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ABSTRACT

The isotopic composition of the enhanced low energy nitrogen

and oxygen cosmic rays can provide information regarding the source

of these particles. Using the Caltech Electron/Isotope Spectrometer

aboard the IMP-7 satellite, a measurement of this _isotopic composition 	
y

was made. To determine the isotope response of the instrument, a

calibration was performed, and it was determined that the standard

range-energy tables were inadequate to calculate the isotope response.
3

From the calibration, corrections to the standard range-energy tables

were obtained which can be used to calculate the isotope response of

this and similar instruments.

The low energy nitrogen and oxygen cosmic rays were determinedt

to be primarily 14N and 160. Upper limits were obtained for the

abundances of the other stable nitrogen and oxygen isotopes. To the

	 j

84% confidence level the isotopic abundances are: 15N/N s 0.26

(5.6 - 12.7 MeV/nucleon), 1 70/0 s 0.13 (7.0 - 11.8 MeV/nucleon),
	

4

n	 180/0 s 0.12	 (7.0	 11.2 MeV/n J eon) . The nitrogen composition

differs from higher energy measurements which indicate that 1 5N, which

is thought to be secondary,is the dominant isotope. This implies that

the low energy enhanced cosmic rays are not part of the same-population

as the higher energy cosmic rays and that they have not passed through

t;	 enough material to produce a large fraction of 
15
N. The isotopic

x

,

(r
^j



composition of the low energy enhanced nitrogen and oxygen is con-

sistent with the local acceleration theory of Fisk, Kozlovsky, and

Ramaty, in which interstellar material is accelerated to several

MeV/nucleon. If,'on the other hand, -the low energy nitrogen and

oxygen result from nucleosynthesis in =a galactic source, then the

nucleosynthesis processes which produce an enhancement of nitrogen

and oxygen and a depletion of carbon are restricted to producing

predominantly 14N and 160.

5
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1. INTRODUCTION

Recently, a new component with unusual composition has been

reported in the low energy cosmic rays (Hovestadt et al., 1973;

McDonald et al., 1974). The 3 - 30 MeV/nucleon nitrogen and oxygen

fluxes are enhanced relative to an extrapolation from higher

energies, while no similar enhancement is observed in the carbon

flux. As a result, at 10 MeV/nucleon oxygen is about 30 times as

abundant as carbon, whereas at higher energies (Webber et al., 1972)

carbon is slightly more abundant than oxygen. In addition, at

10 MeV/nucleon oxygen is almost as abundant as hydrogen and helium,

while at - 1 GeV/nucleon (Webber et al., 1972; Webber and Lezniak, 1974).

the oxygen/hydrogen and oxygen/helium ratios are typically 0.002

and O.U2.

The unusual elemental composition of these low energy cosmic

rays has prompted numerous investigators to study their properties

in the hope of determining their origin. McDonald et al. (1974)

have found a positive radial gradient for the low energy oxygen,

indicating that these particles are not solar in origin. The

Large time variations which have been observed in the low energy

oxygen flux also argue against a solar origin. For example,

at 10 MeV/nucleon the 1968 and 1969 oxygen fluxes (Teegarden`

et al., 1969 Mogro-Campero et al., 1973) are a factor of

10	 $0 below the 1972 flux. The more recent 1972	 1973

measurements also show time variations. These variations do not

- correlate with the variations of the low intensity 1,3 	 2.3 MeV
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protons, which are likely of solar origin, but they are correlated

with the variations of higher energy galactic cosmic rays (Mewal dt

et al., 1974a).

One possible explanation for the low energy nitrogen and

oxygen is that they originate from a galactic source. According

to the present theory of solar modulation of cosmic rays, it is

difficult to account for the enhancements of the low energy fluxes

observed at earth (Fisk, 1974). However, this may result from the in-

adequacy of present modulation theory.

Fisk et al. (1974) have suggested an alternative explanation.

They proposed that the low energy nitrogen and oxygen are due to

neutral interstellar particles which penetrate the solar cavity,

are singly ionized, and are then accelerated. Since interstellar

carbon is mostly ionized (Rogerson et al., 1973), it cannot pene-

trate the solar cavity. If this theory is correct, it can explain

the large oxygen/carbon ,ratio at low energies in a natural way.

The enhanced nitro an and ox an make an interestin to is9	 Yg	 9 P

of study whether they represent a sample of the interstellar

medium or of a galactic object of unusual composition. In order

to learn more about the nature of the source of the low energy	 -

nitrogen and oxygen cosmic rays, we undertook to measure their

isotopic composition with the Caltech Electron/Isotope Spectro-

meter aboard the IMP-7 satellite. A preliminary account of this

work has been presented elsewhere (Hurford et al., 1974; Mewaldt

et al., 1974b).

s
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II. EXPERIMENT

A. Spacecraft

Two similar versions of the Caltech Electron/Isotope Spectro-

meter (EIS) were launched in September 1972 and October 1973 aboard

the IMP-7 and IMP-8 satellites respectively. The spacecrafts are

spin stabilized with the spin axis pointi-ng perpendicular to the

ecliptic. The telescope on each spacecraft is mounted perpendicular

to the spin axis so that it scans the ecliptic plane as the space
k

:craft rotates. A list of selected orbital parameters for each

satellite is given in Table II - 1. The large orbital radii en-

sure that the satellites spend more than 2/3 of the time in the	 [

interplanetary medium outside the earth's magnetotail 	 '
ti

B. Instrument
s.

Figure II - 1 schematically illustrates the Caltech EIS tele-

scope aboard IMP-7. The telescope consists of a stack of 11 fully

S

depleted silicon surface-barrier solid state detectors, DO-D10

surrounded by a plastic anticoincidence shield`, Dll, which is 	 x

viewed by a- photomultiplier tube. The dead layers on each side a°

of the detectors are less than 50 u g/cm2 . A 2.4 mq/cm2 aluminized	 f

#a

mylar window coversthe front of the telescope to prevent the sun is

from illuminating the detectors.

Each detector is connected to a charge-sensitive preamplifier,

The outputs of DO-D9 are analyzed by 1024 or 4096 channel analog

to digital converters (ADC's), while D10 and Dll'are connected

P
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TABLE II - 1

Nominal Orbit Characteristics q

of IMP-7 and IMP-8 Satellites

IMP-7 IMP-8.
(9/25/72) (11/23/73)

Apogee 201,110 km 155,978 km

Perigee 235,607 km 286,129 km

Orbit period 12.3 days 12.5 days

1(j

4 Spin period 1.3 sec 2.6 sec

^ a
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to discriminators. Table II - 2 lists the nominal detector and

y
ADC parameters.

Two types of information are generated by the instrument:

event and rate information. Each 0.64 seconds. an  event is read

-out. A five-level priority system selects the most interesting

event during each 0.64 second interval. For each event the tele-

metry contains several items of information. The identities of

the triggered detectors are telemetered along with 2 pulse heights:

the pulse height in the first detector and the sum of the pulse

heights in the remaining detectors. In addition, the azimuthal

angle of the telescope at the time of the event is retrieved.

The rate data are useful for straying time varying events

and for normalizing the event data. Table II 3 defines the

rates that are useful for the present work:

For this study, the primary events of interest are those

that trigger D2 and D5 and no other detector. The pulse height

information then corresponds to the energy loss in D2 and the

energy loss in D5. The annular detectors are active collimators

in this analysis mode and provide a clean, low background geo-

metry. Table II - 4 lists the energy range of selected isotopes

in D25. Column 1 indicates the energy at which _D5 is triggered

and the energy at which D6 is triggered. Column 3 indicates the

energy intervals contributing to the PHI rate. Note that the

low energy limits in column 3 differ from the low energy limit

in column l since the high discriminator of D5 must be triggered

for the PHI rate. (See Table II 	 3.)

L
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TABLE II -2

3

r

s

Nominal Detector and ADC Characteristics for IMP-7

J

Number ofOuter Inner Dead Discriminatort ADC$
Detector Type Thickness Diameter Diameter Layer on Threshold Resolution ADC

(um) (mm) (mm) Each (MeV) (MeV) Channels
Surface
(ug/cm2)

DO,Dl,D3 1024 iannular 1000, 22 8 40 0.16 0,165

D4 annular 1000 25 8 40 0.16 0.165 1024

D2 solid 50 9- - 40 0.16 0.041 1024	 00+
0.4 (D2H)

R D5 solid 1000 21 - 40 0.16 0.041* 4096+
3.2 (D5H)

p D6,07,D8,D9 solid 1000 21 - 40 0.16 0.165 1024

D10 solid 1000 21 - 40 0.16 - -

*Above channel-1023het resolution is 0.165 MeV sine	 he least 2c	 t significant bitsg are deleted from the
telemetry.

w +D2H and D5H represent high level thresholds for the D2 and D5 ADC's.

Detailed results can be found in the report by Mewaldt and Vidor (1975).
++
Detailed detector parameters can be found in the report by Hartman (1973).

U

i
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r TABLE II - 3

Selected Rates

Rate Logic Requirement Nominal Physical Significance

i° PLO N D 2 H d5 d5h d6 d7 d10 aip Low energy nuclei	 that stop
in D2

PHI
--

N D2 D5H d6
—

0T-5 dl Higher, energy nuclei +  that
stop in DS

PEN N D5 D6 D10 TI-1 Charged particles that penet-
rate the detector stack

DO* DO d10 dll Charged particles that enter
DO and stop in the stack,

NEUT N d5 D7 d10 d11 Neutral particles that inter-
act in the detector stack

i

r

N = narrow geometry = dO dl d3 d6

a p = analysis not in progress

,E *See Table II - 4 for energy intervals

^
3

.

}
t

1.

^r

i;

y

„

3
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r
TABLE II-4

Calculated IMP-7 Energy Intervals

D25	 D25 PHI
Isotope Rate
Identification

(MeV/nucleon)	 (MeV/nucleon) (MeV/nucleon_).

1 Ht 2.36 - 12.65	 2.36 - 12.65 4.30 - 12.65

4He
+

2.40 - 12.74	 2.40 - 12.74 2.68 - 12.74

6
Li 2.87 - 15.86	 2.87 - 15.86 3.10 -`15.86

7 Be$ 3.65 - 20.12	 3.65 - 20.12 3.86 - 20.12

11 B$ 3.50 - 20.00	 3.50 - 16..19 3.68 - 20.00

12C$ 23.38 - 23.384.09 -	 4.09 - 15.27 4.27

14N+ 4.87 - 25.80	 5.59 - 13.57 4.93 - 25.80

15N+ 4.66 - 24.83	 5.45 - 12.74 4.71 - 24.83

X 60+ 4.91	 - 27.59 	 6.95 - 12.45 5.05 - 27.59	 R

170+
4.71	 - 26.66	 6.87 - 11.81 4.84

1
- 26.66

180+ 4.52 - 25.81	 6.77 - 11.24 4.65 - 25.81

Corrected for energy loss in mylar window.

+Based on calibrated instrument response (see Appendix C), H,	 He
accurate to - 1%; N, 0 accurate to - 0.2 MeV/nucleon.

$Based on Janni's (1`966) range - energy	 tables with corrections for
electron pickup as given by Northcliffe and Schilling (1970).`
Accurate to -- 0.3 MeV/nucleon.

a 

y 
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h

u	 Because of ADC saturation,,isotope identification is not

N	 possible over the entire D25 energy range. Figure II - 2 illus-

trates this point. The boundaries of the figure are limited by

the number of channels in the D2 and D5 ADC's. The tracks are

shown for several isotopes. Elements heavier than carbon satu-

rate the D2 ADC when the particles have ,lust enough energy to

`

	

	 enter D5. Elements heavier than beryllium can lose enough energy

in D5 to saturate the D5 ADC. Note than in the regions of D2 or

D5 ADC saturation, element informationis somewhat restricted.

For events that saturate D2, only a lower limit can be placed on

the charge of the particle. For events that saturate only D5,

the element can either be unambiguously identified (for example,

boron), or it can be limited to only a few possibilities (for 	
k

i	 example, either nitrogen or oxygen). Table II - 5 lists the

channels and the corresponding energies for which the D2 or D5
i

ADC is saturated by selected isotopes.

A cross section view of the Caltech Electron /Isotope Spectro-

meter aboard IMP-8 is shown in Figure II 	 3. The basic changes

from IMP-7 are the compactness of the detector stack and the 	 ;a

replacement of 2 annular detectors by 2 solid detectors. The

relevant physical parameters for D25 events on IMP-7 and IMP-8

are given in Table II-- 6. The energy intervals on IMP-8 for

selected isotopes are given in Table II - 7,,and Table II - 8

lists the channels and corresponding energies for which the

IMP-8 D2 or D5 ADC is saturated. Except for detector type,

y
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FIGURE _II - 2

n,> "c n g; nint illustrating reg ions of ADC

u	 , j





3.4

14N
0 - 649 4.9 - 5.6 234 - 406 13.6 - 25.8

15N 0 - 731 4.7 - 5.5 241 - 427 12.7 _ 24.8

F

160
0 - 1423 4.9 - 7.0 288 - 575 12.4 - 27.6

170 0 - 1557 4.7 - 6.9 296 - 600 11.8 - 26.7

180
0 - 1677 4.5 - 6.8 303 - 624 11.2 - 25.8

20
Ne 0 - 3956 6.2 = 10.8 405 - 1005 11,1 -	 31.5

24
Mg 0 - 4092 6.9 -	 16.1 535 - 3+ 10.5 - 34.9

28
Si 0 - 4092 7.6 - 23.1 679 - 3+ 10.2 - 38.0

Corrected for energy are calculated

yB

loss in mylar window. Energies
from range - energy tables and are accurate to - 0.3 MeV/nucleon. -U	

channels are accurate to 3 channels. D5 channels are accurate
to 20 channels.	 Note that,due to resolution effects (see
Section II - C),the actual spread in channels may be larger than
the errors quoted for the mean channel numbers. j

The D2 ADC saturates at channel 3. Highest energy D2 channels
are: ...,	 1021, 1022, 1023, 0,	 1, 2,	 3.

14

TABLE II	 5	 a

Average Energies of^	 g	 D2 and D5 ADC Saturation for IMP-7*x

D2 Saturated	 D5 Saturated
{

Isotope D5 Channels	 Energy	 D2 Channels	 Energy
(MeV/nucleon)	 (MeV/nucleon)

llB
	 149 - 174	 16.2 - 20.0

12C	
187	 262	 15	 2

1
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TABLE II - 6

it

{

Physical Parameters for IMP-7 and IMP-8 D25 Events

IMP-7	 IMP-8	 a

Geometrrical
Factor*(cm2sr)	 0.069 ± .005	 0.232 ± .01

Average
secant e	 1.0234	 1.0459

Maximum a (degrees)	 23.6	 26.7

D2 thickness+
(um silicon)	 47.36 ± .1	 46.7 ± .5

Window thickness$
(mg/cm2 mylar)	 2.4 ± .1	 3,2 ± .2

i^

*Calculated fromh sical dimensions of detectors stem.	 Hartman,P y	y 	 (	 b

1973; Vidor, 1974).

