rewritten

as
g

E {eg, 2 (01} mz(t{i! h, (t-8)h, (t-a)R (0-B)dadf

A

g

2 — 2
m? (£) R (0) [ [ h (e-B)dBI®, (a-12)

-0

A

B e R Gl e e e s o E Samg el ARSI mASSE— o SRR R e
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Since there is a constraint on the energy of the
restoration function, the right side of Eg. A~12 is finite
for all t., Taking the limit with respect to t of both

sides of Eq. A~12,

lim E{ele(t)} = 0, {a-13)

since

lim m*(t) = 0, from Eq. A-8.

o

Thus as the distance from the truncation point approaches
infinity, the variance of the truncation error produced by

a duration limited restoration function approaches zero.




APPENDIX B

DERIVATION OF EQUATION 2-21

The gradient of Eg. 2~12 may be written as
m -— -— — —
J [Al(u,z) + al(u,z)lh _(z)dz

-0

VI
+ Ay _£ [Az(ﬁ,E) + Ai(ﬁ,%)]hr(é)dg
+ A i [AB{E,E) + Ag(ﬁ,z)}hrcz)da
m — - - — -
+ Ag i B, (u,z) + 2i(u,z)lh _(z)dz. (B-1)
Substituting Eg. 2-14, 2-17 through 2-20 into Eg. B~1,
>
_i (A (u,z) + AZAs(u,E) + Ay, (u,z)]lh (z)dz
N _i s (h)8(u-z)h_(z)dz = 0

or

_i [Al(ﬁ,E) + AZA3(E,E) + A3A4(E,E)1hr(i)dz

+ Als(ﬁ)hr(ﬁ) = 0. (B-2)

STRN] B PR N LR
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APPENDIX C

DERIVATION OF EQUATIONS 2-25, 27, 2%, and 31

Substituting Eg. 2-13 into 2-24,

By (E,V) = {ij w(V)h, (v-2)hy (V-1)av

e-:’zqTfu ejzm"z du dz. {C-1)

Introducing a change of variable into Eg. C-1 where
vV-u=a (C-2)
= = p - - - ~j27E (v-a)
B, (£,%) = {ij w(¥)hy (v-2)hy (a)e”?

eJ2™Z 4T a5 az

1

H;(E) f}wig)hb(§~5)e_j2ﬁ%5 ejzﬂﬁida 43
- (C~3)

and introducing another change of variable into Eq. C-3

where

voE=E (C-4)

==

B (F) [f w(mn, (Fre I3 EI2V (Bl 4

h

N
<l

=
it

(Brm, 5y [ w@e 2V EVgy

I
o' s

(§)Hb(§)W(f-5). {C~5)

[}
o™ %

oo
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Following a similar development,

P S e L emem
B,(E,9) = [f 3,(5,5)e 2T I 2 2054z (C~6)
-0

and substituting Eq. 2-14 into Eq. C-6,

jZﬂfUQJZWdeEdE

5,89 = [] s(@6 (51"

- [ s@ei2mEEN) g

= S(E-v). (C~7)
B3 (E,V ff A, (a,%)e ~j2mfu jznvzd ndz (c-8)

which after substituting Eg. 2-15 into Eg. C-8 becomes,

B, (E,9) = jj R (E-1)e 12T 01V 2 a7, (c-9)

Introducing the change of variable,
zZ-u = 0 (c-19)

into Eq. C-9,

B,(E,9) = [fR (3)e~32mEu I2MV (uta) grqg
* - -2 R (F=0) -
= @nn(v)_i j2ma(£-V) a3
* - - -
= o_ (V)8 (E-9). (C-11)
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And finally,
B, B0 = [f 2, (§,7)e 127 E0eI2MV2 4047 (C~12)

Substituting Eg. 2-16 into Eg. C~12,

= - . ’ 1 iy P pniiient ""_"' -
By(f,v) = - ——— [f Bp” (v-=)n (v-u)dv
anef et
H
= eHjZﬂfuej2ﬁvzdadE. (C-13)

By introducing a change of variable into Eg. C-13 where

V~-z=a, (C-14)
l‘ oo 00 N 2 ——
B,(f,v) = ~ ——— {f { [ nl” (a)e 12TV 45
4 i 2e 2 b
41t - =00
H
hy (:\-T—-ﬁ)e—jzﬂfuej?'ﬂvvdﬁd; (c~15)

and recognizing that
® _-2 - - (=] . = _
[ ny7 @e ¥ ™aa = [ {n (@)% (@)}e 0" Yda,  (C-16)
-0 -

and using the convolution property of the Fourier

transform,

[ ny7@e 2 ™%E = <oan?32E (V) (C~17)
A 5

Substituting Eq. C-17 into C-15,

-2 =4 . —— . ———
=0y N = = =y ~j2miu_Jj27Wvv - o=
ByEV) = = B V) S by, (=de e dudv (c-18)
H

and introducing another change of variable where
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¥-u = B, (c-19)

Eg. C-18 becomes,

-2 @ . - . w—
B4(§,5) ] .uz ff hb(E}ejzwv(u+6)e—32ﬂfudad§

£ -0

H

-2 co . .- -
e Caal
£y -

2

= .-_1’-2- |8, (V) ]28 (£-9). (C-20)
fH
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APPENDIX D

DERIVATION OF EQUATION 2-92

Substituting Eg. 2~47 and 50 into 2-91,

VL
X

or

< * B o
= __!; [q:x(fx)%x(vx){_ e 2 877 (E vy )

