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ABSTRACT

Terminal voltage measurements with long cathodes in a

high power, quasi-steady MPD discharge show that the crit-

ical current for the onset of voltage fluctuations, which

was previously shown to be a function of cathode area, ap-

proaches an asymptote for cathodes of very large surface

area. Floating potential measurements and photographs of

the discharge luminosity indicate that the fluctuations are

confined to the vicinity of the cathode and hence reflect -a

cathode emission process rather than a fundamental limit on

MPD performance.

Photoelectric measurements of pa.rticular argon neutral

and ion transitions show that the higher electronic states

are populated more heavily than would be calculated on the
basis of Saha-Boltzmann equilibrium at the local electron

•	 temperature and number density. Prelimina.ry optical depth

measurements show that for a. current of 4 kA and an argon

mass flow of 12 g/sec, a. population inversion exists between

the upper and lower states of the 4880 An argon ion transition.

Measurements of current distributions in large hollow

cathodes show that for a current of 7 kA and a. mass flow of

4 g/sec, the cavity diameter and shape have little effect on

the distribution of current within it. However, for a. fixed

cathode configuration, the current conduction pattern is sen-

sitive to both the current and mass flow. For a given cur-

rent, there is a well-defined range of mass flows for which

th "	 +- enetrates dee l into the cavity with the ex-

tent of current penetra.tion increasing even further as the

current decreases. Spectroscopic and photographic studies

of All radiance and electron densities within the cavity in

dicate a corresponding distribution of highly conducting pla.sma.'
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I.	 INTRODUCTION

Following the move of the Electric Propulsion Labora-

tory from the Forrestal Campus to the Engineering Quadrangle

in the spring of 1974, and the modifications to the experi-

mental facilities which accompanied this move, full-time

staff and student effort returned to the study of MPD dis-

charges, pla.smadynamic lasers and hollow cathodes. 	 In the

MPD portion of the program, one graduate student, M. Boyle,

finished his Ph.D. thesis work, and will bep resenting a sum-

ma.ry paper of this work at the AIAA 11Th Electric Propulsion
N
4 Conference, March 19-21, 1975 at New Orleans, Louisiana.

With his departure, one graduate student and one undergraduate

student continue in this area. 	 In one project, the influence

of the cathode on arc performance and possible performance

limitations are under investigation and are presented in

Section II of this report. 	 The other project is focused on

cathode emission mechanisms and will be reported at a later

date.

Three students are presently participatit;g in the study

of plasmadynamic lasers, using the quasi- steady MPD acceler-

ator to generate a rapidly expanding dense plasma flow. Of

the two Ph.D. programs, one of these includes optical depth

measurements in the conventional three-dimensional MPD con-

figuration and is discussed in detail in this report. The

other doctoral program utilizes a two-dimensional geometry
r:! q

to produce a greater extent of uniform active plasma trans-

verse to the flow. Since this latter project was reviewed

in the previous semi-annual report, only a brief status re-

port is included here. The undergraduate project in this

area, recently begun, involves spectroscopic' determination

in the exhaust plume of the presence and distribution of ex-

cited and ionized species relevant to the collisional-radia-

tive recombination model.

I
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Significant progress has been made in the investigation
of large hol?.ow cathodes. Following an earlier series of

tests thatrevealed an insensitivity of the current distri-
bution to the hollow cathode configuration, one cathode was 	 »

selected for study over a, wide range of operating conditions.
a

The large changes in the measured current distribution that

are reported here will also be the subject of a second paper

'	 to be presented at the AIAA 11th Electric Propulsion Con

ference. Earlier results have been presented in a paper en-

titled "Hollow Cathode Physics" at the Third European Electric

Propulsion Conference in Hinterzarten, Germany in October, 1974.
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Cathode Studies (Rudolph)

I

Recent measurements of terminal voltage and potential

j	 distribution in the MPD discharge chamber have established

the importance of the cathode region in determining the op-

t	 timum accelerator performance. Earlier experiments in other

c,	 laboratories showed that for a given propellant and mass

flow, there appeared to be a maximum current that could be

driven through the arc, beyond which erratic arc operation

resulted.A-1,A-2 This maximum current translated into a

maximum thrust and specific impulse and thus put an upper

limit on anticipated MPD performance. However, Boyle has

recently shown that the erratic a.rc operation is related to

the cathode surface area., and that for cathode surface areas

up to 40 cm2 , the maximum current and hence.the maximum at-

tainable performance continues to increase. 159,163

To verify this trend, a larger cathode (length,) = 13.6

cm; surface area., A = 75 cm 2 ) was examined and a higher lim-

iting current was observed. 159 More recently, a still larger

cathode (.Q	 26.3 cm, Ac = 158 cm2 ) has been studied. In

addition to terminal measurements to determine the maximum

current for this cathode, current and potential distributions

have been mapped in the vicinity of both the 13.6-cm and

26.3-cm-long cathodes to ascertain whether the erratic op-

eration still originates near the cathode surface for these

larger cathodes.

A second ay in which the cathode influences accelera-

tor performance derives from the intense plasma which forms

immediately downstream of the cathode tip. The role of this

cathode tip pla.sma in the overall acceleration process is un-

clear since it is a source of both a high pressure region on
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the cathode face which leads to a positive thrust increment

("pumping"), and a high temperature which generates excited

states in the plasma. with consequent radiation and frozen

flow losses.	 With the new long cathode, it is anticipated

that the axial current components, which produce the cathode

tip plasma via radial Lorentz forces, will be minimized, and

hence the operation of an accelerator dominated by purely

axial Lorentz forces can be studied.

The electron configuration with the 26.3-em-long cath-

ode is shown in Fig. 1 compared to the previous configuration

with the 13.6-cm-long cathode.	 The 26.3-cm cathode is a

1.9-cm-diameter, stainless steel cylinder with a hemispheri-

cal tip.	 The upstream beveled edge of the cathode serves as

the inner wall of a. mass injection annulus at the base of the

cathode. 163	Unless otherwise noted, the mass flow, m, is

6 g/sec of argon equally divided between the cathode base

annulus and 12, 0.32-cm-diameter injection ports equally

spaced at a. radius of 3.80 cm 	 in the ba.ckplate of the dis-

charge chamber.	 y

To determine whether a significant radial "pumping"

force exists for this electrode configuration, the local mag-

netic field distribution was measured at a total current, J,

of lb kA.	 The resulting enclosed current contour plot is

shown in Fig. 2.	 Two features of this current distribution'

are immediately apparent.	 The first is that the current does

not completely cover the cathode surface, in contrast with 	 ¢,

all previous cathodes where current was observed to attach

over all of the cylindrical surface as well as the downstream

end of the cathode.	 Since it is the axial component of cur-

rent associated with this tip attachment that produces the 	 a

radial "pumping" force, the resulting cathode tip plasma

should be absent with this long cathode.	 The second feature

is that despite the attainment of a current distribution that

.irk

t
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does not cover the cathode tip, a significant axial current

component still exists near the cathode surface for the fur-

thermost downstream 4 kA. This component of current com-

presses the plasma against the cathode surface thereby con-

verting some fraction of the kinetic energy into thermal

energy and obscuring the analysis of the purely "sweeping"

type accelerator. It thus appears that for this type of

cathode,, it is not possible to produce a current distribution

which is only radial in the vicinity of the cathode. Further

study of the cause of the axial current components, although

interesting, has been delayed until after the effect of these

large cathodes on the terminal properties of the arc and thus

on the maximum pra.ctica.l current ha.s been determined.