+Normalized to flight data. Quoted errors assume electronic.
calibration known precisely.

t

f.  
21

Measured with 6 . 051 MeV and 8.785 MeV a-particles from 2Pb. i

j

a

fy
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TABLE II - 7

ti
Calculated IMP-8 Energy Intervals*

,A

PHID25 D25

Isotope Rate
Identification

(MeV/nucleon) (MeV/nucleon) (MeV/nucleon)

lH+
2.49 - 12.97 2.49 -	 12.97 4.39 - 12.97

4He+ 2.53 - 13.06 2.53 - 13.06 2.80 - 13.06

6Li $ - 3.04 3.26 - 16.263.04 16.26 - 106 .26

_,
'Bed 3.87 - 20.63 3.87 - 20.63

y
j

4.07 - 20.63

11
Be$ 3.72 - 20.51 3..72 -	 16.18 3.89 - 20.51

c
12C$ 4.35 - 23.97 4.35 - 15.26 4.52 - 23.97

[ 14N+ 5.15 - 26.44 5.89 - 13.66

r

5.19 - 26.44

15N+
4.92 - 25.44 5.74 - 12.81 4.97 - 25.44

;r 160+ 5.21 - 28.28 7.29 - 12.58 5.35 - 28.28
s

170 5.00 - 27.33 7.17 - 11.90 5.13 - 27.33	
l

j 180+ 4.80 - 26.46 7.05 - 11.32 4.93 - 26.46

i'

i
*Corrected for energy loss in mylar window.

a

+Based on calibrated instrument response.	 H, He accurate to	 1%;
c'
1

N, 0 accurate to - 0.2 MeV/nucleon.

$Based on. Janni's (1966) range - energy tables with corrections
j for electron pickup as given by Northcliffe and Schilling (1970).
uF Accurate to - 0.3 MeV/nucleon.

f
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TABLE II - 8

Average Energies of D2 and D5 ADC Saturation for IMP-8

D2 Saturated D5 Saturated

Isotope D5 Channels Energy D2 Channels	 Energy
(MeV/nucleon) (MeV/nucleon)

11 6 149 - 178	 16.2 - 20.5

12C
188 - 268	 15.3 - 24.0

14N
0 - 686 5.1	 - 5.9 234 - 413	 13.7 - 26.4

15N
0 - 770 4.9 - 5.7 241	 - 435	 12.8 - 25.4

.160
0 - 1485 5.2 - 7.3 288 - 584	 12.6 - 28.3

:.

170
-0 - 1612 5.0 - 7.2 295	 611	 11.9 - 27.3

^	 180 0 - 1731 4.8 -	 7.1 303 - 636	 1.1.3 - 26.5
E

20 N 0 - 4057 6.6 -	 11.2 393 - 1021	 11.2 - 32.3

24Mg 0 - 4092 7.3 - 16.6 521	 - 3+	 10.7 - 35.7

28Si
0 - 4092 8.0 - 23.6 662 - 3+ 	10.5 - 39.0

Corrected for energy loss in mylar window. 	 Energies are calculated
from range - energy tables and are accurate to - 0.3 MeV/nucleon. 4

D2 channels are accurate to - 3 channels.	 D5 channels are accurate
to - 20 channels. Note that , due to resolution effects, (see
Section II - C), the actual spread in channels may be larger than
the errors quoted for the mean channel numbers.

+The D2 ADC saturates at channel 3.	 Highest energy D2 channels =
are:	 ..., 1021, 1022, 1023, 0, 1,	 2,	 3.
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Table II - 2 closely represents the nominal detector and ADC para-

meters for IMP-8. A more detailed description of the EIS experi-

ments on IMP-7 and IMP-8 can be found in the report by Garrard

(1974a).

The IMP-8 FIS has a larger geometrical factor than the 'IMP-7

EIS for D25 events. However, the trade-off is that the-mass

resolution is worse for IMP-8. Therefore, in order to obtain the

best possible mass resolution, the isotope data presented here

will be from the IMP-7 experiment.

C.	 Isotope Response

The isotope identification technique, herein referred to as

the AE V technique, used for this experiment will now be

described. A particle of mass M, charge Z, and energy E will,

through ionization energy loss, deposit an average energy of in

D2 and a residual energy E' in_D5 	 If the range-energy relation

of the isotope is known, of and E' can be calculated. Otherwise,
	 i

AE and E' can be determined from a calibration., If the energy of

the isotope is varied, the result is a track on a of - E' plot.

(See for example, Figure II - 2.) For a more detailed discussion

of the range - energy relation and the isotope tracks, the reader

is referred to Appendix C

In reality the AE and E' forma distribution about the aver-

age mass track. A nonintegral mass can be assigned to the particle

by interpolating between neighboring mass tracks. (In practice

equation C - 4 is used to calculate the mass.)

^-;	 m	 ._
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l The-distribution of particles about the mass track implies a

finite mass resolution.	 Since the calculated mass M (oE,E',T)
3

is a function of AE, E', and the thickness T of D2, a variation

in any of these quantities results in a'variation-in the calculated

mass.	 The mass variation can be expressed as,:

QM2 	 (Im 2 	 QT2	
+
	

am	 2	 °6E2
3T)

asE/
AE, E	 E, T

+	 (LM	 2	 +	 ( ,M	 2	 2
AE

aoEaE	 EE l , T	 4E, T	 IT	 - l

whereQM' 'T' °sE',6AE, and a E ,, are,respectively, the rms

deviations of the calculated mass, of the pathlength in the AE

detector, of the energy 
loss 

AE due to ionization energy loss

fluctuations, of the measured energy loss of due to noise and

channel width, and of the measured energy loss E' due to noise
r,

f and channel width.	 ,.fr,
The largest contribution to the mass resolution for the

j; nitrogen and oxygen D25 events is the uncertainty in the path.-

^t

t
length in D2.	 This pathlength uncertainty is due to the spread

_

t
tj

in acceptance angles and to the intrinsic thickness variations

of D2.	 Since D2 has a slightly concave shape, the two effects

are correlated.	 From Figure II - 1 it can be seen that the	 =

1

{
{
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trajectories which deviate the most from perpendicular incidence

must pass near the center of D2, which is also the thinnest region

9
of the detector.	 Therefore the pathlength variations due to angle

are partly compensated by the concave shape of D2. 	 The D2 thick-

ness profile was measured with an 8.785 MeV a - beam from a

collimated 
212 

Pbsource.	 The pathlength variation was obtained

F from'a Monte Carlo calculation which incorporated both angle and

thickness effects.

{ Energy loss fluctuations in D2 are a second contribution to

the mass resolution.	 Since ionization energy loss is a statistical

process, a particle with energy E travelling through a thickness

T of D2 will not always lose the same energy of in D2 (Seltzer

ri
and Berger, 1964). 	 For the particle types and energies considered

here, the standard deviation in MeV of the energy loss in D2 is

I
x

given by (Hurford, 1974)

t 2/2 -
c

-	
6	 _ 0.435	 Z N	 D	 1- s	 11 	 2
8E1-sue

^i where S is the veloci ty of the incident particle relative to the 	
y

t velocity of light, Z is the charge of the incident particle in

units of proton charge, T is the thickness of D2 in cm, and D is

t+
a deceleration factor of order unity that corrects for the change

of velocity as the particle traverses the detector.

k

; E
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D = V, - 0.8705 [ 1 + R/T In (1	 T/R)]	 II - 3

where R is the range of the incident  particle in cm.

The uncertainty in the AE and E' measurements make a rela-

tively small contribution to the nitrogen and oxygen mass resolu-

tion. The variations in the AE and E' measurements are due to 2

effects: electronic noise and intrinsic channel width, which can

be combined in quadrature to give the total rms variation.

The contributions to the IMP-7 EIS mass resolution are given

in Table II - 9. Although the resolution is calculated for dis-

crete energies, the total mass resolution is within 0.05 amu of

the values in Table I1 - 9 for all energies at which isotope

It should be noted that the relative size of the individual

c
	

contributions is a function of the isotope. As an example, for

10 MeV protons the contributions in order of decreasing import-

ance are (Hurford, 1974): ionization energy loss fluctuations,

uncertainty in the AE measurement, pathlength variations, and

uncertainty in the E' measurement. This contrasts with 60,
i

for which the dominant contribution is the pathlength uncertainty.

For D25 events the pathlength -variation -tends to increase in

relative importance for the heavier elements. 	 F
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TABLE II - 9

Contributions to IMP-7 Mass Resolution

Equivalent QM (amu)

14 N 160

Parameter Significance Value	 (7.6 MeV/nuc) (8.5 MeV/nuc)

} aT Rms pathlength 0.85um 0.336 0.388
uncertainty in D2

G
SE

Rms ionization 0.233 MeV (1 40 0.148 0.163
energy loss 0.261 MeV (160)
fluctuation in D2

D2 rms noise 0.023 MeV

D2 channel width 0.041 MeV

AE
Rms error in 4E 0.026 MeV 0.020 0.020
measurement

D5 rms noise 0.014 MeV

D5 channel width 0.166 MeV

6E , Rms error in E' 0.050 MeV 0.004 0.003
measurement

Q Total rms mass 0.368 0.421
M resolution

Rms deviation in energy measurement due to channel width W is W/



i

25

D.	 Calibrations

The calibrations can be conveniently divided into 2-classes:

electronic and particle calibrations. Those calibrations which

are pertinent to the discussion of cosmic ray nuclei will be

discussed.

Each ADC contains an internal test pulser.	 To perform

z	 electronic calibrations, the internal test pulsers were initially

calibrated against the energy loss of a - particles from an

241 Am source. This initial calibration related the voltage used

in conjunction with the pullers to the energy of the a particle.

Since the voltage - energy relation is linear, the pulser could

then be used to determine the energy corresponding to the ADC

channel thresholds	 (Mewaldt and Vidor, 1975).

The linearity and the stability of the gain and offset were

investigated over a period of 8 1/2 months. The linearity and

gain stability are listed in Table Ii - 10 along with the effect
a

on the calculated mass of an 160"particle. Note the extremely

small error in mass determination due to calibration uncertainties

The linearity of the system allows us to use only the 2 parameters 	
y

{

of gain and offset to calculate the thresholds of the higher channels.

The gain and offset are used to calculate energy thresholds for.
D2 and D5 channels above 400. Below channel 400 the thresholds
are calculated by linear interpolation from a set of calibratedf	
channel thresholds.

it	
J

_	 L.
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TABLE II - 10

Linearity and Stability of IMP-7 Detector Electronics
h

D2 D5

MeV	 AM MeV	 AM
for 160 for 160
(amu) (amu)

ti

Linearity*	 0.009	 0.008 0.026	 0.005

x Gain stability +
i (full scale)	 0.012	 0.008 0.20	 0.02

Offset stability$	 0.013	 0.011 0.003	 0.0006	
a

.;

Linearity is the deviation in channel threshold from the value
obtained by linear interpolation between channels 100 and 1000
for D2 and between channels 400 and 4000 for D5.	 Table applies

k
r

only to channels above 20.
a

+Measured over period of 8 1/2 months of calibrations.	 (Maximum
deviation from mean).

For each of 3 periods of flight data during which offset was
stable (9/30/72 - 3/26/73; 3/27/73 - 6/4/73; 6/5/73 - 10/22/74).
(Maximum deviation from mean).

AM is evaluated at the maximum ADC channel for gain errors and at
the minimum channel for linearity and offset errors.

i

k
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The offset was not as stable as the gain over long time periods,..

However, for the IMP-7 instrument the D2 and D5 pulse heights

are read out for certain types of events in which the detectors

are not triggered, thus providing an in-flight calibration of the

offset. For the post-launch data, a correction factor to the offset was

derived for each of 3 time periods. Table II - 10 represents the

variations in the offset in each of these time periods.

Calibrations with isotopes of hydrogen and helium at several

angles of incidence and at several energies were done at the

Caltech Tandem van de Graaff accelerator. These calibrations con-

firmed the predicted mass resolution of hydrogen and helium. For

GE	 a more detailed discussion of the Tandem van de Graaff calibrations,

the reader is referred to Hurford (1974) and Vidor (1975).

A calibration of a spare telescope identical to that on IMP-8

was done with a variety of isotopes of charge 1:5 Z :5 8 at the

Berkeley 88" Cyclotron. The main result of the calibration was

the accurate determination of the mass response for selected

isotopes. This aspect of the calibration is described in Appendix

C. In addition, the technique of calculating the mass resolution

was tested with elements up through oxygen, and an estimate was
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A histogram of the observed mass distribution is shown in

Figure II - 4 for a portion of the 160 calibration data. Super-

imposed on the histogram is a Gaussian curve with a 0.30 amu Q

and a height normalized to the 19,929 events in the histogram.

The width of the curve was determined from equation II - 1 and

the parameters of the detector system. * The Gaussian curve is a

reasonable fit, although not the best fit, to the peak of the

histogram. However, the Gaussian curve does not fit the tails of

the mass histogram. On the low mass side especially, the number

of events in the histogram is significantly larger than predicted

by the Gaussian curve. If the tails of the distribution are due

to the intrinsic response of the instrument to an 160 beam, then

we can estimate the background level affecting isotope resolution.

At 15 and 14 amu the non-Gaussian tails are respectively 2 and 3

orders of magnitude below the histogram peak. At 17 amu the tail

The D2 rms thickness variation of 0.5p was a free parameter
obtained from the cyclotron calibration data (excluding the data
in Figure II	 4) by fitting the mass resolution of the isotopes
of several elements. This compares with a value of 0.6 ± .lu
obtained by scanning the detector with a collimated a 	 source.
The dominant source of the 0.6u variations were thickness
fluctuations on a scale smaller than the 1/16" diameter of the
a - beam. The energy fluctuations in D2 were measured directly.
The small scale thickness variations were then ,obtained by
subtracting out the contributions of ionization energy loss
fluctuations and noise from the total measured energy fluctuations.

-3
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is 3 orders of magnitude below the peak. There is only 1 event at

18.0 ± .5 amu out of a total of 19,929 events in the histogram.

The background level due to a normally incident 160 beam is there-

fore extremely small, especially on the high mass side. Note that

the spare telescope calibrated at the cyclotron is not the same

telescope that is aboard the IMP-7 or IMP-8 satellite. Therefore,

there is always the possibility that the response of the spare

telescope does not simulate the response of the flight instrument.

However, we see no reason for any fundamental difference between

the responses of the spare and flight telescopes.

