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A LIFE STUDY I:"F AUSFORGED, STANDARD FORGED AND STANDARD 

MACHINED AISI M-50 SPUR GEARS 

by D. P. Townsend (1) , E. N. Bamberger*, and E. V. Zaretsky(l) 

ABSTRACT 

Tests were conductcd at ~50 K (1700 F) with three groups of 8. 9 cm 

(3. 5 in.) pitch diameter spur gcars made of vacuum induction melted (VIM) 

consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one 

group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life 

of the standard forged and ausforged gears was approximately five times that of 

the VAR AISI 9310 gears and ten times that of the bending fatigue Ufe of the 

standard machined VlM- VAR AISI 1'.;, ";0 gears run under identical conditions. 

There was a slight decrease in the 10-percent life of the ausforged gears from 

that for the standard forged gears. However, the difference is not statis­

tically Significant. 

The standard machined gears failed primarily by gear tooth fracture while 

the forged and ausforged VlM- VAR AISI M- 50 and the VAR AISI 9310 gears 

falled primarily by surface pitting fati.gue. The ausforged gears had a slightly 

greater tendency to fail by tooth fractur'9 than the standard forged gears. 

INTRODUCTION 

The requirements for advanced helicopter transmission and aircraft engine 

gearboxes include weight reduction, higher temperature operations than present 

day aircra;';, as well as increased reliability and service life. The gearing in 

these aircraft is expected to carry greater loads, operate at higher tempe:ra­

tures because of increased engine speeds, provide improved system life, iii 

(1) Mem. ASME, NASA Lewis Research Center, Cleveland, Ohio 

* . General Electrlc Company, Evendale, Ohio 
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addition to providing low maintenance rates and higher reliability. Elevatcd 

temperature operation of gears Is also required where the transmission must 

opel'llte for short periods without lubrication and COOling without resulting In 

a catastrophic failure. Under tilese opel'llting conditions I a material such as 

AIS! M-50 can opel'llte to 589 K (600 0 
F) [1). 

The failure characteristics and mechanical properties must be defined 

in existing and potential geel' materials before Improvements can be made 

In gear material technology. Threc possible approaches to improve the stato:l­

of-tile-art In gear material teclmology can be pursued individually or simul­

taneously. These consist of (a) gear Ufe testing c1)upled with failure analysis 

and (b) Improving gear material p1·opel·t!es I and/ 01: (c) exploring new 01' 

improved gear designs. 

One fabrication method which has the potential to improve the strengtil and 

life of gear teetil Is termed "ausforglng". Ausforglng Is a thermomechanlcal 

metal working" process whereby a steel Is forged or otilerwlse worked while it 

is in the meta-stable austenitic condition [2J. A number of researchers have 

investigated this process [3-6]. The application of ausforging to machine ele­

ments such as rolling-element bearings was first reported in [7]. 

The results of tests on AIS! M-50 rolling-element benrings having com­

ponents ausforged to an SO-pel'cent deformation showed that these parts had 

a pitting fatigue life approximately ten times greater tilan til at obtained with 

the same bearing made from conventional AISI M-50 material [7]. Similar 

results were obtained in [8] with 35-mm bore single row l'lldial ball bearings. 

Some of the ausfol'llled balls produced for tilC latter bearings were indepen­

den tly evaluated and the results reported in [9]. These res ults also indicate a 

Significant improvement in fatigue life over conventional AISI M-50 balls. In 

addition, work was performed with large diameter allsforged bearings [10] 

r-------.-......-'--\'--'----'---'-'-""-'----
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which further demonstrated the potential life improvement with tilis process. 

While ausforglng is n highly sophisticated met.'ll-working procedure, in lespect 

to gears another more readily available (and less expensive) method consists 

of utilizing standard forging techniques and integrally forming tile gear teeth 

willi tile hub. The advantage here is llie excellent root grain-flow pattern, 

which should be conducive to improved bending fatigue strengtilln tile critical 

tOOtil root area. 

