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Recursive Identification and Tracking of Parameters for Linear and

Nonlinear Multivariable Systems
*
Menahem Sidar

ABSTRACT

The problem of identifying constant and variable parameters in
multi-input, multi-output, linear and nonlinear systems is considered,
using the maximum likelihood approach. An iterative algorithm,
leading to recursive identification and tracking of the unknown
parameters and the noise covariance matrix, is developed. Agile
tracking, and accurate and unbiased identified parameters are obcained.
N2cessary conditions for a globally, asymptotically stable identifi-
cation process are provided; the conditions proved to be useful and
efficient. Among different cases studied, the stability derivatives
of an aircraft were identified and some of the results are shown as

examples.

1. Introduction

It has been recognized during the last several years that on-line
recursive identification and tracking of unknown, time-varying
parameters in linear and nonlinear dynamical systems is of paramount
importance. Valuab’e algorithms that operate on recorded input-
output time histories over finite time intervals have been reported

for the batch identification of constant system parameters (Astrom

*NRC Senior Research Associate, Ames Research Center, NASA,
Moffett Field, California 94035
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and Eykhoff, 2971 and Mehra, 1974). The relatively few recursive
schemes repcrted to date (such as Hastings and Sage, 1969 and Gertler
and Banyasz, 1974, for examp®<) are applicable only to linear systems
and, even there, probably not to high order, multivariable linear
systems. Neither the batch nor the available recursive algorithns
can be used in many problems of aeronautical interest. For examyle,
identification of aircraft en' ine parameters, of aircraft stability
and control derivatives in high angle-of-attack or accelerated
flight, of atmospheric perturbations that vary through the flight
regime—all require nonlinear or time-varying parameter tracking
capability.

This paper adopts the maximum likelihood approach to provide
a robust technique to satisfy the above aeronautical needs. An
on-line recursive algorithm i3 developed for the simultaneous
identification and tracking of unknown variable parameters. It
is shown that the resulting scheme satisfies several guidelines:
it provides and tracks unbiased estimated for multiparameter linea)
and nonlinear systems; it is computationally simple; and, it is
usable on line.

After formulating the identification problem in section 2,
the estimation criterion and the identification scheme are selected

in section 3. Pecause our main goal is to devel ‘' an on-line

identification algorithm, a recursive identification algorithm
based on the maximization of the likelihood function is developed
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in section 4. The algorithm makes use of certain sensitivity
functions for the parameterized system. Section 5 shows how the
sensitivity functions are generated and how to compute the sensi-
tivity matsix. This matrix provides information that is also
useful with respect to the system's identifiability. In order to
provide necessary stability requirements for tne recursive algoritim,
convergency conditions are obtained in section 6, by the application
of Lyapunov's second method and of a stability theorem concerning
discrete-time dynamic systen .

Two examples are given and results showing the identification
and tracking carabilities of the recursive algorithm are discussed

in section 7.

2. Tldentification problem formulation
The basic problem we deal with here is the recursive identifi-
catior of a set of (m) unknown parameters p = {pl.pz. £ & o pm]T

of the »9llowing (linear or nonlinear) dynamical system:
x=f [x, p» u(t)] (1)

where x = [xl. Xos + + ey xnlr is the n-dimensional state vector,
representing the solution of the set of first order differential
equations (1) for given: (i) initial conditions x (t=0) = xo;
and (i1) (r) control functions gh(t). ¥ L. % i ool

We are also tacitly assuming in the sequel that a solution vector
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g(t)c!n exists, is unique, and is stable. The existence of all
the derivatives attlaxo and afllapj. fovall 4, 0 ® V555 ag B
and jJ =1, .. ., m 1is also assumed.

Since in most applications there is no direct way to measure
all of the state vector components, the set of measured (or observed)

data available for identification purposes, is given by:
y=Cx+v (2)

where y 1s the measured output (qxl) vector, C 1is the measurement
matrix (qxn), and v(t) 1s a (qxl) vector representing the inevi-
table measurement noise.

With respect to v, the following two assumptions are made.
First, the meccurement noise v(i) 1is an additive, Gaussian, white

noise process, v(t) L x(t), with zero mean value:
Elv(t)} = 0 (3)

At least for the length of th2 identification experiment T, this
condition is considered true on an ensemble and time-average basis.

