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PREFACE

This report (Volume I of three volumes, with Volume II to be NASA CR-141743
and Volume III to be NASA CR-141744) partially documents the development of a com-
puter program (NATA) for calculating the flow in arc-heated wind tunnels and the
conditions on models tested in such reentry simulation facilities. The objective
was to provide a means for predicting and interpreting test conditions used in
the experimental evaluation of thermal protection materials for reentry vehicles
such as the Space Shuttle Orbiter. Much effort was expended to make the program
‘reliable and easily usable by engineers without great expertise in gas phase
chemical kinetics, gas transport properties, thermochemistry, and computer pro-—
gramming. The capabilities of NATA are summarized concisely in the abstract,
and in somewhat more detail in the Introduction (Section 1). Comparisons with
available experimental data indicate that the results produced by the program
have a useful level of accuracy.
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MATHEMATICAL SYMBOLS

All mathematical symbols used in this report are defined in the text where
they are first used. In addition, the definitions of symbols used in several
different sections of the report are summarized below for convenience of
reference.

Latin Symbols

A, Effective area ratio, A /A%,

A, Effective cross sectional area of the inviscid flow at a given axial
position

Algx Effective cross sectional area of the inviscid flow at the sonic point

3; Effective area ratio in the non~equilibrium solution by the inverse
method

Ag Geometric area ratio, AL/A%g

Aé Geometric cross sectional area of a nozzle or channel at a given axial
position

Aéo Geometric cross sectional area at the throat

A Constant coefficient in formula for forward reaction rate constant

for the i reaction

Ay Inverse matrix of the matrix Eﬁ

c Number of chemical elements present in the gas mixture

p Specifib heat of the gas at constant pressure

pj Specific heat for the jm species at constant pressure

CP Molar heat capacity of Fhe gas at constant pressure

Cpe Molar heat capacity for the electromns

C@j Molar heat capacity for the jm species at constant pressure

D, Atom-molecule binary diffusion coefficient

E Molar internal energy

E,; Activation -energy in formula for forward reaction rate comnstant for
' the i reaction :

Ey Energy of electronic exéitation for the k™ state in a molecule

-



MATHEMATICAL SYMBOLS (Cont'd)

Degeneracy of the kth electronic
Specific enthalpy

Reference enthalpy

Recovery enthalpy

Specific stagnation enthalpy

Molar enthalpy

state in a molecule

Molar enthalpy for the fh species

Heat of formation at standard pressure (1 atm) for the jd‘ species

Forward rate constant for the ih
Reverse rate constant for the i
Equilibrium thermal conductivity
Chemically frozen thermal conduct
Equilibrium constant for the i
Mass flux, pu

Electron mass

Mass of a molecule of the i spe
Symbol for a chemical species

Concentration of the jth

species
Number of chemical species

Number of free electrons per unit

Number of occurrences of the ith
in the forward direction

Lewis number,DampcP/K
Nusselt number,q  x c, / K(h-hy)
Prandtl number,cp41/K

Reynolds number, pux/u

-xii-

reaction

reaction

ivity

reaction

cies

in moles/cm3

volume

reaction per unit volume per unit time



MATHEMATTICAL SYMBOLS (Cont'd)

Ny Number of occurrences of the i reaction per unit volume per unit time
in the reverse direction

N, Avogadro's number, 6.023 x 1023 mole~l

p Pressure

pi Partial pressure of the jdl species

Po Reservoir pressure

P, Rate factor in equation for rate of change of the concentration of a
species due to the i reaction, (pﬂ-l/u)kﬁ E yk%k

9 Rate of energy addition to the electron gas per unit volume

' a4 Mean radiative energy loss from the gas iJ1N0 occurrences of the if

reaction in the forward direction

% Radiative power loss from the gas per unit volume

9y Negative of the mean radiative energy loss from the gas in N; occurrences
of the i*" reaction in the reverse direction

q Stagnation point heat flux

q Heat flux to the wall

Q Number of gram—atoms of the k" element per mole of the cold gas mixture

r Number of reactions in the reaction system |

R, Area rescaling factor in non-equilibrium solution

Ry Reynolds analogy factor

Ry Universal gas constant

s Specific entropy

so Specific entropy in the reservoir

S Molar entropy

si Molar entropy of the fh species

%0 Molar entropy of the fh species at the standard pressure (1 atm)

T Absolute temperature
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MATHEMATICAL SYMBOLS (Cont'd)

Ta Absolute electron temperature

To Reservoir temperature

u Flow velocity

v Molar volume

w Mean molecular weight of gas

v Molecular weight of the ;™ species

x Axial coordinate in the nozzle or channel

xg Axial coordinate at ;he start of the boundary layer
' X. Mole fraction of the jd‘ species

]
Greek Symbols

LTI Number of atoms of the fh chemical element in a molecule of the i
species

Qi Squate submatrix of %; for i =1 toc, j=1¢toc

B Zj:lgij

Bij Vi~ Y

y Specific heat ratio, ¢, /c,

Ye Elgctroﬁ concentration (moles/gm)

) n

Yh Heavy particle concentration, -2;237

7 Concentration of jth species (;oles/gm)

5 Followed by another symbol, represents the perturbation of the quantity
represented by that symbol

8* Boundary layer displacement thickness

BH Kronecker symbol, 1 for k = j, 0 otherwise

A Followed by another symbol, represents the change in the quantity repre—

sented by that symbol over a step in the flow solution
€ - Specific internal energy

€ Shock density ratio,‘pllp2
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MATHEMATICAL SYMBOLS (Cont'd)

Mean energy gained by the electron gas in N, occurrences of the i re-
action in the forward direction

Negative of the mean energy gained by the electron gas in N, occurrences
of the i" reaction in the reverse direction

Temperature exponent in formula for forward reaction rate constant for
the ith reaction

Boundary layer momentum thickness
Viscosity
Chemical potential for the jth species

Chemical potential of the fh species at the standard pressure (1 atm)

C
Z Yi-e,k
k=1
Matrix of coefficients for expressing the dependent specles in terms

of the ¢ independent species

Number of “molecules of the fh species on the reactant side of the ith
reaction

Number of molecules of the j species on the pr side of the ith
reaction

Density

Effective density in treatment of gas imperfections
Density in reservoir

Shear stress on wall

Departure-from-equilibrium factor in formula for rate of change of a

species concentration due to the fh reaction, 1—(pﬁg/Ki)1] ykﬁﬁk
k
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e Conditions in the flow external to the boundary layer

Stagnation conditions on a model

Wall conditions
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Sonic conditions
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THE NATA CODE ~ THEORY AND ANALYSIS

By W. L. Bade ‘and J. M. Yos
Avco Systems Division
Wilmington, Massachusetts

1. TINTRODUCTION

The NATA* code was developed by Avco Systems Division from 1968 through
1974, under the sponsorship of the NASA Johnson Space Center, to meet a need for
predicting and interpreting the flow conditions in electric-arc heated wind tun—
nels. Test facilities of this type are used at the Johnson Space Center, and
elsewhere, for evaluating thermal protection materials for reentry systems. The
present report documents the theory and analysis upon which the current version
of NATA is based. A user's manual and a programmer's manual for the code are to
be issued separately.

The earliest version of NATA was based upon a computer program developed at
Cornell Aeronautical Laboratory (CAL) (ref. 1). This CAL program performed cal-
culations of quasi-one-dimensional flow through a nozzle of specified geometry.
The flow was assumed to start from a state of thermochemical equilibrium at spe-
cified temperature and pressure in an upstream reservoir. The program included
options for flow solutions based on chemical equilibrium, frozen chemistry, and
chemical non-equilibrium with specified reaction rate constants. Boundary layer
effects were neglected. There was no provision for calculating conditions on
models immersed in the flow. The program used fixed-format input; i.e., the
numerical data were punched, without alphanumeric identifiers, in prescribed
fields of the input cards. The input was voluminous (100 to 200 cards per case),
as all of the gas species properties and reaction rate data had to be read in.
The output was in the form of non-dimensional ratios of the gas flow properties
to standard values.

During the development of NATA, the basic calculations of frozen, equilib-
rium, and non-equilibrium flow as coded in the CAL program have been retained
with only minor changes. Many new features have been added, including a laminar
boundary layer calculation, internal gas transport property calculations, options
for specifying the reservoir conditions by input of the total mass flow together
with the reservoir pressure or the stagnation enthalpy, and computations of the
heating and stresses on models immersed in the flow. 1In addition, a radical
revision of the input and ocutput arrangements has been carried out to make the
code easier to use. The fixed-format input of the CAL program has been replaced
by namelist input, in which only the variables whose values are to be changed
have to be read in. The control inputs are all preset to standard values which
are generally satisfactory. All species and reaction data for several standard
gas models, including argon-free air, are compiled into the program and can be
invoked by specifying a single input variable., Curvefits to the geometries of
several of the nozzles and channels used at NASA Johnson Space Center are also
included in the program. As a result of these changes, the number of input cards
required per case has been reduced to 4 to 8 (typically). The output has been

*Acronym for Non-equilibrium Arc Tunnel Analysis.



expanded to include additional quantities, such as the boundary layer properties,
and is now presented in dimensional form to allow direct comparison of the code
results with experimental data. Each output variable is labeled with an alpha-
numeric identifier. 1In addition, much effort has been expended to ensure that
NATA will almost always generate a successful solution when run with the standard
values of the control inputs. A major objective of these revisions was to make
the code usable by gas dynamicists who are not necessarily expert in thermo-
chemistry, transport property theory, chemical kinetics, or computer programming.

The remaining parts of this introduction outline the capabilities of NATA,
discuss its limitations, and describe the subsequent sections of the present
report.

1.1 Programming

NATA is a Fortran IV program consisting of a main program and 68 subroutines.
The source deck contains approximately 8500 cards. The program exists in two
versions, one for use on the IBM 360 system, the other for the Univac 1108. The
IBM 360 version is entirely in double precision, whereas the Univac version is a
single precision program with some double precision arrays and subroutines. One
version can be converted into the other by inserting or removing the cards which
type all floating-point variables as double precision in the IBM 360 version.

The IBM 360 version requires about 410K bytes of core storage, including
buffers. The Univac version is run on the 1108 using overlay, and fits into the
two-bank processors at NASA/JSC with about 2000 words of storage to spare.

1.2 Gas Models

NATA provides four options for specifying the species properties and re-
actions defining the gas model.

1.2.1 Standard Gas Models

S8ix compiled-in standard gas models are available in the code. One of these
is a model for argon-free air at low and moderate temperatures where NOt is the
only important ion species. Another is a high-temperature air model including
five atomic and molecular- ions. There are two planetary atmosphere models for
mixtures of 75 mole percent COp, 20 mole percent Ar, and 5 mole percent Nj.
Finally, there is an electronic non-equilibrium (two-temperature) model for argon
and one for helium. These rare~gas models include a non-equilibrium treatment
of electronic excited states. Any of these standard models can be selected by
input of a single index value.

1.2.2. Standard Gas Models with Input Mole Fractions
The elemental composition of the gas mixture is specified in terms of the

mole fractions of "cold species" which are stable at low temperature. For exam-
ple, the weight fractions of C, 0, N, and Ar in the planetary atmosphere models



are determined from the assumed mole fractions of CO2, N2, and Ar in the gas be-
fore it is heated. Optionally, these cold species mole fractions can be set in
the input without disturbing the standard species properties or the reaction sys-
tem. Thus, the standard models for air and the planetary atmosphere can easily
be applied to mixtures of the same cold species in different proportions.

1.2.3 User-Generated Gas Models with Standard
Species and Reactions

A gas model based upon the available, compiled-in species and reactioms,
but with a non-standard selection of species and reactions, can be set up in the
input. For example, some of the reactions can be deleted from a standard model
to assess their effect upon the solution of a particular case. Input of such a
non-standard gas model requires about 4 to 8 input cards, depending upon the
numbers of species and reactions included.

1.2.4 1Input of Species and Reaction Data
Finally, the basic data for species and reactions can be set in the input.
The data for standard species and reactions can be changed in part or in whole,

and new species and reactions can be introduced. About two input cards are re-
quired per new reaction, and about 3 to 4 cards per species.

1.3 Transport Properties

NATA includes a self-contained capability for computing the transport
properties of gas mixtures, based upon the temperature, pressure, and mole frac-
tions given by the equilibrium or non-equilibrium calculations of the flow solu-
tion. The transport collision cross sections for the standard species are
provided by compiled-in data. Collision cross section data can also be specified
in the input. The transport properties calculated are the viscosity, the chemi-
cally frozen Prandtl number, the atom-molecule Lewis number, and the eleectrical
conductivity. Theé viscosity and Prandtl number are used in the calculations of
the boundary layer on the nozzle wall and in calculations of stagnation-point
heating on models and of the heat transfer to wedge models, The Lewis number is
used in stagnation-point heat transfer calculations. The electrical conductivity
is not used in NATA, but is printed out.

1.4 Flow Geometry

The geometries of nozzles and channels are specified, in NATA, by means of
curvefits to their profiles. A profile is the curve of intersection of the
inner surface of a nozzle or channel with a symmetry plane. For an axisymmetric
nozzle, there is one such profile. For a rectangular channel, there are two
profiles. Each profile is represented as a sequence of straight lines and cir-
cular arcs, joined end-to—end with value and slope continuity. A separate
computer program (NOZFIT) is available for generating such curvefits from
nozzle design data.



If boundary layer displacement effects are neglected, the inviscid flow de-
pends only upon the ratio of the nozzle cross sectional area to the area at the
throat, not upon the shape of the cross section. However, the convergence or
divergence of streamlines in the boundary layer does depend upon the type of
nozzle geometry, and affects the rate of boundary layer growth. To take such
boundary layer effects into account, NATA contains explicit treatments of three
types of nozzle geometry: axisymmetric nozzles, two-dimensional nozzles, and
rectangular channels.

1.5 Reservoir Conditions

The flow is always assumed to start from a state of thermochemical equilib-
rium in an upstream reservoir. For a gas of given elemental composition, the
thermochemical state is a function of two variables, and its specification there~
fore requires two inputs. NATA provides three options for the input specification
of reservoir conditions.

1.5.1 Temperature and Pressure

The basic method is the one used in the original CAL program (ref. 1),
namely, direct input of the reservolr temperature and reservoir pressure. NATA
contains a subroutine for determining the equilibrium species mole fractions
from these data and the species thermochemical properties.

1.5.2 Pressure and Mass Flow

The upstream stagnation pressure can be measured easily in arc heated wind
tunnels in which the flow stagnates in a plenum chamber downstream of the arc
heater and upstream of the throat. However, the reservoir temperature is diffi-
cult to determine. For this reason, an option is provided to calculate the
reservoir conditions from data on the reservoir pressure and the total mass flow
(which is easily measured). When this option is used, the reservoir temperature
is estimated and the resulting total mass flow is calculated based on an equilib-
rium flow solution from the reservoir to the throat. An iteration is then
carried out to determine the reservoir temperature corresponding to the input
mass flow. If the boundary layer is to be included in the main flow solution, a
correction is made for the effect of the displacement thickness at the throat.

1.5.3 Mass Flow and Stagnation Enthalpy

Many arc heated wind tunnels lack an upstream stagnation region. In such
facilities upstream pressure measurements do not give the effective reservoir
pressure. To deal with such cases, NATA provides a third option in which the
reservoir conditions are determined from input data on the total mass flow and
the stagnation enthalpy. The mean stagnation enthalpy of the gas stream can be
calculated from measurements of the electrical power input, thermal losses to
the facility cooling system, and mass flow. In this option, the reservoir
temperature and pressure are calculated by a double iteration to match the input
mass flow and enthalpy values, assuming equilibrium flow from the reservoir to



the throat. If the boundary layer is included, a correction is made for the ef-
fect of the displacement thickness on the effective throat area.

1.6 Boundary Layer

The boundary layer in an arc heated wind tunnel can be either laminar or
turbulent. According to a correlation of available boundary layer transition
data, the layer is expected to remain laminar throughout the nozzle for most
operating conditions of the existing NASA/JSC arc heaters. NATA contains an ap-
proximate laminar boundary layer calculation based upon an integral method de-
vised by Cohen and Reshotko. The calculation includes the effects of the -
streamwise pressure gradient in the nozzle. The Cohen~Reshotko method utilizes
analytical curvefits to relations among non-dimensional boundary layer parameters,
based on similar boundary layer solutions. The curvefits employed in NATA in-
clude the dependence of the parameters upon the Prandtl number, the viscosity-
temperature index, and the hypersonic parameter. The boundary layer is assumed
to start at a specified position upstream of the nozzle throat, and is computed
step by step along with the inviscid flow solution. Beyond the throat, the in-
viscid flow is coupled with the boundary layer through the effect of the displace-
ment thickness on the effective area ratio. The coupled flow is stabilized with
the aid of a computational artifice. In the case of flow in a rectangular chan-
nel, two separate boundary layer solutions are computed, one for each pair of
channel faces. Besides determining the displacement effects on the inviscid
flow, the boundary layer solution yields predictions of the heat flux and shear
stress on the nozzle or channel wall,

1.7 Flow Solutions

NATA provides frozen, equilibrium, and non-equilibrium flow solutions.
These are the same flow options offered by the original CAL program (ref. 1) and
the methods used in generating the solutions are largely identical with those
used in the CAL program. In the frozen solution, the species mole fractions are
held constant at their reservoir values. This type of solution approximates the
actual non~equilibrium flow fairly well in cases with low reservoir pressure,
In the equilibrium solution, the gas is assumed to be in a state of local thermo-
chemical equilibrium at each point in the nozzle. The actual flow always departs
radically from equilibrium in the supersonic region downstream of the throat,
However, equilibrium flow is often a good approximation in the region upstream
of the throat and in the throat region.

The non-equilibrium solution is intended to model the actual flow as closely
as possible within the basic approximation of quasi-one-dimensionality. The
species concentrations are assumed to be governed by chemical rate equations.

The basic method of solution is numerical integration of these rate equations to-
gether with the differential equations formulating conservation of mass, momentum
and energy. However, it is found that the system of difference equations is sta-
ble only for extremely small step sizes when the flow is close to equilibrium.
Because the flow starts from a state of equilibrium in the reservoir, the numeri-
cal integration technique therefore cannot be used initially. Instead, the
solution is started by treating the non-equilibrium flow as a perturbed equili-
brium flow. The perturbation method is used until the departure from equilibrium



has become large enough to allow use of the numerical integration. Another
difficulty is that the sonic mass flux for the non-equilibrium solution is not
known until the solution has reached the sonic point. This problem is cir-
cumvented by using an inverse method upstream of the throat and for a short dis-
tance beyond the throat.

When a two-temperature electronic non-equilibrium model is used, the electron
temperature is one of the integration variables. In such cases, radiative energy
losses and energy transfer between the electrons and the heavy particles in the
gas are taken into account, and some of the electronic excited states may be
treated as separate species governed by rate equations and not necessarily in
equilibrium with the ground state. :

1.8 Model Conditions

A major objective of NATA is to provide calculations of test conditions on
models for comparison with experimental heat flux and pressure measurements.
The code provides model calculations of two types: stagnation point conditions
and conditions on blunt wedges.

1.8.1 Stagnation Point

The calculations of stagnation point model conditions begin with a normal
shock solution., The gas immediately behind the shock can be assumed to be fro-
zen (with mole fractions equal to those in the free stream ahead of the shock)
or in chemical ecuilibrium. Either or both of these types of solution can be
obtained in a given NATA run, regardless of whether the free stream solution is
frozen, equilibrium, or non~equilibrium. The conditions at a point on the stag-
nation streamline just outside the boundary layer on the model are then calcu-
lated. The pressure at this point is the stagnation pressure, which can be
compared with Pitot measurements. The stagnation point heat flux is then calcu-
lated using a modification of the Fay-Riddell formula. Heat flux calculations
are done for both hemispherical and flat-faced models, and for both an equilib-
rium and a frozen boundary layer. Effects of surface catalytic efficiency can
be included. The shock standoff distance is also calculated approximately.
These calculations of stagnation conditions on models are done independently for
the frozen shock and the equilibrium shock.

Calculations of stagnation point conditions are normally done for axisym-
metric models. -However, the calculations can be done, instead, for two-dimen—
sional models such as a cylinder with its axis normal to the direction of flow.

1.8.2 Wedge Models

The pressure and heat flux distributions on the flat surface of a blunt
wedge are calculated using a modification of the results of the Cheng-Kemp theory,
Effects of bluntness and the boundary layer displacement thickness are taken into
account. For a given model location in a particular NATA solution, wedge condi-
tions can be calculated for a series of input~gpecified leading edge radii and
wedge angles of attack.



1.9 Supplementary Program Functions

NATA contains several features designed to aid the user during the develop~
ment of new gas models and under other abnormal circumstances. These features
are not normally exercised during runs to produce flow solutions based on
standard gas models.

1.9.1 Equilibrium Gas Properties

The code contains an option to compute only the reservoir conditions, i.e.,
the equilibrium thermodynamic properties and mole fractions. This features al-
lows the user to determine the equilibrium equation of state of a gas mixture of
specified composition, based on a particular set of assumed species properties.
Normally, the transport properties in the reservoir are also computed. However,
the transport property calculations can be suppressed, if desired, to avoid in-
put of the required collision cross sections.

1.9.2 Species Thermal Properties

Another option produces tables of the free energy, enthalpy, specific heat,
and entropy as functions of temperature for each of the species in a gas model.
This feature provides, for example, a convenient means for testing proposed
thermo fits for the species, and allows direct comparison of the properties, as
computed by NATA, with other tabulations such as the JANAF tables.

1.9.3 Transport Cross Section Edits

A third option produces an edit of the steps in the transport cross section
calculation for all of the species in the gas model. This edit is a useful aid
to setting up or modifying cross section inputs for a gas model, In addition,
NATA can be made to produce a deck of punched cards containing the averaged
collision cross sections for all pairs of species in a gas model. In this form,
the data can be read and used by other computer programs.

1.9.4 Tape Output

NATA contains provisions for writing selected results of the flow, boundary
layer, and model calculations on a binary tape for subsequent processing by
other programs. An auxiliary program (NATA/PLOT) is available for producing cer-
tain types of plots of such data using SD-4060 or similar equipment.

1.9.5 Error Processing

When a large, multicase NATA job is run, one or more of the cases may fail
because of input errors, inadequacy of standard values for the control parameters,
or possible previously undetected coding errors. NATA contains numerous provi-
sions to aid the user in identifying the cause of trouble in case of code failure,
and to facilitate the rumning of large jobs in spite of the failure of some of



the cases. First, the program contains many validity checks designed to detect
errors before they cause the program to execute an operation which is not al-
lowed by the computer system, such as dividing by zero or calling a Fortran func-
tion with an illegal argument. Such an operation would lead to immediate
termination of the entire run. Second, when an error condition is detected, in
most cases NATA prints a diagnostic message to identify its nature. Third,
execution of the current case in the job is terminated. Fourth, a special sub-
routine is called to print out most of the data stored in common, together with
alphanumeric identifiers. The name of the subroutine in which the error was
detected is also printed. Finally, the program proceeds to read the input data
for the next case, and execution of the job continues. ’

1.10 Limitations

The calculations performed by NATA involve many approximations which limit
the code's accuracy and applicability. The basic approximation in the inviscid
flow solutions is that of quasi-one-dimensionality. &Each flow variable is as-
sumed to vary with the axial coordinate of the nozzle, but to be constant over
any nozzle cross section. Actual flows in arc heated wind tunnels always show
some radial non-uniformity. In some facilities, the non-uniformity is suffi-
ciently moderate that the quasi-one-dimensional description can be considered to
be a roughly valid and useful idealization. In others, the non-uniformity is
so severe that the usefulness of an analysis based on radially uniform flow ap~
pears doubtful.

The boundary layer calculations involve many approximations related to the
boundary layer starting condition, the method of solution, and the stabilization
of the coupled boundary layer/inviscid flow problem beyond the throat. Also of
course, the laminar boundary layer calculation is applicable only when the actual
boundary layer has not undergone transition.

It would be extremely difficult to carry through an error analysis for the
code by evaluating and combining the effects of all of the approximations used.
Such a calculation has not been attempted. Instead, results from the code have
been compared with experimental data from arc heater facilities in which the
radial non-uniformity is not very severe. It has been found that NATA predic-
tions of static pressure and stagnation pressure generally agree with the
measurements to within about 20 percent. Based on a limited number of compari-
sons, it appears that NATA predictions of heat flux to a channel wall or a wedge
model are too low by about 20 to 30 percent. WNATA results for stagnation point
heat transfer are roughly in agreement with experimental data for hemispherical
models, when allowance is made for surface catalytic efficiency and for low-
density effects which are not treated by the code.

1.11 Organization of Report

The remaining sections of this report document the theoretical relations
and mathematical analyses upon which the NATA code is based. Section 2 treats
the description of chemical species and chemical reactions. Section 3 deals
with the calculation of gas transport properties. Section 4 explains how the



geometry of the nozzle or channel is described, and how the boundary layer dis-
placement effect on the inviscid flow is formulated. Section 5 gives the
analytical basis of the boundary layer calculation. Section 6 discusses the
equilibrium and frozen inviscid flow calculations, and Section 7 the non-equilib-
rium flow. Finally, Section 8 treats the calculations of conditions on models.
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2., THERMODYNAMIC AND KINETIC MODELS

The treatment of chemical equilibrium and reaction kinetics in NATA is still
essentially the same as that in the Cornell Aeronautical Laboratory program
(ref. 1). Section 2.1 explains how the code describes chemical species and
formulates the conservation of chemical elements and electric charge. Section 2.2
discusses the calculation of thermal properties of species and Section 2.3 the
specification of chemical reaction rates. Simple models for vibrational non-
equilibrium and for imperfections in the gas equation of state are described in
Sections 2.4 and 2.5,

2.1 Elements and Chemical Species

The gas stream whose flow is computed by the NATA code can consist of up to
20 chemical species. The types of species normally treated are atoms (including,
in some instances, atoms in specific electronic excited states), atomic ions,
diatomic molecules and molecular ions, linear triatomic molecules or ions (such
as CO3), and the electron. The number of species included in a particular prob-
lem will be denoted by n. The gas composition is expressed, in different parts
of the calculation, in terms of either the mole fractions X; or the molar concen-
trations y; in units of moles of species j per gram of mixture. These quantities
are related by

X’ = Wyj (1)
in which W denotes the local mean molecular weight of the gas mixture in grams
per mole.

The number of chemical elements present in the gas is denoted by c., The
chemical formulas of the species are represented by a matrix «, whose general
element g;; is the number of atoms of the ith  element per molecule of the Fb
species, Thus, if the ith species is denoted by M; and the fh element by E.,
the chemical formula of the species may be represented by the equation !

M; = Z a; E; . (2)

=1

If ion species are present, the electron is included among the elements. In that
case, positive ions are represented as compounds containing a negative number of

electrons; for example, N,* is considered to be a compound Nje_j. With this con~
vention, conservation of electric charge during reactions becomes a special case

of conservation of the chemical elements.

NATA calculations of thermochemical equilibrium®* are carried out using a
technique in which the concentrations of the '"dependent species" are expressed
in terms of those of the "independent species" (or "components"), where the

*See Section 6.
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number of independent species is equal to the number of elements. The advantage
of this technique is that it reduces the number of equations, which must be solved
simultaneously to determine the equilibrium species mole fractions, from n toc.
For example, the high temperature model for air used in NATA contains 11 species
but only 3 elements (N, 0, and e ), so that the number of equations is reduced
from 11 to 3. ‘

The independent species or components must be chosen such that they are
linearly independent combinations of the chemical elements, and must be placed
at the beginning of the list of species for each gas model, To avoid computational
problems, they should be species which are stable at low temperatures (i.e., at
large expansion ratios downstream of the nozzle throat). However, if ion species
are included in the model, the electron should be one of the components, and should
be listed as species number 1. The ion species should all be placed at the end of
the list of species. This arrangement allows the code to drop the charged parti-
cles from the model for equilibrium flow when the equilibrium electron mole frac-
tion becomes negligible (<10-20), As an illustration of an arrangement satisfying
these requirements, in the NATA models for air the components are e, N, s and 075
in that order.

Because the components head the list of species, the relation between them
and the elements is specified by the square submatrix %; of . withi = 1 toc.
Since the components are chosen to be linearly independent comBinations of the
elements, this submatrix is non-singular and has a unique inverse which will be

"denoted by Ay ¢ The inverse is defined by

[«

z : A & = By; 3

i=1

where the Kronecker symbol &; is 1 for k =j and O otherwise. With the aid of
the inverse matrix Ay;, the system of equations (2) for i = 1 to ¢ can be solved
to obtain the elements as linear combinations of the components:

c

c c c
E Aki M; = E -Z- Aki a]] Ei = E Sk]- E) = Ep (4)

i=1 i=1 j=1 j=1

Equation (4) can now be substituted into the remaining equations (2) for.i = ¢ + 1,
¢e+2, .. «yn, to obtain expressions for the dependent species in terms of the
. components:

[

M = E Tie kMg G =c+l...,n (5
k=1
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where
Viee,k = E : a; Ay G=c+1,...,0) (®

The matrix v gives the composition of the dependent species in terms of the com-
ponents.

The overall elemental composition of the gas mixture is invariant through
all reactions, equilibrium or non-equilibrium. It is specified on input in terms
of the mole fractions Xf:of the species making up the cold gas which is injected
into the arc heater. These mole fractions and the chemical formulas for the cold
species are used to calculate the number of gram-atoms of each element k per mole
of the cold gas, denoted by Q:

o

Qk = Z ch ajkc (7)

j=1

where ;¢ is the number of atoms of the k'™ element in a molecule of the i cold
species, and n. 1s the number of cold species.

For use in the thermochemical equilibrium calculations, the elemental com-
position of the gas must be re-expressed in terms of the independent species.
Because the elements can be expressed as linear combinations of the independent
species by equation (4), the elemental composition of the gas is equivalent to a
composition in terms of the components. Let q¢ denote the number of molecules
of the fh component per molecule of the cold 'gas when the gas is considered to
consist of the independent species. These quantities %C are related to the Q,
by

Q = qua,-k k=1,...,0 (8)

Multiplication of this equation by A,; and summation over k gives

c

qic = E AkIQ( (i = 1, e T ey C) (9)
k:
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NATA computes the qf from equation (9), and then normalizes them,

(i=1,...,0 (10)

C =1
to obtain a set of composition coefficients whose sum is unity. If the gas

actually consisted of the components and no other species, the q. would be the
mole fractions of the components. !

The above definitions and relations can be used to derive a formula for the
mole fractions of the independent species in terms of the ¢; and the mole frac-
tions of the (n-c) dependent species. This formula is used in the equilibrium
calculations. Let N; represent the number of molecules of species j in a gas

n

sample containing N= N; molecules altogether. Also, let Nj* denote the
j=1

number of molecules of the jth independent species that the sample would contain

if all of the atoms making up molecules of the dependent species were rearranged

to form molecules of the independent species., From the definition (5) of the

7i_c, k matrix,

Nj* =N+ E N; Ti g, G=1,...,0 (11)

where the first term is the number of molecules of species j actually present and
the sum represents the extra species j molecules that could be formed from the
dependent species, From the definition of g >

*

N; ’ (12)
*
p N
k=1 K
From (11) and (12),
c n n
§ O [+ D, MTix]=N o+ D NTig (13)
k=1 i=c+1 i=c+1

This equation may now be divided through by N to convert the subscripted N's to
mole fractionms,X . It is noted that
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L¢]

X =1- ), X (14)

Also, the singly subscripted array v;_ is defined by

[od

V.o = z : Yick « ) (15)

- *
Xj =g = E X [Vi-c,i - qj(Vi_c -1l . (16)
i=c+1
which gives the mole fractions X; of the independent species(j = 1 to c) in terms

of the 9 and the mole fractions X, (i=c+1, .. .,n) for the dependent species.

2.2 Thermodynamic Properties of Species

The thermochemical equilibrium calculations for the reservoir and the nozzle
flow calculations require data on the following properties for each chemical
species (j) in the gas: the molar enthalpy Hj , the chemical potential ;2 and
molar entropy S;° at a standard pressure p°, and the molar heat capacity ij. For
a mixture of ideal gases, these thermal properties are functions only of temper-
ature.

The chemical potential may be defined (ref. 2, p. 283) as the partial deriva- .
tive of the free energy of a gas mixture with respect to the quantity of one of
its constituents: )

yi = (aF/aNj)S,V,Nk (17)

where the subscripts indicate that the entropy S, volume V, and quantities of the
other constituents are held constant. The units of p depend upon those for F
and N; . The quantity measure N; can be molecules, moles, grams, etc.. On a molar
basis,;ﬁ can be calculated using the relation (ref. 2, p. 953)

f.
i o (18)
l‘j,, = - ROT En(-:) + Hio

-]5=-



in which Ry is the universal gas constant, fi is the molecular partition function
for species|j, defined as a sum over all energy states E;

—~E; /kT ‘
ED I | (19)

i

andlﬁb is the enthalpy of formation of the species at standard conditions
(usually zero temperature). For an ideal gas

(27ij kT)s/ze

fj = g fige (D) (20)

h? n;

}

where f;,, 1is the partition function for the internal degrees of freedom. In the
first factor on the right, which is the translational partition function, n; de-
notes the number of particles of species j per unit volume and mj the particle
mass; k is Boltzmann's constant, h Planck's constant, and e the base of natural
logarithms. The partition function depends upon the pressure through n; . For
convenience in calculations, equation (18) is rewritten in the form

B = #° + RoT bn p; @D
where p; denotes the partial pressure in atmospheres and p.° is the chemical po-~
tential at a partial pressure of 1 atmosphere (a function only of temperature).
From equations (18), (20), (21) and the ideal gas law

P" = njkT

it is possible to show that

e]

o ’ _ r’kT o
K == RoT in | + Hyg 22)
p

where p° = 1.01326 x 106 dyne/cm2 (a pressure of 1 atmosphere expressed in
absolute cgs units) and 5 is a function only of the temperature:

5 = n’-fj/e ‘ (23)

Because the molar internal energy of a species is given by (ref. 2, p. 335)

5 (azn fi>
E; = RoT (24)
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one can show, by differentiating (22), that the molar enthalpy Hj = E; + RgT is
given by
0 [¢] ]
ik LA N S M 4 (25)
RoT dT RoT

0
in which Hjp is the enthalpy of formation of the species. The molar enthalpy of

the gas mixture is simply the sum of the species enthalpies weighed by the mole
fractions:

H = Z X; H; (26)

j=1

The other required species thermodynamic properties can be calculated from
H; and é . The entropy Si of the jth species is given by (ref. 2, p. 261 and
)

287

o . HTH (27)
) T

Wwith (21), this can be rewritten

S,' = Scj. - Ry ln P] (28)
where Pj is the species partial pressure in atmospheres, and
o]
J T

is the species entropy at the standard pressure (1l atm), a function only of
temperature. The molar entropy of the gas mixture is given in terms of the
species entropies by (ref. 2, p. 618)

S = Z X; ; (30a)

If p denotes the total pressure in atmospheres, (30a) can be rewritten, with the
aid of the relation pj = ij between the partial pressures and mole fractiomns, in
the form :

-



O .
j=1

—
[
—

in which the last term is the entropy of mixing.
The molar heat capacity of the id1 specles is defined by

dHi
% - T e

The heat capacity of the gas mixture is then

G = Z % Cﬁi (32)

j=1

Equations (25), (29) and (31) show that ., S.° and can all be calculated
from the chemical potentials pf at the standard p%essure. Ewa methods are avail-
able in the NATA code for calculating the chemical potentials themselves. Both
are based fundamentally upon the statistical mechanical expression (18) for u: in
terms of the molecular partition function fj . One method, called the thermo-fit
technique, relies upon accurate calculations of ;° by other computer programs.

The data on u? as a functilon of temperature are curvefitted in the form

o] (]
# — Hio 1 , 1 ;3 1 4
PEANEEE MG S A - b:T — =— C: - - g —_ . -~ k- . (33)
T T a(1-laT) = BT = = T = = &T = 5T ;

Then from (25),

o

H- :.H-O

_Z._.’_. = a + b:T + c-T2 + d-T3 ¥ e-T4 (34)
RoT ) ] ) } ]

Thus, the parameters aj » b; , etc., are simply the coefficients of a fourth-degree
polynomial curvefit to (H; - Hjp )/RgT. The thermo-fit method has the following
advantages:

1. The thermal property data generated by a specialized thermal-property .
computer program can be highly accurate, because the program can perform
elaborate calculations, taking account of effects such as vibrational
anharmonicity and vibration-rotation coupling in molecules.

2. The computer time required for evaluation of the curvefit formulas (33)
and (34) is small.

-18-



3. The method is applicable to molecules which are too complicated. to be
treated by the other technique available in NATA, e.g., non-linear tri-
atomic molecules and molecules containing four or more atoms.

The curvefit coefficients 3 b; , etc., are determined by least-squares
fitting of equation (34) to computed enthalpy values over a certain temperature
range. Within the range of the data, the fit has good accuracy, but abo.e and
below this range the accuracy can become very poor. If the range of the data is
simply extended, the overall accuracy deteriorates because the polynomial form

(34) is not sufficiently flexible,

This limitation of the thermo-fit method can be circumvented by using the
second NATA technique for calculating species thermal properties to obtain the
properties at relatively low temperatures. The second technique, called the
"physical model"*, is based upon approximate evaluation of the internal partition
function f;;, in (20) for each species. For a monatomic species, the only in-
ternal energy states are those of electronic excitation, and

L )
~E; /kT '
elec = § : g e (35)

In this equation, E; is the energy of the i electronic state relative to the
ground state (i =1), and g; is the state degeneracy. In principle, the upper
limit of summation L should be at the highest bound state below the effective
ionization potential. In practice, results of good accuracy can be obtained by
including only a few states of the lowest energy. High-lying states of nearly
equal energy can be lumped together by using an average E; and summing the
degeneracies. Array dimensions in NATA allow use of up to 10 states, including
the ground state.

For species containing more than one atom, the internal partition function
sum includes states with various values of the vibrational-rotational energy.
In the NATA physical model, the partition function for molecules is approximated
as a product
- f (36)

f. = f .

int ot vibr elec

of rotational, vibrational, and electronic factors. This approximation neglects
the variation of the molecular moment of inertia with the vibrational quantum
number as well as the difference in vibrational frequencies between different
electronic states of the molecule, As a further approximation, the vibrational
energy st:tes for each normal mode are approximated by those of a harmonic
oscillator. These approximations to the partition function for molecules be-
come inaccurate at high temperatures, but are expected to give good results at
moderate temperatures where most of the molecules are in their electronic ground
state and the degree of vibrational excitation is not too high.

