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Recursive Identification and Tracking of Parameters for Linear and

Nonlinear Kiltivariable Systems

Menahem Sidar

ABSTRACT

The problem of identifying constant and variable parameters in

multi-input, multi-output, linear and nonlinear systems is considered,

using the maximum likelihood approach. An iterative algorithm,

leading to recursive identification and tracking of the unknown

parameters and the noise covariance matrix, is developed. Agile

tracking, and accurate and unbiased identified parameters are ob,;ained.

Necessary conditions for a globally, asymptatica_ly stable identifi-

cation process are provided; the conditions proved to be useful and

efficient. Among different cases studied, the stability derivatives

of an aircraft were identified and some of the results are shown as

examples.

1.	 Introduction

It has been recognized during the last several years that on-line

recursive identification and tracking of unknown, time-varying,

parameters in linear and nonlinear dynamical systems is of paramount

importance. Valuable algorithms that operate on recorded input-

output time histories over finite time intervals have been reported

for the batch identification of constant system parameters (Astrom

NRC Senior Research Associate, Ames Research Center, NASA,

Moffett Field, California 94035
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and Eykhoff, 1.971 and Mehra, 1974). The relatively few recursive

schemes reprrted to date (such as Hastings and Sage, 1969 and Gertler

and Banyasz, 1974,for examp'e) are applicable only to linear systems

and, even there, probably not to high order, multivariable linear

systems. Neither the batch nor the available recursive algorithrr.s

can be used in many problems of aeronautical interest. For examr1e,

identification of aircraft en , ,ine parameters, of aircraft stability

and control derivatives in high angle-of-attack or accelerated

flight, of atmospheric perturbations that vary through the flight

regime—all require nonlinear or time-varying parameter tracking

capability.

Tnis paper adopts the maximum likelihood approach to provide

a robust technique to satisfy the above aeronautical needs. An

on-line recursive algorithm 1.3 developed for the simultaneous

identification and tracking of unknown variable parameters. It

is shown that the resulting scheme satisfies several guidelines:

'	 it provides and tracks unbiased estimated for multiparameter linear

and nonlinear systems; it is computationally simple; and, it is

usable on line.	 I

After formulating the identification problem in section 2,

the estimation criterion and the identification scheme are selected

in section 3. Because our main goal is to devel , an on-line

identifi,ativa algorithm, a recursive identification algorithm
s

based on the maximization of the likelihood function is developed

-2-
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In section 4. The algorithm makes use of certain sensitivity

functions for the parameterized system. Section 5 shows how the

sensitivity functions are generated and how to compute the sensi-

tivity matrix. This matrix provides information that to also

useful with respect to the sys • em's identifiability. In order to

provide necessary stability requirements for the recursive algorithm,

convergency conditions are obtained in section 6, by the application

of Lyapunov's second method and of a stability theorem concerning

discrete-time dynamic systec4 .

Two examples are given and results showing the identification

ane tracking carabilittes of the recursive algorithm are discussed

in section 7.

!	 2. Identification problem formulation

the basic problem we deal with here is the recursive identiti-

catioi of a set of (m) unknown parameters p = ;p
1
 ,p

2
 , . . ., p m )T

of the illowing (linear or nonlinear) dynamical system:

X - f [x, P, u(t)J
	

(1)

w',ere xT_ [a l , x 2 ,	 ., x n )	 is the n-dimensional state vector,

representing the solution of the set of first order differential

equations (1) for given: (i) initial conditions x (t-0) - xo;

and (ii)	 (r) control functions !!h (t), h - 1, 2, . . ., r.

We are also tacitly assuming in the sequel that a solution vector

-3-
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x(t)cEn exists, is unique, and is stable. The existence of all

the derivatives afi /ax0 and afi /ap' , for all 1, p - 1.	 ., a

and ,j • 1, . . ., m is also assumed.

Since in most applications there is no direct way to measure

all of the state vector components, the set of measured (or observed)

data available for identification purposes, is Riven by:

Y- Cx+v	 (2)

where y is the measured output (qxl) vector, C is the measurement

matrix (qxn), and v(t) is a (qxl) vector representing the inevi-

table measurement noise.

With re,ipect to v, the following two assumptions are made.

First, the measurement noise v W is an additive, Gaussian, white

noise rrocese, v(t) i x(t), with zero mean value:

El v (t)) = n
	

(3)

1i

At least for the length of the identification experiment T, this

condition is considered true on an ensemble and time-average basis.