Second, the covariance of the noise v(t) is given by:
E vy (-0 =R8(e-0) ,  ¥e,ref0,1) (%)

This covariance is defined rather in a generalized, derived-

martingale sense, R being finite. We suppose in the sequel that

o

R, is unknown ani is to be found during the identification process.
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The problem, then, is to use the (q) measured output functions
and the (r) known and measured control functions to identify and
track uniquely and with an acceptable accuracy, the unknown,
possibly time-varying, elements of the parameter vector p =
(pl. o 85 p-).

The present state of the art makes it feaaible to develop
the identification algorithm in a discrete time version, since
both the data and data processing are available in a discrete
form, so that appropriate digital computers can be use. for imple-
mintation of the recursive parameter identification. Therefore,
the discrete versions of the controls, the state vector, the
output vector, and the parameter vector are described in this
paper as a sequence of discrete numbers, for all 1iec[0, N], NA T/AT,

AT being the basic time increment:

u() = [u (1), u, (), + .« .y u ()]

T

x(1) = [x, (1), x,(1), + « +, x_(1)]
1 2 W W, 1A

y(i) = [yl(i)o Yz(i)' o 0 ey yq(i)]

p() = [p (1), py(), + .« ., p (D]

Similarly, we describe the measurement noise, as a random,
zero mean, independent Gaussian sequence, with:
E{v(1)} = 0
(6)

E !(1)!?(1) = R.§ (6,, - Kronecker's delta function)
17kj ij

for all i,je[0, N], as stated before in eqns. (3) and (4).
o=




It is appropriate to remark at this point, that the identification
technique presented here can be easily extended, with slight modifi-
cations, for the case when v(i) 1s a ,andom correlated Gaussian
sequence, that is, a colored measurement nc.se with given correlation
functions. For clarity of presentation and to avoid cumbersome
notations we prefer to treat throughout this paper only the uncor-
related anJ independent Gaussian measurement noise case.

With regard to the model assumed in eqns. (1) and (2), we
should mention here that this model is by no means the must general
one (see Mehra, 1970), but we deliberately adopted 1. for the sake
of conciseness and simplicity of notation. Nevertheless, the
present algorithm s compatible, with slight modifications, with
the whole group of models for aircraft parameter identification,
stability and control derivatives, as discussed in Mehra (1970)
and in Stepner and Mehra (1973), including the case when process

noise may exist (Wingrove, 1974).

3. Parameter estimation criteria and identification scheme

Prior to the development of the recursive identification
algorithm we have to restate in this paragraph our main objective
and the rationale adopted for this study. There are several
possibilities for the choice of the topological scheme of the
identification, each of those schemes having certain merits and

inherent disadvantages. Discussions of these topics have appeared
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in the technical literature, such as in Astrom and Eykhoff (1974),
1EEE (1974), and Landau (1974). Although the work of Astrém and
Eykh~ff (1974) is probably one of the most objective and comprehensive,
tne other references are also excellent and up to date. Therefore,
we will try to avold unnecessary repetition and address ourselves
to the main points of the rationale, those relevant to the sequel.

The output error method was adopted for the development of
our identificacior. algorithm because, taking into account the
existence of t. . measurement noise, our main objective was to
obtain unbiased estimates for the identified parameters. Equation
error methods are known to produce biased estimates in the same
case. Moreover, the algorithm has to be able to cope with the
problem of the ideutification of biases (that possibly exist)
in the measurement instrumentation. The output error method can
deal successfully with this problem also.

It is unfortunately true that in adopting the output error
scheme one has to deal with essentially a nonlinear iterative
algorithm procedure. This fact is at the expense of the output
error scheme, since in the equation error method the unknown
parameters enter the dynamical identification equations in a
linear fashion, so that the computational problem is, at least in
principle, simple to deal with. Nevertheless, remembering .hat the
original aim was to handle noisy nonlinear system identification
problems with, eventually, process noise additive inputs, the

e




output error does not necessarily represent a prohibitive penalty
from the computational point of view. As mentioned before, after
judging the appropriate alternatives the output error method was
finally adopted.