Surface fatigue tests were conducted on' spur gears manufactured from stan­

dard processed' AISI M-50 ,11.J.terial [11-13]. The results of the investigation 

revealed that the All'" M-50 material had tile potential for long Ufe gear appli-

cation. However, material being through hardened had a tendency for gear 

toOtil fracture due to bending fatigue after extended running subsequent to a 

surface fatigue spall. The surface spall acted as a stress raiser leading to 

a toOtil bending fatigue failure. Anollier series of tests wer" run with the AISI 

M- 50 gears manuf!l.c~ured with tip relief. The primary failure mode with the 

latter gears was bending fatigue resulting in very short life gears. 

The objective of tile research reported herein which was based on llie 

worl<: reported initially in [1'1, 15] was to compare, wlder closely controlled 

test conditions, the fatigue lives and failure modes of test spur gears made 

from standard forged, ausforged and standard machined AISI M-50 steel and 

case carburized and hardened AISI 9310 gear steel. 

APPARA TUS, SPECIMENS, AND PROCEDURE 

Gear Test Apparatus 

The gear fatigue tests were performed in the NASA Lewis Research Center's 

gear test apparatus (Fig. 1). This test rig uses tile four-square prinCiple of 

applying the test gear load so that the input drive need only overcome the 

frictional losses in the system. 

-- - _________ ~ - - __ ~ ---'-- • .,;,0-
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A schematic of the test rig is shown in Fig. l(b). Oll pressure Imd leakage 

fioll' are supplied to the load vanes through a shaft seal. As tilO 011 pressuro is 

increased on tilO load vanos insido the slave gear, torque is upplied to the shaft. 

This torque is tl'llnsmitted through the test geurs back to the slave geur, where 

un equal but opposite torque is maintained by the 011 pressure. This torque 

on the test gears, which depends on tile hydraulie pressure applied to the loud 

vanes, loads the gear teeth to the desired stress level. 'fhe two iden'.ical test 

gears can be started lmder no loud, and the loud can be applied gradually, 

without changing tho rltl1ning trnck on the gear tceth. 

Separate lubrication systems are provided for the test gears and UlO m'.\ln 

gearbox. The two lubricant systems are separated at the gearbox shafts by 

pressurized labyrinfu seals. Nitrogen was the seal gas. The test gear lubri­

Clmt is filtered through a 5-micron nominal fiber glass filter. The test lubri­

cant can be heated electrically with an emmersion heater. The skin tempera­

ture of the heater is controlled to prevent overheating the test lubricant. 

A Vibration transducer mounted on the gearbox is used to automatically 

shut off the test rig ' ... hen gear-surface fatiglle occurs. The gearbox is also 

automatically shut off if there is lL loss of oil now to either the main gearbox 

or the test gears, if tilO test gear 011 overheats, or if there is a loss of seul 

gas pressurization. 

The test rig is belt driven and can be opel'llted ut severnl fixed speeds by 

chang'ing pulleys. The operating speed for the tests reported herein wus 

10,000 rpm. 

Test Lubricunt 

All tests were condu( sd with u single butch of super-refined nuphthenic 

mineral oil lubricant having proprietary lLdditives (antiwear, lLntioxidant, Imd 

antifoam). The physical properties of this lubricant are summarized in 

:--J 
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Table 1. Five percent of an extreme pressurc additivc, designated Anglamol 81 

(partial chcmical analysis given in Tablc 2), was added to Ule lubricant. 'rhe 

lubricant flov' rate was hcld constant at 800 cubic centimeters per minute, and 

lubrication was supplied to the inlet mesh of the gear set by jet lubrication. 

The lubricant inlet temperature was constant at 311):1:6 K (1150:1:100 F), and the 

lubricant outlct temperature was nearly constant at 35():l:3 K (1700 :1:50 F). The 

outlet tempcratul'e was mcasurcd at the outlet of the test-gear cover. A nitro­

gon cover gas was used throughout the test as a baseline condition which allowed 

tcsting at the same conditions at much highcr temperaturcs WitllOUt oil degrada­

tion. By excluding uxygen the covel' gas also reduced the effect of the oil addi­