Second, the covariance of the noise v(t) is given by:

E `v(t) VT ( c -T)l	 = Roa(t-T)	 dt,T f [ o ,T]	 (4)

This covariance is defined rather in a generalized. derived-

martingale sense, R 	 being finite. We suppose in the sequel that

R 
	 is unknown an,t is to be found during the identification process.

-4-
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(6)

J

i

i

The problem, then, is to use the (q) measured output function,,

and the (r) known and measured control tunctions to identify and

track uniquely and with an acceptable accuracy, the unknown,

possibly time-varying, elements of the parameter vector p -

(P 1 . •	 , Pm).

The p-esent state of the art makes it feasible to develop

the identification algorithm in a discrete time version, since

both the data and data processing are available in a discrete

form, so that appropriate digital computers can be used for imple-

m,ntation of the recursive parameter identification. Therefore,

the discrete versions of the controls, the state vector, the

output vector, and the parameter vector are described in this

paper as a sequence of discrete numbers, for all iE(0, N], N4_ VAT,

er being the basic time increment:

UM - ( u l (i), u 2 (1), . . ., ur(i)1T

x(i) - [x 1 M ' x 2 (i) 1 . .	 xn(1)]T

Y(i) - ( y l ( i ), y 2 ( i ),	 ., yq(,)IT

PM - ( P l ( i ), P 2 (i),	 Pm(1)]T

Vi-O, 1, . . .. N. (5)
	 a

i

Similarly, we describe the measurement noise, as a random,

zero mean, independent Gaussian sequence, with:

E{v(i)) - 0

E 
I 
V M VT ml = R 1 6kj (d ij - Kronecker's delta function)

for all i,jc[O, NJ, as stated before in egns. (3) and (4).

-5-



It is appropriate to remark at this point, that the identification

technique presented here can be easily extended, with slight modifi-

cations, for the case when v(1) is a vandom correlated Gaussian

sequence, that is, a colored measurement nc.se with given correlation

functions. For clarity of presentation and to avoid cumbersome

notations we prefer to treat throughout this paper only the uncor-

related and independent Gaussian measurement noise case.

With regard to the model assumed in eqns. (1) and (2), we

should mention here that this model is by no means the mist general

one (see Mehra, 1970), but we deliberately adopted i, for the sake

of conciseness and simplicity of notation. Nevertheless, the

present algorithm :.s compatible, w.,th slight modifications, with

the whole group of models for aircraft parameter identification,

stability and control derivatives, as discussed in Mehra (1970)

and in Stepner and Mehra (1973), including the case when process

noise may exist (Wingrove, 1974).

3. Parameter estimation criteria and identification scheme

Prior to the development of the recursive identification

algorithm we have to restate in this paragraph our main objective

and the rationale adopted for this study. There are several

possibilities for the choice of the topological scheme of the

identification, each of those schemes having certain merits and

inherent disadvantages. Discussions of these topics have appeared

-6-



in the technical literature, such as in Astrom and Eykhoff (1974),

IEEE (1974), and Landau (1974). Although the work of AstrFm and

Eykhoff (1974) is probably one of the most objective and comprehensive,

the other references are also excellent and up to date. Therefore,

we will try to avoid unnecessary repetition and address ourselves

to the main points of the rationale, those relevant to the sequel.

The output error method was adopted for the development of

our idFntifica;.iui. algorithm because, taking into account the

existence of t:_ measurement noise, our main objective was to

obtain unbiased estimates for the identified parameters. Equation

error methods are known to produce biased estimates to the same

case. Moreover, the algorithm has to be able to cope with the

problem of the identification of biases (that possibly exist)

in the measurement instrumentation. The output error method can

deal successfully with this problem also.

It is unfortunately true that in adopting the output error

scheme one has to deal with essentially a nonlinear iterative

algorithm procedure. This fact is at the expense of the output

error scheme, since in the equation error method the unknown

parameters enter the dynamical identification equations in a

linear fashion, so that the computational problem is, at least in

principle, simple to deal with. Nevertheless, remembering ghat the

original aim was to handle noisy nonlinear system identification

problems with, eventually, process noise additive inputs, the

-7-



output error does not necessarily represent a prohibitive penalty

from the computational point of view. As mentioned before, after

judging the appropriate alternatives the output error method was

finally adopted.