Spurious or erratic arc operation is most easily de-

tected by fluctuations in the arc terminal voltage. Figure 3

shows a typical voltage-current characteristic for the 26.3-cm

long cathode at a mass flow of 6 g/sec. The onset of voltage

"hash" is seen to occur at a critical or onset current J* of

25 + 2 kA for which the terminal voltage V* is 160 + 25 V.

Similar voltage-current characteristics obtained with this

same cathode at other mass flows indicate a critical current

which scales such that the parameter J* 2 /m is a constant.

For this configuration, the constant is 96 + 10 kA2•sec/g,

which lies considerably above the value of 40 originally pro-

posed as a fundamental limit for an accelerator operating with
argon.

The changes in the discharge radiance and structure as

the onset current J* is reached are clearly displayed in the

two perspective photographs shown in Fig. 4. These photos

were taken through a 4880 R (AII) narrow ba.rdpa.ss filter and

show the 26.3-cm cathode at a mass flow of 6 g/sec for a sub-

critical current of 17 kA (Fig. 4a) and the critical current

of 25 kA (Fig. 4b)	 The flow in these photographs is from
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left to right with the tip of the cathode extending down-

stream approximately one anode diameter beyond the field of

view. For currents below the critical current, the argon

ion luminosity is seen to be diffuse and symmetric about the

cathode axis. However, at the critical current, a well-de-

fined luminous shell has formed approximately 8 mm away from

the cathode surface. The tendency for this shell to increase

in diameter at the more downstream locations suggests a mag-

netic nozzle effect which has been used previously to explain

the plasma acceleration downstream of the arc chamber for

shorter ca.thode configura:tions. 159,162 Another feature of

the photographs worth noting is the increased incidence of

intensely luminous cathode spots at the critical current.

The values of the onset current and voltage for both

the 13.6 and 26.3-em cathodes are plotted against cathode
area. in Figs. 5 and 6, respectively. Also shown in the _fig-

ures are the critical values measured by Boyle for a similar
configuration but using tungsten cathodes instead of stain-

less steel, 159 and the values measured by Villa.ni using

stainless steel cathodes and a 20-cm-long cylindrical alumi-

num anode whose inner diameter of 10.2 cm equals the orifice

diameter of the anode plate used to obtain the present data. 165

Referring to Fig. 5, the results show that increases in the

cathode surface area. can,greatly increase the maximum current

achievable before voltage fluctuations ensue. However, the

effect is not unlimited, and at the larger cathode areas, an

asymptotic value of the onset current is reached: approxi-

mately 25 kA for the present anode orifice plate configuration
and about 31 kA for the cylindrical anode. These two distinct
asymptotic values indicate that care must be taken in at-

tributing the "hashy" voltage onset to cathode effects alone. 163

In Fig. 6, the terminal voltage at which fluctuations
first appear is shown to be a weakly varying function of cath
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ode area, even with the large changes in anode configuration

and cathode material. To first order, this onset voltage can

be approximated by a. constant value of 170 V. This suggests

that if the fractional distribution of potential does not

change greatly with cathode configuration, then the voltage

fluctuations may originate in one specific region of the dis-

charge when the local electric field exceeds a particular

critical value.

i

ii

Following experiments by Boyle which showed that the

-voltage fluctuations appeared to originate at or near the

surface of the smaller ca.thodes, 163 floating potential mea-

surements were made in the vicinity of both the 13.6 and 	
9

26.3-cm cathodes. The floating potential probe consists of

a. 0.25-mm-diameter,tungsten wire of which 2 mm is exposed to

the plasma.. Tektronix P-6007 voltage probes were used to

measure the differential potential drop between the cathode

and the probe, Vc and between the anode and the probe, Va.

The floating potential was measured a. few millimeters off

the cathode surface, and at each location the sum of V C and

V  was shown to agree with the terminal voltage within experi-

mental error. Since the potential was found to be only weakly

dependent on axial position, the data. presented here were ob-

tained with the probe at a. fixed position in the anode plane.

The cathode voltage and terminal voltage for the-13.6-cm	 R

cathode are compared in Figs. 7a and 7b for mass flows of 6

and 12 g/sec, respectively. Like the terminal voltage, the

cathode voltage also displays a transition to a hashy signa-

ture as the current is increased. The regions where ,,oltage

fluctuations were observed are shown in the figure for both

the cathode voltage and the terminal voltage. At each mass
flow, the cathode voltage is seen to become hashy at approx-

imately the same current as the terminal voltage indicating 	 y

that the fluctuations in the terminalvoltage probably orig
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inate in the vicinity of the cathode. The data for the 26.3

cm cathode, shown in Figs. 8a and 8b, lead to a similar con-
clusion.

It is also interesting to note that the cathode onset

voltages are not all the same. Thus, based on these data

alone, it does not appear that there is a particular valuej
: E	 of the electric field near the cathode, beyond which voltage

fluctuations occur regardless of the cathode configuration.

a

}
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III. PLASMADYNAMIC LASER STUDIES

A. Plasma Species and Optical Depth Measurements (Campbell)

The development of laser systems capable of producing

high power, coherent radiation in the visible and shorter
E

wavelength regions of the spectrum has recently begun to ;#

generate considerable interest. 	 The attractiveness of

such a device results from its many potential applications:

Raman scattering studies, isotope separation and other wave-

length selective chemical syntheses, space communications,

basic studies in the electronic structure of atoms and

molecules, non-linear optics, and laser fusion.

At present, gaseous laser systems with output in the

visible are primarily of the electric discharge type

(I	 < 100 amps, f_-ill pressure 	 x 0.5 torr).	 These lasers

'	 are limited to relatively modest CW output power ( < 10 3 W,

_	 multimode) due to material problems associated with the

large energy flux from the lasing medium to the electrodes

and enclosing walls.`' 3	 A more fundamental limitation may

exist however, since it has not been conclusively estab-

lished that output power increases monotonically with power

input to the working gas; saturation effects may result from

the particle kinetics which establish and maintain the

inversion.

CW operation in the ultraviolet ( X <	 0.4 ^u) has

been obtained with noble gases in low pressure electric s
Jdischarges with considerably lower output power ( 	 10 W,

multimode). A-4_	 The limitations on these systems are basi-

dally the same as for the visible lasers.	 Pulsed operation

in the W using high current electric discharges (e.g. the

TE N2 laser at 0.337 ,."	 and relativistic a-beams (e.g. mo-

lecular xenon at 0.174 /u) has produced output powers of

10 6 W for pulse durations of 10_
g
 to 1 0-6 sec.a

i^.
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In a.11 of these systems, pumping of the upper laser

level arises predominantly from inelastic collisions be-

tween lower lying states and electrons or heavy particles.

An alternate process for creating population inversions be-

tween electronic levels occurs in the recombination phase

of a highly ionized, nonequilibrium plasma. In this scheme,

pumping of the upper laser :level initiates from higher lying
energy states, i.e. the continuum, the bound states of the

next higher ionization level, and the bound states of the

ion or neutral in question. It is this lattermechanism
which is discussed more thoroughl y in'the following section

and is examined experimentally in the highly nonequilibrium

expansion of the plasma flow from an MPD accelerator.

Theoretical Considerations

The complete description of a plasma which is not in

local thermodynamic equilibrium requires a detailed knowl-

edge of processes occurring on a microscopic scale. In such

a. description, the distribution of the neutral and ionic

species over their internal energy states is not given by

the familiar Boltzmann relation (with the kinetic temperature
of the collision dominating species, the free electrons, as

a parameter), but must be determined from a set of coupled

differential equations encompassing all appropriate colli-

sional and radiative processes. The free electron number
density is not given by the Saha relation using he local

value of the electron temperature, but must also be found
from conservation considerations.