With respect to the identification criterion, our main
objectives were: (1) to choose a mathematically tractable criter-
ion so that the recursive algorithm would be easy to implement;

(2) to obtain linear dependence between the parameter variations
and the output error vector; (3) to generate the covariance matrix
for the measurement noise as a by-product of the identification
procedure, in order to check the robustness, the sensitivity, and
the convergence properties of the identification process; and (4)
to have a test for identifiability.

Checking the different criteria, which were potentially able
to correspcnd more or less to the above rationale, we found the
maximum likilihood function as the best choice of criterion (Astrom
and Eykhoff, 1971, Mehra, 1970 and Kashyap, 1970) because: (1)
maximization of the likelihood estimation function leads to
unbiased, consistent, and minimum variance estimates as asymptotic,
limiting values, under fairly mild conditions; (2) maximization
of the likelihood function leads to the evaluation of the covariance
matrix for the measurement noise; and (3) the change in the
parameter vector is linearly related to the output error vector.
Moreover, the recursive-type version of the identification algorithm
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is easily obtained from the batch type maximum likelihood estimation
(m.l.e) algorithm. Thu m.l.e. may provide the co.ariance matrix
for the identified parameters, indicat.ng the correlation among
them. It may also furnish a useful test and criterion identifi-
ability. The m.l.e. criterion for recursive identification was
adopted also by other authors (such as in Kashyap, 1970, Gertler
and Banyasz, 1974 and Xogers and Steiglitz, 1967) but, as mentioned
before, only for linear s’ items.

The conceptual diagram for the system identification is shown
in figure 1, which uses the following notation:

1. For the (real) nominal, dynamical system, whose parameters
are to be identified, we use, instead of eqns. (1) and (2), the

equations:

X(n) b 4 !(n)- E(n)(t) y u(t) (7a)

Vi) " C %@ * ¥ )

E(n)(t) being the nominal values of the (unknown) parameters.
2. For the adjustable model, for a certain value p(t) of
the parameter vector, the appropriate set of equations governing

the system's model would be denoted by:

;_t = f[x, p(t), u(t)] (7b)

y=Cx (8b)




x(t) and y(t) being the best available model state and model
output, respectively. We assume that the exact value of gfn)(O)

is unknown. The output error is defined by:

ne) &y () -y
- C.u(n)(t) +v - y(t) (9

As explained before, being interested in the discrete-form
identification algorithm, and as a preparatory step toward the
recursive version of this algorithm, we will proceed further with
the batched-type formulation of the identification problem in
discrete version. Hence, for every sampling instant, we obtain

the output error:
n(i) = ¢C 1(n)(1) +v(l) - y(1), ic[0, N] (10)

which can be identified as an innovations sequence in the sense
defined by Gevers and Kailath (1973). It is well known that as
the sampling rate increases, the probability density distribution
function of the innovations sequences, n(i) tends to a Gaussian
p.d. distribution (Kailath, 1969).

Making use of the likelihood function approach, one has to
find, that is, identify, the best estimate of p, namely p*,
based on the measured output sequence !FA [y), . . ., y(k)].
The maximum likelihood estimate of p 1is obtained by the maximiza-

tion of the conditional probability of !F. given p:
==




p* - |2t ! max pr (}klg)l (11)
B

Applying, successively, the Bayes chain rule, one obtains:

k
max pr (!Flg) =max { 1 pr II(1)|II-1»BI (12)
R p |11

As a matter of convenience, let us now define [ln pr (Ik|p)]
as the likelihoo| functiru and, since the logarithm function is
monotonic, we can write instead of eqn. (12):

k - 1-1
- lln pr(Y |p)| = max { I 1n pr[x(i)lx .BI] (13)

P P i=]

Assuming that x(0) is normaily distributed around g(n)(O). and

based on the hypothesis made in eqn. (6), we infer that pr[z(i)!!i-l.p]
will also be normal and, consequently, described by second order
statistics. Therefore, this quantity can be uniquely determined

by computing the mean value:
ey ¥™e] avaln (1)
and the covariance matrix:
E([y(1) - y(|1-D)](y(1) - yd!1-1)17) 2 rR(1]1-1) (15)

the quantity v(i)Aly(i) - i(i]i-l)] being the "new information"
brought up by y(1i).
Taking into account eqns. (14) and (15), together with eqn.

