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CALCULATION OF CURRENT COLLECTED IN A DILUTE PLASMA THROUGH 


A PINHOLE IN THE INSULATION COVERING A HIGH-VOLTAGE SURFACE 


by Gustave C. Fralick 

Lewis Research Center 

SUMMARY 

A procedure is described for calculating the current collected through a pinhole 
defect in the insulation covering a high-voltage surface. The results apply to a satellite 
at geosynchronous altitude where collective plasma effects and the motion of the satel-
lite can be neglected in computing the currents. 

The results indicate that the presence of the insulation around a pinhole reduces the 
current and that the experimentally observed current enhancement is probably due to 
surface leakage in the insulation.

INTRODUCTION 

The use of high-voltage solar arrays on spacecraft to power devices such as radio-
frequency amplifiers and ion thrusters promises more efficient spacecraft and less 
complicated electronics. The feasibility of using such arrays has been investigated 
(refs. 1 and 2). It was found that the possibility of large power losses due to current 
leakage to the space plasma, especially at lower altitudes, can be minimized by insulat-
ing the high-voltage surfaces. However, voids in the insulation and puncture by 
micrometeorites will result in high-voltage pinholes being exposed to the space plasma. 
There is evidence that these pinholes can collect unexpectedly large currents. Cole, 
Ogawa, and Sellan (ref. 3) found that the current collected is larger than can be ac-
counted for by simple analytical models, as have Grier and McKinzie (ref. 4). These 
currents can result in a loss of power and in the formation of a high-temperature region 
at the site of the pinhole, which will lead to further deterioration of the insulation. 
Another effect, not fully understood, is the area effect reported by various observers 
(refs. 5 and 6). The effect of the insulation in these experiments is to actually enhance 
the current collection. The collected current appears to be more a function of the area



of the insulating surface surrounding the pinhole rather than a function of the pinhole 
area itself. This phenomena has been observed for various types of insulation. 

Most of the analytical work in this area has been done by Parker and Whipple in 
their study of electrostatic probes on satellites (refs. 7 to 9). In their method currents 
are calculated by determining the trajectories of collected particles. They used two 
models for their calculations of probe currents. Their first model was a small circular 
equipotential surface, which represented the probe, surrounded by an infinite flat sur-
face at zero potential, which represented the remainder of the satellite. In their second 
model the satellite was represented by a right circular cylinder with the probe being a 
small circular area in the center of one end of the cylinder. Published results using 
this model consider only the case where each surface is an equipotential. 

In this report the effects of the insulation are incorporated by modeling the insulator 
with a nonequipotential surface surrounding the pinhole, which should be more realistic 
than using an equipotential surface. In addition, higher pinhole voltages are used, up to 
10 kilovolts, rather than the lower voltages previously considered. These voltages are 
more representative of actual values. The calculations of the currents were performed 
using the trajectory tracing technique of Parker and Whipple. The goal of this study is 
to determine the effects of a nonequipotential surface surrounding the pinhole in the hope 
of providing an explanation of the area effect based solely on electrostatic effects. 

MODEL


Geometrical Model 

The geometrical model used to simulate a pinhole defect in the insulation covering 
a high voltage surface was simply two concentric disks (fig. 1). The inner disk repre-
sents the pinhole and is at a uniform potential. The annular region between the radii of 
the inner and outer disk represents the insulation. A typical voltage profile is shown in 
figure 2, which is based on measurements by Boeing (ref. 6). In all the calculations 
the diameter of the outer disk was 10. 2 centimeters (4 in.). Two diameters were used 
for the pinhole, 0. 38 centimeter (0. 15 in.) and 0. 57 centimeter (0. 225 in.). This model 
is similar to the pinhole-insulation configurations used in testing in plasma tanks and to 
the test surfaces that were to have been used on the SPHINX (Space Plasma High voltage 
INteraction eXperiment) satellite (ref. 10). 

Analytical Model 

To calculate the pinhole current, it is necessary to know the voltage on the insula-



tion, as this is part of the boundary condition of the problem. But this voltage must be 
calculated. If an insulator is inserted into a plasma, the voltage at each point will 
change until an equal number of positive and negative charges per unit time are attracted 
from the plasma at each and every point on the insulator. If the voltage at a point is 
too positive, an excess number of electrons will be attracted, and the voltage will de-
crease until the electron and ion current densities are equal. In the same way, if the 
voltage is too negative, more ions will be attracted and the voltage will rise. 

Ideally, then, the current densities should be calculated at each point on the insula-
tor, and the voltage distribution adjusted until the current densities are equal. The 
voltage on the pinhole would remain constant at its specified value. However, a voltage 
change at one point on the disk would change the voltage distribution everywhere around 
the disk and the current everywhere else, not just at that point. This would lead to 
some sort of iterative technique for computing the insulator potential distribution, which 
may converge only slowly and could be very costly in terms of computer time. 

Instead, it was felt that the magnitude of the effect of insulator voltage could be 
studied without having the "correct" voltage at each point on the insulator. The 
approach was to work with the plots of the equipotential lines surrounding the disk for 
various voltage distributions on the insulator and then to calculate the currents for the 
cases of interest. The plots could be generated relatively quickly. 