Using the measured detector parameters, the mass resolution

was calculated as a function of isotope for 8.5 MeV/nucleon

particles. Figure II - 5 is a plot of the calculated mass

resolution vs. nuclear charge for selected isotopes. The observed	 a

mass resolution from the cyclotron calibration is shown for com-
,

parison. The dashed error bars on the data points indicate errors a

that are caused by lack of reproducibility, as opposed to errors

due to statistics. The cause of the non-reproducibility has not

been investigated. However, one possible source may be that the

non-Gaussian tails of the mass distribution are not being excluded

in an identical manner from run to run. The variation in the

ratio Z/A for the isotopes is the primary reason that the calcu-

lated resolution vs. nuclear charge is not monotonic. The dominant

sources of the rms mass resolution range from energy loss

fluctuations for protons to pathlength variations for oxygen.

J

jr
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FIGURE II - 5

Mass resolution as a function of charge for

selected isotopes at 8.5 MeV/nucleon. The

solid line indicates the predicted mass

resolution. Dotted error bars indicate un-

certainties dominated by lack of reproduc-
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The agreement between the observed and calculated mass resolution

over a large charge interval confirms the accuracy of the
i

calculation technique to better than 10%.

r^
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III. OBSERVATIONS

3

A.	 Definition of Quiet Time Data

The combined flux of solar and galactic cosmic ray nuclei from	 5

4 - 13 MeV/nucleon has been observed to vary by more than 5 orders

of magnitude over a 2 year span. The higher fluxes are correlated

with solar particle emission, with the largest fluxes associated

with solar flares, In order to study the quiescent flux of nitro-

gen and oxygen cosmic rays, it is necessary to select periods that

minimize contamination by solar flare particles. The selection

criterion makes use of the instrument's PHI rate, which is sensitive

to protons from 4.30 - 12.65 MeV and to alpha particles from

2.68 - 12.74 MeV/nucleon. (See Table II - 4).

If the relative elemental abundances are independent of the

particle flux from a solar flare, one expects the solar oxygen flux

to vary linearly with the solar hydrogen andhelium flux, which is

monitored by the PHI rate. Figure III - 1 is a plot of the

6.3	 8.2 MeV/nucleon carbon, nitrogen, and oxygen (CNO) rate vs.

the daily average PHI rate for the 22 months of IMP-7 data from

October, 1972 - July, 1974. The CNO rate was measured with a

single detector DO, which, because of its large geometrical factor,

gives good statistical precision. The absolute fluxes derived this

way agree with the results of other investigators (Mewaldt et al.,

1974a)-

h



FIGURE III - 1

IMP-7 6.3 - 8.2 MeV/nucleon CNO

rate vs. PHI rate from October,

1972 - July, 1974. The solid

line  represents the east-squares

fit to the data. The dashed lines

represent the 2 contributions to

the solid line.

3
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For PHI rates s 10
-3
/second, the CNO flux is relatively in-

u dependent of the PHI rate.	 Therefore, the amount of solar con-
{

tamination of the CNO must be small. 	 A least squares fit to the

data was performed using a functional form

RCNO _ 
'a 

+ bRPHI

where R
CNO 

and RPHI are the CNO and PHI rates respectively, and a

and b are the fitted parameters. 	 The results for a and b arer

3.4 ± .1 x 10-5 and 1.9 ± .8 x 10 -3 with a reduced X 2 of 1.2.	 The

best fit and thecontributions of the 2 terms are shown in Figure

III - 1.	 The contribution	 of the linear term at PHI 	 10
-3

 /sec

t is 0.054 ±.022 of thg total, and at PHI = 2 x 10 -4/sec	 (average-

-3
PHI rate for PHI s 10	 /sec) the contribution is 0.011 ± .005.

The preceeding argument has shown that a PHI rate of10-3/sec
3

is a reasonable upper limit for the quiescent CNO data.	 Days on

which the average IMP-7 PHI rate s 10
-3
/sec	 will be referred to

as solar quiet periods, and days on which the PHI rate > 10-3/sec

X
will be referred to as solar active periods.

The solar contamination to the flux of element Z can best be

estimated by expressing the flux as a fraction of the CNO flux:

x ;

^Z,F	
fZ,F	

iCNO,F

ii
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where JZ,F and 
JCNO,F 

are,respectively,the fluxes of element Z and

of CNO during solar flares, and fZ,F is the relative abundance of

element Z to CNO during solar flares. Similarly,

if

JZ,PHI	 fZ,PHI JCNO,PHI

iE

where the subscript PHI refers to the fluxes and relative abundances

for a given PHI rate interval rather than for a solar flare. Note

that the value of 
fZPHI 

depends on the chosen PHI interval. Divid-

rt ing the first equation by the second,

f,

lE-JZ,F	 - fZ,F	 JCNO,f	 III - 1

S	 JZ,PHI	 fZ,PHI	 JCNO,PHI

Taking as the PHI intervalPHI.s 10 /sec, the quanti ty on the left i

hand side' of the equation is the relative solar contribution to the

flux of element Z for PHI s 10 -3/sec, and it can be calculated from

the known quantities on the right hand side of the equation. The

ratio J	 J	 is just the solar contribution to the CNO
CNO,F	 CNO,PHI

flux. For PHI :510 -3 	 this ratio was previously determined to

be 0.011 ± .005 in the energy interval 6.3 - 8.2 MeV/nucleon. The

quantity 
fZ,F 

is obtained from the literature. (See, for ex:^.{^ple,

Teegarden et al. 1973.) We shall approximate the quanti ty

f	 from 6.3 - 8.2 MeV/nucleon by its known value from
Z,PHI



i

5 - 12.5 MeV/nucleon. (See Section III	 C for a calculation of

fZ, PHI.) Table III - 1 lists the solar contribution to the

Z	 3 - 8 fluxes as computed from equation III - 1. At energies

of - 6 - 8 MeV/nucleon, there is no significant solar contribution

to any of the fluxes listed in Table III 	 1 for a PHI rate

s 10'-3/sec.

The data sets used in this thesis are for quiet times, with one

exception. Table III - 2 summarizes the data sets used.

B.	 Energy Spectra

In order to obtain the elemental energy spectra, the IMP-8 data

were used. There are 2 reasons for using IMP-8 rather than IMP-7

data. First, the larger geometrical factor of IMP-8 results in

better statistical precision. Second, on the IMP-7 instrument the

cross-talk between detectors (see Appendix B) makes the absolute
;f	

flux normalization less certain.

±	 Since the geometrical factor of D25 events for IMP-8 is more

than 3 times as large as for IMP-7 (see Table II - 6), the PHI rate

for IMP-8 is also more than 3 times as large. Therefore, the

criterion for solar quiet times on IMP-8 of PHI s3 x 10-3 events/sec
guarantees minimal contamination by solar flare particles
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TABLE IIL - 1

`
f

Solar Contribution to Quiet Time Fluxes (PHI s 10-3/sec)

Fractionf Z ,PHI f Z ,F
Relative Relative Solar Flare
Quiet Time Solar Flare. Contribution to

Element Abundance* Abundance' Quiet-Time Flux

Li + .032320.014 < 0.002
- .014

Be < 0.022 < 0.002

B 0.007 ± .006 < 0.005 < 0.05

C + .021
0.026 - .013 0.31	 ±	 .02

3
0.13 ± .10

N 0.13 ± .03 0.072 ± .007 0.006 ± .003

0 0.85 ± .03 0.62 ± .01 0.008 ± .004

CNO' 1.00 1.00 0.011	 ± .005

See TABLE III - 3

+September 1, 1971 flare (Teegarden et al.,	 1973)

i
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TABLE III - 2

Data Sets Used in Thesis

DATE INCLUSIVE IMP NUMBER OF
SET DATES SATELLITE RESTRICTIONS DAYS INCLUDED PURPOSE

7

1 10/1/72-7/31/74 7- 662 D25 CNO vs. PHI
(Figure III - 1)

2 10/31/73-9/25/74 8 PHI s 3 x 10
-3

 /sec 210

a

He, C, N, 0, spectra
(Figure III - 4)
Elemental spectra
(Figures III - 4, 5)

3 9/30/72-10/22/74 7 PHI s 10-3/sec 470 Elemental abundances
D4 enabled (Table III - 3) and

mass abundances
(Figures	 III - 7,8,9;
Tables	 III - 4,6)

*Excludes several days not analyzed because of data gaps.
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Figure III - 2 is a AE-E' plot of the Z >3 IMP-8 quiet time

data which were used to obtain energy spectra and element abundances.

For clarity, events that saturate the D2 or D5 ADC are not shown.

Except for beryllium, the bands used to distinguish real particles

from background extend ± 2.5 amu from the isotope which is dominant

at higher energies. Since the IMP-8 rms mass resolution is - l amu

for oxygen and is smaller for the lighter elements, the bands exclude

fewer than 5% of the real particles. For beryllium the band extends

from 6 - 11 amu so that the isotopes 
7
Be, 9Be, and loBe fall with-

in the allowed band. Since the beryllium mass resolution is better

than the oxygen mass resolution, fewer than 7% of the real 7 B and

10 Be particles are excluded by the boundaries 1 amu away.

It was previously pointed out that element information could

also be obtained from events that saturate the D2 or,D5 ADC (see

Section II - 6). To extend the energy range of the spectra, we

made use of data in the saturation regions. The IMP-8 quiet time

events that saturate the ADC's are plotted in Figure III - 3. Also 	 5

t

shown are the expected channel intervals for selected elements.



September 25, 1974. No data below the dashed line are included in

the plot. The Z	 5 - 8 element bands are centered on 11 B,
 12C,

14
N, and 160 and are 5 amu wide. The Z = 4 band extends from 6 - 11

amu. The dotted lines of constant energy indicate the energies for

which the element abundances of Table III - 3 were determined. The

highest energies correspond to the energy (in MeV/nucleon) at which

160 saturates the D5 ADC, and the lowest energies, except for 14N,

16
correspond to the energy at which 0 enters D5.
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FIGURE III	 3

i
IMP-8 quiet time data from October

rj	 31, 1973 - September 25, 1974 for

events that saturate the D2 or D5

ADC. The channels for which

selected elements can saturate the

D2 or D5 ADC are indicated on the

plot. (Compare with Table II - 8.)

The events in the highest bin in

each plot saturate both the D2 and

3

D5 ADC's.	 3

r
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Note that there is a single event that saturated the D5 ADC with a

D2 channel less than 149. This event falls outside the expected
j

channel range for any real particle and can therefore be attributed

to background. Since the background typically decreases with in-

creasing pulse height (compare with Figure III - 6), an upper limit

to the background can be estimated for events that saturate D5. If

there is one background event for every 150 D2 channels, then there

are 2 background events out of a total of 51 in the energy region

for which oxygen saturates the D5 ADC. We can also estimate how far

the observed channel numbers deviate from the expected channel

numbers due to instrumental resolution. The highest expected D2

i

	

	 channel for an. 160 event that saturates D5 is channel 584, while the

highest observed D2 channel near the oxygen group is 601, implying
i

a 17 channel spread due to resolution. Finally, it should be noted	 {

1	 that in this energy region, the abundance of elements with Z > 8 is

much smaller than the abundance of CNO.

The energy spectra of oxygen, nitrogen, carbon, and helium

for almost 11 months of quiet time data are shown in Figure III 	 4.

The lowest and highest energy oxygen points are obtained from the

r region in which the D2 orD5 ADC is saturated and in which clean

element identification is not possible. The low energy oxygen

point includes a small amount of nitrogen and Z a 9, and the high

energy point includes a small amount of nitrogen and Z = 9 	 12.

f	 However, because of the smaller energy intervals and the lower fluxes,

.	 F
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the amount of contamination is smaller than the uncertainties due to

statistics. Therefore, no attempt has been made to subtract out these

contributions. The highest energy carbon point is obtained from the

region in which the b5 ADC is saturated. However, in this energy

region (corresponding to D2 channel = 188 - 233) only carbon is

expected. Therefore, the contamination should be minimal. To extend

the helium spectrum to higher energies, the 2 highest energy helium

points were taken from particles that triggered DO and at least one

other detector. Except for the highest energy carbon point and the

lowest and highest energy oxygen points, neither ADC is saturated for

any of the other data points.

There are striking differences between the spectra for the

several elements. While the helium spectrum remains flat, the oxygen

and nitrogen fluxes increase rapidly as the energy decreases below

30 MeV/nucleon. The oxygen to helium ratio increases from 0.02 at

1 GeV/nucleon (Webber et al., 1972; Webber and Lezniak, 1974) to

- 0.2 at 6 - 10 MeV/nucleon. Similarly, the nitrogen spectrum in-

creases at energies below 30 MeV/nucleon. However, the carbon, which

is approximately as abundant as oxygen at high energies (Webber et

Al., 1972), does not increase from 30 MeV/nu'cleon down to 4 MeV/nucleon.

This anomalous enhancement of low energy nitrogen and oxygen relative

to carbon and helium is consistent with observations of other experi-

menters (Hovestadt et al., 1973; McDonald et al'., 1974).
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The large helium fluxes below 6 MeV/nucleon are probably of

solar origin. By using stricter criteria for quiet time helium, the

helium flux below 6 MeV/nucleon is reduced considerably.

For completeness,the quiet time fluxes have also been

calculated for lithium, beryllium and boron although the statistics

are not as good as for the more abundant elements. The spectra

are shown in Figure III-5. The low energy beryllium and boron data

points are from IMP-8 D25 events. Since there is background in the

vicinity of beryllium on the IMP-8 AE-E' plot (see Figure III-2),

only an upper limit to the low energy beryllium flux can be obtained

at this stage of analysis. The low energy lithium point was obtained

from the IMP-7 D25 data since the IMP-7 lithium response (see Section

III-C) is cleaner than the IMP-8 response. To extend the spectra to

higher energies, the high energy lithium, beryllium, and boron points

were obtained from events that triggered the detector combinations

D256 or D2567 on the IMP-8 telescope.
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The low energy boron flux shows no evidence of an enhancement

?4
ll

similar to the nitrogen and oxygen fluxes. 	 Although the statistics

{ are poor, the low energy lithium and beryllium fluxes are also con-

sistent with not being enhanced.

R

C.	 Element Abundances

A plot of AE vs residual energy for all the IMP-7 D25 data

with Z > 2 from September 30, 1972 to October 22, 1974 is shown in

Figure	 ILI-6	 For clarity, the events along the border that saturate

either the D2 or D5 ADC have been omitted, but no background has been

subtracted from the plot.	 Note that the events represented by the

open circles are not necessarily of solar origin; they just do not

fit our criteria for quiet time events. 	 The D2 thickness used to

calculate the isotope tracks was obtained by fitting proton and alpha

' particle flight data to masses of 1.007 and 4.002 amu.