(13), we finally obtaia:
i




p* = {p* : max L(p,R)) (16a)

BsR
where
k
LR = -3 £ VORI A|1-Dy) + 1a[R4]1-D|  @6b)
1=1
and:

max L(p,R) = L(p*,R)

psR
In eqn. (16b), |R(1|i-1)| is the determinant of the symmetric
covariance matrix R(i|i-1) —to be written for brevity as R(i).

It is obvious from the nature of eqns. (16), that L(p,R) is

not explicit in p or R and hence it is not possible to determine
directly the value of the vector p#*, unless a proper iterative
naximization procedure is used. In order to do that, let us
assume that we are generating a trajectory E(T) corresponding to
a certain value of the parameter vector R(y)? considered as tae
best value known by us at this stage, and the nominal control wu(t).

In cthis case we infer that, n(i) and v(i) are equivalent:

Yy being the current best estimate of L(n)* The likelihood

function then is:

=12



Legyy R \o-d g LT n@ + talr, @l a8
Reyy e 7 8 S Ve Y %
Suppose now that being at the stage (y), we ask for an improved

- - + ’
value of the parameter vecto™ P 4, Ry) Ag(y) (Ag(y) being
a small perturbation) in order to maximize the likelihood function.
Accordingly, a new trajectory 5(Y+1) is generated, corresponding

to the new parameter vector 2(Y+1)(t)' 1(Y+1) being close to

g(y)(t) in a first order closeness sense. Let us now define:

Ax(2) & X14q)(8) = Xyy () = Sy (8 = LRy 1

assuming that the small tra‘fectory deviation Ax(t) can be repre-
sented as a linear transformation with respect to AE(Y)' As in

eqn. (17) we can write the following:

Yoyrr) D = Ly @ = L) O

¢ ;{_(n)(i) 1 Y-(Y)(i) = C8(y) (DAR(y)

= (1) - C8.y ()2, (20)

We will call the (nxm) matrix S(Y)' the sensitivity matrix,
in the sense defined by Sidar (1968) and Larson (1968) and we will
show in the sequel how this matrix is computed.

The vaiue of the likelihood function is actually a function of
Ap and R:

=19%=
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L(p + Ap,R) = m”n(i) - €8 (Dap, )] R (1)[:1(1)

N CS(Y)(l)AE(Y)l + mlll(i)l' (21)

In order to maximize this function with respect to Ap and
R, we shall calculate the partial derivatives of L(p,R) with
respect to the vector Ap and with respect to the matrix R(1i).
Setting those derivatives equal to zero, one obtains, after a few
algebraic manipulations, the following nece:sary conditions for
maximization of the likelihood function:
1-1'5 e wes ) 5% " 2 s'(c'R (Dn(i)l (22)
and

k .

L R(1) = ”g(n - CS(i)A2{ )”n(i) cs(1)opg )] | o
i=1 i=1

Those two coupled equations allow us, in principle, to
establish a batch-iterative procedure, in order to compute Agzy)
and ﬁ(i) (Grove, Bowles, and Mayhew, 1972 and Aubrun, 1971).
Computationally, this can be done only by assuming some eimplifica-
tions as did Gertler and Banyasz (1974) and Grove, Bowles, and
Mayhew (1972); otherwise one has to deal with very laborious
manipulations, including some intermediate iterative algorithms.

Since we are not interested here in obtaining an explicit form

alh=



for the identification algorithm in the batch-formulated case, we
will proceed further, in order to obtain the recursive version of

the maximum likelihood identification algorithm.

4, The recursive identification algorithm

In this section, the recursive version of the identification
algorithm is derived from the previous necessary conditions (22, 23).
In particular, the optimal parameter vector increment would be
obtained from ¢qn. (22) and we shall assume in th: sequel that:
k >> 1 and that the sampling rate is high ~.ough, that is, AT
is small in comparison with the process dynamics. From eqn. (22),
defining AEk A AB{Y)-"E note that for the interval [0,k] one has:

k-1

7 9 Ta-1 T Ta=-1
T IS (1)C'R “(1)Cs(i)f{Ap* + |S (k)C'R " (k)CS(k) | Ap*
Z |azg + | | 2oy

k-1
- 5 [ST(i)CTﬁ-l(i)ﬂ(i)] + [sT(k)c"ﬁ'I(k)g(k)] (24a)
1=1

Since eqn. (22) is the m.l.e. necessary condition, valid for all

k, it certainly holds as well for the interval [0,k-1], so that:

k-1 - k-1 o
z [s"a "R wesw|app , = Z [ST(i)CTR Lanw| 24b)
i=1 i=1

To establish a recursive algorithm we ask for the following

condition:

-



\ 52:_1 for [0,k-1]
AE; -
' spy  for [k-1,k] (25)

Conditions (25) and eqn. (24b) imply that (24a) has tne form:

k-1 " s
z |s"ei wes ) apg_, + [sTaocR docs o |epg
{=1

k-1 =il .
- £ [Tt wesw]agg, + [sTaocR ™ aondo) 2se)
i=1

From (24c) we obtain the change égﬁ(k) in p(k) for the
interval [k-1,k] needed to identify and perhaps track the

parameter vector:

py = lsT<k)cTﬁ'1(u)cs(k>]'1 -|s‘(k)cTﬁ"(k> n(k) (26)

or, in a recursive form, the following identification/tracking

algorithm is obtained:
p(k) = p(k-1) + (a1" (B0 () (27)
where:
(B] = (B()] & sTaCTR™ (k)
is an (mxq) matrix and:

[A] = [AGK)] & STCRCTR T (k)es (k)

- an (mxn) matrix, is the incremental Fisher information matrix for

the unknown parameter vector. -16-



The inverse covariance matrix i-l(k) can not be obtained
directly from eqn. (23). Therefore, we will first derive a
recursive equation for i(k). From (23), we no*e:

k k-l -

£ RA) = I R + nonT (28a)
i=1 1=1
: : K 4
Defining the matrix R (k) A L R(1), we write, from (28a):
1=1
KR (K) = (k=D)R_(k-1) + n(i)n(i)" (28b)
and finally:
R () = 5L R (k=1) + £ n(0n" (0 (28¢)

This recursive equation 1is of utmost interest because in the steady
state (k >> 1) of the recursive id-ntification, assuming satis-
factory parameter tracking, it allows us to identify the covariances
of the instrumentation noises. That is so because for large enough
values of k, we have already obtained a good estimate for the
parameter p which is very close to B(n)* %° that:

2im ﬁo(k) = R(k) = R

k>>1 1

(see eqn. (18))

In all the cases we studied, this result was verified, a verification
that represents by itself a good test of and criterion for the
acciracy of the identification process.

wife
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Since eqn. (27) needs i-l(k). one is interested in the recu sive
equation of the inverse covariance matrix. This matrix can be
obtained either directly, by inversion of iotk) obtained from
the recursive algorithm (28c), or by making use of the matrix
inversim: lemma. Assuming steady state conditions, we obtain the
following recursive algorithm:

R0 = 25 R e - —E 5 R D an R ) (29)

(k-1)

It is clear from eqn. (27) that the existence (for all k) of the
inverse of the incremental information matrix, [A(k)]-l. is
necessary for the implementation of the recursive identification
algorithm. The computation of [Mk)]-1 is by itself an excellent
test for identifiability. Its existence constitutes a good
criterion for detection ill-posed identification problems (see
Aubrun, 1971 and Glover, 1973). We therefore assume from now on
that the inverse matrix [A(k)]—l exists, such that the identifiability
conditions are met.

Note that there is a formal similarity between (27) and other
linear least-square gradient-type iterative algorithms, although
our algurithms (27) and (29) are different and able to handle non-
linear systems in recursive identification problems.

For the start-up procedure of the recursive algorithm, we are

assuming that a priori estimates p(0) of the parameters exist,

-18-



obtaired from early measurements, or from such experiments as
wind tunnel mneas ~ements in the case of stability and control
derivatives for ai: raft. Beginning with those initial values,
the following sequence of computations is done for each interval
[k=1,k]:

1. y(n)(k) is obtained either directly from real experiments
(on-1ine or off-line) or, in the case of simulation studies, from
the integration of the differential equations of the nominal
systems (7a and 8a),

2. in order to carry out the computation of p(k), the
computation of S(k) 1is necessary, following the procedure shown
in the next section,

3. y(k) 1is calculated from eqns. (7b and 8b), the value
of the parameter vector being p(k-1). The vector n(k) is
calculated from (10) and is used in eqns. (27,29) in order to
compute the new value of the parameter vector p(k).