The electric field was calculated assuming an infinite Debye length (Laplace field), 
and, although a magnetic field is included in the equations herein, all the currents were 
computed with B = 0. In calculating particle trajectories, it was assumed that colli -
sions with other particles could be ignored and that the plasma was nonstreaming. Thus, 
the results should be applicable to geosynchronous altitude, where high-voltage solar 
arrays could be used to power communications satellites. At this altitude, the Debye 
length is about 200 centimeters, the mean free path is of the order of several kilometers, 
and the thermal velocities of the ions and electrons are at least an order of magnitude 
greater than the speed of the satellite. 

BRIEF DESCRIPTION OF SOLUTION 

This section contains a short description of how the currents were calculated by 
tracing out particle trajectories and how the electrostatic field was calculated. A full 
description of the method of solution is given in appendix A. (Symbols are defined in 
appendix B.) 

The normal component of the current density for a given species of particle at a 
point P on the disk is given by

3



J(i) = qfff V. if(i, V)v2 dV Sfl 0v de d(p 

allowed 

where q is the charge on the particle, V is the particle velocity, fi is the unit normal 
at the current collection point, I is the distribution function in the six-dimensional 
phase space formed by the three particle coordinates and three components of velocity, 

Fp 
is the position vector of the current collection point, and 0 and ç	 give the 

direction of V at P (see appendix A). 
The method of solution makes use of the fact that, although the functional form of f 

is unknown at P, as long as collisions with other particles can be ignored and energy 
is conserved along particle trajectories, the numerical value of f is constant on a 
trajectory (refs. 6 to 8). At infinity, where the presence of the disk has essentially no 
effect on the space plasma, the distribution function is assumed to be a known function 
of the coordinates and velocity. Here, the distribution function is taken to be Maxwell-
Boltzmann, which, for the case of a nonstreaming plasma considered in this analysis, 
has the form

'3/2 -mV/2kT 
CO f  

(Y7
me

°ikT/	
=f(FV) 

where V is the particle velocity at infinity, n o is the particle density, m is the 
particle mass, k is Boltzmann's constant, and T is the temperature. The current 
density at P is the result of integrating over only those trajectories that connect with 
the space plasma. To find whether a trajectory is acceptable, a particle is assumed 
to arrive at P with a given kinetic energy and set of impact angles O. and co. The 
direction of the particle is reversed, and it is sent back away from P, either to end up 
in the space plasma or land elsewhere on the disk. lithe particle lands elsewhere on 
the disk, the trajectory is not an allowed trajectory, since no particles are emitted by 
the disk (photoelectric effect and secondary emissions have been neglected). If the 
trajectory connects with the space plasma, it is allowed and contributes to the collected 
current density at P. 

The particle moves along its path under the influence of the electrOstatic field and 
of any magnetic field which may be present, according to the equation of motion 

m= q (E + V X B) 
dt 

The trajectory is found by integrating this equation numerically, using the requirement 
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of energy conservation to adjust step size. 
The electrostatic field was found by using the principle of superposition. Closed-

form solutions exist for the voltage and the components of the electric field around a 
circular disk of uniform voltage. The solutions from several of these uniform *voltage 
disks of different sizes are simply added together to get the solution for this problem 
where the voltage on the disk is not uniform (fig. 3). The voltage on each of these disks 
is chosen so that the total voltage from all disks gives the desired voltage distribution 
from the center of the pinhole to the outer edge of the insulation, that is, so that the 
boundary conditions are satisfied. 

In practice, the voltage on the insulator is specified at the inner radius where the 
pinhole and insulation meet, at the outer radius, and at various points in between. A 
typical voltage profile is shown in figure 2, which is based on measurements by Boeing 
(ref. 6). 

This superposition approach, together with the fact that long-range collective 
effects are not included, avoids the necessity for the finite difference approach used 
by Parker and Whipple (refs. 7 to 9). 

The starting point for calculating the pinhole currents was the voltage profile shown 
in figure 2. This will be referred to as the "very positive" case because of the very 
high positive voltages over its surface. The pinhole had a radius of 0. 19 centimeter 
and was at 10 000 volts. The radius of the dielectric was 5. 1 centimeters. The com-
puted voltage distribution in the space around the disk is shown in figure 4. 

The electron and ion current densities j e and j were computed at several points 
on the disk. The results are given in table I for temperatures T = T  = T i . (For high 
altitudes, the ion and electron temperatures are roughly equal.) The particle temper-
atures are expressed in terms of Eth, the random thermal kinetic energy of the parti-
cle. If the voltage profile shown in figure 2 had been the correct one for a disk with a 
perfect (no leakage) insulator, then the computed currents j and j 1 would have been 
equal at each point on the insulator. 

Instead, the electron current was everywhere too high relative to the ion current, 
which means that the voltage on the insulator was everywhere too positive. Figure 4 
shows that the voltage is quite positive even far from the disk; this case, the "very 
positive case", represents an upper bound on the insulator voltage. 