tives on the gear surface boundary lubrication by reducing the chemical reac­

tivity of tlle additive-metal system[16], 

Test Gears 

'rhc st!tndal.'d forged and ausforged test gears were manufactured from a 

single lot of vacuum induction melted (ViM) consumable-electrode-vacuum-arc­

remelted (VAR) AISI M-50 steel. The standard hcat-trc .ted and machined 

VIM-VAR AISI M-50 gears were manufactured from a single lot of material 

and by the same machining method as the fOl'ged and ausforged material. The 

chemical composition of tl1e AISI M-50 material is given in Table 3, The heat 

treatment for tl1e standard forged and standard machhktl f,j·50 gcar is given in 

Table 4. A photomicrograph of an etched and polished sl;lJIuard machined 

AISI M-50 gear material is shown in Fig. 2(a). The AISI 9310 gears were 

manufactured from a single lot of vacuum arc remelted (VAR) AISI 0310, 

These gears were manufactured with the same profile and crown radius as the 

M-50 gears. The chemical composition of the AISI 9310 gears is given in 

Table 3. 'l'he heat treatment fcr the AISI 9310 gears is b>iven in Table 5. A 
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photomicrogrnph of etched und polishcd surfv.c.c of the AISI 9310 gC:O:ir is shown 

in Fig. 2(d). 

Dimensions for the test gears arc givcn in Table G. All gears have a nominal 

surface finish on the tooth face of 0.400 mierometer (10 II in.) rms and It standard 

200 involute profile with tip relief. Tip relief was 0.001 to 0.0015 centimeter 

(0.0004 to 0.0006 in.) starting at tile last 30 percent of the active profile. 'flle 

gears were also crowned to prevent excessive edge loading. 

GEAR FOnGING 

Standard Forged Gears 

A eontrolled-energy-fiow forming teclmique (CEFl") was utilized during the 

normal for!,1ng of the gears. This high-velocity metal-working procedure has 

been a production process for severnl years [17, 18]. A number of iteraj;ions 

were required before the optl.mum sequence of forging' was established. The 

actual for!,1ng sequence for tile standard forged gear is shown in Table 7. The 

initial two for!,1ng trials resulted in considerable lack-of-fill condition at the 

outer-gear tooth periphery. This condition was remedied by increasing the 

volume of ilie forging preform und increasing the forging temperature from 1307 

to 1395 K (20000 to 20500 
F). Dimensional meaSurements of parts after the 

fourth forging trial showed the parts to be nearly perfect except tha,t they did 

not M.ve the required 0.25 to 0.38 mm (0.010 to O. 015 in.) of excess material 

required for final machining. After a final modification, dimenSionally accep­

table gear forgings we~'e produced. The die inserts for this forging are shown 

in Fig. 3. 

Gear samples were cross sectioned and etched to study the grain-flow pat­

tern. Fis. 4(a) shows the grnin flow pattern for tho standard forged gear. Fig. 

2(b) is a photomicrograph of the standard forged gear structure. The hardness 

of ilie gears was Rockwell C 02-64. Metallographic examination revealed no 

I . 
~ 
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evidence of decarburization. X-ray diffraction mensurements showed the re­

tained nustenite to be less than 1 percent. 

Ausforged Gears 

The initiui ausforging triui was performed on a controlled-energy-now­

forming machine which had a maximum energy output of 102, 000 N-M (75,000 

lb ft). This unit had been ndequnte for the pl'oduction of the standard forged 

gear. However, nt the lower aus'olrging tempemture [1075 K (14750 1")] this 

machtne did .'lot have sufficient ca,lacity. It WitS therefore decided to adapt the 

tuoling to n larger CEFF mac;1tne with a cltpltclty of 542,000 N-M (400,000 

lb it). 

After severui forging trials invol'/lng both tooltng und procedural chunges 

tile gear shown In Fig. 5(a) was produced. The teeth however were only ap­

proximately 60 percent formed. The tooth fill canditian was improved by 

changes ill the ilie cunflb>uratlan und by slightly increasing the ausfargtng tem­

perature ta 1103 K (15251.1 F) tn arder ta achieve improved metal naw char­

acteristics. 

The subsequent farging triuis were successful and resulted in tile produc­

tian af dimensianally aeceptable pltrts. These are illustrated in Fig. 5(b). 

The die tnserts did nat exhibit significant wear after 25 gear fargtnga. This 

is shawn ill Fig. 6. While there is some evidence of scoring und upsetting, 

no serious damage or tOOtil brealmge was encOlUltered. 