Because of the complexity of the problem and the large

uncertainties in the various rate coefficients, no general

solution appeared in the literature until 1962. In that
year, Bates et al. developed a statistical theory which de-

scribed the nonequilibrium phenomena of collisional-radiative
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relaxation of hydrogenic plasmas. 
A-5 The theory employs

the fact that over a wide range of electron number density

and temperature, the relaxation time for the excited states,

^k , is much shorter than the relaxation times for both

the ground state, I" l , and for the free electrons, e . It
can be shown that for a, fixed electron temperature, Te,

k e., n  (i	 (1)
Ve	 n 

where _nk is the number density of the kth level (k Z 2),

n the number density of free electrons, and C a constant,

at most of order 1. Thus, as long as nk « n e , the pop-

ulations of the excited states can be assumed to adjust in-

stantaneously to any change in the electron temperature with--

out altering the free electron or ground state number densi-

ties. It follows that little error is incurred by setting

the netproduction rate for the excited levels equal to*zero.

Using this "qua.si-steady" assumption, the excited level pop- 	 k

ulaaions and the collisional-radiative decay coefficient can

be determined as a function of nee T and the ground state 	 Y

number density, nl•

This type of calculation is illustrated in Fig. 9 in

which the inversion ratio9 2n4/94n2 is plotted against the

It i5	

, n , for an optically thin hydrogen plasma. 	 1recombination rate e
n that inversions occur if the incoming electron flux

from the continuum to the bound levels is large enough to sig-

nificantly perturb the bound-bound collsional and radiative
-	 -

processes (note the threshold behavior at ne S•: 109 cm 3 sec 1).

However, if the flux is too great, e.g. at large values of ne,

then collisiona.l processes which tend to thermalize the ex-

cited level populations will dominate and the inversions will

be destroyed. The figure also shows the strong dependence of

p
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the recombination rate and thus the inversion ratio on the

electron temperature.

A practical method of producing the rapid cooling nec-

essary to generate inversions by this mechanism is the super-

sonic expansion of a highly ionized plasma into a region of

reduced pressure. Because of the relatively long relaxation

time for the free electrons as compared to the local flow

residence time, ionizationa.l nonequilibrium results, from --

which population inversions can be created by the collisional

radiative recombination processes. Bohn has proposed a. plasma-

dynamic laser based on this mechanism which is capable of high

power (10 5 — 106 W) CW operation in the visible and UV. A-6

Other theoretical studies conducted by Gudzenko and Shelepin,A-7

and Goldfarb and Luicyanov -8 for hydrogen plasmas, and Bowen

and Parkp'
-g
 for nitrogen plasmas have also indicated the fea-

sibility of this process for creating inversions. Experimental

verification using low power ( ^ ;W 104 W) steady-state arc fa-
cilities has been provided by Gol'dfarb et a.l in argon, A-10

Bowen and Park in carbon at 0.248/1A ,A-11 Hoffman and Bohn in
hydrogen, A-12 and Irons and Peacock in C5+.A-13

The quasi-steady MPD accelerator offers two advantages
r

over the low power, steady-state plasma accelerator for study -
ing the pla.smadynamic flow processes which can lead to inver -
sions. First, the qua.si-steady MPD accelerator is capable of

operating over a wide range of ma.ss flows, arc currents and

propellant species, making accessible the entire power spec-

trum from a. few tens of kilowatts typical of the steady de-

vices, up to 100 MW. Second, because of the pulsed nature of

the MPD discharge (	 1 msec), diagnostic probes can be used

which are not generally suited to the hostile plasma environ-

ment in the steady devices. Using these diagnostics, it should'

be possible to establish the dependence of the inversions on

various plasma parameters. Thus, the MPD accelerator may

f

s
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provide a, viable alternative to short-pulse, nonflowing sys-

tems for the development of high power visible and UV lasers.

Experimental Program

In order to examine the applicability of the relaxation

model to the MPD exhaust plasma, photoelectric studies have

been conducted in the near infrared., visible, and ultraviolet

regions of the spectrum.	 From the measured intensity of line

radiation from various neutral and ionic transitions, it should

be r ossible to establish the deviation of the relative popula-

tions from that which would be calculated using the Saha rela.-

tion at the local value of ne and Te .	 In addition, the opti-

cal depth of the 0.4880 Ott All line was measured to determine
directly whether a population inversion occurs between the

upper and lower states of this transition.

A schematic of the optical arrangement for studying the

` plasma flow is shown in Fig. 10. 	 Radiation emitted by an

elementary volume of the plasma at the centerline of the dis-

charge is focused on the entrance slit of a Spex 3/4 m grating

spectrometer whose exit is connected to a Hamamatsu R818 pho-

tomultiplier tube.	 A 1200 ruling/mm grating blazed for 0.7500

is the dispersing element in the spectrometer. 	 Proper adjust-
i

ment of the entrance and exit slits provides a resolution of 1
approximately 1	 Typical openings of the entrance and exit

slits are 20 microns and 30 microns, respectively.

For the optical depth studies a. concave mirror (radius

of curvature = 67.5 cm) was placed on the opposite side of
j

the vacuum tank to direct the radiance back through the plasma.

f (Fig. 10).	 The focusing lens and variable iris were then ad- F

justed so that the accepted cone of radiation was matched to

that returned by the reflecting optics.
y

L

The MPD accelerator used in these experiments had a

10.2-cm-diameter anode orifice and a, 1.9-cm-diameter tungsten

^: i
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cathode which was 2.54 cm overall in length with a 1.27-cm-

long conical tip. Injected argon propellant was equally di-

vided between a cathode ba.se annulus and a ring of 12 holes

located at a radius of 3.81 cm in the boron nitride backpla.te.

In the experiments reported in this section, the arc current

was varied from 4 to 25 kA while mass flows of 6 and 12 g/sec

were used.

Line Radiation. The radiance from selected argon neu-

tral (AI), and argon ion (AII) transitions has been recorded

photoelectrically 36 cm downstream of the accelerator, a. lo-

cation calculated to lie within the relaxation zone for re-

combination of doubly ionized argon, AIII to AII. Figure 11
shows oscillogra.ms-of the photomultiplier response to the

0.7503? AI line and the 0.4880 ^A AII line. Also shown

in the figure are the arc current and terminal voltage. It

is evident that all traces attain a quasi-steady value, al-

though the AI record shows a large initial transient hump

associated with the propagation of the plasma, front through

the cold pre-discharge mass flow. In addition, while the

AII trace decays to a negligible value at the same time as

the current and voltage,, an "afterglow" radiance of AI is

seen. This radiance indicates the successive recombination

stages of the excited argon following current cessation.

From the following simplified expression for the photo-

multiplier response current, it is possible to estimate the

relative populations of the upper states of the two tra.nsi-

tions e

p	 (V) W /<1 It	 (2)
r

E

where (V) is the functional dependence of the photomul-
tiplier response current to its applied voltage (calibrated
separately), ON is the wavelength response of the photo-
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cathode to incident radiation, K 1 is a geometrical factor
which depends on the optical arrangement and is a constant

for a given experiment, and I t is the radiance integrated
over the entire line profile. Furthermore, assuming no ra-

dial gradients, I t can be related to the population densi-
ties of the upper atomic states by the following expression

njA,jkh-J

It 	
41F	 B j k L	 (3)

where A is the Einstein coefficient, L the effective path

length, h-J the energy of the transition, n  the population

density of the upper state, and B jk the radiation escape
factor. Thus, combining equations 2 and 3, applying the ap-
propriate atomic constants, and ratioing the two photomulti-

plier responses, the relative populations of the two upper
states is obtained. For the data in Fig. 11, the ratio of

the ( 3P)4p2Do5/2 All state to the 4p'(1/2) 0 AI state is
found to be 15 + 1.7.