A discrepancy exists here because although this voltage profile is based on values 
obtained experimentally the calculations indicate that the insulation was too positive. A 
possible explanation lies in the fact that for the purpose of these calculations the insu-
lation was assumed to have no leakage of current along the surface into the pinhole. As 
opposed to this ideal insulator, however, a real insulator could allow electrons to be 
drawn toward the very positive pinhole, preventing the buildup of negative charge and 
allowing the insulation to remain more positive than it would with no leakage.
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This leakage could also explain the area effect, since now the total pinhole current 
would consist not only of current collected at the surface of the pinhole, but also the 
current that leaked in along the insulator. The additional current should increase 
roughly with the area of the insulation, which is in fact the case. Further evidence for 
this hypothesis is provided by the fact that an ideal insulator tends to mask the presence 
of the pinhole and reduce the collected current from its value with no surrounding in-
sulation. 

To test the effect on pinhole current of the voltage on the surrounding insulation, 
three other cases were considered - the slightly positive case, the slightly negative case, 
and the very negative case. These case names are descriptive of the voltages surround-
ing the disk. The voltage profiles are shown in figure 5, and the voltage contours in 
figures 6 to 8. 

The electron current densities at the center of the pinhole are shown in table 11(a) 
for each as (j e/Jeo)(Eth/PP), where	 is the pinhole voltage (10 000 V in all cases). 
The ion current was negligible. 

It is apparent from table 11(a) that the current collected by a pinhole is strongly in-
fluenced by the voltage on the surrounding insulation. This is especially evident in the 
results of the slightly positive and slightly negative cases at low electron temperatures. 
If the presence of the pinhole can be felt even slightly by the electrons, considerable 
current will be collected. But, if the pinhole is masked by the presence of the negative 
insulation, the collected current is greatly reduced. 

The importance of the masking effect of an ideal insulator on collected current was 
also shown in two other ways. 

First, the effect of pinhole size was considered. The pinhole currents were calcu-
lated for the four cases using a 50 percent larger pinhole. These currents are shown in 
table 11(b), and the voltage contours in figures 9 to 12. Comparison of the two positive 
cases for the two pinhole sizes shows that once the pinhole can be "seen", pinhole size 
does not have much effect on current density. Since the current density was fairly uni-
form across the pinhole surface, the total pinhole current in this case would be roughly 
proportional to pinhole area. Increasing the pinhole radius in the "slightly negative" 
case, however, resulted in a large increase in the current density. Comparison of the 
voltage contours in figures 7 and 11 shows that this can be explained by the fact that the 
pinhole voltage "punched through" the masking effect of the surrounding insulation. 

In the second test the current was calculated for a 0. 19-centimeter-radius 10-
kilovolt circular electrode with no insulation surrounding it. The currents are shown in 
table ifi, along with the currents for the very positive case. The voltage contours are 
shown in figure 13. Comparing figures 4 and 13 shows that the presence of the insulator 
tends to reduce the voltage in the space surrounding the pinhole, and this reduction in 
voltage is reflected in a reduction in current collected by the pinhole (table Ill). This is 
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true even in the comparison made here, where the voltage profile used on the disk was 
too positive, as has been shown. Therefore, any area effect must be due to some mech-
anism not included in these calculations. As discussed 'rlier, the area effect is prob-
ably due to surface leakage on the surrounding insulation. 

Even if some way is found to reduce this surface leakage, these results indicate 
that pinholes could still be a problem on satellites, where high-voltage surfaces would 
be covered by insulation. A small, isolated pinhole may not have significant leakage to 
the space plasma, but as micrometeorites cause other nearby pinholes, the masking 
effect of the insulation will be reduced, and the leakage current could increase rapidly 
because of the combined effects of increased current density and increased pinhole area. 

For completeness, the effect of different pinhole voltages on the collected current 
was also considered. The results are shown in figure 14. To get the variation of cur-
rent with voltage, all the voltages on the very positive case were divided by 10 (p = 
1 kV) and then by 10 again (p 1, = 100 V). The shape of the voltage contours is the same 
as that shown in figure 4, divided by 10 and 100. For ip>> Eth 

th constant 
1eo 'P 

Since

I	 \1/2 
(k	 1/2 

"1"2 = (%Eth') 
eo = "e%	 e 

then

(ME)1/2

  
(constant)ppn 

 

Hence, if the plasma temperature is much lower than the pinhole voltage, je is directly 
proportional to electron density and pinhole voltage and is inversely proportional to the 
square root of the plasma temperature. The inverse temperature dependence in this 
case is reasonable, as the current collecting surface will have a greater effect on elec-
trons with less thermal energy, so that the current will increase as the temperature 
decreases.
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On the other hand, if Eth>> 1P P1 Vi ed (th/PP) approaches the limit (Eth/J/p), or 
eo This is to be expected, as the low voltage will have little effect on the ener-

getic high-temperature electrons, and the current density will be just the random cur-
rent density Thus, the current calculation techniques used here give reasonable 
results for the variation of current with voltage. 