*{t is called the "harmonic-oscillator model*’ in reference 1.
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For linear molecules (including all diatomic species), the rotational
partition function, f,; , neglecting quantum effects as is appropriate for the
temperatures of interest in NATA, is given by (ref. 2, p. 345 and 454)

2
¢ - 8r“1kT _ kT 37

¢ '
o oh? oche By

where I denotes the molecular moment of inertia about an axis, passing through
the center of mass, perpendicular to the line joining the constituent atoms.
The symmetry factor ¢ is unity for asymmetric molecules and equal to 2 for
symmetric molecules (with identical nuclei at opposite ends of the molecule).
The quantity By in the final expression of (37) is the rotational constant of
the molecule in the ground vibrational state. For diatomic molecules, it is
given in terms of tabulated spectroscopic constants by

1
Bg = B, - —2- Qe (38)

where B, denotes the rotational constant for the equilibrium internuclear separa~-
tion and a, is the coefficient giving the dependence of the rotational constant

upon the vibrational quantum number., The term-%-ae is normally quite small and

can be neglected without serious error within the context of the approximations
being used. In terms of By, the moment of inertia is given by

I = LI (39)
8n2c By

Thus, (37) can be written

rot

¢ - L © (40a)
01’

where the characteristic rotational temperature 6, is defined as

By = 1.43879 0By (40b)

with By given in cnt,

For non-linear triatomic molecutes* (ref. 2, p. 454),
' 3/2 1/2
A2 @a2kT)” (1, 15 10)

f.. = 1
rot 0'h3 (4 )

wherel, , Iz , and Ic are the three principal moments of inertia.

*The non-linear case is not treated in the present version of NATA. The formulas for this case are given with a view toward possible
future development of the code.
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For diatomic molecules, the vibrational partition functlon in the harmonic-
oscillator approximation is (ref. 2, p. 345)

- ~1 - -1
fvibr - (1 —e hvl /kT> - (1— e GV/T) (42)

where hv; is the energy difference between the ground state and the first vibra-
tionally excited state, and ¢ the characteristic vibrational temperature

6, = hv/k BN}

The vibrational term of a diatomic molecule is represented in the form (ref 3,
p. 92)

1 1) 2 1\3
G(v) = v, VS| - o X v+3 + Weye |V + 3 (44)

The vibrational constants w., weXo , and wgy. have been determined from spectro-
scopic studies for many diatomic molecules (ref. 3, p. 501-581). The vibrational
excitation energy hv; is given by hv; = he [G(1)- G(0) ] . Thus, from (43) and
(44)

he 13
g, = = <°°e - 2weXe + T weye> (45)

It is clear from (44) that G (v) — G(v-1)varies with the vibrational quantum
number v. For this reason, the present harmonic oscillator approximation (which
neglects this variation) becomes inaccurate at high temperatures where several
vibrational levels are populated to a significant degree.

A triatomic molecule has three vibrational normal modes. The vibrational
partition function for a non-linear triatomic species is :

3

_ -1
fibr = H (1 - ¢ QVk/T) (46)

k=1

In a linear triatomic molecule, there are only two rotational degrees of freedom
and the "bending" vibrational mode is degenerate. 1In this case, the vibrational
partition function is given by

4

-1
foibe = H (1 - e—QVk/T) (47)

k=1

in which two of the 0, , say 0y = 0,3 , are equal to the vibrational temperature
for the bending mode.

-921-



“-The- chemical potential gf at standard pressure can now be evaluated by sub-
stituting the expressions for the internal partition function, based on the physi-
cal model, into the general relations (20), (22) and (23). For monatomic species,
fine is given by (35), so that '

o ’ ; ‘
e HjO 3 2am;k k) 5
_Rr =-13 fn > + fn - oy lo T+l (foec) (48)
p
For molecular species, from (36};,~ i
o [¢] : . -
o Hio 3 27 m; k k 5
———————— 2 3- Zn e e N zn + E en T + Zn(fot) (49)
+ In (fyibe) + ln (felec)

The chemical potential formulas for monatomic and diatomic species can be com-
bined into a single equation involving the number 0 of atoms in a molecule of
the species:

0 o:
¥ = Hio

RgT

5+2(nj—1) i . ;gﬁ/T

7/
=—3b-+————2—"' EnT—(nj—l)En(l—e ) ' (SO)

L

: Z ~E;:/kT
+ @n gi" e 1]

i=1

where

3 ermik k
b’ = ‘2- En h2 ]+ In -;; —v(ﬂj— 1) €n ?r’ (513.)

In these formulas, equations (35), (39) and (42) have been used to evaluate the
electronic, rotational, and vibrational factors in the partition function. If
numerical values are substituted for the physical constants, (51) becomes

3
bj = - 3.66505 + 5 b Wy = (o5 = 1) In Oy g 19

in which Wj is the species molecular weight in grams per mole.
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In the case of a linear triatomic species, from (49), (35), (39), and (47)

FJ?—H;,O 7 - -0 /T
Rer | (Ot 7 bT- Z n (1me )
i=1
Lj ,
N DI )
i=1

where

27m:k
k -
B; = é.gn( ) + falem ) - Ba 0:} (53
2 h2 PO

The enthalpy can be calculated for monatomic and diatomic species by apply-
ing equation (25) to (50):

(]

Hi ~ H]O 5+2(ni—1) Gv, 1
= + (ni—l) S— '——"-7-———-

RoT 2 . T eev,- T—l.
L.
2. &j Eije
) ~E;; /kT
2 Bij e
i=1

o 4
H; — Hjq 7 Z 0vj'i 1
——————————— T — +
T 2 T 0. /T
Ro i=1 eV 1
L.
j -E; /kT
Z 8ij Ejj e K
1 1=1 (55)
+ ——r
kT L ~E;j /kT
&j © '
1=1
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The molar heat capacity for monatomic and diatomic species is, from (31)
and (54),

Si _ 3r20y-D ("vi>2 Ml T (562)
— I eerm—— e (n._]_) ——— . i
i -
Ro 2 * %/ T_ 1?2
S1 85 ~ 8,2
+
5,2
where
L ; ) :
-E;; /kT
S E gy e (56b)
i=1
L

(56¢)

%
N
I
2
i m
s
(1]
1
’_m
~
-
=

Z { Eij 2 -E;;/kT (56d)
S3 = gi] — e !
kT

For linear triatomic species, from (31) and (55),

4 2 :
C,: ... 8... /T :
P) 7 Vil i
B N Z (.....) — (57)
Ry 2 T ( 6.../T >2
-1 :

=1 e Vil

$1 83 ~ 32
P R R,
$;°

The thermal properties of a species can be specified using the thermo-fit,
the physical model, or both techniques. In the case of a non-linear triatomic
species or a species whose molecules contain four or more atoms, the programming
of NATA does not provide a treatment based on the physical model. The properties
of such species must be described using the thermo~-fit at all temperatures. Om
the other hand, for monatomic species, the physical model is accurate at all
temperatures. Accordingly, only this model is used for the atoms and atomic ions
whose properties.are compiled into NATA. For most molecular species, both thermo-
fit data and physical model properties are provided in the code. The physical
model is used for temperatures up to a "switching" temperature Isw,which is pre-
set to 5000° K; and the thermo-fit is used for temperatures above Tgy. To avoid
disturbance of the flow solution by a small discontinuity in thermal properties

-2b~



at the switching temperature; the transition between the two models is® spread
out over a temperature range 1000° K wide, between T, - 500° K and Ty, + 500° K.
Within this range, the species thermal properties are calculated by mixing the
results from the thermo-fit and the physical model; e.g., for the enthalpy,

Hj = wypp (Hj)TF + wpy ¢ (Hj)PM {58a)

where

500 + (T = Toy)
YTF = 1000

(58b)

= (SSC)
“PM 1000

and where the subscript TF denotes the thermo-fit and PM the physical model.

2.3 Reaction Rates

‘A chemical reaction* involving some of the species present in the gas mix-
ture can be denoted

n ke n
fi
yi. M: (-——_A- vi. M: (59)
1) k. z: ij ™}
i =1 I i =1

in which M; represents a molecule of the fh species and the Yij » VE‘ are
stoichiometric coefficients. For the molecules which do not particfpate in. the
reaction as reactants, vij = 0; for those which do not appear among the products,
vij = 0. The subscript i serves to distinguish the different reactions. The

total number of reactions is denoted by r .
The molar concentration of species j will be denoted by {M:1. If (59) repre-

sents an actual reaction mechanism, then the number of moles of forward reactions
occurring per unit volume is given by

n

M ]Vik - (60a)
Ni = kg e '
k=1

*See reference 4, Chapier XV, for a background discussion of classical chemical kinetics,
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in which the reaction rate constant k; is independent of the species concentra-

tions but is, in general, a function of temperature. Correspondingly, for the
reverse reaction

n
N, = kri I-I [Mk] Vik - ' v B (60b)
k=1 )

If (59) represents the net result of two or more steps in the actual reaction
mechanism, then equations (60) are inapplicable. In such a case, if (60) were
forced to fit experimental rate data, it would be found that the apparent rate
constants k, and k; would vary with the species concentrations.

From equations (59) and (60), the net rate of change of the concentration
[Mj] of gspecies j due to the i"! reaction is

. n
d[M;] v,
] ‘ ik
= e e ) ke iM ]
{ dt }i (Vq vij) kg kI—Il .k (61)

n
4 V-
_(Vii_vij)kti H [Mk] ik
k=1

In equilibrium, the net rate of production is zero, so that, from (61),

n
: k¢ (62)
' (vik = Vik) i
ki = kg H [ ] - = ‘
1
k=1

where K; denotes the equilibrium constant:

n
R S | (63)
k=1
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The equilibrium constant for the reaction can be determined from the condition
(ref. 2, p, 953):

n n

j=1 =1

in which p; denotes the chemical potential (21) for the 1m

tion of (21) into (64) gives

Bi: : A : , , ‘
[T o™ - ew - o Z B o -

j=1 : e

species. Substitu-

where

,

Bij = vij ~ v R ; (66)

For ideal gases, the partial pressures p; are related to the molar concentrations
(M ] by

= [ M,"] RoT ' ‘ ) .(67)

Hence, combination of (63) and (67) gives

. g v _ , oo
K; = exp { — —— E Bij 1 - (68)
Bi RoT
(RoT) ) =1
where
Bi = ? Bij -

Because the chemical potentials at standard pressure Uﬁ° ) depend only on the
temperature, the equilibrium constant K; is a function only of temperdture.

The relation (62) between the forward and reverse rate constants for a re-
action is termed "detailed balancing". Since k,; , kg , and K; depend only on
the temperature, not the concentrations, this relation is wvalid even when the
concentrations are out of equilibrium, as they normally are throughout a non-
equilibrium flow solution.
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Only one of the two rate constants for each reaction need be specified, as
the other can be determined from the first using the detailed balancing relation
(62) and the thermochemical expression (68) for the equilibrium constant. Con~
ventionally, the forward rate is specified, 1In NATA, it is represented as a
function of temperature by a curvefit of the form#* ‘

UH
T —E,./RoT :
Ke = A. [—— e at
fi =% <1oooo°1<> (69)

in which E,; is the activation energy for the reaction. Experimental data on
rate constants are usually fitted using a form similar to this, but with T in
place of (T/10000)7i, The specific form (69) has been adopted for use in NATA
because, in reactions with large negative exponents 7;, it permits fitting the
experimental data with coefficients A; of smaller magnitude. When the conven-
tional formula with T" is used, some such reactions require A; values larger
than the limit (~1038) on floating point numbers in computers such as the UNIVAC
1108, '

Many dissociation-recombination reactions involve a "third body", a particle
which catalyzes the reaction by supplying part of the dissociation energy or
carrying off part of the recombination energy. If the rate constants are the
same for several reactions which differ only in the third-body species involved,
the kinetic model can be simplified by combining all of these reactions into one.
The third-body concentration in the combined reaction is equal to the sum of the
concentrations of the actual third bodies. The coding of NATA allows this
simplification. The third bodies are omitted from the vjj and vij matrices for
the combined reaction but are listed separately. The rate-constant curvefit (69)
for the actual three-~body reactions is used. The effect of the combined concen~
tration of all the third bodies for the reaction is taken into account by special
coding.

2.4 Vibrational Non-equilibrium

The calculations of species thermal properties performed by NATA (Section 2,2)
normally assume that the vibrational degrees of freedom of molecules are in thermal
equilibrium with the other degrees of freedom. However, the code also contains an
option to calculate these properties on the assumption that the vibrational degrees
of freedom are "frozen" at the reservoir temperature. This option, together with
the normal, equilibrium property calculations, makes it possible to bracket the
possible effects of vibrational non~equilibrium. When this option is used, the
code calculates the species properties from the physical model at all temperatures.
The thermo~fit cannot be used in this case because it is based on a curvefit to
property calculations assuming complete equilibrium.

The formulas for the species thermal properties in the case of frozen vibra-
tion can be derived from the equations in Section 2.2 by assuming that the vibra-

tional excitation temperature is constant -and equal to the reservoir temperature,
To. For diatomic molecules, the chemical potential (50) becomes

*Other forms are used for some of the reactions in the electronic non-equilibrium model for argon.
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4] 0

s — H 5+2(n; - 1) : s 0../T

._l__ﬂ..__ b: -——-——’—-—-ZnT—(n--l)[’n (1__e VJ/ 0)
RoT ! 2 ]

—E;; /kT
+ ln E gij e R

i=1

The enthalpy (54) becomes

- — . o . — .
Hj - Hjp”  5+2(n;=1) Oy 1
£ + (n] — 1) . ® .._6_——.
RoT 2L T 04/To_1

Z ~E;: /kT
8jj € R

i=1

(70)

(71)

Because the vibrational contribution to the enthalpy H;j is constant, the heat
capacity C,; (31) does not contain a vibrational term. The species entropy at

standard pressure is given by

Sio 5+2(n-1)
— = b + e (1 +€nT)
Rg ) 2
Gvi/To ) ——ovi/To)
+ =D | (1=
e Vi To—l
L:
] —E:./kT L.
g;i: E:- e 1 ] \
1) "y
1 i=1 ~E; /kT }
G — + ln 8jj © }
kT L]'
TEij/kT i=1

(72)

For a linear triatomic species, the thermal properties in the case of frozen

vibration are given by
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4
o [+] .
K~ H 7 ~0,::/T,
S A N b (1—e VI 70
Ry T : 12

1=1
Li ,
§ : E;: /kT
+ en gij e 1) (73)
i=1
o 4
H; —Hyp 7 . iji/T
Ry T 2 } : -
0 P =1 evp/TO 1
L.
) ~Ej; /kT
L Ay B
R (74)
kT Li
‘ -—Eij /kT
gij €
1=1
4
S0
7 0.::/T
—IiL = Bi ¥ 3 (1+fnT) + E A L U
0 ot Jvii/To_ |
4 5
} : —0.:: /T, 2 : —E;; /kT
- [ (1——6 it 0)-}- Pn gii e H - (75)
i =1 ' i=1
L.
2 & Fij ©
1 1=1
T
] -E;/kT
gij ©
1=1

The specific heat again lacks a vibrational contribution.

2.5 Gas Imperfections

The CAL program upon which NATA is based (ref. 1) contained an option to in-
clude the effects of gas imperfections due to the finite volume of the molecules,
Such effects are negligible under the conditions to which NATA is normally applied.
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However, to provide for possible, presently unforeseen, future applications of
NATA to nozzle flows with extremely high reservoir pressures*, this option has
been retained.

The CAL treatment of gas imperfections is based upon the van der Waals
equation of state (ref. 2, p. 581)

RoT
Voby | y2 (76)

in which V represents the molar volume
v hd 77
P an

The quantity bg is the molar volume from which the centers of the molecules are
éxcluded because of the finite size of the molecules. If the molecules are
assumed to be spherical, then

- 27 3

where Ny is Avogadro's number and ¢ denotes the molecular diameter. The second
term in (76) represents the effects of attraction between the molecules., In NATA,
the coefficient a in this term is assumed to be zero, because the attractive
forces have negligible effects in the high temperature flows to which NATA is
applied. The remaining term is written

TJ‘RoT
P =0 (792)
where the effective density P is defined as
-~ 4
5= _ (79b)
WO

The molecular weight W° in (79b) is written with a superscript o to signify that

the coefficient b,/w° is read as an input, and is assumed to be constant through-
out the solution. The molecular weight W in (79a), however, is the local value,

which varies in equilibrium and non-equilibrium solutions.

' The van der Waals equation (76) is inaccurate at high densities where V be-
comes comparable with by . Thus, equations (79) provide a valid approximation to
the effect of finite molecular volume only so long as the term byp/W° is small
compared with unity, say, less than about 0.1,

*1n air, these effects are of the order of 3 percent when the pressure in atmospheres is about 0.1 times the reservoir temperature in
degrees K.
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Because molecular attractive forces are neglected in (79), there is no
correction to the ideal-gas internal energy. However, the enthalpy is given by

RoT
w (80)

REEY

H = E +31= E +
p

In terms of the enthalpy H;,;. ., for an ideal gas,

‘;’ RoT
H = Higea + ry -l = (81)

In NATA, the computation of reservoir conditions is carried out for speci-~
fied temperature and pressure. The composition is assumed to be the same as for
an ideal gas mixture, but the enthalpy and density are calculated from (81) and
(79). These relations are also used throughout the frozen and equilibrium flow
solutions, and in the initial portion of the non-equilibrium solution which is
calculated by perturbing the equilibrium solution. The correction for gas im~
perfection is not used during the non-equilibrium integration because, in
practice, the flow remains near equilibrium (and thus is calculated by the
perturbation method) until the density has dropped to values at which the correc~-
tion is negligible.

Section 5.3 of reference 1 can be consulted for further discussion of this

option. For air, this reference recommends a value of o= 2,6 A= 2.6 %1078 cm
for use.in equation (78). ‘
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3. TRANSPORT PROPERTIES

NATA requires transport property values for use in the laminar boundary
layer calculations and in calculations of heat transfer to models. Some trans-
port properties and related quantities are also printed out. All of the trans-
port coefficients required in NATA are computed internally by a subroutine
package which was adapted from a separate, previously developed transport proper=-
ty program. The basic data required by the calculations are compiled into the
code for the standard gas species. Such data can also be set in the input.

To facilitate the use of the code in computing inviscid flow solutions for
gas models involving non-standard species whose transport cross sections may be
unknown, all transport property calculations can be suppressed by input of a
single control variable (N@TRAN). This procedure also suppresses the boundary
layer calculation and calculations of stagnation point heat transfer and of
conditions on wedge models,

According to kinetic theory (ref. 5) the transport coefficients in a mix-
ture of gases depend upon the scattering cross sections Qj; (defined below) for
collisions between pairs of molecules. The Chapman-Enskog theory provides ex-
plicit, but extremely complicated, formulas for the viscosity, thermal conduc-
tivity, binary diffusion coefficients, and other transport properties in terms
of the collision cross sections, the particle masses, the species mole fractionms,
and the temperature. Thus, in principle, the problem of calculating the trans-
port coefficients for a given mixture consists of two parts: first, the deter-
mination of the collision cross sections {)j; for all possible pairs of species
(i, j ); and second, the evaluation of the Chapman-Enskog formulas.

The collision cross sections can be determined or estimated in many dif-
ferent ways. They can be measured directly in molecular-beam scattering experi-
ments or can be determined indirectly from the analysis of data on various gas
properties. For simple systems they can also be obtained from ab initio or.
semi~empirical quantum mechanical calculations.

For collisions between heavy particles, it is generally advantageous to
express the collision cross sections (h; in terms of the interaction potential
#ij between the particles. The interaction potential can then often be approxi-
mated by a simple empirical form containing one or more adjustable parameters
which may be chosen to fit the experimental data. For example, one type of
model frequently used in this way is the Lennard-Jones (6-12) potential

-9 @]

Here, r denotes the center-to-center separation of the two molecules, ¢ and o
are the adjustable parameters, and ¢ is the energy of interaction. The param-
eters can be evaluated by fitting theoretical predictions based on the models to
experimental data on some material property, for example, the viscosity, thermal
conductivity, binary diffusion coefficient, or second virial coefficient.
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Once the interaction potential ¢j; between a pair of atoms or molecules has
been determined, the averaged collision cross sections Ql s) required in the
transport calculations can be computed by classical mechanics. In general this
step requires a lengthy numerical computation; however, this computation has al-
ready been carried out for a number of commonly used forms for the interaction
potential, and tabulated values of the averaged cross sections as functions of
temperature are available in the literature.

In the case of a pair of atoms with unpaired valence electrons, quantum
mechanical calculations show that there can be several different interaction po-
tentials which occur with different probabilities. In this case the total cross
section may be obtained simply by calculating the cross sections independently
for each potential and then averaging the resulting cross sections with the ap~
propriate probabilities to obtain the total cross section.

For collisions involving electrons, classical mechanics is not applicable
and quantum calculations are required to relate the collision cross sections QU
to the interaction potentials. 1In this case it is often simpler to analyze the
data directly in terms of the collision cross sections, without going through
the intermediate step of determining the interaction potentials ¢ﬁ.

After the cross sections ﬁﬁ(&s) have been determined for all pairs of
species in the gas, the transport properties may be computed by evaluating
several large determinants., This step is straightforward, but can require a

considerable amount of computer time in the case of a gas mixture containing a
large number of species.

In NATA, the compiled-in transport property data consist of parameter
values and tables for direct calculation of the averaged cross sections Qlw s)
The interaction potentials themselves are not used. Thus, the step of calculating
the cross sections from the interaction potentials is bypassed. In addition, the
amount of computation required to evaluate the mixture transport properties is
greatly reduced by using approximate formulas, developed by Yos (ref. 7), in
place of the full formulas of the first Chapman-Enskog approximation.

3.1 Basic Equations

The properties generated by the transport'property calculations in NATA are
the mixture viscosity p, the electrical conductivity o, the frozen Prandtl
number

NPrf = cPf }I/Kf (83)
and the atom—molecule Lewis number
D
N o L pf Tam (84)
Le Kf E

where cpf is the frozen specific heat of the mixture at constant pressure, K¢ is
the frozen thermal conductivity, p is the mixture density, and D,y is the binary
atom-molecule diffusion coefficient for the mixture. The calculations of these
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properties are based on the mixture composition as given by the equilibrium orx

non-equilibrium flow solution, or by the equilibrium normal shock solution,
as appropriate.

The viscosityp and the translational component K, of the thermal conductiv-
ity are computed from an approximation to the first Chapman-Enskog formulas
(ref. 5), developed by Yos (ref. 7):

n

ZI Xl/(Al(a) + 5("))

1=
a- = - : : : (85)
1 - 3@ Z Xi/(Ai(a) + (e

i=1

Here a may represent either the viscosity ji or the translational thermal con-

ductivity K¢ 3 n is the number of species in the gas; and X; is the mole fraction
of the ith species. Also,

n 1 1 2
| X X; (‘ﬁ - ’T)> %
a(a) - 1,‘j=1 Aia Aia

n 1 1 \?2 8
> X X; -
L,j=1 Ai(a) Ai(a)
and
n
Ai(a) = Z Xi Aii(a) (87)
1= 1

For the viscosity, the quantities aij(a) and Ai)-(“) appearing in equations (86)
and (87) are defined by

W Yo (D €)
MY o - - A.-
al) = Wi " Wj [2 A” A” 1
(88)
0
() Ry . ¢
Aul‘ =V, AlJ
while for the translational thermal conductivity they are defined by
V. W.
a® = 2 1T [(32 _ B B’;.) a0 - 4 Ai,(2)]
J 15k (Wi+wj)2 2 s U)o )
(89)
2 1 1
A0 o 2 . Neww AD s wowy (ow 2 Dw v 2 Ew )@
ij R B R e RS [ G A TS A I A N
15k(Wi+Wj) ,
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In these equations, W; is the molecular weight of the ith species, Ny = 6.0225 x

1023 molecules/mole and k = 1.3805 x 10-16 ergs/°K are the usual unit conversion
factors,

2NN s A
mNgkT(W;+W) Y

(90)
@ % [ 2hY .22
A . = = 0..\%
4 5 VaNg kT W+ W) Y : ‘ :

5312 - 47,0

il
I

8
Aii“) =

B = — T (91)

and the QHQ,S) are averaged collision cross sections for the collisions be-
tween species i and j , which are supplied as input to_the transport property
calculations. Several different definitions of the Qﬁ +S) symbols have
appeared in the literature.* The one used here is

o0

S e H P o
— 0 -
Qij(?’ s) - =[2/(s+ 1)!] fy28+3 exp(~y9) Qii(f) dy (92)
Sy 3 exp (- Ay 0
0
where
7
f(l - ccosE x) 4170ii sinydy
3.0 _ 2
1) P
f(l — cost x) siny dy
° (93)
n
= [+ D/(1v 20 - (—I)Z)] f(l ~ cost x) 4w 93; siny dy

0

Here aii=(qi(x,g) is the differential scattering cross section for the pair

i~1j , x¥ is the scattering angle in the center of mass system, g _is the relative
velocity of the colliding particles, and y = [mjmj/2(m; + mﬁkiﬂl 2 g is the
reduced velocity. 1In NATA, the cross sections i} +5) are calculated as func-
tions of temperature and gas composition for each pair of species in the mixture
from basic cross section data, which are either in tabular form or are given as
simple analytical functions of temperature and composition,

wmmmmwmwmwmmaﬁﬂﬂﬂmwwnﬂnfmﬂﬂnMmenmﬂﬁhmaa
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The frozen thermal conductivity K¢ appearing in (83) is calculated from the
modified Eucken approximation (ref. 8):

K¢ = K, + K, (94)

tr

where K¢ 1is the translational component of the thermal conductivity given by
equations (85) to (91),

n n

W:c..
17pt 5
e 2 (Nok -3) ST 95)

i=1 j=1

is the component of the thermal conductivity resulting from the internal ex-
cltation energy of the molecules, and c,; 1s the specific heat at constant pres-—
sure for the ith species. The frozen specific heat Cpf for the mixture is then
given by

1
¥ iVipi : (96)

where

W = X. W 97

is the average molecular weight, and X;W,/W is the mass fraction of species i
in the mixture.

For the electrical conductivity, the NATA code uses an expansion of the
first Chapman-Enskog approximation (ref. 5) to lowest order in the ratio (me/m;)
between the electron and atom masses,

2 X
0= — i -~ (98)

-~ m
2 XA
j=1

where € is the electronic charge and the prime on the summation sign indicates
that the term XeAke“) is to be omitted from the sum. The complete first
Chapman—-Enskog approximation,

Dy = —F (99)
j

is used for the atom-molecule diffusion coefficient required in the Lewis number
calculations.
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3.2 Accuracy of the Calculations

The accuracy of equations (85) to (91), which are used for the calculation
of the viscosity and translational thermal conductivity in NATA, has been dis-
cussed in reference 7, and it is shown that these equations generally give re~
sults within a percent or less of the first Chapman-Enskog approximation, with
considerable savings in computation time. The accuracy of the first Chapman-
Enskog approximation itself depends primarily on the temperature dependence of
the collision cross sections ﬁﬁ(’ s} for the various species in the gas. The
approximation is exact for cross sections which vary inversely as T (i.e.,
constant collision frequency, or force proportional to the inverse fifth power
of the internuclear separation), and becomes progressively poorer as the
temperature dependence of the cross sections deviates further from this law.
For neutral-neutral and neutral-ion collisions, where the cross section depen-
dence is close to 1T , the first Chapman-Enskog approximation generally gives
transport properties within a few pegpﬁPt of the exact solution (ref. 5). Be-
cause the collision cross sections Qﬁ(’s) are known only within about 10 to
20 percent at best, for the species considered in the NATA code, the additional
error introduced into the calculated transport properties by the use of the first
Chapman—-Enskog approximation for neutral-neutral and neutral-ion collisions is
negligible.

The effects of Coulomb collisions, for which the cross sections are propor-
tional to 1/T2 s are not given very accurately by the first Chapman-Enskog
approximation}; for example, in the limiting case of a fully ionized gas, the
transport properties calculated from this approximation differ by about a factor
of two from those obtained from an exact solution of the Boltzmann equation
(ref. 9). Coulomb collisions are treated in NATA using effective cross sections
which are chosen to make the transport properties calculated from equations (85)
to (99) agree with the exact solutions for a fully ionized gas at low pressures
(ref. 9). The transport properties calculated from equations (85) to (99) for
partially ionized gases using these effective Coulomb cross sections are then
found to agree with accurate calculations for partially ionized gases (refs. 10
to 12) within about 10 to 20 percent at all degrees of ionization, which is again
within the accuracy of the available cross section data.

The effective cross sections used for Coulomb collisions in the NATA code
are given by the following equations:

Q.. LD = 0795 Q. Q.. %2 = 129Q
0. LD - 0795Q, 0.,%2 = 129,
0,V = 271, 2.,22 = 516 Q
8,1V - 0795Q, ' 0,32 - 136 Q.
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8,00 = 2710, 0,32 - s440Q,

i

21.76 Q.

Bj; = 1.5625 ' (100a)

where the subscriptse, 1 and 2 represent respectively electrons and singly
and doubly charged ions,

(ez )2 . -
Q. T (f A) | ( )
e is the electronic charge,

A= = ———ee ’ (100c)

2 &3 (rng/2

is the Debye shielding parameter introduced by Spitzer (ref. 9), n. is the num-
ber of free electrons per unit volume, and f is a correction factor to take
account of the reduced effectiveness of the shielding at high electron densities.
The correct form for the factor f dis not known at the present time and a number
of different approximations have been suggested for it (refs. 13 to 16). : For
electron number densities below about 1017 to 1018/cm3 f is ~1 and all approxi-
mations for the transport properties (refs. 13 to 16) agree within about 10 to
20 percent; at higher electron densities, however, substantial differences
between the different approximations begin to appear, and the correct treatment
of the problem has not yet been established. The NATA code uses the approxima-
tion suggested by Yos (ref. 7): '

Ghn e? v '
f=‘/1+-§—k—Tne3 (1004)

However, as noted above, the errors in this approximation may be large at the
higher electron densities. ’

Errors in the first Chapman~Enskog approximation may also be large for
electron-neutral collisions, ranging up to about a factor of three in the case
of electron-argon atom collisions (ref. 10), because of the strong temperature
dependence of the cross sections which results from the Ramsauer effect in argon.
For this case also, the NATA code makes use of effective collision cross sec-
tions in equations (83) to (99) to calculate the transport properties, with the
cross sections being chosen to match the experimental electrical conductivity
data as well as possible.,* For those cases in which comparisons have been made,
this approach yields transport properties which agree with the available experi-
mental data within experimental error, which is generally of the order of 20 to
30 percent; however, larger errors than this are of course possible in other
cases.

*Note that electrical conductivity is the only transport property which is significantly dependent on the electron-neutral cross sections.
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The accuracy of the modified Eucken approximation used in the thermal con-
ductivity calculations for the NATA code has been examined in detail by Mason
and Monchick (ref. 17). Errors in this approximation may approach 10 to 20 per-
cent in cases where there is a rapid exchange of energy between excitation and
translational states through inelastic collisions, as is normally the case for
rotational excitation in low temperature gases; however, the errors become
smaller when the exchange is less rapid, and are negligible in cases where 20 or
more collisions are required for the exchange of energy between internal excita-
tion and translation. Because the latter situation is normally the case for high
temperature gases, errors resulting from the use of the modified Eucken approxi-
mation should generally be a few percent or less in the NATA code, though errors
of as much as 10 to 20 percent may arise from this source in exceptional cases,
where the inelastic collision cross sections for some of the important internal
states of a species are large. For atomic gases, of course, internal excitation
does not ordinarily contribute very significantly to the thermal conductivity
(ref. 18), so that in such cases the modified Eucken approximation is necessarily
valid, regardless of the behavior of the inelastic cross sections.

In summary, the accuracy of the transport property calculations in the NATA
code appears to be governed in almost all cases by the accuracy of the data on
atomic and molecular collision cross sections used in the calculations. For the
cross section data compiled into the code, this accuracy should generally be in
the range from about 20 to 40 percent, except in the case of carbon containing
mixtures, where only rough cross section estimates are available for some species
and errors may consequently range up to as much as a factor of two or more on
occasion.

The discussion of the accuracy of the transport property calculations in
NATA has not included any errors in the calculated transport property values
which may arise from errors in the gas composition data used as input to these
calculations. When such errors are important, they will of course decrease the
absolute accuracy of the calculated transport properties and may need to be con-
sidered in evaluating the overall accuracy of the code results.

3.3 Method of Calculation

The formulas in Section 3.1 give the desired transport properties in terms
of the temperature T, the species mole fractions X; , molecular weights W , speci-~
fic heats cpj , and the average collision cross sections Qﬁ('s)(T) « All of
these data, except the cross sections, are provided by the gas dynamic calcula-
tions in NATA.

The cross sections for all of the pairs of species are computed in a series
of steps. First, the cross sections for all pairs are set to zero. Then, in
each step, the values of o1, D . 082, 2 R and B* QLD are computed by a particu-
lar method (or option) with a particular set of parameter values,_ and these
values are added to the corresponding cross sections £;(L 1, Oy 2,2, and
B; 0if{, D for each pair of species (i,j) to which the step is applicable.

The information concerning the applicability of steps to species pairs is stored
in index arrays. If only one step of the cross section calculation is applicable
to a particular species pair, then the cross sections for that pair are the
values computed during that step. If more than one step is applicable to the
pair, the cross sections for the pair are built up by adding contributions from
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the different steps. This procedure provides considerable flexibility in the
representation of the cross sections. If the cross sections are poorly known
for several minor pairs of species, but are considered likely to be roughly the
same for all pairs, then the cross sections for all of these pairs can be set
in a single step.

The code contains default provisions for estimating some cross sections if
they are not specified explicitly in the compiled-in data or the input. If none
of the specified steps is applicable to a particular pair, and if both of the
species are ions, then the effective Coulomb cross sections (100) are used. If
one species is neutral and the other ionized, the formula

ﬁii(za s) = A(Z’ s) T—O.4 (101)

is the default option. The constants Al 9 are compiled into the code. If
both species are neutral and are unlike (not the same species), the cross sec-
tions are estimated using the simple mixing rule

-~ 1 - - 2
Qij(e’ s) = Z (VQH(E, s) + JQ”(L 5)) (102)

However, if cross section data are not specified for like~like collisions of a
neutral species, the code does not attempt to provide estimates of the cross
sections, but returns an error message and terminates the case.

The compiled-in data specify steps for calculating the cross sections for
the like-like interactions of all of the standard species, and for those unlike
interactions for which experimental or theoretical cross sections are available
in the literature. ©None of the standard gas models requires all of these steps.
For example, the air models do not need the steps specified for calculating the
cross sections in helium. At the beginning of each NATA case, the code edits
the steps of the cross section calculation to eliminate those which are not
needed in the current gas model, and to insert required but unspecified steps
in accordance with the previously described default options. A printed summary
of the steps in the unedited and edited cross section calculations can be ob-
tained by setting a control input.

3.4 Cross Section Models

NATA contains 12 methods or options for calculating 0a, b R 022 , and
B in a particular step. Each of these options is briefly described below.
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3.4.1 Coulomb Cross Sections

In this option, the cross sections are
6(1’ D = 0.8 Cl QC

022 -, (103)

B = 1.5625
where C1 and C; are specified constants, and Q. is given by equations (100b)
and (100c).
3.4.2 Exponential Potential
Here, the cross sections are obtained from Monchick's (ref. 19) collision
integrals for the exponential potential, ¢=Aet/p , which are compiled into the
code. The input parameters are A’k and p .

3.4.3 Charge Exchange Cross Section

In this option, (D and B* are calculated for a resonant charge ex-
change cross section of the form ‘

Qey = (4 — Blogyg v)? (104)
where v is the relative velocity. a2 is not calculated in this case. The
input parameters are A, B, and the atomic weight. The QQ(L b and Bjj; com-
puted can either replace the value computed in earlier steps of the cross sec~
tion calculation or be added to them.

3.4.4 Tabulated Cross Section
Here the cross sections are given in tabular form as functions of tempera-
ture. '
3.4.5 Power Law Potential
This option calculates collision cross sections for an inverse power law

potential, ¢ =Ar""7 | based on the analysis of Kihara, Taylor, and Hirschfelder
(ref. 20). The required inputs are 7 and the quantities

" ( “?) e b
12
Ay = <-z- - ;> A (n)/A(D ) (105)

o)

(=]
-
it
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where A‘D(q) and Aa)hﬁ are tabulated functions which are given for both
attractive and repulsive potentials in reference 20, ‘

3.4.6 Lennard-Jones (6-~12) Potential
This option calculates the cross sections for the Lennard-Jones (6—12)'po—
tential, equation (82). The input parameters are ¢k ando . The tabulated
collision integrals are compiled into the code.
3.4.7 Transferred Cross Sections
This option allows cross sections calculated for one pair of species to be’
used also for other pairs, possibly with a constant multiplying factor. The

cross sections are calculated from the formulas

oll, 1 o (1,1
AL D - ¢, gL D

822 - cyc, 8,2 (106)
* Gl
B = C3 Bii

where the Cy are constant factors and the subscript ij indicates the pair for
which the cross sections were previously calculated. : ‘

3.4.8 Empirical Mixing Rule

Here the cross sections for a pailr of unlike species (i,j ) are calculated
from the empirical mixing rule (102). These calculated cross sections are then
added to the previous values for the pair.

3.4.9 Fairing Option
This option modifies the previously calculated cross section values for a

species pair according to the formula

5(1_7, s) D ﬁﬁéS) (107)

new

where f(T) is a linear fairing factor given by

T - T,
£(T) = max | 0, min |1, ;;fr;;- | (108)

This option allows the use of different forms for the cross section in different
parts of the temperature range, with a smooth transition between them.
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3.4.10 Generalized Mixing Rule

This option is a generalization of the empirical mixing rule (102) in which
the cross sections are calculated from the formula

56 9 _ %(‘/ 3,09 ‘/ 8,9 ) (109)

where (i,j) and (m,n) are any specified species pairs.

3.4.11 Same-pair Transfer

This option calculates one of the averaged collision cross sections ﬁg}s)
for a palr of species from the previously calculated value of a different ot =
for the pair. 1In terms of the notation

;D = LD

;@ - 8,22

(110)
& * o (1,1
Qii(3) - Bii Qii( )
the new cross section is calculated from the formula
; ﬁij(m) = ¢ g;® (111)

where m and n are two specified integers in the range from 1 to 3, and C is a
constant.
3.4.12 Multiplication by a Constant

This option multiplies previousiy calculated values of the collision cross
sections for a pair of species by a constant factor, according to the formulas

“li a (1,1
Qii(, ) - [Qi,.(, )] old

9;% 2 - ¢ [Qij(z’ 2)] old (112)

*

*
Bj = C3[Bjjloia

This is the same as the option described in Section 3.4.7, except that here the
cross sections for a species pair are obtained from previously calculated values
for the same pair instead of those for a different pair.
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4. NOZZLE AND CHANNEL GEOMETRIES

4.1 Uses of Geometric Information in NATA

The NATA code uses information about nozzle and channel geometries for the
following three distinct purposes.

4.1.1 Area Ratio Calculations

In the equilibrium and frozen flow solutions, the gas temperature is taken
as the independent variable. The code decrements the temperature repeatedly,
starting at the reservoir value, and at each point calculates all the other flow
variables, including the effective area ratio:

Ao = AIAL (113)

Here, A¢ is the effective cross sectional area of the inviscid flow, while AJ

is the cross sectional area of the flow at the sonic point. The nozzle geomé%ry
is then used to determine the position in the nozzle, as specified by the axial
coordinate x, corresponding to this effective area ratio. If the boundary layer
on the nozzle wall is neglected, this solution for x is straightforward. If

the boundary layer is included, the solution must be based on a relation between
the effective area ratio A., the boundary layer displacement thickness 8", and
the geometric area ratio.

In (114), A is the geometric cross sectional area at positionx , and Aéo is the
cross sectional area at the throat.

The non-equilibrium flow solution is started just downstream of the reser-
voir as a perturbed equilibrium solution. The gas temperature is again the in-
dependent variable, and the geometric description of the nozzle is used to de-
termine the axial coordinate corresponding to each computed flow condition.
When the perturbations exceed a certain limit, the solution is continued by in-
tegration of the non-equilibrium rate equations, using x as the independent
variable. 1In the region of the non-equilibrium integration, the geometric
description is used to calculate the geometric area ratio for given values ofx .
If the boundary layer is included in the solution, it is also necessary to
calculate the effective area ratio from the geometric area ratio and the dis-
placement thickness.

4,1.2 Boundary Layer Calculations

The overall geometry of the nozzle or channel wall determines the conver-
gence or divergence of streamlines in the boundary layer, and thus affects the
rate of buildup of boundary layer thickness. For example, if the streamlines
diverge, the gas flowing in the boundary layer expands laterally, and as a re-
sult the thickness increases more slowly than it would if the streamlines were
parallel.
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4.1.3 Specification of Model Points and Channel Points

NATA can provide calculations of stagnation-point conditions on axisymmetric
or two-dimensional models, and of the conditions along the surface of a blunted
wedge model. One way of specifying the locations in the flow at which the lead-
ing edges of such models will be placed is to input a list of test section
diameters. Similarly, points at which flow calculations are desired in a rec~-
tangular channel can be specified by inputting a list of values of the channel
width., 1In each such case, the nozzle or channel geometry must be used to deter-
mine the values of x corresponding to the input diameters or widths.

4.2 Basic Geometric Options

NATA has been programmed to provide flow calculations for three types of
nozzle geometry:

(1) axisymmetric nozzle

(2) two-dimensional nozzle

(3) rectangular channel.
In all three cases, the nozzle shape is specified by means of curvefits to noz-
zle wall profiles. Each such profile may be described by a functiony (x), where
y is the perpendicular distance from the nozzle axis to the wall, and x is an
axial coordinate, zero at the geometric throat and increasging in the downstream

direction.

In the case of an axisymmetric nozzle, the geometric cross sectional area
of the nozzle at a station x is given by

A; = 7 [y (]2 (115)

Thus, the geometric area ratio is
A = [y(x)]z ~
& Y0 (116)

where y;. = y(0). TFor a two-dimensional nozzle, the cross-sectional area per unit
length in the z-direction is

Ag’ = 2 y(x) (117)
and the geometric area ratio is

y (%)
Ag = "y (118)

Description of a rectangular channel requires two profiles, y(x) and z(x).
The cross sectional area at axial position x is

’
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Ag = 4 y(x) z(x) (119)
and thus the geometric area ratio is
Ay = Y@@ (120)
Yo %0 '

It is assumed in equation (120), and in the code, that both the profiles for a
channel have their.minima at the same axial location, x =0,

4.3 Profile De§crigtion

Each profile used in NATA is represented by an analytical curvefit contain-
ing up to 12 gections. The profile must be continuous and must have a continu-
ous first derivative, At least two sections must lie upstream of the throat,
and at least two must lie downstream, The throat must be a section boundary. A
NATA case involves either one or two profiles, depending upon whether the flow is
in a nozzle or a channel,

Each section in a profile fit can have one of three available forms:

(1) Straight Line

y(xX) = P; + Prx (121)

(2) Circular Arc Convex Downward

y® = P; - VP3% — (x— P2 (122)

(3) Circular Arc Concave Downward

yx) = Pl + \/P’32 - (X—PZ)Z (123)

In the second and third forms, P3 is the radius of the circular arc andPj ,P;
are the x and y coordinates, respectively, of the circle center.

The parameter values P1,P; , P3 for each section must be chosen so that the

entire profile fit represents the given nozzle or channel profile with adequate
accuracy, subject to the following conditions:

y(©0) = R'O
dy/dx continuous everywhere
dy/dx < 0 for'x <0

dy/dx > 0 for x > 0
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where Rg is the throat radius in centimeters. The last three conditions imply
that dy/dx = 0 at x =0, A separate computer program called NOZFIT has been de-
veloped for computing the parameters of NATA nozzle profile curvefits from the
kinds of data available on engineering drawings, i.e., lengths, angles, and
radii of curvature. '

An additional constraint on the profile fits has been established by experi-
ence: There must not be any region of non-zero length in which the geometric
area ratio is constant, or nearly constant, and approximately equal to 1, 1If
such a region is present in the nozzle fit, the non-equilibrium solution usually
becomes unstable in that region., Thus, if the actual nozzle being represented
has a finite region of constant area (i.e., a straight tube) at the throat, it is
necessary to modify the curvefit slightly in order to obtain reliable operation
of the non-equilibrium solution. In practice, representing such a region as a
converging section with a convergence angle of 3 degrees has given satisfactory
results in most cases,

4.4 Relations Between the Geometric and Effective Area Ratios

The laminar boundary layer on the nozzle wall displaces the streamlines in
the inviscid flow, thus changing the effective nozzle geometry. The amount by
which the effective boundary of the inviscid flow is shifted is called the bound-
ary layer displacement thickness, and is denoted by 8" . The displacement thick-
ness can be either positive or negative, depending on the boundary layer velocity
and temperature profiles. 1In typical NATA solutions, 5" is negative in the up-
stream and throat regions, and becomes positive at some point downstream of the
throat. In channel flow problems, there are two displacement thicknesses, 51t
and 52*, one for each pair of channel walls. These displacement thicknesses are
generally unequal because of the different amounts of streamline convergence or
divergence in the boundary layers on the two pairs of walls.

In many parts of the code, it is necessary to calculate the geometric area
ratio Ag; from the effective area ratio A., or conversely. The relation between
the two area ratios, upon which both of these subroutines are based, depends upon
the type of nozzle geometry. For a two-dimensional nozzle, the effective flow
area per unit length in the z-direction is

Al = 2lym - 8" (124)
At the sonic point, the effective area is
Al = 20y - 81 (125)
*

where the subscript * denotes sonic conditions. Hence, the effective area ratio
is equal to

y )
Ag y-8 y o Vs '
A, = ~ = - = ~ (126)
Ae* Ve ~ O - O
Y,
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Because the sonic point is near the geometric throat, and because dy/dx =0 at the
throat, the profile ordinate y» at the sonic point is approximately equal to the
ordinate Y9 at the throat. In NATA, the difference between these two quantities
is neglected. Hence, from (118) and (126),

& 5
A e m— 1 —
e~ 5 " i (127)

For an axisymmetric nozzle, the effective flow area is

Al = m(y - 892 (128)
and at the sonic point
Al = mlye =807 (129)

Cx

Hence, with the approximation y.~y ,

y 87\
Al oo Yo
A _ (130)

€ Al * \2
e* ( 8*>

1—- —

Mi]

Equations (116) and (130) give

* 8: 2
] [_5_ N (1_ _> ,/A:] (131)
Yo Yo

In the case of a rectangular channel, the effective flow area is

>
1]

Al = 4y -8] (z =) (132)

e

while at the sonic point

AL = 4G 81.) (s — 85,) (133)

Hence, with the approximations yx ¥yy , z«¥zy ,

& *
y S1\/=z &
Ag voo o)\ %
Ae = T = (134)
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Combination of (120) and (134) gives _

L} & y8 +28, 818
Ag = 1 .4 -t ‘Ae + - (135)
Yo 9 Yo % Yo%

This is not an explicit solution for A; as a function of A, and 5; , 55 , be-
cause the right hand side still contains the profile ordinates, y andz ., These
are known as functions of x, but X is not known until A; has been determined.

It is therefore necessary to carry out the solution for Ag; using an iterative
method, in the case of channel geometry.
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5. LAMINAR BOUNDARY LAYER

The NATA code contains an optional calculation of the buildup of a laminar
boundary layer on the nozzle or channel wall. The results of this calculation
are used in two distinct ways:

(1) The boundary layer displacement thickness 8" is used to relate the ef-
fective inviscid area ratio Ae to the ‘geometric area ratio A,, as ex-
plained in Section 4. In this way, the 1nvisc1d flow solutlon is
coupled with the boundary layer solution.

(2)  The heat flux and shear stregs at the wall are printed as code outputs.
These data can be used to test the overall flow model by comparison with
experimental measurements. 1In the case of a rectangular channel con-
taining a test panel, these outputs provide predictions of the test con-
ditions on the panel.

5.1 Boundary Layer Transition Criterion

The laminar boundary layer calculation in NATA is applicable, of course, only
if the boundary layer in the case being investigated is actually laminar and not
turbulent. Schlichting (ref. 21, pp. 457-463) has reviewed the available data on
boundary-layer transition in incompressible flows. A stability analysis shows
that a laminar boundary layer is unconditionally stable as long as the Reynolds
number based on momentum thickness,

NRe = Pele 6/pe (136)

is less than 162. In (136), p. ,u. , and g, are the free-stream density, velocity,
and viscosity, respectively, and 6 is the momentum thickness,

oo

pu
0 Pele Ue

In (137), y is a coordinate locally normal to the surface. For values of Np.g
higher than the critical value of 162, the boundary layer is unstable, but the
occurrence of transition depends upon the level of turbulence in the free stream.
Transition occurs near Np.g= 162 only for extremely high turbulence levels. For
exceptionall~ smooth free-stream flows transition does not occur unt11 an Np.gof
about 90C is reached.

The transition Reynolds number also varies with other flow parameters. It
increases with increasing Mach number and with' increasing favorable pressure
gradient, and decreases with mass injection at the wall. 1In a recent study (ref.
22), extensive data on boundary layer transition have been compiled and correlated
with free-stream Mach number M. and Ngp.g. The data can be fitted by the relation

0.224 M
NReg, T = 200 e eT (138)
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where the subscript T refers to conditions at transition. The data contain con-
siderable scatter, so that they do not determine the numerical coefficients in
(138) with high precision. The choice of the wvalue 200 for the critical Reynolds
number at zero Mach number, in place of 162 or other possible values, takes ac-
count of the fairly high level of turbulence present in arc-heated air streams,
of the strong favorable pressure gradient accelerating the flow in a converging-
diverging wind tunnel nozzle, and of the absence of mass injection through the
nozzle wall., At Mach numbers below 6, equation (138) gives a lower transition
Reynolds number than the correlation recommended in reference 22 for flight
conditions.

The Reynolds number Np.¢(136) and the transition Reynolds number NReG,I‘(l38)
are computed and printed out by NATA. In most cases lying within the operating
envelopes of existing NASA/JSC arc-heated wind tunnels, Np.g remains smaller than
NReg, T throughout the solution.* Thus, the assumption that the boundary layer is
laminar is probably valid in most cases of current interest to NASA/JSC. However,
a proposed upgraded pumping capability allowing mass flows up to 1.5 1b/sec would
make accessible a range of operating conditions in which the boundary layer would
often become turbulent.

5.2 Basic Equations and Transformations

The basic non-equilibrium inviscid flow solution carried out by NATA requires,
typically, a few minutes of computer time. The equilibrium and frozen inviscid
solutions are much faster. The choice of a method for performing the laminar
boundary layer calculation was guided, in part, by the requirement that solutions
including the boundary layer should not consume a great deal more computer time
than the basic inviscid solutions., This criterion ruled out the use of exact
solutions of the partial differential equations for the laminar boundary layer,
and narrowed the choice to one of several available approximate methods. The
technique chosen is an integral method developed by Cohen and Reshotko (ref. 23).
This technique is an extension of Thwaites' correlation method for incompressible
boundary layers (ref. 24) to the compressible case with heat transfer. It treats
the effects of arbitrary variable pressure gradients. According to Hayes and
Probstein (ref. 25, pp. 318-320) the Cohen-Reshotko integral method is probably
superior in accuracy to the method of local similarity.

The Cohen—~Reshotko method uses curvefits to certain boundary layer properties
based on similar solutions. In their original report (ref. 23), Cohen and
Reshotko based these curvefits on similar solutions for Prandtl number unity and
viscosity proportional to the absolute temperature. The corresponding curvefits
used in NATA are based on similar solutions carried out by Dewey and Gross (ref.
26), and include the dependence upon Prandtl number, the viscosity-temperature
index w appearing in g« T%, and the hypersonic parameter ¢ = “e2 /2bhg. Thus, there
is reason to hope that the boundary layer calculations in NATA may be somewhat
more accurate than those given by the Cohen-Reshotko method in its origiral pub-
lished form.

"An exception is the boundary layer on the non-expanding face of a rectafigular channel, which often becomes turbulent a short
distance beyond the throat,
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The relations used in the Cohen—Reshotko method will be derived starting
from the equations for an axisymmetric boundary layer in a compressible fluid.
(See ref. 27, pp. 384-385.)

Ju Ju o 9 [ du (1398)
PRex TP ey T T ax Tay Moy R
9 E
— (pur) + ~— (pv) =0 (139b)
dx dy

dh dh ap d /p Oh 9u\2
S PRI i P 5’;(@ 5;) "(57> (139¢)

In these equations, p denotes the demsity, p the pressure, ¢ the viscosity, b the
static enthalpy, and Np, the Prandtl number. The independent variables, x and y,
are a pair of locally orthogonal coordinates, with x parallel to the surface along
the streamwise direction and y lying along the normal to the surface. The local
radius of the surface from the axis of symmetry is denoted by r (x). '

The equations (139) for an axisymmetric boundary layer can be converted into
those for a two-dimensional boundary layer using the Mangler transformation (refs.
21 and 27):

X

1

%= — / 2 (x) dx (140a)
L2

X

r(x)

5 = , (140b)
L

T = (140c)
L

v- = (v NRA E’.) (140d)
r r  dx

where L is an arbitrary non-zero scale length. The equations for a two-dimensional
boundary layer are

pﬁ'iu_ +P731=__a_.p +_§__(B_u_> (1413.)
ox o5 9f 9y \ 9y
E]
— (pT) + — (p¥) =0 (141b)
0%
_oh _oh _dp 9 [ p dn au \? (141c)
T — — =lU= += = =) +
PP er TP oy TV ox T oy \Np, 97 oy
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Cohen and Reshotko (ref. 23) base their analysis on eduations (141). They
first convert these equations into the equations for an incompressible boundary
layer using the Stewartson-Illingworth transformation (refs. 21, 28, 29):

LT aE®) pe®) R
X = AED) . dx”’ S ' o (142a)
n ao Po o : ; .
Xg
5 "
a_(x) F = -
Y - = P&,y v’ (142b)
29 Py
0
Here,
b/ T )
AED) = — (143)

o/ To

where T represents the absolute temperature and the subscripts w and 0 denote con-
ditions at the surface (wall) and free-stream stagnation conditions, respectively.
The symbol a represents the sound speed, and subscript e indicates local free-
stream (external) conditions. The transformation of the velocity components is
found by defining a stream function ¢ such that

S¢ _PT (1442)
3y  po
3 7 .
o __rT (144b)
% Fo
Then
U = _a..l_/’_ - 25 ; (145a)
ay a, )
¥ - (QYADg (ap/a) T
v 7 (eo/2d (145b)
X  Mpy/p) (ae/2g) (P/Pp)
' To obtain the desired results it is necessary to assume that
L (146)
tw Ty
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which is equivalent to

p T 4
w T (an

in which A is given by (143). It is also necessary to assume that the inviscid
flow obeys the equations for a perfect gas, in particular

3’ & — .5 = g ‘ ‘ (148a)
and
T h ( ')
— o — , 148b
T,  h :

The transformed momentum and continuity equations for the boundary layer are then

XS] oU U du
U+ Vs = + A4S U, —m (149a)
EF oY Iy2 e ax
L LA - (s
IX 9y

Cohen and Reshotko also give the transformed energy:equation, but this is not re~
quired in the subsequent analysis. In equation (149a)

hg )
S = — 1 - {150)

by

where by 'is the local stagnation enthalpy and by is the stagnation enthalpy in the
free stream, and . .

vo = /P (151)
The transformed boundary conditions are
U(X,0) =0 . (152a)
V(X,0 =0 ' : (152b)
S (X,0) = Sg(X) - (152¢)
lim S =0 | A | | (152d)
Yoo - v .
lim U = U (X (152e)
Yoo
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5.3 Momentum Integral

The incompressible momentum integral equation is now obtained by multiplying
the continuity equation (149b) by (U.-U), and subtracting the resulting relation
from the momentum equation (149a). This gives

9 vw, -l 9 Vu, -] + U, -~ 2
gx e T P F gy e =+ Wem W yx
du '
Loy, 2 (153)
d 9v2 :

This equation is now integrated with respect to Y from Y = 0 to A, where A is a
fixed distance encompassing the entire boundary layer. The result is

du
d e du
— (we. —_ (5 - skl 154)
T Ve 0 + Ve 37 & + &) =y (dY )w (
where ‘
A
6, = | — [1--2)ay (155a)
Ue Ue
0
A
U
&;" Ef ( - _._> ay (155b)
U, :
0
A g
§ = / S dy (155c¢)
0

are the incompressible momentum, displacement, and enthalpy thicknesses for the
boundary layer, respectively. Equation (154) is equivalent to

e (26,4 8 + 8) — = ( )
Ue

= e [ (156)
X aX gy 2\9Y /,
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Cohen and Reshotko define the following non-dimensional boundary layer
parameters:

8. s
Shear parameter: £ = —_— (_B_l_l_) (157)
U \9Y /
62 du,
Correlation parameter: N E - — (158)
VO dX

In terms of these parameters, the equation (156) can be expressed (after multipli-
cation with26; U, /vy) in the form

d n
U o o Y = , (159)
e % (dUe/dx> 2[n My + 2 + 1)
where
8"+ &
1
Hy . = — (160)

is termed the incompressible form factor.

5.4 Correlation Method

Cohen and Reshotko now assume that the non-dimensional boundary layer param—
eters { and H;,. , and also the Reynolds analogy factor (to be defined later), can
be approximated as functions of the correlation parameter n and the value Sy of S
at the wall, irrespective of the previous history of the boundary layer. This is
their generalization of Thwaites' correlation concept. On this assumption, the
right-hand side of equation (159) is a function of n and Sy :

N@, Sg) = 2ln Hjpe + 2 + ] (161)

so that (159) becomes

d n _ (162)
Ye 3% (dUe/dX) = N Se

Figure 1 shows the form of the function N(a, S;) for favorable pressure gradients
(n<0 ), based on similar boundary layer solutions for Prandtl number unity and

the viscosity law (146). The points in this figure represent results tabulated by
Dewey and Gross (ref. 26). The parametersn ,f | H; .., and N appearing in Cohen
and Reshotko's analysis are related to the quantities f”(0),I1; ,I, , and B tabu-
lated by Dewey and Gross as follows:

n=-8 122 - (163a)
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L =170 , L , (163b)

Hi = — -1 ‘ (163c)

N =25 £ - B I+ Iz)]' (163d)

The family of straight lines in figure 1 represents a simple curvefit to the Dewey
and Gross Data:

4

N(n, Sg) = A + B(S)n . | _(164)
where A | ’
B(S,) = 2.14 + 1.38(1+S,) + 093 (1+8)% _ o (165a)
and |
= 0.38 ' (165b).

The linear dependence of (164) upon n is required for further progress in the
analysis. The figure shows that the linear fit is reasonably accurate. Atn= 0,
the correct value of N(n,Sy ) is 0.441 for all Sy, whereas the analytical fit
(164), (165) gives a value of 0.38. The coefficients (165) have been chosen to
optimize the accuracy forn £ 0.1,:i.e., for rather strongly favorable pressure
gradients, because this is the region of most frequent use and greatest importance
in NATA calculations.

Substitution of the curvefit (164) into the differential equation (159) gives
TR S =A+B(S)Ln - (166)
€ dx \du/dx ) - o _

For constant wall temperature (S, = const.), equation (166) has the solution

B__°¢ 40 B~1 '
= ~AU.~ U P~ dX 167
n — | vt | e
X0
where Xg is the value of X at the point where the boundary layer starts. Initial
conditions on the boundary layer will be discussed below.
The external flowfield U, (X) is -assumed known. Thus, n can be calculated at

each point X by a running quadrature, using (167), Then the incompressible
momentum thickness 6; can be obtained from (158):

VO n
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Because the shear pargmeter { is assumed to be given as a function of n and Sy,
and because Sy is known, the shear can then be calculated from equation (157).
Similarly, the displacement thickness can be evaluated from Hjp.(n,Sw ), and the
heat flux to the wall from a Reynolds analogy factor. Thus, equation (167), to-
gether with Cohen and Reshotko's correlation assumption, provides an explicit
description of the boundary layer.

5.5 Momentum Thickness

Substitution of the Stewartson-Illingworth transformation formulas (142a)
and (145a) gives the solution (167) for n in terms of the variables for a com—
pressible two-dimensional boundary layer:

X
AM, B dM 2¢ Pe
B o —— M B! = ag (169)
2e Pe ax wa 4 Po
% %o %o

Then substitution of the Mangler fransformation formulas (140a) and (140c) gives
the expression for n in the case of an axisymmetric compressible boundary layer:

X

-B :
AM d M. a. Pe
0 = ~ i 2 M'E,B_1 — — dx (170)
) 2, Pe dx ag Py
I° e .
2y Pg

To introduce a more compact notation, let

. 2. P
o= MB-l 22 (171)
3 Pp
¢
I- / ® d¢ (172)
0
n’ = A/L® (173)

where L is a characteristic length and the index j is 0 for a two-dimensional
boundary layer and 1 for an axisymmetric layer. Then

b (174)
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where ¢ is the streamwise coordinate along the surface (equal to x - xg for the
axisymmetric case and to X - ¥%; for the two-dimensional case). Both n’ and n are
non-dimensional.

The momentum thickness for a compressible two-dimensional boundary layer is
defined by

]

§=/ i -2 \ay (75)
A Pe Ve Ue

Equations (142b), (145a), (155a), and (175) show that § is related to the incom—
pressible momentum thickness 6; by

- Po 2o
4 = 6; (176)

Pe 2¢

Application of the Stewartson-Illingworth formulas (142a) and (1l45a) to equation
(168), followed by use of (176), gives the following explicit formula for the
momentum thickness of a two-dimensional compressible boundary layer:

- oM po P
FoL |——" . 1 A fokoPe 77
dM./dX Nge, L pe pe Po
where
Pele L
NReL= —— (178)
te »

is the Reynolds number based on the characteristic scale lengthL. The value of
0 is independent of L . Because A is defined by (143), and since the pressure
gradient through the thickness of the boundary layer is negligible (Py = Pe), for
a perfect gas

o Po Pe Py g

—_—_—— = (179)
Be Pe Po Pe Pe
Hence, (177) becomes
M
R TN S S o (180)
dM/d% L Re; pgpe
The momentum thickness for an axisymmetric boundary layer is
8

pu u
A Pe Ve Ue
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From the Mangler transformation (140),

9.1 g (182)
} o

and

dM, 12 dM,

= e— 183
dx 2 dx ( )
Substitution of these relations into (180) gives
n M, 1 Por ty
g =L (184)

dMg/dx  LNgel, pe te

which is of the same form as (180). Thus, based on this formulation, the differ-
ence in momentum thickness between axisymmetric and two-dimensional boundary
layers with the same external flow Me (£ ) arises entirely from the difference in
n resulting from use of equation (169) in the 2D case and (170) in the axisym-
metric case. 1In both cases, the momentum thickness can be expressed, with the
aid of (174), in the form

n’ Py
NReL Pe He

8 =L (185)

The above formulation assumes, in the axisymmetric case, that the boundary
layer thickness is everywhere n@gligible compared with the distance r of the wall
from the axis of symmetry. This assumption is not necessarily valid far down-
stream in an axisymmetric nozzle, where the local Reynolds number Np. can become
quite low owing to the rarefaction of the gas. Accordingly, for axisymmetric
nozzles, NATA applies an approximate transverse curvature correction to the momen-
tum and displacement thicknesses. This correction is based upon the following
reasoning (reference 30). Figure 2 shows a portion of an axisymmetric nozzle, in
cross section, near a location where the nozzle radius is r and the tangent to
the nozzle surface is inclined at an angle. b. to the nozzle axis. The actual momen-
tum thickness 0° , including the effects of transverse curvature, is shown, The
flow area in the boundary layer, based on the thickness 6°, is- the area of the
conical frustum whose cross section is represented by the line segment AB in the
figure. This area is given by

A = 7(2r — 0 cosb) 8’ (186)

It is assumed that this flow area is equal to the flow area 2#rf, where 6 is the
momentum thickness (184) or (185) based on the thin-layer analysis. This assump-
tion gives the relation

9o =i 1 20cosb (187)

cosb r

This correction increases the calculated momentum thickness for axisymmetric
nozzles.
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5.6 Displacement Thickness

Cohen and Reshotko’ (ref. 23) give the following relation between the displace~
ment and momentum thicknesses:

5" Ty
- = e+ D == -1 (188)

€

where Hi,. is defined by (160). This relation can also be derived from relations
given by Dewey and Gross (ref. 26) for similar boundary layers with arbitrary -
Prandtl number, free-stream Mach number, and viscosity-temperature indexw, for
zero sweep angle, NATA calculates 8" from (188), using an analytical curvefit to
H;,. based on the Dewey-Gross data. For axisymmetric boundary layers, NATA uses

the momentum thickness f’ corrected for the transverse curvature effect, equation
(187), in (188).

The curvefit to the incompressible form factor is

4.6
Hy +1 = {0.25 +0.75 %081 4+ (3 -~ 15.6n) (1 +Sw)]} .

-0.40n
cl(1+sy) 4 NPf_o.47aenNP,] (189)

where Np, represents the Prandtl number and ¢ is the hypersonic parameter

uez

o = (190)
2hy

This formula contains two main factors. The first, enclosed in braces, gives the
dependence of H,. upon n and Sy for Prandtl number unity and ® = 1. The second
factor, in brackets, gives the dependence on Npr ando . The dependence of Hj,.
upon the wviscosity~temperature indexw , defined by :

’ ~ T (4] .
l‘_w = (:f;' (191)

is weak and is neglected in (189). Figures 3 to 5 compare the curvefit (189) with
data on Hj,. calculated from Dewey and Gross's tabulation of similar solutions.
The abscissa in these plots is 1+ Hj,. as calculated from (189), while the ordinate
is 1+ Hj,c based on the Dewey and Gross data. The plots include data for Np, = 0.3,
0.7, and 1.0, for » = 0.5, 0.7, and 1, for ¢ = 0, 0.5, and 1, for (1+S¢) = T,/Tp
from 0 to 1, and for values of B (the Falkner-Skan parameter) from O to 5. The
root-mean-square percentage error in '(l1+H;;) based on the curvefit, for the 405
data points considered in the fitting analysis, is 5 percent. The largest in-
dividual error is 17 percent. ’

In the limiting case of an infinite favorable pressure gradient (B8-«), Dewey

and Gross's integral Ii is zero (reference 26). Thus, from (163c), Hjzc~>—1. The
curvefit (189) does not reproduce this limit exactly. For B-e«n- -« according to
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(163a); thus, the term containing the factor 646“

and the limit of (1+Hjy) is o

in (189) has a limit of zero,

—0.4&1Npr

lim [1+H (fio] = 0.25 [(_1 +Sy) ~0.47 gl Npr] ' (192)
ﬁ-)oo 3

For example, if Npr = 0.7, (1 +8y) = 0.1, and 0 = 1, this limit has the value 0.22.
The correct value for B-~ Wwould be zero. However, the Dewey-Gross data show

that the approach to this limit is very gradual. For the pressure gradients en-
countered in NATA runs, (189) is of acceptable accuracy.

5.7 S8hear Stress
The shear stress 7y at the wall can be calculated from the definition and

value of the shear parameter{ . From equations (157), (142b), (145a), (140b),
and (182),

Py by, L
ry = (193)
Pe 0

for either an axisymmetfic or a two-dimensional boundary layer.

Values of ¢ can be obtained from Dewey and Gross's tabulated similar solu-
tions using equation (163b). Values of the shear parameter thus obtained have
been curvefitted by the following expression:

1+4.5(145,)02

¢ = | 0.220
>t 53 , 506
("ﬂ) (—0)0'224
350/ 157 _
| g + 045(1-w) \1-e ~ + @y (194a)
where
do = exp {_ 0.427 [ (145~ (1= -1]} (194b)
0.76 (1—e) 12 (1 = VIZo)
¢ = e . (194¢)
1+g(—n)
-29(1 37(1+S
a = 155 e 29(1+Sy) + 0.67 e43 (1+ Sy) (1944d)
b = 0.7 + 047 (1+8Sy) (194e)

The first factor in (194a) gives ! as a function of n and Sy for o = 1. The
second factor gives the dependence on o and ¢, The dependence on Prandtl number
is weak and is neglected. Thus, equations (194) represent [ as varying with the
hypersonic parameter ¢ even for Npr = 1. In theory, the boundary layer properties
should be independent of ¢ for Np; = 1. The Dewey-Gross data indicate little
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dependence of { on Np; in the range from Np, = 0.5 to 0.7, and thus provide no
basis for fitting a Prandtl number dependence which would cause the dependence
on ¢ to vanish for Npr = 1. These formulas should, in any event, be satisfactory
for air, in which the Prandtl number is about 0.7.

In typical applications of NATA, the enthalpy ratio parameter (1+Sy) is
small of order 10-2. The smallest value of (1+Sy) in the Dewey-Gross data, for
o <1, is 0.05. Thus, application of these data in the code normally requires an
extrapolation to (1 +Sy) values beyond the range investigated by Dewey and Gross.
Unfortunately, the data for (1+Sy) = 0.05 and 0.1 indicate that { has a strong
dependence on (1+Sg) for small (1+Sy) and w < 1. As a result, the extrapolation
to still smaller values of (1+Sy ) is a potential source of sizeable errors. The
rather complex curvefit (194) was developed in an effort to minimize such -extrapo-
lation errors by fitting the Dewey-Gross data for small (1+S) as closely as
possible.

Figures 6 through 8 compare the curvefit (194) with { wvalues obtained from
Dewey and Gross's tabulated similar solutions. The 405 cases used in the compari-
son include Prandtl numbers of 0.5, 0.7, and 1, @ values of 0.5, 0.7 and 1, values
of the hypersonic parameter o of 0, 0.5, and 1, several temperature ratios 1+S
in the range from 0 to 1, and values of the Falkner-Skan parameter B8 ranging from
0 to 5. The root-mean-square percentage error is 2 percent. The largest individual
percentage error is 17 percent.

5.8 Heat Flux

Because the energy equation is not used in the Cohen~Reshotko correlation
method, the heat flux 9y is calculated from the shear stress 7y using a Reynolds
analogy factor based upon similar solutions. The formula is

Uy h, - hy, (195)
L P ——————————————— 1
Tw Rp ue Nppy

where h; denotes the recovery enthalpy and RA the Reynolds analogy factor. The
expression for recovery enthalpy recommended in the literature (ref. 25, p. 296)
is

hr.= he + \/ﬁ?’: (hO"he) (196)

However, the data tabulated by Dewey and Gross are fitted more accurately by

0.56

h, = by + Np 36 () — hy) (197)

which is the formula used in NATA. The Reynolds analogy factor is given, in terms
of quantities tabulated by Dewey and Gross, by

R £7(0) taw ~ w
AT 70 T 1w, . (198)
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Here, taw = h; /hp. A curvefit to tay , based upon equation (197), is
taw = 1-0 (I- NPIO'SG) (199)

The Reynolds analogy factor based upon Dewey and Gross's tables has been curve-
fitted in the following form:

-0 n
R, = Np,~03 [1_ m] (200a)
where
1
aR = (1+Sw)—0.860){
6.2+ 2.35 (1+5,)~0-8

+

(1= Npp? [-0.185 (1+2S,) +0.29 (1 +5,)°38 /0] } (200b)

bg = 0.94 = 1.31 (1 +8,)0+48

laNp, {0.62(1+S) +[3.5(1~w) =049 ~361(1+S )0} . (200c)

As in the case of the shear parameter, a relatively complex analytical form is
used in an attempt to minimize the errors resulting from extrapolation to values
of (1+8,) below the range covered by the Dewey-Gross data.

Figures 9 through 11 compare the curvefit (200) with data from Dewey and
Gross. The ordinate in these figures is 6°(0) /£7(©) , computed from values in
their tabulation of similar solutions. The abscissa is the quantity
Ueag — o)/ (1= t)1/Ry (fi0) , calculated from equations (199) and (200). Equation
(198) shows that the ordinate and abscissa would be equal if the curvefit were
exact. This manner of plotting the comparison tests the curvefit (197) for the
recovery enthalpy together with the fit (200) for the Reynolds analogy factor.
Figures 9 through 11 do not include the Dewey-Gross points for which ty = 1 or
tw = taw . Such points were excluded because it was difficult to fit both the
high-wall-temperature and low-wall-temperature heat transfer data accurately using
a single analytical formula. The fit to RA thus applies only to cases in which
the wall temperature is lower than the adiabatic wall temperature, which is always
the case in typilcal applications of NATA. The plots in figures 9 through 11 con-
tain a total of 321 points. The root-mean~square percentage error for these
points is 9 percent. The largest individual percentage error is 127 percent, in
a case with ty = 0.6 and tyy = 0.67. The error arises partly from inaccuracy in
the curvefit to the adiabatic wall temperature. Another similar point has an
error of 79 percent. If these two points were excluded, the maximum percentage
error would be 24 percent and the root-mean—square percentage error would be
3 percent.
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5.9 Dependence of the Momentum Parameter N Upon Np, and w

Cohen and Reshotko assumed the parameter N, appearing in the form (162) of
the boundary layer momentum equation, to be a function only of n and Sy,. When
N is evaluated from the Dewey-Gross data using (163d) it is found to vary with
Np,, w, and o as well as with n and Syy. Cohen and Reshotko neglected the dependence
upon these additional parameters because they determined N from similar solutions
for Np, =® = 1. For these conditions, the boundary layer properties are inde-
pendent of o . ‘

Because the solutions tabulated by Dewey and Gross include the dependence
upon Np, , ®, and 0, it appears desirable to determine whether this information
can be used to improve the accuracy and range of applicability of the Cohen=
Reshotko correlation method. The solution (167) of equation (166) is valid only
if the coefficients A and B in the linear curvefit (164) are constant for each
problem. Since ¢ varies within each problem, from zero in the upstream reservoir
to nearly 1 at the downstream nozzle exit, including the dependence on ¢ would
lead to inadmissible variation of A and B. Thus, the dependence on ¢ must be
neglected.

Inclusion of the dependence of N upon the Prandtl number leads to no incon-
sistency or difficulty so long as Np, is constant for each problem. However, in-
clusion of the dependence upon @ involves a logical inconsistency, because the
derivation of equation (162) involves the assumption of the viscosity law (146),
which is equivalent to (191) with o = 1. Nevertheless, a dependence of A and B
upon © is compatible with the solution (167), so long as  is constant for each
problem and the inclusion of such a dependence can be Justified by comparison with
Dewey and Gross's similar solutions (see below).

The variation of N with Np; and o can be fitted approximately by retaining
the analytical form (164) and the expression (165b) for B, but replacing (165a) by

~6.67(1+S
= 0.38-0.76 Np, (1 -w) e Sy _ - (201)

Figures 12 through 14 compare the curvefit given by (164), (165a) and (201) with
the Dewey-Gross data. The straight line in the figure is the locus of agreement
between the fit and the data. The curvefit represents the data reasonably well
for N values less than about 0.2, but is systematically too low at higher N.

This is the same discrepancy seen near the right-hand edge of figure 1, where the
linear curvefit N = A 4+ Bn lies beneath the upward-curving relationship N(a, Sy )
given by the Dewey-Gross data. The region of N values where the curvefit is most
accurate corresponds to values of the correlation number n less than about -0.05,
i.e., to the range of strongly favorable pressure gradients which is important

in NATA runs for axisymmetric nozzles. For channels, smaller values of n of
order ~0.01 are encountered on the expanding face.

The validity of treating the parameter A in equation (166) as a function of
o and Np;, in accordance with (201), can be tested by applying the Cohen-Reshotko
integral method to some of the similar solutions tabulated by Dewey and Gross.
These similar solutions assume that the Falkner-Skan parameter B is constant. By
definition
26 due To

u ¥3 T

(202)
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P-4

&= /pw fy Y 2 dax (203)
0

For py py, = constant and j = 0, (203) becomes

X

¢ = Pw#w/uedx S -' (204)
0

To simplify the analysis, cases with ¢ << 1 are considered, Then (202) gives,
upon integration with To/T. = 1,

&= ku/B (205)
With the aid of (204) and (205), equation (202) can be converted into a differ-

ential equation with x as the independent wvariable:

2K uﬂ(?'/ﬁ)"2 due

dx =
Pw oy B (206)

Foro<< 1,

—_—1 {207a)
ao
Pe
—_~ (2076)
Py
M, ¥ ue/ao (207¢)

Thus, for the cases under consideration, the quadrature in equation (169) can be
performed analytically with the aid of (206) and (207). The result is

A

T T B2+ @B (208)

With equation (164), this can be written in the form

N(fit)
0 = = ——— (209)

G-
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Figure 15 compares values of n calculated from (209) with values obtained
directly from (163a), for a number of the similar solutions tabulated by Dewey
and Gross. The filled circles represent data for @ = 1, Np; = 1. The other
symbols refer to cases with o # 1. Cases with 8 = 1, for which the denominator in
(209) is zero and N(fit ) is small, are omitted. The line is the locus of agree-
ment. The figure shows that the n ‘values calculated from (209) agree reasonably
well with the correct values based on (163a). The agreement is nearly as good for
@£ 1 as for w = 1. If the dependence of A upon » and Np;, as given by (201),
had not been included in the calculation, the agreement would have been poorer
for the cases with w # 1, especially for smaller-magnitude values ofn ., Thus, the
use of (201) to determine the coefficient A in equation (166) appears justified.

The data in figure 15 are all for ¢ = 0. If data for other values of ¢ had
been included, the scatter would have been greater, especially for small |n| .

It is also of interest to compare the predictions of momentum thickness based
on the Cohen-Reshotko integral method with the exact results for the similar solu-
tions. Substitution of equations (204) to (208) into the formula (177) for the
two—-dimensional momentum thickness gives, with use of (179),

; ‘/ A 2k u /P -2
CR-Y B-2+28 B pe2 (210)

The momentum thickness for similar solutions, based on relations given by Dewey
and Gross, is ‘

LV2¢E 212 ko ZP-2

Pele pe2

(211)

fpG =

where £ has been expressed using (205). From (210) and (211),

fcr A 1 212)

According to equations (163a) and (208), the quantity under the radical is simply
the ratio of the correlation number n, as evaluated using the Cohen-Reshotko
method with the curvefit (164), to the correct value of n for the similar solutionm.
Thus, to the extent that (208) agrees with (163a), the Cohen-Reshotko integral
method gives the correct momentum thickness when applied to similar boundary layer
problems, at least in the limit o << 1 that is treated by the preceding analysis.

The remaining boundary layer properties, 8" » 'w » and 9y, , are all calculated

from the momentum thickness using curvefits to relations based on similar solutions.
Thus, their accuracy should be comparable with that of the momentum thickness.

5.10 Initial Condition

The initial condition on the solution (167) of the Cohen-Reshotko differential
equation (166) is embodied in the lower limit of integration,Xy . If U, is
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non-zero at X = Xg, thenn = 0 at that point. In that case, the incompressible
momentum thickness 0; is also zero at X;. If X = X9 is a stagnation point

(Ue = 0) then n(Xg) is not zero and the boundary layer starts with a finite
thickness.

It is difficult to specify a fully satisfactory initial condition for the
boundary layer in an internal flow system such as an arc-heated wind tunnel.
Under some circumstances the boundary layer might extend upstream along the wall
confining the flow, through the plenum chamber (if any) and the arc heater. The
conditions in these regions upstream of the nozzle are poorly known and generally
chaotic because of the presence of the arc column, swirl caused by tangential
gas injection and, in some cases, free-stream turbulence. In general, the cross
sectional area of the flow is finite everywhere, and any stagnation point which
may exist in a “corner" of the wall profile is likely to receive an influx of
boundary layer gas from further upstream,

In NATA, no attempt is made to model the detailed geometry of the plenum and
arc chamber. The boundary layer is assumed to start at a somewhat arbitrary point
near the juncture between the nozzle and the plenum. The uncertainty in x; due to
the arbitrariness in the choice of this starting point affects the value of the
integral I (172). The resulting uncertainty in I, in turn, affects n’ (173),

n (174), and thus 6 (185), & (i88), 7w (193), and 4qy (195). The percentage errors
in these boundary layer properties, due to an error in %3 , decrease downstream as
the value of I increases.

Some insight into the dependence of these errors upon x can be obtained by
examining the behavior of the integral I in the limits of low and high Mach number.
At the assumed boundary layer starting point X3 , the Mach number is much less than
unity. Thus, a,/ag ¥ p./pp = 1, and I is approximately

¢
1 .
1Y AlaB-1ag (213)
2 B-1 .
0
0
In the two-dimensional case (j = 0), the contributions to I from points near & =

are relatively small because u. is low in that region and, according to (165a),
B-l14is a little greater than 1. Thus, for two-dimensional boundary layers, the
results in the throat region and downstream should be rather insensitive to the
value of X; chosen, so long as it defines a point well upstream of the throat
where the Mach number is low.

In the axisymmetric case (j = 1), however, the continuity equation pucA’
constant shows that gll@ is roughly constant in the subsonic part of the
flow, because 2l is proportional to the cross sectional flow area A", 5..1is
approximately 1, and p is almost constant. Thus, the results for an axisymmetric
boundary layer are more semsitive to the choice of x; than those in the two-
dimensional case.

For flow over a flat plate at zero angle of attack, the integrand & (171) of
I is comstant, so that I « (x-x3). In that case, the relative error in I due to
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an error in x9 decreases as (x-—xo)‘l. For flow of a perfect gas in an axisymmetric
nozzle, the integral can be expressed in the form

¢
0.5+ 1/ (y-1 1 -1
_r2f 2 y=1_2 B-3
I =Ry (y+1> / [1+ - M, } M, dé (214)
0

In the limit of high Mach number, the integrand varies as MeB“f‘. Since B~ 2.2
for cases with a low wall temperature, the integrand decreases more rapidly with
increasing £, at high Mach number, than in the case of a flat plate, and the ef-
fects of an error in %3 wvanish more slowly.

5.11 Coupling with the Inviscid Flow

The method by which the boundary layer is coupled with the inviscid flow in
NATA has been explained in Section 4, Briefly; the boundary layer solution is
generated step by step along with the inviscid solution. The inviscid flow vari-
ables at each point are used in determining the boundary layer parametersn, 0,
8", ete. , and the displacement thickness 8 at each point is used in the inviscid
solution to provide a relation between the geometric area ratio A and the effec-
tive area ratio A. (Section 4.4).

A fundamental problem in the calculation of coupled solutions for a confined
inviscid flow and the boundary layer on the confining wall is that the system of
equations for the coupled flow is unstable at supersonic Mach numbers (ref, 27,
p. 377). 1If the boundary layer is computed using the Cohen-Reshotko integral
method, as in the NATA code, this instability arises as follows: Assume that
there is a small initial error in the Mach number gradient, dM./d¢. If this
gradient is too high, then the correlation ‘Farameter n (174) has too large a nega-
tive value. Then the exponential factor e 68 in the correlation (189) for the
incompressible form factor Hjhc is too small, and as a result, (1 + Hipe ) is too
small. Correspondingly, the displacement thlckness 8" calculated from (188) is
too low. When this erroneous & is used in the inviscid flow calculation, the
effective area ratio computed is too high, so that the corresponding Mach number
is too high. Then the next-computed value of the Mach number gradient, dMe M€,
is too high. Under some conditions, the error in the new dM./d¢ can be larger
than the previous error which led to it. In such cases, the error is amplified
from step to step, and the solution becomes unstable. Such instabilities were
actually observed in some solutions run during the development of the NATA code.

To avoid such instabilities, NATA uses a computational artifice. The incom~
pressible form factor (189) is calculated from a smoothed value © of the correlation
parameter n , rather than from the actual current value of n ., 1In some earlier ver-
sions of the code, i was defined as an unweighted average of n over the entire
portion of the boundary layer upstream of the current flow point:

o1
"
w
1| =
&
=]
o
x
~
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However, this has been found to be an unnecessarily severe approximation. 1In the
current version of the code, 7 is defined as an exponentially weighted average over
the upstream part of the solution:

x
F=5b n(x’) e—(x—x')/a dx”’ (215)

*o

Here a represents a characteristic averaging distance, such that @ depends mainly
upon the values of n at points lying between x—2 and x. The coefficient b is
chosen such that, for n = constant, (215) gives @ =n. For x-xy>>a , the value
b = 1/a gives accurate results. The algorithm actually used in the code is de-
rived from (215) as follows: Let fi, be the i at the previous point of the solu-
tion, and let Ax denote the current step size. Then application of (215) to the
current solution point gives, with b = 1/a,

e
x H

7= e~ Ax/a +i / n(x) e~(x=x0/a g (216)
a .
x - Ax

The integral on the right is approximated by treating ©n as constant over the step.
Then

- Ax/a)

+ n(l-e

g = ﬁb e—Ax/a (217)

This relation gives o as a weighted average of the @ for the previous step and
the n for the current step.

The step size in NATA solutions is typically small in the throat region and
quite large in the downstream region of high Mach numbers. An a value of a few
times the local step size is required for stability. If a is many times the local
step size, the solution remains stable but is affected to an inordinate extent by
the use of @ in place of a. Therefore, the averaging distance used in NATA is
varied according to the following rule:

- Ry Ag/w | | (218)

where Ry denotes the throat radius, A, the geometric area ratio, and w a constant.
Over a large part of the supersonic region, A,/Ax is approximately constant for
frozen NATA inviscid solutions. In this region, (218) gives a/Ax ¥ constant.

Averaging of n over a fixed number of previous points in the solution would
be simpler than (218), but would cause the solution to depend upon the step size
used in running the problem. The averaging prescribed by (217) and (218) makes
the solution approximately independent of step size.
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The smoothed value @ of the correlation parameter is used only in calculating
the form factor (and thus the displacement thickness). The shear parameter f and
Reynolds analogy factor RA atre computed from the actual current value ofn . Thus,
the shear stress and heat flux are unaffected by the smoothing procedure, apart
from any resulting errors in the inviscid solution itself.

5.12 Geometric thfons

The basic geometric options available in NATA (two-dimensional nozzle, axi-
symmetric nozzle, and rectangular channel) have been described and discussed in
Section 4. The present section deals with the treatment of these options in the
boundary layer calculations.

The application of the Cohen-~Reshotko in%egral method to two—-dimensional and
axisymmetric boundary layers has been discussed explicitly in preceding parts of
the present section. The entire difference between these two cases is contained
in the exponent j appearing in equation (171). If n” is calculated from equations
(171), (172) and (173), and § from (185), then all of the boundary layer proper-
ties are obtained simply by setting j = 0 for the two-dimensional case and j = 1
for the axisymmetric case.

However, the third option (the rectangular channel) requires some further
discussion. A channel has two pairs of nominally identical faces. If a channel
face is of constant width, the boundary layer on it can be approximated as two-
dimensional. 1If a face has variable width, the streamlines in the boundary layer
converge or diverge. The effects of such a flow geometry upon the continuity
equation for the.-boundary layer can be taken into account by treating the boundary
layer as axisymmetric in this case, but omitting the transverse curvature correc-
tion. For example, a channel face which is widening in the downstream direction
can be regarded as equivalent to the surface of a diverging axisymmetric nozzle
whose circumference is equal to the width of the actual face at each axial positioa.

Since the widths of the two sets of faces of a channel vary differently with
axial position, two independent boundary layer calculations are performed in
channel flow solutions. Both boundary layers are treated formally as if they
were axisymmetric, i.e., using equation (170) to calculaten ., For each layer, the
equivalent radius r in (170) is taken to be the half-width of the channel face
upon which the layer lies. No attempt is made to correct for the interaction of
the boundary layers on adjoining channel faces in the corner regions.

5.13 Examples and Discussion

The present section exhibits selected results of NATA flow solutions includ-
ing the boundary layer. These examples are intended to illustrate certain aspects
of the NATA boundary layer calculations and to provide, by comparisons with exper-
imental data, some indication as to the accuracy of the results.

Figures 16 through 20 show some of the results of a non-equilibrium solution
of the flow in a rectangular channel. The channel has a 2.54 x 5.08 em (1 x 2 inch)
cross section at the throat. In the downstream region, the 5.08 cm dimension is
constant, and the other dimension increases from 2.54 to 53 cm at the exit, 145 cm
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beyond the throat. In the region between 103 and 143 cm downstream of the throat,
one of the wide faces of the channel is instrumented with pressure taps and flush-
mounted heat transfer gages.

The flow solution illustrated in figures 16 through 20 simulates a test with
an actual channel at the NASA Johnson Space Center ARMSEF facility. The heated
air flow was supplied by the Dual-Constrictor Arc. The conditions of the test
were as follows:

Mass flow = 0.0454 kg/sec (0.1 1b/sec)

Plenum pressure = 0,919 atm

Reservoir temperature = 68790 K

Stagnation enthalpy = 25.1 MJ/kg (10799 Btu/1b)
Reservoir molecular weight = 18,36 gm/mole

The mass flow and plenum pressure are measurements. The other values were com~
puted by NATA from these data.

Figure 16 shows the variation of heat flux and shear stress with the axial
coordinate, x , for this case, for the region from 0.1 m beyond the throat to the
end of the channel. The curve labeled 4w] represents the calculated heat flux to
one of the broad faces of the channel, The three vertical bars represent heat
flux measurements, Experimental data were available from three heat transfer
gages at each of three axial positions. The ranges of values indicated by the
vertical bars show the lateral variation of heat flux at each axial station. In
most cases, the heat flux measured on the centerline of the channel face was higher
than the values obtained from the off-axis gages. The main source of the varia-
tion in heat flux was lateral non-uniformities in the flow.

The curve labeled dyy represents the calculated heat flux to the narrow
(5.08 cm wide) face of the channel. 4y is smaller than dy] because the boundary
layer on the narrow face is thicker than that on the wide face. The curves
labeled ry; and 7,y represent the calculated shear stresses on the wide and narrow
faces of the channel, respectively. No experimental measurements of q,5, 741 , OF
Tw2 are available.

Figure 17 shows the variation of the static pressurc " the Mach number with
axial position for the same case. The three circles rep - experimental
measurements of the pressure on the centerline of one of .ne wide channel faces.
The Mach number at the channel exit is about 4.5.

Figure 18 shows the geometric area ratio A, and the effective area ratio A,
as functions of axial position. At the exit, Ai is about 30 percent smaller than
A,. Figure 19 shows the momentum and displacement thicknesses. The momentum
thickness 6; on the broad face is smaller than that (0) on the narrow face of
the channel because of flow-divergence in the boundary layer on the broad face.
For x less than 0,155 meter, both displacement thicknesses, 81* and 82* are nega-
tive. In this region, the effective-cross sectional area of the flow (4) is
larger than the geometric cross section (Aé ). However, as shown in figure 18,
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the effective area ratio A is smaller than the geometric area ratio Ag. These
data are mutually consistent because the effective flow cross section A/, at the

sonic point is larger than the geometric cross section AgO at the throat. (See
equations (113) and (114).)

Figure 20 shows the correlation parameters; n] and ny, for the boundary
layers on the broad and narrow channel faces, respectively, together with the
corresponding smoothed values n; andn2 , calculated from equation (217). The
smoothed values track the local values quite well. The local values n; and n; are
shown for every step of the non-equilibrium solution in the region covered by the
graph. Irregularities in step size between x = 1 m and the exit are due to in-
sertion of steps at specified channel widths corresponding to the locations of
heat transfer gages and pressure taps.

Figure 21 presents a comparison of NATA heat flux calculations with experi-
mental data on heat flux to the channel wall for eleven cases. The mass flows
for these cases ranged from 0.028 to 0.091 kg/sec, the plenum pressures from
0.544 to 1.985 atm, and the stagnation enthalpies from 10 to 47 MI/kg. The verti-
cal bars indicate the range of heat flux values observed at different lateral
positions at .each axial station, The dashed line is the locus of agreement be-
tween the calculations and the experimental data. The unbroken line is a fit by
eye to all of the data bars shown. Based on the unbroken line, the heat flux as
given by NATA is too low by 28 percent, on the average.

Figure 22 is a similar comparison of NATA static pressure calculations with
experimental measurements using the centerline pressure taps in the channel. The
flow cases are the same as in figure 22. Based on the curvefit provided by the
unbroken line, the static pressures given by NATA are too low by 20 percent, on
the average.

One possible explanation of this discrepancy in static pressure would be
that the effective area ratio, as computed in NATA, is too large because of errors
in the boundary layer displacement thicknesses. To test this hypothesis, the
ratio of experimental and calculated pressures is plotted versus the calculated
displacement thickness on the broad face in figure 23 for a single station in the
channel. If the errors in pressure were due to a sysgpmatic error in displacement
thickness, this ratio would be close to 1 for small §; , and would diverge from
unity as 81*increased. Figure 23, however, shows that the ratio has no significant
correlation with displacement thickness. Thus, the hypothesized explanation is
rejected. The apparent systematic error in static pressure is probably a result
of lateral non-uniformities in the flow. The pressure data were all taken on the
centerline of the channel face. If the off-axis pressures were lower than the
centerline pressure, then the average pressure would be more nearly in agreement
with the results of the NATA calculations, which are based on a uniform-flow model.

The boundary layer calculations in NATA involve many approximations, includ-
ing those listed below:

(1) The assumption of uniform inviscid flow
(2) The correlation assumptions in Cohen and Reshotko's method

(3) The analytical curvefits (164), (165), (189), (194), (200), (201) to the
results of similar solutions

.
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(4)

E))

(6)

o))
(8)

€))

The assumed initial condition (Section 5.10)

The smoothing (217) of the correlation parameter to stabilize the coupled
problem of the inviscid flow and the boundary layer

The linearity of the relation (164) assumed between the momentum param-
eter N and the correlation parameter n

The neglect of the dependence of N upon the hypersonic parameter

The use of a Reynolds analogy factor, based on similar solutions, to
calculate the heat flux

Approximations to gas properties used in the analysis, i.e., the perfect
gas law and the viscosity-temperature relation (143).

The combined effects of these approximations could account for sizeable errors in
the results of ‘the boundary layer calculations. 1In the context of these approxi-
mations, the discrepancies actually seen in figures 21 and 22 appear moderate in

magnitude.
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6. EQUILIBRIUM AND FROZEN FLOW

NATA performs two types of thermochemical equilibrium calculation:

(1) Equilibrium at specified temperature and pressure. This calculation is
done by subroutine EQCALC., It is used in-the determination of the res-
ervoir conditions and in the computation of conditions behind an equilib-
rium normal shock on a model.

(2) Equilibrium at specified temperature and entropy. This calculation is
done by subroutine NEWRAP and is used in generating the solution for
equilibrium flow of the gas through the nozzle.

The technique used in the thermochemical equilibrium calculations at. specified
temperature and pressure is explained in Section 6.1. Section 6.2 discusses the
inviscid equilibrium flow calculation. Section 6.3 discusses the coupling of
the inviscid flow with the boundary layer on the nozzle or channel wall. Sec-
tion 6.4 discusses the frozen flow solution, which is generated using techniques
similar to those used in the equilibrium solution, with the constraint that the
species mole fractions are constant at their reservoir values. Finally, Section
6.5 explains the three options available in NATA for specifying the reservoir
conditions, based on input of reservoir temperature and pressure, of reservoir
pressure and total mass flow, and of stagnation enthalpy and total mass flow.,

6.1 Thermochemical Equilibrium at Specified Temperature and Pressure

A chemical reaction can be specified symbolically in the form

E Vi Mi = E V’i M] (219)

reactants products

where the M;, M; represent chemical species and the v;, v/ are the stoichiomet-

ric coefficients. The condition for equilibrium of the reaction is (ref. 2, pp.
284-285 and 952~953)

Z: vi iy = E v gy (220)

reactants products

in which p;, p; represent the chemical potentials of the reactant and product
species. From equation (21) and the relation

1

b = p X (221)
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between partial pressures p; , mole.fractions Xj, and the gas pressure p, the
chemical potentials can be expressed in the form

pip o= pu® + bop +0n X, (222)

in which the chemical potential y;° at the standard pressure is a function only of
temperature.

Application of the equilibrium condition (220) to the reactions (5) for
forming the dependent species (i = ¢ + 1, ..., n) from the independent species
(m =1, ..., c) gives

us (223)

]
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I
n
B
=
B
~
e
]
(o]
+
R
(]
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Substitution of equation (222) for the chemical potentials appearing in this
relation gives an explicit expression for the mole fraction X; of the ith depend-
ent species in equilibrium with the independent species:

vE. =1 v _
X; =K;p 7€ H Xy b ¢, k (224)
k=1
where
(o] € -
# o
Ki =exp | ~ . v _ Hi (225)
1 R T i-c, k
0 e RoT

is the equilibrium constant.

Conservation of the chemical elements can be formulated using equation (16):

n

X; = q - E X [;i—c,j - g (ﬁ_{c*l)] (226)

i=c+1

Here the gqj are the normalized coefficients (10)' expressing the elemental composi-
tion of the gas in terms of the independent species, and the X; (for j =1, ..., ¢)
are the mole fractions of those species. The (n—c) equations (224) together with
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the cequations (226) provide a system of n equations for determining the mole
fractions Xp (m = 1, ..., n) of all the species. However, if equations (224) are
used to eliminate the mole fractions X; of the dependent species from (226),
equations (226) become a system of ¢ equations for the mole fractions X; of the
¢ independent species. This formulation of the thermochemical equilibrium prob-
lem thus reduces the number of equations to be solved from n (the number of
species) to ¢ (the number of elements). Since the right-hand side of (224) con-
tains a product of mole fractions Xy raised to various powers Vl__c,m the systenm
of equations is, in general, non-linear.

In NATA, these equations for the mole fractions of the independent species

are solved using the Newton-Raphson method. Equations (226) are rewritten in
the form

n

F,-(Xl,...,xc) =g - E X; I:;i—c,j“‘lj (Vi"__c-—l):] - Xj =0 (227

i=c+1

The component mole fractions in the oth

to first order,

C r
JF;
Fj 't = Fj g + z ;(a——’> K™ - %0 (228)
Xm

m=1

iteration will be denoted by Xf. Then,

where (315/3Xn9 denotes the derivative of F; with respect to Xm, evaluated using
the mole-fraction values of the rth iteration. This derivative can be determined
analytically by differentiating (227):

m m

D [Fimer m 9 Y] - (229)

since the 9j» v; » and % _  are all independent of the mole fractions for a
given gas model. Tﬂe subscripts j and mrefer to independent species, while i
refers to a dependent species. Thus

X 1 for j=m
]
—_l e 5 = (230)
d jm
Xm 0 for j4m
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and from logarithmic differentiation of (224),

c

axi k D-i—c,k B Xi?"-i—c,m ‘ ' ' ‘
ax, = N X X (231)

k=1

Substitution of these expressions into (229) gives

n

3Fi X; 5
x. 2 : [7i—c,i -9 ‘”*i—c'”] % Yi-em m . (232)
m m

i=c+1

The object of the Newton-Raphson iteration is to make the Fj (Xg) all equal
to zero. Hence, in equations (228), the Fj X Pt ly are set equal to zero, for
j=1to c. This gives the following system of equations:

c

r
9F;
- x (=) n = F D (233a)
m axm m ) . ‘

m=1

where the hm‘are the relative corrections to the mole fractions:

me+1 - me ’ ) V
m A — (234)

Xm

such that the corrected mole fractions are given by

X t+1 X f (1+h t) ‘ (235)

(233a) is a system of ¢ linear, inhomogeneous equations for the h,®. Substitution
of (232) into (233a) gives the matrix of coefficients in the form

i=c+1

In the special case of a gas model in which there are no dependent species
(i.e., in which the number of species n is equal to the number of chemical ele-
ments c ), the above formulas remain valid if the sums running over the dependent
species are eliminated. These are the sums in which the summation index runs
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from ¢ +1 ton. Equation (226) shows that, in this special case, the mole
fractions X; are equal to ¢ and thus are constant. . Equations (227), (233a),
and (233b), with the sums over dependent species eliminated, show that the
Newton-Raphson procedure gives this solution for the independent mole fractions
correctly on the first iteration.

In NATA, the system of equations (233) is solved for the corrections hpf,
at each stage of the iteration, by calling a subroutine (DSMS@L) for simultaneous
solution of a system of linear equations. The iteration is continued until the
hy! are all less than or equal to 10-6 in absolute magnitude. Once the iteration
has converged, the entropy, enthalpy, and mean molecular weight of the equilib-
rium gas mixture are computed from equations (30b), (26), and

VW = E X; W; (236)

The gas density is then computed from the ideal gas relation

p = BV (237)
RoT E

Finally, the density and enthalpy are corrected for gas imperfections using
equations (79b) and (81).

It should be noted that the mixture enthalpy given by (26),

H = E X; Hj (238)

is the enthalpy per mole of mixture. The specific enthalpy (enthalpy per unit
mass) is

H

h = 4 , (239)

where V is the mean molecular weight !(236). In the internal calculations of
NATA, the species molar enthalpiles H; are computed in the non-dimensional form

CSHY () = 5 (240)

where Ry is the universal gas constant and T; the reservoir temperature, and
the specific enthalpy is given as
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Woh
- (241)

CH =
Ry To

where Wy is the molecular weight in the reservoir. From equations (238) to
(241),

n

, WOZ
CH = - Xy - SHJ 4] . (242)

J=1

6.2 Inviscid Equilibrium Flow

The governing equations for steady, one-dimensional adiabatic inviscid flow

are
puAl = p u Al = const. - (243)
d
udu + -—B-= 0 (244)
P .
1.2
h + — u® = hy = const. (245)
2

where p denotes the density, u the flow velocity, A, the cross sectional area,

p the pressure, and h the specific enthalpy. In the continuity equation (243),
the asterisks indicate sonic-point values. The Euler equation (244) assumes that
viscous stresses and body forces (such as electromagnetic and gravitational
forces) are negligible. The energy equation (245) assumes that the flow is
adiabatic. Subject to these assumptions, these equations are applicable to any
steady, one-dimensional flow whether the gas is chemically frozen, in equilib-
rium, or undergoing reactions with finite rates.

Equations (244) and (245) can be combined to give

ah - 3P _ g | (246)

[

From the first law of thermodynamics,

1
Tds > de + p d(—;—) (247)
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and the deéfinition of enthalpy,

h=¢ +— :
P (248)

it may be shown that

dp
Tds > dh - T (249)

Equation (246) thus implies that
Tds > 0 (250)

i.e., the specific entropy of the gas either remains constant or increases in a
flow obeying equations (244) and (245). The condition for ds = 0 is that the
flow be reversible in the thermodynamic sense. This means that if the flow
retraces its sequence of velocities (without passing through a shock), the gas
“is restored to its initial state. The flow 18 reversible, in this sense, if

the gas obeys a rate-independent equation of state, p = (p, h), such that the
density is uniquely determined when the pressure and enthalpy are specified. A
gas which is everywhere in local thermochemical equilibrium obeys a constitutive
relation of this type. A gas whose chemical composition is frozen also obeys a
rate-independent equation of state., Thus, both equilibrium and frozen flows
governed by equations (243) to (245) are isentropic (ds=0). On the other hand,
non-equilibrium flows with finite reaction rates are irreversible, because the
gas composition depends not only upon the pressure and enthalpy but also upon
the past history of the gas sample. Thus, from (250), the entropy increases in
such non-equilibrium flows.

All of the flow solutions calculated by NATA are assumed to start from a
state of thermochemical equilibrium in an upstream reservoir. The composition
and state of the gas in the reservoir are computed using the method described
in Section 6.1. If the reservoir temperature and pressure are input-specified,
this method is applied directly. If other options for input specification of
the reservoir conditions are employed, the reservoir temperature and pressure
are determined using the iterative techniques explained in Section 6.5, and the
method of Section 6.1 is again used to compute the gas composition and state in
the reservoir.

The flow conditions that can be reached by an equilibrium expansion from a
specified reservoir condition form a one-parameter family of states. In NATA,
the gas temperature is taken to be the independent variable. A sequence of
equilibrium flow states is generated by decrementing the temperature, starting
from the reservoir value. At each temperature, the species mole fractions and
the static pressure are determined from a thermochemical equilibrium calculation
with the supplementary condition that the gas specific entropy s be equal to its
value sp in the reservoir. The conditions for thermochemical equilibrium are
equations (224) and (227). The specific entropy may be obtained by dividing
the molar entropy (30b) by the local molecular weight w:
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1 . .
TN e—— 13 -o — —— - -
s == E X;s; Rolap — Ry E Xj b X; (251)
Thus, the condition s = sy can be written, with the aid of (236), in the form

Sio SO Wi ’
= X | — - - | —lhp =0
E X R R bn X; P (252)

=1

N

+

o
it

in which X; i$ the mole fraction of the Fh species, Wi the species molecular
weight, Sf the species molar entropy at standard pressure, and Ry the universal
gas constant. Equations (227) and (252) constitute a system of ¢ + 1 equationms
to be solved for the equilibrium mole fractions and the static pressure p at the
specified temperature and specific entropy. As in Section 6.1, these equations
are solved by the Newton-Raphson method. The solution is carried out by subrou-
tine NEWRAP. The additional derivatives required by incorporation of the addi-

tional equation (252) and the additional unknown p are as follows, forj = 1,..,c
and m = 1,...,c:
n :
aFi : X;
3 T E [Ta_c,j — 4 ONoc- 1)]*; W=D (253)
i=c+ 1 ‘

aFC +1 smo S0 Wm

- = —fn X, -1
X, R Ry
n' Xi Sio SQWi
4 z ; — |=- X =1 T (254)
X, | Ro R, ‘
i=¢c+1

3 . 5.0 v

Ferl 1 i So¥i

el X | — - —ln X~ 1|04 -1) (255)

dp p Ro

i=c+1
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Equation (253) is derived by differentiating equation (227) with respect to the
pressure, p ., For the independent species (j) ,

ax;
_.__L =0 '
ap (256)

since the mole fractions X: (j = 1, ..., ¢) and the pressure p are all independent
variables. For the dependent species (i), from (224), ~

aXi . "X
— = i_.~D . ; . {257y

Equation (254) is obtained by differentiating (252) with respect to the mole
fraction Xy of an independent species, and using equations (230) and (231).
Equation (255) results from differentiation of (252) with respect to p, when -
(256) and (257) are taken into account.

The system of Newton-Raphson equations for the state of the gas at a point
in an equilibrium flow may be written

c+1 oF b ’ :
j h T = F.(Yv.5h . o
"z : Ymr(aym> m T v (258)

m=1

wherej and k run fromi toc+ 1,

Yo = X (m=1,..,0 ) (259a)
Youf = PF (259b)
and
v t+l_yr
bt = .__.________.r (260)
Ym

Form =1 to ¢ and j = 1 to ¢, the matrix of coefficients in (258) is given by
(233b). Form =c + land j =1 toc,

I n )
. 6Fi N . .
~Yer1 | 37 = [Vi—c,j =g W=D X =D (261a)
c+1 4 1
l=C+
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For m =1 toc and j = ¢+ 1, from (254),
r
9Fc,) Sm’ SOV
-v.r = 11— —— b vt

z Sio SOWi ‘
+ E X (1~ ?g + % + X)) T (261b)

|
o
L}

i=c+1
Finally, for m = ¢ + land j = ¢ + 1, from (255),
4 n
o IFc .1 . : (1 s;° so¥; " X>'( . b (2610
—— 1 S — = 4+ . — —— 4 A . TV'_V,"' c
c+ 3Yc4\-1 E ] i Ry R, i i-c
i=c+

At each stage of the Newton-Raphson iteration, the system of ¢ + 1 linear
equations (258) is solved for the relative corrections hyf by calling subroutine
DSMS@L. The improved estimates for the independent species mole fractions Xn and
the pressure are then obtained from

Ymr+1 - Ymr a +hmr) (m=1,..,¢c+1) (262)

The6iteration is continued until all of the h,f are smaller than or equal to
10-0,

Once the equilibrium mole fractions and the static pressure have thus been
determined, the molecular weight, density, and specific enthalpy are computed
from equations (236), (237), and (242). The density and enthalpy are corrected
for effects of gas imperfections using equations (79b) and (81). The flow
velocity is then determined from equation (245):

u = v 2(hy - ) (263)

and the mass flux

m = pu (264)

is computed.

Up to this point, the calculations have proceeded without reference to the
nozzle geometry or to the location in the nozzle at which the computed flow con-
ditions occur. The flow conditions are related to the nozzle geometry only
through the continuity equation (243). This equation can be solved for the
area ratio A : '

A = (265)
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Thus, if the sonic mass flux m, = p,u is known, the area ratio can be calculated
from the local mass flux (264). The location of the flow point within the nozzle
can then be determined by inverting the area ratio relation A, = f(x) , based on
the nozzle or channel geometry (Section 4), to obtain the axial position x cor-
responding to the calculated area ratio.

Since the area ratio A, has a minimum at the sonic point, the sonic mass
flux m, is the maximum mass flux occurring anywhere in the flow. It is determined
from a preliminary calculation (performed in subroutine NRMAX), before the main
equilibrium flow solution. In NRMAX, the temperature is repeatedly decremented,
and the equilibrium mass flux is computed at each stage, until m passes its
maximum value. An iteration is then carried out to determine the temperature
and other flow conditions corresponding to the maximum mass flux. The resulting
m, value is then used in the determination of the area ratio from (265) during
the main equilibrium flow solution.

6.3 Boundary Layer Effects

Inviscid flow is, of course, only an idealization of the behavior of real
gases. In an actual wind tunnel, there is a boundary layer on the nozzle wall,
within which viscous stresses and heat transfer are important. Upstream of the
throat and in the throat region, this boundary layer is thin and has small (but
not negligible) effects upon the free stream flow. Downstream, in the region
of high Mach number and low density, the boundary layer thickness can become
comparable with the nozzle radius or the gap between channel faces. 1In such
cases, the effects of the boundary layer upon the free-stream flow can become
quite important.

Depending on the flow conditions, the boundary layer can be either laminar
or turbulent. Within the operating envelopes of existing NASA/JSC arc-heated
wind tunnels, the layer is usually laminar. NATA contains an approximate calcu-
lation of laminar boundary layer development on the nozzle wall, based on the
Cohen~Reshotko integral method (Section 5). The boundary layer properties,
including the displacement thickness &*, are computed step-by-step, beginning
at an upstream starting point, along with the inviscid flow solution. The
displacement thickness alters the effective geometry of the nozzle or channel.*
If it is positive, it reduces the effective cross sectional area of the flow.
If it is negative, as it normally is upstream and in the throat region, it
increases the effective area.

Relations between the effective area ratio (allowing for the displacement
thickness) and the geometric area ratio have been given in Section 4. These
relations involve the displacement thickness 8* at the nozzle throat. This
quantity is not known until the inviscid flow solution and the boundary layer
calculation have reached the throat. Thus, the solution in the region upstream
of the throat must be generated without accurate knowledge of the relation
between the effective and geometric area ratios in this region. Several dif-
ferent techniques for circumventing this difficulty have been tried during the

*In the case of a channel, the flow is confined by two pairs of walls with different geometry. In this case, NATA performs two
separate boundary layer calculations, and there are two displacement thicknesses at each flow point.
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development of NATA. Most of these techniques involved the use of an approximate
value for the displacement thickness at the throat, based upon some type of pre-~
liminary solution up to the throat. Techniques of this type involved relatively
complex programming and, in some cases, led to unreliable code operation in the
throat region, where the solution is extremely sensitive to small errors in the
area ratio. : o ‘

The technique used in the current version of NATA is simple and reliable,
and gives results of acceptable accuracy. Upstream of the throat, the relation
between the effective area ratio and the axial coordinate x is approximated by
neglecting the difference between the effective and geometric area rdtios in
this region. Since the boundary layer is thin in comparison with the nozzle
diameter upstream and near the throat, this approximation is equivalent to a
small change in the nozzle shape in the upstream region. Such a change has
little effect on the displacement thickness at the throat. Downstream of the
throat, in the region where the boundary layer thickness can become large, the
relation betwéen the geometric and effective area ratios is calculated using
the local displacement thickness, so that the boundary layer and the inviscid
flow are coupled.

The effect of the displacement thickness upon calculations of reservoir
conditions from the total mass flow using sonic flow analysis is discussed
below, in Section 6.5. This effect is not negligible, and is taken into account
by an iteration.

The preceding discussion of boundary layer effects is phrased in general
terms, and is applicable to all three types of flow solution. In the specific
case of equilibrium free-stream flow, the solution including boundary layer
effects is generated in the following way:

(1) As in the purely inviscid case discussed in Section 6.2, the gas
temperature is taken as the independent flow variable. The tempera-
ture is repeatedly decremented, starting from the reservoir, and at
each stage the composition, thermodynamic properties, and flow
velocity are determined by a Newton-Raphson solution of equations
(227) and (252). '

(2) Upstream of the throat (i.e., for temperatures above the sonic tempera-
tureT, ), the axial coordinate corresponding to each flow point is
determined from equation (265) by assuming that the effective area
ratio A, is equal to the geometric area ratio Ag. That is, x is
determined by solving the equation '

m

~ % . .
Ag(x) ~ A, = ‘ ‘ ’(266)

m

with the aid of subroutine FINDX.

(3) For each flow point, after x has thus been determined, the boundary
layer calculation for the point is carried out as described in
Section 5.
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. (4) This procedure is continued until the throat (x = 0) is reached. The
displacement thickness at the throat (5,*) is thus determined
approximately.

(5) Beyond the throat, the flow conditions are again determined by decrement—
ing the temperature and solving equations (227) and (252), but the geo-
metric area ratio A; is obtained from equation (127), (131), or (135),
depending on the type of nozzle geometry. The axial coordinate x is
then determined by inverting the geometric area ratio relation Ag(x) for
the nozzle or channel. These operations are performed in subroutine
AGSPLN. Since the formulas relating A, and A, involve the displacement
thickness 5*, and since &* is obtained from the boundary layer calcula-
tion which requires the coordinate x, the computation of A4; is based ‘on
the effective area ratio A, for the current flow point and the displace-
ment thickness 8* at the preceding flow point. After the boundary layer
calculation for the flow point has been performed, subroutine AGS@YLN is
called again with the effective area ratio and displacement thickness
for the current flow point. The resulting improved value of x is the
one printed by the code. The error resulting from use of this approxi-
mation is small so long as the change in 8* in one step of the flow
calculation is sufficiently small in comparison with the nozzle
diameter.

6.4 Frozen Flow

Equilibrjum flow is the limiting case of the flow of a reacting gas mixture
‘in which the reaction rates are infinitely high. Frozen flow is the opposite
1imit, in which the reaction rates are zero. Thus, in frozen flow, the species
mole fractions are assumed to be constant and equal to their wvalues in the up-
stream reservoir.

As in the case of equilibrium flow, the frozen flow solution is gemerated
in NATA by decrementing the temperature, starting from the reservoir value. At
each temperature, the flow conditions are computed as follows: ‘The enthalpy is
computed from (242). The static pressure is determined from the condition that
the flow be isentropic; from (251), this condition can be formulated

soWo
p = E XS° E xlax - (267)

in which s, denotes the specific entropy in the reservoir and W, the molecular
weight, which is everywhere equal to the reservoir value since the flow is
frozen. Once the pressure is known, the perfect-gas density can be calculated
from (237). TFor a frozen flow, (237) becomes

L2 | (268)
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The density is calculated from (268), and the density and enthalpy are then cor-
rected for the effects of gas imperfections using equations (79b) and (81)
These calculations are all performed. in subroutine PR@P.

As in the equilibrium case, the inviscid flow conditions are all computed
without reference to the nozzle geometry. The sonic mass flux for frozen flow
is determined by a preliminary calculation, performed before the main frozen
flow solution, in which the temperature i1s adjusted repeatedly to find the value
corresponding to the maximum mass flux. During the main frozen solution, at
each temperature, the flow conditions are computed as described above and the
effective area ratio A, is then calculated from the continuity equation in the
form (265). The location in the nozzle at which the calculated flow conditions
occur is then determined from the effective area ratio. If a solution neglecting
the boundary layer is being generated, 'the geometric area ratio Ay is equal to
Ae and the axial coordinate x is obtained by inverting the area ratio relation
Ag = Ag(x) for the nozzle. 1If the solution includes boundary layer effects, the
technique for determining x from A, and the displacement thickness 8% is exactly
the same as in the case of the equllibrium solution, described in Section 6.3.

6.5 Determination of Reservoir Conditions

NATA provides three options for input specification of the reservoir condi-
tions. In all three cases, it is assumed that the gas in the reservoir is in
thermochemical equilibrium. In the.first option, the code user specifies the
reservoir temperature and pressure directly. The composition and thermodynamic
properties of the gas in the reservoir are then computed as described in
Section 6.1,

In the second option, the input quantities are the reservoir pressure and
the total mass flow. The rationale supporting this cholice of parameters is that
the total mass flow is much easier to measure than the reservoir temperature.

A meaningful reservoir pressure measurement can also be obtained easily in wind
tunnels equipped with a plenum chamber within which a condition of flow stagna-
tion is approximated. In this second option, the reservoir temperature is
determined, by an iteration, based on the condition that the product of the
effective throat area and the equilibrium sonic mass flux be equal to the input
total mass flow. For each successive trial value of the reservoir temperature,
the equilibrium reservoir conditions are calculated as explained in Sectiom 6.1,
and the equilibrium sonic mass flux m, is then computed as described in Section
6.2. If boundary layer effects are to be neglected in the flow solution, the
effective throat area is equal to the known geometric cross section of the
nozzle at the throat. If boundary layer effects are to be included, the effec~
tive throat area involves the displacement thickness at the throat, as shown

in equations (125), (129), and (133). In this case, the reservoir temperature
is determined initially neglecting boundary layer effects. A preliminary
equilibrium flow solution from the reservoir to the throat is then computed to
determine an approximation to the displacement thickness at the throat. The
calculation of the reservoir temperature is then repeated, using an effective
throat area which includes the effect of the boundary layer displacement
thickness. The main flow solutions for frozen, ‘equilibrium, and non-equilibrium
flow are then carried out assuming this revised reservoir temperature.
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The third option for specifying the reservoir conditions is based on imput
of the total mass flow and the stagnation enthalpy. The enthalpy can be deter-
mined from energy-balance data, and is a more meaningful piece of information
than the upstream pressure in wind tunnel configurations lacking a stagnation
region between the arc heater and the throat, especially if the upstream flow
is highly rotational. When this option is used, NATA determines the stagnation
temperature and pressure in a fictitious upstream reservoir by a double itera—-
tion, based on the conditions that the reservoir enthalpy be equal to the input
stagnation enthalpy, and that the product of the effective throat area and the
equilibrium sonic mass flux be equal to the input total mass flow. If boundary
layer effects are to be included in the flow solution, a preliminary calculation
to determine the displacement thickness at the throat is performed prlor to the
main flow solutions, as in the second option.

In the second and third options, the determination of the reservoir condi-
tions is based in part on calculations of equilibrium flow from the reservoir
to the throat, regardless of whether the main flow solutions to be generated
are to be equilibrium, frozen, non-equilibrium, or some combination of these.
The rationale for this procedure may be outlined as follows:

(1) When two or three different types of flow solution are computed for the
same problem, the user's purpose is to assess the importance of the re-
actions by comparing solutions based on infinite, finite, and zero
reaction rates. Such an assessment would be obscured if the different
types of solution started from different reservoir conditions, as they
would if separate reservoir calculations were performed for frozen,
non-equilibrium, and equilibrium flow.

(2) The equilibrium~flow reservoir calculations for the second and third
options already consume a significant amount of computer time, ranging
from a few seconds to over a minute per case, depending on the
gas model and the option. Similar calculations assuming non-equilibrium
flow would use a great deal more time, especially since the non-
equilibrium solution is often forced, by stability requirements, to
take very small steps in the upstream region.

(3) In most of the cases to which NATA is applied, the non-equilibrium
solution (which simulates the actual flow most closely) is approximated
reasonably well by the equilibrium solution in the region upstream of
the throat, because the flow starts from an equilibrium state in the
reservoir and the pressure remains fairly high until the throat has
been passed.

The reservoir condition calculations for the second and third options are
controlled by subroutine RESTMP.
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7. NON-EQUILIBRIUM FLOW

The chemical reaction rates in a real, high-temperature gas mixture are
finite. Thus, equilibrium and frozen flow are only limiting cases, which under
some circumstances may approximate the flow in portions of the nozzle. The
actual flow in an arc-heated wind tunnel is a non-equilibrium expansion. The
present section explains how non-equilibrium flow is calculated in the NATA
code.* Section 7.1 presents the flow relations and reaction rate equations which
are assumed to govern the flow, both for the normal case of chemical non-equilibrium
and for the case in which the free electrons and bound electronic excited states
are also assumed to be out of equilibrium with the heavy species. Section 7.2 out-
lines the overall method of solution used in NATA, Special techniques used to
calculate portions of the non-equilibrium flow are then described and analyzed in
Sections 7.3 to 7.5. These techniques are an inverse method used in the upstream
region, a perturbation method used to start the solution in the region just down~
stream of the reservoir, where the flow is still nearly in equilibrium, and the
numerical integration method used to compute the flow farther downstream, where
some of the reactions are appreciably out of equilibrium. Finally, Section 7.6
explaing how the non-equilibrium inviscid flow is coupled with the boundary layer
on the nozzle or channel wall,

7.1 Governing Equations

The NATA code contains two different treatments of non-equilibrium flow.
The first is a conventional single~temperature model in which, at each station
in the nozzle, the kinetic translational temperatures and the excitation temper-
atures of all species are assumed equal. TIn this model, only the species concen-
trations are allowed to depart from equilibrium. The compiled-in air models and
planetary atmosphere models are of this type. For brevity, these may be referred
to as chemical non-equilibrium models.

The second type of non-equilibrium treatment implemented in NATA is a two-
temperature model. In this case, in addition to non-equilibrium of the species
concentrations, the electronic degrees of freedom are assumed to be out of
equilibrium with the translational and vibrational motions of the atoms, ions,
and molecules. The velocity distributions of these heavy particles are assumed
to be Maxwellian at a temperature T, while the translational temperature of the
free electrons is allowed to have a different value, Te. The electronic excited
states of some chemical species are treated as separate physical species, so that
the populations of these states need not be in equilibrium at either of the
temperatures, T or T.. The governing equations include terms representing energy
transfer betw-en the electrons and heavy particles. In addition, radiative losses
from the plasma are taken into account. The compiled-in models for helium and
argon ar . of this type. Such models will be referred to as electronic non-
equilibrium models.

The first part of this section presents and discusses the governing equations
for the chemical non-equilibrium models. The second part deals with the elec~-
tronic non-equilibrium models. Part 3 explains the technique used to maintain
the elemental composition of the gas mixture.

~ *Available technigues for analyzing non-equilibrium nozzle flows have been reviewed by Bray (ref. 31} and by Hall and Treanor
{ref. 32).
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7.1,1 Chemical Non~equilibrium

The gas flowing through the nozzle is assumed to consist of n chemical
species which can undergo r chemical reactions. The reactions can be repre~
sented in the form

n k . n

fi
Z :"ij My — Z ;Vik My (269)
j=1 kl'i k_=1

In this formula, the Mj symbols represent the chemical species, and the matrices
vi: 5 Vi, are the stoichiometric coefficients. The forward and reverse reaction
rate constants are denoted by k¢ , k,; , respectively. The gas is assumed to obey
the equations of steady, one-dimensional, adiabatic inviscid flow,” namely
equations (243) through (245). These equations may be written in differential

form as
dlnp dlnu d&A;

+ + =0 (270)
dx dx dx
L 270
dx p dx
& oE L, (272)
dx dx

Equations (270) to (272) are the continuity, momentum, and energy equations,
respectively, The gas mixture is assumed to be ideal, so that the equation of
state is

VPRO T
w

in which the molecular weight W is given by equation (236):

W = E X; W (274)

in terms of the mole fractioms X; and molecular weights Wj of the individual
species. Also, the specific enthalpy h is given by

n n

. .
- = S - . H: 275
h o E X; H; E ¥; Hj (275)

=1 =1

where H; is the molar enthalpy of the jd‘ species, a function of temperature.
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Inspection of equations (270) through (275) reveals the presence of n+6
dependent variables: p, u, p, h, T, ¥, and Xj for j = 1 to n. (The flow area
AL is assumed, for now, to be a known function, Ao(x) of the position coordinate
x.) Since there are just six equations, it may be seen that n additional re-
lations are required, to yield a determinate system. The required additional
relations are the rate equations specifying the changes in the species mole
fractions, X; , or concentrations, Yj . According to equation (61), the net rate
of change of the molar concentration [Mi] of species j due to the ith reaction
is

n n
dlm;] S vik vik
j , i i .
{T }. = (Vij - Vii) z kﬂ H [Mk] - kti H [Mk] (276)
1 k=1 k=1

In this equation, [M;] has units of moles/cm3. The forward and reverse rate
constants, ki and k;, are assumed to be comnected by the detailed balancing
relation (62),
kg
ki = = 277)

1

in which the equilibrium constant X; is given by equation (68):

1 1 .y
K; = At __._2 : Bij (278)

Here

Bi‘ = V;, - Vii (279)

B; = E Bij ' | (280)
=1

Some manipulation is required to bring equation (276) into a form suitable
for use in the non-equilibrium flow calculations. First, in the NATA non-
equilibrium solution, the amounts of the species are expressed in terms of the
specific molar concentrations y; , which are related to the mole fractions by
equation (1) and which have units of moles per gram of mixture. The volume con-
centrations [M;] are related to the 7j by

41 = by, (281)
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in which p is the gas density. Second, since NATA deals with steady flows, the
time derivative in (276) must be converted 'into a space derivative using

d d
Et— = u —d-: (282)

Substitution of equatiohs (279), (281) and (282) into (276) gives ‘?
n
dy; v
Ll e (RS ¥ kP H nk ok H v K (283)
1 k=1 .

in which

Vi = E Vij ‘ (284&)
n

Equation (276) gives only the changes in [M,] due to the chemical reaction, not
those resulting from changes in the volume of the gas sample. Thus, the {d/dt}
operator on the left in (276) refers to changes in species concentratlons at con-
stant gas density, and it is correct to set

{d—t (p)',-)}i = p {T:}i | , (285)

as was done in the derivation of equation (283)%,

The total rate of change of the specific concentration y. for the jth species
may now be obtained by summing equation (283) over all of the reactions:

n .
V:
pu —_ E Bl] kﬁ H Yk - k H Yk ik (286)

*See Section 7.1.2 {below) for a-more detailed derivation of (283).
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With the aid of the detdiled balancing relation (277), equation (286) can be re-
written in the form used in NATA:

o . . |
ol .5. ;ﬁij Py X . , (287)

i=1
where
n
vio1
P Vik
Py = = kg H "' | , | (288)
k=1
B " ' ‘
ﬁ.
x;=1——p——nyk ik (289)
K;
k=1

The five flow equations (270) to (273) and (275) can be reduced to two by
eliminating the derivatives du/dx , dp/dx, and dh/dzx. Combination of the con-
tinuity equation (270) with the energy equation (272) gives

dlnp  dla Al 1 d (290)
+ — — — 0

dx dx 2 dx

From (275),

n .
dH; dy;
& - v L. n sl e ~(291)
dx U } dx , .

j=1

Also, from (31),

dH; dH; dT 4T

1 e — ' - ‘ (292)
P ™ ‘

Hence, (290) can be rewritten in the form

n

s ln din A’
,C,£+H,.‘_’_yl__uzd”_uz‘ Ae (293)
Vi Pl dx ] dx dx dx

To1
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Differentiation of the equation of state (273) gives

dp RoT dp Rgp dT pRoT 4V
I ‘ (294)

dh RgT dbp Ry dT RgT dW :
o — e e — = 0 (295)
dx v dx v dx w2 dx i

- — 4

The quantity dW/dx can be expressed in terms of the concentration gradients dyj/dx
by differentiating the relation

1
E ; i= g (296)

-1

which can be derived simply by summing equation (1) over the species. Differen-
tiation of (296) gives

dyi 1 4w
e —— — 297
dx w2 dx . : ( )
Substitution of (291), (292), (296), and (297) into (295) gives
- by dT  RgT dlnp
E (RoT - Hp) = ¢t E ¥; (Ro - Cpj) e e 0 (298)
j=1 j=1 '

Addition of equations (293) and (298) gives, finally,

- dy; dT T w?\ dlap u? dbn Ay
T—+y —|+|{=— -— - e = 0 (299)
dx J dx w Ry dx Ry dx

o1

The basic system of differential equations for the chemical non-equilibrium model
is (287), (293), and (299). This is a system of n +2equations for the dependent
variables p, T, and ¥ forj =1 to n, :
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In NATA, these equations' are expressed in finite difference form and solved
numerically. The integration technique is discussed in Section 7.5. At each
point x in the flow, the concentration derivatives dy;/dx are computed from
equations (287), and the derivatives dT/dx and dfa p/dx are obtained by simul-
taneous solution of equations (293) and (299). The conditions at a pointx+Ax
are then calculated from the flow variables and their first-order derivatives at
x, using a modified Runge~Kutta technique. Once T, p, and the ¥j have thus been
determined at the new point, the specific enthalpy is computed from (275) and the
velocity from the integral form of the energy equation (245). To ensure accurate
conservation of mass, the density is recalculated from the flow velocity and the
area ratio at the current flow position x, using the continuity equation (265).
The molecular weight is then computed from (296), and the pressure from the.
equation of state (273). Also, the specific entropy is calculated from equation
(251), and a Mac number is calculated based on a "speed of sound" given by
[(dp/dx)/(dp/dx)] /2. From (270) and (271),

u 1

M = = '(300)
v (dp/dx) / (dp/dx) diln Ag/dx
14+ —_—
d en p/dx

The above defined speed of sound is not, in general, the speed of propagation of
small disturbances in a relaxing medium (ref. 33).

7.1.2 Electronic Non-equilibrium

Measurements of the electron temperature T, in ionized nozzle flows generally
show that the equilibrium between T, and the gas temperature breaks down at some
point in the expansion. (See ref. 34, for example.) The importance of including
this phenomenon in flow calculations depends upon the intended application of the
results. Aerodynamic forces and heating are not likely to be much affected by
electronic non-equilibrium, but the electron density, the populations of excited
states, and the spectrally resolved radiation emitted by the gas all depend
sensitively on the electron temperature.

Equations for steady-state, quasi-one-dimensional flow of a plasma with un-
equal electron and heavy-particle temperatures have been formulated and solved
in several previous studies (refs. 35 through 37)., Since there appears to be
some disagreement in the literature as to the correct form of such equations,
the applicable relations are derived here by formulating conditions for mass,
momentum, and energy conservation for each species.

Mass Conservation. = Let r; represent the mass of the jﬂ’ species produced
per unit volume per unit time by reactions occurring in the flow. Then the mass
conservation equation for species j may be written by considering the mass balance
for a small volume element in the flow of thickness Az = The total mass of the jth
gas entering this volume element per unit time through the upstrean boundary at
x = x is then given by p; 9 A’, evaluated at x, while the mass leaving the volume
through the downstream boundary at x =x + Axis P;“jA; evaluated at x = x + Ax,
where p: is the mass density of the j— species in the gas, u; is its mean flow
velocity, and A_ is the cross-sectional area of the flow at the given value of x.
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Since the net mass of species j leaving the volume element between x and x+ Ax
due to flow through the ends must be just equal to the mass of j produced in the
volume element by the source term ;. ., the mass balance for the volume element
becomes . ) ‘ ’ : .

x + Ax

(Pi u; A’e)x+Ax‘ - ('pi u; A’e)x =/ fi A, dx ; (301)

X

Taking the limit of equation (301) as Ax-»0 yields the mass conservation
equation for the ijth species in steady quasi-one-dimensional flow,

d . .

Momentum Conservation. - To derive the momentum conservation equation for
"the jth gpecies, consider a test mass of the ith gas which is instantaneously
located between the planes x and x + Ax and which is moving with the local flow
velocity uj. The total momentum of this gas element is then :

x+ Ax

P =/ pjuj Ag dx (303)

. X

while the force acting on the element is

: +A
x +Ax dA’ x +0x
F = (p: A7) — (p: A P; —e dX + f: AL dx (304)
®j A, ~ AL, A +/ o 1o
X x

Here, the first two terms on the right hand side of equation (304) are the net
pressure force of the jth gas acting across the end planes of the volume element
at x and x+ Ax , the third term is the x-component of the force between the nozzle
wall and the jth gas and the final term is the total force on the test mass of the
jth gas due to interactions with other gaseous species, where fj represents the
total body force per unit volume on the jth gas due to the interactions. Apply-
ing the momentum conservation condition F = dP/dt to the test mass then yields

the momentum balance for the element as
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x+Ax s x+ Ax

‘ i dAL ' . N .
(Pi A‘;)x - @ A’e)x+Ax +/ Pj ";{-‘- dx +/ f; Ag dx ‘ (305)
b4 ‘X i k ‘
= (p: A’ u.2 o A’ u.2¥
= (p; Ag v )x+Ax (pj Ay )x

where the right-hand-side of equation (305) follows directly from equation (303),
since the limits of integration in (304) are assumed to move with the local flow
velocity uj. Taking the limit of equation (305) as Ax-—s0 now yields the momentum
conservation equation for the jh species in steady, quasi-one-dimensional flow,

PGl u?AD = - AL —— + AL ©(306)

Energy Conservation. — Now consider the energy balance for the same test
mass of the jth gas discussed in the previous paragraph. Let ¢ be the internal
energy per unit mass of the j gas and §j be the total heat energy added to this
gas per unit volume per unit time. §; is thus assumed to include all-'sources of
energy addition to the j'h gas in the test volume except for the work energy
supplied by the partial pressure pj on the ends of the volume and by the body
force fj. Thus, the energy balance for the test volume may be written as

x+Ax

1
— — w?) A” p;
5 (ei + Y ) Aep, dx

x+Ax x+ Ax

=/ q’A dx + (p)A u) - (ij;ui)x+Ax +/ f,' A;ujdx (307)

X . X

Taking the limit of equation (307) as Ax—»0 and rearranging the result slightly
yields the energy conservation equatlon for the jth gas in the form

4 1 ) , ' S ’ '
- [PJ u; A’ (h += \ 2)] = (Qj +fj ui) A ‘ : » . (308)
where the specific enthalpy h; of the jth ‘gas is defined by

h: = & + — ' (309)
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Equations (302), (306), and (308) are the basic conservation equations which
must be satisfied by the individual components of a gas mixture in steady quasi-
one-dimensional flow. In general, the flow velocities u; of the individual species
in these equations may be different; however, in the present analysis it is
assumed that the flow velocity

u = u : (310)

is the same for all species. For the heavy particles this should be a good
approximation for pressures at least down to the order of 104 atmospheres, while
for the electrons the condition (310) will be met provided there is no net flow
of electrical current in the gas. It is further assumed that

1 n
E i-i = E £ =0 (311)
=1 =1

so that there is no net production of mass and no net body force on the flow.
Then equations (302), (306), and (308) may be summed for all species j in the gas
to obtain the usual quasi-one-dimensional conservation equations for the total
flow

d

a; (puAe) =0 (312&)
du dp

pu el (312b)
d 1

2 . :

— (h & = 312¢

pu dx( +2 u<) q ( )

where

p = E ‘pi (3133)

p = E P; (313b)
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is the total pressure, ¢

n

1 z :

j=1

is the total enthalpy of the gas mixture per unit mass, and

q = E g (313d)

is the total energy addition to the flow per unit volume per unit time from ex-
ternal sources. For the present analysis, the only external source term to be
considered will be the radiative energy loss from the gas, so that the source
term (313d) becomes simply

§=-q (314)
where 4, is the radiated power per unit volume lost from the gas.

For the most general type of one-dimensional flow, the species densities
Pj, flow velocities uj, and internal energies ¢; would all be independent vari-
ables, so that the species mass, momentum, and energy conservation equations (302),
(306), and (308) would all be required to obtain the complete flow solution.
Because of the assumption (310) made in the present analysis, however, these
equations are no longer all independent, so that the body force |f, . may be ‘elimi-
nated between the momentum and energy equations (306) and (308) to obtain the
single equation

d , d , 1 , d p .4 (315)
; (pjuAeEj) + p, a—; (uAe) —;u E (piuAe) = q’- Ae
for the species internal energy ¢. Further, it will be assumed in the present

analysis that the exchange of translational energy among the heavy particles in

the gas is sufficiently rapid to maintain thermal equilibrium among them, so that
equation (315) is required only for the electrons., Thus, for a gas mixture con=-
taining n species, there are n + 3 independent flow equations (namely, the n species
conservation equations (302), the overall momentum and energy conservation equa-
tions (312b) and (312c¢) for the mixture, and the electron emergy equation (315) to
determine the n gpecies densities p., the flow velocity u, and the electron and
heavy-particle temperatures T. and T for the mixture.

For use in the NATA code, it is convenient to express the above flow equations
in terms of the species concentrations % in moles/gm, defined by

yom | (316)
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where W; is the molecular weight of the jth species and p is the total density
of the mixture defined by equation (313a). When this notation is introduced
into equation (302) and the result simplified by the use of equations (310) and
(312a), one obtains the species conservation equations in the form

% (317)
pu — = —
dx W"
Similarly, the electron energy equation (315) becomes
_ d pe dp 1 dve . 318
que,\:—- (Ve &) — — - = "'—":l=qe 3 (318)
dx W.p? dx 2 dx

or, introducing the ideal gas equation of state for the electrons and noting that
the flow energy term u2/2 will be megligible compared to the random thermal energy
¢« for electrons because of their small mass,

d 3 dZnP .

where Rg = 1.9872 cal/mole~°K is the gas constant per mole.,

To complete the specification of the problem, it is now necessary to specify
the source terms fi, 4;, and 4. occurring in equations (312), (317), and (319).
In general, these terms may be written as sums of contributions from the individual
collisional and radiative processes occurring in the gas. Thus if the ith reac-
tion process occurring in the gas is represented by the chemical formula (269),
then the total number of reactions of the type (269) occurring per unit volume of
the gas per unit time in the forward and reverse directions will be respectively

n

V-- :
Ng = Nokg H v Y ‘ . (3202)
A=1 : .
and
n rd
o
N = Noky H Gy Y (320p)
e . ,

where Ny = 6.0225 x 1023 is Avogadro's number and kg and k; are respectively the

1-vy; -1
forward and reverse reaction rates for process i in units of (mole/cmB)( ) sec .

‘The source terms rig 4, and 9 are then given in terms of the numbers of reactions
(320) by i

i
4

! N.. : .
I N .. | (321a)
) i\ N T o |

i=1 i
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- _ Ng Ny
9 = qf; —l\?— - 4y —I\;— (321b)
i=1 0 0.
r N N -
fl = €f; —ﬁ- - €. ——n— (3210)
e 1 NO £1 NO
i=1 -
where the sum is over all reactions i occurring in the gas, Bij = %j — Vij “is the

net number of molecules of species j which are formed in a single reaction of type

i in the forward direction, ¢fi and -q;j are the mean energies lost from the gas

by radiation in Ngpreactions of type i in the forward and reverse directions, respec-
tively, and ¢; and -¢; are similarly the mean energies gained by the electron

gas in Ng reactions of type i in the forward and reverse directions., In general,
the reaction rates kg and k; in equations (320) and the parameters qf , 4qri, ¢
and ¢; in equations (321) depend on the reaction under consideration and must be
evaluated individually for each gas. The rate constants and parameters used in

the standard gas models for argon and helium will be documented in Volume II of

this final report (The NATA Code - User's Manual).

Substitution of (321a) into (317) gives the species production equation (286)
used in the chemical non-equilibrium model. Also, (312a) and (312b) are identical
with equations (270) and (271), respectively. The set of governing equations for
the electronic nonequilibrium model differs from that for the previously considered
chemical non-equilibrium model in the following respects:

(1) The electronic non-equilibrium model contains one additional dependent
variable, the electron temperature, Te.

(2) There is one additional governing equation, the electronic energy
equation (319).

(3) The global energy equation (312¢) contains the radiative loss term (314)
X on the right, whereas the corresponding equation (272) in the chemical
non-equilibrium model has zero in the right-hand side. Thus, in the
electronic non-equilibrium model the total enthalpy decreases in the
downstream direction.

(4) The equation of state (273) is replaced by (313b), in which the partial
pressure Pi for the Fh species is

= . (322)
Pj = RN T

Here N. = py; is the number of moles of the fh specles per unit volume,
and T: is the translational temperature for the species. Since Tj is
assumed to be equal to T for all of the heavy species, equations (313b)
and (322) give

P =Rop e Te+ W T) (323)
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h = E % | (324)

is the total molar concentration of the heavy species.*

For use by the code, the species production equations are rewritten in the
form (287). The only modification of these equations in the electronic non-
equilibrium model is that the equilibrium constant K; in the expression (289) for
the quantities x; may be calculated from the electron temperature T. instead of
the gas temperature T, for some of the reactions. In such cases, K;j is computed
from

n
: Z ’
e g_ Bi; 1 (Te) (325)
i BT 2 Ry Te s

(Ro TE) j=1

in place of equation (278).

Elimination of the derivative du/dx of the flow velocity between the con-
tinuity and energy equations (312a) and (312¢) gives

dln p dln Al 1 |dh q;
+ - —+ —| =0

dx dx u? | dx pu

(326)

when (314) is taken into account. For the electrons, equation (292) is replaced
by
aH . dT, (327)
dx Pe  dx

If (291) is used to eliminate dh/dx from (326), and (292) and (327) are used for
the heavy species and the electrons, respectively, there results

o n
dT, T 4%
YeCpe 5 * % Cpj g t H; gy (328)
=2 i=1 .
qr - dEnp 2 dln A'e
+ — - o2 - u = 0
pu dx dx

This is the electronic non-equilibrium analog of equation (293).

*Equation (324) is based on the NATA convention that the slectrons, if present, are species number 1.
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Differentiation of the equation of state in the form (323) gives

dp dp ( dT, dT)
- Ro G UeTermT +Rop\Ye 5 + " 37
dve dw, (329)
vRop \Te o+ T -

Substitution of (312¢) and (329) into the momentum equation (312b) gives

dh 4, dlnp < dT, dT >
_E-_;:+RO(-yeTe+yhT) ol Rg | 7. = " h o
: dY, dy, i " (330)
+ Rg | T, l—d; + T I =0 .

Elimination of dh/dx using (291), (292), and (327), followed by addition of (328),
gives ‘

a1, T dy, dw,
Ye T4y T dx v Te dx T dx
2 4
. u dzn p u2 denAe 0 (331)
lretet T TR I T&x TR T |

which is the electronic non-equilibrium analog of equation (299). The electron
energy equation (319) may be rewritten as '

3Rg <T dy, dTe> dlnp 4 (332)
— _ . = _
2 € dx * e dx Ye Ro Te dx pu
The total enthalpy, h, = h+u2/2 , obeys equations (312¢) and (314), i.e.,
dhy 4 (333)

dx pu

To follow the changes in this quantity accurately, NATA treats hp as an additional
dependent variable in the numerical integration. Thus, there are n + 3 dependent
variables, T, T., hp, and the Vi s in the electronic non-equilibrium model. At
each point x in the flow, the concentration derivatives dy;/dx are computed from
equations (287), and the derivatives dT/dx, dT./dx , and dhg/dx are obtained by
simultaneous solution of equations (328), (331), (332), and (333).* The con-
ditions at the point x + Ax are then calculated from the flow variables and their
first-order derivatives at x, using the modified Runge-Kutta technique described
in Section 7.5. Once T, Te, Hp, and the y; have thus been determined at the new
point, the specific enthalpy is computed from (275), which here takes the form

n

h = y He (T + E ¥ Hj (D) _ (334)
i=2

*Either dﬁnp/dx ordfn A;/dx is also obtained from the simultaneous solution, but these quantities are not integrated numerically.
Section 7.4 discusses the reasons for this procedure.
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The flow velocity u is then calculated from

u= V2hy-h) , (335)

Either the area A, or the density p is assumed known as a function of x. The
other quantity is calculated from the continuity equation (243). The pressure
is calculated from the equation of state (323), the entropy from (251), and the
Mach number from (300).

7.1.3 Conservation of Chemical Elements

Each of the individual chemical reactions (269) must be "balanced", i.e.,
must conserve the chemical elements. If this is true, the entire reaction system
conserves the elemental composition of the gas mixture, regardless of the rates
at which the individual reactions proceed. However, truncation errors in the
finite-difference solution of the chemical rate equations lead to small changes
in the elemental composition in each integration step. If allowed to accumulate,
such errors could become objectionably large. In NATA, such gradual shifts in
the elemental composition of the gas are prevented by adjusting the species con—~
centrations after each successful integration step. This adjustment is based on
the following relationms.

The number of gram—atoms of the jd’ element per gram of the gas mixture is
given by
n n
¢ = E Yi%j = E (yi)0 %; = constant (336)
i=1 i=1

In this equation, ajj is the number of atoms of the jth element per molecule of
the ith species, y. is the concentration of the ith species (moles/gm) at the
current flow point, and (y;); is the concentration in the upstream reservoir.

The equation (336) can be solved to give the concentrations of the independent
species in terms of the c¢; and the concentrations of the dependent species. (See
Section 2.1.) From (336),

(o B n

7
E vidj = = 2 Yi %j (337)
1=1 i=C+1

Multiplication of (337) by the inverse Ajk of the square submatrix of ¢jj with
i =1¢toc, followed by summation over-j, glves
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< n

Vi = E < Aik - E Yi ;i-c,k (338)

j=1 i=c+1

for k =1 to c, where Vj_c, kis defined by equation (6).

In some earlier versions of NATA, the elemental composition was maintained
by recomputing the concentrations j, of the independent species, using (338),
after every integration step. This procedure proved to be unreliable. If the
concentration of one of the independent species is very much smaller than the
concentrations of some dependent species containing the same chemical elements,
the loss of accuracy on the subtractions indicated in (338) can become so severe
that the independent species in question fluctuates wildly or even goes to a
negative corcentration. To avoid this problem, the present version of the code
uses a more elaborate element-conservation algorithm which spreads the corrections
over all of the species, more or less in proportion to their concentrations, in=-
stead of adjusting only the independent species. The adjustments 8y; to the
concentrations ¥§ computed in an integration step are selected so as to minimize
the sum of squares of the relative adjustments,

2

n 5y, ’ v
D = E (‘y—l> (339)

i=1
subject to the constraint that equation (338) be satisfied by the adjusted con-
centrations
vio=vi + Oy (340)

Prior to the adjustment, the concentrations of the elements have the incorrect
values '

C,: = E yi aij (341)

instead of the correct values c; baged on the gas composition in the reservoir.
Thus, before the adjustment

c n
) , ’ (342)
Tk = 2 :Ci Ajk = Z YiVice k :
i=1 i=c+1
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Subtraction of (342) from (338) gives
oy = E ; dc; A Z : 3% * Viiek (343)

where

Sci = ¢ ~c - (344)

Thus, the sum of squares (339) of the relative adjustments can be written in
terms of the adjustments for the dependent species:

s Swe 2 = dyq 2
D (oy yeees Oy = E -— + E —
c+1 n Ye ¥;

k=1 i=c+ 1

e\ 2 %A - X 8Ty

The conditions 0D/d(8y;) = 0 for minimum D can be written in the form

n

E ; %m O¥Ym = by ' (346a)

m=c+1
where
C —— —
Vi-ce,k Yl-c,k
ajm = Oim + (702 ———— (346b)
(v
k=1
c _ c .
. z: Vi-c,k 2: (346¢)
by = (7;7)? 7——)-2- e + A
B k-1 'k j=1
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In NATA, the system of linear equation (346) is solved for the adjustments to the
concentrations 0y, of the dependent species using subroutine DSMS@¢L. The adjusted
concentrations of the independent species are then computed using equation (338).
The entire element-conservation calculation is done in double precision to avoid
excessive loss of accuracy in the final evaluation of the independent species
concentrations using (338).

7.2 Method of Solution

The basic method for calculating the non-equilibrium solution in NATA is
numerical integration of the rate equations derived in Section 7.1. However,
there are two difficulties which prevent immediate application of this method
when the solution is started in the upstream reservoir:

(1) Startup of integration near equilibrium. — The gas in the reservoir is
assumed to be in equilibrium, with zero flow gradients. Also, for the
kinds of nozzle profiles that are used in NATA, the derivative of the
flow area, dA,.”/dx, is finite everywhere; thus, the flow velocity is
quite low in the far upstream region of the nozzle, and in consequence
the gradients of the flow variables dT/dx , dp/dx , dv /dx are quite small
in that region, and the flow is close to equilibrium. For flows which
are nearly in equilibrium, the numerical integration procedure is stable
only for extremely small step sizes. Thus, it is impracticable to start
the integration far upstream in the nozzle.

(2) Flow upstream of the throat. - The gas conditions in the reservoir, to-
gether with the nozzle geometry, determine what the mass flow must be.
However, the correct mass flow for a given non-equilibrium flow problem
is not known when the solution is started. The mass flow for the corres-
ponding equilibrium flow problem is known, but typically differs slightly

" from the non-equilibrium value. If an attempt were made to compute a
non-equilibrium solution by straightforward integration of the rate
equations, assuming the equilibrium-flow value of the mass flow, most
probably the solution would fail., Either the Mach number would reach
unity before the throat was reached, in which case the solution would
blow up because of the flow gradients becoming extremely large; or the
Mach number at the throat would be less than unity, in which case the
transition from subsonic to supersonic flow would be impossible. To
obtain a valid solution in this way, an iteration to determine the
correct mass flow would be required.* However, repeated numerical
integrations of the flow equations from the reservoir to the throat
would be extremely time consuming.

These two problems are dealt with, in NATA, using methods which were evolved
over a period of several years at Cornell Aeronautical Laboratory (refs. 1, 38),.
The difficulty in starting the integration near an equilibrium flow condition is
avoided by treating the initial portion of the non-equilibrium solution by a
perturbation method, in which the unperturbed solution is the infinite~reaction~
rate equilibrium flow. This perturbation method is explained in Section 7.3.
The problem of calculating the non-equilibrium flow in the region upstream of the
throat is handled using an inverse method which is documented in Section 7.4.

*Methods of dealing with this problem are discussed by ‘Bray {ref. 31).
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Beyond the throat, and beyond the near-equilibrium region in which the perturbation
method is employed, the solution is calculated by direct numerical integration of
the rate equations, using the modified Runge-Kutta technique described in Section
7.50 :

Figure 24 shows, in flowchart form, how these three methods are combined to
generate the entire non-equilibrium solution. The solution is always begun using
the perturbation method. In this method, the step from one flow point to the
next is taken by decrementing the gas temperature, as in the equilibrium flow
solution (Section 6.2). After each step, certain quantities axi, which measure
the departures of the reactions from equilibrium, are tested. When any one of
these quantities reaches a specified size, the perturbation method is abandoned
and the numerical integration is started. During the integration, the step from
one flow point to the next is taken by incrementing the position coordinate, x .
If the solution has not yet reached the "downstream region'” (bounded by a point
somewhat beyond the throat, at which the flow is already supersonic), the inverse
method is used. Once the downstream region has been reached, the solution is
generated using the direct method. If the downstream region is reached in the
perturbation solution, then the inverse method is never used at all.

7.3 Perturbation Method

The flow in the far upstream portion of the nozzle, where the conditions
differ only slightly from those in the reservoir, is nearly in equilibrium. The
species concentrations and flow variables can therefore be expressed in the form

¥; = ﬁ + 6” (347a)

347b

T=T+ 8T ( )

- , (347c)
p=p+ O

in which the barred quantities are values for the equilibrium flow and Syj,‘ST,
8p are small perturbations due to departures from equilibrium.

7.3.1 Perturbation of the Rate Equations

A system of equations for determining the perturbations is needed. Such a
set of relations can be derived from the chemical rate equations (287) and the
flow equations, as follows. Substitution of (347) into the rate equations (287)
gives, to first order,

13
47, d(8y)) _ - .
-t " Bij (Pyx; + X; 8Py + Pj 0X;) (348)
i-1

The bar symbol in ii, 5} denotes that a quantity is to be evaluated using the
equilibrium flow values of the dependent variables, % s T, and p. Thus, for
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Figure 24 FLOW CHART OF METHODS USED IN THE NON-EQUILIBRIUM SOLUTION
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example, P; does not denote the value of P; for the infinite-rate equilibrium
flow, but rather P; evaluated from (288) using the actual value of the rate
constant k¢; and the equilibrium values 7. , T, and p. Equations (277), (279),
(283), and (289) thén show that ¥Xi =0, s’o that X; is a measure of the departure
of the ih reaction from equilibrium. Setting X; = 0 in (348) gives

dy; (8y .
! ! z 49
=+ Bi B; 8% . (349)

i=1

To first order in the perturbations, Bxi is given by

—_ - n —_
OXi 5 oxi 5 2% 5 (350)
8x; = Py T + 3p p + 3?j Y
j=1

Here, (dx; / dT)is the derivative ax /9T of (289), evaluated at equilibrium.
From (289),

IXj : Bix 2K
DAL & H ik — : 351
oT K-z N Yk aT _ ( )

At equilibrium, ¥, = 0 or

B =

P . - Bik _
= Ve o=
Ki(T) I-I k
k=1

(352)

Thus, (351) implies that

dwe dx;
Xi) | 1 . L k(DI (353)
aT K; (T) \ 4T dT

From (278),

1 o
Z"ISi“Bi(Z“RO*“e“T)‘mE Bij »j (354)
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Hence

]

atnk; ° « o
. E B (.L.) (355)
aT I 4T \RyT ‘

j=1

Now, from equation (25),

o H:
I e N T . (356)

Therefore, from (280), (353), (355), and (356),

o n ——

Sxi) 1 2 : B AL (357)
= ij |5 = 7 .

aT T RoT

T=1

Similarly, differentiation of (289) with respect to p and ¥, s followed by use of
(352), shows that

(fﬁ) __ B (358)

dp 7
(axi > B (359)
/- ) %;
Thus, (350) becomes
n - . n .
1 5 B; Bij
Sx; = 4= By |—— —1l\oT - — 8 - — ¥ (360)
T =1 RoT p - Y

From (349) and (360), the entire right-hand side of (349) is of first order in
the perturbations. Thus, d /& 1is small of first order, and d(&y;) /d is there-
fore of second order and can be neglected to within the accuracy of the pertur-
bation calculation. Equation (349) is therefore rewritten as

d47;
’ P
== D A oL
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Substitution of (360) then gives
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7.3.2 Equilibrium Derivatives of the Flow Variables

The right-hand side of equation (362), dy:/dx, denotes the gradient of the
concentration of the jth gspecies in the equilibrium flow. The equilibrium con-
centration gradients depend upon dT/dx and dp/dx. Thus, all of the derivatives
dy;/dx for i = 1 to n,dT/dx, anddp/dx have to be determined. The relations

53) and (299), which are based on the one-dimensional steady flow equations,
are valid for the equilibrium flow as well as for the non-equilibrium case. How-
ever, the rate equations (287) cannot be used for the equilibrium case because P;
is infinite and X; 1s zero in this case. Thus, for the determination of the
derivatives of the flow variables, n relations are needed to replace the n rate
equations (287). The relations used for this purpose, in NATA, are the c element-
conservation relations (336), which give

dy; )
% o T 0 (j=1,.,¢) (363)

and the n-c¢ equations (224) for the equilibrium mole fractions X; of the dependent
species., From equations (1) and (273), equation (224) can be written in terms of
the equilibrium molar concentrations Z in place of the mole fractions X » in the

form

%*
Ve _ -1 _._
% = K; (pRoT) )-¢ H e itel (364)
‘ £=1

where Kj 1s the equilibrium constant (225) for the reaction forming the ;m de=-
pendent species from the independent species. Logarithmic differentiation of
(364) gives
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1 dy’ Fj‘c,e d7e denK] d:f
T ¢ dx 4T &
' £=1
* 1 dp 1 4T
- (v - =L — =] =0 (365)
Vo= D {F’ dx T dx ]
From (225) and (356),
— C —
dEnKi H’ ) Hp
e z Tjeot — S (366)
RoT — R, T ,

With the aid of equations (15) and (366), equation (365) can be rewritten in the
form

o
|

: c
— C — - —
1 47 Vi-em  4Vm 1 dT 5 Dw.
- = - —_— vl I=&m \ RyT
'yi X ‘ym dx T dx
(for j=c+1,...,n)

aT [ B x
— | — _ . -1
dx (ROT 1) Ve =)
‘ (367)

Equations (293), (299), (363), and (367) are n+2 linear relations among‘the n+2
derivatives d% /dx , dT/dx , and dp/dx for the equilibrium flow. In NATA, this
system of equations is solved using subroutine DSMS¢L.

M-
o | =
o
]
o

X

7.3.3 Unperturbed Equilibrium Solution

Equations (293) and (299) contain the derivative dfn A ./dx of the effective
nozzle cross sectional area. During the non-equilibrium solution by the pertur-
bation method, this geometric quantity is determined as follows. As in the NATA
equilibrium flow solution (Section 6.2), the temperature is the independent vari-
able., Successive points in the solution are generated by decrementing the
equilibrium temperature, T. At each T, all of the equilibrium flow variables are
computed just as in the equilibrium solution, using subroutine NEWRAP., From the
.equilibrium-flow values p and u of the density and flow velocity, the flow area
ratio A, is calculated using the continuity equation in the form (265). Then the
geometric position x of the flow point in the nozzle is determined by solving
equation (266) using subroutine FINDX. Finally, d &;A; /dx is calculated from the
known nozzle geometry and the position x by calling subroutine GE@MAR.*

*Note that dfn Al/dx = dln A fdx.
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7.3.4 Equations Determining the Perturbations

There are n+2 perturbations 0y, , 6T, 8p to be determined at each flow point
in the perturbation solution. Thus, n+2 independent linear algebraic relations
among these perturbations are needed. Perturbation of the element conservation
equations (336) gives c relations,

n

E aj; 8y; = 0 (j=1,..., ) - 368

i=1

Equations (362) are an additional n relations involving the Jy; , but these re-
lations are not all independent. Equations (362) were derived by perturbing the
rate equations (287). As pointed out in Section 7.1.3, these rate equations
automatically conserve the chemical elements provided the individual reactions
(269) are balanced. Thus, the system of n +c¢ equations (362) and (368) contains
the same information as the n equations (362) alone. Since the ¢ equations (368)
—are used*, only n-c of the equations (362) provide independent relations among
the Sn . The equations (362) with j=c + 1 to n are the ones used.

Another requirement for solvability of the equations for the 8y; is that the
reaction system provide independent chemical pathways for the formation and de-
struction of all the species. If there is no reaction for forming one of the
species, then its concentration cannot change and no choice of the éy; will allow
the left hand side of (362) to match the equilibrium concentration gradiemt d7 /dx
on the right. "If there are reactions involving a particular pair of species, but
these reactions do not allow the two species to be formed or destroyed inde-
pendently, then the species concentrations change in a fixed relationship and it
is not possible for the left hand sides of equations (362) to match the independent
equilibrium gradients d&;/dx on the right, This requirement on the reaction system
can be expressed in quantitative terms by considering the chemical reaction formula
(269) in the form

n

j=1

which may be obtained by combining (279) with (269). 1In (369), M denotes thejth

species and B;; is the number of molecules of this species produced in the i
reaction. Since each individual reaction conserves the chemical elements, the
B;; satisfy the c¢ conditions for each reaction

D . k=1, ..,¢)
B ay = 0 (370)
Z ij ik (i =1, ...,1)
=1 |

*An alternative approach would be to omit equations (368} and use all of the equations {362). The method used in NATA has the ad-
vantage that equations {368) involve less computation and ensure accurate element conservation in the perturbation solution.
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Equation (370) states that the net number of atoms of the k™h element produced
in the i reaction is zero. Because of (370), only n-c of the B;j values de-
fining a given(ith ) reaction can be chosen independently; once these have been
selected, the remaining values are all determined by conservation of elements.
For example, if the B;; for the "dependent species" j=c¢ + 1 to n (Section 2,1)
are specified, then the B;; for the "independent species" j = 1 to c are all de-
termined by element conservation.

Now, 1f the species M; are considered to define the directions in ann-~
dimensional vector space, then the B” for each i are the components of a vector.
The number of linearly independent reactions is then equal to the rank of the ﬁg
matrix (ref. 39). According to (370), the rank of B;; can be no larger than
n-c, regardless of how many reactions are included in the gas model, The rank
can be smaller than n- ¢ if there are too few linearly independent reactions, but
in this case the perturbation solution will not work for reasons explained above.
Thus, the reaction system is required to contain exactly n-c linearly independent
reactions. In NATA this requirement is applied by computing the rank of Bij
using a standard technique (ref. 40). If the rank is found to be less than n C
the case is terminated. Of course, all of the compiled-in gas models satisfy
this requirement on the rank of Bﬁ .

Equations (368) together with equations (364) for j = ¢ +1 to n provide n
relations among the n+2 perturbations 8y), 8T, 8p. Two additional independent
relations are required. One such relation may be obtained by perturbing the
energy equation in its integral form (245):

dh + 1 &u = 0 (371) .

From (275),
n
- E [H)(T) 3~yi + 7)CP, 511 ‘ (372)
j=1

Perturbation of the continuity equation (243) gives

58 +udp=0 (373)

since the reactions do not affect the nozzle geometry. Use of (372) and (373) to
eliminate Sh and Su from (371) gives

n
- - 8p

Z . Sy: + F: Cous - e = 4
[H, 8y; + ¥j Cpj 5T 1 = 0 (374)

=1
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7.3.5 The Condition 8s = 0

Equations (362) for j = ¢ +1 to n, equations (368) for j=1 toc¢, and
equation (374) are a system of n+1 relations among the n +2 perturbations 8y 5
6T, 8p. One additional relation is required to give a determinate system.
Logically, this relation should be based on the momentum equation (244) or (271);
which has not yet been applied to the determination of the perturbations. How-
ever, the momentum equation is a differential equation;- substitution of (347)
into it would give a relation between the derivatives of the perturbations,
whereas what is desired is an additional linear algebraic relation between dy, ,
8T, and 8p. To obtain such an algebraic relation, Cornell Aeronautical Laboratory
(ref. 1) chose to introduce the approximation Sp~ 0 in the computer program from
which NATA has been developed. In other versions of the same program, Cornell
Aeronautical Laboratory used the alternative approximation that the perturbation
in entropy is negligible,

8s = 0 (375)

which is slightly more accurate (ref. 1). The current version of NATA uses (375)
as the required additional relation between the perturbations 8% » 0T, and 8p.
Since both the infinite-reaction~rate equilibrium flow and the zero—reactlon—rate
frozen flow are isentropic (Section 6.2), it is plausible that the finite-
reaction~rate non-equilibrium flow should be nearly isentropic in the initial
reglon where the departures from equilibrium are still small. Thus, the pertur-
bation in entropy from the equilibrium flow value, §s, should be small in the
region to which the perturbation technique is applicable., This supposition is

. amply confirmed by the results of integration of the rate equations using NATA.
In general, the increase in entropy in non-equilibrium flow solutions is quite
small, not only in the injitial region but even in the region beyond the throat.

The condition (375) can be expressed as a relation between 6T, dp, and the

6n as follows. From equations (1) and (296), the specific entropy (251) of the
gas mixture can be written as

n

s = E ¥; ISP = Rg ln (pReT) = Rg b ;] - (376)

j=1

To first order, the perturbation §s is given by

ds ds ds
- 22 — 1) 5 —- Sv. (377)
5s (8T> 5T + (a,p> - }: (ay) . |
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From (376),

s

£3 e - - 378
(a'}'j> = Sio(T) ~ Ry [1 + ta (Ry? yj)] ( a)
—_ n ';';5 . R n '
as — i 1 - — . (378b)
(8'1‘) = E Y (—d—'r_) - F -7 E % [ij(T) - Rol
j=1 =1
— n -
(fﬁi> . . I (378¢)
dp P ! PV
j=1 -
The final form of (378b) is obtained using the relation
0o
A (379)
dT T

which can easily be derived from equations (29), (31), and (356), and also fol-
lows directly from the thermodynamic definitions of entropy and specific heat.
The final form of equation (378c) is obtained using (296). Substitution of (378)
into (375) and (377) gives ‘

o
5s = z {s(T) = Ry [1 + ta (Rg? T 7)1} B,
=1
n

‘+ TTI‘ E 7)[Ep)_RO] éT (380)

j=1

op = 0

ule

7.3.6 Conditions for Starting the Numerical Integration

Equations (368) for j =1 to c, equations (362) for j=c + 1 ton,
equation (374), and equation (380) are the n+2 equations which are solved
simultaneously for the perturbations &§y., 8T, 8p. These equations are set up
in subroutine PERT and solved by calling subroutine DSMS@L. Once these pertur-
bations have thus been determined, 5X1 is computed from equation (360) for each
of the reactions. These 8y. values are used to determine the point in the flow
solution at which the perturbation technique is abandoned and the numerical
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integration of the chemical rate equations is started. The rule for selecting :
this point is based on the following considerations:

1) The accuracy of the perturbation calculation decreases with increasing
distance down the nozzle; as the. perturbations 8yi,8T &p become larger.
The numerical integration must be started before the errors become ex-
cessively large.

2) Each 9x; _is an approximate measure of the departure of the corresponding
reaction from equilibrium, since X; ~X; + 8x; = 8x; . When any one of
the dy; is very small; the numerical integration is stable only for ex~
tremely small step size, Ax. Thus, it is desirable to carry out-the
switchover to numerical integration as far downstream as possible, to
avoid having to compute a large number of very small integration steps.

_The criterion for switching from perturbation to integration is

. 381
Cy S 10x; | < 120, , (381)

in which IB)GImax is the largest absolute magnitude {8%; | for any of the reactions,
and C, is an input criterion value which is preset to 0.1. If ‘Sxilma turns out
X

to be greater than 1.2 C, at-a point in the perturbation solution, a new point is
computed for a temperature half way between this point and the preceding one. If
necessary, the temperature interval is thus subdivided repeatedly in order to de~-
termine a point at which |&y; | .  satisfies both of the inequalities in (381).

Once a point satisfying the criterion (381) has been found, the perturbations
ayi,ar, dp are added to the corresponding equilibrium-flow quantities in accor-
dance with equations (347), and the numerical integration is begun.

Figure 25 illustrates the effect of the switching criterion C, on the non~-
equilibrium solution. Three NATA cases were run for the flow of air through
standard nozzle 1, starting from reservoir conditions of 7000° K and 1 atm. In
one run, C, had its standard value of 0.1; in the other two cases, C, values half
and twice as large were used. TFigure 25 shows the air temperature as a function
of position along the nozzle, in the upstream region covered by the perturbation
solution and the beginning of the numerical integration. The continuous curve
shown in the figure is drawn through points of the perturbation solution. Each
trace of unconnected graph symbols represents the results of the numerical inte-
gration of the rate equations for one of the cases. The equilibrium and frozen
flow solutions are also shown for comparison. The figure shows that increasing
C, causes the code to begin the integration farther downstream. The differences
between the three solutions provide an indication of the errors resulting from
use of the perturbation technique. The vertical scale has been greatly expanded
in figure 25 to show these small differences clearly. The solution for Cy = 0.05
is the most accurate, and should lie very close to the correct curve over most
of the region shown. At the beginning of the integration for the C, =0,1 case,
the temperature as given by the perturbation solution is too low by about 15 de-
grees or 0.2 percent. TFor C, = 0.2, the corresponding error is 38 degrees or
0.5 percent, After the integration has begun, each solution tends to relax
toward the correct solution. For the cases shown in figure 25, at x=+1.27 cm
the three solutions are separated by differences of about 1 degree out of 3770° X,
or 0.03 percent.
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7.3.7 Prevention of Premature Switch to Numerical Integration

For some reaction systems and some reservoir conditions, the |8y; | values
for different reactions can differ by many orders of magnitude. When this occurs,
the criterion (381) would force the code to start the numerical integration at a
point in the flow where some of the |[8y;| values were extremely small, The re-
sulting integration step size Ax required for stability of the finite difference
equations would then be extremely small. The present version .of NATA contains a
computational artifice which circumvents this difficulty in most of the cases in
which it would occur, At each step in the perturbation solution, the ratio
R = ‘5Xg|mh)/‘5)3|max of the minimum and maximum la)q | values is computed. If R

is smaller than an input DCHRAT, preset to 10-4, the code applies the following
tests to the reaction i ., giving the maximum (b‘xil H
1. Does any species j appearing in the reaction have a concentration y;
which is less than or equal to a value GAMIN (preset to 10~10 mole/gm)?

2. 1Is the reaction running in such a direction as to further reduce the
concentration of this species; i.e., is B; i Pi X < 07
. max max max
If both of these conditions are satisfied, then the computational artifice is
applied. It consists simply of increasing the rate constant for the imaxth re-
action by a factor of 1.1 x 10~4/R for the duration of the perturbation solution.
This increase should make \Sxalmax equal to about 104 times ]Sxi!mh1 , which is a

ratio allowing normal operation of the code. The justification for this artifice
is as follows: First, it cannot affect the overall flow solution significantly,
because it simply causes more rapid destruction of a species whose concentration
is already negligible. Second, it is efficacious in most cases because the most
common cause for an exceptionally high {3y; | value is the presence of a species

of high formation enthalpy Hgp° whose equilibrium concentration is very low because
the temperature is relatively low. Under these circumstances the equil}brium con-
stant (225) for formation of the species, which contains a factor e~ Ho° ROI; is
very sensitive to the temperature because the exponent Hy°/R,T is large. Thus,
the equilibrium flow solution demands a rapid decrease in the species concentra-
tion. The inability of the actual reaction rate to follow this rapid equilibrium
change is responsible for a large departure of the reaction from equilibrium and
thus a large |8x; |. For example, this situation arises when a gas model including
Ar, Ar™ , and the 3-body recombination reaction

Art + eT+e” - Ar + e~

is used at relatively low temperatures where the equilibrium concentration of
Art is very low and the electron concentration may also be low.

7.3.8 ©Neglect of Electronic Non-equilibrium Effects

In runs based on gas models including electronic non-equilibrium, the in-
equality of the electron and gas temperatures and the loss of emergy by radiation
are neglected in the perturbation solution. These features are "switched on"
together with the numerical integration. The neglect of temperature non-equilibrium
in the perturbation solution appears to be a reasonable approximation, since the
gas is assumed to be nearly in equilibrium in the region where the perturbation
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solution is used. The neglect of radiative losses is a poorer approximation,
since the radiated power per unit volume is greatest in the high-temperature,
high-density region near the reservoir. However, because of geometric approxi-
mations used in NATA, inclusion of the radiative losses in the perturbation
solution would give radically incorrect results. In the upstream region, for

x » ~ «, NATA nozzle profile curvefits open out in conical fashion rather than
going to infinite area at a finite distance upstream of the throat. Thus, the
reservoir is, in effect, assumed to be an infinite distance upstream. Since the
flow velocity is finite everywhere, the transit time of an element of gas from
the reservoir to the throat is also infinite., This geometric idealization causes
no difficulties in adiabatic flows. However, if the gas were allowed to emit
radiation for an infinite time, it would lose all of its energy. Thus, the
neglect of radiative losses in the perturbation solution allows the code to
simulate the actual flow of a radiating gas which is heated in a region a finite
distance upstream of the throat.

7.4 1Inverse Method for the Upstream Region

The perturbation method used to start the non-equilibrium solution is based
upon the equilibrium solution, and thus assumes the equilibrium-flow value of
the sonic mass flux, m, {(Section 6.2). When the numerical integration of the
rate equations is started, the initial density p, velocity u, and effective area
ratio A, at the switchover point thus have values which are consistent with the
equilibrium sonic mass flux: pu A, = m, . If the integration is started down-
stream of the throat, in the supersonic portion of the flow, it is carried out
in a straightforward manner as outlined in Section 7.1. However, if the inte-
gration is started upstream of the throat, a straightforward numerical integra-
tion of the flow equations would almost certainly fail in the throat region
because the sonic mass flux required to allow a smooth passage from subsonic to
supersonic flow at the throat would differ slightly from the equilibrium value.
To avoid this difficulty, NATA uses an inverse procedure when the integration is
started upstream of the throat. This inverse method assumes, on the basis of
previous studies (ref. 41), that the non-equilibrium density distribution up-
stream of the throat and the sonic mass flux differ only slightly from the
equilibrium flow values. The p(x) and m, for equilibrium flow are assumed to
determine .the flow, in place of the specified nogzle geometry. To obtain a
smooth representation of p(x) with smooth derivatives, an analytical curvefit
to p(x) 1s used in place of the data at discrete flow points provided by the
NATA equilibrium solution. The form of the curvefit is based on the approxi-
mation of isentropic flow of a perfect gas with constant specific-heat ratio,

y. 1In any standard elementary text on aerodynamics (ref. 42), the following
relations are shown to apply to such a flow:

L2, 2 2 _ v X (382a)
2 y=1 p y=1 pg
2 P (382b)
(24 Po”

(382¢)
pu A, = p, u, = constant
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Pa ( 2 )1/()’-1) (3824)

. = s - 2z P (382e)
* * : y+1 po

where subscript 0 denotes reservoir conditions and » denotes sonic conditionms.
Elimination of u; p, and u, from these four equations gives a relation between
the density and the effective area ratio:

é Ae)z [1 —(;%)a] = C : -(383)

where
a=7y~-1 (384a)
_ (y+1)/(y=-1)
c. r! ( 2 ) (384b)
2 y +1
The value of a is determined from equations (382d) and (384a), which give
,p* a )
(a + 2} (—-— = 2 (385)
\ po

The ratio p, /py is known from the equilibrium solution. Equation (385) is solved
for @ using the Newton-~Raphson method. The object of the iteration is to make

px\ @
gla) = (a+2) (-—-) -2 =0 (386)
Po
From the ath estimate, e, , of a, the (n+1)th estimate is calculated as
gla,) (387)
a = — S ————
n+1 % (dg/da)
a=4a

The derivative in the denominator of (387) is obtained by evaluating

Py \& Py
d (1) |t 1 (388)
da Po PO

at a=a, . The iteration is continued until both |g| and |q, , ;—q,l are less than
or equal to 10~3, Then C is evaluated by substituting o and P/ py irto (383).

Figure 26 illustrates the accuracy with which equation (383) fits the re-
sults of actual equilibrium-flow calculations. The flow problem is the same one
on which figure 25 was based. The curve represents equation (383), and the points
are results of NATA equilibrium calculations.

The non-equilibrium solution by the inverse method proceeds as follows. At
each new value of x in the numerical integration, the geometric area ratio Aéx)
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is calculated by calling subroutine GEPMAR. Even if the run is one in which the
boundary layer on the nozzle wall is to be included, the effective area ratio Ae
is assumed equal to the geometric area ratio A, during the solution by the in-
verse method. Then the density ratio p/p, is calculated by solving equation (383)
numerically. This computation is performed in subroutine GEgM. Thus, p/p is de-
termined as a function of the position x in the nozzle. The derivative denp/dx
is also calculated from the relation ~

dlnp 2¢ [ s (389)
dx

PAE 2 dx
a —(a+2)C
Po

which can be derived by taklng the 1ogar1thm of (383), differentiating, solving
for the derivative, and u31ng (383) to re-express the result in somewhat simpler
form. '

The flow equations (293) and (299) for the chemical non-equilibrium model,
which are integrated during the non-equilibrium solution, contain both d fn p/dx
and dnA'/dx . The same is true of the equations (328) and (331) for the elec-
tronic non-equilibrium model. Either of these derivatives could easily be elimi-
- nated from the equations. Both are retained imn order to accommodate both the
normal, direct integration and the inverse procedure in the same set of formulas.
In the direct solution, dfnA[ /dx is obtained from the nozzle geometry and dln p/dx
is determined by solving the flow equations. In the inverse method, dfln p/ dx is
determined from the given nozzle geometry and the area-density relation (383), as
described above, and dfn A,"/dx is determined by solving the equations.

Neither dfnp/dx nor dln A.,"/dx is actually integrated in the Runge-Kutta
routine (RNKT, Section 7.5). The quantities obtained from the integration at
each flow point are T and y, (and T, and hy in the electronic non-equilibrium
model). From these quantities the enthalpy h is computed using (275). The
velocity u is obtained from the integral form of the energy equation (245). The
continuity equation (265) is then used to calculate the density p in the direct
solution or the area ratio A, in the inverse procedure. The effective area
ratio A thus determined in the solution by the inverse method is slightly dif-
ferent from the actual area ratio at the flow point, A_(x) , which was used in
determining the density from (383). This difference results from deviations of
the non-equilibrium temperature and concentrations from the corresponding
equilibrium~yalues, which produce a difference in the calculated flow velocity.
Typically, A, is a little smaller than A.(x) and drops below unity in the vicinity
of the throat.

3; has its minimum at the point where the non-equilibrium flow velocity is

equal to a = J(p/dx) / (dp/dx) . This point is near, but not necessarily at, the
geometric throat o6f the specified nozzle geometry. In a reacting gas, there is

a second sound speed besides a, the so-called "frozen" sound speed, ¢. The point
in the nozzle at which the flow velocity is equal to ¢ is a branch point; beyond
the branch point, the governing equations permit two solutions, a supersonic
solution (which is the one desired) and a subsonic solution. In nozzle flow of

a non-reacting gas, a and ¢ are equal and the branch point and the point of mini-
mum area both lie at the geometric throat. 1In a reacting gas, the frozen sound
speed is a little larger than a (réfs. 31, 41), and thus the branch point is
slightly downstream of the point of minimum area.

-150-



In NATA, the solution by the inverse method is continued beyond the throat
until the calculated area ratio A reaches a value (1.01) which typically occurs
downstream of the branch point. Then the specified nozzle geometry is adjusted
to make the actual effective area ratio Ae continuous with the value'K; computed
in the Inverse-method solution, and the solution is continued by direct inte-
gration of the rate equations. The adjustment of the nozzle geometry is carried
out' by setting an area rescaling factor, R, » equal to the value of

R, = — . (390)

at the switchover point from the inverse method to the direct solution. This
factor typically has values in the range 0.95 to 1,00.

After the direct integration has been begun, the value of dfnp/dx computed
at each point is checked for sign. 1f dfnp/dx goes positive slightly downstream
of the switch point, it is assumed that the program has started to follow the
subsonic downstream solution instead of the desired supersonic solution. This
condition could arise if the branch point were actually downstream of the switch
point. To recover the correct solution, the program restarts the inverse-method
solution at the switch point, using previously stored data, and extends it farther
downstream to a new switch point., If the dfnp/dx >0 condition is encountered
well downstream of the switch point, or if more than four restarts prove to be
required, the case is abandoned.

7.5 Numerical Integration

7.5.1 Treanor Integration Technique

The governing equations (287), (293), (299), (328), (331), (332) for the
non-equilibrium nozzle flow problem are first-order differential equations .of
the form

d - £ 391
.i = f(x, y) b ( 9 )
dx :

Here the dependent variable y represents a concentration y;, the gas temperature
T, the electron temperature T.; or the stagnation enthalpy h;, and x is the axial
position coordinate in the nozzle. Actually there are n+l1 or n+3 dependent vari-
ables y and functions f, and each function f depends upon all of the y’s. The
subscripts needed to distinguish the different variables and functions are omitted
in (391) to simplify the notation in the following discussion.

Numerous numerical integration methods for.systems of equations like (391)
are available (ref. 43). The earliest version of the Cornell Aeronautical

Laboratory program from which NATA was derived used a fourth-order Runge-Kutta
method based on the equations

1
By = = Bx(f + 26 + 26 + &) (392)
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where

f; = f05 ;) (393)
and
. 1 1 7
n = X + 3— Ax y2 =vy1 + —2— fl Ax (3948)
1 1 .
X3 = xl 4+ —2- Ax ' y3 =y + -5' f2 Ax ) (3941))
x4 = x1 + Ax v4 =y1 + f3 Ax ‘ . (.394(:)

Here x; is a value of x at which the value y; of y is already known, and y; + Ay
is the computed value of y at x = x; + Ax, This integration algorithm is
generally satisfactory. The truncation error in one step is of order (Ax),
so that high accuracy can be achieved by suitable choice of the step size, Ax.
Like other explicit integration methods, it is conditionally stable, i.e.,
stability can be maintained by using a sufficiently small Ax., However, a
special problem arises in the application of this fourth-order Runge-Kutta
technique to the non-equilibrium flow problem. The P; factors (288) for the
various reactions can differ by several orders of magnitude because of dif-
ferences in the rate constants k; and the concentrations ) of the partici-
pating species, Consequently, some of the species concentrations may relax
toward equilibrium very rapidly while others do so very slowly. For a species
which is near equilibrium, the rate equation (287) takes the approximate form

dy - . (395)
= - P(y-7¥)

where y is the local equilibrium concentration and P is an inverse relaxation
distance. Differentiation of (395) shows that each derivative of y is P times
larger than the derivative of previous order. Thus if P is large (i.e., if the
relaxation distance is small), the higher order derivatives d%v/dx" are very
large. Under these circumstances, the Runge-Kutta technique is unstable except
for very small step sizes Ax such that P- Ax <0(1).

To deal with this problem, NATA uses a modification of the fourth-order
Runge-Kutta technique developed by Treanor (ref. 44). When one of the P’s is
large, Treanor's technique normally allows the use of a much larger step size
than is possible in the Runge-Kutta method. When the P’s are all small, it
reduces to the Runge~Kutta method. .

Treanor's technique is based on the assumption that, over the interval Ax,
equation (391) can be approximated in the form

1 396
-é = f(x,y) = ~P(y-y;) +A + B(x—x1) + 5 C(x~- ::1)2 (396)
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This relation can be inﬁegratedvanalytically from x = x] to x = x; + Ax to give

the change in y over the interval:

Ay = Ax [A F{ + (B Ax) Fp +-(C Ax?) F3 ]

where
~PAx
Fi o= l-e
1= PAx
-PAx
PAx~1+ e
Fz = 2
. (PAx) :
2 ~PAx
(PAx)* — 2(PAx) + 2~ 2e
F3 = - - -

2(P Ax)3

(397>

(398a)

(398b)

(398c)

The four coefficients P,A,B, C in (396) are determined by fitting this relation

to data at the following four (x,y) points:

x=x1 y=yl
1

x=x1+-2—Ax y=yZ
1

x=x1+—2—Ax y = y3

x = x + Ax Y = Y4

(39%a)

(399b)

(399¢)

(399d)

‘The y; will be chosen at a slightly later stage in the analysis. Substitution of
(399) into (396) gives four linear equations for P,A, B, C. The solution of

these equations gives

fa — f
P - 3 2‘
Y3 =~ ¥2
A =f]
BAx = =3 (fl + Pyl) +2(f2 + PYZ) + 2(f3 + PY3) - (f4 + P}'4)

CAx? = 4[(f + Pyp) = () + Pyy) ~ (f5 + Pyz) + (f5 + Pyg)]
Substitution of (400) into (397) gives
Ay = Ax {f ‘Fl
+ [-3 (f; + Pyp) +2(f5 + Pyp) +2 (f3 + PYB) - (f5 + Py4).]~F2
+ 4 [(f; + Pyy) = (f + Pyp) — (f3 + Py3) + (f4 + Pyg) 1 F3}
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The quantities y;, and y3 are chosen, to be the values given by (3943) and
(394b). Based on these values, the formula (400a) for P becomes

£ —
p.. 2 . 32" 2 (402)
AX fz—fl

When (P Ax) is large, the y4 value given by (394c) can be considerably different
from the correct value on the solution curve. To avoid the errcrs in B and C
which would result from the use of (394c), a better approximation to y4 is ob-
tained by evaluating (397) with C =0; i.e.,

vi=y + Ay =y + Ax[AF + (B Ax)F,] . (403)
where the coefficients A and B are determined by fitting equation (396) to the
three points (x;,y)), (x;+ Ax/2 ; yp), and (x; + Ax/2, y3) . The expression (402)

for P remains valid, since it depends only on the evaluation of vy, andyz . A
and (B” Ax) are found to be , o

A= (404a)

B”Ax = 2 [(f3 + Py3) ~ (f; + Pyp)] (404b)
Hence, (403) gives

v4 =vp + Ax [265F) + 5 (F] — 2Fy) + £, (PAx) Fy ] | ‘ (405)

This result is used, in place of equation (394c), for evaluating (B Ax) and (CAxd)
from (400) and in the final integration formula (401).

For (P Ax)» 0, equations (398) show that

S f (406a)
PAx~> 0
bim Py - > | (406b)
PAx >0

1 : .
tn By -t (406c)
PAz->0

Hence, for (P Ax) + 0 , equation (405) for y4 reduces to (394c), and the Treanor
integration formula (401) reduces to the fourth-order Runge-Kutta formula (392).
Thus, in a region of the integration where (P Ax) is small, Treanor's technique
behaves like the fourth-order Runge-Kutta method, which is known to perform well
under such circumstances. On the other hand, for large (P Ax), Treanor's tech~
nique allows the use of a much larger step size without instability.

Equation (402) specifies the evaluation of P as the ratio of two differences.
If f, , f, , and f3 are nearly equal, the loss of accuracy on the indicated sub-
tractions can produce large errors in P, or even a negative value of P. However,
when these slopes are nearly equal the fourth-order Runge-Kutta method is satis-
factory. Thus, if the magnitude of (f, - f;)/ f; is found to be smaller than 10-4,
or if P is computed to be negative, the Runge-Kutta formula is used.
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The preceding discussion has been phrased in terms of the solution of a
single differential equation. ' The ron-equilibrium flow problem, of course, in-
volves a system of n+l (or n+3) coupled equations for the concentrations iy and
temperature .T.(and for Te and hp in the case of an electronic non~equilibrium
model). : ‘Treanor's integration techpique is applied to each of these
differentia quations individually. This procedure is the same as the one used
when the Runge-Kutta method is applied to a system of differential equations.

Lomax and Bailey (ref. 45) have studied the stability and accuracy of
several integration methods, including Treanor's, when applied to the equations
of steady, one-dimensional, non-equilibrium flow. Their principal findings with
regard to Treanor's method were as follows: ' .

1. When applied to a-single differential equation, the method is stable
for large step sizes, provided the parameter P is sufficiently close to
the eigenvalue of the linearized equation.

2. When the method is applied to a system of coupled equations, its stability
depends on the coefficients. It works very well if the equations are
nearly uncoupled, ‘but the coupling is difficult to assess a priori. The
allowable step size for a system of coupled equations depends upon the
eigenvalues of the system.

3. With proper step size control, the method is stable and gives accurate
results.

On the whole, Lomax and Bailey preferred an implicit integration technique
to Treanor's method. However, the advantages of the implicit technique were most
apparent in non-equilibrium shock wave calculations, in which the system under
consideration approaches an equilibrium state downstream., Treanor's explicit
integration formula has to use a small step size in near-equilibrium regions. 1In
the nozzle flow problem, the departures from equilibrium generally increase in the
downstream direction, so that the step size can be increased as the calculation
proceeds. Thus, Treanor's method is expected to be more satisfactory for nozzle
flow.problems than for shock wave problems.

7.5.2 Step-Size Controls

Proper control of the step size is extremely important in any numerical in-
tegration using an explicit finite difference scheme. If the step is just a
little too large, the solution becomes noisy and inaccurate, If the step is in-
creased still further, the solution becomes unstable and small errors are ampli-
fied without 1limit. On the other hand, if the step is much smaller than necessary,
the solution requires a needlessly large number of steps and wastes computer time,
In nozzle flow calculations, the step must be small initially, where the gas mix-
ture is still near an equilibrium state, but becomes stable for much larger steps
far downstream where the reactions are nearly frozen. Thus, a procedure for de-
termining and malntalning the proper step size in each part of the calculation is
needed.

The step size controls in NATA are based on those described in ref. 1 for
the Cornell Aeronautical Laboratory program from which NATA was derived. The
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controls in NATA arefsomewhat more elaborate and restrictive to meet the needs
of the electronic non-equilibrium models, which are distinctly less stable than
conventional chemical non-equilibrium models. The controls are based on tests
for the acceptability and accuracy of the computed results, both at intermedlate
points in each Treanor-Runge-Kutta integration step and at the end of each step.
The tests at the end of each step in conventional chemical non-equilibrium models
are as follows:

¥ > 0 (j=1, ..., n) (407a)
"~ dln A,

X > ~0.01 (407b)

dx N

Ay;

|-——1 < GTEST (j=1, ..., n) (407¢c)
AT

| =—| < TTEST (4074)
Tb —

Here the subscript b denotes values at the beginning of the integration step.
The criterion values GTEST and TTEST are under input control. They are preset
to the values GTEST = 0,1 and TTEST = 0.05,

The first test, (407a), requires that the concentrations be positive. The

" second requires that dA./dx be negative upstream of the throat and positive down-
stream of the throat; this test is effective only during the solution by the in-
verse method, in which p(x) is assumed given and df~ A./dxis computed from the
flow equations. The small negative value (-0.01) on the right allows for pos-
sible slight displacement of the non-equilibrium sonic point from the geometric
throat. The last two tests (407c, d) set limits on the changes in the dependent
variables in any one step.

In the case of an electronic non-equilibrium model, the following additional
tests are performed at the end of each integration step:

AT,

| J| < TETEST (408a)
Tep . '
Ah :

| = | < HTEST (408b)
b,

|Age | < max {QTEST- | qeb[,qu} (408¢)

where TETEST, HTEST, and QTEST are inputs preset to 0.05, 0,01 and 0.1, respec-
tively, and Dgm is the maximum value of QTEST: | 4.}, | computed previously in the
case., The tests (408a) and (408b) set limits to the changes in the electron
temperature Te and the total enthalpy hp in each step. The test (408c) controls
the fluctuations in the energy transfer {e to the electron gas. This test is
needed in the electronic non-equilibrium model because in the upstream region,
whete some of the reactions are near equilibrium, de is extremely sensitive to
small changes in the temperatures T and Te and some of the mole fractions Vje

In turn, 4. affects the electron temperature through equation (332). The
sensitivity of {, to the dependent flow variables is the principal cause of the
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poor stability of the electronic non-equilibrium models, which requires the use
of small step sizes in non~equilibrium flow calculations based on such models.,
The form of the test (408c) allows for the possibility that 9. may pass through
zero at some point in the solution.

The tests performed at intermediate points in the Treanor-Runge-Kutta inte-
gration step are generally more lenient than those done at the end of the step.
In the chemical non-equilibrium models, the tests at intermediate points are (407a),
(407b), and

T>0 (409a)

h < by (409b)

In electronic non-equilibrium models, the following additional tests are per-
formed at intermediate points.

Te >0 (409c)
| Ade | < 2Dg (409e)

At the start of each integration step, the values of y;, T, T., x, by, 4Aq, p,
and s are saved in a separate set of storage locations. If any of the conditions
(407) to (409) is violated at any point where it is applied, the flow variables
are reset to their values at the start of the step, the step size is reduced, and
- the step is repeated. If the step fails again, this procedure is repeated until
a successful step which passes all of the tests is obtained, or until the step
size falls below 10710 cm. If the step size goes below this limit, or if a
successful step has not been achieved after 30 tries, diagnostic data are printed
out and the case is abandoned.

Changes in the step size are based on two factors, SC (used for increasing
the step) and SCD (used for decreasing the step). SC is initially 1.1. If-NQS
successful integration steps have been taken without the need for a step size re-
duction, the step size Ax is multiplied by SC. If the step has thus increased
NQS times without the need for a reduction, SC is increased by 0.1, NQS is an
input (with input name NQSI), preset to 4. Thus, so long as the integration
proceeds with no failures of the tests, the step size is increased repeatedly,
and the factor SC by which Ax is multiplied is also increased.

When a failure of one of the tests occurs, the following actions are taken:

-

1. The counters for successful steps and successful increases in step size
are both reset to zero.

2. SC is decreased by 0.1 (but not below 1.1).
3. Ax is divided by SCD.
4, SCD is multiplied by 1.1.

5. The step is restarted from its beginning.
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If repeated failures of the same step occur, the increase in SCD on each attempt
allows the program to reduce the step size very sharply in a small number of
cycles. However, o6nce the step has been taken successfully, Ax is reset from its
(possibly very small) value used in the integration to max(Ax, 0.7 Ax,q) , where
Axyld is the step size used in the previous successful step. Also, after a
successful step, SCD is reset to the current SC value.

The initial step size at the beginning of the numerical integration is an
input (DELTXI). It is preset to 0.0l em. However, if

m

Ax_ = 100 lb‘)(ilmin (410)

is less than the input value of Ax, the step size is reset to Ax,. This provision
takes account of the smaller step size required when the switch from the pertur-
bation technique to numerical integration occurs in a region where one or more of
the reactions are still very close to equilibrium.

The preset values for TTEST and GTEST do not imply that the program allows
errors of 10 percent in the concentrations or of 5 percent in the temperature,
In fact, the cumulative truncation errors which occur when the step size is con-
trolled by (407) are typically of the order of 0.1 percent or smaller.

7.5.3 Freezing of Minor Species

Previous versions of NATA were subject to a mode of failure which typically
occurred far downstream of the nozzle throat. The symptoms of this type of
failure were as follows: The concentration of a minor species, already very low,
would begin to decrease more and more rapidly, until changes in the concentration
of this species were controlling the step size in the non-equilibrium integration.
The decrease in concentration would continue to accelerate, forcing successive
decreases in the step size. Thus, the rate of progress of the solution would be-
come quite low. 1In some cases, the step size would become so small that loss of
accuracy on subtractions would lead to'major fluctuations in some of the flow
quantities, and the code would be unable to proceed with the non-equilibrium
solution. ‘

The mechanism of this type of behavior is as follows. The gas models used
in NATA contain numerous reactions of the type

S+ Az B+ C (411)

Equation (283) for the rate of change of species S due to this reaction is
d‘yS -
P
- - _ I (k -k (412)
. — (gysya = keyp vd

since vj=v;" = 2 for the reaction (411). ©Now, the reverse rate constant k, is
given in terms of k¢ and the equilibrium constant K by equation (277). Hence
(412) can be rewritten

d k Y
1 9¥s £P YB YC
— — .- — |y - (413)
yg dx u Kyg

-158-



The equilibrium constant (278) for the reaction (411) is

n
] .
= — — E A 414
K exp Rg T ,81’ ¥ ( )
j=1 , \

Now, assume that the reaction (411) has been written so that products (B and C)
are much more stable than the reactants (8 and A) at low temperatures. Then the
exponent in (414) is positive. Because of its factor 1/T, this exponent can.be-
come large in magnitude as the temperature falls. In such a case, the equilibrium
constant K itself can become exceedingly large. Moreover, under such circum~
stances, K increases very rapidly as the temperature decreases. Even though yg

is decreasing, the increase in K can be so rapid that the second term on the right
in (413) becomes and remains small in comparison with the first term. If the con-
centration ys of the second reactant A is large compared with ¥s, the reaction has
little effect on ya. Under these conditions, dlnys/dx is negative and wvaries

only slowly withx. Thus, y5 approaches zero in an approximately exponential
fashion, ’

ys ~ %L |

L = u/kfp YA (415)
The type of failure described above would occur under these circumstances if the
characteristic relaxation length L were small. For some of the reactions used in

NATA gas models, the rate constant k; is sufficiently high to produce such failures
in some cases.

The current version of NATA contains a procedure designed to prevent failures
of this type. Whenever the following three conditions are satisfied:

(1) An excessive change in the concentration y; of a species, over a complete
integration step, has forced a reduction in the step size;

(2) + The concentration yj, of the species at the start of the integration step
- was less than an input value GAMIN, preset to 10-10 mole/gm;

(3)i The concentration Yj decreased during the step,

then the concentration of the species j is frozen by switching off all of the re-
actions which produce or destroy the species., The rationale for this procedure
may be outlined as follows: '

(1) It prevents failures of the type described above by switching off the
reaction causing the rapid destruction of the minor species S (along
with the other reactions affecting the concentration of the species).

(2) Because the concentration of S is very low, and since the net effect of
the reaction system is to transform S into other species, freezing the
concentration of S cannot significantly affect the concentrationg of the
other species during the remainder of the non-equilibrium flow solution.

When this procedure is used, NATA prints out a message identifying the species
whose concentration is being frozen and the reactions which are being switched off.
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7.6 Boundary Layer Effects

The method used in the approximate calculation of laminar boundary layer
development on the nozzle wall has been documented in Section 5. The boundary
layer calculation for the non-equilibrium solution follows an approach similar
to that used for the frozen and equilibrium calculations (Section 6.3). In the
upstream and throat regions, the boundary layer is computed but is not coupled
to the inviscid flow. A short distance beyond the throat, the coupling is "switched
on". The motivatien and justification for this approach have been explained in
Section 6.3.

In the frozen and equilibrium flow solptions, the coupling of the invisecid
flow to the boundary layer is turned on at the third point beyond the geometric
throat. In the non-equilibrium solution, the uncoupled solution is carried a
little farther downstream, to the point at which the switch from the inverse
solution to the direct integration is made. This procedure allows the effect
of the displacement thickness on the area ratio at the switch point to be included
.in the area rescaling factor R, equation (390). Also, it avoids stability
problems which might result from switching the coupling on very close to the
throat, where the solution is extremely sensitive to the area ratio.

In the uncoupled region upstream of the switch point, the effect of the
boundary layer upon the effecfive area ratio Ae is neglectedji.e., Ae is assumed
equal to the geometric area ratio, 4;(x). Downstream of the switch point, Ae
is calculated from 4;(x) and the dlsplacement thickness 8" using equation (126),
(130), or (134) depending upon the type of nozzle geometry. Also, dfn Al/dx=dlnA/dx
" in equations (293) and (299) is calculated from the derivative of the appli-
cable area ratio formula. The derivative d87/dx appearing in these formulas is
evaluated by the simple first-order difference expression

L3

(s*.é) ) (416)

dx X —Xp

in wh1d15*and ® ére the displacement thickness and axial coordinate at the current
flow point, and Jy , xy the corresponding values at the preceding flow point. To
avoid an abrupt discontinuity in dfn Ae/d®  at the point where the coupling is
switched on, d3 */dx ig built up gradually from zero over 29 integration steps,
according to the formula.

as* as" a8
T -7 (F), o= (F) wn
x c ‘ dx !O
where
1
YT 30 (418)

and i is an integration step counter which is initialized to zero in the step in

~which the coupling is switched on. Also, (d8* /dx); is the final d8*/dx ealculated
in the preceding step using (417). If (48" /dx). were constant, equations (417)

and (418) would give a linear variation of d&* /dx with the counter i, from 0.0333
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(d8*/dx)¢ at i = 0 to 0.9667 (ds*/dx). at i = 28, For i > 28, equation (418) is
no longer used. Instead, the weight factor w in (417) is calculated from

2
w oL [1, (éf.) ] (419)
2 AXO

in which Ax is the™ntegration step size in the current step and Axg that in the
preceding step. Thus, W never exceeds 0.5, and equation (417) provides some
smoothing of fluctuations in (d8*/dx)c. If the current step size Ax is much
smaller than the value Axy for the preceding integration step, which can happen
if the ‘current flow point is a model point or if the numerical integration of the
flow equations is encountering severe convergence problems, then the weight w
applied to the current (dé*/dx). value is very small. This algorithm avoids
difficulties which could result from loss of accuracy in the subtractions indi-~
cated in (416) when x and x; are very nearly equal.

The above-~described procedure for switching on the coupling between the
boundary layer and the inviscid flow is found to work reliably in flow calculations
based on conventional chemical non-equilibrium models. However, when attempts are
made to compute flow solutions including the boundary layer for gases represented
by the electronic non-equilibrium model, the solutions usually fail at the point
where the coupling is switched on., Such failures occur because the disturbance
produced by increasing d8*/dx in accordance with (417) and (418), small though
it is, upsets the precarious stability of the electronic non-equilibrium model.

Boundary layer calculations are performed both at the intermediate points in
the Treanor-Runge-Kutta integration step and at the end of each successful step,
Now, the method used in the boundary layer calculations involves the evaluation
of a definite integral, equation (170) or (172), in which the variable of inte-
gration is the streamwise coordinate ¢ lying along the nozzle surface. Also, ¢
.itself is evaluated as a definite integral. To avoid contaminating these inte~-
grals with inaccurate data from unsuccessful integration steps and intermediate
points in successful steps, the '"permanent" values of the integrals are incre-
mented only following successful full steps. At intermediate points in a step,
the integrals are incremented on a temporary basis for use in computing the
boundary layer displacement thickness, but are restored to their initial values.
Also, d6*/dx 1s not computed at intermediate points.

The calculation of the displacement thickness o0* (Sections 5.5 and 5.6)
involves the quantity df M/dx, in which M denotes the Mach number. During the
non—equilibrium solution, this derivative is evaluated as follows:

d M

dx

du 1 da 1 du 1 dT (420)

where the second form is based on the approximation a « T1/2 for the sound
speed a. The velocity derivative is obtained from equation (245):

da L fdy A (421)
dx=u dx  dx
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For chemical non-equilibrium gas models, dhy/dx =0 and dh/dx is given by (291).
For electronic non-equilibrium models, dhy/dx is given by (333) and, from (334),

n
dh . dT, . dye 2: c dT . dy (522)
i = ———— . - Snnan + ————
dx Ye Pe  4x + ¢ dx * y’ Pi dx ] dx

j=2

/

Thus, dfnM/dx is evaluated from the current values of dT/dx,dy;/dx , and, in the
case of electronic non-equilibrium models, dT./dx and dho/dx. These derivatives,
in turn, are obtained by solving equations (293) and (299) (or (328), (331), (332),
and (333) for electronic non-equilibrium models). These equations for the deriva-
tives involve A, and dfn A_/dx, which depend on 8" and d8*/dx, Thus, the calcula-
tion of & at any flow point requires knowledge of the value of 8* at the same
flow point. This impasse is broken by using an iterative self-consistent solution
for 9 and the derivatives dT/dx, dy;/dx, dT./dx, dhy/dx of the flow variables.
The convergence criterion in the 1teration is that the newly computed &% differ by
no more than 1 percent from the previous value, Whenever calculations of the
derivatives are required, in a non-equilibrium solution including the boundary
layer, the derivatives are first computed assuming the &* value 3; left in storage
by the last previous calculation. Then a new value 8;* for the thickness is com-
puted by calling the boundary layer routine, and is compared with the previous
one. If 81* and §* differ by no more than 1 percent, the new value is accepted
and used, If they differ by more than this amount, the entire calculation is re-
peated, using 81 in the rate calculation, to obtain a further improved estimate
84. If the convergence test is satisfied, &) is accepted as the displacement
thickness. If not, the following rapidly converging algorithm is used to obtain
a more accurate estimate of 8%, Denote the input value of displacement thickness
assumed in the rate calculation by 8%, and the output value obtained from the
boundary layer routine by 8,°. Then the calculational procedure defines a func-
tional relationship 85 = f£(5;*) . The condition for a self-consistent solution is
that 8 = 8. The functional relation is approximated by a straight line passing
through the two points already computed (or the two most recent points if the
algorithm is applied more than once). The equation of the straight line is

8F -8 &5* - 8.5

o 02 o i2 (423)

* * *

802 =81  Oip =81

The intersection of .(423) with the self-consistent solution line is found to be
at 8, = 8 = 0% | where
* * * *
5 8,2 81 - 91 92 (24)
) * * * %
81 = 83 — 81 +853

1

Figure 27 illustrates the geometry of this solution. The first application of
(424) almost always gives a 8* value which satisfies the self-consistency con-
dition to within 1 percent. The program allows a maximum of four iterations
using (424).
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84-1798 1
Figure 27 SELF-CONSISTENT SOLUTION FOR THE DISPLACEMENT THICKNESS
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7.7 Example - NOZ Recombination

To illustrate the non-equilibrium flow calculations performed by NATA, the
code has been used to compute the flow and concentration changes in two of Wegener's
classic experiments (refs. 46, 47) on the three-body recombination of nitrogen di-
oxide,

2 NO, + Ny &= NyO4 + Ny (425)

Wegener's experiments were performed in a small wind tunnel of rectangular cross
section. The flow geometry was modeled in NATA as a two-dimensional nozzle with
the profile shown in figure 28, The flow in this tunnel was found to be one-
dimensional to within the accuracy of the measurements. The experiments analyzed
were those designated C and F in refgrence 46. The conditions in these experi-
ments were as summarized below:

Experiment o0 Po T,
2 atm o
K
percent
c 0.0100 2.00 400
F 0.0500 2.16 402

Of the three gas species appearing in (425) only Ny is a standard species in
NATA. Thermo fits for NO5 and N904 were obtained by fitting the data in the JANAF
tables (ref. 48) over the temperature range 200° to 400° K. The coefficients ob-
tained for use in equations (33) and (34) were as follows: '

Coefficient NGy N,04
a 4.003 3.553
b -3.75 x 1074 1.1625 x 1072
c 2.45 x 10°°  -4.55% 107°
d 0 0
e 0 0
k 5.945 10.028
HOO (kcal/mole) 8.586 4.473

4

The rate constant for the reaction (425) was taken to be 3 x 101 cmG/molez-sec

(ref. 47).

* Frozen, equilibrium, and non-equilibrium flow calculations were performed
for each of the two experiments. The results are compared with Wegener's data
in figures 29 and 30, The abscissa in these figures is distance along the
nozzle. The ordinate is the ratio [NO2]/[NOp] gof the NO2 concentration to its
value in the upstream reservoir. This was calculated from quantities available
in the NATA output as
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[NOZ] [ XNOZ w()
— - — =
[ 2]0 2y (Noz)o

(426)

The curves in the figures give the NATA results. The points are Wegener's data
(ref. 46), which_are based on measurements of optical transmission at wavelengths
of 3950 to 4750 A. 1In this wavelength range, Ny and N20, are transparent, while
NO2 absorbs. The figures show that the NATA non-equilibrium flow calculations
are in close agreement with the experimental data in both cases. In experiment
F, the flow is nearly in equilibrium throughout the tunnel, but a major departure
from equilibrium occurs in experiment C.
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8. CONDITIONS ON MODELS

The NATA code provides calculations of the heat flux and pressure on models
inserted into the free-stream flow at specified locations. The code treats two
general types of model configurations: the stagnation point of an axisymmetric
or two-dimensional probe, and the flat surface of a blunt wedge.

The points in the free-stream flow at which model condition calculations
are to be done may be specified in either or both of two ways:

(1) A list of up to 20 test section diameters (TSDIAM) may be read in.
Model condition calculations are done at the positions (downstream of
the throat) at which the nozzle diameter has the values thus specified.

(2) An initial axial coordinate value (XM@DPl), a final value (CXMAXI), and
a number of model points (NM@DPT) may be read in. Model condition
calculations are then done at the specified number of points, including
the initial and final positions and a sequence of intermediate points
whose axial coordinates form a geometric progression. For NM@DPT = 1,
calculations are done only at the initial point.

The influence of the test models upon the free-stream flow is not considered.

Thus, when calculations are done for several model locations, each model is as-
sumed to be inserted into the previously undisturbed free stream.

8.1 Stagnation—Point Calculations

The calculation of stagnation-point conditions begins with an approximate
normal shock solution. The heat flux and shock standoff distance are then cal-
culated for both flat-faced and hemispherical axisymmetric models. Optionally,
the calculations can be done instead for two-dimensional models with flat and
cylindrical leading edges. These calculations are carried out assuming either
equilibrium flow behind the shock or a frozen shock with the species mole frac-
tions behind the shock equal to those ahead of it. Optionally, both types of
normal shock calculation can be done.

Section 8.1.1 discusses the normal shock solutions, Section 8.1.2 the heat
flux calculations, and Section 8,1.3 the stagnation-point velocity gradient.
Section 8.1.4 specifies the model heat flux outputs provided, and Section 8.1.5
discusses low-density effects which limit the validity and accuracy of the
stagnation-point heat flux calculatioms.

8.1.1 Normal Shock Solutions

The main purpose of the stagnation-point model-condition calculations is to
predict the stagnation point heat flux and the stagnation pressure on the model.
The objective of the normal shock solution is to determine the conditions at the
stagnation point of the inviscid flow, just outside the boundary layer on the
model. The free stream conditions ahead of the shock will be designated by
subscript 1 , conditions just behind the shock by subscript 2, and stagnation
conditions by subscript s .
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The conservation relations for the normal shock are:

Py + prur’ = by + ppug” (427a)
1 1
hl + 3012 = hz + ? u22 (427(:)

The conditions ahead of the shock are known from the nozzle flow solution. The
conditions at the inviscid stagnation point are assumed to be related to those
just behind the shock by :

L
hg = hy + = uy (428a)

. ,
Ps ¥ P2 +3 P 5y’ (428b)

The first of these relations (428) is exact. The incompressible Bernoulli equa-
tion (428b) is only an approximation to the actual’ compressible isentropic flow
relation, but is reasonably accurate as long as the shock Mach number is not too
low. In NATA, model condition calculations are not done for points at which the
free—stream Mach number is less than 1.5. At this Mach number, for a perfect
gas with y = 1.4 (for example), equation (428b) is accurate to within about 3.5
percent. For higher free-stream Mach numbers, the accuracy is still better be-
cause the Mach number behind the shock is lower. For example, at Mach 5 the
error is only 0.5 percent for a perfect gas with ¥y = 1.4,

The gas equation of state has the form

p=p(T,p (429a)

h

I

h (T, p) (429b)

In the case of a frozen shock, the relations (429) are assumed to be the equa-
tions for a thermally perfect but calorically imperfect gas:

Wp
P =2 (430a)
h = h(T) (430b)

For the equilibrium shock, the relations (429) are embodied in a subroutine
(EQCALC) which computes the thermochemical equilibrium state of a gas mixture at
specified temperature and pressure. In this case, neither of the equation of
state relations can be expressed in analytical form.

NATA calculations of the stagnation conditions on a model are carried out in
two stages. First, the conditions immediately behind the shock are computed by
simultaneous solution of the Rankine-Hugoniot conservation relations (427) and
the equation of state (429), Then the -stagnation conditions are calculated by
simultaneous solution of equations (428) and (429).
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The equations (427) for the normal shock can be rewritten in terms of the
density ratio

% = PP ‘ : (431)
in the following form:
py = p1 + prup? (1 =€) (432a)
1
by = by + zu? (1- e | (432b)

In (432), equation (427b) has been used to eliminate the velocity u, from the
remaining two equations (427a), (427¢c).

For both the equilibrium shock and the frozen shock, the solution involves
an iteration on the temperature T) of the gas immediately behind the normal shock.
For each estimate of T, , the static enthalpy by is calculated both from (432b)
and from the equation of state relation (429b) or (430b). The correct temperature
T, is the one for which these two enthalpy values are equal.

In the case of a frozen shock, the gas enthalpy (430b) depends on tempera-
ture only, not on pressure. It is computed from the species enthalpies H; (Tp)
using equation (275). 1In the solution for the frozen shock, the mole fractions
are assumed constant across the shock, so that the free stream values are used.
To calculate the second hy value from (432b), the density ratio e, must be known.
In the case of the frozen shock, since the gas is assumed thermafly perfect and
since the molecular weight W behind the shock is the same as that ahead of the
shock, the density p; behind the shock is given by

Py T
= e (433)
P2 =pP1 P T,
From (431) and (433)
p T.
o o L2 (434)

Ppy T

Substitution of (434) into (432a) gives a quadratic equation for the pressure pp:

P® ~ prpy + Ap = 0 (435)
where 5
Pp =Py + Py (436a)
2
T
N N | | (436b)
P Tl

The applicable solution of (435) is

1 /
Py = [PT + PT2 -4 4, ] 437

Pl
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For each estimate of the temperature T, in the iterative solution of the equa-
tions for the frozen normal shock, py is calculated from (437) and ¢, is then
obtained from (434). This ¢, value is then used to compute h2 from fz32b). The
resulting hy value is compared with the one from (275) to determine whether con-
vergence has been achieved and if not, to select an improved estimate of T, for
the next iteration. ’

In the case of an equilibrium shock, the solution is slightly more compli-
cated because the enthalpy (429b) depends upon the pressure pz , and because the
calculation of ¢ for each estimate of T2 cannot be performed analytically but
requires an innér iteration. For each trial value of T; , the corresponding
pressure p and density ratioe, are obtained by solving equations (429), (431)
and (432a), as follows:

1. An initial estimate of ¢, is chosen and is used to calculate an initial
estimate of py» from (435;).

2, The equilibrium equation of state (429a) is used to compute
py = p(Ty, pp)

3. The new density ratilo

’

p = P1/Pz
is calculated.

4. -Thé,new ratio ¢, is compared with the old value ¢, to determine whether
the inner iteration has converged. The criterion is that the two values
be equal to within 0.1 percent,

5. 1If not, the quantity
a = PP

is computed, and a new estimate of p, is obtained from

1
Py = ;-[PT ¢ Vor? - 4p7? ul"a] (438)

Equation (438) is equivalent to (437) with

A, = P w?a

Thus, (438) is an approximation to the pressure p; corresponding to the
assumed temperature T,, based on neglecting the pressure dependence of

the gas composition.

6, The steps beginning with (2) are repeated using the new p; from step
(5).
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»
This inner iteration to obtaine¢, and p2 is repeated for each step of the main
iteration on T;. The logic of the iteration to determine T, is the same as for
the frozen shock.

Once the conditions P2 , T2 , p2 behind the shock have been obtained, the
conditions at the inviscid stagnation point on the model are calculated by solv-
ing equations (428) and (429). The stagnation pressure is calculated directly
from (428b), which is rewritten in the form

1
2
Ps = P2 + P18 % ' (439)

The stagnation temperature Tg is then obtained by an iterative solution of (428a)
and (429b) or (430b).

8.1.2 Stagnation-Point Heat Flux

NATA calculations of stagnation-point heat transfer to models are based on
a correlation formula which incorporates results of analyses by Fay and Riddell
(ref. 49), Bade (ref. 50), Finson and Kemp (ref. 51) and Goulard (whose work is
reviewed by Dorrance, ref. 52, pp. 92-93)., Fay and Riddell's correlation

NNu, w

o ) 04 bp

e Pe

——— - 0.763 Np 0+ 1+ fo1)— (440)
\ NRe,w ) Py oy - Le h,

(ref. 49) is widely used for calculating stagnation point heat transfer in high~
temperature air. The non-dimensional groups appearing in this formula are de-
fined as follows: '

Nusselt number based on property values at the wall
9s ¥ Cpyw

NNu,w = m (4{*1)

Reynolds number based on property values at the wall

Ny = e (442)
: [T

Frozen Prandtl number (assumed constant)

Np, - (443)

Lewis number (assumed constant)

Npe = fli;l (444)
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The other notations used in (440) to (444) are:

cp = specific heat (chemically frozen)

Djp = binary diffusion coefficient for atoms and molecules

£ = 0.52 for an equilibrium boundary layer, 0.63 for a frozen one

h = enthalpy

hpy = enthalpy of dissociation per unitrmass for the gas in the external
flow -

K = thermal conductivity (chemically frozen)

qg = stagnation point heat flux

u = wvelocity component in the direction parallel to the body surface

x = radial distance along the body surface from the stagnation point

@ = vyiscosity

p = density

The subscript ﬁotation is

e

conditions at the stagnation point of the external flow

w

conditions at the body surface

It is easy to show from the above definitions that

NNu, e ] Npy e Pw P NNu, w (445)
VNRe,e Npr,w Pele  VNRe,w

Thus, for constant Prandtl number the Fay-Riddell formula (440) can be rewritten
in terms of Nusselt and Reynolds numbers based on property values at the edge of
the boundary layer in the form 0.1

'Nu, e 0.4 Py Hy f hp
————— = 0.763 Np - Le(Np " =1) — (446)
\/NRe, e Pe e he

The Fay-Riddell correlation (440) or (446) is a curvefit to the results of
49 numerical solutions of the stagnation-point laminar boundary layer equations.
The solutions included cases in which the boundary layer was assumed to be in
chemical equilibrium, cases in which finite rates were used for the dissociation/
recombination reactions, and cases with a chemically frozen boundary layer. In
all carces, the viscosity was assumed to be given by a Sutherland formula,

3/2 Ty + T
P 2S5 (447)
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with pp = 1.72 x 10~4 poise, Tp = 273° K, and Tg = 113° K, and the Prandtl num-
her was assumed to have the constant value 0.71. The Fay-Riddell formula (440)
or (446), with these gas transport properties, with f = 0.52 (equilibrium
boundary layer), and with a Lewis number Nie= 1.4, has been found to correlate
measurements of stagnation-point heat transfer in air to within the experimental
accuracy of about *20 percent (ref. 52, p. 91; ref. 53), at temperatures up to
the onset of ionization effects.

Although the Fay-Riddell correlation was developed specifically for disso-
ciated air, it can also be used to estimate stagnation-point heat transfer in
other gas mixtures. This is done in NATA. The transport properties p,K, Np,,
Nie, appearing in (446) and in the defining equations (441) and (442) for the
Nusselt and Reynolds numbers, are computed by the NATA transport subroutine
package (Section 3).

Air is treated in the same way as other gases; i.e., transport properties

computed by ‘the code are used in place of the properties, such as (447), assumed
by Fay and Riddell in their calculations. For this reason, a minor modification
of the correlation formula (446) is required. The Sutherland formula (447) for
the viscosity of air is quite inaccurate at high temperatures. For example, at
70000 K and 1 atm pressure, the value based on (447) is 35 percent lower than
the value given by Yos' calculations (ref. 54). At high temperatures, the
Sutherland formula is practically equivalent to a power-law viscosity formula,
p = AT? | with the exponent ® = 0.5 , whereas realistic calculations for equilib-
rium air (ref. 54) can be approximated by the power law with o = 0.7 in the range
from room temperature up to 50000 K. At higher temperatures, the viscosity first
increases still more rapidly, then passes through a maximum and falls off.

The value of the exponent o affects the dependence of the stagnation-point
heat flux upon the enthalpy ratio gw = hw/he across the boundary layer (ref. 50).
For o = 0.5, the correlation parameter NNu,wﬂ/NRe,e decreases with increasing
enthalpy ratio. This is the dependence which Fay and Riddell fitted using the
factor (pwy‘,/peue,)o‘1 in (446). However, their representation of this dependence
is valid only for o = 0.5 (or for the Sutherland law). For @ = 1, (p, p./p. po)
is equal to unity for all values of the enthalpy ratio, but Npy, ¢/VNRe, e increases
slightly with increasing gy . For w = 0.7 to 0.8, (pg p/pep.) varies with g, but
NNu, e/ VNRe, e is practically independent of g .

Since the viscosity of air, as calculated in NATA, is approximated by a power
law with o = 0.7 for temperatures up to 50000 K, the results of reference 50 indi-
cate that the dependence of the correlation parameter Ny, d“/NRe,e upon the en-
thalpy ratio should be weak. For this reason, the Fay-Riddell correlation (446)
is adjusted for the use of the real air yiscosity in place of the Sutherland law
(447) by omitting the factor (pw.uw/peygo‘ representing the dependence on the
enthalpy ratio across the boundary layer:

N N hp
“Nu,e ( Nu ) {1 +(NLef - ; ] (448)
VNRe,e VNRe /0 €
where ‘
Ny
( - ) = C(j) Np, 04 (449)
VNge /9
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is the laminar heat transfer parameter for a low-temperature flow with constant
Prandtl number and pp = constant through the boundary layer. In (449), C() is
a coefficient which depends upon body geometry. For a stagnation point in two-
dimensional flow (=0 ), according to Squire (ref. 55),

C©) = 0.570 (450a)
For an axisymmetric stagnation point (j=1), from Sibulkin (ref. 56),
C(Dh = 0.763 (450b)

These values (450) can also be obtained from the results of DeWey and Gross
(ref. 26).%*

Equation (448) shows that the laminar heat transfer parameter, evaluated
using gas properties in the external flow, may be approximated as the product of
the low~temperature correlation function (449) and a correction factor repre-
senting the effects of heat transfer by diffusion and recombination of atoms.
Substitution of the definitions for Nnu,e and NRe, e (analogous to equations
(441) and (442) for NNu, w and NRe, w ) into (448) gives the following expression
for the stagnation-point heat flux:

/2

. du : h

(&0)] e D

9% - o [pe e (d_x>:| (he —hy) [1 rNLS - D - } (451)
Npt ‘ s e

In the vicinity of the stagnation point, the velocity ue is proportional to the
radial distance x from the stagnation point. Thus, in (451) the ratio u¢/x has
been replaced by the stagnation-point velocity gradient, (du./dx)g .

A further minor modification of the Fay-Riddell formula has been made to
permit inclusion of the effects of surface catalytic efficiency in the calcula-
tions. In the case of a frozen boundary layer, (446) and (451) assume that the
model surface is perfectly catalytic for recombination of atoms. In NATA, (451)
has been modified to allow for surface catalytic efficiency less than 1, using
an approach suggested by Goulard (ref. 52, pp. 92-93):

ch dug V2 ¢ . hpy
qS = . Y3 peb He ™ 1+ (® NLE - 1) m (he - hw) (452)
P s

T

Here ® is a catalytic factor which can take values between 0 (no catalysis) and

an upper limit which is less than 1 for a perfectly catalytic surface. Equation
(452) is used only for the frozen boundary layer. For the equilibrium boundary

layer, the factor ® is omitted because, in that case, recombination of atoms is

accomplished by reactions in the boundary layer regardless of the properties of

the model surface. For ® = 0, (452) makes the heat flux proportional to

(he ~hp —hy) . According to Goulard's analysis, ® is given by
-1
0.47 (N o/Np ¥/ 3 [ 2(duy/dn) pe pel V2 (453)
P = 14
Pw kRw

*To get (450) from the data in Dewey and Gross, it is necessary to note that the Falkner-Skan parameter 8 is 1 for j=0and 0.5 for j=1,
and that NNU/\/ Ngg = \‘/ i+1 8" (0 fort,=1.
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where kpy is the surface recombination rate constant, defined such that the mass
of atoms recombining on thé surface per unit area per unit time is kRw times the
concentration of atoms in mass per unit volume in the gas at the surface. The
units of kpy are cm/sec.

In NATA, the dissociation enthalpy hp is calculated as

1 j :

atoms

in which W is the mean molecular weight, X; is the mole fraction for the ith
species, and Hj;® is the molar enthalpy of formation for the species. Only neu-
tral atoms are. included in the sum. The Lewis number Ny is calculated for an
atom-molecule diffusion process which is assumed to be dominant or characteristic;
in the standard air models, Ni. is computed based on the 0-N, diffusion coeffi-
cient. Thus, the significant recombination process is assumed to be 20 — 09,

In the planetary atmosphere (CO2-N2-Ar) models, the bracketed factor containing
the Lewis number in (448), (451), and (452) is omitted since there is no theo-
retical support for applying it to a gas mixture so different from air.

The boundary layer solutions of Fay and Riddell did not include effects of
ionization of the air. Flows with copious free-stream ionization are within the
intended scope of application of the NATA code. Gas ionization affects the
structure and properties of a laminar boundary layer primarily through its effects
on the gas transport properties. The main changes in transport properties due to
ionization are as follows:

(1) The chemically frozen thermal conductivity Ky increases greatly as a
result of the high conductivity of the free electrons.

(2) Energy transport by ambipolar diffusion and recombination of electron-
ion pairs occurs. This process further increases the effective thermal
conductivity. However, this reaction conductivity is considerably less
important than the corresponding effect due to dissociation and recom—
bination of diatomic molecules in air, because the large charge exchange
cross sections impede the diffusion. .

(3) The viscosity decreases as a result of the large momentum-transfer
cross section for collisions of charged particles.

As a result of these changes, the (frozen) Prandtl number Np, = Spf wW/Kg de-
creases markedly as the amount of ionization increases. Thus, when the external
flow is ionized to a substantial extent, the frozen Prandtl number is considerably
smaller at the outer edge of the boundary layer than at the cold surface, where
the ionization is negligible. This variation of the frozen Prandtl number is a
new feature, not previously encountered in studies of lower temperature boundary
1ayers. In air, for example, the equilibrium Prandtl number (%) p/K (where

q includes the reaction conductivity) has peaks and dips due to the reactions,
but the frozen Prandtl number varies by only a few percent in the temperature
region below the onset of ionization.
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Available stagnation point boundary layer solutions have been studied to
obtain a correlation of the effects of free-stream ionization upon stagnation-
point heat transfer. These solutions include the calculations of Finson and
Kemp (refs. 51, 57) for the noble gases, those of DeRienzo and Pallone (ref. 58)
for air, and those of Fay and Kemp (ref. 59) for nitrogen.

Finson and Kemp (refs. 51, 57) computed solutions of the laminar stagnation-
point boundary layer equations in axisymmetric and two~dimensional flows of
ionized argon and xenon. They included energy transport by ambipolar diffusion
and recombination, and obtained two sets of solutions, one based on local thermo-
chemical equilibrium through the boundary layer, the other based on frozen
chemistry but assuming a perfectly catalytic wall. The cases computed were
chosen to simulate situations for which experimental data were available in the
literature.

Figure 31 presents a correlation of Finson and Kemp's results for the equi-
librium boundary layer. The abscissa in this figure is the ratio of the frozen
Prandtl number across the boundary layer. In all cases, the wall temperature
was 300° R; thus, Npr w was constant at its low-temperature value of 2/3 for
monatomic gases. The frozen Prandtl number Npp ¢ in the external flow was

" calculated from the transport property formulas assumed in Finson and Kemp's cal~
culations, rather than from other, possibly more accurate data, because the ob-
ject of the study was to correlate the calculated heat flux with the transport
properties upon which it was based.

The ordinate in figure 31 is the ratio of the non-dimensional laminar heat
transfer parameter,(D%“/VIqRQe » based on gas properties in the external flow,

to the value (NyNo/VNRC for a low-temperature flow, given by (449). Bade (ref.

50) has shown that this ratio is approximately equal to unity for stagnation
point boundary layers in helium, neon, argon, krypton, and xenon at temperatures
up to the onset of free-stream ionization. Figure 31 shows that, in the ioniza-
tion region, this ratio varies over a wide range. The straight line drawn to
fit the data points in the figure represents the equation

(NNu/V NRe)e (NPr, e >0'7
(NNu/V NRe)O

Substitution of (441), (442), and (449) into (455) gives the following formula
for stagnation point heat transfer in a noble gas, valid from low temperatures
up to and including the ionization region:

'} pe Fe (due/dx)s

qg = C(j) — (he —hy) (456)

(455)

NPr, w

This formula is used in NATA for calculations of stagnation point heat transfer
in helium and argon. Since the effect of ionization is to decrease Npr, e »
equation (456) shows that free-stream ionization increases the stagnation point
heat flux above the value predicted by the theory of reference 50 for a gas of
neutral atoms at the same enthalpy.
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Theoretical calculations of stagnation point heat transfer are also avail-
able for partially ionized air and nitrogen. DeRienzo and Pallone (ref. 58)
computed the heat flux through an equilibrium boundary layer in air. They took
energy transport by diffusion and reactions into account by using the equilib-
rium Prandtl number and omitting the diffusion equations from the system to be
solved. Their results for equilibrium air with no blowing at the wall are
represented by the circles in figure 32. Fay and Kemp (ref. 59) performed cal-
culations for nitrogen, using a model in which the reaction conductivity due to
the ionization reaction Ng= N*+e was neglected. This approximation was justified
by reference to the large charge-exchange cross section for nitrogen. Fay and
Kemp explicitly included energy transport by diffusion of neutral atoms and their
recombination to form diatomic molecules. Their results are represented by the |
diamonds and triangles in figure 32.

Both reference 58 and reference 59 tabulate their results in terms of the
parameter (Nno/VNpe)y » based on gas properties at the cold wall. For the
preparation of figure 32, these data were ‘converted into (Np,/VNge)e values with
the aid of equation (445). In each case, the transport properties assumed in
the reported boundary layer solutions were used in equation (445) and in evaluat-
ing the abscissa of figure 32, since the object of the study was to correlate
calculated heat transfer data with the transport properties upon which the calcu-
lations were based. In the case of reference 58, the surviving documentation is
not sufficient to specify the assumed tramsport properties exactly, so that there
is some uncertainty as to where the points should lie. Fay and Kemp provided
enough information to permit reconstructing the transport property values for
each of their solutions.

The scatter of the points in figure 32 is considerably greater than that in
figure 31, but the overall trend is similar. The straight line in figure 32
again represents equation (455). The fit would be a little better if the expo-
nent of 0.7 in (455) were replaced by a slightly lower value, e.g., 0.65. How~
ever, (455) accounts for the main part of the variation of the ordinate. The
uncorrelated variations probably result mainly from energy transport by diffusion
and recombination of atoms. Trend lines drawn through the Fay-Kemp results for
L= 0.3 and L = 1 (triangles and inverted triangles) bracket nearly all of the
data from both references 58 and 59. The parameter L is not the Lewis number as
defined by (444), but is a related quantity which (unlike Ny.) is approximately
constant over the temperature range in which nitrogen molecules. disscciate. Fay
and Kemp's results indicate that the stagnation point heat flux varies roughly
as LV°7

In NATA, stagnation point heat transfer in air and other molecular gases
under conditions of free stream ionization is calculated by combining the
ionization effect represented by equation (455) with the atom diffusion and re-
combination effect given by (448) (and adjusted for surface catalytir efficiency
in (452)). This combination of correlations gives '

NPt, w e

o .7
(NNu/ NRe)e ( NP:, e )0

hp
- - [1 +@N - T (457)
(Nny/VNRE Tw
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The corresponding stagnation point heat flux formula is

| 0 due) [ e ™ .
9 = 5 Pe He d 1+ Nie - 1) P (he ~h,) (458)
(NPr, ) f3 . X /s e — fy

w NPr, e

This differs from equation (456), which is‘used for the noble gases, only by the
factor in square brackets representing the effects of atom diffusion and re-
combination.

& o
; 5

8.1.3 Stagnation Point Velocity Gradient

The stagnation—point velocity gradient (due/dx)s  appearing in (452), (456),
and (458) depends upon the free-stream velocity uj, the model nose radius Ry ,
the shock density ratio¢,, and the model shape. It also depends weakly upon the
gas equation of state, i.e., the effective specific heat ratio, y.

For hemispherical models in axisymmetric flow and cyiindrical models in two-
dimensional flow, NATA computes the velocity gradient us1ng the modified
Newtonian approximation (ref. 60):

P-P1 ’

—— = cos?B (459)

PS.—PI -

where p is the local pressure on the body surface at a point where the incident
flow ahead of the shock makes an angle 8 with the normal to the surface. As
before, p; is the free-stream static pressure ahead of the shock and pg the stag-
nation pressure on the body. Near the stagnation point, the pressure and flow
velocity are related by the incompressible Bernoulli equation

1
Ps = P + — ps Ve’ | 460

and the distance along the surface from the stagnation point is given by

X = RnB': Rnsinﬁ (461)

where R, is the body radius of curvature at the stagnation point. Combination ‘
of (459), (460) and (461) gives

due 1 2 ps <1 Pl )
¥ — - 462
dx R, Ps Ps : : (462)

S

Equation (459) is an empirical pressure distribution which is reasonably
accurate for spheres. Figure 33 compares the non-dimensional velocity gradient
parameter.

R, (due\) 1 2pg b
— =) == -— 463
up \dx /g m P Ps (463
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based on the modified Newtonian formula (462), with experimental data from Boison
and Curtiss (ref. 60), Crawford-and McCauley (ref. 61), and Reinecke (ref. 62).%
The figure also shows results of unpublished calculations carried out with the
Moretti~Bleich blunt-body computer program (ref. 63) by R. C. Boger of Avco
Systems Division. The curve represents equation (463). The modified Newtonian
formula agrees with the experimental data to within their scatter, and lies less
than eight percent below the trend of the theoretical results from the blunt~body
inviscid flow program. Since the stagnation point heat flux depends upon the
velocity gradient as (due/dx)s1 2 s the accuracy of (463) for models with spherical
noses appears adequate.

Information surveyed by Hayes and Probstein (ref, 64, pp. 422-423) suggests
that the pressure distribution in two-dimensional hypersonic flow over a circular
cylinder is given approximately by equation (459).. The velocity gradient param-
eter (Rp/uj) (due/dx)s 1is apparently a little lower for cylinders than for spheres.
This difference, if real, is neglected in NATA.

Figure 34 summarizes some available data on the stagnation point velocity
gradient in axisymmetric flow over a flat-faced cylinder. The experimental data
from reference 60 lie about 20 percent below the results of Vinokur's (refs. 65,
66) approximate constant density solution. The unbroken curve shown represents
the analytical relation

R, /d
Ry ( “e) i % (464)
up \dx fg 134442 (E_M)Z

which is a curvefit to Vinoiur's results for the flat-faced cylinder, divided by
a factor of 1.2 to improve the fit to Boison and Curtiss's experimental data.
In (464), Ry denotes the radius of the circular flat face.

Two—dimensional flow over a flat-faced plate has been analyzed by Cole and
Brainerd (ref. 67) using the constant density approximation. According to Hayes
and Probstein (ref. 64, p. 310), Cole and Brainerd's calculations give the
stagnation point velocity gradient in the form

R du
b .
-2 ) < o064 (465)
ul dx s P

where R, is the half width of the flat face. Hayes and Probstein (ref. 64, pp.
426-428) have compared Cole and Brainerd's results with those from other
calculations.

Since the body radius Ry is equal to the nose radius of curvature R, for
spherical and cylindrical models, equations (463), (464), and (465) all indicate
that the stagnation point velocity gradient (due/d®)s 1is equal to (UI/Rp) times
a non-dimensional function of the inviscid flow parameters on the stagnation
streamline. Thus, the stagnation point heat flux (458) can be expressed in the
form

e

0 bp,
GVRy = —— — JpueurG [H@ NLef- oL ]ﬂie.— hy) (466)
w

0.3
(NPr,wNPr,e)

*The authors are indebted to W. G. Reinecke of Avco Systems Division for assembling the data plotted in the figure.
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where G denotes the non-dimensional velocity gradient parameter:
R; du
G -2 (e (467)
ujg dx s ;

If the catalytic factor ® is considered to be a given constant, then the right-
hand side of (466) is independent of body radius. However, if ® were assumed to
be given by equation (453), the right-hand side of (466) would depend explicitly
on Ry . The present version of NATA treats @ as an input constant, so that (466)
is independent of body radius. :

8.1.4, Model Heat Flux Outputs -
o
The stagnation point heat flux on the model is printed out as g4 VR, for
up to eight cases. The following four values are printed when equilibrium
shock calculations are done:

Iqs\/RQEFE Equilibrium shock, flat-faced model, equilibrium boundary
layer - -
[qs\/RbhiFF Equilibrium shock, flat-faced model, frozen boundary layer
[qsvﬁngHE Equilibrium shock, hemispherical model, equilibrium
, boundary layer
[qS‘/Rb]EHF Equilibrium shock, hemispherical model, frozen boundary
layer

If frozen shock calculations are requested, the following four values are printed:

lag VRFFE Frozen shock, flat-faced model, equilibrium boundary layer

l4s VRLIppr Frozen shock, flat-faced model, frozen boundary 1ayer.

[qsvﬁﬁﬂFHE Frozen shock, hemispherical model, equilibrium boundary
layer

[quTQJFHF Frozen shock, hemispherical model, frozen boundary layer

In addition to these values, NATA provides two other heat fluxes at each

model point. One is based on a simple formula proposed by Hiester of Stanford
Research Institute (ref. 68):

lag VRlspy = 0-0417 Vpy (he — hy) | (468)

where pg is assumed expressed in atmospheres, h, and hy are in Btu/lb, and the
left hand side is given in Btu/ft3/2 sec. Equation (468) is an approximation to
the Fay-Riddell formula for hemispherical models. The other additional value
printed is an estimate of the heat flux to a flat plate with a sharp leading edge
at zero angle of attack:

0.332

l4g V¥lgp = ————

" u* up¥? @, - by o (469)
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Here X represents the distance from the: leading edge, and the-gas properties
Npr s P » i are evaluated at a reference temperature T* defined by

T =

T, (470a)
hS

‘h* = 5 (he +hy) + 0.22 B ~ ) o e (470b)

b, = h, + PeY/2(hg —h) | | (470¢c)

where h* is the reference enthalpy and k., the recovery enthalpy. These formulas
were obtained from Schlichting (ref. 21, p. 286), Jakob (ref. 69, pp. 428-430),
and the first edition of Hayes and Probstein (ref. 25, pp. 296-297). Since they
do not take low Reynolds number effects into account, they are expected to be-

come inaccurate at large nozzle expansion ratios where the gas density becomes
very low.

8.1.5 Low~Density Effects
The preceding stagnation point heat flux formulas are based on boundary
layer theory and assume the existence of an inviscid shock layer. At large noz-
zle expansion ratios, the flow becomes highly rarefied and this system of
approximations breaks down. According to Cheng (ref. 70), the influences of
low-density effects upon the flow in the stagnation region of a blunt body can

be classified into the following regimes of continuum flow based upon the value
of a parameter &k

Regime 0: Inviscid shock layer plus boundary layer
& x2 extremely large ’
Regime 1: Vorticity—interaction and visceﬁeelayerveffects
Ex% > o) - ' ' (471)

Regime 2: Merged-layer regime

O(,) < &K% < oD _ (472)
The notation O(x) means "order of x". For &KZ less tham O(ep) 3 the continuum
flow description becomes inappropriate. The parameters & and K< are defined by
g.y-1! (473a)
2y :
p1uiRy /T M
2 € (_ > ; ; (473b)
Hg TO ,u*v ' ) ’

where y denotes the specific heat ratio and quantities with an asterisk super-
script are evaluated at a reference temperature behind the shock.
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The quantity Ex%is computed by NATA to provide a basis for evaluating the
importance of low-density effects upon the stagnation-point heat flux. Based
on a survey of experimental data given in figure 4.1 of reference 70, the in-

crease in gqg due to vortici.g-interaction and viscous-layer effects should be
les% than 10 percent for &K2 15, and less than 20 percent for & K? 2 8. For

S1.5, the heat flux decreases with further decreases in & Kzas a result of
merged layer effects. However, the heat flux should be within about 30 percent
of the value based on boundary layer theory so long as & k2 2 0.1.

In the calculation of & K2by the code, & is computed from the shock density

ratiogp:

6. P 474)

which is based on the formula ey *(y D/(y+ 1 for the density ratio of a strong
shock in a perfect gas. The factor (" po/To 1) in (473b) is approximated by
unity. Since the model radius Rp is not specified in the code, &x?2is computed

and printed for Rpb = 0.3048 m (1 ft). The parameter value & K2 for any specific
model can be obtained by multiplylng the printed value by the model radius in
feet.

8.1.6 Shock Standoff Distance

NATA computes the ratio A/Rp of the shock standoff distance to the body
radius for each type of model. This ratio is of interest because it is an ob~-
servable of model tests in wind tunnels. In general, it depends upon the shock
strength as. measured by the density ratioe¢, , the model geometry, and the gas
equation of state. The equation of state dependence is weak and is neglected in
NATA.

For hemispherical models, A/Ry is computed from the following curvefit to
Van Dyke's results (ref. 71 and ref. 64, p. 462):

A
Ry

P p

1.6
[ 0.78 ¢, [1 + 3.5 (¢, = 0.19)""] fore, > 0.19

0.78 ¢ fore, < 0.19
(475)

Figure 35 compares Van Dyke's results with values obtained using the computer
program documented in reference 63 and with Vinokur's results (refs. 65, 66)
based on the constant~density approximation. The two sets of results from
numerical inviscid flowfield solutions are in good agreement. Vinokur's results
are too low by about 17 percent.

For flat-faced cylindrical models in axisymmetric flow, A/Rp is calculated
using a fit to Vinokur's results (refs. 65, 66), multiplied by a correction fac-
tor of 1.17 based on the comparison for spherical models in figure 35. The
corrected fit is

.

— = 112 ep0'39 (476)
Ry
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For cylindrical models in two-dimensional flow, equation (6.5.14) of Hayes and
Probstein (ref. 64) is used*: 4

A 2 -1

R, 1 4 1 -
b
‘° K“?E!’) t (E)”?‘P]

For flat-faced models in two-dimensional flow, A/Ry is calculated from the
formula (ref. 64, p. 310)

477

= - 478
- 123 Ve, In 0.79 V&) (478)

4

8.1.7 Comparisons with Experimental Data

Scott (ref. 72) has measured pressure and heat transfer distributions over
a 5.08-cm radius hemisphere in the NASA~Johnson Space Center 10 Mw arc tunnel.
The test conditions are summarized in tahle I. The stagnation enthalpy was
determined from careful energy balance and mass flow measurements. The models
were positioned 2.5 cm downstream of the 0.508-m diameter nozzle exit. The
0.521-m effective test section diameter listed in table I was obtained by extra-
polating the 15-degree expansion angle of the conical nozzle from the actual
exit plane to the model station.

The free-stream conditions listed in the second part of table I are based
upon runs with the current version of NATA and differ slightly from the condi-
tions tabulated in reference 72. The initial conditions for the NATA solutions
were the stagnation enthalpy and mass flow. Effects of the boundary layer:
displacement thickness upon the effective flow cross section at the throat were
taken into account in the determination of the effective reservoir temperature
and pressure from these data. The inviscid flow solution assumed chemical
non~equilibrium. The boundary layer was included in the solution and had a
major effect upon the effective area ratio at the test station.

Table II summarizes the measurements of model stagnation point conditions
in reference 72, and presents NATA results for comparison. The conditions listed
as NATA results are based on calculations for a chemically frozen shock layer and
a frozen boundary layer. These assumptions concerning the chemical state of the
flow around the model are justified by the low pressure.

The NATA predictions of stagnation pressure on the model are about 6 per-
cent higher than the measurements in both cases. Since the stagnation pressure
varies with the effective area ratio, this agreement is better than might have
been expected in view of the uncertain accuracy of approximations used in the
calculation of the displacement thickness for the boundary layer on the nozzle
wall.

Scott (ref. 72) measured heat transfer to models coated with both nickel
and Teflon in order to investigate catalytic effects. The catalytic efficiency

*Hayes and Probstein give the formula in terms of the shock radius, Rg. In (4771, it has been re-expressed in terms of body radius Ry,
assuming Ry = Ry + A.
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TABLE |

TEST CONDITIONS FOR STAGNATION CONDITION MEASUREMENTS

Case 1 2
Data
Standard nozzle number 10 10
Stagnation enthalpy, MJ/kg 25.3 17.6
Total mass flow, g/sec 13.6 22.7
Test section diameter, m 0.521 0.521
Axial coordinate, m 0.950 0.950
NATA Results

Mach number 10.1 9.3
Static temperature, K 267 321
Static pressufe, atm 3.65 x 107 5.53 x 1073
Free-stream density, kg/m3 3.05 x 105 4.41 x 10-5
Free-stream velocity, km/sec 4,35 4,07
Geometric area ratio 356 356
Effective area ratio 161 202
Free~stream mole fractions

N9 0.270 0.456

N 0.461 0.236

o 0.269 0.308

Other species <3.2 x 107 <1.1 x 107




TABLE H

COMPARISON OF CALCULATED AND MEASURED
STAGNATION CONDITIONS

Case 1 2

Measurements

Pressure, atm 4,83 x 103 6.26 x 1073

Heat flux (nickel), W/ cem? 56 55

Heat flux (Teflon), W/cm? 36 35

Shock standoff, A/Ry 0.17 0.10
NATA Results

Pressure, atm 5.17 x 10-3 6.62 x 10~3

He;§ f%ux (non-catalytic), 35.0 35.1

cm

Shock standoff, A/Ry 0.16 0.14

hp/(he - hy) 0.619 0.516

N 0.824 0.961

Heat flux for ® = 1, W/ cm? 85.3 71.6

& k2 1.0 1.3

Rep 130 220
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of Teflon for atom recombination is much lower than that of nickel. The NATA
calculations of stagnation point heat flux to a non~catalytic surface agree with
the data for the Teflon-coated model to within about 3 percent. The higher heat
transfer rates for nickel could be accounted for by assuming values for @ less
than unity in equation (466). Table II lists values of heat flux for &= 1,
calculated from the values for ® = 0 using (466) and the tabulated values of
hpy/(he — hy) and Nj - '

The close agreement of the NATA stagnation point heat flux results with
Scott's data for the Teflon-coated models has to be regarded as fortuitous. The
low density parameter &§ K , calculated from equations (473) and (474); is- about
unity in both cases. Thus, the flow around the model is on the boundary of the
merged layer regime, and low-density effects upon the heat transfer are ex-
pected to be of substantial magnitude.

Table II includes values of Cheng's Reynolds number parameter Reyp , defined
as :
Pl 4] Rb . l+e
Rep = S Ay $% (479)
K @ 2 Epz vZ

Cheng has presented a correlation of stagnation point heat transfer as a function
of this parameter (fig. 9 in ref. 73). TFor Rep in the range from 100 to 200,

the ratio 9/qp;. of the actual heat transfer rate to its value based on boundary
layer theory is about 1.0 #0.1, within the scatter of the data. At somewhat
higher values of Rep in the vicinity of 500, ¢/dgL. peaks at about 1.1 *0.2, be-
fore beginning its asymptotic approach toward unity as Reg -» o ,

Scott's calculations (ref. 72), based upon a two-dimensional viscous flow-
field model, indicate that the heat flux to the Teflon-coated model is 20 to 30
percent higher than the flux to a completely non-catalytic surface. Thus, it
appears likely that the NATA heat flux results are actually about 20 to 30 per-
cent high under these low~density conditions.

Table II also gives experimental values of the ratio A/R, of the shock stand-
off distance to the model radius, based upon the luminous region of the shock
layer in photographs reproduced in reference 72. The NATA predictions of A/Ry
are roughly in agreement with the data.

8.2 Wedge-Model Calculations

NATA provides calculations of conditions on a blunt wedge with arbitrary
leading edge radius and arbitrary (but not excessively large) inclination of the
wedge surface to the flow. The principal quantities calculated are the heat
flux, the surface pressure, the displacement thickness of the boundary layer on
the wedge, and the shock ordinate, all as functions of distance from the leading
edge. The positions on the wedge where these calculations are done are under
input control. These positions can be specified in terms of an initial distance
from the leading edge and a constant increment to generate a sequence of evenly
spaced points, or by direct input of the positions. Both methods can be used
together, if desired.
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The locations in the wind tunnel at whigh wedge-condition calculations are
performed are controlled by the same inputs as are used to specify locations for
stagnation-p01nt model condition calculations. The leading edge of the wedge‘
is adsumed to be positloned at each of the specified locations. The actual :
variation in free stream conditions with distance along the wedge is neglected"
in each case, "the wedge is assumed to be inserted into a uniform flow with the ’
veloc1ty, density, etc., prevailing at the location of the leading edge.

The control varigbles in NATA are preset such that wedge calculations are
not normally performed. To invoke the wedge calculations, it is necessary to ,
spetity ohie ”‘*‘ﬁl%r“é“model positions, and" to input positive values for NANGLE (the
number of spec1f1ed angles of attack) “ahd NRADLE (the number of leading edge o
radii). Normally, stagnation-point model condition calculations are done in
addition to the wedge calculations. However, the stagnation-point calculations
can be suppressed.’ T T

. The analysis, underlying the wedge condition calculations is explained in
the remaining parts of this section. Section 8.2.1 summarizes the classical
theory of high—den51ty supersonic flow over wedges. Section 8.2.2 discusses the
low density flow over wedges including bluntness and displacement effects, as
formulated by Cheng, et al, (ref. 74) and Kemp (ref. 75). . Section 8.2.3 pre-
sents an analytical representation of the solutions of the Gheng ‘equation; and |
Section 8.2.4 explains certain modifications of the Cheng-Kemp results as used
in NATA. Section,B,Z 5 discusses limits to the validity of the calculations,_\,
and Section 8.2.6 presents a comparison of NATA wedge calculations with experi-
mental data. ' ’ ‘ '

8.2.1 Classical Wedge Theory

Supersonic flow over a wedge is relatively easy to calculate if the leading
edge is sharp and the gas density is high. For a sharp leading edge, the shock
is attached to the body at the leading edge if the Mach number is high enough.
If the density is high, the boundary layer thickness is small in comparison with
the shock layer thickness (except in a small region near the leading edge); thus,
the shock is essentially straight, the density and flow velocity behind it are
constant, and the streamlines behind the shock are parallel to the wedge sur-
face. Under these circumstances, the conditions between the shock and the sur—
face can be determined using oblique shock theory (ref. 64, p. 217-221 or ref.
42, p. 85—89)w The solution for the conditions behind the shock can be reduced
to the solutien of a cubic equation in the case of a perfect gas.

8.2.2 Low-Density Hypersonic Flow Over a Wedge

Wedge models to be tested in arc-heated wind tunnels must have blunt leading
edges to avoid excessively high heat transfer and melting or ablation of the
leading edge. Also, if the models are fairly large, they must be tested at
stations where the nozzle area ratio is large, and thus where the Mach number is
high and the free stream density low. Hypersonic low-density flow over a blunt

wedge is dominated by effects which are neglected in the classical theory for
sharp wedges.
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The shock over a blunt lead:lng edge is detached, and nearly uqml 1n tlu :
region near the stagnation streamline. The gas which; passes thtou;h this- ctrou; ;‘
shock over the leading edge undergoes a much larger increase in entropy tham, -
that wh:lch flows through the highly oblique porticn of the: shock’ further to. thc
rear. This shock-heated gas forms a low-density "entropy layer" beétween the
outer edge ‘of ‘the boundary layer and the :hmer boundary of a cmeutiml thiu o
shock’ layer. ' . i

At low free-stream dens:l.ties, the thickness ‘of the bouudary hyet on the
wedge is comgarable with that of the inviscid shock layer. _The thick bouudnty V
iayer dispﬁacés the ‘{nviscid flaw away from ‘the M surface. by an amount which -
increases with distances from the leading edge. Thia displacement results in’
an induced pressure which is highest near the leading edge, because the lhock
is less oblique than 1: would be in the absence of the boundary layer. IR

. ? N

Cheng et al. (ref. 74) formulated an. analyt.ical treatment of the codducd RS
effects of bluntness and boundary layer displacement on the hyperoonic flow over -
a wedge. Their theory treated the boundary layer using local flat*pl.u lm-.
larity with the simplifying assumptions of Prandtl number unity, viscosity L
proportional to absolute temperature, and constant wall tempersturé. The hlﬂtou- :
Busemann pressure law (ref. 64) was applied to the outet thin shock hycr. The . .
continuity equation for the entropy layer was approximated. us:l.ng the alm-pt:lou :
y = 1«<1, where y denotes the specific heat ratio for the gas. . The theory was .’
found to predict the trend of experimental heat transfer data. yety vell, but: th‘
predicted heat transfer was too low by about 40 petcent. N ~

.‘Ev -'

Kemp (ref. 75) modified the Cheng theory to include the effectl of yAl to
first order. This modification brought the theoretical predictiom ingo good
agreement with experimental data, not only for heat transfer but also for sur~
face pressure and shock shape, The wedge calculations in NATA are based on
Kemp's analysis, which will be referred to as the Cheng—l(eup theory.

- dz\ e \V/2 e | “o
-T) — i (27;‘)' ( a{) =1 o ( ’ )

uere z 18 a non-dimensional variable propottional to the nhock ordiute, vhih C
is a non—dimensional distance from the leading edge of the wedge. and the

constant parameter I' is proportional to the angle of attack.. 'ﬂw def:l.nitiont
of these quantities in terms of physical variables differ a' 1itt1e between the
original and modified versions of the theory. In Keup'& forn of the tlnoty. iu
the notation of Boger and Aiello (ref. 76), :

.4;.,‘

zk=‘-’—jA—'— B¢ (rN)4Y /k3t Lt (ba[.)~ o ‘
P p 8 SR
rLX. o ke " 4sle)
A 2ép(i_N)2

s




juﬁérgi

A - y+1
2
€ - _)ii
P y+1
r = 0.664 + L73T,/T,
- ’ £} t ? ¢ #

N = T, EOR R SR

- R e
‘NRe, ¢ = p1u1¥e; , Reynolds number based on leading-edge thicknegt”?';“

Y, = ordinate of shock (figure 36)

k = drag coefficient of the leading edge (4/3 for a cylindrical 1ead-’
ing edge, 2 for a flat-faced edge) ; . o

x = coordinate parallel to the free-stream velocity, zero at the
leading edge (see figure 36) : . Sl

a = angle of attack in radians (see figure 36)

c o owm T
T T

Tt = Cheng's reference temperature,

T = Ty (143 (T,/TPl/ 6

To - stagﬁation temperature
T, = wall temperature

= ratio of specific heats
M = free-stream Mach number

k = thickness of leading edge (see figure 36)
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8.2.3 Analytical Curvefit to the Solution of the Cheng Equation

For zero angle of attack (I'=0) , equation (480) has the analytical solution*
(ref. 74):

2 I:_l;;ﬁ/z - %{\ + - en,(1+\/)';)] . (482a)

z

1]

1 2 46
¢ =—3—<1+J)T)4 - 5 BP9+ VEZ - 2 e Vh)
) " S ; 26 (482b)
+ = o (1+vA) —dyA b (L4 YN) + 2 [0 (1+ VD12 + 5
in terms of a parameter A defined by
A d= ’ (483)
= Z-cTé—

ForI'# 0, the solution of (480) cannot be obtained in analytical form. However,
the solution can be approximated by assuming that

(229" = [z Tp_g + I? (484)

where the prime denotes d/d{ and [(zz)lp _ ¢ 1is evaluated as a function of ¢
from the solution (482), (483) for zero angle of attack:

S :
[z Ip oo = — 1+ VD) : ‘ (485)

For given {, the parameter A must be obtained by numerical solution of equation
(482b) and z must then be computed from (482a). Figure 37 compares the approxi-
mation (484), represented by the curves, with exact numerical solutions** of
equation (480) for various values of I'. The approximation (484) is most accurate
for smallT'. For example, with I'=0.1 , the maximum error is about 6 percent.
Even for large values of I', the error in (484) is less than about 10 percent ex-
cept in the region where (zz)° is leveling off and beginning to approach its
asymptotic value of I'2 for large {. In this region, for large I', the exact solu-
tion undershoots the asymptotic value and approaches it in an oscillatory manner.
For I'=100, the difference between (484) and the exact solution becomes as large
as a factor of about 1.45 in this region.

However, Cheng et al. (ref. 74) suggest that the oscillations in the exact
solution, which are responsible for these large differences, are unphysical
artifacts of the system of approximations upon which the theory is based. If so,
the approximate formula (484) might have higher physical accuracy than the exact
solution. Comparisons with experimental data, presented below, support this
conjecture.

*The equations in reference 74 corresponding to {482) contain minor errors. The correct forms were given by Cheng, H.K.,, et al {ref, 77) \‘
**These numerical solutions were computed and provided by R. C. Boger, Avco Systems Division. .
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i

The physical canditions at the surface of the wedge are given by the Cheng-
Kemp theory in the! form (ref. 76):

Pw AS 4ye A 2 2 (rN),4

—_— e —— . (2z)" : (486)
B _ A5 265%,V2¢7ONS (@) : 487y
SR = -
T 7 Br.  fzz~ I a (488).;

A s (rN)4 (2z%)’

Hete pw/ p1 is the “ratio of the pressure on the wedge surface to the free~
stream pressure, Cy is the surface heat transfer coefficient,

Y

R i (489) -

\.'v,

end 3 is. the boundary layer displacement thickness. The shock ordinate Y may
be' obtained from (481a) : , o

‘:Y y2 e Ly E * (490)
- nls . S :
& 8 A4 6% (TN)4 S

2 The quantity (2z")" appearing in (486) is given: direc'tly by the approximate
solution (484) of the Cheng equation. The quantity 2z’ in (487) and (488) can;
be‘pb’tained from (484) and (483): Spoe ¥ :

,\v‘)

¢
= [ .3 T2 ) o
/(zz)‘ *F=0d€+r 4 . »
0 , : . )
2 @D |
= [zz']r:ol+{r2<_,“= A+ T2¢ ( v ))
The variable z in (490) is then given by a further integration: 5
L
1 1
22 - . 222
2 / [z ]'T=0 4+ 2 r<¢ - ~ o
0 . - s . P } P e
2 _ 121 . p2 2 o ‘ .
;[z ]'l"=0 +T¢ (492)

where [22]"5 r OImay be obtained by squaring eQuation (482a).

Figures 38 and 39 compare the approximate solution based on (484) with ex-
perimental data on the pressure and heat transfer ‘distributions over the surface
of a very blunt wedge in a hypersonic air stream. The experimental points are
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from figure 10 of Kemp's paper (ref. 75). For a flow which is dominated by the
effects of leading~edge bluntness, the non-dimensional coordinate { is small,
and the left-hand side of the Cheng equation (480) is dominated by its first
term. If the term Vzz~ is neglected, the solution of the Cheng equation for
'=0 is found to be ‘

Then (4845 gives for general I ' ! ‘
@Y = @V Y3 T N %- o4y
and

2 V33, g (495)
1f these expressions are substituted into (486) and (487), there results after
some algebraic manipulation

2 1 p 0.382
] 1. (496a)
Y+ yMa2 P1 £
. 032 (1 0.382
2 1 M2 ek o TTE f
e P Rl - :
veloyy % VS eViyrus<g . Ww
where ’ »
a 2/3 :
gea2 (2. X | - (497a)
~ 2 epkt *»v

.

g o " S (497
Xt Eki,Ms C/NRe, t % “ )

The unbroken curves in figures 38 and 39 represent equations (496a) and (496b),
respectively, The agreement with the experimental data is similar to that shown
in Kemp's original figure 10. In the region £ 1, where the pressure curve in -
figure 38 is levelling out, the agreement in both pressure and heat flux is bet-
ter than is obtained with the exact solution of the Cheng equation (shown by the
dashed curves in figures 38 and 39).

8.2.4 Modifications of the Cheng-Kemp Formulas

Since (zz)’ is proportional to the pressure and { is proportional to the
distance from the leading edge, figure 37 may be regarded as a non-dimensional
Plot of the pressure distribution over the surface of the wedge. The pasemeter r
corresponds to the angle of attack. For I'=0, the pressure falls as %3 for
very small ¢ and as {~Y2 for very large {. For I non-zero and positive, the
pressure levels off to an asymptotic value, corresponding physically to the
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classical wedge pressure. From (484), (486), and (48lc) the asymptotic pres-
sure is glven by :

> .
—-—Z- = Ay M2 a2 : : (498)

For small angles of attack, classical oblique shock theory (ref. 64, p. 218-220)
gives the pressure on the wedge as '

p 2 2 '
Y o, yMe , (499)
P1 o5 1 ~€p,0s

-
4

where €5 osis the density ratio across the oblique shock wave.
Since A=(y+ 1)/2 , equations (498) and (499) agree under the following conditions:

2 2
M
Z a o 1 (500a)

~€p,08

y-1 (500b)

Pos T ONT

The second of these equations implies that the shock is strong even though
oblique. For small wedge angles of a few degrees, these conditions are satis-
fied only for considerably higher Mach numbers than are likely to be en~
countered in the use of NATA to correlate arc tunnel data on wedges.

Possible modifications of the Cheng-Kemp results for the conditions on
wedge models have been studied in an effort to obtain formulas with a wider
region of applicability. For theoretical reasons it appears inadvisable to
change Kemp's choice of the value (v+ 1)/2 for the parameter A. An alternative
and better way to obtain the correct asymptotic wedge pressure is to modify the
definition of the parameter I'. 1In place of equation (48lc), I' is now redefined

as
-0 [(-31> - 11\ ' (501)
P1 ‘os

where
Q= y i (502)
4 AS epz M2 - NyE

and (p,/p1)ys 18 the surface pressure ratio based on oblique shock theory. 1In
addition, the pressure formula (486) is modified to

Py (zz")’ (503)
+ 1

P1 Q

which ' is simply (486) with a term of unity added to the right-hand side. 1In
the asymptotic constant-pressure region, where (2z")° is equal to Fz, (501) and
(503) give Py/pP1 = (Py/Pplos - Under conditions such that equations (500) are
satisfied, (501) and (503) reduce approximately to the original Cheng-Kemp
formulas.
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In the Cheng-Kemp theory, the heat transfer coefficient and displacement
thickness are calculated from formulas involving the surface pressure. In the
notation of reference 76,

C /Py
Cy = 0.332 - (504a)

NRe,t fx de
0 Pit

(504b)

Thus, consistency requires that the modification (503) in the pressure formula |,
(486) be accompanied by corresponding modifications in the formulas for Cy and &

Substitution of (503) and (481b) into (504) gives

6 _2 5 o
2.656 A N Q
~ 5 6 (rN) ‘ (zz7)” + (505a)

Cy =
H ¥ K3 Vzz'+Q ¢
* yzkét . \/ZZ'+QC ' (505b)

8 =
8 AS ep (rN)4 (22" + Q

According to the Cheng-Kemp theory, the shock ordinate is given by

yepkth
Y. = A X tana + 5* + —27"— (506)
Pw/P1

In the original form of the theory, this relation is equivalent to the Cheng
equation (480). 1If py/p1 and 8% are now assumed to be given by (503) and (505b)
in place of (486) and (488), a new formula for Y, is obtained:

P3¢ C 1+ V22’4 Q0
Y, = Axtana + . . (507)
8 A4 ep (TN)4 (zz7)" + Q

The first term on the right can no longer be expressed in terms of I', because I
as defined by (501) is not simply proportional to the wedge angle a. 1In spite

of the modifications, (507) does not give the correct asymptotic shock angle at
large distances from the leading edge of a sharp plate, because the coefficient A
is related to the density ratio for an infinitely strong shock rather than that
for the actual oblique shock, which can be rather weak. An ad hoc further
modification could be made to force (507) to give the shock angle in the classi-
cal wedge limit correctly, but such a change would have an adverse effect on the
accuracy in cases in.which the bluntness and displacement effects are important.
Accordingly, (507) is used as it stands.
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The modified formulas (503), (505), and (507) are no longer consistent with
the Cheng equation (480). Thus, these formulas do not represent a new form of
the Cheng-Kemp theory, but only a set of ad hoc modifications of its results.

8.2.5 Limits of Validity
The original Cheng-Kemp theory is valid in the strong-interaction regime

under conditions such that merging and slip effects are unimportant. Kemp
(ref. 75) gives the following criteria:

Cdea

< 0.15 (508)

U
i
=

Re, x

C
Xe = € r M3 > 1 (509)
P NRe, x

If the condition (508) is violated, merging or slip effects become significant.
- If (509) is violated, the strong-interaction approximation breaks down. These
criteria define lower and upper values of the distance from the leading edge,
bracketing the region in which the original Cheng-Kemp theory is expected to be
valid. The lower limit ¥} is determined by the onset of merging or slip effects;
from (508),
44 M2C

¥y = o metres (510a) ,

where Re/m ig the free-stream Reynolds number per metre. The upper limit X, is
the position at which the strong interaction approximation breaks down; from

(509),
epz 2 M6 C

X, = -—Re—/-[-n“— metres (510b)

If the free stream Mach number M is too low, these limits come together and the
original Cheng~Kemp theory is not valid anywhere on the wedge. If x is set
equal to x; , equations (510) give
M 26 7 (511)
min = T —
B \/Gp T

The original Cheng-Kemp theory has no region of validity for Mach numbers lower
than Mmin . The modifications to the results of the Cheng-Kemp theory discussed
in Section 8.2.4 were designed to extend the region of applicability of the
results beyond the point at which strong interaction theory breaks down. To
the extent that these modifications prove to be successful, the modified formu-
las are not limited by the criterion (509), but can be applied even for x> x, .

No analogous approximation has been developed to extend the utility of the
Cheng-Kemp theory into the region where merging and slip effects are important.
However, according to Vidal and Bartz (refs. 78, 79), free-~molecule flow theory
gives an approximate upper limit to the heat transfer to the surface of a wedge.
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A calculation of the free-molecule heat transfer coefficient is performed in
NATA; if the resulting heat flux is lower than that predicted by the Cheng-Kemp

theory, the free-molecule value is printed in place of the other. TFrom Probstein
(ref. 80), the free-molecule heat flux is

RT T,
G = 8, Py 1 82 N y _ y+1 . w
v.o€ 27 W y-1 2y-D T

[e_(s sina)z + V7 Ssina(l+ ef (S sina))] (512)

e (S sin a)2

where W is the mean molecular weight,

_ ‘/1 '
S=M 5 (513)

and 2 is the thermal accommodation coefficient. In NATA, 2. is assumed equal
to unity.

Unfortunately, the pressure predicted by free molecule theory is not an
approximate upper limit to the actual pressure on the wedge (ref. 79). In some
cases, the measured pressure is nearly an order of magnitude larger than the
free molecule value. Thus, the latter does not provide a criterion for limiting
the calculated pressures.

8.2.6 Comparison with Experimental Data

Scott (ref. 81) has measured the heat flux to a blunt wedge in the NASA
Johnson Space Center 10 Mw Arc Tunnel Facility. The test conditions are summa-
rized in Table III. The stagnation enthalpy of the flow was determined from
careful energy balance and mass flow measurements. The leading edge of the wedge
model was positioned 2.5 cm downstream of the 0.635-m diameter exit orifice of
the nozzle. The effective test section diameter given in Table III was calcu-
lated by extrapolating the nozzle expansion to the position of the leading edge.

The reservoir conditions were determined in the NATA solution from mass
flow and stagnation enthalpy inputs. The non-equilibrium flow solution included
the boundary layer. Table IV compares the NATA predictions of conditions on the
wedge with Scott's experimental measurements of the heat flux to the surface of
the wedge., Measurements of surface pressure were not performed. In Table IV, xy
denotes the distance along the surface of the wedge from its leading edge. The
values tabulated under "Cheng-Kemp Modified" are based on the modified Cheng-
Kemp formulas (501), (502), (503) and (505). Those given under "Cheng~Kemp Un-
modified" are based on the original Cheng-Kemp theory, equations (486)-(488).
The heat flux calculated from the modified Cheng-Kemp formulas is about 20 per-
cent low. The original Cheng-Kemp theory gives fluxes too low by 26 percent.
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In this case, the condition (510b) for validity of the strong interaction ap~
proximation is satisfied for x4 up to 48 cm. Thus, the unmodified Cheng-Kemp
theory is applicable over the entire region covered by the experimental data,
so that the differences between the results from the modified and unmodified
formulas are small. The condition (510a) predicts that merging effects become
significant in this case for xy less than 14 cm.
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TABLE 1Y

TEST CONDITIONS FOR WEDGE HEAT TRANSFER MEASUREMENTS

Other species

Data
Standard nozzle number 10
Stagnation enthalpy, MJ/kg 13.9
Total mass flow, g/sec 90.7
Test section diameter, m 0.648
Axial coordinate, m 1,174
Pitot pressure, atm 1.43 x 1072
Wedge angle of attack, degrees 15
Wedge leading edge radius, cm 0.95

NATA Results
Mach number 9.7
Static pressure, atm 1.09 x 10™4
Pitot preésure, atm 1.40 x 10-2
Free-stream density, kg/m3 9.26 x 10~
Free-stream velocity, km/sec 4.07
Free-stream temperature, °k 329
Frozen specific heat ratio (y) 1.471
Geometric area ratio 551
Effective area ratio 393
Free-stream mole fractions

N, 0.584

N 0.081

o] 0.335
<1x 1074
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TABLE IV

CALCULATED AND MEASURED CONDITIONS ON A WEDGE MODEL

Cheng-Kemp Cheng-~Kemp
Quantity . Modified Unmodified Measured

Angle of attack parameter, I’ 1,6 11.2 e
Conditions at xy = 18.8 cm

Py » atm 2.24 x 1073 | 2,03 x 1073 -

4y 5 W/ em? 8.21 7.66 10.44

8", cm 1.05 1.12 -
Conditions at xy = 26.4 cm

Pw , atm 2.10 x 103 | 1.89 x 1073 -

% » W/em? 6.88 6.40 8.62

8" , cm 1.25 1.34 -
Condiiions at x¢ = 34.1 cn

Py * atm 2.01 x 1073 | 1.80 x 1073 -

9y , W/cm? 6.05 5.62 7.49

&, cm 1.42 1.53 -
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