The only remaining two problems encoUlltered were (a) a heaviel' tllan 

expected nash area which required more time for removui during final maohtn­

ing. The second problem was related to tile grain now pattern of the flusforged 

gears (Fig. 'l(b». While the as ausforged gears had geod gTain nail' patterns, 

fuey did nat have the desirable close net tooth shape as the standard farged 

gears. As a result, some of tilO advantage of good grain flow was lost duling 

: i 
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£Innl mnchlning. Fig. 2 (c) is n photomicrograph of Ul(.l nusforgcd geur struc­

ture. The hurdness of ilie gears wns Uockwell C 62 to 0<1. 'fhe mctnllo­

graphic exmninntion rov<",'.ed no evidence of decarburization und the relnined 

nustcnite wns less thun 1 percent. 

'l'ES'f PUOCEDUUE 

The test genrs were cleaned to remove the preservative und then llSllcm­

bled on the test rig. The test genrs were run in nn offset condition with n 

O. 030-centimeter (0. 120-ht) tooth-surface overlnp to give a load surface on 

the gear face of 0.28 centimeter (0.110 in.) of thc O. 635-ccmtimeter (0. 250-in. ) 

wide geal', thereby allowing for edge radius of Ule genr teeth. This offset 

loading causes a twisting In the gear tooth of [l 1><10-3 radiun 01' 2. 6X10-4 

centimeter (1. 1X10-4 In.) deflection In the O. 28- centimeter (0. 11-in.) tooth 

width nt the highest point of single tooth contact. However, the mating tooth 

twists in the oppos.lte direction approximately U1C same amount which, along 

with the crown radius, preven Is edge loading'. 

By testing bolli faces of Ule gears, a total of foul' fntigue tests could be run 

for each set of gears. All tests were run-in at a load of 1157 newtons per cen­

timeter (661 lb/ in.) )'01' 1 hour. The load was then increased to 578'1 newtons 

pel' centimeter (:3305 lb/ in.) with a 17. 1x108 newtons pel' square meter 

(248,000 psi) pitch-line Hertz stress. 

At the pitch-line load, the tOOUI bending stresS wns 2. 48xl08 newtons pel' 

square meter (30, 000 psi) If plain bending is assumed. However, because 

there Is an offset load there is un additional stl:ess imposed on the tooth bending 

stress. Combining the bending and torsion;llmoments gives a maximum stress 

of 2. 67X10S newtons per square meter (38, '/'00 psi). This bending stress does 

not consi.der lhe effects of tip relief which Will further Increase the static 

bending stress in addition to increaSing till! dynamic load. 

'~"';l =~~=~ 
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'rho tesL genr shuft deflection resulting from Ule ovel'ilung loud gtves u 

tooth mismutch of 1. 5><10-'1 centimeter (6X10-5 in.) across the O. 28-centlmeter 

(0. 11-in. ) contact fuce width. This umounts to approximately 10 percent of the 

Hertz deflection of 1. 3X1(l-:l centimoter (5)<10-4 in.). This could cuuse some 

edgo lauding offects. Howover, the crown mdius in the tooth face provents 

edge loading. 

The test geurs were opemted ut 10,000 rpm, which gavo a pitch-linc 

velocity of 46. 55 metors pOl' second (91G3 n/min). Lubricant was supplied 

to Ule inlet mesh ut 800 cubic centimeters pel' minute at 319±6 K (115±10o F). 

The tests were continued 24 hours a day until thcy were shut down automatically 

by Ule vibratlon-dotection transducer located on the gearbox, adjucent to the 

test gern's. The lubricant '.vas circulated through u 5-micron fiber glass filter 

to remove weal' particles. A totnl of 3800 cubic centimeters (1 gull of lubricant 

was used and was discarded, along wll.h the mtor elcment, after euch test. 

1I let and outlet oil temperatures were continuously recorded on u strip-chart 

recorder, 

The pitch-line elastohydrodynamic (EHD) film thlcklless was calculatcd by 

the method of Grubtn (19). It was assumed, for this film thlclmess calculation, 

Umt the gcur tempemture at the pitch line was equal to the outlet oil tcmpera­

ture alld Ulat tile Illlet oil temperatllre to the contact zone wus equul to tilO gear 

temperutlll'O, even though the oil inlet temperature was considerubly lower. 