CONCLUSIONS 

A procedure using the trajectory tracing method of Parker and Whipple has been 
described for calculating the current collected from a dilute plasma through a pinhole 
defect in the insulation covering a high voltage surface. The geometrical model used is 
two concentric circular disks. The inner disk is at a constant potential and represents 
the pinhole. The region between the inner disk and the edge of the outer disk represents 
the surrounding insulation and is not at a uniform voltage. 

Currents are calculated for cases where the voltage profile on the insulation is 
adjusted so the potential field surrounding the pinhole becomes either very positive, 
slightly positive, slightly negative, or very negative. The effect of pinhole size and 
pinhole voltage is also considered. 

The results indicate that the large area of relatively negative insulation tends to 
mask the presence of the pinhole and that both the voltage in the space around the pinhole 
and the current collected by the pinhole are reduced by the presence of the insulation. 
This masking effect means that the "area" effect reported by some observers, in which 
the surrounding insulation increases pinhole current, cannot be explained solely by 
electrostatic effects. Instead, the results of this report indicate that the area effect is 
probably due to leakage of current along the insulation surface into the pinhole. 

The masking effect is reduced as pinhole area is increased relative to the insulation 
area. This is likely to occur on satellites as micrometeorites puncture the insulation 
covering high-voltage surfaces. When this happens, all the pinholes could start to col-
lect large currents. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 5, 1975, 
505-04. 
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APPENDIX A 

METHOD OF SOLUTION 

This appendix includes a detailed description of how the currents are calculated by 
the trajectory tracing technique and how the resulting integrals are evaluated. Also in-
cluded are descriptions of how the particle trajectories are calculated and how the elec-
trostatic field around the disk was calculated. 

The normal current density at a point P on the disk whose position vector is i 
is

j(F = f f f qf(i,V)V flV2 dV sin 6 do  d cov	 (Al) 
allowed 

where 0 and co,. give the direction of V at P (fig. 15). In equation (Al) "allowed" 
refers to the fact that only those particle trajectories that connect with the space plasma 
contribute to the current collected at P. If the current is being collected on the top 
side of the disk, the possible values for 0 and 	 are 0 s	 s 27T and 

ir/2	 ir.	 - 
The method for calculating the current makes use of the fact that f is a soltition of 

Boltzmann's equation so that it has the same numerical value everywhere along a tra-
jectory (refs. 7 to 9). Hence, it has the same value at P, at one end of the trajectory, 
as it did at its starting point in the space plasma, at the other end of the trajectory. 
This is true even in a magnetic field, as long as collisions can be ignored so that trajec-
tories are curves of constant energy. 

The distribution at "infinity" is taken to be Maxwell- Boltzmann and nonstreaming: 

	

3/2 _mV ,/2kT	 - 
f(FV) = n0 ( m ) e	 =f(F,V)	 (A2) 

It is more convenient to work in terms of energies. Equation (A2) becomes 

	

3m 
1	

3Ekej2Eth 
Eke) = f( 00 , Eke) =

	 \3/2 

o(4IqIEth	 (A3) n	 e
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where

- mV 5 = kT q  Eth	 (A4) 

1 mV2 = lqlEke 

The random current density in space j0 is the charge crossing a surface per unit 
area per unit time. For a Maxwell- Boltzmann distribution 

j0 qn( kT 1/2 A/rn 2	 (A5) 
(2irm)  

Since the collected currents will be written in terms of j0 , equation (A3) is rewrit-
ten as

I	 2 
9 o m	 3Ekej2Eth 

f(FEkec,) =----	 e	 (A6) 
8 q (qlEth) 

Making use of the fact that energy is conserved along a trajectory gives 

-	 =	
2 (

me3/2{Eke+(qI I qI)p(ip)]/EthJ	
(A7) f(r Eke) 8n q  

where i (Fr) is the potential (in volts) at P and (q/ I q I )i (Pp) is the potential energy 
(in eV) at P. 

It is now possible to use equations (Al) and (A7) to calculate the current collected 
at P. First, however, note that 

:.=y• _=_Vcos8 

and that

V3 dV = 2 ()2 Eke dEke 
In 
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It is also necessary to consider the allowed range of integration. For a given value of 
and	 there will be a minimum kinetic energy below which no particles will be 


collected. From energy considerations alone, the minimum energy (in eV) of a particle 
collected by an attractive potential must be at least the voltage at the collection point. 
It could be zero for a repulsing potential. The minimum kinetic energy may still be 
higher than that allowed just on the basis of the voltage of the collection point. This 
may be seen by considering a particle ejected from the current collection point. If the 
particle is ejected with too low a kinetic energy, it will fall back somewhere else on the 
disk and not connect with the space plasma (fig. 16). 