4 X,
‘ ’ 1 Pl —
+ cf (fx-vx) - prmy 8 (vx—-fx) + o8 (v, Gx)}
TR,

1 - _ . _ 1 o -
+ llx{— 8 (fX \Jx) A dxa(fx vx) —_— (\Jx fx)

am?x 2 Ay 2
S )
+ 4 (vx-fx)}lﬂrx(vx)dvx + 2[A2x@m(fx)
fX z 2 \
+ 7\3X(-f-;k~) ]r;DX(fX)I ]er(fx) = 0, (D=1}

*
B I%X(fx} dz i
- el WCRL BCR}
X

2%
W

EERIC LS R
+ 2¢ (EY|“H_(£) - H_(£
X H_")X X X 2’!1'22{82 dfxz =z

£, =
b4
+ 2dx H::x(fx) + 2 [?\zx@ (fX) + }L3X (-E-I;c-)

l}%x(fx)lz]ﬁrx(fx) =0, (D-2)




oxr
VI, =
+
+
+

or
Vi, =

2'ITX

Ay
P}JX(fX)H;{(fX)] -
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Hb" x L7 (EH_(£,) + 28 (E)E (£)

H‘"(f )
27T xs
2[(a +7\3x[ } )Iqox(f )2+ A8 (£)
= -3
dx] er(fx) =0, (D-3)
(f 3|2 : 7\
217 sz ZTerS
o F(EVE(E,)
_ '%x(fx)%x(fx} B (f )_[be X Et;x b
% 2 =X 2mex
Xy W
f 2 )
2({cx+)‘3x Hx) }l}{:x(fx)l * A2x®nnx(fx) * dx”

er(fx) = 0,

(D-4)
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or
(R E NN ke S 7 ST 2
VI = - [ be s 1w IHaJ(f )
x 27wix ®x 2 Iz %
W S
.,Lf.} (f )
- be rx(fx)
T2x
w

[E (OB (E) - antx Plle bhy (£ /8,0%]

27? x
Ibe(f )lz + A2x nnx(fx) +d }]H x)
= 0 r (D-’S )

which may be written in normalized form as
x

- W) 2 i

VI, = fo(fx) + 2be(fx)ﬁbx(f xg H;X(fx) ‘

* -~
/ [lex(fx)IaXs2 * Alxxwzl + xsz[be(fx)be(fx)

- amix Pl g (B /8, 02T B ()]

+ A (£,) + & B _(£)/11B (£)]%x"

2x nnx ' x

2 =
+ Alxxw ] C. (D=6)
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APPENDIX E i

DERIVATION OF EQUATION 2-93 i

From Eq. 2~37, 2-50, and 2-75,

Ky, = ; ff 877 (£,-v, K tx(fX)er(vX)au df_

X & =eo
4m? -

+

dX-£J 6(fx-vx)er(fx)er(vx)dv df_ ;

' l o, by
- —— (£ )HZ (£ )df ;
4ﬂzxsz i Mg Py ) B (g ;

+ a4, f ]Hix(fx)|2df . (B~1) ;

From Egq. 2~94,

Erx(fx) = Errx(tx) + 3 HrlX(fX) (E—Z)

and

*

rx(fx) rrx(fx) - J Hrlxifxl (E-3)

Multiplying Eq. E-2 and E-3,

;;(fX)H ( X) = H;;x(fx)ﬁrrx(fx)

* Hfix(fx)ﬂrix(fx) *13 [Hiix(fx)ﬁrrx(fx) i

- rrx(fx)Hilx(fx)] (E-4)
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Substituting Eq. E-4 into E-1,

o0

- . 1
Fix 7 4ﬁzxsz[_£{ e B3 e (B
FOH (B H gy (£ VDS, 4] f THE T (5

[«e]
] 2
Hopy fx) Hirx(fx)ﬂilx(fx)}dfx] + dx _i lﬂix(fx), d?f

(E-5)
Since hrx(x) is assumed to be a real function, then
Hfrx(f ) is an even function
and
rlx(fx) is an odd functlon.
Thus the second integral in Eg. E-5 is zero, and
_ 1 P -
le - dmlx 2 j L rrx(fx)Hrrx(fx) Hrlx(fx)ﬂrix(fx)3df
TR T =
2 0]
2 -
+ dx__n{ler(fx” af . (E-~6)
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DERIVATION OF EQUATION 2-119
Substituting
rX

-1 s .
— : - J2TE_ T
B (1) = F R (£} = [ B (fe7"Pxidar,  (r-1)

into Egq. 2-116,.

(== oo

= - _ j2wf_ T
I, = 2....{! Wx(x)mx(x)hbx(x 'r)_nfo er(fx)e x daf drdx.
(F—-2)

Introducing the change of variables into Eq. F~2,
X =T = Oy (F=-3)

ther

I o= -2 [ (£ [f w.(om (0h (@)ed 2T ) g a0 as
m e EXTTRT J4TX X bx X

!

-2 [ B, (508, (£) w (x)m (x)eI 2" xaxnag . (F-4)

By making the substitution,

jzwvxx

Il

-] had
w, (%) FoOL 0= [ W )e

dv (F-5)
x
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into Egq. P-4,

=3 [>]
= - 32'n'x(f +v_)
I 2“£ E&x(fx)ﬂbx(fx)_io W (v )m (x)e X X
dxdv df
x X

[ o0 * -
= -2 f Hix(fx)ﬁbx(fx)ﬂi W (VM (£ +v )dv df . (F=6)

-0

Finally Eq. F~6 may be written in the form of Bg. 2-118,

I, = _£ Be (£ VH__ (£ )af_ (F-7)
where
® *
Bog(fy) = =2B, (£ [ W (v M (£4v 0av, (F-8)

J;i,,.;m,x‘:—.-:rm'-—-'
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APPENDIX G
TABULATION OF RESTORATION POINT-SPREAD FUNCTIONS

OF FIGURES 4.67, 4.70, 4.73, 4.76, 4.79,

4,83, 4.87, and 4.91
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