It is probable Umt the geur surface temperuture could be even highet' than the 

oil outlct temperuture, especially at the end points of slidtng eOllt .. 1Ct. The EHD 

film thickness for these conclitions wus computed to be O. 65 micrometer (26 J.l in. ), 

which gave arutio of film thickness to composite slIrface rOllghness (hi a) or 1. 13. 

~~~c~~~~_ "~ __ ' _'_'c __ . 
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UE3ULTS AND DlSCUSSION 

'l'hrec groups of AlSI M-50 geul'S (slandl\l'd forged, uusforged und standurd 

heut-treuted nnd machined) und one group of AISI 0310 geul's werll tested under 

a loud of 5784 llewtons POl' centimetor (3305 lb!1n.) which produced a maxhnum 

Hertz stress of 17.1xl08 nowtons pel' squuro meter (248,000 psi). 'l'ho goal'S 

were mnnufactured with a O. 0013-centimeter (0. 0005-in.) tip relief and with a 

crown l'udius to reduce edge loading effccts. The lubrlcnnt WIlli a supel'-reflnod 

nuphthenie minerul oil with nn extreme-pressure additive package. Thc gears 

failed by either Burfaee pitting fatigue or teOUl bending fracture. 

'l'cst Results 

Test results were statistically evuluated using the method of [20 J. For 

this evuluntion a p?,tr of muting gears was considered as one test. 

The test reSUltS with the slandard machined AlSI M-50 geurs arc shown in 

Fig, 7 (n). These results plotted on Weibull coordlnutes represent those geal's 

that fuiled by bending toOtil fmcture. Weibull coordinates are the log-log of 

Ule reCiprocal of the proability of survival graduuted as Ule statistical percent 

of specimens failed (ol'Clinate) against the log of time to failure or system life 

(abscissa). Of the 19 tests with Ule standard machlncd AlSI !Vi-50 gears, 

thil'tcl.ln faill.ld by bending tOOUl fmcture nnd only six failed by surface pitting 

fatigue. 

The results of the tests with the stnadard forged gllltrs are shown in Fig. 

7 (b). These results plotted on Weibull coordinates represent those gear sys­

tems Utat failed by surface pitting fatigue. The 10-percent pitting fatigue life of 

Ule standard forged gears is approximately ten times that of the bending f~ttib'1le 

life of tile standard machiJled gears. Two of the nineteen test gcars included 

in this data also failed from tOOUl fracture after a fatigue spall had formed [Uld 

only after the gears had been rllll for some time beyond tile pitting fatigue failure. 
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'rho statistical results of the tests wiOI Uw ausforgod gears are shown in 

Fig. '7 (c). 'rhese results, plotted on Weibull coordinates, reprosent UlOse 

geal'S that failed by surface pitting fatigue. There is a slight deerease in 010 

10-percent Ufe of the ausforgod gears over thut of UIO stundard forged goal'S. 

However, tilis difference is not statistically Significant. The ausforgcd gears 

failed primarily by surface fatigue pittinf:!' because of Ulcir incrcased tooth 

bending strength. These gears exhibited a pitting fatigue Ufe approxlnllttely 

ten times UIO bending fatigue life of. UIO stundard muchined geal's. 

Of U'le twenty-one (21) tesls completed on Ole ausfo.:'!!;cd AISI M-50 gears, 

five tests resulted In gear tOOUI fracture; all of which were the result of prlor 

surface fatigue spalls. These failures showed evldenoe of fatigue type frac­

ture propagation. 

Test results of the AISI 9310 gears [21} are shown in Fig. 7(d). By way 

of comparison, Fig. 7(e) Is II summary Weibull plot of the furcc differont 

AISI M-50 gears (machined, forged, and ausforged) along with the plot of case 

carburized lrod hardened AISI 9310 gears rUll under Identical conditions. It 