In contrast, if local thermodynamic equilibrium is as-
sumed, then the population ratio of these two states can be

computed as a function of the electron number density and

temperature by combining the Saha and Boltzmann equations:

3/2	 LSE + I4p,

n 	 2	 21C mekTe	 gl — (	 kTe	 e	 )n2  ne 	h2	 92

i
where the subscripts 1 and 2 refer to the 2D5/2 All state

)
and the 4p'(1/2) 0 AI state, respectively, g is the degen-
eracy, p E the excitation energy of the 2Do5/2 All state
relative to ion ground (19.6 eV), and I4p , the ionization

	

energy of the 4p'(1/2) 0 AI state (2.53 eV)	 For an electron
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temperature of 0.8 eV and an electron number density of

1013cm -3 ,  then

l = 2.3 x 10-3n 2

Thus, the relative population of the excited levels

inferred from line radiance measurements exceeds by a factor

of more than 103 that calculated on the basis of LTE. This

overpopulation of the excited ionic states is consistent with

a recombination model in which the population is fed from

higher lying states in the parent ion and the next higher

degree of ionization. Measurements similar to those dis-

played here show that this overpopulation of the ionic states

persists for distances up to 76 cm from the accelerator.

In order to determine the extent to which the background

ga.s in the vacuum tank perturbs the observed radiance signals

(e.g. by absorption of emitted radiation), the 0.7503 ,u Al
and 0.4880 ? All lines were recorded photoelectrically for 	 ?

various vacuum tank prefill pressures. The prefill pressure a

ranged from 10-5 torr, (the pressure normally achieved prior

to each discharge) up to 7 torr. The arc current for these

tests was maintained at 16 kA and the injected mass flow was

12 g/sec.

In Fig. 12, the radiance from the 0.75034 AI line along

with the arc terminal voltage are compared for pressures of

10- 5 and 7 torr. Oscillograms at intermediate pressures show

that from 10 5 up to 3 x 10 2 torr, the signature of both the

line radiance and the terminal voltage are identical to those

in Fig. 12a. (The hump in the terminal voltage which appears

at the end of the 1-msec current pulse in Fig. 12a is spurious 	 a

and suggests a slight mismatch between the line and load im-

pedances; it has no influence on the quasi-steady operation

of the arc.) As the pressure is increased above 0.3 tom,
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the arrival time of the plasma front is delayed due to its

interaction with the ambient gas. Figure 12b shows that for

a pressure of 7 torr, the delay in the radiance signal is

accompanied by severe distortion in which a quasi-steady value

can no longer be identified. In addition, the terminal volt-

;:	 age has dropped from 135 V.to 112 V, a trend generally asso-

ciated with higher mass flow through the discharge region.

i
Data for the 0.4880 ,x All transition are comparable to

those displayed here, again with no effect observed until the

Y	 fill pressure is increased beyond 3 x 10
-2
 torr.

These results are consistent with earlier data from

steady state MPD accelerators where it was shown that back-

pressures greater than 10-2 torr can cause spurious thruster
operation. A-14 Although considerably more data would be re-
quired to resolve the complex gasdynamic processes occurring

in the present interaction of the exhaust flow with the am-

bient ga.s, sufficient data, exists to conclude that for normal

operation of the quasi-steady MPD device (background pressure

10-5 torr), the measured line radiance originates in the
flowing plasma. and is not perturbed by the background gas.

Optical Depth Measurements. Optical depth measurements

of the 0.4880 /u All line [3p54p(3 2P) D0 5/2 -+- 3p 5 4s (3P) 2P3/2]
were performed at an axial position 36 cm downstream of the

anode for the following arc operating conditions: argon

mass flow of 12 g/sec, and arc currents of 4, 8, 16, and

21 kA. This line was selected for the following reasons:

1) Due to the relatively high electron temperature ( 0.8 eV),

recombination from AIII to All would be expected to predomi-

nate over that from All to AI and thus the excited states of

All should be examined for inversions; 2) studies performed

on hydrogenic pla.sma.s using the collisional-radiative recom-

bination model predict inversions between energy states sim-
ilar to that involved in this transition; and 3) the line is

^i
s;

ems':-
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sufficiently isolated so that it can be recorded unambig-

uously by the spectrometer-photomultiplier detection system.

Figure 13 shows a few of the initial optical depth mea.

surements for a, mass flow of 12 g/sec and arc currents of

16 kA (Fig. 13a) and 4 kA (Fig. 13b). The photomultiplier

response is shown for two consecutive discrarges: one with-

out the reflecting optics, I 1 , and one with the reflecting

optics, I 2 . The traces show a delay after discharge initi-

ation before the arrival at the 36-cm downstream location

of the plasma front (approximately 40 and 300 psec for the

16 and 4 kA conditions respectively). Following this plasma

front, the radiance, like the previously measured plasma

temperature, number density, and velocity, is usually steady

with the exception of the lower currents where some time vari-

ation is observed.

From these data, the optical depth may be determined

from

rI1 

I 
1	 (5)

where	 is the optical depth and r, the effective reflectiv-

ity of the reflecting optics. A negative optical depth thus

implies a population inversion, while a positive optical ,depth

signifies an uninverted distribution, though not necessarily

Boltzmann. The accuracy of the optical depth determination

depends in turn on the accuracy with which the effective re-

flectivity r of the reflecting optics is known. Measurements

4	 of the optically thin continuum near the 0.4880 .,u line give

r = 0.65 ± 0.01.
1

From the measured optical depth, and assuming that radial

G	 gradients in-number-density and temperature are small, it is

possible to calculate a value of the inversion density, All

t.

k ^'
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2

ri =—A21^ An

	

8 r 41) 

L

	
(6)

where
F

A n = nu — ( gu ,g ' ) n.,	 (7)

A21 is the Einstein coefficient, At the full width at half-

maximum, L the effective path length, and the subscripts u

and I refer to the upper and lower states respectively.

Table 1 lists the measurements of optical depth and the

preliminary results of the inversion density for the 0.4880.,U

line at different operating conditions and representative

times after discharge initiation, t. The path length used in

these calculations was taken from previous photographs of the

discharge to be L 15 cm.

TABLE 1

Optical Depth Measurements
m = 12 g/sec

J(W	 t( ^ASec)	
Ay, 

(cm-3

	

21	 250	 0.64	 -1.2 x 1011

	

16	 600	 0.56	 -1.1 x 1011

/	 8	 600	 0.62	 -13 x 1011

	

4	 400	 -0.72	 3.2 x 1010

	

4	 600-	 -0.43	 1.9 x 1010

	

4	 800	 -0.43	 1.9 x 1010

The table shows that for the higher currents, population

V `	 inversions do not appear at any time during the discharge.
r,

i



However, the data also show that at the lowest current,

a',negative optical depth, indicative of a large population

inversion, is maintained for approximately 500 usec. A ten-

tative explanation is that by decreasing the current, the elec-
tron temperature is reduced sufficiently for the collisional-

radiative recombination mechanism to create population inver-

sions among the excited electronic energy states. If such a

large population inversion does occur in the recombining

plasma, then it should readily show atrong lasing in a cavity.