It is apparent that the signal to noise is extremely good
g

for Z > 3.	 However, below Z = 3 there i s a distribution of back-

ground events which extend almost up through lithium. 	 All the data

shown below lithium are more than 2 standard deviations (based on

18 days of data during which D4 was disabled have been omitted.
During this period particles can pass through D4 without being
'detected and then deposit the remaining energy in D5. 	 The

i

total energy is therefore not observed.

a.	 a..	 .rw._	 _ 	 .n::	 ^t__a^a.__tr..a•.i•tizn.^m'.a[.ssMs2Y 2.WS	 '..	 r-r	 ....	 .^!
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FIGURE III - 6

IMP-7 D25 data from September 30, 1972 - October 22, 1974. Solid

circles represent data obtained during solar quiet periods

(PHI <_ 10
-3
/sec), and open circles represent data obtained during

solar active periods (PHI ; 10
-3
/sec). No data below the broken

line were included in the plot. - The solid lines for the isotope

tracks are based on calibration data, while the dashed lines are

calculated using standard range —energy tables. The dashed

lines are adequate'for element identification but should not be

used for isotope identification. The dotted lines of constan

energy indicate the energies for which the element abundances

of Table III	 3 were determined.
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the calculated mass resolution) from 6Li. In addition, there is one

event which is consistent with 6Li. This event also has a larger
	

a

D5 (residual energy in Figure III-6) pulse height than the background

events below lithium, and it may therefore be beyond the background

region. However, at this stage of analysis, we cannot be certain

that the event is not an extension of the background, and we can only

say that there is at most one lithium event in Figure III-6.

To extend the oxygen abundances to lower energies, data were

used from the region in which the D2 ADC is saturated. A plot of the

IMP-7 quiet time data that saturate the D2 ADC is shown in Figure III-7.

It is clear from the plot that contamination due to particles heavier

than oxygen is minimal.

The clean instrument response of the IMP-7 EIS allows us to

calculate the elemental abundances in a straightforward manner.

However, because of instrumentation limits discussed in Appendix B, we

have restricted the upper energy limit for the IMP-7 instrument to values

below saturation of the D5 ADC. Elemental abundances can also be obtained

from the IMP -8 EIS data presented in Section III-B.

The abundances of selected elements relative to oxygen are

given in Table III-3. For comparison, the ratios obtained by

McDonald et al. (1974) and the ratios at energies above 1 GeV/nucleon

(Webber, 1972) are also shown. The 5 - 12.5 MeV/nucleon energy

interval corresponds to the energies at which oxygen enters D5 and

at which it saturates the D5 ADC (see Tables I1-5 and II-8). The

Y



59

'FIGURE III - 7

IMP-7 quiet time data from September 30,

1972 - October 22, 1974 for events that

saturate the D2 ADC. The channels for

which elements can saturate the D2 ADC

are also indicated on the plot. (Compare

with Table II - 5.)
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TABLE III	 3
i

Elemental Abundances During Solar quiet Periods

IMP-7++	IMP-8	 MTTW*
Element	 Energy (Oct 1 72-Oct 1 74) (Nov	 '73-Sept '74)

Ratio
(Mar	 '72-Mar '73) +

GeV>1	 /nucleon(MeV/nucleon) N Ratio N ;;a

a;

He/0 6-13 278/62++ 4.5 ± .7++ 564/114 4.9	 F	 .5 36	 1,
1 7,3-10.6 2.4 ±	 .3

'
^f

7.3-30 11.0 ±1.0

° Li/O 5-12.5 51/58
+,040

0.017- 017 0.172 ±.004

Be/0 5-12.5 0/58 50.032 51/128 50.026 0.101	 ±.003 -

B/O 5-12.5 1/58
+.040

0.017-,014 1/128
+,018

0.008 -,007 0.308 ±.005 i

8.3-30 0.031	 ±	 .016

+.040 +.025
j C/0 5-12.3 1/58 0.017- , 014 4/128 0.031_,015 1.125	 +_.011

9.0-30 0.087 ± .029 -

+.082
N/0 5.7-12.5 7/46 0.152_,056 17/114 0.149±,039 0,290 ±.005

7.3-10.6 0.211	 .065

9 Ne/0 7.2-11.1 :51/25 _:0.132 0.174 ±.005
17.2-17.0 54/60 :_0.120
12-30 0.071	 ±	 .032

Mg/O 7.7-10.5 :_1/17 _50.194 0.205 ±.005

10.7-17.0 53/69 _:0.086
13:4-30 <0.036

Si/O 8.1-10.2 51/13 :0.253 0.137 =.004
10.5-28.3 55/74 50.113 9
14.5-30 <0.042

Fe/0 11.5-28.3 53/63 :50.094_ 0.110 x.004

++He/O ratio corrected for cross-talk (see Appendix B).

i

l ` MTTW = McDonald, Teegarden, Trainor, and Webber (1974). The numbers in this column are calculated
from their tabulated element abundances relative to helium and from their oxygen and helium fluxes,
which are given in the form of a graph

+ From Webber (1972).

$ From MTTW.

i'
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energy intervals used for the elements Z = 3 - 7 are indicated in

Figures III -2 and III-6. Note that since there is background in

the vicinity of beryllium on the IMP -8 of	 E' plot, the single

beryllium event is to be taken as an upper limit. Particles with

Z >10 saturate the D2 or D5 ADC over most of the energy range.

(See Figure III-2.) Since unambiguous element identification is

not possible, upper limits to the abundances zre obtained by

assuming, in turn, that all particles are neon, magnesium, silicon,

and iron,

d
The element abundances from IMP-7 and IMP-8 are in good

agreement. The results of the present work are also consistent with

the results of McDonald et al (1974). Their B/0 and C/0 ration

are somewhat higher than ours, but their ratios extend to higher

energies, where the oxygen flux is lower.

Comparing the low energy ratios with the high, energy ratios

of Webber ( 1972), it can be seen that , except for nitrogen, none of

the elements listed in Table III-3 exhibit the same dramatic
:y

enhancement at low energies as oxygen. McDonald --t al. (1974) had y

previously noted that there were no enhancements in the boron and

carbon fluxes at energies down to - 9 MeV /nucleon. We are now able

.a

-	 ^	 ^	 w.,.^^s -^;^-n.^.aa..swc-^_ev+^ w..4.mwro"Sr sssrtui_^.::a1m.Y _ a__ ^	 .._, , ..,. _ _ ^.4 z^.. ,,.	 1^,._^r_^.3:^ .ate-_ •tma. ^m.,-_mnvtr...z ^.c ^f 	 ^ t.	 <_	 -	 . ^ - .:-	 r ^^.. ^. _ _c^...re .mac ,k =.:..z _ ..m.	 eCCC c	 ^a.. v. _ : _
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' to rule out enhancements at lower energies.	 (Compare with Figures

u III-4 and	 III-5).;

}! D.	 Isotope Abundances

Masses were calculated for each nitrogen and oxygen event in
T

Figure III-6.	 A mass histogram for the IMP-7 quiet time oxygen data

is shown in'Figure III-3.	 The Gaussian curve centered at mass

sixteen indicates the expected mass response to 160.	 The 0.42 amu
r

la width of the curve was obtained from the predicted mass resolution L

(see Table II-9), and the height was normalized to the total number

of events in the histogram. 	 Except for the single event near mass

18, the data are consistent with a pure 160 composition and no

admixture of 170. a

The mass histogram for the IMP-7 quiet time nitrogen data

is shown 'in figure LI_I- 9.	 The Gaussian curve with a 16 width of
14

0.37 am	 indicates the expected mass response	 o	 cosmic rays.u	 c	 p	 r	 po	 t	 N	 s.c	 y

`	 } The nitrogen data are consistent with a pure 
14N 

composition.

Excluding the oxygen event near mass 18, the observed nitro-

gen and oxygen mass distributions are compared in Table III-4 with

the distributions expected p=rom a pure 14N and 160 composition.

The mean masses indicate, that the nitrogen and oxygen are consistent

with pure 
14N 

and 160 and are inconsistent with a large fraction of

15N or of 170 or 
180.	

In addition, the observed mass resolution

indicates that the nitrogen and oxygen are each consistent with

being composed of a Single isotope. 	 -

t

{
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FIGURE III '-' 8

Mass histogram of quiet time IMP-7

oxygen data from September 30, 1972 -

October 22, 1974. The Gaussian curve
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FIGURE III - 9

Mass histogram of quiet time IMP-7

nitrogen data from September 30, 1972 -

October 22, 1974. The Gaussian curve

centered on mass 14 indicates the

predicted mass response to 
14
N. There

are 8 events in the histogram.
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4

TABLE III - 4

f
IMP-7 Nitrogen and Oxygen Mass Distributions

EXPECTED*OBSERYBD	 -

Quiet Active Quiet Active

Periods	 Periods

i'
Periods Periods

d
`Nitrogen(amu)	 13.94

+
± .13	 13.94 ± .08

14.00 14.00

am	 (amu)	 0.38

+

± .10	
0.12±.06

0.37 0.41
Nitrogen

± .08$ 	15.92 ± .10
MOx	 en

(amu)	 15.98
yg

15.99 15.99

r

QM	 (amu)	 0.43
Oxygen

± .06$	 0.46 ± .07 0.42 0.42

Assumes pure 14N and 160 composition.	 The resolution is calculated
at the average energy of the observed data.

a

+ Based on 2 events.
x

$Doesn't near mass 18.include event

lr ;

m

A—
^.....	 .i	 .:. .w.zt! _	 -.	 ass xW.r.ei.xx.i_... i ._va^ ".x^..a+ ..c

,-w
_y,	 ,..:sue	 .o-v8c
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It is reasonable to ask whether the nitrogen and oxygen mass

scales can be offset: for example,whether the dominant isotopes are

15N and 170 (al amu offset). There are two possible contributions to

the uncertainty of the mean mass the error in predicting the muss

response to nitrogen and oxygen from the observed response to hydro-

gen and helium and the error in the energy calibration relating

the ADC channel to energy.

From the calibration at the Berkeley 88" cyclotron, the nitro-

gen and oxygen masses can be predicted to approximately 0.05 amu.

(See Appendix C.)

The electronic calibrations indicate the high stability of the

D2 and D5 gain and offset as a function of time. Table II-10

illustrates that the direct effects of the drifts in the gain and

offset are unimportant for calculating the mass of oxygen. However,

an uncertainty 'in the offset also has an indirect effect on the

nitrogen and oxygen mass. The D2 thickness is obtained by fitting

the proton and alpha mass peaks. An error in the D2 offset is

compensated by adjusting the value of the D2 thickness. The D2 thick-

ness in turn,affects the nitrogen and oxygen mass. The maximum

observed uncertainty in the D2 offset, is 0.013 MeV (Table II-9),

and the ms uncertainty is 0.003 MeV. The alpha particles which

were used to determine the D2 thickness deposited an average energy

of 3.7 MeV/nucleon in D25. At 347 MeV/nucleon, a 0.003 MeV shift



in the D2 offset gives rise to a 0.005 amu or a 0.12% shift in the

helium mass. The resulting shift in the D2 thickness also causes

a 0.12% shift in the other masses. Table III-5 summarizes the

resulting mass uncertainties for nitrogen and oxygen.

The events obtained during solar active periods provide

further evidence against a mass shift of 1 amu. The mean masses

and the mass resolution of the solar active nitrogen and oxygen are

consistent with the values for the quiet time data (see Table II-4).

Since solar nitrogen and oxygen are expected to be predominantly

14N and 160 (Cameron, 1973), this indicates that the calculated

masses are not shifted by 1 amu.

To calculate the relative isotopic abundances for nitrogen

and oxygen, the method of maximum likelihood was used. (See, for

example, Mathews and Walker, 1965). The cosmic rays of each element

were assumed to be composed of 2 isotopes of relative abundance

f 1 and f2 where f l + f2 = 1. The likelihood can then be expressed

9
3

70
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TABLE III - 5

Estimated Rms Errors in Mass

Calibrated
Error in	 +	 Isotope

Electronics 'D2 Thickness	 Response$	 Total

4He(amu)
	

0.005++
	

0.005

14N(amu)
	

0.006
	

0.02
	

0.06
	

0.06

160(amu)
	

0.007
	

0.02
	

0.05
	

0.05

r;

Similar to Table II 10 except that results here are rms errors rather
than maximum errors.	 F

+The D2 thickness error results from compensating for the error in
the 4 He mass due to the error in the D2 offset. (See text.)

See Appendix C.

l 	

,F 	 +Uncertainty in the D2 offset is the major contribution.,

i

{
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where L is the likelihood function, M l and M2 are the masses of

isotopes l and 2, a l and a2 are the resolution of isotopes 1 and

2, and M  are the observed masses. This is a straightforward

procedure for nitrogen,which has only 2 stable isotopes: 14N and

15
N. However, oxygen has 3 stable isotopes: 

160, 17
0, and 180.

Therefore, for oxygen the fractions of 170 and 180 were calculated

separately. The event near mass 18 (mass = 17.84 amu) is 1.9 a

away from 170 and 0.3 a away from 180, implying a 0.85 probability

that the event is 180 rather than 
17
0. Therefore, it was included

in the calculation of the 
180 

abundance but not in the calculation

of the 170 abundance. In all of the maximum likelihood calculations,

the energy range was restricted to equal energy per nucleon intervals.
y

Figure III-10 illustrates the likelihood functions of the 	
a

fractions 
15N, 17

0, and 180 in the quiet time cosmic rays. The

functions are normalized to

1

L(f) df	 1	 F

0	 1

where L is the likelihood function and f is the fraction of 15N,

17
0, or 180. From the plots it can be seen that the most likely

value for the relative fraction of 15 N and 170 is 0. For 1 80 the

most likely value for the 180/(
160 + 

18
0) abundance is 0.04.

The integral of the likelihood function between the limits

f, and f2 gives the probability that the fraction f lies between

_r
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{

FIGURE III - 10

Likelihood functions for the

fractions of 15N, 170, and 180

in the low energy cosmic rays.

The area under each curve is 1

3

4

a

c

4.
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fl and f2 . The upper limit fu on the fraction f is obtained by

integrating from 0 to f u such that the integral equals 0.84 and

m.95 for the 84% and 95% confidence intervals respectively. The

most probable value of f is taken to be at the peak of the likelihood

funct'on. The relative abundances of the isotopes of nitrogen and

oxygen obtained by this technique are given in Table III-6.