4. p(k) 1is calculated from eqns. (27) and (29), which are
the basic recursive equations for the parameter identification and
tracking, with p(0) as the initial value (the best available
guess on an a priori knowledge basis). As will be shown later,
convergence of the identification algorithm can be guaranteed
under the hypothesis that p(0) 1is close enough to p* (although

the convergence region in the parameter space is quite large).




The schematic flow diagram of the computations necessary for
implementation of the recursive identification algorithm is shown
in figure 2.

From eqn. (26), it is easy to prove that for k>>1 and given
i(n(ki] = 0, one obtains: ![dp:] = (0. This result shows that the
pa’ ameter vector p(k), identified by the algorithm (26), is
unbiased. Furthermore, as we mentioned before, one observed from
eqn. (28c) that the iterated covariance matrix ﬁ(k) tends to the
noise covariance matrix Ri as k 1increases. Those are two
valuable results obtained as a direct consequence of using the

maximum likelihood estimation approach.

5. The sensitivity matrix

As we noted before, use of the recursive algorithm (27)
requires the computation of the sensitivity matrix S(t). The
(n.m) elements of S(t), the sensitivity functions axilapj.
v i=1, . . ., n and j=1, . . ., m, are by themselves solutions of
(nxm) differential equations. Those differential equations are
obtained from the system's dynamic equations (7b), assuming the
current value of the parameter vector by taking the derivatives of

the equations with respect to each parameter pj:

dx
{
3( dt) n afi 3xB afi
3 A B kel e (30)
Py g=1 °%g Py 9Py




Since eqn. (30) deals with a combined limiting process with
respect to dt and Bpj (both tend to zero), and since we already
assumed the continuiiv of the solutions with respect to p and ¢,
we may invert the order of differentation (see Sidar, 1968, Larson,

1968), obtaining:

ax n af ax af
E"E s_i e B 5.._1 . 5_9. + 5._!: (31)
Py o1 g s s

Denoting auilapj A 8,y as the sensitivity function, we have:

" n 3!1 bfi
8,.° L =8, .+ (32)
ij g=1 axB B apj
or in a compact matrix form:
S(t) = F 8 + ., (33)

where:

lllllz.....ll.

sa | (34)

.nl .nz . . LI .MJ

Fx' the syscem's Jacobian (for the current value of p) and Fp,

are defined below:

il




by LN My
3:1 an ap1 ap-
LAl : roal . (35)
a‘ - - - . a' 3p ap
L1 " J(nxn) Rt "J (nxm)

Therefore, to obtain the matrix S(i) it is necessary to
integrate (n.m) additional differential equations, an operation
that demands a certain computing effort, but does not represent a
difficult task for a high speed digital computer. GCupta and
Mehra (1974) and Denery (1971a) have shown that, for linear systems,
some savings in the computational effort of solving eqns. (33), are
possible.

The initial conditions for the integration of the differential

system (33) are s, = 0.

1]

6. Conditions for convergence

The best available policy of changing p'k-1) in order to
track, in an optimal way, the trajectory i(n)(k) and the measured
output vector y(k), is given by applying the recursive algorithm
(27). In the parameter space pm. this is equivalent to the choice
of the best direction in order to converge sequentially to g(n)(t).
The size of the step ggk, in the optimal direction, has to be
chosen in a way such that convergence can be guaranteed. That
means that the trajectory tracking error (discussed below) has to
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be, at lea~*, a non-increasing function. The fundamental problem

of choosing the optimal step in nonlinear programming iterative
schemes has been widely treated in the literature (see, for instance,
Luenberger, 1972, Bard, 1970, and Mehra and Gupta, 1974) and we

will not treat it again here.