Therefore, a qualifying experiment was performed to substan-

tiate this measurement by placing an optically resonant cavity

transverse to the flow at the same axial location. As has been!

the experience of other laboratories, initial results have

proven negative which may be due to the following reasons:

1) the cavity was a marginally stable configuration, and 2)

the region of the plasma sampled by the cavity had a height

of approximately 600)A at the axis compared to 3 cm in the

optical depth measurements. Thus, the cavity may have been

sampling a region of the plasma where inversions do not occur.
Further experiments are in progress to examine the entire
region observed in the.optical depth measurements with a.

modified cavity.
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B.	 11,PD Discharge in a. Laser Cavity -(Dutt)

In the previous semi-annual report s the results of ini-

tia.l experiments with a unique 45-cm-wide discharge apparatus

were described. 159	Resembling a two-dimensional version of a

conventional MPD accelerator, the apparatus is designed to

maximize the optical path transverse to the expanding plasma

and thus allowa direct determination of whether lasing can

be sustained in the discharge or exhaust regions. 	 The explor-

atory experiments showed that the discharge current divided

equally between the two anodes	 for operation in ambient argon.,

that the current distribution was reasonably uniform along the

full width of the electrodes, and that a. cold flow mass injec-
tion system could provide a. uniform distribution of argon across

the backpla.te of the accelerator with a. 2-msec riset,ime.

However, these tests also highlighted certain character-

istics of the apparatus and discharge which required modifica-

tion before experiments including the optical cavity could
begin.	 This report describes the consequent extensions and

` refinements in the discharge apparatus, the mass injection

`
F:

system and the resonant cavity.

Y ;	 Discharge Apparatus	 €

Although the current distribution across the 45-cm elec-

trode width showed no gross asymmetries, it was felt that the

uniformity could be improved further by restraining the dis-

charge laterally for a. considerable distance downstream of

the electrode region. To this end, thin Plexiglas plates,

40 cm high by 56 cm long, were attached to the existing side-
walls as shown in Fig. 14. To permit optical diagnostics at

many locations, a matrix of holes were drilled through the

side plates. Holes not in use may be closed by suitable plugs
to confine the discharge to the fullest extent.
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Another result of the previous magnetic field measure-

ments was that about half of the current attachment at the

anodes occurs on the outer surfaces. In order to increase

the current density in the interelectrode space and thus en-

`k

	 hance the compression and expansion of the argon plasma, in-
i^	

sulation is required on the outer surfaces of the anodes.

Experiments reported by Boyle and others have indicated

that the characteristics of the discharge ca.n be significantly

affected by the choice of insulator material. 151 It is thus

desirable to choose a. refractory insulating material in order

to minimize the effect of insulator ablation. For the present

application with large surface areas requiring insulation, a

boron nitride paint was selected. Tests showed that adequate

bonding of this paint to both aluminum and Plexiglas can be

achieved provided that a) the surface to be coated is dry,

and b) the coating is applied in thin layers (about 3 to

6 x 10-3 cm) and is allowed to air dry in an atmosphere of

low humidity.

The boron nitride paint was applied to the confining

sidewa.11<s, the outside of the anodes and the Plexiglas back

plate as shown in Fig. 14. Subsequent tests have shown that

this boron nitride coating performs satisfactorily in the

pla.sma environment.

i

Mass Injection System

Tests of the mass injection system described in the pre-

vious semi-a.nnua.l report indicated that a. reasonably well dis-

tributed mass pulse of fast risetime could be produced, 159

However, the upper limit of available argon mass flow was in-

sufficient for the highest current operating conditions an-

ticipated. Two causes for this deficiency were identified:

the pressure loss in the supply line to the two Skinner



type V52 solenoid valves, and a.-current pulse too weak for

proper opening of the valves at high pressures.

The pressure drop was minimized by installing a 500 cm3

reservoir immediately upstream of the two valves. With this

reservoir, the effective stagnation pressure at the valves

decreases by less than 5% from the time the valves first

begin to open until after a steady mass flow ha.s been estab-

lished and the arc discharge fired.

To allow valve operation at higher pressures, the power

output from the pulsed valve driving circuit was increased

by upgrading the energy storage capacitors and raising the

charging voltage from 180 V to 350 V. The improved power

supply allows simultaneous operation of the two valves at

pressures up to 7 atmospheres, an increase of approximately

a factor of three.

Following these changes, a mass flow calibration was

conducted using a McLeod gauge to monitor the pressure rise

in the vacuum tank after mass pulses of various durations.

The mass flow rate was found to scale linearly with stagna-

tion pressure, reaching a. value of 60 g/sec for a stagnation

pressure of 7 atmospheres. The orifice coefficient of the

18, 1.6-mm-diameter, choked injector holes was determined

to be 0.82.

Optical Cavity

In the earlier alignment tests with the resonant optical

cavity, the mirror supports were bolted to a single horizon-

tal I-beam with a mirror separation of 67.5 cm. Using as the

lasing medium a. TRW argon ion laser with its own mirrors re-

moved, this configuration was shown to be mechanically stable

and capable of alignment with a, He-Ne laser mounted external

to the cavity. However, such a configuration cannot be used
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in conjunction with the large 1-m-diameter vacuum tank. In

this case, the mirrors need to be raised more than 55 cm

above the supporting member which must pass below the vacuum

tank, and the mirror separation must be increased to approxi-

mately 147 cm.

Figure 15 shows the modified optical configuration. The

lowest aluminum I-beam is supported by an inverted V-frame at

one end and by a vertical column at the other. Vibration pads

and adjusting screws separate the legs from the floor. A new

set of dielectric mirrors (radius of curvature = 147 cm) are

mounted on additional sections of I-beams to bring the optical

axis through the center of the discharge. The accuracy 'of

alignment technique which uses a He-Ne laser mounted external

to the cavity ha.s been confirmed for this configuration by

placing the TRW lasing medium between the mirrors and ob-

serving laser output.

The discharge apparatus, mass injection system, and res-

onamt optical cavity are now ready for the optical experiments.

The first locations to be examined will be various zones of the

discharge chamber, with later tests to examine the compression

and expansion regions of the plasma flow.
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IV. HOLLOW CATHODE STUDIES (Krishnan)

At the 11th Electric Propulsion Conference, to be held

in New Orleans, Louisiana on March 19-21, 1975, a paper entitled

"Hollow Cathode Characteristics in High Current Discharges," by

M. Krishnan, W. F. von Jaskowsky, K. E. Clark and R. G. Jahn,

will be presented which summarizes the Princeton hollow cathode

program. Since this paper describes the most recent results

as well as a concise review of previous and related work, it is

presented here in full to provide a comprehensive picture of the

hollow cathode program in this laboratory.

A. Introduction

Hollow cathodes were first used to advantage as early as

1916 in spectroscopic studies where they were shown to be capable

of simultaneously providing high electron number density and

relatively low temperature ions and neutrals in an essentially

field-free cathode cavity. A-15 More recently, hollow cathodes have

been used as electron emitters in advanced ion thrusters where

they exhibit a lower specific heating power and longer lifetime

than oxide-coated or liquid-metal cathodes. A-16 However, despite

considerable research effort and developmental testing, which in

isolated cases has extended cathode lifetime to beyond 9000
A-17,18hours,	 the hollow cathode still represents one of the main

limitations of ion thruster system lifetime and reliability. A-19

A detailed diagnostic study of the cavity plasma, whicb is clear-

ly necessary in order to identify the dominant physical processes

and ultimately to reduce the long-term wear characteristics to a

tolerable level, has been precluded up to now by the small-di-

mensions of these steady-state cathodes. As a result, the existing

•	 theories are incomplete and as yet have been unable to identify

the scaling laws for proper hollow cathode operation.
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In the present program a relatively large (2-cm-dia) hollow

cathode has been incorporated in a high current, quasi-steady

magnetoplasmadynamic (MPD) arc discharge where the large cavity

permits the detailed study of the interior plasma by probing,

photographic and spectroscopic observations. The objectives of

this research program are: 1) to determine the conditions under

which typical hollow cathode operation can be obtained in pulsed,

multi-megawatt MPD discharges; 2) to take advantage of the large

cavity dimensions and the low total energy in the pulsed opera-

tion to study the interior emission and ionization processes;

3) to compare the characteristics of pulsed hollow cathode opera-

tion to those of ion thruster hollow cathodes; and 4) to determine

the nature and extent of scaling laws for characteristic hollow

cathode operation.

This paper describes the influence of each of the three

independent parameters — geometry, current, and mass flow on

the operation of large hollow cathodes. In the first part of the

experimental section, the distributions of current and potential

within and about various hollow cathode configurations are pre-

sented for a limited range of current and mass flow. The rela-

tive insensitivity of the interior plasma to electrode and insu-

lator geometries leads to a second series of experiments wherein

a particular cathode geometry is studied by several diagnostic

methods over a wide range of current and mass flow. The interest-

ing features of these experiments are presented in the second part

of the experimental section. The relevance to several other re-

searches is the subject of the discussion section.

9	
B. Apparatus

Figure 16 shows a photograph of the experimental apparatus

for hollow cathode studies, including a 45-cm-diameter x 90-cm-long

glass vacuum tank, gas supply equipment, and associated electrical

circuitry. A schematic of the apparatus is shown in Fig. 17 A

i
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typical thoriated tungsten hollow cathode, shown centrally

located in the discharge chamber, is 3.2 cm in outer diameter,

3.3 cm long and has a 1.9-cm-diameter cavity. The cathode is

screwed into the insulating backplate of the discharge chamber

and can be fitted with many different insulator configurations.

It should be noted that the cathode possesses no auxiliary

heater, oxide-impregnated insert or keeper electrode.

Argon propellant was injected into the discharge chamber

through the hollow cathode orifice and/or through six outer

orifices arranged symmetrically at a radius of 2.54 cm from the

centerline of the discharge. Since the propellant flow chokes

at the seven inlet orifices, the mass flow rate is determined

by the reservoir pressure and by the total area of the seven

orifices. The fractional division of the total flow through

the hollow cathode and the six outer injectors is controlled

by the relative area of the orifice. Unless otherwise noted,

the mass flow in the experiments reported here was injected

only through the hollow cathode.

r
Power is supplied to the discharge from a network of four

transmission lines, each assembled from 21 equal sections of

6.6-µH inductors and 27-µF capacitors. When connected in paral-
lel and charged to 4 W, these lines are capable of delivering

a 20-kA x 0.5-msec current pulse into a load whose impedance

matches the characteristic impedance of the transmission line.

When connected in series, a 5-kA x 2-msec current pulse can be

driven through a matched load. For the investigation of the

effect of cathode geometry, the matching impedance wasg	 y,	 g p	 provided

by an electrolytic cupric sulphate resistor connected in series

with the discharge. Figure 18a shows an oscillogram of a

6-kA x 0.5-msec current pulse obtained with this arrangement. To

s'	 extend the range of current to yet lower values, the electrolytic

resistance was increased. The resulting current waveform, shown

in Fig. 18b, is typical of a transmission line driving an impedance

greater than its own characteristic impedance. When using this

f
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current pulse, data was taken only during the first 2 msec,

" which is seen to be flat and of an amplitude as low as	 i

180 A.

C.	 Experimental
a

Effects of Cathode Geometry

Early experiments with uninsulated and insulated hollow

cathodes over a range of currents from 7 to 30 kA and argon

mass flows from 0.04 to 6 g/sec demonstrated that quasi-steady
hollow cathode operation can be achieved in multi-megawatt

pulsed discharges without the assistance of auxiliary heating,

low work function inserts, or keeper electrodes. 151	probing

of!the cathode interior and exterior plasma indicated that at

the given operating conditions, it was necessary to insulate

the external surface and face of the hollow cathode in order
h

to assure total current attachme;Kt inside the cavity. 	 The cur-

rent in these early cathodes attached in a relatively short zone

at the downstream end of the cathode.	 Surveys of potential	 G

exhibited a nearly field-free region in the cavity coincident 	 a
with the current attachment zone.	 This low axial field region

was connected to the exterior discharge bya large electric
field (up to150 V/cmj in the insulated channel at the cathode

tip.

To examine further the current attachment zone and its

associated potential distribution, and to investigate the ef-

fects of cathode shape, orifice diameter, and tip thickness on

the characteristics of the hollow cathode discharge, a variety

of new hollow cathode configurations have been examined at a
fixed current and mass flow of 7 kA and 4 g/sec respectively.

These new cathodes, shown in Fig.	 19, fall into two distinct

groups.	 In the first, a fixed electrode geometry consisting
of a 3.3-cm-long cylindrical thoriated tungsten hollow cathode

. with a 3.2-cm outer diameter and a 1.9-cm cavity diameter was
tj

.fitted with several insulated orifice and channel configurations

1
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(HC-IV, V, VI, VII and VIII). 'The second group consists of

two stainless steel cathodes, HC-X and HC-XI, with identical

insulator configurations but conical electrode geometries.

These right circular configurations with a• 100 half-angle

for HC-X and a 450 half-angle for HC-XI, may be considered as

steps in the transition from a hollow cathode with a cylin-

drical cavity to a slid electrode with _a flat face. Experi-

ments with an additional configuration (not shown) have

demonstrated that changing the cathode material from tungsten

to stainless steel produces only marginal changes in the

measured current and potential distributions.

Distribution of the current within the hollow cathodes

is determined by a small magnetic field probe. This probe

consists of a 0.1-cm-diameter coil in a thin glass tube to

insulate it from the plasma. The coil generates a signal pro-

portional to the change in magnetic flux which is then passive-

ly integrated at the oscilloscope to give the local magnetic

field. This magnetic field is plotted in succeeding figures as

the total enclosed current passing through a circular cross

section whose radius equals the probe radial position in the

discharge. The current distribution is obtained by traversing

the probe axially at a fixed radius of 0.75 cm, and normalizing

the measurements to the value obtained at the downstream end

of the cavity.

Potential distributions within and around the cathode are

obtained using a Langmuir probe consisting of an insulated

0.25-mm-diameter tungsten wire of which only the front 3 mm is

exposed. The probe output is connected through a 100 MS2 P-6013A

voltage probe to one input of a differential amplifier at the

oscilloscope. The other input is the cathode potential, measured

relative to the anode ground with an identical P-6013A probe.

Thus, the oscilloscope displays 'the floating potential relative

to the cathode surface, and sines electron temperature effects
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depress the floating potential below the true plasma potential,

this differential signal is the minimum potential drop between

the cathode and the probe tip.

Diagnostic study of the seven cathode geometries shown

in Fig. 19 (HC-IV VIII, X, XI) has revealed several charac-

teristic features of high current, hollow cathode operation:

1) For all configurations, the discharge current attaches

to the downstream portion of the cavity with 'a surface current

density in excess of 1 kA/cm 2 . The region over which 80% of
the current attaches is 0.6 cm long, coincident with a weak

axial electric field of less than 1O V/cm. Figure 20 shows

typical current and potential distributions, plotted in this

case for HC-VI which is shown in cross section at the top of

the figure.	
j

2) The.eI.e tr c field_in the insulated channel connecting

the cavity plasma withthe exterior discharge is a function of

the channel cross-sectional area regardless of the electrode

shape. Figure 21 shows the measured electric fields of several

cathode configurations plotted against their insulated channel

cross-sectional areas. The observed inverse dependence of the

electric field on the channel area for fixed current suggests

that the current conduction through the channel plasma can be

described by an Ohms law, with constant conductivity. Using the

data of Fig. 21, the calculated conductivity is approximately

1.2 x 1_0 4 mhos/m, a value which corresponds to an electron tem-

perature of 2 to 4 eV at any substantial ionization level. A-20

3) Measured radial profiles of floating potential inside

the cathode cavity indicate that the bulk of the potential drop

occurs near the inner cathode wall, while the cavity interior is

-nearly field-free. Figure 22 shows HC-VI and the measured 28 V

and 40 V-equipotential contours. Since the contours represent

floating potential relative to the cathode, the radial electric
s:	

field is seen to increase as the radius increases. Within the
a!
	

0.8-cm-diameter cylindrical region about the cavity axis, no

further differences in potential could be resolved.
3
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4)	 Radial surveys of magnetic field show that the axial

current density is uniformly distributed over the cavity

opening.	 Figure 23 shows the results of a magnetic probe

survey taken at the entrance to the insulated channel of

HC-VI.	 The data are presented in terms of enclosed total

current, which is readily obtained from the measured magnetic

fields.	 For comparison, the enclosed total current for an

assumed constant axial current density of j= 2.8 kA/cm2

(7 kA .1. 2.5 cm) is also presented and is seen to differ little

from the measured values.

5)	 An interesting empirical observation is the change in

texture of the tungsten surface of HC-VIII at the end of the

cavity which further exhibits the pattern of current conduction
r.

in this hollow cathode. 	 Figure 24 shows a perspective view of
ri

the insulated face and cavity of HC-VIII after a series of 7 kA

discharges.	 The end of the conducting part of the cavity is

clearly delineated as a bright edge, upstream of which there

is an approximately 0.6-cm-wide band of clean metallic surface

where 80% of the total current has been shown to attach (see

Fig. 20).	 It is conjectured that ionic bombardment of the

inner electrode surface in the primary current carrying region

has produced this change in the cathode surface.

The insensitivity of the details of the current and poten-

tial distributions to cathode geometry and insulator configura-

tion indicates that the measured distributions are characteris-

tic of hollow cathode operation at these conditions. 	 Despite a

drastic change in electrode shape from a cylindrical to a 45 0

conical geometry, and despite several different insulator

channel lengths and orifice diameters, the current always

attaches over approximately the first 0.6 cm of electrode, with

an axial potential plateau coincident with the zone of attach-

ment.	 The next step in the experimental program, therefore, was

to select one particular cathode configuration that was most
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amenable to diagnostics, and to study t``iis cathode for wide

variations in the two other independent variables, current

and mass flow. The results of these investigations are pre-

sented in the next section.

Effect of Current and Mass Flow

The cathode design selected for detailed study is

designated HC-XII and is shownin Fig. 19h. The electrode is

identical to HC-VIII (Fig. 19e), but two changes were made to

minimize wear of the insulators. First, the nylon disc in-

sulating the front face of the cathode was replaced by a re-

fractory boron nitride disc, 0.23-cm thick tapering down to

0.1-cm thick at the orifice. Second, the nylon outer sleeve

which holds the disc pressed against the cathode face was

coated with boron nitride paint to inhibit ablation of the

nylon.

In the first series of experiments with this cathode,

spectral photographs and near-infrared spectrograms of the dis-

charge were taken. These optical diagnostics have proven

capable of distinguishing subtle features of the discharge

structure in the past, and were applied in this case to observe

the gross effects of current and mass flow changes on the hollow

cathode cavity plasma. Figure 25 shows selected spectrograms

taken with the line-of-sight inclined 45 0 to the cavity axis for

currents of 5 kA and 19 kA at argon mass flows of 0.4 g/sec

(Fig. 25a) and 16 g/sec (Fig. 25b). Comparison of the spectra,

particularly at the 5 kA current, reveals that mass flow has a

striking effect on the distribution of radiance from the cavity.

At a mass flow of 16 g/sec (Fig. 25b), the All line radiation

noticeably peaks at the outer portion of the cavity near the

electrode surface. In contrast, the distribution of All

radiance at a mass flow of 0.4 g/sec (Fig. 25a) peaks in the

_	 center of the spectrogram, i.e. near the cavity axis. These

f	 spectra, as well as others taken end-on, indicate that as the
Kf
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mass flow decreases, the region of maximum All radiance

transforms from a relatively narrow, intense band near the

surface of the cathode to a more uniform volume emission

within the cavity.

This observation is supported by spectral photographs

of the discharge for the same current and mass flow conditions.

Figure 26 shows four photographs of the discharge taken from

the same 450 perspective through an interference filter which

isolates the 4880 A All line. At the 16 g/sec mass flow

(Fig. 26a,b), a bright ring is observed at the most downstream
portion 'of the cathode surface, while-at the 0.4 g/sec flow

(Fig. 26c,d) the radiance emanates from across the entire cav-

ity.

These spectrograms and photographs are manifestations of

the participation of excited All, coincident with a high elec-

tron number density, in the conduction process. At high mass

flows, the radiance is concentrated in a sheath at the cathode

surface which extends over a short axial region at the end of

the cavity; at low mass flows, the bright radiance patterns next

to the wall are absent indicating a more uniform distribution of

the radiative processes.

To determine the current conduction pattern directly, mag-

netic probes were used in the cathode. cavity for a range of cur

rents from 0.9 to 7 kA and mass flows from 4.4 x 10
-3
 to 16 g/sec.

The magnetic probe and technique used in this study are similar

to thatdiscussed previously,.with the data acquired by trans-

lating the probe at a fixed radius of 0.75 cm. The current dis-

tributions are again presented as enclosed currents normalized to

the value measured at the downstream end of the cavity.

In all cases, the stated mass flow is the flow injected

through the hollow cathode into the discharge chamber. However,
at the lower flow rates it was necessary to inject a small amount
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of gas through the outer six injectors in the discharge cham-

ber backpla.te in order to maintain a, satisfactory discharge in

the chamber. Recent measurements of the plasma floating poten-

tial within and outside of the cathode cavity show that the 'ca-

vity plasma is insensitive to changes in this external mass

flow rate. Figure 27 shows the floating potential measured at

three locations within the cavity and one downstream of the

cathode for a fixed cathode mass flow of 4 g/sec and external

mass flows of 0.4 and 8 g/sec. These locations are shown in

the inset of Fig. 27.. Within the accuracy of the data, the

potential distribution in the cavity is seen to be unaffected

by the external flow.

The effects of current and mass flow on the enclosed cur-

rent distribution inside the hollow cathode are shown in Fig. 28.

Figure 28a shows normalized enclosed current profiles for cur-

rents of 0.9 and 7 kA at a. fixed cathode mass flow of 0.4 g/sec,

while Fig. 28b shows normalized profiles for several mass flows

at a fixed current of 0.9 kA. Whereas changes in the cathode

configuration had little effect on the current distribution with-

in the hollow cathode, it is apparent that both current and mass

flow have a first-order effect on the penetration of the current

upstream into the cavity. In Fig. 28a, the 7 kA profile is seen

by comparison with Fig. 20 to be identical to the profiles for

all cathode configurations previously tested over a modest range

of current and mass flow. However, reducing the current to 0.9 kA

produces a drastic increase in the current penetration. This

new current distribution is accompanied by a broadening of the

cleaned metallic cathode surface from the 0.6 -cm-wide band ob-

served previously, Fig. 24 to a 1.5-cm;-wide silvery area.

The  dependence of the current distribution on mass flow for

a fixed current is equally significant. Figure 28b shows that

for the 0.9 kA current, a relatively high mass flow of 2 g/sec

i	 results in a current attachment of a few millimeters at the

f
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downstream end of the cavity. As the mass flow is decreased,

the current penetrates farther into the cavity, increasing its

attachment area by more than a factor of three. However, fur-

ther decrease in the mass flow to less than 10-2 g/sec pro

duces a return of the current attachment to a narrow region

at the end of the cavity._

For the purposes of comparing the relative penetration

of the current for various operating conditions, it is useful

to characterize the normalized current distribution by a sin-
gle parameter, the active zone length, defined as the axial

distance in the cavity over which 80% of the current is ob-

served to attach. Figure 29 summarizes the variation in the

experimentally determined active zone lengths over a wide

range of current and mass flow. For a fixed mass flow of 0.4

g/sec (Fig. 29a), the active zone is seen to be relatively con-

stant at the higher currents, but to increase by more than a

factor of two as the current drops from 4.7 to 0. , 9 kA. The

variation of the active zone length with mass flow is shown in

Fig. 29b. As previously exhibited by the normalized distribu-

tions of current in Fig. 28b, the active zone is seen to achieve

a maximum length over a restricted range of mass flow for a.

given current. The maximum penetration, as given by the active

zone length shown in Fig. 29a, occurs for a mass flow of approx-
imately 0.1 g/sec. Particularly interesting are the well-de-

fined limits on mass 'flow for maximum current penetration. The

lower lin...t appears to be independent of current at approxi-

mately 2 x 10-2 g/sec, while the upper limit increases some-
what with current, lying between 0.4 and 4.0 g/sec.

The measured active zone lengths displayed in Fig. 29b allow

further interpretation of the spectra and luminosity photographs

shown previously in Figs. 25 and 26. Recalling that for currents

of 5 and _19 kA, these optical data. reveal a luminous band at. the

downstream edge of the cathode cavity for a mass flow of 16 g/sec

and a uniform luminosity at 0.4 g/sec, Fig. 29b shows that the
16 g/sec data is characteristic of a. condition where the mass flow



0.

t I

W
Z
N

0.

V
Q

0.

FIGURE 29
AP 2'53111

.	 I}

-66-

CURRENT, kA

ACTIVE ZONE LENGTH

Q9-kA

4.7 kA

f	 0.6

7.0 kA

0.4-

d.2 1	 101
MASS FLOW RATE, q/sec

ACTIVE ZONE LENGTH

1.2
Ev

s
1.0

W
J
W

20.8

H
a



67

is greater than that for maximum current penetration. Thus,.

the band of radiance is associated with a high current density

distribution at the downstream end of the cavity, Indeed,

measurements of the axial extent of this band taken directly

from the photographs give approximately 0.3 cm, in good agree-

ment with the active zone length determined from magnetic probe

data. In a similar way ., the uniform radiance observed in the

photographs at the lower mass flow typifies the deeper and more

uniform current attachment deduced from the magnetic field

measurements.

D. Discussion

It is instructive to compare the operating conditions at

which the present results have been obtained with the working

regimes of other hollow cathode researches. Since the choice

of parameters for this comparison is somewhat arbitrary, the

simplest combination of independent variables is selected: a

mass flux m/S and a current density J/S, where S is the flow

cross-sectional area at the cavity exit. Despite their pre-

vious use in the literature, A-21 it is recognized that these

parameters do not necessarily characterize hollow cathode opera-

tion; nevertheless they do provide a useful starting point for

determining the proper scaling for these cathodes.

In Fig. 30, operating points and working regimes of several

hollow cathode experimenters are displayed in the m/S, J/S para-

meter plane. This plot is by no means a comprehensive summary

of current research in hollow cathode discharges, but is instead

a 'selection of operating conditions representative of the various

programs. In the upper right corner lie the early MPD hollow

cathode experiments-. 154
 The operating conditions for these tests

were scaled to the early ion engine hollow cathode operating

regime which lies in the upper right of the neighboring box. The

-	 mass flux and current density parameters for the ion engine hollow

cathodes were calculated using the average cross-sectional area
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of the tapered tungsten orifice at the downstream end of the

cathode. The box in the lower left shows the so-called

"normal" working regime of steady-state hollow cathode arcs. A-21

This work focussed on the physics of hollow cathode operation

with no constraints imposed by ion beam optics or ionization

efficiency as in the case of the ion thrusters. The range of

conditions examined in the present work is seen to bridge the

steady-state and ion engine domains._

It is interesting to note that all of the three hollow

cathode research areas outlined in Fig. 30 identify some re-

striction on mass flow for proper hollow cathode operation.

For example, in the ion engine program, operation in the "spot"

mode, which is more efficient than the higher voltage "plume"

1	 mode, typically requires mass fluxes greater than 0.3 g/sec-

cm2.A-22 Similarly, experiments with steady-state hollow

cathode arcs define a_lower limit on mass flux below which

the current attachment, as inferred from temperature measure-

ments on the outside of the cylindrical cathode, moves from the

interior of the cavity to the cavity lip. A-21 An upper limit

on mass flux is defined in this same work by a similar movement

of the inferred current distribution. These limits are shown

as the lower and upper boundaries of this operating regime on

Fig. 30. For the present MPD hollow cathode work, the measured

current distributions, summarized in Fig. 29, display larger and

smaller values of the mass flux beyond which the active zone

contracts to a higher current density attachment at the end of

the cavity. The identification of mass flux limits in various

hollow cathode experiments over a diverse range of operating

conditions suggests that the same physical principles may be pre-

valent in each case. The difference in absolute values of the

limits may be due to the choice of cathode cavity cross section

as the scaling parameter for the mass flow and current. This

simple scaling obviously neglects surface phenomena inside the

cathode which may strongly influence the current emission and con-

duction processes.
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E. Summary

Current and potential distributions have been measured in

various large hollow cathodes for a range of currents from

several hundred to several thousand amperes and mass flows from
-310 to 16 g/sec. Whereas the current distribution within the 	 w

cavity is uninfluenced by changes in the cathode configurations,

varying the current and mass flow for a fixed configuration pro-

duces significant changes in the current conduction pattern.

For a given current, a range of mass flows is determined for

maximum current penetration into the cavity, with the amount of

penetration increasing as current decreases. Spectroscopic and

photographic evidence of All and electron densities within the

cavity confirm this attachment behavior. Comparison of these

results with other hollow cathode researches provides insight

into the scaling laws for hollow cathode arcs and indicates

that despite the large range of currents and mass flows in-

volved, similar physical phenomena may be guiding their opera-

tion.

J
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APPENDIX A: Semi-annual Statement of Expenditures

PULSED ELECTROMAGNETIC GAS ACCELERATION
NASA NGL 31-001-005

1 July 1974 to 31 December 1974

DIRECT COSTS

I.	 Salaries
Professional $19,925
Technicians 14,022
Students 5,918
Supporting Staff 2,353

$42,218

II.	 Employee Benefits (22'x%) 8,167

` III.	 Materials and Services 6,473

IV.	 Travel 1,550

V.	 Tuition 1,200

TOTAL Direct Costs $59,608

INDIRECT COSTS

VI.	 Overhead (80%, 863f%) 33,956	 Y

TOTAL $93,564	 k
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