With respect to the identification criterion, our main

objectives were: (1) to choose a mathematically tractable criter-

ion so that the recursive algorithm would be easy to implement;

(2) to obtain linear dependence betwe,:n the parameter variations

and the output error vector; (3) to generate the covariance matrix

for the measurement noise as a by-product of the identification

procedure, in order to check the robustness, the sensitivity, and

the convergence properties of the identification process; and (4)

to have a test for identifiability.

Checking the different criteria, which were potentially able

to correspcnd more or less to the above rationale, we found the

maximum likelihood function as the best choice of criterion (Astrom 	 F

and Eykhoff, 1971, 'Mehra, 1970 and Kashyap, 1970) because: (1)

maximization of the likelihood estimation function leads to

unbiased, consistent, and minimum variance estimates as asymptotic,

limiting values, under fairly mild conditions; (2) maximization

of the likelihood function leads to the evaluation of the covariance

matrix for the neastirement noise; and (3) the change in the

parameter vector is linearly related to the output error vector.

Moreover, the recursive-type version of the identification algorithm

-8-



is easily obtained from the batch type maximum likelihood estimation

(m.l.e) algorithm. The m.l.e. may provide the co^arlance matrix

for the identified parameters, indicat:ng tho correlation among

them. It may also furnish a useful teet and criterion identifi-

ability. The m.l.e. criterion for recursive identification was

adopted also by other authors (such as in Kashyap, 1970, Gertler

and Banyasz, 1974 and !cogers and Steiglitz. 1967) but, as mentioned

before, only for linear s-oytems.

The conceptual diagram for the system identification is shown

in figure 1, which uses the following notation:

1. For the (real) nominal, dynamical system, whose parameters

are to be identified, we use, instead of egns. (1) and (2), the

equations:

X(n)	 f 
I
E(n) ' p(n)(t) , 

u(t)I	 (7a)

Y(n) - C x (n) + v	 (8a)

P(n) (t) being the nominal values of the (unknown) parameters.

2. For the adjustable model, for a certain value p(t) of

the parameter vector, the appropriate set of equations governing

the system's model would be denoted by:

•	 x	 f[x, p(t), u(t))	 (7b)

Y - C x	 (8b)

—1
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x(t) and Y(t) being the best available model state and model

output, respectively. We assume that the exact value of x(n)(0)

Is unknown. The output error is defined by:

1(t) G y(n) (t) - Y(t)

C.x(n)(t) + v - Y(:)	 (9)

As explained before, being interested in the discrete-form

identification algorithm, and as a preparatory step toward the

recursive version of this algorithm, we will proceed further with

the batched-type formalat ion of the identification problem in

discrete version. Hence, for every sampling instant, we obtain

the output error:

n(i) - C x (n) (i) + v(i) - Y(i),	 ic(0, NJ	 (10)

which can be identified as an innovations sequence in the sense

defined by Gevers and Kailath (1973). It is well known that as

the sampling rate increases, the probability density distribution 	 1

function of the innovations sequences, n(i) tends to n Gaussian

p.d. distribution (Kailath, 1969).

Making use of the likelihood function approach, one has to

find, that is, identify, the best estimate of p, namely p*,

based on the measured output sequence YkA Jy(l), • •	 y(k)J•

The maximum likelihood estimate of p is obtained by the maximiza-

tion of the conditional probability of Yk , given p:

-10-
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p*	 (p+^	 max pr (Y k IE))	 (11)

P	
I

Applying, successively, the Bayes chain rule, one ob a:ns:

k
M 11 x pr (Yk^P)	 max	 n pr Ir(i)I

y!-1 	(12)

P	 p	 i-1

As a matter of convenience, let us now define fln pr (Yk101

as the likelihoot functi r .j and, since the logarithm function is

monotonic, we can write instead of eqn. (12):

k

	

'fix 
i 
ln pr( YkIP)1' max	 3: In prIY(i)IY i-l O.P	 (13)

1-1

Assuming that x(0) is normally distributed around x (n) (0). and

based on the hypothesis made in eqn. (6), we infer that pr[y(1)II lip]

will also be normal and, conRequently. described by second order

statistics. Therefore, this quantity can be uniquely determined

by computing the mean value:

E ly(i)IY 
i 
-',p
	

aQ y(iI1-1)	 (14)

and the covariance matrix:

	

Ef[y(i) - y(iIi-1)lfy(i) - Y(ili-1)J T }	 R(iIi - 1)	 (15)

the quantity v(i)p[y(i) - y(iIi-1)J being the "new information"

brought up by y(i).

Taking into account eqns. (14) and (15). together with eqn.

(13), we finally obtain:

-11-
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p* - (p* : max L(p.R))	 (16a)

p,R

where

k

L(p.R)	 - Z r	 vT (i)R - 1 (i1i-1)v(i) + ln1R(IJi -1)1 	(16b)

and:

max L(p,R) - L(p*,R)

p,R

In eqn. (16b), JR(iji -1)l i g the determinant of the symmetric

covariance matrix R(iji-1) —to be written for brevity as R(i).

It Is obvious from the nature of eqns. (16), that L(p,R) is

not Explicit in p or R and hence it is not possible to determine

directly the value of the vector p*, unless a proper iterative

naximizatiou pr,)cedure is used. In order to do that, let us

assume that we are generating a trajectory x (Y) corresponding to

a certain value of the parameter vector p(Y) , considered as tae

beat value known by us at this stage, and the nominal control u(t).

In this case we infer that, r1(i) and v(i) are equivalent:

_q(i) - Y(r) (i)	 Y(Y)(i) Q v(Y) (i)	(17)

Y(Y) being the current best estimate of Y(n) . The likelihood

function then is:

-12-
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L1P(Y) ,R(Y)1 	 2 
El IIT (i)R(l)(i)q(i) + Qn IR(Y)(i)l	

(18)

Suppose now that being at the stage (Y), we ask for an improved

value of the parameter vecto 	 P(Y+1) ' P(Y) 
+ AP(Y).(AP(Y) being

a small perturbation) in order to maximize the likelihood function.

Accordingly, a new trajectory x(Y+1) is generated, corresponding

to the new parameter vector P(Y+l)(t), x(
Y+1) being close to

NY. 
I 

(t)  in a first order closeness sense. Let us now define:

Ax(,-) 4 
x ( Y+1 ) (t) - X (Y) (t) - S (Y) (t) . ^R'	

(19)

assuming that the small trajectory deviation Ax(t) can he repre-

sented as a linear transformation with respect to ^k(y). 
As in

eqn. (17) we can write the following:

V(Y+1)(i)
	 Y(n)(i)	 Y(Y+1)(1)

= w (n) (i)	 Y(Y)(i)
 - CS (Y) (i) k(y)

= n(i) - CS(Y)(i)AR(Y)	 (24)

We will call the (nxm) matriA S (Y) , the sensitivity matrix,

in the sense defined by Sidar (1968) and Larson (1968) and we will

show in the sequel how this matrix is computed.

The value of the likelihood function is actually a function of

AP and R:

-13-



L(p 
+ Ap,R) ` - 2 V

III(i)  - CS(Y)(i)TR-1 M r) (i)

i

- CS 00 (i)Ak(y) + ZnJR(i)I	 (21)	 1

In order to maximize this function with respect to Ap and

R, we shall calculate the partial derivatives of L(p,R) with

respect to the vector Ap and with respect to the matrix R(i).

Setting those derivatives equal to zero, one obtains, after a few

algebraic manipulations, the following nece.sary conditions for

maximization of the likelihood function:

k1ST(i)CTR-1(i)CS(i)1^
*(Y) 	 k IS 

T 
MJR

-i
 Mn(i) 

I
	 (22)

J-1	 i 1

and

k _	 k	

I I	 +^F R(i) - E (19(1) - CS(i)Ap
(Y)11 n(i) - Ch(i)AP(Y) IT ^	 (23)i'1	 i=1	

1

Those two coupled equations allow us, in principle, to

establish a batch-iterative procedure, in order to compute 
Ap y)	

1

and R(i) (Grove, Bowles, and Mayhew, 1972 and Aubrun, 1971).
I

Computationally, this can be done only by assuming some simplifica-

tions as did Gertler and Banyasz (1974) and Grove, Bowles, and

Mayhew (1972); otherwise one has to deal with very laborious

manipulations, including some intermediate iterative algorithms.

Since we are not interested here in obtaining an explicit form

-14-
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for the identification algorithm In the batch-formulated case, we

will proceed further, in order to obtain the recursive version of

the maximum likelihood identification algorithm.

4. The recursive identification algorithm

In this section, the recursive version of the identification

algorithm is derived from the previous necessary conditions (22, 23).

In particular, the optimal parameter vector increment would be

obtained from cyn. (22) and we shall assume in th l^ sequel that:

k >> 1 and that the sampling rate is high rAough, that is, AT

.	 is small in comparison with the process dynamics. From eqn. (22),

defining ePk e np_(Y) , we note that for the interval [O,k) one has

	1IST(,)CT^-l(,)CS(,) 
	 T	 T-1

	

'	 + ^S(k)CR(k)C5(k)i-1
a E 1 1ST (i)CTR 1 (i)n(i)I ^' l ST (k)C T R 1 (k)n(k) I	 (24a)

1 1

Since eqn. (22) is the m.l.e. necessary condition, valid for all

k, it certainly holds as well for the interval [O,k-11, so that:

k^l lST (i)CTR-l (i)CS(i)j A	 E1 [ 
ST(i)CTR-1 M

n(l)  (24b)
i-1	 i-1

To establi:3h a recursive algorithm we ask for the following

condition:

3

9

-15-



-1 for 10,k-11

tic •

bpi	 for [k-1,k ]	 (25)

Conditions (25) and eqn. (24b) imply that (24a) has the form:

k-1

iEl IST (!.)CTR l (i)CS(1)IA4-1
 + IsT 

(k)C
Tj-1 

(k)CS(k) 162:

k-]
a i IST(i)CT-1

R(1)CS(i)lAp -1 + IST(k)CTR-1(k),I(k)l(24c)

From (24c) we obtain the change dp (k) in p(k) for the

interval [k-1,k] needed to identify and perhaps track the

parameter vector:

64
IST MC Tj-1 (k)CS(k) 1  - IS t (k)CTR-l (k) q(k)l	 (26)

or, in a recursive form, the following identification/tracking

algorithm is obtained:

p(k) = 2(k-1) + [A]-1[B]n(k)	 (27)

where:

[B] = [B(k)] d ST(k)CTR-1(k)

is an (mx(j) matrix and:

[A] = [A(k)] q ST(k)CTR-l(k)CS(k)

- an (mxn) matrix, is the incremental Fisher information matrix for

the unknown parameter vector. 	
-16-
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'	 The inverse covariance matrix Vl (k) can not 	 be obtained

directly from eqn. (23). Therefore, we will first derive a

recursive equation for R(k). From (23), we nose:
I

k	 k-1

	

F R(1) - E R(1) + n(k)n(k) T	(28a)

k

	

Defining the matrix Ro (k)	 1 E R(i), we write,	 from (28a):

	

kR0 (k) - (k-1)Ro(k-1) + n(k)n(k) T	(28b)

and finally:

	

R0(k) - 
kkl 

Ro (k-1) + k n(k)nT W	 (28c)

This recursive equation is of utmost interest because in the steady

state (k >> 1) of the recursive id-ntification, assuming satis-

factory parameter tracking, it allows us to identify the covariances

of the instrumentation noises. That is so because for large enough

values of k, we have already obtained a good estimate for the

parameter p which is very close to p (n) , so that:

itim Ro (k) - R(k) = R1

k»1

(see eqn. (18))

In all the cases we studied, this result was verified, a verification

that represents by itself a good test of and criterion for the

acr •.aracy of the identification process.

-17-
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Since eqn. (27) needs R -1 (k), one is interested in the recursive

equation of the inverse covariance matrix. This matrix can be

obtained either directly, by inversion of R0 (k) obtained from

the recursive algorithm (28c), or by making use of the matrix

inversi—A lemma. Assuming steady state conditi.ona, we obtain the

following recursive algorithm:

R-1 (k) - kki R-1(k-1) -- k 2 
R-

1 (k- 1)nnTR-1 (k-1)	 (29)
(k-1)

It is clear from eqn. (27) that the existence (for all k) of the

inverse of the incremental information matrix, [A(k)] -1 , is

necessary for the implementation of the recursive identification

algorithm. The computation of [A(k)] -1 is by itself an excellent

test for identifiability. Its existence constitutes a good

criterion for detection ill-posed identification problems (see

Aubrun, 1971 and Clover, 1973). We therefore assume from now on

that the inverse matrix [A(k)] -1 exists,such that the identifiability

conditions are met.

Note that there is a formal similarity between (27) and other

linear least-square gradient-type iterative algorithms, although

our algurithms (27) and (29) are different and able to handle non-

linear systems in recursive identification problems.

For the start-up procedure of the recursive algorithm, we are

assuming that a pr iori estimates p(0) of the parameters exist,

I

-18-



obtained from early measurements, or from such experiments as

wind tunnel meal­ ements in the case of stability and control

derivatives for air raft. Beginning with those initial values,

the following sequence of computations is done for each interval

[k-1,k]:

1. y (n) (k) is obtained either directly from real experiments

(on-line or off-line) or, in the case of simulation studies, from

the integration of the differential equations of the nominal

systems (7a and 8a),

2. in order to carry out the computation of p(k), the

computation of S(k) is necessary, following the procedure shown

in the next section,

3. y(k) is calculated from eqns. (7b and 8b), the value

of the parameter vector being p(k-1). The vector n(k) is

calculated from (10) and is used in eqns. (27,29) in order to

compute the new value of the parameter vector p(k).

4. p(k) is calculated from eqns. (27) and (29), which are

the basic recursive equations for the parameter identification and

tracking, with p(0) as the initial value (the best available

guess on an a rp iori knowledge basis). As will be shown later,

convergence of the identification algorithm can be guaranteed

under the hypothesis that p(0) is close enough to p* (although

the convergence region in the parameter space is quite large).

r
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The schematic flow diagram of the computations necessary for

Implementation of the recursive identification algorithm is shown

in figure 2.

From eqn. (26), it is easy to prove that for k>>1 and given

Lin(ki) - 0, one obtains: E[6p k I - 0. This result shows that the

na gmeter vector p(k), identified by the algorithm (26), is

unbiased. Furthermore, as we mentioned before, one observed from

eqn. (28c) that the iterated covariance matrix R(k) tends to the

noise covariance matrix R 	 as k increases. Those are two

valuable results obtained as a direct consequence of using the

maximum likelihood estimation approach.

5. The sensitivity matrix

As we noted before, use of the recursive algorithm (27)

requires the computation of the sensitivity matrix S(t). The

(n.m) elements of S(t), the sensitivity functions 3xi/apj,

V i-1, . . ., n and J-1, . . ., m, are by themselves solutions of

(nxm) differential equations. Those differential equations are

obtained from the systems dynamic equations (7b), assuming the

current value of the parameter vector by taking the derivatives of

the equations with respect to each parameter pj:

(dxi1

	

a ` d^ /	 n af i	ax6	afi	
I

apj	
- 6-1  ax 	 apj + apj	

(30)
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Since eqn. (30) deals with a combined limiting process with

respect to dt and ap j (both tend to zero), and since we already

assumed the continuivv of the solutions with respect to p and t,

we may invert the order of differentation (see Sidar, 1968, Larson,

1968), obtaining:

 n of of
_d 	 i	 E^i

dt(

3x ,

)apj	
BE1 axe

	
(,I

	

pj

x	

♦ apj	 (31)

Denoting axi/apj A s ij as the sensitivity function, we gave:

	

n a f i	 afi

S ij	
.1 ax 	

s sj + apj	 (32)

or in a compact matrix form:

	

S(t) = F 
x 
S + F 	 (33)

where:

'ii 812 slm

S Q

'nl s n2 anm

(34)

F , the system's Jacobian (for the current value of p) and F
x	 p

are defined below:
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Ifl	 afl

,{X1	
3xn

F
X

+f	 of
n	 n

► x l	 ax n
(nxn)

.► fl	 afl
Cpl	

apm

F
p

If	 of
n	 _n

ipl	
3p mJ(nxm)

(35)

Therefore, to obtain the matrix S(i) it is necessary to

Integrate (n.m) additional differential equations, an operation

that demands a certain computing effort, but does not represent a

difficult task for a high speed digital computer. Cupta and

Mehra (1974) and Denery (1971a) have shown that, for linear systems,

some savings in the computational effort of solving egns. (33), are

possible.

The initial conditions for the integration of the differential

system (33) are s ij - 0.

6. Conditions for convergence

The best available policy of changing p(,k-1) in order to

trazk, in an optimal way, the trajectory x (n) (k) and the measured

output vector y(k), is given by applying the recursive algorithm

(27). In the parameter space p m , this is equivalent to the choice

of the best direction in order to converge sequentially to p(n)(t).

The size of the step 6p,, in the optimal direction, has to be

chosen in a way such that convergence can be guaranteed. That

means that the t-ajectory tracking error (discussed below) has to
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be, at lea - t . a non-increasing function. The fundamental problem

of choosing the optimal step in nonlinear programming iterative

schemes has been widely treated in the literature (see, for instance,

l.uenbergtr, 1972. Bard, 1970, and Mehra and Gupta, 1974) and we

will not treat it again here.