We shall rather present a specific criterion for convergence
based on Lyapunov's second method. Somewhat similar results have
also been obtained by us, as shown later, by developing an alterna-
tive criterion based on the location of L"e eigenvalues of the
output vector tracking difference equation. A successful applica-
tion of Lyapunov's direct method in order to obtain stable adaptive
schemes for system identification is due tu Narendra ar | Kudva
(1974) . Mendel (1968) studied the stability properties of a
parameter vector difference equation by applving Lyapunov stability
theory Here we deal with the stability and convergence properties
of the state vector tracking error difference equation. The sta-
bilit; study of this tracking error sequence by the means of Lyapunov's
method reveals it to be a very valuable tool for choosing the

scalar p(k) 1in the modified identification algorithm:
p(K) = p(k=-1) + p (k) [AK)] ™ [B(K) In(k) (36)
Let us define the following positive definite function:

v, = 6x (k) &x(k) (37)
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where:

x0) fx oy (0 = x(k)

as a possible Lyapunov function. For Vk to be a Lyapunov function

for the recursive iterative algorithm, the necessary condition is:
oV, & 6xT(k#1) + Bx(kbl) - 8x" (K)Ex(K) < 0 (38)

The quantity V., can be easily calculated from (7,8,9, and 36).

2

k
By neglecting higher-order infinitesimal terms containing AT

(as AT tends to zero), and assuming a noise-free case, we finally

obtain:

&V, = = AT 6x" (k) M(p) 6x(K) (39)

with M(p) = P + pQ, P and Q being two symmetric (nxn) matrices:
PAF +F T (40a)
X X

QAF, A™! e + Irp M nclT (40b)
The proper choice of the iterative gain p, hus to guarantee
that M(p) 1s a positive definite matrix, such that Vk is indeed
a Lyapunov function for the identification algorithm and the
iterative process is globally asympotically stable. Making use of
Sylvester's Theorem, on positive definitness test, the choce of p

and be made either c¢.. a per step basis, or globally prior to the

-




identification test. The second approach is much easier to apply
because it is based on an a priori data base, avolding unnecessary
additional computations.

The stability analysis is based on two assumptions: (1) we
are assuming fixed or slowly changing parameters and (2) as mentioned
earlier, zero output noise. The impact of the noilse covariance Rl
on p 1s presently under study by us, but is not discussed here.

As mentioned before, an alternative way to insure convergence
of the identification algorithm is by studying the stability of

the following difference equation, obtained from (7, 8, 9, and 36):
Sx(k+1) = [I - AT + N(p)] 8x(k) = N(p) &x(k) (%1)
where:
N() & [F + oF A7'BC) (42)

is a real, square (nxn) matrix. The scalar p 18 to be chosen
such that N(p) (41) has all its eigenvalues inside the unit
circle. A theorem in Jury (1974) provides the necessary sad
sufficient conditions for stability for the system (41,42). The
proper value of the scalar p can be calculated from these con-
ditions. Again, as mentioned before, p can be determined for
each interval or, prior to the identification test, in a very

simple way, avciding cumbersome computations.



Applying either the Lyapunov utahi)ity appronath or the stabilitry
criterion for the difference eqn. (41), we have been ~ble to oF.ain
an algorithm which: (1) is stable, (2) provides high accurate

identification, and (3) rapidly tracks changing paremeters.

7. Computational results

In order to illustrate the utilization of the recursive algorithm
and the results which have been obtained, aithough taking into
account the lack of space, two examples among other cases studied,
will be presented.
Example 1:

The identification and tracking of two unknown parameters in

a first order, nonlinear system:

3

x + ax + bx” = u(t)

y=x+v (43)

with:

X(O) - 0.5 » ‘l‘nm = 0.‘ » bnm - 002 (43)

Although this is a relatively simple case, the purpose is to
allow the reader to better evaluate the utilization of our algorithm.
Twelve different cases were analyzed, including the use of various
inputs and various combinations of variable parameters. We identi-
fied a and b assuming that:
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1. both a and bnnl are unknown, but constant parameters.

nom
- _ . varies, but bno- remains constant.
3.  — is constant but bnon changes.
4. both  F— and bno- are changing, simultaneously.

In each case the identification was performed with three different
input functions: (1) u(t) = 2.0 (step); (2) uf+; = 2 + sin t;

and (3) u{t) = 2 + n(t), n(t) being a white, Gaussian noise input
with zero mean and covariance 0.4. The covariance of the output
noise was 0.04.

The identification period was 20 sec (real time). The results
obtained were excellent from all points of view: (1) counvergence,
(2) accuracy of unbiased estimates, (3) tracking and, (4) insensi-
tivity to initial guesses for a and b.

In figure 3, as ac illustration, the recursive identification
and tracking of b 1s shown for the case where S is constant
but bnou changes and u(t) = 2 + sin t. Note the simultanecus
igcentification of the noise covariance Rl(K).