At a given point P on the disk, the minimum kinetic energy will depend on 
and	 For instance, suppose the electron current collected at the center of the pin-
hole is being calculated and that the potential on the disk is everywhere positive (as in 
fig. 2). The minimum kinetic energy will be greater if 0 is near 7r/2 than if 0 is 
near ir, because, to avoid being captured at some other point on the disk, an electron 
arriving on a trajectory that just grazes the surface will have to be going faster than one 
coming from straight above. Equation (Al) may now be written as 

2ir1T/2

iT __ 	 3/2{[E + 

j(F) = -j0

	

	

IV=O	 =7 	 (emin(6V, co) e

	 ke	 th}


41rEh

X Eke dEke cos OV sin O dO dçO	 (A8) 

The integral over kinetic energy can be performed analytically by using the result 

fb

00 

 xexdx=e- ab (ab+l) 
 a2 

Then equation (A8) becomes 

1
ç21T	 IT E 3 Emin(6	 + 1 3/2{[Emin(O, o)+(q/qI )/(FP)]/Eth} 

j o -	 L2L2	 Eth	
ije

X sin 0 cos 6 dov d co v	 (A9) 

The integrations in equation (A9) must be performed numerically. No matter what
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numerical integration scheme is chosen, it is necessary to know Emin for various 
values of 0 V and V- The technique used here was weighted Gaussian quadratures, 

which works in the following way: The integral fa f(x) dx is approximated by the sum 

N
wf(x) 

i=1 

where the w are weights assigned to these points and the x 1 are various values of x 
in the range a x s b. The values of w and x 1 are found in handbooks (ref. 11) 
and depend on the length of the interval and on N, the number of points used in the ap-
proximation. Generally, Gaussian quadrature gives the best accuracy with the fewest 
values of the integrand. In this case it meant having to evaluate the fewest values of 
Emjn Each value of Emjn required considerable computer time to evaluate. 

To find Emin for a given value of 0 and (P V, consider a particle arriving at 
the current collection point P and having these impact angles. It will have some 
kinetic energy Eke at impact. Since collisions are being ignored, the trajectory is 
dynamically reversible. The particle is sent back along the same path, starting at P 
with Eke* The path will terminate either in the space plasma or somewhere on the disk. 
If the particle came from the plasma, Eke =" Emin so the process is repeated with the 
same 0 and v and a smaller value of Eke until the path terminates on the disk. 
Then Eke Emin (see fig. 16). The range between the upper and lower bounds on 
Emjn is reduced until a sufficiently accurate value of Emin is found for this value of 

and coy. The criterion used here was that the difference between the upper and 
lower bounds was within 1 percent of the total energy. This is repeated for as many 
values of 0 and	 as necessary to evaluate the integrals. 

Unless there is a potential well surrounding the current collection point, there will 
be, for a given value of coy a value e V above which the minimum kinetic energy 
(in eV) equals the potential at that point. Let this value of 0. be called 02. For low 
plasma temperatures the exponential factor in equation (A9) will change rapidly from 
one for	 62 to zero fore V < 0 2 . The change is less abrupt for higher plasma 
temperatures; nevertheless, Gaussian quadratures tend to give poor results for this 
step-function type of behavior. 

Sufficient accuracy could be obtained by approximating the factor 

g (3 E	
Ei + 

min

 + exp( m 
E-th	 1	 2	 Eth 
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by a function that is zero for 0 < 61, rises linearly from Cl at 61 to 
C 2 (3/2)(4,(ip)/Eth) + 1 at 0 = 02, and is equal to C2 between 02 and iT. This is 
shown in figure 17 where the current collection point is the center of the pinhole and 
where there is no 'p dependence. The values of 0, 62, and C 1 depend on	 and 
Eth, and they are obtained by plotting g against O. for a given value of V V. Equa-
tion (A9) becomes 

1fe
02 Ic2 - C1 	 sin cos 0 dO + c2 fe I jo	 7T 

= - fo 	 1 [
02 - 01 (0 -
	 + 

cl	 2	

}dV 

=	
'

2ir [cos(02 + 0 1 )sin(02 -
	 2C 1 sin 20i} dcov 

-:; t(C2-C1)	
0201 fo 

This integral is now in a form where Gaussian quadratures will give good results. For 
most of the calculations, however, the current collection point was the center of the pin-
hole, so the integration over ço was trivial. 

The next thing to consider is how the particle trajectories are calculated. 
Lagrang&s equations (ref. 12) for a particle moving in a conservative field are

(AlO) 
dti) 

where q is a generalized coordinate (not to be confused with charge on ions) and 

dq 
q. 
' dt 

The Lagrangian for a charged particle in an electromagnetic field is 

LJmV2 -q(ip-V•A)	 (All) 
2 

Provision is made for the possibility of a magnetic field, since originally the effect 
of a magnetic field on the current was to be included in the calculations. 