cun be seen fuat the forged and ausforged gears lUlU approximately five times 

Ule 10-percent Ufe of the AlSI 9310 gears. The standard machined genrs how­

ever had a 10-percent bending fatigue life which was only about '10 percent that 

of the AISI 9310 gear su rfnee fatigue 11fe. Since Ole standard forged und aus­

forged gears had approximately the same pitting fatigue endurance Ufe, the 

added cost and complexity of producing ausforged genrs would suggest Ulat 

Ule stundard forged geurs arc preferl-able over the ausforged gear. The excel­

lent perfol'munce of the standard forged gears with Integrally forged teeUI proved 

this to bc a viable and cost effective approach to high.-strength, hlgh-tcmI'eraturc 

gearing. 

I, 
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Fuilure AmllyW!. 

A typillul futlb>ue spall of the s mndard nmchined AISI 1'11-50 is shown In 

Fig. 8 (a). Memllul'glcul exumlnation mdlcuted Omt the futlgue spuJl':: I,\'ore of 

subsurfuee origIn und Inltluted ut or nOllr the pitch dlumetor In the rogion of 

mrutimum Hertz stress. A typlcul geur tooth fmoture IUld oross section of Ole 

smndard muchined AISI M-50 geur Is shown in Fig. O(u). '1'he fllllul'o orl,r.,· 

nuted in the root ureu und WI\S not reluted to lUly pl'lor sul'face futigue spall 

cuused by normal toodl eonmet as shown in OlC SOUlming Electron Microscope 

(SEM) photo, Fig. 10(a). '1'he fracturc surfuce in Fig. 10(a) shows Ow dimpled 

fmcture puttern which is typicul of II tens110 failure; OIUS, supporting thc con­

clusion Omt 010 toOOl failcd In u purc bending overloud mode. '1'he failure!! urc 

essentlully clussicul root el'llcl< fuilures [22J. Similul' results were obt~.lned 

with sm.,durd muchlned AISI 1'11-50 geurs with Up relief in [13] ut u higher 

looth loadl,lg. 

A typlc,'\l futlgue spull of u smndurd forged gellr is shown ill Fig. alb). 

These futigue spulls were lUSO primurily of subsurface origin initiuted ut or 

neur tho pitch diu meter in 010 region of muximum Hertz stross. A [mctured 

tooth und II cross section of OlC standurd forged goal' is shown in Fig. O(b). 

'1'he tooth fmcture originuted ut the location of 11 previous surface fatigue spull 

01ut wa!! overrun for Bome tim c The failurc tlwn propagated in a cyclic raUb'llC 

mode as shown by tho fatigue striations in the SEM photogruph [Fig. 10M] to a 

point where it tl'Ullsitioned to a tensile fuilllro. 'rhis finally resulted in a total 

sopuration of the geur tooth. Fig. 10(b) is a sClllllling electron microscope 

photo llt two different JUugP.ifications of subjoct failed urea, showing elem(mts of 

both tensile lllld fatigue failure 1l10des o[ the tooth fracture. 

A typlctu fatigue spall for thu uus[orged gears is shown in Fig. 8(c). The 

littigue pit is similur in origin llnd llppcurllllCe to the stllndard forged gellr 

shown in l!'ig. a (b). 

). 
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A fractiJrcd tooth c.nd a cross section of Ule ausforged gears is shown in 

Fig. e(o). The fracture was initiated in an area of the tooth which had previously 

sustained a surface fatigue spall. The cyclic fatigue p;ropagation of tile fracture 

can be clearly seen by the fatigue striations evident in Ule enlarged section of 

Ule fracture cross section [Fig. 10(c)]. Since the toOUl endured several load 

cycles after the s tart of the tOOUI fracture, it indicates the basic fracture toub>11-

ness of UIO ausforged material and confirms previous work [23, 24] performed 

on the relative mechanical properties of thermo-mechanically processed stcels, 

An important obl3ervation relevant to UlCJ above discussion is illustrated in 