We shall rather present a specific criterion for convergence

based on Lyapunov's second method. Somewhat similar results have

also been obtained by us, as shown later, by developing an alterna-

tive criterion based on the location of "'ie eigenvalues of the

output vector tracking difference equation. A successful applica-

tion of Lyapunov's direct method in order to obtain stable adaptive

schemes for system identification is due to Narendra ail Kudva

(1974). Mendel (1968) studied the stability properties of a

parameter vecto- difference equation by appl-Ang Lyapunov viability

theory Here we deal with the stability and convergence properties

of the state vector tracking error difference equation. The sta-

biltti study of this tracking error sequence by the means of Lyapunov's

method reveals it to be a very valuable tool for choosing the

scalar p(k) in the modified identification algorithm:

p(k) - p(k-1 1 + p(k)[A(k)1-1[B(k)Jn(k)	 (36)

Let us define the following positive definite function:

V  - dxT (k) - 6x (k)	 (37)
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where:

6x (k) a 1(n) (k)- x 

as a possible Lyapunov function. For V 	 to be a Lyapunov function

for the recursive iterative algorithm, the necessary condition is:

AV  01 6xT (k+l)	 6x(k+l) - SxT (k)6x(k) r 0	 (38)

The quantity V 	 can be easily calculated from (7,8,9, and 36).

By neglecting higher-order infinitesimal terms containing AT 

(as AT tends to zero). and assuming a noise-free case, we finally

obtain:

AV  a - AT 6xT (k) M(p) 6x(k)	 (39)

with M(p) - P + pQ, P and Q being two symmetric (nxn) matrices:

P A F
x	 x
+ F T	 (40a)

Q 4 F  A-1 BC + I F p A-1 BC I 
T
	 (40b)

The proper choice of the iterative gain p, has to guarantee

that M(p) is a positive definite matrix, such that V 	 is indeed

a Lyapunov function for the identification algorithm and the

iterative process is globally asympotically stable. *faking use of

Sylvester's Theorem, on positive definitness test, the choce of p

and be made either ai a per step basis, or globally prior to the
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Identification test. The second approach is much easier to apply

because it is haled on an arp iorl data base, avoiding unnecessary

additional computations.

The stability analysis is based on two assumptions- (1) we

are assuming fixed or slowly changing parameters and (2) as mentioned

earlier, zero output noise.	 The impact of the noise covariance R1

on p is presently under study by us, but is not discossed here.

As mentioned before, an alternative way to insure convergence

of the identification algorithm is by studying the stability of

the following difference equation, obtained from (7, H, 9, and 36):

dx(k+l) - (I - AT • N(p)] dx(k) - N(p) 6x(k)	 (ail)

where:

N(P)	 [F + pF p A -I BC]	 (42)

is a real, square (nxn) matrix. The scalar cj is to be chosen

such that N(p) (41) has all its eigenvalues inside the unit

circle. A theorem in .Jury (1974) provides the necessary Pnd

sufficient conditions for stability for the system (41,42). The

proper value of the scalar p can be calculated from these con-

ditions. Again, as mentioned before, p can be determined for

each interval or, prior to the identification test, in a very

simple way, avciding cumbersome computations.

L

4

4

4

n

0

I
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Applying either the Lyapunov otat}.ility appr-)a-:h or the stability

criterion for the difference eqn. (41), we have been Pbla to oF..aii,

an algorithm which: (1) is stable, (2) provides high accurate

identification, and (3) rapidly tracks changing parameters.

7. Computational results

In order to illustrate the utilization of the recursive algorithm

and the results which have been obtained, although taking into

account the lack of space, two examples among other cases studied,

will be presented.

Example 1:

The identification and tracking of two unknown parameterb in

a first order, nonlinear system:

x+ax+bx3= u(t)

y	 x + v	 (43)

with:

x(o) - 0.5	 11
nom	 nom

- 0.4 	h	 = 0.2	 (43)

Although this is a relatively simple case, the purpose is to

allow the reader to better evaluate the utilization of our algorithm.

Twelve different cases were analyzed, including the use of various

inputs and various combinations of variable parameters. We identi-

fied a and b assuming that:
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1. both a	 and b	 are unknown, but constant parameters.
nom	 nom

2. anom 
varies, but bnom remains constant.

3. a
nom	 nom

is constant but h	 changes.

4. both anom and bnom are changing, simultaneously.