Cylindrical coordinates are used with the disk in the z = 0 plane and the z-axis 
the axis of symmetry. In vector form the velocity V is
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and

dA c aA c	 aA 
C

aA 
- = - + p - +	 + Z -s 
dt	 at	 ap	 aço

(A16) 

(Al2) 

where 5, ,	 are unit vectors in the p, cp, and z directions. 
Equation (All) becomes 

L	 +P 2 0 + 2) - qlip - (]A + pA + Az )]	 (A13) 
2 

and (AlO) becomes 

-- (m + qA ) = mp 2 + qA - q a	 -A(P 
dt	 (ap

aA aA aA 

a)
(A14) 

dt a a

aA
+
 aA 

dt	 (	
_- 

az	 az	 az	 az) 

Equations (A14) can be written in terms of the components of the magnetic field B 
by the use of

B=VXA
	

(A15) 

where c stands for any of the components of A. 
In cylindrical coordinates equation (A15) is 

aA IA 
B =L—!	 ço 

paço	 az 

B	
aA aA 

az	 ap 

B
Z p ap	 paço

(Al?) 
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Using equations (A16) and (All), equations (A14) become 

I	 faA
°+ - A

aA 

-	 -

/aA 

( ap
	

at

[	
ap p a)j

-- (mpp) = q (	
-	 \	 F (aAz -
	

A\	 /	 aA	 aA,\1 
dt	 a	

at)+[a	
az)	 ap)J 

/ 
q 

a	 F aA aA\	 ( aA - aA \1' 
mi - ( az	 at /	 [ az -	 )-	 p a	 az)] 

or

mj = mp0 2 + qE + q(PB -	 (A18(a)) 

-p.. (mp2 co) =	 + qp(B - B )	 (A18(b)) 

m = qE + q(jB - PcoB )	 (A18(c)) 

Note that E is zero because of symmetry; therefore, in the absence of a magnetic 
field, equation (A18(b)) is d/dt(mp ') = 0, which is the statement of conservation of 
angular momentum. If there is no explicit time dependence, E = - Vi/.i, and the equations 
of motion are

MP = mp 2 - q + q@ B - 
ap

(A19) 
P 

m2 -q

	

	 + q(B - PB) J az 

If the gradient of Ji and the components of B are known everywhere, the trajec-
tory of an incoming ion or electron can be reconstructed in the following manner. Let 
the particle land at time t = 0. First, the incoming direction of the particle is re-
versed so that it will travel backwards over the same path. (It is also necessary to re-
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verse the direction of B at each point). Next, the position of the particle at a small 
time At earlier is found. If it is small enough, the new coordinates are approxi-
mately

P + P it + L5(t)2 
2 

ço	 (p +	 it + -	 (it)-	 (A20) 

	

2	 1 

zn	 2	 J 
The initial coordinates p, ço, and z are the coordinates of the current collection point. 
The initial velocities h, , and i are calculated from the kinetic energy at impact,


	

E kel and from the impact angles OV and	 The accelerations j5, , and i are 
found by using equations (A19) and the values of E and B at the current collection 
point. The new velocities are needed before the process can be repeated. These are 

+ j5 it 

O n	
c•p+ (P Lt 

in	 + AtJ
(A21) 

The next point is found in the same fashion, with the position and velocity from equa-
tions (A20) and (A21) used as starting values. The particle is traced step by step back 
along its trajectory to its starting point, either in the space plasma or elsewhere on 
the disk. As a check on the size of At at each step, the kinetic energy at each point is 
calculated from the velocities and compared with the kinetic energy calculated from the 
initial energy of the particle and the potential at that point. The size of it was re-
duced until the agreement was within 0. 3 percent. This technique has the added advantage 
of making the step size smaller where the field gradients and accelerations are larger. 
This maintains accuracy without wasting computer time. 

The magnetic field can be chosen to represent the field of the Earth or the field of 
some electrical device on the satellite. The only requirement on the magnetic field is 
that it satisfy the relation V . B = 0 to be physically realizable. 

That leaves only the matter of calculating the electric field due to the disk. The 
finite difference approach used by Parker and Whipple was avoided by superposing the 
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potential and electric field due to several disks, each of which was at a uniform voltage 
(fig. 3). 

The voltage around a disk of radius a and uniform voltage ip o is given in oblate 
spheroidal coordinates by Moon and Spencer (ref. 13): 

'p1 =2
	 cot(sinh)	 (A22) 

iT 

Cylindrical and oblate spheroidal coordinates are related by 

p = a cosh 71 sin

(A23) 

z = a sinh 71 cos 

The inverse transformations are given by 

cosh =i [ p + a)2 + z2 + (p - a)2 + z2]

(A24) 

sin  =	 a)2 + 	 a)2 + z2] 

The parameter a enters in the following way: surfaces of constant i are oblate 
spheroids; the oblate spheroid for i = 0 reduces to a disk of radius a. Since there is 
no built-in inverse contangent function on the computer, it is convenient to rewrite 
equation (A22). Let 'i- = (7r12)('p 1/ip 0) and 0 = sinh i so that 3 = cot T which gives 

r=sin-

Substituting for r and 3,
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1 
zP o sin-' 

IT	

1 + sinh2i7 

1 
- 	 cosh 77 

From equation (A24) 

	

ip	 2a 1(p,z) =	

[	 + a)2 + z2 +	 - a)2 + 2]	

(A25) 

Equation (A25) gives the voltage distribution about a single disk of radius a and voltage 
The principle of superposition is used to construct a solution that represents a 

pinhole surrounded by insulation (fig. 2). To see how this is done, consider the voltage 
at z = 0. From equation (A25)