The 0:.04 180/0-ratio of Table II 71-6 is the result of a

formal calculation of the maximum likelihood based on a single 180

event. If the event were due to background or to some other un-

identified instrument problem, then the best estl.mate of the 180/0

ratio would be 0. We have looked at other possibilities and could

not find a reasonable alternative to the hypothesis that the event

is 180 (except the 0.15 probability that it is 1 70, which would

also be interesting). However, since we cannot have full confidence

in only a single event we are setting a-lower limit of 0 on the

180/0 ratio.

a

j

*Since the event is 4.4 Q away from 160 and onl y 0.3 6 away from
180, a Gaussian response implies that for 29 oxygen events, these

is a 29 x 6 x _'10 5= 2 x 10- 3 probability V^,!A the event is 160
'

	

	 rather than 180. Background in the vicinity of 180 is also expected

to be minimal. Figure II-4 illustrates that from calibration data,

only 1 event was near mass 18 out of a total of 20,000 160 events.

f
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Isotopic Composition of the Low Energy

r Nitrogen and Oxygen Cosmic Rays
ti

r 84% 95%

Isotope Confidence Confidence

Ratio MeV/nucTeon Interval Interval

15
N/N 5.6 -	 12.7 <_ 0.26 < 0.39

170/0 7.0 -	 11.8 <_ 0.13 < 0.18

180/0 7.0 - 11.2 0.04
±.04

< 0.17

i

f

1

n

_i

is

_
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f`	
The calculated upper limits for the 15

N,
 170 and 180 isotopic

I	 abundances are not sensitive to the assumed mass resolution. How-

ever, they do depend somewhat on any offset in the mass scale.

If the calculated masses are all increased by 0.05 amu (see Table II -5)9

then the 84% and 95% confidence intervals of Table III-6 are increased

by approximately 0.03 for the 15N and 170 fraction, and the 180

fraction is increased by 0.01. Similarlygif the masses are all

decreased by 0.05 amu, then the confidence intervals are also decreased.

3

s

7

3

d

I
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IV. DISCUSSION OF RESULTS	 POSSIBLE SOURCES

A.	 Introduction

The energy spectra of the cosmic rays indicate that the

enchanced low energy nitrogen and oxygen may not be part of the same

population as the higher energy cosmic rays. The isotopic composition

of the cosmic rays provide additional evidence that the low energy

nitrogen is not part of the same population as the higher energy

nitrogen. In the region of enhancement, the nitrogen is predomin-

antly 
14
N. This contrasts with measurements at higher energies of

50 - 250 MeV/nucleon which indicate that at least 1/2 the nitrogen

is 
15N 

(Webber et al., 1973; Garcia-Munoz et al., 1974).

The large 15N composition at higher energies is due to

spallation of the heavier cosmic rays as they pass through G - 10

g/cm2 (Brown, 1970) of interstellar material. Since the nitrogen in

the Vow energy region is primarily 14N, this indicates that the low

energy nitrogen is not part of a higfter energy population which has passed

through several g/cm2 of material and has been decelerated by the

solar wind.
I

The enhanced nitrogen and oxygen fluxes can be interpreted

as a separate low energy nitrogen and oxygen component superimposed

on the decelerated component. Several possible origins have been

considered in the literature for the low energy nitrogen and oxygen'

cosmic rays. Two possibilities are that the particles are of
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galactic origin (McDonald et al., 1974) or that they are accelerated

locally in the heliosphere (Fisk et al., 1974). A variation of the

second possibility is that the particles are accelerated on the sun.

B.	 Solar Origin

As pointed out by McDonald et al. (1974),a solar origin for

these particles is unlikely for several reasons. First, the charge

composition in the 10 MeV/nucleon region is unlike the composition

of typical solar cosmic rays. Table IV - 1 compares the elemental

abundances in the quiet time cosmic rays at about 10 MeV/nucleon

with typical abundances of the cosmic rays in solar flares and with

spectroscopically determined abundances in the solar photosphere

and corona. A striking example of the differences in composition

is that the carbon abundance in the quiet time cosmic rays at these

energies is only - 3% of the oxygen abundance, while in the solar

cosmic rays and in the solar photosphere and corona the carbon is at

least 1/3 as abundant as the oxygen.

The oxygen flux from 8 - 30 MeV/nucleon exhibits a positive

radial gradient (McDonald et al., 1974). This also argues against

a solar origin for the low energy oxygen.

The spectra are unlike the typical steep spectra observed

during solar flares. Figure IV - 1 il-lustr •ates the oxygen spectrum

from 0.3 - 28 MeV/nucleon. Although the steep portion of the spec-

trum below_1 MeV/nuc'ieon may be of solar origin (Hovestadt et al'.,

1973), it is unlikely that the higher energy part of the spectrum

is also of solar origin.
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TABLE IV - 1

Comparison of Low Energy Cosmic Ray Composition with Selected Solar Abundances

Energy Solar+ Solar Solar ++
Ratio (MeV/nucleon) Present Work flare Photosphere Corona

He/0 6 - 13 4.9 ±	 .5	 __ 42.0 ± 2.5 4.4 x 102

Li/0 5 - 12.5 0.017_+ < 0.003 9.9 x 10-9

Be/0 5 - 12.5 <_ 0.026 < 0.003 2,5 x 10-7 3

B/0 5 - 12.5 0.008+
-

•018
.007

< 0.008 00
0

C/0 5 - 12.5 0.031±
.015

0.419 ± .03 0.58 1.3

N/0 5.7 - 12.5 0.149'± .039 0.116 ±	 .011 0.10 0.13
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The time variations of the nitrogen plus oxygen nucleii

indicate that these particles are modulated in a manner similar to

the higher energy galactic cosmic rays (Mewaldt et al., 1974a).

Since the intensity of galactic cosmic rays observed near earth is

inversely related to solar activity, these variations are another

indication that the low energy nitrogen and oxygen are not solar in

origin.

The bulk of the evidence argues against a solar origin for

the enhanced nitrogen and oxygen fluxes at low energies. Therefore,

we shall not further discuss the solar origin theory.

C.	 Galactic Source

The possibility that these particles originate from an extra-

solar source in the galaxy has been suggested previously (McDonald

et al., 1974). In the context of present modulation theory, it is

difficult to account for the enhanced nitrogen and oxygen-fluxes

that are observed near the earth (Fisk, 1974) if these particles

are totally ionized, Modulation theory predicts that an enormously

large flux of nitrogen and oxygen would have to exist in the inter-

stellar medium (Fisk, 1974) to produce the fluxes observed near

earth. Such large fluxes would produce much more ionization of the

interstellar medium than is actually observed (Hughes et al., 1973).

One way around this problem is to alter modulation theory. Fisk

(1974) has suggested a modification which results in less modulation.

Another approach is to have a nearby source of singly ionized

parti cles . Since singly ionized particles have a much higher
i	 _^
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rigidity than fully ionized particles at identical velocities, the

modulation of the singly ionized particles is much less severe.

Whatever the solution to the difficulty of getting the

enhanced nitrogen and oxygen fluxes to the earth from outside the

heli;osphere, any proposed nucleosynthesis source for these particles

should also be able to explain the observed isotopic abundances,

For ,example, Hoyle and Clayton (1974), in the course of investigating

nucleosynthesis in white dwarfs, proposed that perhaps these white

dwarfs could be the source of the low energy nitrogen and oxygen

cosmic rays. In their model they expected the nitrogen and oxygen

to be considerably in excess over carbon. They also expected 15N

and 170 to be overabundant and,depending on initial conditions, per-

haps even the dominant nitrogen and oxygen isotopes. The present

isotopic measurements of the low energy cosmic rays rule out as a

source a nucleosynthesis process in which 15N and 170 are more

abundant than 1 4N and 160.

D.	 Local Source

Fisk et al. (1974) proposed that the enhanced nitrogen and

oxygen cosmic rays may be the result of an acceleration mechanism

within the solar system that acts on the interstellar gas. Since

the first ionization potentials of nitrogen and oxygen are larger

than for hydrogen, a large fraction of the nitrogen and oxygen

in the interstellar gas exists in the neutral state (Rogerson et

al., 1973). This contrasts with the interstellar carbon, which

exists primarily in the singly ionized state. As neutral particles,
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the nitrogen and oxygen can penetrate the solar cavity, while the

ionized carbon is excluded. When these neutral particles pass close

enough to the sun, they can be ionized by ultraviolet light or by

the solar wind (Axford, 1971). Once ionized, these particles have

a higher rigidity in the rest frame of the solar wind than typical

thermal 'solar wind particles. An acceleration mechanism is then

postulated that selectively accelerates these relatively high

rigidity particles to several MeV/nucleon.

If there is no preferential acceleration of one isotope over

another, this theory predicts that the isotopic composition of the

enhanced nitrogen and oxygen cosmic 'rays should be identical to the

isotopic composition of the interstellar medium. Table IV - 2

compares the observed isotopic composition in the low energy cosmic

rays with the isotopic composition of the interstellar medium. The

isotopic composition of the 'low energy cosmic rays is consistent with

the local acceleration theory in the respect that 1 4N and 160 are

the dominant isotopes. Should the 180/0 ratio of 0.04 be indicative

of the abundances in the low energy cosmic rays, then a mechanism

would be needed to enhance the cosmic ray 180 abundance by a

factor of 20 over the abundance in the interstellar medium for the

4	 theory of Fisk et al. (1974) to remain viable.
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TABLE IV - 2

Low Energy Cosmic Ray and Interstellar Medium Abundances

Low Energy	 Interstellar
Ratio	 Cosmic Res	 Medium

15N/N	 s 0.26	 3.7 x 10-3

17
0/0	 s 0.13	 3.7 x 10-4

180/0	 0.04 ± .04	
2.0x 10-3

s

Cameron (1973). Cameron's abundances were intended to apply to
primitive solar matter. This table assumes that they apply
equally well to the interstellar gas.
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V. SUMMARY AND CONCLUSIONS

The Caltech Electron/Isotope Spectrometer has been used to

obtain the first definitive measure.nnts of the isotopic composition

of the quiet time nitrogen and oxygen cosmic rays in the region of

enhancement. We have also extended the energy range of previous

measurements of the elemental composition of the low energy cosmic

rays.

In order to accurately identify the nitrogen and oxygen iso-

topes, we calibrated a spare telescope with a variety of isotopes of

15 Z:5 9. Using Janni's (1966) range 	 energy tables for protons

in silicon as a basis, we calculated corrections to be applied (after

scaling 	
M

g the tables y Z2 ) for helium, nitrogen, and oxygen.	 1

a

An enhancement, similar to that reported by other groups

(Hovestadt et al., 1973; McDonald et al., 1974; Chan and Price, 1974),

was observed in the low energy nitrogen and oxygen spectra. The

dominant isotopes are 14N and 160. To the 84% confidence level the
s

upper limits on the 15
	 17

 1 70/0, and 180/0 abundances are, respectively,

0.26 (5.6 - 12.7 MeV/nucleon), 	 0.13 (7.0	 11.8 MeV/°nucleon),

and 0.12 (7.0	 11.2 MeV/nucleon).

The nitrogen isotopic composition in the region of enhance-

ment differs from the isotopic composition reported at higher

energies. This indicates that the low energy nitrogen is not from

the same population as the higher energy nitrogen. The enhancement
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in the low energy nitrogen and oxygen relative to the carbon can be

interpreted as a separate low energy nitrogen and ox ygen component

superimposed on the component decelerated from higher energies.

The dominance of 14N and 1 60 in the low energy nitrogen and
s
	

oxygen cosmic rays is consistent with the theory of Fisk et al. (1974)

in which neutral interstellar particles enter the solar syste^;a, are

singly ionized, and are then accelerated. If, on the other hand, the

particles are of galactic origin, then any proposed nucleosynthesis

source must produce an isotopic composition consistent with our

measurements.

s
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APPENDIX A

DATA ANALYSIS

The data processing routines relevant to this thesis will be

described briefly. The purpose of 'this appendix is not to discuss in

any depth the computer programs or the day to day data processing, but
IT

rather to outline the general.procedure. More detailed information

can be found in several reports on the subject (Garrard and Hurford,

1973; Garrard, 1974b; Garrard, 1974c; Garrard and Petruncola, 1974;

Hurford,	 1974; Marshall, 1974).

The flow diagram in Figure A - 1 schematically illustrates

thethe method used to analyze the IMP-7 and IMP-8 flight data for this

thesis.	 Briefly, the data are received in the form of experiment

tapes.	 The experiment tapes are routinely reformatted into abstract

tapes for convenience in future analysis. 	 From the abstract tapes

the events _of. interest and the time averaged rates are obtained and

recorded on a strip tape.	 For this thesis the ep	 p	 vents of interest

are those that trigger D2 and D5 only, and the time interval over

which rates are averaged is one day.	 The preceeding data analysis

is done with a PDP-11/20 computer.

A program called HARVEST is used to analyze the strip tape

on Cal tech's IBM-370/158 computer. 	 In addition to a listing of the

rate data and an event plot of the D2 channel vs. the D5 channel,

punched cards are obtained listing the number of events at each D2,

D5 coordinate pair.	 The punched output from HARVEST is then
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submitted as input to a program called HIZM, which calculates the

charge, mass, energy (corrected for the mylar window), and range

of each event. The output of this program is used to obtain element

abundances, energy spectra, mass spectra, etc. Knowledge of the

channel-energy conversion and of the range - energy relation is

required by the program HIZM. The channel - energy conversion is

obtained from electronic calibration performed on the ground (see

section II - C). The range - energy relation is based on calibration

data for hydrogen, helium, nitrogen, and oxygen and is based on

i

the relative isotopic abundances.
A

A separate, auxilliary program called MASCON, which is not

involved in the data analysis, is used to calculate the isotope

contours on a of-E' plot. With the channel - energy conversion and

the range - energy relation as input, MASCON calculates the D2

channel and the total energy 	 y	 ) gy (corrected for them tar window as

	

^	 3
t

a function of the D5 channel for any isotope.

r
Because of the different hardware and the larger number of

interesting events, a slightly different procedure is used to

„ analyze the calibration data. Figure A - 2 illustrates the relevant,

flow diagram. The pulse height data from each calibration run are

recorded on one file of the PACE tape.

(

	

Acronym for Pulsed Analog to^ 	y 	 g d i gital Converter and Encoder.g

^t

calculation for other elements. (See Appendi_x.C•) A program called

LHOOD uses the mass data to calculate the likelihood function for



...	 ,^

i^

"^



r
i	 f

f
a

94 9

i

PACE
Tapes

y
A;

Events

,
(PACgER)

Mass and , Energy
(HIZM)

Mass Histograms
(MOUT)

D2 and D5
Energy Loss Mass

j'
1

(D25MEV) Response a

Average Mass
(MASFIT)

Differential
j

Range
Correction
(DTHICK)i.

i

t
r,
k

Range
Correction
(EXCESS)

1

i



95

The program PACBER reads the PACE tape, calculates the number of

I
events at each D2, D5 coordinate pair, and writes the results on

tape. This tape is used as the input for the program HIZM, which

calculates the charge, mass, energy,and range of each event, and

creates a new tape as output.. Note that since the calibrated range -

energy relation is not known at this step of the analysis, other

range - energy tables are used. (See Appendix C.) Using the new

tape as input, the program MOOT calculates the means and standard

deviations of the mass, energy, and range distributions and also

produces- mass histograms, which are converted into punched cards.

Since several isotopes were obtained simultaneously for much of

the calibration data, it is necessary to properly sort out the

several mass 'peaks. Using the method of least squares, mass peaks

are fitted to the mass histograms by the program MASFIT, and the

result is a mean mass, a standard deviation, and a height for each

mass peak. The outputs of MOUT and MASFIT can be used directly to

obtain the isotope response of the instrument.

Several more steps are needed to obtain the calibrated

range - energy tables. The outputs of MOUT and MASFIT are used

by the program D25MEV to calculate the average energy loss in D2
f

and in D5 for a given charge, mean mass, and total energy. This

{	 program used the same range - energy tables that were originally

used by HIZM to calculate the mass. Note that with this procedure

s
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the isotopes have already been separated, and it is relatively easy

to go back and calculate the average D2 and D5 energy loss for each
7

isotope. It would have been more difficult to calculate the average

D2 and D5.energy loss directly from the .raw data, since, with an rms

jj
I

	

	 mass resolution of - 0.3 amu (for oxygen), it is not possible to

associate the correct isotope with each event on an individual basis.
.i

f.

The program DTHICK uses the D2 and D5 energy loss information to

calculate a differential correction (equation C - 5) to the range

energy relation. Finally, the program EXCESS calculates a range -

energy correction from the differential correction.
C
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APPENDIX B

CROSS-TALK BETWEEN DETECTORS

There is an instrument anomaly on the IMP-7.EIS whereby,

under certain circumstances,a particle that deposits energy in a

certain combination of detectors can also trigger the discriminator

of another detector in which it did not deposit any energy (Garrard,

1974a). This phenomeon is referred to as cross-talk. There are two

manifestations of cross-talk which affect D25 events on IMP-7.

Particles that deposit energy in both D2 and D5 have a certain pro-

bability of also triggering D6. In this instance the D2 pulse

height is replaced in the telemetry by the D6 pulse height. Such 	 a

events are identified by the D256 signature and by the zero pulse 	 `y

height in D6. In addition, particles that deposit a large amount

I	 of energy in D5 also trigger D4. Since D4 acts as an anticoincidence
F

device, the event is not analyzed. D25 events on the IMP-8 EIS are

not affected by cross -talk.

The cross-talk from the detector combination D25 into D6

was first observed during particle calibrations of the IMP-7 instru-

ment at the.Caltech Van de Graaff accelerator. A more detailed

discussion than that presented here can be found in the report by

Hurford (1974b).

Based on an analysis of solar flare events, the probability

that a D25 hydrogen or helium event will result in cross-talk into

4
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D6 is best expressed by the equation

P(A,B) = 0.5	 1 + erf 
10. 

1293 - 81.36 
(_X_ - B)]

B-1

where P(A,B) is the cross-talk probability, erf represents the error

function, and A and B represent the D5 and D2 pulse heights in units

of channel number. The probability of cross-talk is greatest when

both the D2 and D5 pulse heights are large, or when the D2 pulse

height is - 0.9 the D5 pulse height.	 In order to establish a

limit on the probability P(A,B) for elements with Z > 3, the number

of D256 events with D5 channel z 1500 and D6 channel = 0 were

compared with the number of D25 events with D5 channel > 1500. As
)

a result, the maximum cross-talk probability was determined to be

0.40 ± .02. To calculate the cross-talk probability as a function 5

of A and B for particles with Zz3, equation B - 1 is used for

values of P(A,B) s 0.4. For all other values of A and B, the
3

probability P(A,B) is set equal to 0.4.

For the nitrogen and oxygen isotopic abundance measurements

of Table III	 D, the cross-talk probability given by this

technique is identical for all isotopes. For the element abundances

of Table III - 3, the average cross-talk probability varies both as

a function of energy and of element. The correction factors for

s	
cross-talk are listed in Table B - 1 appropriate to the elements ands

f

}
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TABLE B-1
E

Correction Factors for D25-*Di:') Cross -Talk on IMP-7	 EIS

Element Energy Minimum Maximum Average

14
(MeV/nucleon) Correction Correction Correction

Factor* Factor*

l
He 6.0 - 12.7 1.00

1 0 6.0 - 12.7 1.67 1.67 1.67

Li 4.9 - 12.5 1.14 1.67 1.30
0 4.9 - 12.5 1.00 1.67 1.60

j

Be 49 - 12.5 1.40 1.67 1.56
0 4.9 - 12.5 1.00 1.67 1.60

B 4.9 -	 12.5 1.61 1.67 1.66
0 4.9 - 12.5 1.00 1.67 1.60

C 4.9 - 12.5 1.67 1.67 1.67
0 4.9 - 12.5 1.00 1.67 1..60

h N 5.6 - 12.5 1.67 1.67 1.67

0 5.6 - 12.5 1.67 1:67 1.67

Ne 7.2	 -	 11..1 1.67 1.67 1.67
0 7.2 - 11.1 1.67 1.67 1.67

Mg 7.7 - 10.5 1.67 1.67 1.67
s 0 7.7 - 10.5 1.67 1.67 1.67

Si 8.1	 - 10.2 1.67 1.67 1.67

0 8.1	 -	 -10.2' 1.67 1.67 1.67

To obtain the number of D25 events that would have been observed if
there were no cross-talk, the observed number of events should be
multiplied by the correction factor.

*Calculated at the energy for which the cross-talk correction is a
minimum.

i +Calculated at the energy for which the cross-talk correction is a

maximum.

s,
{ _ ,1
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energy intervals of Table III - 3. To obtain the average cross-talk

correction factor, the lithium, beryllium, and boron differential

fluxes were assumed to be independent of energy. ''he shape of the

oxygen spectrum was taken from the IMP-8 data (Figure III - 4).

The shapes of the carbon and nitrogen spectra are immaterial since

the cross-talk correction factors are energy independent at these ener-

gies. Since most of the cross-talk events (i.e., D256 events with D6 pulse

height = 0) within the D5 channel region (channel 506 - 1187) spanned

by the 6.0 - 12.7 MeV/nucleon helium are due to helium particles,

these events were included in the calculation of the helium flux.

Therefore, no further correction for helium cross-talk was necessary.

From Tables B - 1 and III - 3 the size of the cross-talk

corrections can be compared with the statistical uncertainties in

th	 1	 t	 4-4 	 t'	 f	 t 11,
d iU e emen ra ios.	 correc ian or cross- a was ma a n

{
Table III	 3 only to the He/0 ratio. The N/0, Ne/0, Mg/0, and

Si/0 ratios are unbiased by the cross-talk since the correction

factors are the same for all elements. For the B/0 and C/0 ratios,

a correction for cross-talk would be much smaller than the statistical

uncertainties in the ratios. If a correction factor had been

applied to the Li/0 and Be/0 ratios of Table III - 3, then the

upper limits to the ratios would have been slightly reduced. How-

ever;snce only upper limits were obtained, the values in Table LII 	 3
t

are valid without a cross-talk correction.

j!
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The cross-talk from D5 into D4 was first observed during

f'	 T particle calibrations at the Berkeley Bevatron* 	 This type of cross-

! talk arises from the signal side of D5 being adjacent to the signal

side of M.	 In Figure II - 1	 the signal side of D5 is on top, and

the signal side of D4 is on bottom. 	 Because of the large detector

areas and the small spacing between D4 and D5, the two detectors are
K

capacitively coupled.	 Thus, a large signal in D5 can cause the D4

4
discriminator to trigger. 	 For a more detailed discussion of the

D5 -} D4 cross-talk, the reader is referred to the report by Vidor

(1975c).

To evaluate the D5	 D4 cross-talk, the 'IMP-7 and IMP-8

oxygen intensities were compared. 	 The energy interval for which the

k comparison was made extended to the highest energy for which element

abundances were calculated for the IMP-7 instrument. (See Table 111-3.)

l
Since D25 events on the IMP-8 instrument are not affected by cross-talk,

the IMP-8 instrument provides a reliable measurement of the oxygen

intensity.	 Correcting the IMP-7 intensity for D25	 D6 cross-talk,

the resulting intensities of the 5.21 - 12.74 MeV/nucleon oxygen are

4.4 ± .6 x 10
7
 particles/sec and 3.9 ±-.-3 x 10 7 particles/sec for the

t IMP-7 and IMP-8 instruments respectively. 	 Since, at these love energies_,

there is no evidence of a decreased IMP-7 flux resulting from

D5 + D4 cross-talk, no correction was made for this effect.

*A telescope identical to that on the IMP -7 EIS was installed on the
IMP-8 EIS for these calibrations.

v
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APPENDIX C
t

CALIBRATED ISOTOPE RESPONSE

A.	 Introduction

In order to calculate the mass of nitrogen and oxygen isotopes

using the AE - E' technique (see Section II-C), accurate knowledge

of the range - energy relation is needed. To gain insight into the

required accuracy, we shall derive an equation that expresses the

relation between mass, range, and the measured energy loss (AE and E').

To first order, the range of a particle can be calculated from

the known proton range (Evans, 1955). We shall express the range

of the particle i in a given material by

4	 R(E,M,Z)	 Z2 RP (M) + A RM,Z (E)
	 C-1

R is the range of _a particle of energy E, mass M, and charge Z,
t

where M and Z are in units of the proton mass and charge. R P i s

the range of a proton of energy M. AR M ^ Z is a range correction for

4a	 a particle of mass M and charge Z. The value of AR M'Z is defined by

equation` C-1. If the stopping power 
dx 

in a given material is a

function of charge and velocityonly, then the range of any isotope

of el ement Z can be expressed in terms of the proton range and of

the range correction of an isotope with mass M

r'F
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M
k	

R(E,M,Z) = 
Z 2R P	

+ M
T- AR

M Z	
M

E 
z	

C-2
ĥN	 z	 z'

An additional independent equation is needed to relate the

mass to the measured energy loss AE and E':

R (E,M,Z)	 R (E',M,Z) = T	 C-3

E is the total energy (AE + E') deposited in the two detectors D2

and D5, E' is the energy deposited in D5, and T is the thickness of

D2.

fi

Substituting equation C-2 into C-3 and rearranging terms, the

6i
calculated mass can be expressed as

2z 
M_	 _ r
	

1	

2	 M
M^

Rp I M^ _ R p (M 1
1

+ M [AR
MZ^ 

Z EMZ - ARM	 Z
z^

E' Mz
z

C-4

'{ The energies E and E'	 are measured quantities, and we shall assume,

for the present, that the proton range and the range correction are

knowni as a function of energy. 	 For any charge Z the mass M can be

calculated in a straightforward manner using an iterative p rocedure.

It is interesting to note that the mass does not depend on either

range alone but only on the difference between two ranges.

Using techniques similar to the one used to calculate the

mass resolution (see Section II-C), it can be shown that the relative
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uncertainty 'in mass is - 1.3 times as great as the relative uncertainty

in the range - energy relation. Therefore, to calculate the mass of

an 
160 

nucleus to 0.5 amu, the range - energy relation must be

known to 2,4%. By contrast, to calculate the mass of a 4 H nucleus

to 0.5 amu, the range - energy relation must be known to 9.6%.

In light of this need for accurate range - energy information,

we review the current state of knowledge in the energy region

appropriate to this thesis. Several range - energy tables for pro-

tons in silicon have been published. (E.g. Janni, 1966; Bichsel

and Tschalaer, 1967). Using the large amount of experimental data
_	 j

as a_guide, the technique for producing the range - energy tables of

protons has been considerably refined. For e yample, Janni (1966)

estimates that his tables are typically accarate to better than 1%.

y	 In order to use the proton range - energy tables for elements

with Z > 1, the range corrections ARM Z must be known. An
z'

l

alternative to using proton range - energy tables and an appropriate

range correction is to use directly range tables for specific isotopes.

Northcliffe and Schilling (M & S) (1970) have published range	 energy

c	 ,
tables for elements with 1 s Z <_ 103 in a variety of media for the

energy region 0.01125 s_E s 12 MeV/amu. Corrections were made for

the effects of incomplete projectile ionization at low energies.

The effects of incomplete ionization are to decrease the effective

s;	 charge of the ion and thereby to reduce the stopping power and

i
r

'a
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q, } increase the range of the particle. It should be noted that the
ft

N & S range - energy tables were derived with the assumption that

t	 the stopping power scales with Z2 , although for the value of Z

they used an effective charge based on the ionization state as

i	 a function of energy. The dependence of the stopping power on Z2

arises from Bethe's formula (Livingston and Bethe, 1937), and it
r;

has been the basis of many works on the subject of ionization energy

loss. N & S claim that the overall accuracy of their tables is no

better than 2%, implying an uncertainty of no less than

0.4 amu for the calculated 160 mass.

Recent evidence, however, has pointed to deviations from the

Z2 scaling of the stopping power which was assumed by N & S.

Several experiments have found a difference in the range of'elemen-

tary particles of opposite charge. Barkas et al. (1963) found a

1.'	 3% difference between the range of the 'E + and z hyperons at

identical velocities. Heckman and Lindstrom (1969) reported a

experisimilar effect for positive and negative pions. 	 In carefuly:

	

	 _

ments with an absolute accuracy, of 0.3%, Anderson et al. 1969)

compared the stopping,.;	 p	 pp g power of 'hydrogen and helium in tantalum and

aluminum at several MeV/nucleon. They found that the stopping power

of helium relativeto hydrogen was larger than the factor of 4

predicted by the Bethe formula. The discrepancy was 2.6% in

tantalum and 1.3% in aluminum at 2.5 McVjnucleon,with the discrepancy

i	
decreasing at larger energies.t,

}
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Ashley et al.	 (1972) and Jackson and McCarthy (1973) explained

the deviations from the Bethe formula theoretically. 	 Bethe's_formula

is based on the first Born approximation. 	 By including the next

higher order approximation, the authors found a term proportional

to Z3 , the relative importance of which decreases with increasing

velocity.

Sellers et al.	 (1973) and Kelley et al.	 (1973) performed

experiments which support the inclusion of the Z3 term for 3He, 4He,
12C^ 14

N, and ^6
0
 from 2 - 10 MeV/amu.	 The discrepancies from the

Bethe formula were typically several per cent. 	 This compares with

the 2.4% accuracy needed to calculate the 160 mass to 0.5 amu.

B.	 Calibration

In order to determine the isotope response as a function of

energy, a spare telescope, identical to that on the IMP-8 EIS,

was calibrated at the Berkeley 88" Cyclotron.	 The primary 12C,

14
N, and 16 0 beams had energies up to 17 MeV/nucleon. 	 Fragmentation

nuclei	 provided calibration data for a variety of isotopes with

1sZ!9.
In order to control- the intensity, energy, and type of

particle seen by the telescope, the primary beam was scattered from

a target.	 A schematic illustration of the setup is shown in Figuru

C-1.	 Several 	 targets were used throughout the calibration: 	 a

1.4 mg/cm2 thick gold target, tantalum targets of 11` mg/cm2,
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k

FIGURE C - 1

Schematic illustration (not drawn to scale) of

the scattering chamber at the Berkeley 88" Cyclo-

tron. The detector system D can move along a

rail (dashed line) concentric with the chamber.
1

The target T is at the center of the chamber,

and it can rotate about its axis. Particles
a _,

j	 are transmitted when the target is oriented
1

as the solid line, and they are reflected when

'	 the target is oriented as the dotted line.
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41 mg/cm2 , and 55 mg/cm 2 , a 25 mg/cm2 polyethylene target, and a

2 g/cm2 lead target. At small values of the scattering angle e

(<40 degrees for this setijp), a large fraction of the particles

reaching the detector system were elastically scattered by the gold

and tantalum targets. By varying the scattering angle, the intensity

of the elastically scattered beam was easily controlled. In addition,

inelastic scattering reduced the energy of the particles, or,

through nuclear interactions, produced a variety of isotopes and

elements. The gold and tantalum targets were thin enough to allow the

primary beam to be transmitted.. However, since the ionization

energy loss in the targets is a function of the target thickness,

the energy reaching the detector system could be controlled by

using the proper thickness target. The lead target was thick enough

to stop the primary beam. By scattering the beam off the thick lead

target, a continuous energy spectrum was obtained. The polyethylene

target gave rise to an abundance of ,hydrogen and helium isotopes.

The major portion of calibration time was spent looking at

those events that triggered the detectors D2 and D5. The signals

from the detectors were processed by the PACE system. (See Marshall,

1974.) This is a highly versatile system which includes a 2048

channel pulse height analyzer. By properly adjusting the amplifier

gains, full advantage was taken of the system's high resolution.

From pulser calibrations it was determined that the system was

^{	 a

I

S
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linear to	 0.03%, thus allowing use of only two parameters - gain

and offset - to describethe calibration.

In the energy region for which nitrogen and oxygen isotopes

can be measured in flight, our goal was to measure the mass response

to within 0.1 amu. Since drifts in the electronics (offset and

gain) cause drifts in the calculated mass (see Sections II-C,

III-D), the electronic stability was checked with periodic cali-

brations. At constant temperature, the electronics were stable

as a function of time. However, the temperature coefficient of

the gain was - 0.1%/°C, and during calibration runs the temperature

varied by almost 5 0C. The largest contribution to the temperature

coefficient was due to the preamplifiers. In order to improve

the measurement of the isotope response, a temperature probe was

placed near the preamplifiers. The temperature readout was

digitized in 0.1 0 C intervals and was monitored often. To obtain

the approximate electronic calibration for each particle run

the temperature measurements were used to perform linear inter-

polations between the immediately preceding and following electronic

calibrations+.

A typical run lasted about 5 minutes

For one case, in which there was a very rapid temperature change, 	 1
a time rather than a temperature interpolation was performed.
Since the temperature probe reaches temperature equilibrium more
quickly than the massive preamplifiers, the probe did not reflect
the true preamplifier temperatures in this one instance.
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Following procedures used in Section II-C, the rms mass un-

certainties due to the electronics are estimated in Table C-1 for

4He, 1 4N, and 
16
0. The nitrogen and oxygen mass uncertainties are

evaluated at the energies corresponding to the average energies

of the quiet time flight data, while the helium mass uncertainties

are evaluated at the average energy of the helium data that were

used to determine the D2 thickness of the IMP-7 EIS telescope. The

total mass uncertainties are obtained by combining the individual

contributions in quadrature. It should be noted that the amplifier

gains used for the helium calibrations differed from the amplifier

gains for the nitrogen and oxygen calibrations. 'This explains

some of the differences in the energy uncertainties between helium

and the other two elements.

Fora detailed list of the individual  electronic and particle

calibration runs, the reader is referred to the report by Vidor

(1975b).

C.	 Resul is

A of - P plot for a sample run is shown in Figure C -2.	 The

elements shown resulted from the nuclear interactions of a
14N 

beam
i

^. with a tantalum target.	 Note that the tracks for 6 Li, 1 Li, 8Li;

;.
7	 9	 10
Be,	 Be,	 Be;

10	 11	 12
B,	 B, and	 B are easily identifiable. In

$; addition,a small amount of other isotopes, such as 9Li, can be
y

identified from the pl ot.

{

4
r<
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TABLE C -	 1

Rms Mass Uncertainties Due to Electronics

4He 14N 160

53.7 MeV/h*uc) (7.6 MeV/nuc) (8.5 MeV/nub

MeV	 amu MeV	 amu MeV amu

D2 Gain 0.001	 0.002 0.008	 0.006 0.009 0.007

D2 Offset 0.002	 0.003 0.003	 0.002 0.003 0.002

D2 Linearity 0.003	 0.005 0.006	 0.005 0.006 0.005

D5 Gain 0.004	 0.0006 0.02	 0.002 0.03 0.002

D5 Offset 0.002	 0.0004 0.003	 0.0002 0.003 0.0002

D5 Linearity 0.01	 0.002 0.008	 0.007 0.008 0.005

TOTAL 0.007 0.011 0.010 1



Ll ---



1	 !

114

1

B
/1	 .	 111	 •	 •	 , .,	 al	 I	 .	 1. •	 .	 / , 11:114	 .	 /Y	 /	 1	 1. i	 1 IttI	 \'•^ jjj

.	 •	 1	 •	 /	 it 1	 1	 . 11 1	 1	 U	 1	 1	 1

300 1.1''/'	 1	 10.1
	

Imo.	 '.11 ,1., 1	 it! '+	 /	 •'1
Y	 B.	 /	 .	 11. 11 .	 1	 I	 II

j • .	 1	 it 	 ! JI .1111 11	 1 q	 ..• ' li i ill + /	 1
•	 1	 /	 I	 I	 1 1	 t	 \ tl

^ 11	 •	 1	 .	 t.II	 Id	 I,

'.!'	
., . I	 111 I i	 1:;) ( 1  !	 II	 1	 I

1 •	 1	 11	 \ 11	 .1111,1111	 /

1
.	 AS .	 11. 1	 \	 Iw11 111•	 I

.	 1 ^.	 1	 .	 I	 1111	 !.
Y	

-.

1.1	 t	 t	 111
/	 . 11	 1 1 / /	 :	 .	 11 ...1. 

1 Ili

1.1
.11	 11

: 1	 ^ ^	 : 1	 11111	 111 II I1I 1

1i11 1 11YI	 / /•	
11	

•i
t, ^..^ ^' 1	 111

' :11	 1	 1	 : 1.1
{	 1	 ri	 , .

W
u

'%-,
•	 111	 {I 	 /

'250 ' /	 ":1	 is	 :	 '	 d:', it
11	 1

Q ' "i 111'1.	 •	 .
-

U
1

•	 ^^ °in Ilii1011{	 .0	 • 1 11
(14 1{	 .	 y'I :il / •.	 ; 111/	/	 ,

Be

. as 1 1.	 Y	 1/ 4	 1 /	 11 1

j 200 ,	 1.	 11 1. J	 .I1 n	 qwu 1 1
1 .	 1	 1	 a

/1  / 	 1 11.	 11f1	 1
/	 111111	 / /	 11 1	 7	 1	 u.111	 11 11	 UBe

Y.	 1

1	 . 00	 / ,	 •	 V 1
	

.	 ! .
	 +Il	 1111 + /	 '^' , /	 1	 ;	 •	 pO	 11{•	 .1111'1	 1	 1.111'.,/Li

', : ': {	 .	 111!1. 1	 11 1•	 +., / 11	 II	 tl	 / .'11 u u	 I	 .	 1	 1	 11	 .u.1	 rM.	 61	 1
,	 .	 1	 1	 1	 I •l:l	 \If	 .

,:
^lV ."::"!	 .l rltl I	 .	 11	 1

/	 YM	 ;
^-Li	 .	 .	 1 I . • i . i 11 1	 Ii 1.	 iiti..: /1	 iui	 -	

{	
.Y	 - - I	 r	 uu

' 1	 IBI	 {1	 l l 'HII Ir	 111 ,	 It 1111

:JO
1	 11	 I	 11	 -	 11.,	 .	 .	 1111	 111

///ttt '1	 1-	 11.11.	 ,	 1l	 1 111 .	 1	 11	 . II.	
111	 I. 	 .	 r1	 +11	 '

-

Is'
/	 11	 1	 ,Il	 II1 1	 1	 '1	 1	 1 11	 .•1•

6L
{	 /1.	 -.1/ 111•1.1.1.{	 {	 ,1	 /	 /	 1	 1	 /1	 I	 I.'U 11.	 .	 1111

;
..	 u..1...,	 t 111	 .	 1	 1

r • -	 ^.	 b 1 1. a 
ulul 1. l !{ q p	 /	 1	 . u

4	 '	 11111	 1
u.

111 1	 1	 11	 1

,	 ,	 ..11111111	 /111't "
I • '

1	 ..111.	 1Iw1	 1111
111, ' 1111	 '1	 1	 .	 1	 ;1

' /'.1l1!1	 111	 11	 1	 1.	 I. 1	 I	 11	 ^.!.	 111.	 ,	 11_
200	 400	 0	 800

D5	 C11AflNEL

ORIGINAL
PAGEOF PO QU

3
V

1	 '

1



115

"r	 The mass response of the instrument was investigated for the

isotopes of hydrogen, helium, nitrogen, and oxygen. In order to

calculate the mass from equation C-4, a range - energy relation had

to be assumed. The analysis was done with two sets of range - energy

tables. The first set was based on Janni's (1966) table for protons
i

in silicon. To calculate the range for elements other than hydrogen,
i

the range correction term in equation C-4 was assumed to be 0. The

second set was also based on Janni's table for protons in silicon,

but with a non-zero range correction for element Z, obtained by

comparing the N & S range - energy table for element Z in aluminum

with their table for protons in aluminum. It was assumed that the

range correction, expressed in g/cm 2 , was identical in silicon and

4

aluminum. If the range correction were due to only electron pickup

`	 effects, one would expect the range correction to increase mono-

tonically with energy and to approach a constant value at energies

^;	 a
above which the projectile is essentially fully ionized. In fact,

the range  c r ec ion calculated	 the	 & tables exhibitso r t 	ul	 from h N	 S t	 es	 s minort

irregularities at high energies (- 12_MeV/amu). Therefore, our

calculated range correction was arbitrarily set equal to a constant

at high energies•
i

j	 The mass response of the instrument to protons is indicated
i

I	 ;'	 in Figure C-3. A D2 thickness T (see equation C-4) of 44.85u was

chosen to properly normalize the proton mass data. Note that T

is the only free parameter in equation 4. The same value of T must

be used to calculate proton masses at all energies and also the

:'	 3

y
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masses of other isotopes and elements. The calculated proton mass is

at all energies within 0.014 proton mass units (pmu) * of 1.000 pmu

over the entire measured energy range with an rms spread of 0.008

pmu in the observed mass. To within a precision of 0.6%, Janni's

range	 energy table for protons in silicon is in good agreement with

our calibration data.

Using the same D2 thickness of 44.85u that was used for pro-

tons, the mass of alpha particles was calculated as a function of
F

w	 energy.	 Figure C-4 illustrates the results obtained using the two

sets of range - energy tables described previously.	 As expected,

w
the two sets of tables give the same result at high energies where

c	
x	 the helium is fully ionized. 	 The observed helium mass is larger

t

than the true mass, implying that the stopping power, as measured

by of in D2, is larger than the value predicted from our range -

energy table for helium.	 This is qualitatively consistent with the

f
theory of Ashley et al.	 (1972) and of Jackson and McCarthy (1973), in

which a Z3 term is included in the stopping power formula. 	 The

1	
calculated helium mass approaches the true mass at higher energies,

consistent with the decreasing importance of the Z3 term at higher

energies. _Note that when no range correction is used, the calculated

helium mass is closer to the true value than when a range correction

obtained from N & S is used.	 The reason is that N & S correct for

*
1.000 pmu = 1.007 amu
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Calculated 4 H mass as a function of energy in D2 plus D5.

The solid .circles represent masses calculated with no range

1	 correction	 The open circles were calculated using a

range correction based on the tables of Northcliffe and

Schilling (1970). The solid curve is associated with the

solid circles, and the dotted curve is associated with the

open circles. The curves represent the smoothed isotope 	 {

response used to obtain a new range correction for helium.

4The dashed line indicates the true mass of a He nucleus.
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electron pickup, which reduces the relative stopping power. How-

y
ever, they do not include the larger effect of the Z 3 term which

	

i;	 5

increases the relative stoppingpower. Over the measured energy

region, the calculated 4 H mass deviates from the true mass by

0.2 pmu at low energies and 0.1 pmu at the higher energies. This	 a

discrepancy is not important enough to seriously affect isotopic

identification for helium.

The mass response to 14N as a function of energy using the

two sets of range energy tables is shown in Figure C-5, 	 The two

sets of tables give identical results at high energies.	 At high energies

the calculated mass is too large. This is qualitatively consistent

with the P correction term.	 Towards lower energies the calculated
mass decreases if no range correction is assumed.	 This comes about a

because incomplete ionization of the 14N, which becomes increasingly
Y

important at low energies, is not taken into account. 	 On the other

hand, the range correction obtained from N & S results in an increasing

t	 d	 1	 4	 At 10 - 15 M V/	 1	 th	 alculatedmass owar s ower energies,	 a nut eon	 e c

14N mass is 0.5 pmu too high. The discrepancy between the true and

calculated mass at lower energies depends on which of the two range--

energy tables is used. The errors in the range - energy tables

we used for nitrogen results in a large enough error in the mass

that isotope identification is not possible unless the mass response

of the instrument is known.

;a
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FIGURE C - 5

Calculated 14N mass as a function of energy in D2 plus D5. The

solid circles represent the masses calculated with no range

correction. The open circles were calculated using a range

correction based on the tables of Northcliffe and Schilling

(1970). Unless shown, the error bars are comparable to or smaller

than the circles representing the data points. The solid curve

is associated with the solid circles, and the dotted curve is

associated with the open circles. The curves represent the

smoothed isotope response used to obtain a new range correction

to	 for nitrogen	 The dashed line indicates the true mass of a 14N

nucleus.
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Large variations in the 160 mass response Were also observed

as a function of energy. Mass histograms at different energies

are shown in Figure C-6. To calculate the mass histograms in

Figure C-6, a range correction based on the tables of N & S was

used. At the lowest energies the mass response is varying rapidly

as a function of energy. Although the energy interval for each

histogram is less than I MeV/nucleon, the variation of the mass re-

sponse in the energy interval can contribute to the broadening of

the mass peak.

The mass response to 1 60 as a function of energy using the

two sets of range - energy tables is shown in Figure C-7. At high

energies the calculated mass is 0.5 pmu too high. At low energies,

depending on the range - energy table used, the mass is several pmu

too high or too low. The kink in the curve obtained with a range

correction for electron pickup arises from the high energy constant

range correction mentioned previously. The range correction for

160 was set equal to a constant value for energies above 7.5

MeV/nucleon with a discontinuity in the derivative d
E 

(AR) at

7.5 MeV/nucleon. This gives rise to the discontinuity in the

derivative dM observed in Figure C-7. Using our range - energy
dE

tables for oxygen, isotope identification is impossible below

13 MeV/nucleon unless the mass response of the instrument is known.

The smooth curves shown in Figures C-4, C-5, and C-7 define the

LI-- I ---
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FIGURE C 6

r

jy
Mass histograms of 160 as a function of energy.

A range correction based on the tables of

Northcliffe and Schilling (1970) was used to

calculate the mass. The arrows indicate the

true mass of an 160 nucleus. Note that there

may be minimal amounts of other isotopes in
y

some of the histograms.
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FIGURE C - 7

F
f

Calculated 160 mass as a function of the energy in D2 plus D5.

The solid circles represent the masses calculated with no range

correction. The open circles were calculated using a range

correction based on the tables of Northcliffe and Schilling

(1970). Unless shown, the error bars are comparable to or

smaller than the circles representing the data points. The

solid curve isassociated with the solid circles, and the dotted

i
curve is associated with the open circles. The curves represent

the smoothed isotope response used to obtain a new range correction

for oxygen. The dashed line indicates the true mass of an 160

nucleus.
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mass response of the instrument to 4He, 14N, and 160. Note that

the solid and dotted curves are not independent. One can be derived

from the other since the relation between the two sets of range -

energy tables is known.

It is useful to obtain a range correction to use in equation

C-4 which gives the correct mass. The procedure used to obtain the

proper range correction from the calibration data will now be

outlined.

Equation C-4 can be rearranged as

AR	 (E) - 4R	 (E') = T + 
MZ	

- R	 + RP 	 C-5
MZ ,Z	 AM ,Z	 Z2	

p(Ez)
	

P(MzV
 

4

From the measured energies E and E', the thickness T, the 'isotope

mass MZ , the charge Z, and the proton range - energy table, the

difference in the range correction between any pair of energies

E and E' can be calculated. Most quantities on the right hand side

of the equation have already been calculated. T is known from the

calibrated response to protons. For helium, nitrogen, and oxygen

we shall- take as M  the masses of 4He, 14N, and 
160. 

For the pro-

ton range	 energy table it is reasonable 
to use Janni'_s table

since it is in good agreement with our proton data. The quantity

E is an independent variable. The only parameter on the right hand

side of equation C-5 that is not known at this point is E' 	 However,

it is easy to obtain E' from the calibration data. Using Janni's

proton table and no range correction,the average mass as a function
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of energy is known from Figures C-4, C-5, and C-7.	 The energy E'

corresponding to the average mass can therefore be immediately

Calculated from equation C-4.	 Note that previously, the mass of

aE each individual event with its associated 4E and E' was calculated

from equation C-4.	 However, the average energy E' over many events

was not computed.	 Therefore, it is necessary to use equation C-4

to calculate the average E' from the known value of the average

mass.

To obtain the range correction from the quantity

AR	 (E) - AR	 (E'), a summation procedure was used.	 SymbolizingMz ,Z	 Mz'Z

the difference between the range corrections at energies Eand Ek	 j
by

{	 F

.a

AAR	 (E	 ,E) = AR	 (E)	 -
 

AR	 (E)	 C-6Mz ,Z	 k	 j	 MZ,Z	 k	 Mz,Z	 j

the range correction at energy E K can be expressed as
{

ARM	 Z'(E k) _ -^ ^ 1 AAR	 (E.,E.+ )l 	 + ARM	(E)	 C-7
z'	 ^	 Mz,Z	 i	 i	 1 J	 z,Z1

j
=l

Temporarily normalizing the range correction at energy E l to an

arbitrary value oR l ,the range function AR M	 Z (Ek) can be obtained

z'

at those discrete energies E k for which the ranges of energies
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n

E k and E k _ 1 
are separated by T (i.e., E 

k 
corresponds to the total

energy E,and f k-1 corresponds to the residual energy E'). This

procedure is illustrated graphically in Figure C-8. The result

is a range correction at discrete energy points, as indicated by

the open circles. Starting with a new energy El ,, the range

correction oR l , is normalized such that it is consistent with a

smooth curve drawn through t-,e circles. The range correction can

then be calculated for the set of points symbolized by the squares.

Continuing this procedure, a smooth range correction curve can be

obtained at all energies.

As noted previously, our technique of measuring mass is

insensitive to a constant offset in the range since equation C-4

depends only on the difference between ranges.	 Therefore, an

arbitrary normalization to the range must be imposed at some energy.

A reasonable normalization is that the range of a particle with zero

energy is zero.

The resulting range corrections as a function of energy for

4He,	 14N, and 160 are illustrated in Figures, C-9, 	 C-10, and C-11.

The dotted sections of the curves are linear extrapolations to zero i

energy.	 The extrapolations were necessary because the calibration

runs 'did not produce enough events at low energies to allow us to

accurately measure the mass response. 	 However, the response was

measured at all energies for which we can observe nitrogen and

oxygen isotopes with the flight data,
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i

The range corrections obtained for 4He, 14N, and 160 are

listed in Tables C-2, C-3, and C-4 as a function of energy.

To estimate the uncertainty in the range correction, we must
j

first estimate the uncertainty in the mass response. The mass re-

sponse to 1 H, 4He, 
14
N, and 160 is plotted in Figures C-3, C-4, C-5,

and C=7. It is	 convenient to divide the uncertainties into two

categories: those due to electronics (gain and offset shifts and

non-linearities) and those due to all other effects. The effects of

the electronics have been discussed in Section C-2. To estimate the

importance of the second category, two contributions will be con-

sidered. Uncertainties in the data points due to statistics result

4	 in uncertainties in the mass response curve. In addition there are	 a

systematic uncertainties which can be estimated by the deviation of

the smoothed mass response curve from the individual data points.

These systematic uncertainties result either from fluctuations of
i

the data points about the response curve, or from an imperfect fit
4

of the response curve to the data points.
a

The rm's contributions to the mass uncertainties are estimated

in Table C-5. For the flight data, it is necessary to know the

nitrogen and oxygen mass response relative to the helium response.
_a

(See Section III-D.) Therefore, the contribution of the uncertainty

in the helium response to the uncertainties in the relative nitrogen

and oxygen responses is indicated in Table C-5. The total rms mass

'	 uncertainty is obtained by combining the individual contributions
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TABLE C - 2

Range Correction for ''He in Silicon

MeV vm MeV um MeV	 um MeV um MeV um

(	 0.0 O.0	 ) (	 0.2 -06051 (	 0.4	 -0.091 l	 0.6 -U. 141 (	 0.8 -0.181
., (	 1.0 -0.23) (	 1.2 -0.271 ( 1.4	 -0.32) (	 1.6 -0.3b) l	 1.b -0.41)

( s (	 2.0 -0.45) (	 2.2 -0.50) (	 2.4	 -0.54) l	 2.6 -0.59) 1	 2.8 -0.63)
' (	 3.0 -0.66) 3.2 -0.72* 3.4	 -0.76 3.6 -0.80 3.8 -0.85

q, 3.Z
4.2

-0.72
-0.94

3.4
-#.4

-0.76
-0.96

3.6	 -0.80
4.6	 -1.02

3.8
4.8

-0.65
-1.07

4.0
5.0

-0.89
-'1.11

5.2 -1.1a 5.4 -1.20 5.6	 -1.25 5.8 -1!.29 b.0 -1.34	
r

6.2 -1.^$5 6.4 -1.43 6.6	 -1.47 6.8 -1.52 7.0 -1.56	 .p
7.2 -1.61 794 -1.65 7.6	 -1.70 7.a -1.75 8.0 -1.79
d.L -1.t4 8.4 -1.83 8.6	 -1.94 8.8 -1.99 9.0 -2.04
9.2 -2.09 9.4 -2.14 9.6	 -2.18 9.8 -2.24 10.0 -2.29

^. 11.0 -2..56 12.0 -2.85. 13.0	 -3.15 14.0 -3.47 15.0 -3.79
16.0 -4.13 17.0 -4.48 18.0	 -4.83 19.0 -5.19 20.0 -8.57
21.0 -5.95 22.0 -o.34 23.0	 -6473 24.0 -7.14 25.0 -7.54
26.0 -7.96 27.0 -8.36 28.0	 -8.79 29.0 -9.22 30.0 -9.64
31.0 -10.07 32.0 -10.51 33.0 -10.94 34.0 -11.39 35.0 -11.84

Values in parentheses are based on linear extrapolation from higher energies.
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103.0 10.01

	

108.0	 9.92
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es	 133.0	 9.24

	

138.0	 9.07

	

143.0	 8.436

	

148.0	 8.699

	

153.0	 8.46

€r	 158.0	 8.27

	

163.0	 8,04

	

168.0	 7.81

	

173.0	 7.56

	

178.0	 7.30

	

183.0	 7.03

	

188.0	 6.75

	

193.0	 6.45

	

198.0	 6.15

	

203.0	 5.83
208.0 5.50

Values

TABLE C - 4

Range Correction for 160 in Silicon

	

MeV	 Um	 MeY	 um	 MAY	 Um

	

4 0.2	 0.12)	 ( 0.4	 0.24)	 ( 0.6	 0.37)

	

( 1.2	 0.731	 1 1.4	 0.86)	 ( 1.6	 0.981

	

( 2.2	 1.35)	 ( 2.4	 1.471	 ( 2.6	 1.591

	

f 3.2	 1.96)	 ( 3.4	 2.081	 3.6	 2.21

	

3.8	 2.33	 4.0	 2.45	 4.2	 2.57

	

4.8	 2.89	 5.0	 2.97	 5.2	 3.04

	

5.8	 3.22	 6.0	 3.28	 6.2	 3.34

	

6.8	 3.51	 7.0	 3.56	 7.2	 3.61

	

7.8	 3.78	 8.0	 3.83	 8.2	 3.68

	

8.8	 4.02	 9.0	 4.07	 9.2	 4.12

	

9.8	 4.27	 10.0	 4.31	 11.0	 4.54
	14.0	 5.22	 15.0	 5.42	 16.0	 5.61

	

19.0	 6.13	 20.0	 6.30	 21.0	 6.45

	

24.0	 6.90	 25.0	 7.04	 26.0	 7.17

	

29.0	 7.55	 30.0	 7.66	 31.0	 7.80

	

34.0	 8.14	 35.0	 8.23	 36.0	 8.32

	

39.0	 8.59	 40.0	 6.67	 41.0	 8.76

	

44.0	 8.97	 45.0	 9.03	 46.0	 9.09

	

49.0	 9.25	 50.0	 9.31	 51.0	 9.36

	

54.0	 9.50	 55.0	 9.54	 56.0	 9.58

	

59.0	 9.69	 60.0	 9.73	 61.0	 9.7o

	

64.0	 9.85	 65.0	 5.87	 66.0	 9.69

	

69.0	 9.95	 70.0	 9.97	 71.0	 9.99

	

74.0	 10.04	 75.0	 10.05	 76.0	 10.06

	

79.0	 10.09	 80.0	 10.10	 81.0	 10.11

	

64.0	 10.12	 85.0	 10.13	 66.0	 10.13

	

89.0	 10.13	 90.0	 10.13	 91.0	 10.12

	

94.0	 10.10	 95.0	 10.10	 96.0	 10.09

	

99.0	 10.06	 100.0	 10.05	 101.0	 10.04

	

104.0	 9.99	 105.0	 9.97	 106.0	 9.96

	

109.0	 9.90	 110.0	 9.88	 111.0	 9.86

	

114.0	 9.79	 115.0	 9.77	 116.0	 9.74

	

119.0	 - 9.66	 120.0	 9.64	 121.0	 9.61

	

124.0	 9.53	 125.0	 9.50	 126.0	 9.47

	

129.0	 9.37	 130.0	 9.34	 131.0	 9.31

	

134.0	 9.21	 135.0	 9.17	 136.0	 9.14

	

139.0	 9.03	 140.0	 8.99	 141.0	 8.95

	

144.0	 8.85	 145.0	 8.81	 146.0	 8.77

	

149.0	 8.65	 150.0	 8.61	 151.0	 b.57

	

154.0	 8.44	 155.0	 8.40	 156.0	 8.36

	

159.0	 8.23	 160.0	 8.18	 161.0	 8.14

	

164.0	 8.00	 165.0	 7.45	 166.0	 7.90

	

169.0	 7.76	 170.0	 7.71	 171.0	 7.66

	

174.0	 7.51	 175.0	 7.45	 176.0	 7.40

	

179.0	 7.25	 180.0	 7.19	 181.0	 7.14

	

184.0	 6.97	 185.0	 6.92	 1o6.0	 6.86

	

189.0	 6.69	 190.0	 6.63	 191.0	 6.57

	

194.0	 6.39	 195.0	 6.34	 1.96.0	 6.27

	

199.0	 6.u9	 200.0	 6.03	 201.0	 5.96

	

204.0	 5.77	 205.0	 5.70	 206.0	 5.64

in parentheses are based on linear extrapolation from higher energies.



4Hg
14N 160

Wu ) (Amu) aMu

i

Electronics 0.007 0.011 0.010

Uncertainties in 0.008 0.030 0.011

Data Points

Systematic Errors 0.004 0.028 0.023

E
Sub Total 0.011 0.042 Ot-027

Error Relative 0.038 0.044

to Helium

w

TOTAL 0.06 0.05
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For the mass uncertainties listed in Table C-5, the typical

accuracy for the difference between the range corrections for any
s

50 pm range interval 	 is - 0.1 pm.	 The absolute magnitude of the

?! range correction is more uncertain. 	 To determine the absolute

magnitude a linear extrapolation of the range correction to zero

energy was performed although the true second derivative dE (AR)

probably is not zero. However, as noted previously, a shift in the

absolute magnitude of the range does not affect the mass response

of the instrument.

When the range corrections of Tables C-2, C-3, and C-4 are sub-

stituted into equation C-4, one should obtain the correct mass for
i

4He, 14N, and 160 since the range corrections were actually obtained

from these isotopes.	 According to our assumptions, we should also

s
be able to calculate the proper masses for all other isotopes of

i helium, nitrogen, and oxygen. 	 Using the new range corrections along

with Janni's proton range - energy table, mass histograms were

obtained for a portion of the hydrogen, helium, nitrogen, and oxygen

calibration data..	 The results are shown in Figure C-12.	 The iso-

topes have the proper masses within the predicted accuracy, thus

i,
I	 ',

IIi
I	 ,

l

supporting the validity of the new range corrections.



FIGURE C - 12

Mass histograms for hydrogen, helium, nitrogen,

and oxygen calibration data using range corrections

in Tables C-2, C-3, and C-4. The hydrogen, nitrogen,

and oxygen isotopes resulted from inelastic scattering

of an 160 beam. The data from a 14N and an 160 beam

were combined to obtain the mass histogram for

helium.

i
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