Example 2

The recursive (on-line) identification (and tracking) of the
stability derivatives of the longitudinal dynamics typical of
aircraft. In this case, the nominal system is the third-order
linear system, represented bv the transfer function:

6(S) _ __2.857(S + 0.4)
6(8)  g(s? + 0.6858 + 0.53)

(44)

Y
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where 6(t) 1is the aircraft's pitch angle (deg); 6(t) is the
elevator angle (deg); the longitudinal natural frequency is
_ 0.73 rad/sec, .ad the damping ratio is £ = 0.47. In state

variables notation, similar to the notation of (7) and (B), we have:

b = q (45a)
q= Mq g+ MUa + n5. 6‘ (45b)
. 26‘

a=q+ zwn + < de (45¢)

We note that xT(:) A [0, q, a] is the state vector for this
example. The numerical values of the coefficients are: U = 215 ft/sec,

Mq = 0.,2778, Zw = 0.4075, M, = -2.857, Hw = 0.0019, and

nom nom e
Z6 = -13.24.

For identification purposes, one measures the pitch rate q with
a rate gyro and the angle of attack o with an angle of attack
sensor (vane). Both the rate gyro and the vane hav: measurement
noise assumed to be a Gaussian white noise with zero mean and
covariances of 0.1 and 0.2, respectively.

The identification interval was 22 sec with 100 discrete
intervals per second. For the sake of simplicity and clarity we
show only the case where Hq and Zw are to be identified. Twelve
different combinations were analyzed:

1. both Hq and zw are unknown but constant

2 Hq is variable, Zw is constnat

28~




3. "q is constant, Zv is variable

4. both Hq and z' are varying simultaneously

Parameter identification and tracking was done for three
different inputs:

1. &(t) = - 1.0 deg. (step at t = 0)

2. 6&(t) = -1.0 - 0.25 sin 0.3t - 0.1 sin 0.9t - 0.02 sin 1.5t

This input was considered as the optimal input for batch-identification

and calculated according to Mehra (1973).

3. 6(t) = -1.0 + n(t)
n(t) being a white, zero mean, Gaussian noise with covariance
equal to 0.5. 4

Because it would be impractical to show all our results here,
only those obtained for recursive identification and tracking in
three cases are shown in Figs. 4, 5, and 6. Inputs (1), (2), and (3)
above, each in conjunction with the combination that has M_ and Zw
varying simultaneously, make up the three cases. No sensible
differences are observed with respect to the various input functions.
It is worth remarking that the identified values of Hq and Zw are
unbiased. Furthermore, the figures show how accurately the algcrithm

identifies and tracks even the varying nominal parameter, after a

short transient.

-29-
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8. Conclusions

An iterative recursive algorithm for parameter identification
and tracking, based on the maximum likelihood approach, was developed.
This algorithm allows sequential parameter and instrument noise
identification in both linear and noniinear systems. The estimates
are shown to be unbiased and accurate and the results already
obtained in several cases shov a good ability to track variations
of systems parameters. Tue conditions for a stable-iterative
process are analyzed, leadiny to the choice of the scalar iterative
gain op.

Establishing bounds on the value of p or determining
relationships between it (or perhaps a gain matrix G) and the noise
covariance R, is a topic for further research. Also, it may be
possible, on-line, to generate input, cr adequate probing sequences,
functions that would maximize identification accuracy, perhaps
exploiting the theory developed by Lopez-Toledo and Athans (1974)
for linear systems. Maximizing the information matrix may provide
necessary conditions for generating such inputs for the identifica-

tion, even of nonlinear systems.
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CASE-10 LONGITUDINAL DYNAMICS F-4J
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Figure 4. Example 2: Identification of the stability derivatives
with input 46(t) = - 1.0.



CASE-II LONGITUDINAL DYNAMICS F-4J
0 —— NOMINAL PARAMETERS
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Figure 5. Example 2: Identification of the stability derivatives
with input 6(t) = - 1.0 - 0.25 sin 0.3t - 0.1 sin 0.9t
-0.02 sin 1.5t.




CASE-12 LONGITUDINAL DYNAMICS F-4J
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Figure 6. Example 2: Identification of the stability derivatives
with input 6(t) = - 1.0 + n(t).
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