the grain flow pattern of the standard forged and ausforged gears as shown in 

Fig. 4(0.) and 4(b). The standard forged tooth is very neal' the final net shape 

and dimension, while the ausforbrod tooth still requires ,considerable machining 

to achieve the final tooth form, thereby resulting in the elimination of a major 

portion of the preferential and beneficial grain flow pattern. This would tend to 

mako tho ausforged gO".r tOOUI less resistant to bending fractures. 

SUMMARY OF RESULTS 

Four groups of 8. 89-centimeter (3. 5-in.) pitch diameter spur gears wIth 

sta,ldard 200 involute profile with tip relief were endurance tested at 350 K 

(1700 F) with a maximum Hertz stress of 17. 1X108 newtons per square meter 

(248,000 psi) and a speed of 10, 000 rpm. Threo groups were made of VIM-VAR 

AISI M-50 steel and wore either standard machined, standard forged or aus­

forged. One group was made of case earburlzed and hardem,d (VAH) AISI 9310. 

The lubricant was a super-refined naphthenic mineral oil with an additive pack­

arie. Test results of the three typos of AIBI M-50 gears were compared with 

each other and with the results of the AIBI 9310 gears. All tests were run tinder 

identical conditions. 
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'rhe follo~dng results were obtained. 

1. The pilting fatigue life of the standard forged and ausforged gears was 

approximately five times that of the VAR AlBI 9310 gear and ten times that of 

the bending fatibrue life of the standard machined VIM-VAR AlBI M-fiO geal'~ 

run under identical conditions. 

2. There is a slight decrease in the lO-percent life of the ausforged gears 

from that for the standard forged gears. However, the difference in Hfe Is not 

s tatis tically significant. 

3. The standard machined AlBI M-50 gears failed primarily by gear lOOUl 

fractUre, while the other AlBI M-50 and AL.'H 9310 gears failed primarily by 

e urface fatigue. 

4. The ausforged gears had a slightly greater tendency to fall by tooth 

fracture than the standard forged gears. This is most HI,ely the result of the 

bett",r forging: grain flow obtainc;d with the standard forged gears. 
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I .\BLE L - PROPERTIES OF SUPER- REFINED, NAPHTllENIC, MINERAL-OIL TEST LUBRICANT 

2 Kinematic viscosity, cm /sec (cS), at 

266 K (20' F) • 

311 K (l00° F) 

372 K (210° F) 

477 K (400° F) 

Flash point, K (OF) 

Auto1gnition tempera ture, K (OF) 

Pour point, K (OF) 

Density at 289 K (60 ° F), g/cm3 • 

Vapor pressure at 311 K (100° F), .. Hg (or torr) 

Thermal conductivity at 311 K (100° F), J/(m) (sec) (K)(Btu/(hr)(ft)(OF» 

Specific heat at 311 K (100° F), J/(kg)(K)(Btu/(lb)(OF» •..••••• 

TABLE 2. - PROPERTIES OF UJBRICANT ADDITIVE ANCLAMOL 81 

Percent phosphorous by weight 

Percent sulfur by weight 

2812xlO-2 (, · 2) 

73xlO -L (73) 
-2 7 . 7xlO (7.7) 
-2 

1. 6xlO (1. 6) 

489 (420) 

664 (735) 

236 (-35) 

0.8899 

0.01 

0.04 (0.0725) 

582 (0.450) 

• 0.66 

13.41 

Specific gravity . ..• ..••. . ..• . . . . • 0.982 
2 -2 Kinematic viscosity at 372 K (210 0 F),cm /sec (cS). 29.5xlO (29.5) 

-.... 
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TABLE 3. - CHEMICAL COMPOSITION OF 

GEAR MATERIAl. BY PERCENT WEIGIIT 

Element 
AISI 1'1-50 steel AISI 9310 

VIM- VAR VAP. 

Carbon 0.80 0.10 

Manganeae .24 . 63 

Phosphorous .006 .005 

Sulfur .005 . 005 

Sllicon . 22 . 27 

Copper .06 .13 

Chromium 3.98 1.21 

Molybdenum 4.18 . 12 

Vanadium . 98 ----
Nickel .07 3.22 

Cobalt . 05 ----
Tungsten . 04 --.--

Iron Balance Balance 