> a, z = 0) =. p 0 sin- 1(!)	 (A26) 

P i (p S a, z = 0) =	 (A27) 

For the purpose of illustrating how the solution is obtained, suppose that pinhole-
insulation system is to have the distribution given by having the three points 
p = r0(1), r0 (2), r0(3) at the voltages v0 (1), V0(2), V(3). From equations (A25) to 
(A27), the general solution is 

3

2r0(i) 

	

(p, z) =	 Vb(i) sin1 

i=1	
+ r0 (i)] 2 + z2 +
	 - r0(i)]2 +	

(A28) 

L 
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where the numbers Vb(i) are the superposition voltages and satisfy the equations 

r(l) 
sin	 + 'Vb(2) + 

IT 

VO(2)=!.Vb(1)	
- r(2) 

V0(1) = Vb( l ) + Vb(2 ) + Vb(3) 

V0(3) = V(1)-1 r0(1) 2 
Vb(2)	

-1 r0(2)
+V sin	 +—	 sin  

r0 (3)	 ir	 r0(3)

(A29) 

The solution given in (A28) is generated by superimposing the voltages of three disks of 
radii r0 (1), r0(2), and r 0(3), having, respectively, the constant voltages Vb(1 ), Vb(2), 
and Vb(3). On the z = 0 plane, V/ (P, z=0) automatically reduces to 

iP[P <r0 (1), 0] = V(1) 

= r0(2), o] = V0 (2)	 (A30) 

= r0(3), o] = v0(3) 

The pinhole has radius r0 (1) and voltage V0 (1). The region between r0 (1) and 
r0(3) is the insulation. In practice, equations (A29) are inverted numerically to get the 
numbers Vb, and these are retained in the memory of the computer. The voltage is 
calculated at each point where it is desired by using equation (A28). 

The components of the electric field are still needed. The total electric field is 
calculated by adding the contributions due to individual constant voltage disks, as in 
calculating the potential. This can be seen by using the definition K = - VIP, where p 
is given by equation (A28). The expressions for E 1 and Ei, the p- and z-
components of the electric field for a single disk of radius a and voltage V, are most 
easily obtained by converting from oblate spheroidal to cylindrical coordinates. 

The electric field for a single disk expressed in oblate spheroidal coordinates is 

1	 (A31) 
ir a	

cosh iq %Icosh2ll - sin2O 

where	 is the unit vector in the direction of increasing i. Let 	 be defined by
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e
(A32) 

J^^ 77 

The vector 
6,77

is parallel to	 but is not necessarily a unit vector. It is related to the

unit vectors in cylindrical coordinates (ref. 14, P. 120) by 

•1	 all	 aTI	 all
	 (A33) 

From equation (A23)

	

= a sinh i sin O + a cosh cos 8	 (A34) 

= a(sinh2 i sin2 0 + cosh27cos20) 

= a2 cosh2 - 1) sin2 8 + cosh271 cos2O] 

= a2 (cosh2n - sin2O) 

so that the unit vector	 is 

=	 1	 (sinh 71 sin 8 + cosh 77 cos 8) 

j 

From equation (A31), the components of the electric field are 

E= 2'o	 sinhij sin G	 1 -- 
IT a cosh (cosh2i1 - sin 	

(A36) 
cos0 

E	
ITa cosh 2 n - sin 2O J 

To get an expression in cylindrical coordinates, first use the relation 

20



cosh2 - sin 2 O = I	 + a)2 + z2 p - a)2 + z2]
	

(A37) 

and then

E	 2p0a sinh sin 6 = P	 cosh 

and

1 

[/(P + a)2 + Z2 ^;- a)2 + z2] 

0a 2 Ji 
E =	 cos6


ir
1 

[I(P + a)2 + z2	 - a)2 + z2] 

Equation (A24) supplies the expressions for cosh 77 and sin 6, and 

sinh il	 cosh2?J - 1 

and

cos 6 = jfl sin2O
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APPENDIX B


SYMBOLS 

magnetic vector potential, V-sec/rn 

B	 magnetic field, Wb/m2 

C 1 , C 2 parameters used in approximating integral in eq. (A9) 

E	 electric field, V/rn 

Eke	 kinetic energy of particle arriving at current collection point, eV 

Eke	 kinetic energy of particle in undisturbed plasma, eV 

Emin minimum kinetic energy of particle arriving at current collection point, eV 

Eth	 thermal energy of particles in undisturbed plasma, eV 

Ei z component of electric field about uniform potential disk 

p component of electric field about uniform potential disk 

vector in 17 direction 

I	 distribution function, (A/m2)/(m/sec)4 

j (i)	 normal current density at current collection point, A/rn2 

je	 normal electron current density, A/rn2 

eo	 electron current density in undisturbed plasma, A/rn2 

j i	 normal ion current density, A/rn2 

ho	 ion current density in undisturbed plasma, A/m2 

k	 Boltzmann constant, J/K 

L	 Lagrangian function, J 

M	 particle mass, kg 

me	 electron mass, kg 

fl	 unit normal at current collection point 

ne	 electron density in undisturbed plasma, m3 

no	 particle density in undisturbed plasma, m3 

P	 current collection point 

q	 charge on particle, C



qe 	 charge on electron, C 

qi	 ith generalized coordinate in Lagrangian function 


position vector of current collection point 

r0 (i)	 points at which potential is specified for nonequipotential disk 

T	 temperature, K 

T 	 electron temperature, K 

T1 	 ion temperature, K 

particle velocity, rn/sec 

superposition voltages for none quipotential disk, V 

V0 (i)	 specified voltages on none quipotential disk, V 

co	 particle velocity in undisturbed plasma, rn/sec 

i, 0, p coordinates in oblate spheroidal coordinate system 

unit normal in i direction 

angles that specify direction of incoming particle at current collection point 
(see fig. 15) 

P, ço, z coordinates in cylindrical coordinate system 

P, ,	 unit vectors in p, ço, and z directions 

i, (p, z) electrostatic potential, V 

41 P	 electrostatic potential on pinhole, V 

uniform potential, V 

41 1 (P, z) electrostatic potential due to single disk at tP o , V
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TABLE I. - ION AND ELECTRON CURRENT


DENSITIES AT VARIOUS LOCATIONS ON 


INSULATOR - VERY POSITIVE CASE

Thermal Distance Voltage Electron Ion current 
energy, along at that current density, 

Eth, radius, point, density, 
eV cm e' A/rn2 

V A/rn 

0.1 1.7 375 1. 18X10- 2 0 
1 3.74x103 0 

10 1. 20x10 3 2. 4x1033 
100 4.39x104 4.7x1O8 

0.1 2.7 225 7.20x10 3 0 
1 2.28x103 0 

10 7.39x10 8.7x1022 
100 2.95x10- 4 6.7x108 

0.1 3.8 125 4. 10x10 3 0 
1 1.30x103 0 

10 4.32x104 3.1x1015 
100 1.99x104 3.0x107 

0.1 4.8 75 2.41x10 3 0 
1 7.68x104 3.1x1057 

10 1 1 2.62x104 7.1x102 
100 1.44<10 6.5x107 

0.1 5.1 40 1.55x10 3 0 
1 4. 97x10" 9. ox10 

10 I 1. 80x10 4 1;2x10 
100 ' 1.30x10 1.9x106
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TABLE H. - DIMENSIONLESS COLLECTED ELECTRON CURRENT AT 


CENTER OF PINHOLE, WITH INSULATION ADJUSTED TO PRODUCE 


VARIOUS VOLTAGE DISTRIBUTIONS AROUND DISK 


[Disk radius, 5. 1 cm]


(a) Pinhole radius, 0. 19 cm 

Thermal Disk voltage distribution 
energy, 

E Very Slightly Slightly Very 

eV positive positive negative negative 

Collected dimensionless electron current,	 e"eo (E	 /p) 

0.1 1.06 0.456 340- 10 0 
1 1.06 .537 3x102 1x1034 

10 1.06 .762 0.45 6405 
100 1.07 .974 .9 0.3 

1000 1.27 1.09 1.2 1.06 

(b) Pinhole radius, 0. 285 cm 

Thermal Disk voltage distribution 
energy, 

E 
e'.T

Very 
positive

Slightly 
positive

Slightly 
negative

Very 
negative 

Collected dimensionless electron current, (j/J0)(E/t/p) 

0.1 1.09 1.07 0.749 0 
1 1.09 1.08 .778 84026 

10 1.09 1.08 .950 7404 
100 1.11 1.09 1.07 0.4 

1000 1.23 1.21 1.22 1.13 

TABLE Ill. - EFFECT OF INSULATION ON PINHOLE CURRENT 

Thermal 
energy, 

E 
eV

10-kV, 0. 19-cm circular disk 
with no insulation

10-kV, 0. 19-cm circular disk 
plus insulation (very pos. case) 

Collected dimensionless electron current, (JeMeo)(E th/PP)  

0.1 1.41 1.06 
1 1.41 1.06 

10 1.41 1.06 
100 1.42 1.07 

1000 1.50 1.27
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Figure 1. - Disk model. 

U	 I	 Z	 3	 4	 5	 6

Radius, cm 

Figure 2. - Typical disk voltage profile. 

Vb(l) 

Figure 3. - Superposition of voltages from three 
disks of radii r 0(I), r0(2), r(3) and voltages 

V( 
1), Vb(2) , Vb( 3) to give VIp), which has the 

values V0U) at points < r 0(1), V0(2) at 
and V0(3) at r0(3).
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Figure 6. - Contours for slightly positive case; Small pinhole. 
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Figure 8. - Contours for very negative case; small pinhole. 
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Figure 9. - Contours for very positive case; large pinhole. 
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Figure 10. - Contours for slightly positive case; large pinhole. 
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Figure 16. - Two trajectories having same impact angles at 
current collection point, but different kinetic energies. 
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