In each case the identification was performed with three different

input functions:	 (1) u(t) - 2.0 (step); (2) u(t) - 2 + sin t;

and (3) u(t) = 2 + n(t), n(t) being a white, Gaussian noise input

with zero mean and covariance 0.4. The covariance of the output

noise was 0.04.

The identification period was 20 sec (real time). The results

obtained were excellent from all points of view: (1) convergence,

(2) accutacy of unbiased estimates, (3) tracking and, (4) insensi-

tivity to initial guesses for a and b.

in figure 3, 3s a:: illustration, the recursive identification

and tracking of h is shown for the case where anom is constant

but bnom changes and u(t) = 2 + sin t. Note the simultaneous

identification of the noise covariance R1(K).

Example 2

The recursive (on-line) identification (and tracking) of the

stability derivatives of the longitudinal dynamics typical of

aircraft. In this cae.e, the nominal system is the third-order

linear system, represented b y the transfer function:

6(S)	 2.857(S + 0.4)	
(44)

6(S) s S(S2 + 0.685S + 0.53)

i
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where 6(t) is the aircraft's pitch angle (deg); d(t) is the
I

elevator angle (deg); the longitudinal natural frequency is

w  - 0.73 rad/sec, .ad the damping ratio is f, - 0.47. In state

variables notation, similar to the notation of (7) and (8), we have:

6 - q	 (45a)

q = m  y + MWUa + Md d e	(45h)
e

Zd

a = q + Zwa + Ue • d e 	 (450

We note that XT (t) 0 16, q, aj is the estate vector for this

example. The numerical values of the coefficients are: U = 215 ft/sec,

M	 = 0.2778, ?.w	- 0.4075, Ma - -2.857, Mw - 0.0019, and
g nom	 nom	 e

Z6 - -13.74.
e

For identification purposes, one measures the pitch rate q with

a rate gyro and the angle of attack a with an angle of attack

sensor (vane). Both the rate gyro and the vane havo measurement

noise assumed to be a Gaussian white noise with zero mean and

covariances of 0.1 and 0.2, respectively.

The identification interval was 22 sec with 100 discrete

intervals per second. For the sake of simplicity and clarity we

show only the case where M 	 and Z 	 are to be identified. Twelve

different combinations were analyzed:

1. both Mq and 7.w are unknown but constant

2.
M 
	 is tariable, Z 	 is constnnt
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3. M	 is constant, 7.	 ;s variable
q	 w

4. both M	
w

q and !,	 are varying simultaneously

Parameter identification and tracking was done for three

different inputs:

1. d(t) - - 1.0 deg. (step at t	 0)

2. d(t) - - 1.0 - 0.25 sin 0.3t - 0.1 sin 0.9t - 0.02 sin 1.5t

This input was considered as the optimal input for batch- identification

and calculated according to Mehra (1973).

3. d(t) - -1.0 + n(t)

n(t) being a white, zero mean, Gaussian noise with covariance

equal to 0.5.

Because it would be impractical to show all our results here,

only those obtained for rer-ursive identification and tracking in

three cases are shown in Figs. 4, 5, and 6. Inputs (1), (2), and (3)

above, each in conjunction with the combination that has M 	 and Z
w

varying simultaneously, make up the three cases. No sensible

differences are observed with respect to the various input functions.

It is worth remarking that the identified values of M 	 anti Z
w 

are

unbiased. Furthermore, the figures show how accurately the algorithm

identifies and tracks even the varying nominal parameter, after a

sho.t transient.

I
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8.	 Conclusions

An iterative recursive algorithm for parameter identification

and tracking, based on the maximum likelihood approach, was developed.

This algorithm allows sequential parameter and instrument noise

identification in both linear and nonlinear systems. The estimates

are shown to be unbiased and accurate and the results already

obtained in several cases shos, a good ability to track variations

of systems parameters. T*ae conditions for a stable-iterative

process are analyzed, leading to the choice of the scalar iterative

gain p.

Establishing bounds on fte value of p or determining;

relationships between it (or perhaps a gain matrix G) and the noise

covariance R. is a topic for further research. Also, it may be

possible, on-line, to generate input, or adequate probing sequences,

functions that would maximize identification accuracy, perhaps

exploiting the theory developed by Lopez-Toledo and Athans (1974)

for linear systems. Maximizing the information matrix may provide

necessary conditions for generating such inputs for the identifica-

tion, even of nonlinear systems.
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