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TAIILE 4. - HEAT TREATMENT PROCESS FOR V UI-VAR AlS l CVM M-!lO 

STEEL STANDARD FORCED AND MACHINED 
'-' 

Stap Proce •• T mperature , Time , 
K (OF) hr 

1 Preheat (salt bath) 1090 (1500) 0.5 

2 Aus ten1tiz (Ialt bath) 1387 (2035) .1 

3 Quench (ult bath) 847 (1065) .2 

4 Air cool to 294 (70) ---
5 T mper 825 (1025) 2 

6 Air cool ---- ---
7 Sub z r o cool 200 (- 100) 2 

8 Warm to 294 (70) ---
9 Temper 825 (1025) 2 



00 

'" N 
00 

~ 

Step 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

2 

TABLE :I . - HEAT TREAnlE NT PROCESS FOR 

VACUUM ARC REMELTED (VAR) AlSI 9310 

Process T mp ratu r , 
K ( OF) 

' rb urize 1172 (1650 ) 

Ir cool to room temp reture 

Co ppe r plate all over 

Reheat 922 (1 200) 

Air cool to room temp roture 

Austenitize 1117 (1550) 

011 quench 

Sub z ro cool 189 (-120) 

Doubl temp 450 (350) 

Finish grind 

Stress reliev 450 (350) 

Time , 
hr 

8 

2. 5 

2.5 

3. 5 

2 each 

2 
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TABi.E 6. - GEAR DATA 

[Gear tolerance per AGKA class 12.] 

Number of teeth 

Diametral pitch 

Circular pitch, em (in.) 

Whole depth, em (in.) 

Addendum, COl (in.) 

Oto rdal tooth thickness reference, em (in.) 

Pressure angle, deg •• 

Pitch diameter, em (in.) 

Outside diameter, em (in.) 

Root fillet, COl (in.) •. 

Measurement over pins, em (in.) 

Pin diameter, COl (in.) 

Backlash reference, cm (in.) 

Tip relief, em (in.) ••.• 

28 

8 

0.9975 (0.3927) 

0.762 (0.300) 

0.318 (0.125) 

0.485 (0.191) 

• • • • . • 20 

8.890 (3.500) 

9.525 (3 . 750) 

0.102 to 0.152 (0.04 to 0 . 06) 

9.603 to 9.630 (3.7807 to 3.7915) 

0.549 (0.216) 

0.0254 (0.010) 

0.001 to 0.0015 (0 .0004 to 0.0006) 

"" -
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TABLE 7. - FORGING PROCESS FOR AISI VIM- VAR M-50 

Staadard forged Ausforged 

Step Process Temperature, Time, Step Process Temperature, 
K (OF) hr K (OF) 

1 Preheat 1090 (1500 ) 0.5 1 Preheat 1090 (1500) 

2 Hold 1395 (2050) .5 2 Auster.1ti~e 1409 (2075) 

3 Forge 3 Rapid air cool to 1090 (1500 

4 Air cool to 294 (70) 4 Stabilize llOO (1525) 

5 Anneal 1090 (1500) 4 5 Ausforge 

6 Slow furnace !Ill (1000) 6 Oll quench to 339 (150) 
cool to 

7 Air cool to 294 (7(1) I 
7 Air cool to 294 (70) 

8 Stress relief 783 (950) i 

Time, 
hr 

0 .5 

.5 

.1 

2 

, 

I 

'>0 
N 
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Figure 2. - Concluded. 
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Figu re 5( a) . - Ausforged gear after initial tooli ng and process modifiu­
lions. Tooth fi ll is approximil' 'Iy 60 percent. 
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Figure SlbI. - Ausfvrged gear after final tooling and process ifications. 



Figure 6. - Section of di ins rt after production ausforging run. 
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Figure 7, - Fatigue lives of spur gear systems made of 
~ \M- VAR AISI M-50and V/iR AIS19310, Maxl­
r"um Hertz stress, 17, Ixl(j! newtons per square 
meter 1248 000 pSI~ maximum bending stress at 
tooth root, 2, 67xllr' newtons per square meter 
(11 700 pslh speed, 10000 rpm; tcmperabu'! , 350 K 
(m:P Fh lubricant, super-refined naphthenlc 
minerai 011, 
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FigureS. - Typical fatigue s~1I of VIM-VAR AISI M-50gear teeth . Maxi­
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Figure 10. - Scanning electron photomlc r09raph of fracture surface of the 
VIM-VAR AISI M-5Q gear tooth at di fferen t magnifir.alions. 


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A02_.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf

