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Preface

I

The main objective of the following ERTS-1 work was to exploit

satellite-obtained multispectral data for Great Lakes observations'. 	 Near-

coincident.NOAA-2 satellite data have also been utilized to provide

additional information in the thermal-infrared part of the spectrum.

p •A broad-based approach enabled us to develop techniques for monitoring

A
r

high concentrations of surface biomass and algal blooms in the Great Lakes 	 f

during late summer and early fall. 	 Chemical precipitation in the near-
h

y
a surface layer is readily observed by ERTS-1 and was found more extensive

than previously believed. 	 These "whitings" have been seen observed as

regular summer and fall events in three of the Great Lakes--Lakes Michigan,

Erie, and Ontario.

The high resolution of the PASS instrument permitted ice vector move-

ment studies on successive days where overlapping data ware available.
h

These opportunities were infrequent in the Great Lakes because of the extensive

cloud-cover that normally occurs in the stut;y area during the winter months.

Water color displays a positive correlation with surface water temp

erature during the spring and early summer 	 months as the surface water

j becomes increasingly warmer. 	 This correlation reverses for fall and early

a winter. 	 Since most of the color in the Great Lakes is due to river efflu-

ents or shoreline erosion (the lakes were at record ]ugh levels during all

of our observations), the resulting turbidity is found principally in the

h^
nearshore regions.	 The correlation was anticipated as it is these

r,

shallow nearshore waters that respond most quickly to warming in the spring

1
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sunglint contamination. At the latitude of the Great Lakes the effect

of glitter was most obvious from April to August. Although contamination

or' the imagery (water scenes only) is possible for solar elevations below

50° it is most apparent when the sun elevation exceeds 55 0 . A model is

employed to permit a better understanding of these effects. Glint becomes

most troublesome at the low wind speeds typical of clear sky conditions, i.e. those

needed for ERTS-1 observations.

The final, and most rigorous, study presents a nearly-complete set

of circulation charts for five Great Lake areas that revealed numerous

natural color tracers: southern Lake Michigan, southern Lake Huron, Lake

St. Clair, Lake Erie and Lake Ontario. These charts were further cate-

gorized by a weighted three-day resultant wind stress. whenever possible

these derived currents were compared with previous analyses of lake

currents.

Our Great hakes ERTS-1 study resulted in the following recommendations

for future investigations:

The ERTS System

(1) Incorporate a thermal-infrared detector as an additional MSS channel.

(2) Consider a sensor-pointing capability to avoid the sunglint problem

under high solar elevatj;on,

(3) Add multispectral capability in the blue region (0.45-0..511m)

of the spectrum for better "whiting" and biomass detection.

(4) Provide quantitative radiances,

(5) Develop better calibration techniques.to prevent banding in

future sensors.'
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(6) Provide additional amplification for the low radiances typical of

water scenes.

(7) Consider an orbit closer to local noon. Geometry permits high solar

elevations for better water color data and increased depth penetra-

tion capability. A pointable sensor is essential for a noon orbit

to avoid sunglint effects along the sub-satellite track.

(8) More frequent coverage is essential for coastal work.

Algal Studies

(1) Further investigate a correlation of surface chlorophyll and

biomass with low level variability in 0.7-0.8pm data.

(2) Investigate other lakes and periods for high surface concentrations

of algae using the classification developed in the study.

(3) Compare Great Lakes classification signatures with oceanic

observations (red tides, etc.).

Chemical Precipitation

(1) Develop a classification technique for monitoring the depth of

the upper level of whitings.

(2) Investigate relationship of radiation intensity observed in

0.5-0.61im data to the concentration of calcium carbonate.

(3) Monitor changes i< evolution of whiting events.

(4) Survey other E RTS-1 data for similar classifications in oceanic

areas. Whitings reportedly occur in such regions as the Florida

Keys and Persian Gulf.

Ice

(1) More frequent coverage isreeded to monitor ice movement in the

Great Lakes, although in overlapping areas ice motions may be

charted over two-day intervals.

v'
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(2) Ice condition information is augmented by the multispectral

approach (especially the 0.8-l.lum channel), but could benefit

from additional spectral data in the near-infrared (wavelengths

up to 2Um).

Sunglint

(1) Calm water areas could be charted readily using images contaminated

by sunglint; information on glitter probabilities should be provided

all marine and lake investigators.

(2) Oil spills and other pollutants with similar capillary wave

damping attributes are easily detected in sunglint highlight

areas; more work seems appropriate in this area for automatic

classification.

(3) Current boundaries frequently provide contrasting roughness fields

that are enhanced by sunglint.

(4) If more quan!:itative radiance data could be gleaned in sunglint

regions, the surface wind field could be calculated.

Circulation Mapping

(1) Some resultant wind stress conditions were not observed in all

of the five areas studied. These omitted wind directions should

be incorporated as they are observed during subsequent cloud-free

overpasses.

(2) Additional areas in the Great Lakes should be monitored for circula-

tion features as conditions permit. Lake Superior was not included

in this study; portions of that ,'sake have the extensive turbidity

needed for circulation observations.

(3) Refinements of the circulation charts become more tentative in

those areas most distant from the wind stations used.

vi
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Chapter l	 INTRODUCTION

The guarded optimism expressed by the oceanographic community prior to

the launch of ERTS-A gave way to surprise and elation as the first ERTS-1

images became available during August 1972. 	 The multispectral scanner
u

Isubsystem (MSS) imagery provided the following during the first few weeks of

observations:	 (1) an image of the Monterey area that pinpointed location

any extent of the near-shore kelp beds; (2) an image of Rhode Island Sound

that displayed numerous turbidity tracers for surface circulation; and (3) a

Great Lakes image that produced the first indication that western Lake

Superior was indeed colored red by suspended clay particles (Strong, 1972).
i

Our original test area was compose;Z, of Lakes Erie and Ontario. 	 How-

{ ever, as we quickly became enthusiasts of the ERTS--1 MSS data we felt use were
^j

doing the Great Lakes a disservice by not including Lakes Michigan and

Huron as well.	 Lake St. Clair was included for completeness.	 A chart in

Figure 1 provides an overview of the area covered in our ERTS studies.

(Chesapeake Bay initially had been included in our proposal to NASA/GSFC,

l it

but this study was omitted after fin6ing many other investigators were

(f
Y covering this estuary.	 We were to ha,..e studied ice in Chesapeake Bay; how-

ever, due to very mild winters ice was rarely observed in the open bay.) 	
1

s	 gThe ERTS-1 . MSS data have been used primarily in their raw (basic) image

form for this study.	 Computer compatible tapes (CCT) have been employed in

's selected instances toproduce printouts, or they were processed for computer

fi
enhancement using a NOAA/NESS Digital Muirhead Device (DMD). 	 General

Electric's "Image 100" and the Environmental 1 ;0search Institute of Michigan's

` (ERIM) multispectral processing equipment were used in some portions of our

study.

1-1	 ^



Figure 1. ERTS-1 Great Lakes Coverage Chart,. Stippled area indicates image overlap
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The bulk of our work has been directed toward the production of circum"

lation atlases for the following lakes:

(1) Southern Lake Michigan
f

(2) Southern Lake Huron

(3) Lake St. Clair

(4) Lake Erie

(5) Lake Ontario

Results for these five areas were presented in Chapter 7 and take advantage
i

of river discharges and lake turbidity that are natural current tracers.

i

Using all observations with cloud-free data between August 1.972 and

December 1973 enough observations were available to classify circulation

as a function of wind stress.

Five .chapters are included that discuss. special observations

made under this NOAA/NASA effort-:

Algal Blooms - Chapter 2

Chemical Precipitation - Chapter 3,

f	 Ice - Chapter 4 a

`	
Sunglint - Chapter 5

4

Surface Temperature vs. Color - Chapter 6

i

i

a
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Chapter 2	 ALGAL BLOOMS

Portions of this chapter were first presented at the NASA Symposium on

Significant Results obtained from the ERTS-1 (1973) and later amplified in

i	 Remote Sensing of Environment (Strong, 197 1+).	 An understanding of what was

^

t

was observed in Lake Erie was provided by an excellent image of a documented

algal bloom in Utah Lake observed by ERTS-1 on 12 September 1972.
a

f

Introduction

i	 As QOAA aircraft flights were being made over Lake Erie on 15 October 1972,

't
underflying the ERTS-1, a long dark streamer was observed between Kelleys

and South Bass islands and the Ohio shoreline. 	 Although it was known that

the ERTS-1 multispectral scanner subsystem (MSS) image swath would cover a

100-nautical-mile-wide strip just east of this area (NASA, 1971), the air-

craft flight pattern was modified extemporaneously to provide sufficient

coverage of this waterborne material.	 A chart in Figure 2 shows the loca-

tion of the aircraft and satellite imagery used in this study.

Observations and Results

The NOAA Buffalo DeHavilland aircraft- was equipped with a Spectral Data

Corporation four-band camera system for spectrally simulating the ERTS

MSS.	 Overlapping photography, throw h the boresighted camera, viewed a

swath 4.6 km wide beneath the aircraft from an altitude of 5.8 km. 	 The purpose

of the high resolution photography was to avoid any interpretation diffi-

culties that might arise during examination of the 100-m resolution ERTS-1 j

.
imagery.

3

A Daedalus Dual-Channel Thermal Scanner was also incorporated into

the aircraft flight package.	 The two thermal-infrared channels covered

the 3.5-5.Opm and 8-13pm atmospheric "windows". 	 This imagery was centered

.iirectly beneath the aircraft and provided an 11-km wide swath front the

5.8-km altitude.	 The thermal-infrared imagery provided further lake
a

-2_Z
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surface information that was related to the color patterns observed by both

the aircraft and satellite sensors.

Since our main surface-truth operations were being conducted along the

Canadian shore of Lake Erie, no quantitative measurements were obtained for

R

	

	 the area off Port Clinton, Ohio. Surface water temperature at Lorain, Ohio

(60 km east of Port Clinton) was 14.5°C and is considered representative

i	 for much of the southern shore under -the prevailing onshore winds.
i

The multiband aircraft camera observations are presented in Figure 3

as strip mosaics. An abrupt contrast reversal is evident either side of 0.7Fim

between the ERTS-simulated MSS bands "5" and 11 6" (0.6-0.7pm and 0.7-0.81im,

respectively). The material that absorbs shortwave energy in the visible

wavelengths reflects incident radiation in the near-IR wavelengths. 	 Due to

the strong solar absorption in the visible wavelength, it was not surprising

^- to find an associated higher surface temperature in the -thermal-IR data
'i

(Figure 4) obtained simultaneously. 	 The near-surface nature of this material

is made evident by small boat wakes normal to the streamer that

interrupt the visible, reflected-IR and thermal-IR features.

A portion of the ERTS-1 MSS digital data was redisplayed on a Digital	
1a

f
Muirhead Device (DMD) at the National Environmental Satellite Service. 	 The

F
DMD utilizes a high intensity modulated light source to generate high

3

F quality transparencies from a digital input. 	 Use of the DMD makes it

F [ possible to enhance the lower radiances characteristic of water. 	 Through

the use of the DMD, considerable information frequently can be extracted

from MSS data that appear as a uniform black tone in the original unenhanced

ERTS imagery.	 DMD-reprocessed, 14-nautical-mile wide, north-south swaths

'	 of the 'original MSS-5 and MSS-6 imagery are shown in Figure 5. 	 The "chip"

begins at Point Pelee on the north shore of Lake Erie and terminates at

7-3	
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I
Figure 5. Digitally enhanced £RTS-1 data from 15 October 1972. MSS-5 and MSS-6 (left

and right, respectively). Note algal streamer off Kelleys Island and other 	 •
algal features around and to the east of Pelee Island. The anticyclonic
gyre in the vicinity of Point Pelee is a typically observed circulation fea-
ture for the location (see Chapter 7).

i





Marblehead, Ohio, just north of Sandusky. Although the 15 October ERTS-1

imagery barely covered the phenomenon observed in Figures 2 and 4, the high

reflectance of the westernmost portion ;.an be seen in MSS-6 immediately nest

of Kelleys Island. A large reflective region appears in MSS-6 to the east

of Pelee Island. It is suspected this represents lesser algal concentrations,

for no similar patterns are observed in MSS-5. It is well known that summer

algal blooms make regular appearances in Lake Erie, particularly in the area

around the islands (Casper, 1965).

Computer compatible ERTS-1 tapes were processed'on General Electric's

Multispectral Analyzer - "Image 100 11 - to see whether a classification training

could be established. for the algal blooms. 	 A test site was chosen to the west of

Kelleys Island where the algal bloom was seen both from the aircraft and 'ERTS-1.

Figure 6-shows the full resolution ERTS data processed on the "Image 100".	 A

fluffy cumulus cloud lies north of (above) the algal streamer that appears as

a red line.	 Table I shows the "training" performed for the display in Figure

7.	 Basically, MSS-7 was used as a water identifier (low values = water) and

MSS-6 as the algal bloom detector.	 Although no surface truth existed to allow

us to be more definitive regarding concentrations, Bukata et al. (1974) have

demonstrated a correlation of surface biomass with MSS-G.	 Applying this test

site training we were able to produce a "classification" of the entire ERTS-1

scene for 15 October 1972.	 The resulting image is shown in Figure 8.

For this display a 6-line x 6-spot ERTS sampling was used to provide a

one-picture overview.	 Sampling every 6th line ensured that we always

display data from the same detector of the six detectors used in ERTS-1,

thereby eliminating the troublesome variability in calibration found between

detectors. ^_ The training display presented in Figure 8 was altered only

slightly and appears in Table 2.	 Although the, MSS-6 values are lower in

the overview classification there are probably fewer "false alarms" for
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Table 1 .}
Kelleys Island Test Site Training October 15, 1972 t

MSS Channel	 4 5 6	 7 Color

Count Range	 17-23 9-14 14	 3-7 orange

f{ 16-31 8-14 13	 3=8 dk. blue

16-28 8-14 12	 2-7 yellow

16 --28 7-14 11	 1-5 violet

15=28 7-13 10	 1-5 lt. blue

16-27 6-13 9	 1-5 purple
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Table 2

Lake Erie Classification

el 	 4	 5

 14-33 12-25

14-33 12-25

16-32 13-21

17-33 13-22

14-32 12-20

14-32 11-18

14-28 10-15

14-28 10-12

MSS Chann

Count RanRang

October 15, 1972

6 7 Color

11 1 orange

10 1 dk. blue

9 1 yellow

8 1 pink

7 '1 lt. blue

6 1 purple

5 1 grey

4 1 green



!

xi

k^

I
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zi	 Figure 8.	 Lake Erie algal bloom classification for 15 October 1972.	 See Table 2 for
theme color relationship to MSS radiance values.
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algae as only MSS-7 values of 1 count were permitted. Evidently Sandusky

Bay (south of Kelleys Island) and the eastward coastal current along the

Ohio shoreline are teeming with algae. Despite considerable cloud cover

the classification is not confused by this obscuvation. Finally, the

eastern portion of Lake St. Clair is classified as a rich source of surface

algae along the upper left edge of the ERTS-1 view.

On 9 September 1972, a little more than one month prior to the October

observation ERTS-1 imagery showed another suspected distribution of algalg. Y	 P	 g

material in Lake Erie. The DMD enhancement of MSS-5 and MSS-6 are shown

in Figure 9 This swath is 31-km wide and Point Pelee is at the left side

of. the strip. The wavelike structure is presumed to be related to the Lake

Erie internal seiche and shows the pulse-like nature of the alongshore

current moving eastward through the islands and around Point Pelee. The

algal streamer appears to originate immediately east of Pelee Island. The

streamer extends nearly 46 km and shows widths varying from 0.2 to 2 km.

Additional color enhancements are provided of MSS 4, 5 and 6 using "Image

100" in Figures 10, 11, and 12, respectively. Again. GE's "Image 100" was

utilized to classify the algal bloom in Lake Erie. The training method was

similar to the one discussed above. Table 3 indicates what digital infor-

mation went into each color displayed in Figure 13. This is a 4-channel
i

training on all pixels in the gyre test area off Point Pelee.

The detector banding that appears in Figure 13 is an obvious detrac-

tion in the 5 line x 6 spot sampling presented in Figure 14. This demon-

strates the need for better calibrations on future space systems. A

6 line x 6 spot sampling (Figure 15) recovers most of the information one

would expect from the training above. It is assumed that the highe,-	 "?

surface algal concentrations have been mapped by this process.

'	 2-13
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Table 3

Point Pelee Test Site Training September 9, 1972

MSS Channel	 4	 5 6	 7	 Color
G

f
Co,t Range	 20-25	 11 9	 1-2	 pink

19-24	 10 8	 0-2	 orange

'	 18-24	 11 .8	 0-2	 peach

17-24	 10 7	 0-2	 gold

16-24	 11 7	 0-2	 purple

F	 16-24	 12
E

f

7	 0-2	 blue

i'

1 1
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Table 4

Lake Erie Classification September 9, 1972
f

MSS Channel	 4 5	 6 7 Color

i
#

{

Count Range	 15-25 11	 9 1-4 pink

19-27 10	 6 1-3 orange

V 19-25 11	 8 1-3 peach
a

14-29 12	 8 1-4 turquoise

12-29 10	 3 1-3 gold
i

15-30 11	 7 1-3 blue

4.

13-29 12	 7 1-3 green

1
i
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e
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6
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The gyres off Point Pelee are enhanced. Algal material appears to be flow-

ing out of the western basin of Lake Erie above ;-^,Aleys Island and then

eastward along the southern shoreline. The s-zpris,e from this classifica-

tion is the apparently low concentrations in the Sandusky Bay area that

became extremely high 5 weeks later (Figure 8). Although it is difficult

to be quantitative with the MSS data there would , appear to be greater sur-

face algal concentrations (higher MSS-6 counts) during the 15 October algal

bloom. A second surprise was an inference of a high level of biological

activity off Erie, Pennsylvania in the right-hand half of the scene.

Although research vessel data were available in this area of Lake Erie,

unfortunately no surface chlorophyll or similar data were available.

A much superior ERTS-1 observation of an algal bloom was obtained over

Utah Lake on 12 September 1972. Figure 16 shows an anticyclonic gyre in

MI	
this shallow (about 3-m deep) and highly eutrophic lake (PO°about 0.5 mg/1).

The ERTS imagery shows a reversal in contrast for the gyre at 0.7µm. The

gyre itself covers a large percentage of the surface of this lake, which	 {
4

has" a surface area of about 375 km2 . Utah Lake is known for its high

turbidity and summer algal blooms. within one day of this satellite

observation, a limnological cruise on Utah Lake revealed a massive, highly

variable bloom of Aphanizomenon flos-aquae ('White and Rushforth, 1973).

Discussion

Oceanographers and limnologists have observed that ERTS-1 imagery

provides much detail in MSS-4 and -5, yielding information on circulation,

biomass, and turbidity distributions (Maul, 1973). Charnell and Maul

(1973) have discussed the light penetration expected in pure water for the 	 i
r

four ERTS-1 _MSS channels. Observed radiances, a function of both absorp-

tion and scattering in the water, are noticeably wavelength-dependent. In

pure water, 50% light transmission will be observed over a depth of 10 m

2-23
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;1
by MSS-4, 2.5 m by MSS-5, 0.5 m by MSS=6

'

and 0.2 m by MSS-7. In the "real

world" of turbid water these depths are noticeably reduced. The strong

I

absorbing characteristic of water for the near-IR wavelengths (greater than

i	 0.7um) makes it possible to detect substances that are strongly reflective
i

at these wavelengths when they are at or project above the surface of the

water. The reflectances of such .features diminish in the near-infrared

(MSS-6 and MSS-7) whenever they are covered by even a thin layer of water. As
i

an example, a pronounced reduction in reflectance has been observed when a

f
thin layer of melt water covers ice (Strong et al.,1971).

E

Algal blooms, although not previously documented from spate, have been

{{E seen and photographed from aircraft. Aero-infrared Ektachrome :film has
i

been used successfully to image periphyton in the Great Lakes (Noble et al.,
E

1967). Chlorophyll detection in cropland is extremely useful to the remote
i

sensing agronomist. Using multispectral techniques, he can infer such

qualities as crop vigor, stage, moisture stress, and disease. The near

infrared. reflectance from living plants increases rapidly between wave-

	

	 3

z
lengths of 0.70 and 0.75pm (Bressette and Lear, 1973). Whenever high

3

concentrations of :agal materials are found on a water surface they stand
E

out dramatically against an otherwise dark background at these wavelengths.

MSS-6 on ERTS-1 is well-suited for surface algae detection. If the algal

bloom is thick and provides enough buoyancy to allow the upper surface to

4	 a
a

dry, the reflectance is sufficiently intense to be observed in MSS-7	 i
3

imagery as well.
e

Algal blooms have been noticed during or imme,lietely following calm u

l

	

	 w
periods accompanied by abundant insolation. Some blooms are highly toxic

(e.g., red tides), whereas others attract fish with beneficial results.

They are most notable in eutrophic lakes and in some coastal areas of the

2-ry5



-F ____._7 
_1^

r

oceans.	 Unfortunately the evolution of most algal blooms takes place

over only a few days.	 This makes ERTS-1 a poor vehicle from which to moni-

tor these events because of its repeat cycle of 18 days.

Concluding Remarks

Because the ERTS-1 MSS sensing was successful in•observing the strong

chlorophyll reflectance on Utah Lake, we are reasonably certain that the

patterns seen i n similar imagery over Lake Erie indicate the existence of

an algal bloom there. 	 Although no surface data have yet been found to

corroborate this inference, past history indicates that blooms in this area

are plentiful.	 A vigorously grow i ng algal biomass is rich in chlorophyll

and strongly reflects radiant energy in the near-IR bands. 	 The dark green

or brown color of this biomass is likely to cause the upper algal surface

to appear darker at visible wavelengths and its warmth to cause it to appear

brighter at thermal-IR wavelengths than the surrounding highly turbid

codstal waters. 	 Algal blooms can be expected to occur during periods of

low surface winds, warm water conditions, and substantial insolation.

These conditions preceded both the Lake Erie and the Utah Lake observations.

Although most Great Lake algal blooms can be expected to be on a scale

barely resolved by the ERTS-1 system, a careful interpretation and some

judicious computer processing and image enhancement should reveal many

algal bloom situations that would otherwise go undetected.	 Additional use

of a multispectral analyzer permits rapid interpretation of an entire
•

ERTS-1 scene and classification of several levels of near-surface

biological activity. 	 Not all algal blooms should be.expected to yield

high contrast features.	 It is for the less distinct growths that the

computer is most necessary,	 Basic-training algorithms can quickly be

^^
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Chapter 3	 CHEMICAL PRECIPITATION CaCO 3

WHITINGS

W1,itings are defined as areas of milky-white water composed of calcium

carbonate crystals (Bathurst, 1971). Portions of this chapter were first pre-

sented at the Ninth International Symposium on Remote Sensing of Environment

iTJ April 1974 at Ann Arbor, Michigan (Strong et-	 Further findings are

incorporated in this chapter. Additional studies are planned during the coming

year. A "whiting event" presents truly an interdisciplinary phenomenon as

geology, chemistry, biology, meteorology, and physical oceanography are involved.

INTRODUCTION

Satellite limnology received only scant attention until higher resolu-

tion sensors became available in 1972 (Strong, 1967; Sabatini, 1971; Strong

and Baker, 1971)'. During that year the ERTS-1 and the NOAA-2 satellites were

successfully launched. With the 80-meter multispectral resolutions of ERTS-1

and NOAA-2 1 s Very High Resolution Radiometer (VHRR) 1-kilometer resolution, 	 A

detailed satellite studies in coastal areas and in the Great Lakes have

become possibl6.

Due to the orbit, geometry and the narrow data swath (185 k .m wide)

obtained along each ERTS-1 pass, coverage of the Great Lakes repeats every

18 days, beginning at the eastern end of Lake Ontario. Twelve days later it

completes its Great Lakes' coverage over western Lake Superior. The

data swath from NOAA-2 is ten times wider, with daily coverage from both

visible and IR channels. The IR channel also makes nightly coverage

possible. The ERTS•-1 satellite transit is approximately 0930 local

time, i.e., about 30 minutes after NOAH,-2's passage over the same

region. Frequently, this separation in coverage from ERTS-1 and NOAA-2

3-1
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is considerably less than 30 minutes, greatly facilitating the integration

of the ERTS-1 multispectral and NOAA-2 IR data sets.

j . UPWELLING IN LAKE MICHIGAN
f

According to local Great Lakes sources, the summer of 1973 was an
i'

r3

unusual one ,for Lake Michigan.	 Numerous and extensive upwellings occurred

i;
i'

on both eastern and western shores.	 Since upwelling promotes mixing, an

immediate consequence during the 1973 summer period was an improvement in

sr
s: water quality.

i One of the more intense upwelling periods began on 20 August and con-

tinued for nearly a week. 	 Along the eastern shore, from Frankfort, Michigan
^r

to Chicago, Illinois, water intake temperatures for all municipalities

plunged from typical August levels of 20 0 C to less than 10°C.	 Standard

k
}

meteorological data from nearshore stations indicated offshore winds were

generally less than 5 m sec' 1 , thus failing to forecast any possibility of u
a

i

J major upwelling.	 However, several ship reports from southern Lake Michigan

f-;
indicated surface wind speeds nearly three times those over land. 	 Recently,

additional reports have confirmed these indications of strong winds at

the eastern shore (Hicks, 1973; USGS, 1973). 	 Surface pressure ship and

i

land weather observations are shown in Figure 17.
1

The evolution of the 20 August upwelling episode was monitored on five

consecutive occasions by NOAA-2. 	 During the morning transit of NOAA-2 no

unusually cold water was in evidence along the entire eastern shoreline.

By evening, however, thermal data from NOAA-2 (Figure 18) indicated that

;i upwelling (lighter grey shades) was beginning immediately south and west

^i

tj of the three major points of land south of the Manitou Islands: 	 Point

Betsie	 Big Sable Point and Little Sable Point.	 The 21 August morning

i
3-?
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Figure 17. Surface weather for 21 August 19.73 in the Lake Michigan region. Surface
pressure (millibars) is from 1200 GMT observations. The time of ship and
selected shoreline observations are indicated above station circle in
parenthesis. Parameters included beside station circle are: air temperature
(upper) and water temperature (lower) immediately to the left of the station;
wind direction and velocity (reported speed, in knots, appears.above
"feathers"--one "feather" = 10 knots).
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Imagery from NOAA-2 1 s VHRR-IR channel (Figure 19) shows upwelling that has

enveloped the entire Michigan shoreline south of the Manit,u Islands. The

analysis in Figure 20 shows the resulting surface temperature field obtained

from this VHRR data. A spatial averaging of the VHRR data over a 4-km

square is necessary to remove a small amount of high frequency

noise.

Figure 21 presents the visible (red) channel information from the

VHRR on 21 August. Sunglint (see Chap. 5) is evident over Lake Michigan

and affects the VHRR-VIS imagery along the eastern (right) sychronization

line (white) during summer months when the solar elevation is high.

Despite the contamination from sunglint, features evident in the VHRR-VIS

over Lake Michigan are also visible in ERTS-3, imagery acquired one hour

earlier (Figure 22).

In Figure 22 the MSS-4 channel reveals considerable turbidity in the

surface waters of nearly the entire lake; the turbidity is much less

obvious in the MSS-5 channel. This effect presu-nably indicates increased

.turbidity below the water surface rather than at this surface. This follows

from the fact that the radiant energy in the red channel (14SS-5) comes

from only the upper few meters of the water and the green channel (MSS-4)

is effective for turbidity observations to depths on the order of 10 meters.

One area displaying an exception to this is along the shoreline from

Muskegon to Benton Harbor; here the turbid water undoubtedly relates to

erosion along the high bluffs, which have been threatened by the higher

Great Lakes water levels of the last two years.

Displaying CCT data from ERTS-1 for 21 August on the "Image 10011

permits a more quantitative understanding. Sampling of the ERTS-1 scene

over 6 spots every 6 lines provides a useful overview. Banding is not as

•3-5
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troublesome when observing these very turbid conditions in the visible por-

tion of the spectrum. Banding has been most noticed when trying to use the
`s

near-IR data in MSS-6 or -7 (Chap. 2, Figures 14 and 15). Figure 23 is

a color image using blue and green light on MSS- 1+ and red light on MSS-6

data. It is remarkable to see how much of the surface water area is

affected. Figure 24 categorizes increasing levels of reflectance in MSS-4

where the other three-dimensional multispectral information for each pixel

has a low value of reflectance. Table 5 shows the classification employed.

Red is used to designate nearshore turbidity. Higher reflectance levels

in MSS-5 are included for this signature. and typify the erosion of the

bluffs seen near Benton Harbor.

On the following day, 22 August, the VHRR-IR imagery revealed a some-

what enlarged upwelling strip along the coast (Figure 25). The analysis

shows lower water temperatures over the central lake and along the shore-

line (Figure 26). Ship weather observations revealed winds that were more

easterly but continuing strong (around 10 m sec l).

A similar episode occurred on Lake Michigan beginning on. 26 July.

This upwelling was observed by ERTS-1 on 3 August, eight days later, when

the phenomenon was in its final stages. Considerable turbidity can be

seen again (Figure 27), but the MSS-4 levels of reflected radiation in

the green band are much lower than observed by ERTS-1 on 21 August. For
	 A

'comparison the VHRR-IR image from NOAA -2 is shown, in Figure 28.

The same classification scheme used in Figure 24 and Table 5 has

been employed in the color image in Figure 29. Only the third CCT for the

`

	

	 Chicago scene has been processed on the "Image 100." The strip includes

the Gary, Indiana shoreline. Reflectances observed on 3 August appear to

be nearly identical to those observed on 21 August, although the latter,

3-10
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Table 5
Y	

= Classification: Lake Michigan Whiting August 3, 1973
August 21, 1973

MSS Channel	 4 5	 6 7 Color

Count Range	 35-40 10-19	 3-13 1-8 orange

32-34 10-19	 3-13 1-8 dark blue

30-31 10-19	 3-13 1-•8 yellow

28-29 10-19	 3-13 1-8 pink

26-27 10-19	 3-13 1-8 light blue

24-25 10-19	 3-13 1-8 purple

20-23 10-19	 3-13 1-8 grey

20-40 20-30	 3-11 1-8 red

1

1
'i

a
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Figure 25.	 22 August 1973.,	 1600 GMT NOAA-2 enhanced VHRR-IR image of Lake Michigan.
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case presents greater contrasts.

In all cases water intake temperatures confirmed the intense upwelling

along the eastern shoreline.	 Several locations reported temperatures below

10°C during the maximum upwelling.	 Standard chemical analyses performed

on the raw water from these intakes (Muskegon, Grand Rapids, South Haven,

Benton Harbor, St. Joseph, and Chicago) indicated no abnormalities. 	 Values

of pH dropped from typical epilimnetic readings of 8.0 to 8.5 to slightly

below 8.0 as cold and slightly more acidic hypolimnetic waters were drawn

from deep in the lake's interior.	 Turbidity levels were not in excess of

those expected, peaking while the wind blew onshore during the 20th, and

dropping when the winds blew offshore on the 21st. 	 The lowest surface

temperature found was that observed during the night of the 21st by the

University of Michigan research vessel	 MYSIS, viz. 9°C just off Benton

Harbor.

DISCUSSION AND CONCLUSIONS

Combination of ERTS-1 and VHRR-IR data allow one to make numerous

interpretations of surface current under this extreme upwelling condition.

Among such features are river plumes entering Lake Michigan in the upwell-

ing area seen in Figures 22 and 27 that appear dark in contrast to the

"whiting" effect of the lake water.	 After these plumes enter the lake they

veer abruptly to the left (south) parallel to the shoreline. 	 Secondly,

darker areas in the ERTS-1 image are presumed to be regions of sinking or

downwelling.	 For the most part these vertical circulations are found on

the downwind shore across the lake. 	 A rather large area of less milky

water is seen off Chicago. 	 This region would be expected to receive maxi-

mum water elevations (pile up) from the southwestward wind stress. 	 In this
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area, sinking water is depressing the main thermocline of the lake.

Thirdly, eddy circulations may be seen in the lee of headlands along the

eastern shore, where some of the coldest surface waters are found. Finally,

an eddy in the middle of the southern Lake Michigan basin is characterized

by the warmest surface water observed on 21 August (Figure 20). Circula-

tion of this large-scale feature is clockwise. Sinking would also be

expected to accompany this unexpected circulation and may partially explain

why some of this water is darker in the ERTS-1 imagery (figure 22).

From the "IILge 100" results (Figs. 24 and 29) a careful breakdown of

the whiting is revealed., Similar structure and signature is observed for

the 3 August and 21 August observations. The multispectral classification is

both concentration and depth dependent and therefore not complete, as

additional data are needed to separate these parameters. If all of the

chemical precipitation is found to occur at a single level the classifica-

tion becomes one of concentration (or vice versa).
	 •

From the 1973 observations it is our hypothesis that upwelling ini-

tiated the milky water phenomenon of August 1973. Cold upwelling waters and

considerable mixing of the upper epilimnetic waters would trigger exten-

sive phytoplankton development. Divers in Grand Traverse Bay noticed an

abundant phytoplankton population at this time (L. Somers, 1974). These

processes result in the removal of CO 2 from the surface waters and force

a precipitation of carbonate (CO3=) with an appropriate anion, most probably

calcium (Ca++),

Ayers Eat al. (1967) have reported several instances of widespread

milky water in Lake Michigan. In August 1966 observations conducted by

the University of Michigan indicated Secchi disc readings reduced from
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6-14 m, which are typical of mid-lake,,to 2-4 m. No conclusive results

came from their study, but they strongly suspected the milky conditions

were the result of the precipitation of calcium carbonate from the surface

waters.

The resulting late-summer die-off of deep-water shrimp, Mysis relicta,

observed by Ayers et al. (1967) was presumed to be related to the presence

of the milky water. A reoccurrence of this kill has not been reported in

1973.
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Chapter 4	 ICE

i'

±i	 The 1972-73 ice season on the Great Lakes was unujually shor t due to

t
mild winter temperatures. A siege of cold Arctic air during; mid-FeLruary

succeeded in producing a short period of nearly complete ice covera o on

r
Lake Erie; however, this thin cover deteriorated rapidly later in the

i
month, leaving the surface nearly ice-free during the remainder of the

a winter.

Whenever cloud cover permitted, the operational 140AA environmental

satellite, NOAA-2, was able to record valuable information on the surface

temperature of the lakes and, when ice was present, the areas and ;cunt

of coverage. It was observed that even during lizht winds, a change in

the direction of this wind can drastically and rapidly alter the ice

lM1
distribution and concentration.

Special attempts have been made to assure the acquisition of R;R data

at the National Environmental Satellite Service whenever the x arth ..escurces

Technology Saiellite (ERTS-1) overflies the region every 18 da,^s.

USING SATELLITE IMAGERY TO MONITO : ICE COVER

Several VHRR illustrations are provided that show ice conditions,

primarily in Lake Erase, during (1) freeze-up, (2) total ice cover, and

(3) thaw. Nearly all imagery is derived from visible channel data ecause

the thermal data have not been specially displayed for the small rarZe of

temperatures encountered. Several ERTS-1 images are presented for com para-

tive purposes.

Freeze-up

f	 ^
On 29 January 1973 an exceptional VHRR-V1S view of Lakc. Erie was

ORIp^pUR 
QU,jTY	 obtained; a portion of this image is shown in Figure 30. A typical winter

OF
scene prevails. On this cold morning (-10°C at Cleveland) tbr y i.n tability
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of cold air over warmer waters is made evident by "lake effect" lines of

stratocumulus carried downwind from the lakes. One line, initiated by

{

	

	 'Lake Huron to the north, is especially prominent over Lake Erie and extends

from Cleveland to Wheeling, West Virginia and the Appalachian Mountains.

Numerous snow showers were observed to be embedded in this line of convec-

tive cloudiness. The ice that had first been detected on 13 January in both_

ERTS-1 and NOAA-2 imagery had melted, so all that is seen on 29 January is

a small floe between Pointe aux. Pins and Long Point just off the Canadian

shoreline. Cloud cover prohibits any detection of ice in the island area

off Sandusky, Ohio, although it is likely that some ice remains there.

Cold Arctic air again moved into the Great Lakes region in early

February. Ice growth was dramatic, especially around 14 February. Figure
r.

31 shows the VHRR-VIS imagery on this day and affords a nearly cloud-free

view of all of the Great Lakes except Lake Superior. New ice in central

Lake Erie is not nearly as reflective as that in Whitefish Bay, Georgian

Bay, or Saginaw Bay where thickness and snow cover enhance surface reflect-

ance (McClain, 1973). A windrow of ice can be seen near the center of

_southern Lake Huron.

Total Ice Cover.
i

By 17 February, three days later, sustained "subzero" (°F, -180C)

weather produced nearly total ice coverage on Lake Erie. The VHRR-IR
S

imagery is shown in Figure 32 (no VHRR-VIS is available). Air temperatures

along the shoreline of near -20 0 C provide, large thermal contrasts over the	 f

1

ice for interpreting thickness. Ice acts as an insulator., so that as its 	 ^

thickness increases, its upper surface temperature more closely approaches

the much lower air temperatures immediately over the air-ice interface.

:. 4-3
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Breakup and Thaw

On the following day (18 February) 10-kt southwesterly winds

drastically altered the ice pattern. In Figure 33, VHRR-VIS imagery shows

large cracks, of-ten approaching 5- to 10-km wide. that have develODed in

the ice cover.

ERTS-1 imagery was acquired over Lake Erie .on both 17 and 18 February.

ERTS-1 obtains four-channel, 100-meter resolution visible imagery of a given

Earth location every 18 days. This makes it possible, at times, to compare

the 0.6-0.7pm imagery of NOAA satellites and ERTS. The ERTS-1 images in

Figures 34 and 35 should be compared with the NOAA images in Figures 32 and

33, respectively. Ice-movement vectors were obtained by locating ice fea-

tures seen in the overlap area of the consecutive-day ERTS-1 observations.

This analysis is presented in Figure 36. Many of these features, of course,

are unresolvable in VHRR imagery, but the large ice features will permit

the production of ice motion charts for cloud-free periods. 	 j
I

Break-up and thaw proceeded at a rapid rate during March. By 27

March no ice of any consequence remained. The VHRR-VIS imag- shown in

Figure 37 attests to this condition. The lake Is extremely turbid

following recent rains and high winds. A VHRR-IR image coincident with

Figure 37 is presented in Figure 38. At this time of year all water

surfaces in the Great Lakes are very uniform in thermal expression (the	 4
4

water temperatures are within two degrees or 2°C)

CONCLUSIONS

It has been demonstrated that NOAA-2 VHRR imagery can permit an accu-

rate ice cover chart to be made of the Great Lakes, provided cloud cover

is not persistent. Resolutions of -1 km appear adequate not only for assess-

ing ice coverage and condition but also, when available on a day-to-day

basis, charting ice motions that result from changing wind and current

conditions. Snow cover enhances the ice cover as seen from space, and may
rZ,

4-8
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Figure 36. Ice motions from overlap area of Figures 34 and 35. Station weather obser-
vations (times are "Z" or GMT) include air temperature (°F), cloud cover,
present weather, and wind direction and speed.



0	 ano nn' _

ERIE SFC WX

FEB. 17 12Z 
I\
18Z

-'2^D 
9 V

FEB. 18 OOZ 06Z 12Z 18Z

ve AI ^#`

0	 S	 10 MILES

0 S IOKILOMETERS

HARBOR	 71





I







allow further judgments to be made on the age and thickness of the ice. 	 Use

of the IR data permits nighttime observations to augment the daytime obser-

vations.	 Furthermore, the availability of calibrated information will pro-

vide valuable surface temperature information.	 During cold periods this

thermal neasurement could be useful for relating to thickness and condition

of the ice.

Although the 1972-73 ice year on the Great Lakes was a rather brief

event, use of VHRR data for monitoring Great Lakes ice conditions will

continue, and we expect it will increase substantially during succeeding

winters.	 Those with shipping and coastal interests should expect to

benefit from the new perspective on our environment.	 Use of ERTS-1 imagery

is warranted in specialized circumstances where higher resolutions are

required.	 However, daily coverage is the most critical weapon for ice

monitoring in the Lakes. 	 Further ERTS-1 ice and snow studies are avail-

able in another ERTS-1 Final Report from NOAA (Wiesnet, McGinnis and

McMillan, 1975).

ERTS-1 imagery can be useful, as demonstrated, for monitoring ice

motions in cloud-free areas where day-to-day sidelap is obtained.	 Although

two successive clear days in the Great Lakes region are rare during winter

they become more probable if the Lakes become completely ice-covered in

February.	 During late winter and spring ice-breakup, satellite observa-

tions are less frequented by cloudy conditions and may be extremely

valuable to early shipping interests in the Great T akes, provided imagery

can be made available.

4-12
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Chapter 5
	

SUNGLINT*

It was reported to NASA/GSFC in July and August 1973 that sunglint

effects on surface waters could be expected in ERTS-1 imagery whenever

solar elevations are in excess of 55 0 . These effects have been particu-

larly evident under light variable wind conditions and make oceanographic/

limnologic ERTS-1 work much more difficult, especially since clear sky

(needed for satellite observation) and light winds tend to occur simultan-

eously. Furthermore, it was suggested at that time that several perplexing

scenes, some of which .had been discussed at recent ,conferences, could easily

be explained using Cox and Munk (1954) data that had been modeled by NOAA

for a satellite's perspective (Strong, 1972; Strong and Ruff, 1970; and

McClain and Strong, 1969).

Although the true horizontal specular point (center of the sunglint)
i

t j lies well outside the ERTS-1 imagery, the wind-roughened surface produces

wave facets that are able to direct glint onto the MSS detectors. As the

wind speed increases, this condition becomes more probable and the ocean

surface appears brighter at greater and greater distances from the specular
7

point. As discussed by Levanon (1971), this surface reflectar,ce is best

observed at red and reflected (near) IR wavelengths. The effects are best
PI

observed in MSS-6 and -7 (if properly enhanced) because sub-surface color 	 "g

differences are not apparent at these near-IR wavelengths.
}

	

s	 Figure 39 shows an ERTS-1 image of Lake Michigan on 16 July 1973.

MSS-5 and.-6 are shown to illustrate the need for multispectral data in

water color research, especially when solar elevations are high. Dark

areas along the shoreline are particularly apparent in MSS-6 (right).

*The authors are indebted to Mr. I. Ruff for much of the modeling work.
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Winds for this period were northeasterly, thus putting the nearshore

waters in a wind shadow. Reported wind speeds ranged from calm to 5 m sec-1
3

The NOAA-2 VHRR-VIS image, Figure 40, acquired soon after the ERTS-1 obser-

vation, provides an expanded perspective with the horizontal specular

3 point nearly coincident with the Lake Michigan shoreline, In Figure 40,

we ob8erve that the southern area of this wind-shadowed darker water seen by

ERTS-1 (Figure 39) reverts to a. more brilliant near-specular reflection.

Based on the Strong and Ruff (1970) model and similar work using time-

lapse pictures from ATS (McClain and Strong, 1969), a case is easily made

that tl e dark water in Figure 39 and the coincident bright water areas in

Figure 40 are free of capillary waves. Simply stated, the surface is smooth

because no wind stress reaches the interface.

The sunglint model adapted to satellite use (Strong and Ruff, 1970)

has been further refined to provide definitive reflectances to overlay

ERTS-1 imagery. Reflectance values are calculated as percentages of the

incoming solar radiation under specified wind speeds without including

any intervening atmosphere. The 16 July NOAA-2 VHRR-VIS image in Figure 40
i

has been overlain with an expected brightness distribution for calm winds 	 =;

and 5 m sec- 1 winds in Figures 41 and 42, respectively, A latitude/

longitude grid is also included. The observed reflectances in Figure
3	 '^

40 agree qualitatively with the predicted calm water results (Figure 41) near the
t

eastern shoreline of Lake Michigan and the rough water results (Figure 42)

array from shore.

A similar overlay` series has been constructed for the ERTS-1 scene

of Lake Michigan (Figure 39). Here we present brightness isolines calcu-

lated for windspeeds of 0, 2, 5, and 10 m sec-1 in Figure 43, 44, 45, and

46, respectively. It should be mentioned that no whitecap brightnesses

t r•; 5-U
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t	 Figure 41.	 Sunglint modelled NOAA-2 brightness patterns for 0 m sec- 1 wind speed.
Patterns superimposed with tat/long grid on Figure 40. 	 Reflectances are in

S	 rt	 percent of incoming .flux.
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have been incorporated into this sunglint- model. Above 5 m sec ^' some

allowance should be made for additional reflectance from whitecaps.

It can be readily demonstrated that nothing is sacred regarding a

threshold solar elevation below which no sunglint effecti, are possible. An

extremely strong offshore wind can undoubtedly impose le@s effects on the

roughness generated in the small-scale wave field permitting the observation

of variable sunglint features when solar elevations lie weal below 50 1 on

ERTS-1 images. .It appears that solar elevations greater than 50 0 to 55° are

sufficient to cause considerable brightness anomalies when wind speeds and

associated roubhnesses approach the calm-rough surface transition.

Sunglint wind-generated features are evident in the following ERTS-1

scenes that are chosen as representative samples:

28 July 1972	 Rhode Island Sound

14 October 1972	 Lee of the Antilles

28 July 1972	 Monterey Bay

7 July 1973	 Off Delaware Bay

It should be obvious that sunglint and its contaminating effects on

water color observations from space must be recognized. Any dedicated {

satellite water-color mission must utilize a pointing sensor that is capable

of looking away from the sunglint. Despite the more brilliant sunglint 	 a
3

observed during a noon orbit it is possible to look away from the sunglint•	
i

and observe ocean waters under high solar elevations without any sunglint

contamination (Strong, 1972). Thus it would appear that a near-noon orbit

would be optimum for ocean color, and sunglint (wind speed/roughness)

observations if provision can be made to avoid the glitter area.

E
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Chapter 6	 WATER COLOR vs. WATER TEMPERATURE

During spring and fall months a good relationship is frequently observed

between Great Lakes' surface water color and temperature. This relation-

ship is probably best developed late in the spring when the lakes are warm-

ing rapidly and contributions from surface runoff are high (Wiesnet et al.,

1975). NOAA-2 satellite VHRR data are presented.in  selected cases where

ERTS-1 imagery is coincident with the thermal-IR from VHRR.

Although litt:i^ surface temperature structure was evident on 27 March

1973 (Figure 47) in the NOAA-2 VHRR analysis, water color was abundant

(Figure 48). The NOAA-2 VHRR data have been averaged over a 4-km grid to

remove some high spatial frequency noise in the system (Strong, 1974). The

resulting reduced resolution makes color/temperature correlations difficult

under these nearly isothermal conditions. The VHRR temperature resolution

is slightly better than 1°C.

One can detect a warmer turbid Detroit River effluent. VHRR data show:

surface temperatures in excess of 3 0 C. This is also true for the nearshore

areas in Lake St. Clair. Only a slight indication of warmer (2-30C)

water is found along the southern Canadian shoreline of Lake Huron where

waters were extremely turbid also (Figure 45)

By late April the lakes have progresse,wi well into their warming cycle

and reveal significant temperature patterns, particularly in nearshore sur-

face waters. On 29 April 1973 ERTS-1 acquired imagery along its Buffalo

swath. This nearly cloud-free Great'Lakes pass provides turbidity informa-

tion for Lakes Erie and Ontario as seen in Figure 49. The VHRR image showed

warmer water emanating from the Niagara River and elsewhere along the

southern shore of Lake Ontario. These areas are the turbid regions in

the ERTS'-1 imagery. A VHRR temperature analysis overlay in Figure 50

%iG'A BI JK NOT
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demonstrates this good correlation and the obvious need for EXPS thermal-

IR data on future satellites. The same correlation may be observed

between thermal. and turbidity data in Lake Huron on 20 May 1973 (figures 51,

52, and 53).

A stmimer upwalling in Lake Michigan discussed in Chapter 3 reveals a

more complicated relationship between thermal and turbidity data. The

warmer mid-lake waters (ca. '20 1 C), away from the upwelling, support the

green milky waters that are believed rich in phytoplankton and calcium

carbonate. This temperature/color relationship parallels the observed

spring color/temperature relationship. However, along the Michigan shore

iri the southern portion of the lake, surface turbidity at a very high

level can be observed where waters are quite cold (ca. 10 0C). This reverse

relationship is expected during fall and early winter, but it was diffi-

cult to observe by ERTS-I and NOAA-2 because of persistent cloud cover.
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Figure 51. 20 May 1973. 1600 GMT ERTS-1 MSS-5. Lake Huron (north).

E

^F

j
i

r

2
}

3
t

I

r

3

1



---A



4

4

Figure 25. 22 August 1973. 1600 GMT NOAA-2 enhanced VHRR-IR image of Lake Michigan.



r

'V

i	 4	 'i



,.
j:.,

4

^^A

I

k
-..

^^





,f

r
F

f

Chapter 7	 WIND vs. CIRCULATION

Case Studies

The EFTS-1 system has added a new dimension to physical oceanography.

Conditions permitting, one is now able to chart circulation patterns using

natural tracing material borne in the surface waters. These colorants are

chiefly turbidities from riverine'effluents consisting of sediments, pollu-

tants, algae or natural dyes. Occasionally chemical precipitations are

noted (see Chapter 3); these too are employed in this chapter as-circula-

tion tracers. Synoptic oceanographic or limnologic studies have always

been difficult if not impossible from shipboard. Circulation patterns
are constantly being altered by changing meteorological influences.

Observing tracer features from space, a nearly instantaneous "snap shot"

provides circulation information that should relate to the present and near- 	 j

#	 past meteorological forces.

Ayers (1959) has developed an empirical relationship that takes into

account the large time lag between the onset of a given wind condition

an& the response of the water circulation to this wind. A complete

response of current to the wind takes many hours, or even several days.

The resultant effective wind stress relationship developed reduces the

forcing influence of the previous day by one-half that of the given day.

i
In this report we have chosen to utilize three days of wind data prior

1
to each'ERTS-1 scene. In addition, to better emphasize the 24-hour period

immediately prior to the ERTS-1 data, we have represented the 6-hourly winds

in a weighted resultant stress vector as follows:

w	 = w	 + 2w	 + 3w'	 + 4w'
(dav 1)	 (-24)	 (-18)	 (-12)	 (-6)	

t',

f



The s'ubscrint after each vector wind observation denotes observation time

(hours) before noon of the day of the ERTS-1 observation.

A final vector resultant wind for the three-day period was obtained

using the following formula:

i y
W .- w	 t 2w	 t 4w

(day 3)	 Cday 2)	 (day l)

For a more rigorous relationship one needs to take int.o'account addi-

tional parameters such as atmospheric stability over the water, wave condi-

tion, current locations as a function of the distance to shore, eta„ (see

Jones and Bellaire, 1962). Much of this fine tuning, however, is not too

realistic with the present paucity of wind data. In this study, we have

chosen, wherever possible, to use the U.S. Coast Guard weather observations

from shore installations rather than inland sites. Although these winds

may suffer some due to local anomalies in the wind field (e.g. lake breeze

circulations) they are.felt to be the most representative of true lake

winds.

Circulation vectors have been extracted from each ERTS-1 scene using

all natural or man-made tracers in the surface waters available to the

analyst. As an illustrative example, the interested reader should compare

t

	

	 the circulation derived for Lake Michigan under a resultant northerly wind

(Figure 55a:) with the whiting image in Chapter 3 (Figure 22). Although complex

much of the analysis is straightforward when a trained interpreter is used.

Wherever possible the circulations inferred from the ERTS -1 data have
F

been compared with past studies, empirical or theoretical, of surface cir-

culation patterns in the Great Lakes. The five areas selected for intensive 	 j



R,

E

G

k .l .
's Lake St. Clair

Lake trie

Lake Ontario

These areas were selected because they regularly display the high

turbidities that are necessary to observe circulation from ERTS-l.

Charts were prepared for all cardinal and subcardinal resultant

wind directions (i.e., N, NE...NW).	 Some ERTS-1 observations of currents

" under a few wind directions were not available during the study period

(August 1972 to December 1973).	 Whenever more than one ERTS-1 observation

was used in a given area, the currents presented are composites. 	 Although

most current charts are based on only one ERTS scene, if two scenes were

available for a given resultant wind direction the observation under the

stronger wind stress was generally used. 	 It should be mentioned that

circulation variations should be expected under weaker or stronger result-

ant wind stress from the same direction. 	 It was chosen to concentrate

primarily on the direction of the wind vector rather than vector magnitude

in this report.	 Figure 1 chows the areas covered by any given ERTS•-1 pass.

The reader should be aware of the sunglint difficulty whenever the solar

elevation exceeds 55 0 (see Chapter 5).	 Current interpretations are subject

3
to errors under these conditions. 	 Future studies should utilize a sun-

glint removal technique (e.g. MSS-5 minus MSS-5, Watanabe, 1974) for more

a i
credible results.

< Southern Lake Michigan

` The location of wind information used in preparation of the southern

a
Lake Michigan current charts is shown in Figure 54.	 All locations refer-

t enced in the text are also identified on this base chart.	 Only incomplete

E
wind data were available from the Milwaukee and Muskegon Coast Guard

facilities.	 Table 6 -resents a summary of ERTS-1 scenes utilized in
7-3
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TABLE 6

LAKE MICHIGAN - ERTS-1 frames used for surface circulation charts

Resultant
Wind Direction Orbit #	 Date ID # Sun Elevation

N 4991	 16 Jul	 73 1358-16040 58`

1358-16042 58*

5493	 21 Aug 73 1394-16030 50

1394-16033 51

1394-16035 52

NE 5005	 17 Jul	 73 1359-16094 58*

E 3220	 11 Mar 73 1231-15591 36

1231-15593 37

SE------------------NONE---------------------------- ------

S------------------NONE--------------------------- --------

SW 4489	 10 Jun	 73 1322-16042 '60*

t 1322-16045 6r*

6246	 14 Oct 73 1448-16021 34

1448-16023 35

W 1728	 24 _Nov 72 1124-16043 23

1124-16050 - 24
a

1993	 13 Dec 72 1143-16102 20

z 3973	 4 May 73 1285-15590 55*

1258-15592 56::

# NW 5242	 3 Aug 73 1376-16034 55*

1376-16041 55*

- Solar elevation equal to or greater than 55 0 .	 ( Possible sunglint
contamination and confusion with sediment features used for
circulation charting. See Chapter 5.)

i
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addition to resultant wind direction calculated from the above formula.

Additional coverage data are available in the Appendix (Table A2).

Northerly Winds - Figure 55a

The figure indicates the general surface circulation established by

predominantly northerly light/moderate winds as derived from two cloud

free ERTS-1 passes (16 July 1973 and 21 August 1973). The latter pass was

particularly useful because that date marked the occurrence of an extensive

CaCO 3 precipitation that was especially evident in MSS-4 (see Chapter 3).

The major features established by this wind regime are several large gyres

and distinct alongshore currents. An east shore southward current extends

from Little Sable Point to Michigan City, where it becomes deflected to

the northwest to become part of the eastern boundary of a large counter-

clockwise eddy off Chicago, first described by Ayers et al. (1958) and

confirmed by Bellaire (1964). In this case, the eddy extends as far north

as Wau<egan. From Little Sable Point a branch of the east shore current

flows southwestward and becomes incorporated in a second mid-lake counter-

clockwise gyre. This corresponds to the eddy noted by Bellaire (1964)
j

above the mid-lake sill between Milwaukee and Muskegon. A third eddy has
3

a clockwise circulation and lies off Benton Harbor, Michigan, in the eastern y

part of-the lake. This eddy has been previously observed (Ayers et al.,
;ira

1958 and Bellaire, 1964), but here it is much smaller than reported pre-

Va.oUS.Ly. riiocig one rvisuonsiii snore aL riuwawcee mere may L)e a sma.i.i

a 
nearshore clockwise eddy; it has been previously documented (Ayers et al.,

1958), but the evidence in the :ERTS-1 images indicates only that there is

a southward current some distance offshore.

Northeasterly Winds - Figure 55b

Only one ERTS-1 pass was available for northeasterly wind conditions

(17 July 1973), and only the Milwaukee area was sufficiently cloud-free
r.



.I,
to allow mapping of the sediment distribution patterns. The outflow

current begins along the Wisconsin shore at Sheboygan and flows southward.

After several days of northeasterly winds, water is transported onto the

west shore from Milwaukee to Gary and is piled up there; on the slope of

this wind set-up, the water flows southward and northeastward (Ayers, 1959).

Easterly Winds - Figure 55c

On 11 March 1973, ERTS-1 passed over the southeast portion of Lake

Michigan. It was evident from the sediment patterns observed that the

east shore current flowed southward from Rolland to Michigan City and then

westward to Chicago. Off Michigan City is an apparent small flattened

counterclockwise eddy, previously described by Ayers et al. (1958) under

a similar easterly wind regime. North of Benton Harbor a branch from the

east shore current flows southwestward toward the middle of the lake, pre-

sumably to become part of the large clockwise gyre located along the shore

between Holland and Benton Harbor. This is the same clockwise gyre discussed 	 {

under Northerly Winds and documented by Ayers et al. (1958) and Bellaire (1964).
I

Southwesterly Winds - Figure 55d

The current diagram is a composite analysis of two ERTS-1 passes (10
Y	

yy

1

June 1973 and 14 October 1973). The major feature evident in the figure

has already been discussed--the large clockwise gyre along the east shore

between Benton Harbor and Holland. The southward current along the east

shore is very narrow under these southwesterly winds and it was not observed

to extend south beyond Benton Harbor, where it turns westward to become

incorporated into the eddy. According to the sediment distribution patterns,;

water is flowing northeasterly directly offshore from Chicago to the center

k	 of the lake. This apparent major upwelling has not been previously docu-

mented; Ayers et al. (1958) and Bellaire (1964) have described fully-

developed gyres at this location. Offshore currents are indicated all along

7-7



r,
i

F

f

^ ^

^

t

{

i

I

fi



f

. ,	

^F PENAL PA^}E
SENDJ,

y 

uAl i	 -	 ^^ IQU
\\111

 3 	 ^	 \\^.-. /1 _..

—w • Wr CtpC^N	 I DICKIXSOX	 ^	 ^r....N u.

M[NO INEE \	 e^/	 ^	 S.•dJ a/A1w^rN
-	 ANiJ•[^	 Ib.	 ^	 9 CV

II[D [.Cr	 .	 d

l	 d	 v°	 M.« 4bM	 °

^L u.••	 0

FOREST	 ^— /r'^U \	 D

AGE

`	 4	 I	 t`^//wA111aJDION ISUXD
v	 I.

	NIP,Ki— N.a	 i	 XCXAaL[vDl
NOMINEE	 ^^	 I

	Cu+R. AMhY. Yt" Q	 Q

v	 2.1	 0
{^	 foal y ANTPIM

l ld^ y —H.. l.l•	 ♦? 	 .DOOR..
/	

lC[IANAU

	

DENDC	 11—"No	 °+	 0.0NTO	 Y _
REWAUkI[ .

D".G—E	 O	 1,^y1	
[	 GRANO TRAVERSE 2.4 MEMSMl

r G-s r	 a^	
wssAUlcEE	 l.•	 -

saowX	 M•pr	 1

V I S E	
Te. 

I N YANITDVJOD	 w•
J„	 NwpM.n w. 1

MANISTEE
GLUYCT	

J+rt•	 w'EAFGAD	 PPSC J.uON

^^

s.n.^.	 I'	 L'	 `^	 v	 SJ	 `r

wNJNCPAOD

'r	 [ono ou EAC	 sk[eorcAN
I	 ^ f.- It uc	 MASON	 ^y- IARE	 osc[ol	 5

E	 ` r,^,	 7

M I C H I	 f1 N	 SCALE IN MILES	 a

	

['•' 	 3
j	 0 T^ 20 30 40 50 a

5111NGTON OJAUAEE	 r^ rICOSIA __NA
	 N .AE	

E

N Ar	 j
RENT	 iA

	

uSKCGON'	 1	 UNION	 5NIAMASSCC

$	 4	 D.and	 I	 ..•^	 :.Z
g	 `.j^	 w 	 Ra D.ds.

^	 wAUK[SNA	 41Ew AU (E	 lvE.wd"

q̂ WAIwORTM	 qNU

	•Ll[WX	 [ATOM

	

Noa•nd	 Lamm[
RACIN4	 RaaKa	

.f	
^	 F,^yl F'•~	 I"I

t	 , R.noaK.
/ 	 2.3

WISCONSIN.	 RE.os.A	 E	 INGNAM
1f 	 IILINOiS	 I.l ^*	 R Rf

	

 VA. URLR	 MEFMAl00	 ^•GCNOUN	 JACRSph.

i	 2.2.'	 / w.LA.nn	 n	 i.nw c....
A m•1

f,
`	 M{X(Ner'	 LAKE	 N,an4na l«>	 r

NINE

k	 LYE	 1r	 G:S	 T JO`	 0A XCX	 XIICSOALC
COOR.	 B .:	 s	 C.•.l	 «•^

€	 I L L I N 0 I ` I	 ''
	 gar	 ^M

i

	

i[RRrtw

	

MICHIGAN	
•"I'

	

ifllJ\LN	 MICHIGAN
1	 4 .t. .	 .	 4ww1 ./, OU RAGE	 t^	 i^. 

4'I
 G, '^: _a	 u¢ngwl Gh.	 INf 

OHI

	

IANA 	 O

-	 Ir	 Y

t



I WAS6N LAKE 	 koscEot	 s

m I C H I	 N	
SCALE IN MILES

0 10 20 30 40 DO
	SNINGTON OZAUnEE	 ECOS7A

^.	

/J 	 OCEANA

•

(Z6

C)

Us To	 S.—.5SEE

Q	
rr 

Grand	 I,
@

- ItEWAUKESHA t	 -IL.-U.
WALAORTH	

'OM'ANo— ALLEGAN	 EATON	 L..—s

RACINE.	 a	 ~Gar a,—

WISCONSIN	 KtnoSNa	
2.3

INGNAY
ILLINOISa Ar

CALHOUN	 I.C.50.
AN UREN	 AALAYAt00.

2.2	 K	 R."'. cl-k

re

m..9m"	 LA.t	 P.,	 IN •.•
pARK

	

llg.) I I	 CKSS	 t jo
cc

I LLI N 01

DERR E"	 MICHIGAN

IN [ANA	
SlEust.

C."	
OHIO

G. , Sw"	 Nz



I

I

f,

MMOOICRAf l
1	 ON	 4

I	 t

Y	 A	 OI	 r	 .Aipw.0 4.	
AcKI.AC

~I/ Ei— DELTA	 t	 ,

	

Lµ a M/CNICA	 DICKINSON	
'i.`\ ;	 ,	 \

WiSC N
It— 011V

MLND`MINLE \

	

	 III
Mr.h.(m—

ILO LNCE
cam'

	

MARINCn[ 	 I

	

Y^	 MMr IA..J	 O

ea	
o

J	

J

^^ 4A	 +	 1 
J	

Q O^	 p
fORL57	 l— /s^^il \	 O

	

y	 (	 \_/J
WASHRIGION IS1AN0 	 Y

dOC	 E	
L.A. Q.

	

f	
(. Q	

N.^ bhw kg w	 j	 ^ CNAKLEVOI
TOMINLL 	,	 J	 Q	

j	 q

	

fw1A Mn..Na Ys.1 Q	 J	
l

	

2.1	 4
t.d I.A. ANTRIM

(y^•. .w Nr.\?
	 DOOR	 LELLANAU

,ANO	 t	 OCON10	 4
BENZIE	 II.—

KtwAUNLt s

.fir ou l.e.Nle	 ^^'+ti
A	 GRA-DIRAVERSC 2A KALKASKA

55AUKEE

	

C	 +.	
.M B	

^^Y	 r^. ^	 L

	

£	 1r
BROWN

J i S. C	 ~• I N\ MA.1107.	 W	 _	 f`	 A

FOND DU LAC
"

SHEBOYGAN -N — "
H f_. UuL.c E,^.IDw MASON ^k LAKE OSCCOL- .y

M I C H I A N SCALE IN MILES

0 10	 20	 3 0	 4U	
JOSHINGTOM OIAUKEE ^1 WCOSTA

OCLANA N CAL

N WAI ti

u•\.^	
4 KENT

• USMEGON SHIANASSLE

r Mil	 a A
,^
"%{/•,^Y

,.	
^ ^^

GLINT	 N

k
c	 Grand	 d

WAUKLSHA MILWAUKEE l..L'•FF1° E' A
r	 1	 WLWORIN

{ ALLEGAN
WHO,

._.	 L•nslnS	 1CAION.

I	 fI RACINE,	 R.cnY
Holl.na

 4.M. - ' •b C./	 L..^	
1

,

S	 y1^ KA no.M 2.3 (
WISCONSIN KLNUSNA G`	 `• INGHAY

ILLINOIS IrL t^ e	 Rr,•
JACKSON

AN URLN	 KALAMA200 CALHOUH

2.2 • 
M/ W.a4R.n /_

`^ I	 d, 8.111. C-1
d

6

/.•/.• u^' l.c\Lan

M.MLNRY LAKE 	 N'an1/.q /.rA IO .•. _ 1

• RAM[

^.

- BRANCH HILL—
LICn
CC COOK$

CASS	 t for r'
G..A	
1r!!!

Ch—AT) •	 ! F' Eren

BCR.IEN MICHIGAN "+•.

^	 3^.

•'"•r• Du r.cT	 V`r 1S* w	 ^ / q„^ GYKb[.n ar IN	 [ANA,.,. ST UREN C 	
.

MI	 ilo
OHIO

yy
;'.	

s	 1 .n.,,^,•crrr ^ ^	 Lunen.
ti.

_IJ
^ . 1,I



iI

F	 ^	 '

I •J {CNOOLCR /I

	

SVJ

IfON 	 . 	 y \  

aI	 .,h,—Id•	 4	 ACKINAG
tiv h.•r	 DELTA	 F

•"•. blc^//^^N 	 DICKIh50N 	 ;	 W.
SC	 Q

h•. 
I ONS/N

•r	.[NOMINEE	 skph d wr<IInN
F	 Awd. t'^	 ^	 .P	 =y	 r^ D

^'C	
0

'	
!LO rNCC
	Gd.t	 1d	 V

	

MARIN[TTC	 d	 Y	 E'
	^^ 	 ,^	 a? V•	 t•.wr W,I 

/4
Y	 0

uR

-.:	 10RLSf	
.	

C1p	 0Wr	
'•>,/ M'ASNINGTON ISLANDC	 1► 	 u T

4^.	 I	 N•RA M.nIO. k4rM	 ^	 •S CNANLCVOI.

E•YA M.nKw WidQ

	

2.1	 0
fad W. ANI RIU

1 ^SM.rw l.i.	 ^^?	 DOOR	 LEELANAU
J	

OENIiC	 In..
NO	 r	 GCONTD	 ^oyb^•n

•'	 ,EYIAUNEI r	
UFNJ l.k.

OUTAGLMiL.	
\r'+LP	 GRANDIR	 2.4

	

AVCRSC	 KALKASKA
MiSSAUKEE

.	 p	 cr••n e v	 rI	 H 1. u.

eaowN

SC	
"• I N MANITOYAC	 4^	 N .,- W..

MAMISTCE	 I^	 t	 {

	

CALUMET	 f:lry^	 A. WEXFORD	 ~	 ROS	 Yo.	

+^

3	 ^N L.,. ^`^	
N	

J

\L	 P.,,	 w	
,^1E

3	

4

y FOND DU 
LAC	 SNEBOTWh	 r	 I

i	 l. 0"L••	 MASON	 ^l LAKE	 OSCCOLAn. 
	 5.	 -	 -^

`^	 M I C I—I I	 A N SCALE IN MILES

."	 ,P•	 !	 0 10 20 30 40 50
IIiNGTON OIAU KC[

	

	
ME. ST.

LKCANA

	

^	 wn Alw

	

\y	
N WAY

KENT

0

4	 [̂^ 	 UGKCGO	 ;	 LINI N
SHIAWASSCE

^a,aas^^ ..f/

WAURCSHA 	 MILWAUKEE

MALwORiN	 IONIA	 +11

i	 EATON	 `..	 I..0•InC

}	
NPll.nu ALLEWN	 ^

i	 -	 RACINL	 •	
t^t^.•r	 Ip ca-I—	 1

.n n.	 2.3	
}

o.^
WISCONSIN	 KENOSNA	 C`	 INGNAY

(	 ILLINOIS	 ,	 .	 •IrL ^^	 e Rr	 w	 TACKSOn
3	 l	 VAN URLn	 MLAYKOO	 ULNOUh

2.2 K	 r '	 B•Iil^

	

•.1	

er•e•,
.w."Pw r^ 1

	

,•r	 w iJ•E..on

MENCNRT	 LAM[	 ' ~ lnl.w	 .	 Po •[•

7LLNE	
LP^

ORANCH	 NILLSOUE

[I In	
W55	 .1 J0. 1

C	 COOK 	
c,

	 a^^	 l

Cn R •̂
aR1	

„r	 e.a'

erRRIt11	 MICHIGAN	 !
Du PALL	 L	 INdIAhA	 r ,••1's¢ue[n	

OHIO

	

MICHIGAN	-	 e
}	 ^• Cy	 I.'	 Yr•K^I•n CRTv ..	 ^	 ^..	 •'+.

p	 LT	 ^n .n•n.	 ..
I

_	
_	

r7 ~ t	 -Y^J



f

(

r	

l	

.	 7

	

SCNOOLGRA(T	 _	 ^	 ,

44vv 
h..wn.I.L.

•`v [ice	 ^	 DELTA	 ACKINAC	 I,t	

}}
	 ```

1	 4 ^f 
Arrcry	 DICKINSON

1++ rw. NSrN

MEN M

f^	
INLL

w. ",4	
's	

9oD	 Yr«N rAt.aMw

FLO ENEE	 a	 D•	 f'1

	

Y..,.ETT(	 •4	 Gdw	 d•	 V,	 F	 V

1

	

7L liA	 ;	
Q "Y

	

V	 Q
I	 .FOREST 	 /v^F3	 O

	

/► yA	 f	 It \JJ
WASNIHG/ON ISUND

	

/	 H.r1A /4NIw hNnd I 1 	 4 CHAPLCVOI
mommu	

kww

aY	 2.1
Od' W' ANTNIY

	

ODOR	 LCELANAU
(T	 3	 BEN21E	 Ln.rwANO v

	
1	 ocoNTO	 `^	 ^

`	 E	 C	

0	
KEwAUNE! R	

cY.a

	

f1'j 	•I 	
GPANDTRAV«ISC 2.4 KALKASKA

	

+	 MISSAUKCC

	4F 	

Green B v	 { ^	 h, v l•1.

BPOWN
1l/

S...	

•y I S C.	
p4) I N Mnrntowoc	 .Taw	

Qn	 w,,,o„•n la.

	

CALUMET	 MM157EE	 f;4

II	

^^	
\\	

[ml.	 ^^ 'WEK(ORD	 ROSC MOH

{	 WINNEBAGO),	 /
{	 IONO DU LAC	 SHEBOY^

F•ne Ou L•c	 St+L,^vpM	 - MASON	 l y4 LAKE	 OSCEOL	 $

M I C H I	 A N	 SCALE IN MILES

0 10 20 30 40 50
	SIIINGTON OZAUKCE	 MECOSTA.

	

OCEAN.	 UH AL	 -

	

Er E,..L	 r""Ll
`	 h WAY ~ -

j,^[J'

1 ^ ^	 USNEfiON	 SMIA WASSEL

	

`	 LINIUN

	

Mllwwh	 /^ `

r	 t	 ^.	 O 	 \	 G f	 RADIUS ['	 ^•!	 [^
\	 b

o	 (^?	 \	 iii
t	 '®	 WAUK[SNA	 MILNAUY.(^v	 Tod^Mdwl	 {I	 Y	

`

Oil WALwORTH	 ^L	 /	 K)NIA

	

ENoll/n0	 L/lli.n[€tp	 j

	

RACING	 n.	 t.lM }:A`	 J	 /y Gar K..w	 I.

76.	
}y^

I	 1	
.	 VI CONSIN	 LKCNOSNAK 	 IMGNAMILLINOIS	 IKL tti	 e1 .Y

	VANUREN	 KALAMA[W	 Y CAL OLIN	 JACFSON

2.2	 W `^	 K m.t	 P "	 B/IIIA Cr..A	 j

1	 •	 \	 Few I.r4'^	
yE
i

{
4	 McN[h RY	 `  MM R•rF

	

LAKE.	 ^.	 IR •[.	
1

1.	
KAN[^	

01153,it JO	 BRANCH. 	 NILLSDALC
u[•n CC eooK

1 L	
3	 a..	

R

i En..f

	

LI O IS	 g^^	 A^.

`.^	 V ^''

•u.w•	 ^^ ^	 ^.	 e[Rnl[H	 MICHIGAN	 "^ ie	 ,	 oD lAOE Ya .,	 ^..^^^	 ^	 INIAN.	 IH,,,A	 sttonLN	 MICHIGAN	 _	 ,

	

p	 °'^s•	 f •	 Mrcm[ . n c",	 A^	 OHIO	 k,

I



Mul r

n	 1—Maaarl.n•r

	

POsc.1m DN	 f

SCALE IN MILES

	

v	
J	

^,.;^	 )	 0 10 20 30 40 50`	 NICOSIA1.	 SNINGION OEAUKEC

ME..

toll

cl

AL

^ /

^^j.	 /.	 N WAY ~	
^11i

L`_ 	 V	 KLNT

USKCGON	 '	 LIN 14	 SNIAWISSEE

MIIWfuk	 ^	 l'\\\
	 G,	 Grand	 !.•

f	 ^	 WAUZESNA	 MILW.UK	 lo^•^^^r l`•
4

	

WALWORTN	 1DNIA
^•`-y	 N°ilrnE ALLEGAN	 1A10N	 L-W6

!,. L+t.. Y'	 RK,n•	 rlr,.r...	
`1f\W.4brf..f..

e

2.3
	WISCONSIN	 KE.0s.A	 ^	

r.

	

ILLINOIS: 	 ) RV	 f c.	 INGNA^
\\	 r	 r •CALNOUN	 JACKSON

VAN VRCN	 MLAMA7p0

	2.2	 w•u^•f.n	 9.[II. Gr..L

I•. I•^ f,M
	 % l.c

	MCM[NRV	 IAKC	 nl•rb I•rL ^	 •o •t•

	

MNE	 \̂\

YA7A	 Clt,.	
CA55	 [ 1 0	 M	 N	 NILl5DAL4

I L LIN OI 

g	 ` I	 ecerllcN \	 MICHIGAN
1	 i`	 'wr9'•	 ou nGI	 L	 \	 _ IN IANA	 SIEVecN	 MICHIGAN

—l °c3 . f 	 any.. Cn.	 ^'^.nT	 Ir.	
^°	 r[.. ! ^r	

O1410

INNEflAGI
lONO DU IA[

^r



the west shore from Chicago to Sheboygih, suggesting that extensive upwell-

ing was occurring. There may be a small clockwise gyre along the west shore

at Waukegan, as suggested by Ayers et al. (1958), but the satellite data are

inconclusive.

Westerly Winds - Figure 55e

Three cloud-free ERTS-1 passes (24 November 1972, 13 December 1972,

and 4 May 1973) were composited to obtain the current diagram. The clock-

wise eddy along the east shore discussed above and previously (Ayers et al.,

1958 and Bellaire, 1964) apparently has enlarged considerably from its

size under other wind regimes. It now extends from Benton Harbor north to

Muskegon with a rather elongated shape. Between Gary and Michigan City lies

a large counterclockwise gyre, which was discussed under Northerly Winds.

In this case, however, the gyre has been displaced to the southeast as com-

pared with other observations. Sediment distribution patterns suggest also

the presence of a counterclockwise eddy above the mid-lake sill between

Milwaukee and Muskegon; apparently a northwestward-flowing branch of the

east shore southward current provides the driving force for this gyre. This

was discussed under Northerly Winds. Alongshore currents converge in the

Milwaukee - Racine area and then flow offshore, creating upwelling there and

contributing to the circulation of the mid-lake eddy. A similar current

convergence exists immediately north of Chicago in the Highland Park area;

this offshore flow joins the east shore eddy system in the middle of the

southern basin.

Northwesterly Winds Figure 55f

The diagram for northwesterly wind-generated currents is based solely on

one ERTS-1 pass (3 August 1973), which coincided with.an extensive episode

of calcium carbonate precipitation that turned the entire southern basin

"milky" in MSS-4 (see Chapter 3). The east shore southward current is very

.7-15

%



EE

t
F

X

i

}

h
narrow alongshore. 	 Lakeward of `chat current is --long narrow band of

upwelling from Benton Harbor to Muskegon; this was evident from the sunglint

pattern on all four MSS bands (Strong, 1973). In the center of the lake is an

r
elongate clockwise eddy that was discussed above and by Ayers et al. (1958).

and Bellaire (196 LF); this wind regime has apparently displaced this gyre

from the east shore toward the lake center.	 It extends from as far north

as Milwaukee south to Benton Harbor.	 Between Milwaukee and Muskegon lies

the mid-lake counterclockwise gyre discussed above; again it is driven by

a westward branch of the east shore southward current that forms the northern

boundary of the eddy.	 As discussed above, there is a flattened counter-

clockwise gyre from Gary to Benton Harbor driven by a branch current of the

large central eddy and by the east shore southward current. 	 Sediment

patterns indicate a southward-flowing alongshore current at Chicago and

suggest that a counterclockwise eddy exists there (Ayers et al., 1958 and

Bellaire, 1964).	 Alongshore currents from Sheboygan to Highland'Park are

narrow and southward; at Racine and Highland Park they turn offshore (east-

ward), indicating upwelling at these locations.

Summary

The prevailing wind direction on Lake Michigan is southwesterly, although

during winter northwesterly stresses are common. 	 Along the western shore

the current favors a northward direction, beginning with northeasterly to

easterly winds, and probably (no ERTS-1 observations for easterly, south-

easterly or southerly winds along this shore) continuing through southwesterly

winds.	 Along the eastern shore a southward current appears dominant for all

winds observed.	 South of Benton Harbor this flow reverses under southwesterly,

-t westerly and northwesterly winds. The nearshore area between Michigan. City,

Indiana and Waukegan, Illinois contains an extremely complex circulation.

Gyres, in the central lake basin have been witnessed under southwesterly,

7-16

•	 I

4





s

	

\^^	 Q	 I 1T J R 1 0

S21-1 Of OACI—C

d °-	 o

a

♦^
D	 o

	

w 3	 ^.^.a	
L	 ,	 E

	

J/

	

A K
W.	 i

	

Y	 01'00n

^..^	
\000U.W	 TOSCO

MICHIGAN	 H U	 R^ Q N
MacPherson Pt.'

	

^^^^V f	 - C1 Clark Pt.

	

n	 f1 J-

	

^'r ` fQ j//jam	 m^
\,1r v	 N T

	

^'^	 LUNrti' 41	 Harbor Beach 	• a 1
	^"' 	 Goderich	 a

t e.. ea.	 ^'•^	 ^	 J	 N	 a

• -	
n`s.`	 3.2	 ` loxington	 Grand Send.	

w

wsce,e
0lh[SU

	

 
Lakeport	 ;	 K`ttl Pt.,	 J

	

( 1	 vn.., ^7^"^'`	 ( 	 _ p
	

SCALE IN MILES

	^^ c1^S [	
1/^ Port Huron	 3

0 10 20 30 40 50

1



7

TABLE 7

LAKE HURON - ERTS-1 frames used.for surface circulation charts

Resultant
Wind Direction	 Orbit Date ID # Sun Elevation

N 3443 27 Mar 73 1247-15472 42

1247-15474 42

NE 3429 26 Mar 73 1246-15420 42

5451 18 Aug 73 1391-15462 52

E 1672 20 Nov 72 1120-15413 23

SE 933 28 Sep 72 1067-15460 38

1067-15463 40

S 4182 19 May 73 1300-15414 58*

4447 7 Jun	 73 1319-15471 60%c

{ SW -------------------NONE-----------------------------
s

------

W 3694 14 Apr 73 1265-15471 48

1265-15474 49

NW 3680 13 Apr 73 1264-15413 48

v 1264-15420 49	 .i

1
4

Solar elevation ?55 0 (see Chapter 5).
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westerly, northwesterly and northerly resultant wind regimes. Comparison

with previously-observed, specific, locali2ed circulations shows good agreement.

Southern Lake: Huron

The Location of the wind station used in preparation of Southern Lake Huron

currents Is shown in Figure 56. Also identified in the figure are all loca-

tions referred to in the text. Table 7 presents a summary of ERTS-1 scenes

utilized in addition to resultant wind direction calculations. Table A3 in

the Appendix provides further specifies on southern Lake Huron ERTS-1 views.

Northerly Winds Figure 57a

The current diagram is based on a single ERTS-1 pass on 27'March 1973. The

flow-through current flows southward along the west shore of the lower lake

directly into the St. Clair River; there is no apparent southeastward compon-

ent as Ayers (1959) described. Southwest of Kettle Point appears to be a

counterclockwise eddy defined by the flow-through current and the projection of

Kettle Point. At Kettle Point . upwelling occurs as the
j

currents flow offshore. This opposes the circulation described by Ayers (1959) 	 -

for northerly wind conditions. From Grand Bend to Goderich lies a large near-

shore counterclockwise gyre that apparently exists as a semipermanent feature	 9

regardless of wind regime (Ayers et al., 1956). A small weak counterclockwise

x	 eddy exists just off MacPherson Point; a similar circulation was described by
{

Ayers et al. (1956) and Ayers (1959) for northerly winds. The current that

extends northward from the large counterclockwiseeddy leaves the east shore

near Clark Point and the winds transport the water across the lake to the

southwest, perhaps to join the flow-through current. This original northward

current may be a remnant of a previous wind regime or may simply be part of the

3E	 flow-through current complex as discussed by Ayers (1959) for the Synoptic II

{	 cruise under winds from the northern quadrants.
}r

Northeasterly Winds - Figure 57b

t	
ERTS-t passes on 26 March 1973 and 16 August 1973 were composited for this
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analysis. The major features are identical to those that were observed under

northerly wind regimes. The general circulation is counterclockwise

throughout the southern part of the lake. The flow-through current flows

directly to the St. Clair River along the west shore. Southwest of

Kettle Point is a nearshore counterclockwise eddy which is apparently created

in part by the topographic barrier of Kettle Point. Again between Grand Bend

and Goderich along the east shore is a large counterclockwise eddy. The winds

transport the mid-lake water to the south and southwest, augmenting the flow

through current. At Lakeport on the west shore a branch current flows abruptly

offshore to the northeast, which is inconsistent with all other current indicators.

Easterly Winds - Figure 57c

For easterly wind regimes, only one partly cloudy ERTS -1 pass (20

November 1972) was available for analysis. The only currents that could be

determined flowed directly offshore from Goderich to Grand Bend along the east

shore, indicating that a band of upwelling existed alongshore.

Southeasterly Winds - Figure 57d

The current diagram was derived from one ERTS-1 pass on_ 28 September

1972. As discussed above under northerly wind regimes, the general

circulation in the southern part of the lake is counterclockwise across

the lake and southward into the St. Clair River. At the head of the
i

St, Clair River is a small counterclockwise gyre that was established
j

under northerly winds but not found by Ayers et al. (1956) under any

a
conditions. A larger counterclockwise eddy is located along the curved

shoreline between Kettle Point and Grand Bend. The position is somewhat-

closer to shore than the eddy shown by Ayers et al. (1956) for southerly

winds. Along the east shore from Grand Bend to Clark Point upwelling

occurs as the currents flow offshore to the northwest. The sediment

patterns are inconclusive, but it appears that there is a large, counter-

clockwise gyre in the middle of the area; the southeasterly winds, have

(	 7-20f
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displaced this eddy westward from the more nearshore location shown by

Ayers et al. (1956) for a wind regime more southerly than normal. Off

MacPherson Point a long sediment plume appears to have a counterclockwise

component in the same area as under northerly winds; otherwise, the along-

shore currents north of Clark Point flow southwesterly to join the overall

counterclockwise circulation.

Southerly Winds - Figure 57e

Two relatively cloud-free ERTS-1 passes (19 May 1973 and 7 June 1973)

were available to derive the current analysis in Figure 57e. Off the

Lakeport-Lexington area is a small clockwise eddy first described by Ayers

et al. (1956). From Lexington to Harbor Beach northeast currents flow

offshore creating upwelling and displacing the flow-through current, which

is normally alongshore, toward the center of the Lake as described by

Ayers et al. (1956).	 Counterclockwise gyres exist, as discussed above,

between Kettle Point and the St. Clair River, northeast of Kettle Point, and

southwest of Clark Point.	 The western portions of each of these individual

circulations are incorporated into the southward-flowing mid-lake flow-through

fi
current as depicted in the diagram of the selected cruise results (Ayers

et al., 1956 and Ayers, 1959). 	 The flow-through current does not appear

as a distinct current at the head of the St. Clair River; however, since this

flow would draw from relatively clean comparatively sediment-free upwelled

•``F water it should be in this area.

Southwesterly Winds

z No resultant wind stress was observed from this direction during the

period of investigation.

Westerly Winds - FigureS7f{

ERTS-1 passed over this area on 14 April 1979 when a westerly wind

d regime existed.	 The flow-through current lies along the west shore

;.	 ! 7-E:^_
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where it flows southward, then southeastward and finally southwestward to

the St. Clair River.	 A small clockwise eddy, which is apparently driven by

the flow-through current, lies off Lakeport. 	 This was also found by Ayers

et al. (1956). 	 A very large elongated counterclockwise gyre exists between

Kettle Point and Clark Point, but it is somewhat larger and farther offshore s

than indicated by Ayers et al. (1956) and Ayers. (1959). 	 The current flowing

southwestward from Clark Point appears to help drive this large gyre. 	 There

is also a large but weak counterclockwise circulation off MacPherson Point.

Northwesterly Winds - Figure 57g

The ERTS-1 pass for 13 April 1973 was used to derive the current 	 a

diagram in Figure 57g.	 The flow-through current flows southward along

the west shore.	 At Lexington, it flows southeastward and forms a small

clockwise eddy off Lakeport as it returns to the southwest corner of the 	 1

Lake.	 This is the "typical" pattern described by Ayers et al. (1956).	 The

" sediment patterns in the eastern part of the lake do not define with any

certainty the presence of a large counterclockwise gyre, but a counter-

clockwise circulation is suggested northwest of Clark Point in the middle

of the Lake.	 The situation is very similar to 1 Lf April 1973 (westerly

winds), and agyre was indicated at that time. 	 Off MacPherson Point there

exists again a large but weak counterclockwise circulation, augmented

by alongshore currents flowing northeast from Clark Point, as Ayers et al.

(1956) indicated.
s

Summary

l
j ERTS-1 observations indicate that the southward-flowing current along

a.

the Michigan shoreline of the "Thumb" is only reversed by southerly (and

probably southwesterly) resultant wind stress. 	 Along the Canadian shore

` line a northward current was observed north of Kettle Point for all winds

P

s



Figure 57a-g. Surface current analyses for southern Lake Huron as determined from
turbidity patterns in ERTS-1 scenes. Weighted wind directions from
Table A3 are indicated in upper right-hand corners,.
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Ĵ
	

rrN	
kto

C	 ^^ ^y S•GN•W u^	 R

	

NVPfIN	 1 ^
' ...^•/	

^:OO.r Gtr	 ^
IS•E[i 1.	 vfOl w•.p	 •	 \	 s

1	 t^1	 r
3.2

u q •i,p T . :	 t
F ,,P , . 	 ^ ^	 SCALE IN MILES

V

0 10 20 30 40 50



0	 T	 R

N W g
nIVP W	 Q	 J/

	

\	 °Oo	 O

	

`	 e	 o^a^da	 a

nwrs OF \uawC

I

r!lMli.	 i^

nrtw ea coot ltLE~

J .
r

W
O

E
Y o.rul•	 cam'	 1	 N

15^l ELC^	 w.9{. @te
3.2

^.^ G[ni SCf	 `

LM•/IOl
SCALE IN MILES

0 10 20 30 40 50
AM I

r.



1

1

with the exception of easterly--when the flow was offshore. An offshore

current component was incorporated in this dominant northward flow when-

ever wind stress accumulated from the easterly or southerly directions.

Also typical for all observed wind directions was a gyre located offshore

in the vicinity of Clark Point. Alongshore currents have a tendency to

converge in this area. Although the circulation in the central part of

the • Lake is complex, a decided counterclockwise flow ..sually prevails.

Lake St. Clair

Since there are no regularly maintained meteorological records along

Lake St. Clair, three sites are shown in Fi gure 58. The observations from

Selfridge AFB (near. Mt. Clemens, Michigan), when available, were accepted

as primary input to the resultant wind determinations. Table 8 presents

the key ERTS-1 scenes employed for the Lake St. Clair analyses. More

complete coverage information is available in Appendix Table A4.

Northerly Winds - Figure 59a	 j

The ERTS-1 pass for 14 April 1973 indicated that, as usual, the water
a

in Lake St. Clair, Is very turbid, although less so in the surface layers.

z^
The currents in Anchor Bay flow westward and southwestward to the outflow

of the Clinton River, where the combined currents flow southward along

the Detroit shore. A model study by Ayers (1964) has shown Anchor Bay

to have an independent clockwise circulation. This view is not supported

by this investigation, which indicates that the surface currents in
Y

Anchor Bay respond more fully to the wind regime. Horth of Detroit a

branch current flows eastward to the`center of the Lake. The major

component, of outflow to the head of the Detroit River appears to come from

Chenal Ecarte and Johnston Channels, similar to the situation described

by Ayers (1964). Part of this source current flows directly across the

r	
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TABLE 8

LAKE ST. CLAIR - ERTS-1 frames used for surface circulation charts

Resultant
Wind Direction	 Orbit #	 Date	 ID It	 Sin Elevation

N	 3694	 14 Apr 73	 1265-15474	 49

	

1265-15480	 50

NE	 3443	 27 Mar 73	 1247-15474	 42

	

1247-15481	 43

E	 4196	 20 May 73	 31301-15472	 58

	

1301-15475	 59%,

SE -------------------NONE---------------------------------

S-------------------NONE------------------------------ --

SFI	 3178	 8 Mar 73	 1228-15422	 36

W	 4698	 25 Jun 73	 1337-15470	 60* a

	

1337-15472	 61*

NW	 3680	 13 Apr 73	 1264-15422	 50

^•• - Solar elevation> 55 0 (see Chapter 5).



lake southwestward to the Detroit River, and part flows southward along

the east shore then westward somewhat offshore. Eastward-flowing along-

shore currents are well-defined along the south shore for this wind regime.

There is an apparently small weak counterclockwise gyre in the eastern part

of the lake; this corresponds to the "water left by previous wind", shown

by Ayers (1964), although here it is smaller and less well-defined.

Northeasterly Winds - Figure 59b

The ERTS-1 pass on 27 March 1973 indicated a strong outflow to the head

of the Detroit River over the entire lake in response to a northeasterly

wind regime. The large counterclockwise gyre that Ayers (1964) found for

the southeas =t portion of the lake was not observed under these conditions.

The surface currents in this portion respond to the wind and flow southward

from Chenal Ecarte and Johnston Channels, then westward to the Detroit

River. Again, there is no evidence to support Ayers' (1964) contention that

an independent clockwise gyre exists in Anchor Bay; the sediment patterns

strongly indicate that the currents in Anchor Bay flow southward, alongshore.

Easterly Winds - figure 59c

The current diagram shown in Figure 59c was based on the 20 May 1973

ERTS-1 pass; the eastern portion of the lake was partially obscured by

clouds. Again, there is no evidence to suggest that the southeastern half

of the lake is the site of a large counterclockwise gyre or that Anchor Bay

has a clockwise circulation independent of the wind regime (Ayers, 1964).

The sediment patterns strongly indicate that there is a rather distinct

and straightforward flow through from the mouth of the St. (flair River to

the head of the .Detroit River.

Southeasterly Winds
Soe•:herly Winds

These conditions were not observed by ERTS-1 during the study period.

7-31t
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Southwesterly Winds - Figure 59d

The surface current analysis in Figure 59d is based on a single ERTS-1

pass on 8 March 1973. The northwest portion of the lake, from the south

channel of the St. Clair River to Detroit, was ice-covered and analysis

could not be made. The plumes from the St. Clair River and Chenal Ecarte

and Johnston Channel are extremely turbid, and remain near the channel

mouths because their outflow is directly opposed by the southwesterly stress.

There is also a large, vaguely-defined, apparently weak, clockwise circula-

tion in the east part of the lake that developed in response to the wind;

this is contradictory to Ayers' (1964) model for this case. The alongshore

currents flow eastward along the south shore and partly contribute to the

clockwise circulation. The general southwestward outflow current is

located only in the central portion of the lake; and under these wind and

ice condition:. it is relatively narrow. The major source for this current

is the outflow from Chenal Ecarte and Johnston Channel. Ayers (1964) i-idi-

-cated another clockwise gyre northwest of the cross-lake outflow current,

and a counterclockwise circulation in Anchor Bay; neither of these could

be confirmed because of ice cover.

Westerly Winds - Figure 59e

The ERTS-1 pass for 25 June 1973 was employed to derive the surf;3ce

current diagram. A full counterclockwise gyre was evident in ,Anchor Bay, 	 9
3

as Ayers (1964) indicated. The north 4-- t half of the lake is characterized

by southward currents originating from the upper channels of the St. Clair

River that turn southwestward somewhat offshore from Detroit, There doea 
Y

not appear to be a significant clockwise circulation north of Detroit as

indicated by Ayers (1964). The outflow from the Southeast Bend Cutoff and

Chenal Ecarte and Johnston Channel responds to the wind and flows south-

eastward and along the east shore, driving a weak clockwise gyt•re. This

z	
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circulation is somewhat larger than the one described in .Ayers' (1964)

model for this wind condition. West of this clockwise gyre lies a smaller

weak counterclockwise eddy that may be driven by the outflow current and

a branch from the clockwise gyre. Alongshore currents flow eastward along

the south shore, separated from both eddies by a vague westward-flowing

outflow.

Northwesterly Winds - Figure 59f

The surface current analysis for northwesterly resultant winds was

derived from a single ERTS-1 overpass on 13 April ,1973. Here there was

very little agreement with Ayers' (1964) -model for a northwesterly wind

regime. The outflow from the upper channels of the 5t. Clair River flows

southward and southwestward directly to the Detroit River. The outflow

from Chenal Ecarte and Johnston Channel is first transported southeastward

then southwestward across the lake to join the general outflow, in the process

driving a small counterclockwise gyre in the east portion of the lake.

This eddy apparently is much less significant than Ayers (1:964) believed.

The cross-lake current ;slows southwestward, not southeastward as Ayers

(1964) illustrated. Alongshore currents flow eastward along the south

shore.

Summary

The ERTS-1 observations reveal that a preferred southward-flowing

current is found along the Detroit shoreline. It is presumed, as indicated

by the Ayers '(1964) model, that only a southwesterly resultant wind stress

reverses this southward flow. No ERTS-i. data were available for charting

this condition - _along the Detroit shoreline because of ice cover at the

time of -the only sufficiently cloud-free overpass to coincide with a south-

westerly wind regime. Currents along the southern shoreline (Canada) flow

0
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Figure 59a-f. Surface current analyses for Lake St. Clair as determined from
turbidity patterns in ERTS-1 scenes. 	 Weighted wind directions from
Table A4 are indicated in upper might-hand corners.
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eastward away from the headwaters of the Detroit River for all wind condi-

tions observed except northeasterly and.easterly.	 At times, however, this

eastward flow is opposed offshore by westward flow.

di Mid-lake circulations are complex under most winds, with several gyres
z_

'`	 ? present.	 Easterly wind stress produces the most straightforward circula-

Lion--the one most expected for a shallow flow-through lake.	 The prevail-
94
{ ing wind (westerly) shows the Canadian portion of the lake benefiting :Host

j from the clean, clear waters of the St. Clair River and Lake Huron.

Lake Erie

The location chart for the Lake Erie analyses (Figure 60) shows six

stations that were used for resultant wind vectors. 	 These U.S. Coast

Guard observations were considered to be representative for the immediate

area of Lake Erie surrounding the respective locations.	 Table 9 provides
tc

a listing of all ERTS-1 scenes used in producing the surface current

charts.	 The resulting charts are derived from several ERTS-1 scenes in

the form of composite analyses. 	 A more complete listing of all ERTS-1

passes over take Erie can be found in Appendix Table A5. j
l

Northerly Winds - Figure 61a

This current diagram was based on two ERTS-1 passes (14 and 29 April

1973) and is obviously incomplete, the major gap being the central basin.

Outflow from the Detroit and Maumee rivers flows southeastward and eastward,

filling the west basin with highly turbid water.	 This flow continues east-

ward beyond Cleveland along -the south sho! e.	 Local deflection of currents

occurs around Pelee Island but a general eastward transport is maintained.

There is a small clockwise circulation west of Point Pelee along the north

shore; upwelling may by occurring in this area as well as south of Point R

Pelee where the alongshore currents converge and are no longer influenced

r,

7-44
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TABLE 9

LAKE ERIE - ERTS-1 frames used for surface circulation charts
t

Resultant
f Wind Direction Orbit Date ID Sun Elevation

N 3694 14 Apr 73 1265-15480 50

3903 29 Apr 73 1280-15302 54

1280-15305 54

NE 1672 20 Nov 72 1120-15413 23

t
1120-15420 25

3429 26 Mar 73 1246-15420 42

3443 27 Mar 73 1247-15481 43

E 933 28 Sep 72 1067.25465 41

342.9 26 Mar 73 1246-15420 42`

SE 4698 25 Jun 73 1337-15472 61%.
`	 l

r.	 f 5688 4 Sep 73 1408-15401 47
1

1408-15404 48 q

3 S 3178 8 Mar 73 1228-15422 36 j

4447 7 Jun 73 1319-15474 61%

6943 3 Dec: 73 1498-15384 21

1498-15391 22
f

SW 4684 24 Jun 73 1336-15414 61* i

W 4168 18 May 73 1299-15362 59%

NW 668 9 Sep 72 1048-15411 46

,- 3680 13 Apr 73 1264=15420 49 4

i1264-15422 50 d

3947 30 Apr 73 1281-15363 55*

Solar elevation ?55° (see Chapter 5).

746



r

by the boundary geometry. There a series of small counterclockwise circula-

tions is established, perhaps as a result of wind or river outflow pulses.

As Harrington (1895) and Hough (1958) showed, there appears to be a large

counterclockwise eddy alongshore between Point Pelee and Pte. aux Pins.

Although the analysis is incomplete, alongshore currents would appear to

converge in the vicinity of Erie, Pennsylvania,

Northeasterly Winds - Figure 61b

Northeasterly winds prevailed during the ERTS-1 overpasses can 20

November 1972, and 26-27 March 1973. Figure 59b indicates a counterclock-

wise flow of surface currents in Long Point Bay, and apparently two minor-

clockwise gyres south and west of Long Point along the shore; these may

be parts of a larger clockwise gyre in the central basin ( Gedney and Lick,

1972). Midway between Long Point rn,d Pte. aux Pins, the alongshore currents

change direction and flow southwestward to Point Pelee,indicating that up-

welling may be occurring extensively along the north shore. South of

Pte. aux Pins there appears to be a small nearshore counterclockwise gyre.

At Point Pelee the alongshore currents converge and there is a hint of

incipient counterclockwise circulation from the sediment patterns. The

outflow from the Detroit River is transported southward into the west basin
	 K

and eastward alongshore to Point Pelee. The outflow of the Maumee River

.is directly opposed by the northeasterly wind; the result is a complex

convergence of the two river outflows in the west basin. North of Port

Clinton, Ohio is a small counterclockwise eddy. A current flows northward

between Kelleys Island and Bass Islands. East of Sandusky Bay, the along-	 E	 ^

shore currents flow eastward. No additional sufficiently cloud-free 	 7

k
	 observations were available for the remainder of the Lake Erie circulation

pattern under northeasterly resultant wind. 	 y
lY
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Easterly Winds - Figure 61c

The incomplete analysis in Figure 61c was derived from the only two

cloud-fi,ee ERTS-1 passes (28 September 1972 and 26 March 1973) that coin-

cided with easterly winds. A large clockwise circulation in the central

basin is indicated by the sediment patterns southwest of Long Point; the

alongshore currents initially flow eastward, then branch southward and

southwestward in response to the wind. A similar extensive gyre was

described by Gedney and Lick (1972). The extreme western part of the lake

was the only other area adequately covered by ERTS-1 under these conditions.

The outflow currents from the Detroit and Maumee Rivers are forced to

remain nearshore by the easterly wind. The Detroit River outflow flows

directly southward, while the Maumee discharge flows northward to converge

with the Detroit River plume, and thence southeastward: alongshore to Port

Clinton.

Southeasterly Winds Figure 61d

Southeasterly winds prevailed during the ERTS-1 overpasses on 25 June

.1973 and 4 September 1973; the resulting surface current analysis is

relatively complete. As mentioned above the large clockwise gyre in the

central basin _appears to be a semipermanent feature; the alongshore currents

flow eastward to Long Point, then turn lakeward (Gedney and Lick, 1972).

Near Pte. aux Pins the alongshore currents flow east.-card then southward

the center of the lake, suggesting upwelling at Pte. aux Pins. At Point

Pelee the alongshore currents converge and appear to radiate eastward

toward the currents from Pte. aux Pins, southward to the current leaving

the west basin, and westward to form a clockwise gyre west of Point Pelee.

The outflow from the Detroit River meanders southeastward through the



1

gyre northeast of Toledo, but flows mainly eastward to PortClinton. 	 The

Huron River discharge flows northward and eastward, then northwestward to

meet the currents coming south from Point Pelee, and then exits from the

r"-
E

west basin.	 Alongshore currents flow in a wide diffuse band, generally

eastward along the south shore from Lorain to Buffalo, as Harrington (1895)

indicated.	 There is a northeastward component to this flow due to the pre-

vailing winds; river discharges extend lakeward farther than usual along

the south shore.

Southerly Winds - Figure 6le

A full analysis was made of the surface currents for the western half
i

- of Lake Erie based on the EFTS-1 overpasses of 8 March 1973, 7 June 1973,

and 3 December 1973, under southerly wind Y eegimes.	 The western basin is

s
marked by a general outflow to the east.	 The Maumee River outflow initially

flows northward, then eastward in a vaguely clockwise circulation.	 The

southerly winds produce a distinct outflow from Sandusky Bay. 	 There is a

series of small. counterclockwise eddies south of Point Pelee as the east-

ward and southward alongshore currents leave the restricting influence of 1

lake boundary.	 Alongshore currents converge at Pte. aux Pins and turn

eastward and southward, suggesting that upwelling may be occturring at Pte.

aux Pins.	 There appears to be an elongate counterclockwise gyre along the

south shore from Lorain to Ashtabula. 	 Gedney and Lick (1972) substantiate
i

- this feature.	 Within this area, local currents flow directly offshore at a

Cleveland, indicating that upwelling may be occurring there.
N

Southwesterly Winds - Figure 61f

Southwesterly winds prevailed during the ERTS-1 overpass on 24 June 1973._

i In the west basin, the alongshore current flows eastward to 'oint Pelee,
i;

then southward and westward back into the basin north of Pelee Island. 	 The ^?

7-D9 }
r,
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winds again force water out of Sandusky Bay alongshore to Lorain. At

Cleveland and Ashtabula there appear to be two distinct counterclockwise

gyres. These may be part of a larger elongate near-shore circulation as

discussed above under. Southerly Winds. Alongshore currents converge

at Pte. aux Pins, forming a vaguely-defined clockwise circulation south

of that promontory. A- branch of the current that flows through the west

basin from Point Pelee flows eastward as part of the general flow-through

current in the Lake Erie basin.

Westerly Winds - Figure 61g

Only one ERTS-1 pass (18 May 1973) was clear enough for a preliminary

analysis of the surface currents i.nder prevailing westerly winds. The

only feature of note is a general easterly flow over the entire lake sur-

face in the central basin. North of Ashtabula there is a northeasterly

component of transport that may indicate some upwelling alongshore

between Ashtabula and Erie. The alongshore current west of Long Point
p

appears very narrow as defined by the sediment distribution patterns.

Northwesterly Winds Figure 61h

A
Northwesterly resultant winds prevailed during -the ERTS-1 passes for

a	 9 September 1972, 13 April 1973, and 30 April 1973; the surface current

analysis for the west and central basins is given in Figure 61h. The

combined outflow from the Detroit and Maumee Rivers flows southeastward

through the west basin. There is a general clockwise circulation around -

the Bass Islands and west of Sandusky Bay. Alongshore currents converge

at Point Pelee, and small counterclockwise eddies are generated; under

other wind regimes these eddies were directly south of Point Pelee, but	 ^	 ?

here thev have been displaced eastward by the westerly component of the 	 is	 `'



Pte. aux Fins may be part of a clockwise gyre there; the sediment patterns

are not conclusive in this region. There is a distinct nearshore counter

clockw i se	 e t Cleveland.	 s	 be ei gyre a Cl la d. Thi may	 the western edge ofthe above-

mentioned larger counterclockwise circulation that lies near the south

shore from Cleveland to Erie (Gedney and Lick, 1972). A number of currents

flow directly northward along the south shore, "suggesting that extensive

upwelling was occurring there during the satellite overpasses. Surface

currents in mid-lake flow generally eastward. No coverage was available

k^	
for the eastern basin under this wind condition.

Summary

Eastward flow of surface water from the shallow western basin of sake

Erie into the middle basin is most obvious during northwesterly and

northerly (and probably westerly) wind stresses. The reverse wind direc

tions, especially east anu southeasterly, appear to hold the effluents
q

from the Detroit and Maumee Rivers in the western basin as would be expected.

1

East of Sandusky, Ohio, along the southern (U.S.) shoreline the favored

current is ea:-tward. Under southeasterly, southerly, and southwesterly
i

L
winds, alongshore eddies and return circulations are occasionally noted.

Perhaps the most complex condition along the southern shore was noted

under northwesterly wind stress; then much of the observed surface current

f	 was directed offshore.

4	 Currents show a tendency to form gyres off the three points along the

('anaAinn ehnra__pnint Pal— haina a A nom.+ho mnci' Annmatin lalln hnnnAariv 	 -	 i

wise gyre between Long Point and Pte. aux. Pins is well	 n

asterly and southeasterly wind stresses. West-to-east

e basin is best developed during southwesterly and westerly

7-51	 {
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I	
^—{ r	

\ /	
G.d r t^ A dp

ST Ct,la	 :.1

p^tlt,N.0 ^p U.CoN9
A 	 R.	 i	 O	 `•.``s

//.	 ^. l"^	 Sr	
O N T	

^ I
Uriw aS •OM	 v °	 \

4.1

PENNSYLVANIA

. MIcPPtcnN 1	 .o,•p^	 p.,.r., x ^	 PENNSYLVANIA
CHIQ IiuC,`^.1i	 P	 t,wC	 N

ASUUavf.0

wr	 t .
coca.

4.3 \^•`^

1	 J	 T4rp^
r.^ ....^	 r•..	 r	 —(	 fit/xaer,	 1

ono.	 corw,.	 C.w^ro^„pc
{nlrf pap

,illy

of rr.l	
~

§§onffv^	 ,.	 »:. ., ...	 -_»..	 ._....	 ..: ..	 .__....	 .... -,	 -..	 ,-



s
SCALE IN MILES

0 10 20 30 40 50

ST M-

O N T A R f O	 'S
UviwGSrCY	 e	 't

	4.1 
O	

`^	 r
ERIE	 l	 -

MICHIGAr Er

..	 E	 -	 taK^	 ^^	 a NEW YORK
c +•prt	 St. Clair 

^— ̂ u,

	

4	
......s

N	 c	 p	 _	 n HE wYORKu...[c	 ^^sscv	 c^•vr,uow 

	

PENNSYLVANIA	 f

<^ v'-•'	 7.	 •i	 / 'n/.1•ti	 `'r 111E

 cw /	 `^p,.QE^^	 ^,,	 "	 ^^• - ^'` c o	 PENNSYLVANIA
O HIO 	 / LoE,,-	

\	
-

I/	 ^ e^''"a' e:.c^ ^.s ^a 1^ moo-	 ^	 ^	 t..r	 Q z	 ,

W	

s..ev. V	 ^	 •^	 a .• . a

4.2	 ^^	 C -4.3s

	

O I-I	 1 	 O	 tDa..v

_
1̂
i`J(	

ER^nrpnp	 ^	 ^•

X[ E.

t



d

stresses. Between Erie, Pennsylvania and Ashtabula, Ohio, a brief reverse

circulation is occasionally observed.

The only westward currents observed in the eastern basin of Lake Erie

occurred under northerly wind stress. It is believed that a similar

current should br? observed under northeasterly and easterly resultant winds.

Lake Ontario

Figure 62 locates the three wind record sites utilized in the Lake

Ontavio current charts. Table 10 lists all ERTS-1 scenes utilized in pro-

during the following surface current charts. These charts are composited

from several ERTS-1 scenes as it takes three days to cover the enure lake.

See the Appendix (Table A6) for amore complete listing of ERTS-1 imagery

available during the study period.

Northerly W.i»ds Figure 63a

The ERTS-1 pass for 29 January 1973, although partially obscured by

t 
<.°	 clouds, was used to derive the current diagram for northerly winds shown in

Figure 63a. Upwelling apparently occurred extensively along the north

shore as the currents were driven southwesterly in response to the pre-

wailing winds.. In the west end of the lake, a counterclockwise gyre began

at Toronto, driven by the winds and modified by the lake boundary. This
t

circulation was first described by Harrington (1895) and later, substantiated

by Simons and Jordon (1972). Its eastern extent is limited by the Niagara

River plume which flows offshore and is divided by the wind into eastward-
'j

and westward-flowing branches. The sediment pattern is not fully

developed, but a small nearshore clockwise eddy may be established by the

eastward-flowing branch. The easternmost currents flowing offshore from

the Canadian shore turn southward and southeastward at mid-lake suggesting

-that a large counterclockwise circulation has been established in the	 s

7-61
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TABLE 10

LAKE ONTARIO - ERTS-1 frames used for surface circulation charts

Resultant
Wind Direction Orbit #	 Date ID # Sun Elevation

N 2648 29 Jan 73 1190-15300 23
40

NE 3401 24 Mar 73 1244-15300 40'

[ 1244-15303 41
a

E ------------- ------NONE----------------------------- ------

SE-------------------NONE-----------------------------------

S 5674 3 Sep 73 1407-15343 47

6399 25 Oct 73 1459-15214 31
-r

SW 375 19 Aug 72 1027-15231 50

1027-15233 51

626 6 Sep 72 1045=15234 46

-^ 5897 19 Sep 73 1423-15222 41

1423-15224 42

W 4140 16 May 73 12.97-15240 57%
i

1297-15243 58%:

4670 23 Jun 73 1335-15353 60`
is

4893 9 Jul 73 1351-15233 58%
a

I 1351-15235 59%:
r

5172 29 Jul 73 1371-15350 56*

NW 389 20 Aug 72 1028-15290 51
i

3666 12 ,Apr 73 1263-15361 48

3903 29 Apr 73 1280-15302 54

i
4377 2 Jun 73 1314-15183 60* i

4921 11 Jul ,73 1353-15352 59%

Solar elevation ?55 1 (see Chapter 5).
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eastern basin, with the currents perhaps turning eastward at the south

shore and finally northeastward out through the St. Lawrence. River.

} Northeasterly Winds - Figure 63b

The surface current analysis shown was derived from the ERTS-1 pass

b	 for 24 March 1973 for northeasterly winds. The currents along the Canadian
g

	

	 ,

shore have a more westerly component than the alongshore currents for

t
northerly winds, as is to be expected. The counterclockwise eddy off

Toronto evidently is much smaller than it was under northerly winds, extend- 	 t

ing only to mid-lake. The Niagara River plume is forced to the northwest

by the winds, as are other visible remnant pulses of the discharge.
8

Apparently at mid-lake there exists an eastward return flow which is fed

by both the southwestward and northwestward-flowing currents front opposite

shores. The alongshore currents flow eastward between the Niagara Rivert	 g	 g	 3y

mouth and Rochester, where they are interrupted by the outflow from the

Rochester embayment and the Genesee River that perturbs the general east-

ward flow to the St. Lawrence River. The data in the eastern region are 	 J

incomplete, buc -there may exist a large counterclockwise cell in the 	 1

central and eastern basins as suggested by Simons and Jordon (1972) for

`	 winds with an easterly resultant component,

Easterly

No adequate imagery availablefor analysis.

Southeasterly

No observable sediment features were detected in imagery available under,

this resultant wind direction.

Southerly Winds - Figure 63c

The ERTS-1 overpasses for 3 September 1973 and 25 October 1973 were

used to construct the surface current diagram for southerly winds. The

{	 entire western half of the Lake is occupied by a large clockwise gyre

7-6G
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centered at mid-lake north of the Niagara River mouth. In the center of

the Lake the alongshore and mid-lake currents flow eastward; northwest of

Rochester there appears to be a small nearshore counterclockwise eddy

driven by the Genesee River discharge. Northeast of Rochester there is a

large counterclockwise gyre that is driven by the prevailing winds (trans-

port to right of wind) and which may be confined to the southern half of

the lake; the outflow current flows eastward north of this gyre. This

general circulation, a clockwise gyre in the west and a counterclockwise

r gyre in 'the east, corresponds to the transport pattern presented by

`	 Simons (1971 and 1972).

Southwesterly winds - figure 63d

The surface current analysis shown was based on the sediment distribu-

tion pattern on ERTS -1 images obtained 19 August 1972, 6 September 1972,

and 19 September 1973 during prevailing southwesterly wind regimes. As

discussed above for southerly winds and by Simcs (1972), there exists

a counterclockwise gyre in the southeast part of the lake. The central	 1

area is occupied by general eastward-flowing currents from the Canadian

1

shore to the U.S. shore. Under southerly wind conditions, a small eddy
f

was observed alongshore northwest of Rochester; under southwesterly winds,
f.

these currents at that point flow clearly offshore, inducing a small area
5

of upwelling alongshore. There may also be a small counterclockwise eddy
k:

along the Ontario ,shore at pint Petre, in an area where the eastward
1

flowing current approaches the St. Lawrence River exit. No imagery was

available for the western portion of the lake under this wind condition.

The general circulation cell in the eastern basin as shown in Figure 63d

r	 is unsupported by the findings of Simons and Jordon (1972),. They described a

I

	

	 i

clockwise gyre finder generally westerly wind regimes as a result of their
i7
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numerical model.

Westerly Winds - Figure He

t The unusually complete analysis shown here was based on -the four ER'TS-1

j overpasses for 16 May 1973, 23 June 1973, 9 and 29 July 1973. 	 As discussed

above under northerly'winds, there is a large counterclockwise gyre located

z
in the west end of the lake beginning at Toronto on the north shore, the

eastward extent of the gyre is indeterminate. 	 All alongshore currents flow

generally eastward, as do the currents at mid-lake.	 Beginning east of

Toronto there is a cross-lake current that flows southeastward to join the
i

{
c

outflow current at mid-lake. 	 Alongshore northwest of Rochester there may

be a small counterclockwise eddy	 identical to -that found for southerly
s

winds.	 Northeast of Rochester is the large semipermanent counterclockwise

gyre similar to that existing for other wind regimes; in this case it
t

appears to occupy 'the entire surface of the lake east of- Rochester. 	 Con- i	 r

fined to the far northeast portion at the head of the St. Lawrence River
2

is another, smaller, counterclockwise feature.	 The general circulations 1
,a

in the western and eastern basins shown in Fig:ire 63e are in direct con-

flict with the computed surface current analyses indicated by Simons and

Jordon (1972); however their computation was based on a one-day wind stress.
N

Northwesterly Winds - Figure 63f

Five clear ERTS-1 overpasses (20 August 1972, •12 April 1973, 29 April

1973, 2 June 1973, 11 July 1973) were used to develop the surface current a

diagram for northwesterly, winds. 	 There is a broadly-defined counterclock-

wise circulation in the western half of the lake. 	 The Niagai,a River plume

is split by the wind into a radial pattern and may represent 'the eastern j

I
limit of the gyre.	 Along the south shore asharply-defined nearshore

I current is periodically interrupted by equally-strong offshore currents,

7-66
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suggesting that perhaps there exists a series of small cells between the

Niagara River and Rochester.; upwelling is certainly occurring where the

currents flow offshore. 	 Zn the center of the lake, currents flow south-

eastward from the Canadian shore to merge with the currents flowing eastward

alongshore from Rochester.	 A counterclockwise gyre exists again in the

eastern end, but it is smaller and displaced northward from its location

under southerly to westerly wind regimes (Simons, 1972). 	 An extensive

analysis for northwesterly winds is presented by Simons and Jordon (1972);

they described a counterclockwise eddy in the western basin and a large well-

defined clockwise circulation over the entire central portion of the lake.

The data used to construct Figure 63f are inconclusive over the central lake,

but it is likely that the large clockwise gyre has been established, judging

from the directions of the currents along the north and south shores. 	 The

{ counterclockwise gyre in the east basin shown in Figure F,3t corresponds tc the

-circulation described by Simons and Jordon (1972) as a strong counterclock-

wise gyre located in the southeast portion.
i

' Summary
i

{

Across-lake winds from the north and south induce eddy-like circulation

in surface waters of Lake Ontario. 	 Counterclockwise alongshore flow per-

sists in the western basin under most wind conditions.	 This circulation s:

reverses direction (clockwise) under southerly (and probably southeasterly

and southwesterly) wind stress.	 Along the southern (New York) shoreline
c

3 of Lake Ontario an eastward flow is typical, as is the case in Lake Erie.
#i

^- As was also observed in Lake Erie; the northwesterly 	 stress produces

^i

r

considerable offshore flow along the southern shore. 	 Under southerly andk

probably southeasterly wind stress conditions the effluent of the Niagara

River is carried northward out into the center of the Lake. 	 Northeast (and x
^r
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probably easterly) wind stress also favors this condition. East of Rochester

eastward flow was observed exclusively.
a

Along the Canadian shoreline east of Toronto, eastward currents prevail

Under northwesterly stresses, however, a divergent flow begins mid-way

between Toronto and Point Petre. Complete reversal to a westward flow
k

occurs for northerly and northeasterly wind stresses (also probable under

easterly winds).

Westerly and southwesterly winds route the surface currents most

sstraightforwardly through the lake from west to east whereas the opposite
i

resultant winds introduce complexities to the circulation pattern
9.i

i
s
t

y	 ^c

Y

j

i

1

Ti
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Figure 63a-f.	 Surface current analyses for Lake Ontario as determineo from turb_dity
patterns in L'RTS-J. scenes, 	 Weighted wind directions from Table AC,
are indicated in upper right-hand corners.
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TABLE Al.	 it Great Lakes and L. St. Clair

(29 Cycles thru Dec 73)

Cycle IjeCinning Orbit Cycle beginning Orbit

8/1/72 124 4/10/73 3638
8/19/72 375 4/28/73 3889
9/6/72 626 5/16/73 41110
9/24/72 877 6/3/73 4391
10/12/72 1128 6/21/73 4642
10/30/72 1379 7/9/73 4893
11/17/72 1630 7/27/73 5144
12/5/72 1881 8/14/73 5395
12/23/72 2132", 9/1/73 5646
1/10/73 2383 9/19/73 5897
1/28/73 2634 10/7/73 61118

2/15/73 2885 10/25/73 6399
d 3/5/73 3136 11/12/73 6650

3/23/73 3387 11/30/73 6901
12/18/73 7152

1

r

r



T	 :.2..'..L% SOU",.SX T LAKE MICHIGAN SURFAdv- WIND DATA

wd (tens of degrees, mph)'

T

X = missing data

TT	 .T_18	
._.. T.. T-48 T-72

Resultant Wind
Date Sta^ion -6

_ i2
- -24

!©

y 9 .:Ug 72 Dunne Crib 0113 '3218 .X 3025 2418 3214
1411

2210
1810

TW 15

S	 8
25	 Uo 72

It 1813 1609 X 2309 2510
W 11

r 14 Sea 72 " 0215 3029 X 2508 2020 0404 2213
W	 9

t4 i Oct 72_ It 222p 2118 X 2610 3208 3215 1816
X SW 10

2 Oct ?2
11 1111 1908 X

X
2408
3616

X
3415

X
3315 2215 N14 13

19 Oct 72 "
"

3065
1411

3214'
1520 X 3022 1811 2911 0205 SW	 7

6 Nov 72
24 Nov 72 it 2016 2016 2415 2518 3210 2905 W	 9

W 12
13 Dec 72 it 2408 2714 X 2515 1407

3406
2709
2212

3016
2217 SW 14

16 Jar. 73 11 2025 2022 X
2215

2010
2215 2913 2210 1.418 W 10

4eb 73 X
"

2207
3419

X
3415 X 2911 2722 3426 3211 SW23 Feb 73

" 2025 1822 X 0912 0712 0716 0710 10
11 Mar 73

" 3408 3222 3417 0210 1109 0710 N 10
30 Mar 73

" 1809 .2010 X. 2520 2528 1820 2010. SW 14
17	 or 73

'r 0509 3218 X 3226. 3220 2530 1825 41 17
iay 73

5 May 73 0711 0508 X 0710 0509 X X I-A	 6 
NE	 5

24 May 73 " 0506 3607 X 3414 3418
2220

1114
2518

1602
0912

•
SW 14

w 9 Jwn 73 " 0706 2510 X 2028
X v SW	 6

10 Jun 73 " 2518 2210 X
X

0910
3607

0706
3208 2225 2223 9W	 9

73 '^ 0515 3410
X X N

Nb ju,	73 " 0509 0210 X 0515
0512

0515
0509 X X h	 6

17 Ji	 73 "
"

0510
2908

1410
X

X
0208 0212 3215 2413 X

NE 99

3 Aug 73
" 0521 X 0212 3618 3415 2003. X N 1

21 Aug 73
" 2512 X 2918 2718 2016 2016 X

SW•14 Oct 73
3417 X 2915 '2914 2520 1622 X 11

7 Dec 73

6

jf
1

i

J
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TABLE A3.	 SOUTH Ea\ LACE HURON SURFACE WIND DATA

•

(teas of degrees, mph) X = missing data

Date
	 Station TO T_6 T-12 'T-18	 ... T-24 -48 -72 es,lfrtals	 a

9 SeID 72	 Port Huroll 3620 3210 3214 0220 0218 1810 2207 Nlet 4

28 Sep 72 " 1608 1408 0511 3615 3418 2010 2010 SE 1

20	 :ov 72 1606 0725 0720 0917 0910 2006 1607 E 10	 1y

31 Jan 73 1118 071.5 2705 2717 2715 3420 3606 N 8

18-Feb-73 " 2208 2208 2208 2506 2006 3627 0223 N 8

26 Mar, 73 " 0220 0214 0215 3611 0508 0503 0503 NE' 9

27 i	 73 r: 0208 X 3620 3628 X X X N 13

ar13 c	 73 " 3212 3205 0209 0214 0215 3208 2212 NW
I{

6 

14 =.rr 73 " 2207 1807 X 3414 3212 X X W
S

5
4

;-19	 ay 73 " 0205 1610 1606 0512 0508 2708 2019

1	 '
20 IN ay 73 °

"
0210 0206 0208 0209

2007
X
1808

X
2012

X
2008 S

s
7

7 Jim 73
"

2008
0205

2206
X

X_
0505 0507 3209 2705 2207 N 4

25 Jun 73
13 J- 0	73' " 2509 1808 1607 2205 X

^
3210 X Sid 5

18 Au-r 73 " 3405 3408 0505 0510 1410 0205 0518 NE 3

23 Sep 73 " 2210 2211 22111 '2210 1418 1=•08 X S 9

a 11 Oct 73 " 1610 1610 •1608 1605 1808 1606 x S 8

O -i



..T-48 = T-72	
Resultant Wind

hel 15

2206	 2108	 Set 1
2010	 •2010	 SE 1

1804	 2204	 E 1
calm	 3512	 Yel 6
X	 X	 ---

2702	 3213	 W 9
3520	 3614	 ITW 7
3627	 0223	 YR 8

X	 X	 ---
1401	 0813	 SW 3
X	 X	 ---

calm	 0520	 SE 3
0802	 1002	 NE 4
0503	 0504	 VL 9

0910	 calm	 N 8
0707	 0802	 Ph; 7
X	 X	 Ni 13

X	 X	 NE 10
3011	 2710?vr7 6
3208	 2212	 Nan' 6

2912	 2210	 2T W 6'

0410	 3011	 N 4
X	 X	 W 5

-X	 X

0305	 2509	 ';r 1

0508	 2708	 NE i.

1405	 3205	 NE 4
2412	 3008	 w 5
2012	 2008	 SW 7

1818	 1805	 S 9

T-24

0110

3418

3605
2609
X

2215
calm
2206

X
1814
X

1415
0707
0508

0715
0415
X

X
0410
0215

0210
3506
X

X
11-03
0205

1110
1806
1808

1808

r

TP3 E A4. LAKE ST. CLA T_R SURPP.C£
(tens of degrees, mpg:)

Date	 Station	 TO

O^	 28 Sep 72 Selfridge AFB 1 os

	

Port Huron,	 1608
Detroit R.,

Light	 1404
15 Oct 72 Selfridge AFB 3207

	

Port Hu: on	 X-. b	 Detroit R.
Light	 calm

to	 18 Feb 73 Selfridge AFB 2310
.

	

	 Port Huron	 2208
Detroit R.

L; gh t	 X
8 Mar 73	 Selfridge AFB 2808

	

Port Huron	 X
Detroit R.

Light	 2205
26 Mar 73 Selfridge AFB 0415

	

Port Huron	 0220
vt	 DezroitiR.

Light	 0520
27 Mar 73 Selfridge AFB 0805

Port 'Huron 0208
Detroit R.

Light	 0708
13 Apr 73 Selfridge AFB 0506

Port ruron 3212
Detroit R.
Light	 3210

14 Apr 73 Selfridge AFB. 2905
Port Furon 2207
Detroit R.

Light	 1805
20 May 73 Selfridge AFB 0209

	

Port Huron	 0210

Detroit R.
Light	 3605

7 Jun 73	 Selfridge AFB 2404

	

Port 'Huron 	 2008
Detroit R.

Light	 1808

WIND DATA
X = missing data

T-6	 T-12 "T=18

X	 calm	 0410
1408	 •0511	 3615

0703	 0503	 0504
X	 3508	 3611
X	 X 	 X

2709	 3220	 3215
X	 2305	 2502

2208	 2208 	 2506

X	 X	 X
X	 2306	 2710
X	 X	 X

2205	 2207	 1415
X	 0204	 1105
0214	 0216	 3611

0510	 0510 •0910
X	 0106	 0218
X •	 3620.	 3628

3610	 3615	 3615
X	 calm	 3612
3205	 0209	 0214

3410	 0508	 0210
X	 calm	 0207

1807	 X	 3414

1802	 1808	 2205
X	 calm	 1509

0206	 0208	 0209

3610	 0515	 1410
X	 calm	 calm

2205	 X	 2007

2210	 -calm	 calm



•
	 -N

f

1: _LE :4. (Continued)
Date	 Station	 To	 T-6	 T-12	 -T-18 `.. T_24	 'T-48	 7-72	 Resultant Wind

NW 15

	

2,J, Jt:n 73 Selfr dga AFB cal*	 X	 calm	 2603	 2908	 3107	 2302	 ;a 3
Port Huron  	 3209	 2505	 0205	 1805	 2705	 2207	 x	 SW 3
Detroit R.

Light	 calm	 2205	 1815	 1805	 2705	 calm	 caL-n	 S 4e	 25 Ju*s 73 Selfridge AFB 1101	 X	 0302	 1606	 calm	 2908	 e107	 W 3
Port, Huron	 '0205	 x	 0505	 0507	 X	 X	 X	 14VI 4
Detroit R.
Ugbt 	0905'	 0905	 0208	 1612	 X	 X	 X	 SE 1

18 Aug 73 Selfri. 	3603	 cabs	 calm	 1806	 0904	 calm	 0108	 NE 1
`	 Port Huron	 3+05	 3408	 0505	 0510	 1410	 0205	 0518	 NW 3

Detroit R.
Light	 cal*.	 calm	 calm	 1610	 3204	 calm	 3415	 LTW •1

o%

4

f

„_.. _. 

k



TABLE X15. L.,XE ERIE SURFACE WIND DATA (WESTERN HALF)
(tens of de7ees, mph)_ X = missing'data

Date Stztior.' TO T- 6 T -12 T-''- 8 T-24 ' T-48 T - 7Z
Re sultant

AT^T	
15

Wind

2211 1609 0705 0510 1X11 0X03 2710 SE- 2
21 Aug 72 Cleveland

Lorain X	 . x x x
Detroi t R.

x x x x ---
0 0 La-ht x x x

X X
X X ---

9 Sep 72 Cleveland X x x

x X X X X

---
© Lorain x x

O
ed

Detroit R.
Lint 3602 3405 0504 calm 0204 1805 2204 NW l

5
' 27 Sep 72 Cleveland 0522 3615 1810 2214 1810 .1810 1808

X

-S-

', 
b

Lorain X X X X
X

X

M̂M Datroi^c R.
x x x X. x x ---

`J

28 Sep 72
L a Z t

Cleveland
x
X x X

...
X X'

x x
x

---.

---
Lorain X x

x
.

Detroit R.
Licht . 1404 0703• 0503 0504 3605 1804 2204 E

MT
1

16
15 Oct 72 Cleveland 3416 20 3623 3620 2218 3215

2907
2914
2710 NTW	 a

Lorain 3214 3423 2508- 2210 1804

Detroit R.
L;ght calm 2709 3220 3215 2215 2707 3213 W 9

7
r 1 Nov 72 Cleveland x908 1109 0708 0511 0910 3X10 3X15 NE- .

t T
x x x x x

Detroit R.
X X

X
x x ---

20 Nov 72
Light

Cleveland '
X
x

x
X x X }{

1405
}{
2206

X
0709

- --
NE 7

Lorain 0219 0220_ 0214 0907
•

De	 .o; t R.
-=cit 3212 3618 0515 0719

..
0715 2212 3612 (

SW
)

12
13 Jan 73 Cleveland 1815 2208 2208 2215• 2512

2514
2515
2218

2216
2012 SW 10 

Lorain 1809 1409 1808 2209

Detroit R. X x g x x ---

31 Jan 73

L ?1t

Cleveland

x

1408
x
1805 2205 2215 2210 3624 3208

0208
Pi
W

6
8t^

Lorain 0912 1408 1808 2212 2212 3233 .

s Detroit R.
X X x x ---

I
17 Feb 73

Lich ^.

Cleveland
X

3410
• X

0211
X

18 3150XXXX315 007 51X ---N10 •

Lorain X' x

j Detroit R.
X

X x X X ---

U&-t x
x

N

I



TA3L . A5. Continued	 2

Date	 Station	 TO	 T_6	 T_12	 T_18	 T-24	 T-8	 T-72 - Resultant Wind

18 Feb 73 Cleveland 	 1808	 1608	 2503	 3205	 3410	 3615	 0207	 N 4	 .

	

Lorain 	 1810	 1607	 1809	 2705.	 2906	 2923	 3414	 W 7
Detroit R:
Light	 X	 X	 X	 X	 X	 X	 X	 ---

8 March 73 Cleveland	 2205	 2005	 2712	 1820	 1620	 1614	 1408.	 S 9
Lorain -	 2505	 1809	 2210	 2217	 1419	 1609	 07.09	 S 8
Detroit R.

Light	 X	 X	 X	 X	 X	 X	 X	 S 3
26 Ma- 73 'Cleveland	 0510	 0710	 1405	 1810	 0505	 2205	 3608	 E 2

	

Lorain	 0519	 0519	 0513	 0710	 0907	 0209	 0509	 it 12
Detroit R.

	

Light	 X	 X	 X	 X	 X	 X	 X'	 NE 8
27 Mar 73 Cleveland	 X	 X	 X	 X	 X	 X	 X

	

Lorain	 0517	 0215	 0915	 0516	 0519	 X	 X	 NE 15
Detroit R.

	

Li git	 X	 X	 X	 X	 X	 X-	 X	 NE 10
12 Apr 73 Cleveland	 0707	 2209	 2209	 2916	 3215	 2518	 1812	 w 11

	

Lorain	 X	 X	 X&	 X	 X	 X	 X	 ---
aD	 Detroit R.

	

Light	 X	 X	 X	 X	 X	 X	 X	 --
13 Apr 73 Cleveland 	 3612	 2910	 0510	 0211	 0707	 3215	 2518	 NW 8

4	 Lorain	 3412	 3611	 0905	 3407	 0214	 2719	 2016	 NE 6
Detroit R. .

	

Light	 3210	 3410	 0508	 0210,	 0210.	 2912	 2210	 27r1 6
14 Apr 73 Cleveland	 X	 X	 X	 X	 X	 X	 X	 ---

	

Lorain	 1609	 1409	 1605	 3409	 3412	 X	 X	 N 4
Detroit R.

	

Light	 1805	 1802	 1808	 2205	 3210	 X	 X	 N"I 3
29 Apr 73 Cleveland	 3209	 3214	 2920	 2921	 2924	 0425	 0516	 N 12

	Lorain	 X	 X	 X	 X,	 X	 X	 Y.
Detroit R. -

	

Light	 X	 X	 X	 X	 X	 X	 X	 ---
30 Abr 73 Cleveland	 2010	 1808	 1810	 0503	 3209	 2924	 0525	 W 5

	

Lorain	 X	 X	 X	 X	 X	 X	 X	 ---
Detroit_ R.

	

Light	 X	 X	 X	 X	 X	 X	 X	 ---
8 May 73 Cleveland	 3607	 0208'	 2918	 3210`	 0208	 2216	 2510	 W 8

	

Lorain	 X	 X	 X	 X	 X	 X	 X	 ---
Detroit R.

	

Light	 X	 X	 X	 X	 X	 X	 X	 --



gate 5-cation JO i-6 i-12 r-18	
... .1.

-24 1-48
1
-72 Kesu.Lzanz wina

19 May 73 Cleveland 1610 1411 1405 0507 3607 0208 2216 E	 3
Lorain X X X X X X X ---
Detroit R.

Light X X X X X X X
20 May 73 Cleveland X X X X X X X ---

r. Lorain 0520 0517 0713 0710 1614 3609 3214 NE	 9
Detroit R.

Light°- 3605 3610 0515 1410 1110 1405 3205 NEC 	 4
5 Jun 73 Cleveland 2215 1611 2725 3':06 2512 1809 •0504 SW	 6

Lo-a . n K X X X X X X
-

Detroit R.
$5IS Licht X X X X X X X ---

7 Jun 73 Cleveland X X X X 'x X X ---
Lorain 1809 2010 1607 1610 1809 1616 2007 S 10
Detroit R.

' light 1808 2210 calm calm 1808 1818 1805- S	 9
23 Jun 73 Cleveland 2909 3214 calm 3208 2510 2507 1610 W	 5

Lorain X X X X x X X ---
Detroit R.

Light X X X X X X X ---
24 Jun 73 Cleveland X X X X X X X ---

Lorain 2710 1608 1609 0205 2708 2507 2509 SW	 4
Detroit R:

Light calm •2205 1815 1805 2705 calm calm E 4
25 Jun 73 Cleveland X. X X X X X X

Lorain 3612 0909 0707 0508 2710 X X S	 4.
Detroit R.

Light 0905 0908 0208 1612 calm X X SE	 1

29' Jul '73 'Cleveland 3610 3415 2715 2518 •2210 2514 1808 W 10
t

Lorain X X X X X X X ---
Detroit R.

Light X X X X X X X ---
18 Aug 73 Cleveland X X X X X X X ---

Lorain X X X X X X X ---
Detroit R.

Light calm calm calm 1610 3204 calm ' 3415 NW	 1
f 3 Sep 73 Cleveland X X x `X X X X --

-

Lorain 1804 1410 0907 0710 1610 2704 3605 E	 3
Detroit R.

f

Light 1106 calm 1410 1408 calm 1408 2004 SE	 5



TABT.r AS. Continued 4

Date Station TO T-6 T-12 .T-18 ....	 T-24 ...
'T-48 i-72 Resultant Wine.

4	 ,a  15

4 Sep 73 Cleveland X X X X X X X
Lorain .3205 1610 1409 0510 1804 1610 2704 SE 6

L	 + °^

Detroit R.
Light X 1410 1410 0910 1106 cal-n 1408 SE 6

9 Oct 73 Cleveland X X X X X X X ---
Loran 2505. 0904 0905 3411 2205 1607 1113 E 4
Detroit R.

Lia'_tt calm 3605 1405. 1410 0208 0904 1808 E 3
10 Oct 73 Cleveland X X X X X X X ---

Lorain 2505 1407 1405 0510 2505 2205 1607 SE 3
Detroit R.

' Light calm calm 0905 1108 calm 0208 0904 N- 4
2 Dec 73. Cleveland X X X X X X X --

Lorain 1411 1110 0910 0510 3612 2217 2722 S'+T 3
Detroit R.

Light 1415 1415 0914 0908 3615 2215 2715 S 5
3 Dec 73 Cleveland X X x X X X --->

Lorain 2012 1817 1413 1612 1411 3612 2217 S 5
o Detroit R.

bight '1817 1812 1812 1812 1415 3615 2215 S 4
21 Dec 73 Cleveland X X X X X X X ---

Lorain 3230 2924 2925 0707 0707 0714 0512 NT- 5
Detroit R.

Light 2918 2915 2915 3210 3620 0720 3205 N 7

a.

r



TI- ABLE A6. r3=	 SU?_ iC	 ` T N-D- DATA (EASTERN HAILF3

(t-ens of degrees, rah) X ='tissing data

Bate Station TO T-6 T-12 T-18	
...,.

T-24
..> ..T

-48 T-72 Resultant ;; rd
Mi ' 15

21 Mug 72 Buffalo, N.Y. 2007 1104
a

0905 X 'X 2004 2012 SE	 4
Erie, Pa. 2509 1810 1809 0506 0207 0709 2515 S	 4

Ashtabula, 0. 1810 1413 0905 0206 1805• 2004 2514 SE	 3

9'Sep 72 But=zlo, N.Y. 3617 3410 3611 0203 2210 2212 2205 W -4

Erie, ?a. X X X X X X X ---

Ash^vulz, 0. X X X X X X ---
27. Se- 72 Buffalo, N.Y. X X• X X X X X

_e, Pa. X X X X X X X ---
Ash tabula, 0. 3618 2513 2015 2010 1815 2010 1810 S 11

15 Oct 72 Buffalo, N.Y. 3610 2912 3217 2925 2225 1403 3412 w 10

Erie, ?a. 3212 3410 3415 2725 2220 3607 2708 NW	 9

#shzabUa, 0. 3225 3424 3625 2528 1810 1808 2715 2.h'W,	 9
1 Nov 72 Buffalo, N.Y. X X X X. X X X ---

E^_?, Pa. 1.106 1406 0710 0506 ,1106 -3610 3610 NE	 5

As -Tabula, 0. 0509 0711 0913 0708 1112 3605 3625 27, E	 8
20 Nov 72 Bu=_a o, N.Y. 3614 0212 0709 0909 0906 2907 2203 NE 	4

Brie, Pa. 3610 0220 0508• 0507 1408 1804 calm ITE	 6
`. Ashtabula, 0. X X X X X X X ---
r	 13 Jan 73 - Bu=-a1o, N.Y. 20

/
10 2010 2712 2710 2725 3213 2530 W12

Er ie	 ?G. X X X X X X X ---

ris:: tabula, 0. X X X X X X X
31 Jan 73 Bt'= Flo, N.Y. .0915, 0508 2914 2718 2530 3420 0507 151 10

E-r i e	 Pa.. X X• x X X .. X X ---.	 '.
AshtajUla, 3. X X Y. X X Y. X ---

17 Feb 73 Bu=ffalo, N.Y. 2908 3611 3615 3417 3618 0204 calm IN 	 9
L_ _e , ?a. X X X Y, X X X --
:.sh',abula, 0. 3515 3522 3625 0.621 3620 0905 • 1405 11 13

1S Feb 73 'Buffalo, N.Y. 2515 2215 2215 2710 2908 X X W	 6

Erie, Pa. Y. X X X X X X ---
as^ ,Dula, 0. 1810 1806 calm 32.08 3615 3620 0905 N 6

8 Me.-- 73 ..0=_^-lo,	 :I.Y. 2706 2708 2507 1818 1620 2503 0915 S	 4	 a
p x x X Y. X X ---

Ashtabula, 0. 1805 2205 2705 1420 ' 1835 1805. 0505 S	 6
24 liar 73 Buffalo, N.Y. 2505 2007 1807 2710 0206 0209 0908 N	 2

Erie, ?a. Y X X X X X Y. -°
s -^ti1a, 0. X X X Y. X X X ---

26	 ;a_^ 73 Bu-f clo, N.Y. 0510 0505 caln calm 1107 X. Y. E	 1
Erie.,	 Pa.. X X X X X X X ---

Ashtabula 0501 0501 0912 0510 0710 1405 3605 NZ	 5

-•Wr.



art""- "W. ^.vsa ^^.aa acu

Date Station TO T-6 T-12 -T-18 T-24 7-48 * T-72 Resultant Wind
Iri 15

12 Apr 73 Buffalo, N.Y. 3209 1606 3408 3415 3218 2715 0911 W 5
Erie, Pa. X Y. X X X X X ---
Ashtabula, 0. 1806 2008 2716 2725 3622 2515 0912 W 9

t 13 Apr 73 Buffalo, H,Y. 3210' 3210 3210 321.5 3209 X X W 6
"ct Erie, 'Pa. X X X X X X X ---

Ashtabula, 0. 3413 3615 3613 0207 1806 3522 2515 N 12
29 Apr 73 Buffalo, N.Y. 2512 3412 2710 2912 2910 0515 0910 N 8

Erie, Pa. X X X X X X X ---
Ashtabula, 0. 2717 2714 3215 2722 2725 0722 0520 N 6

30 Apr 73 Buffalo, N.Y. 1106 1605. 2205 2515 X X X NI 3
- Erie, Pa. X X X X X X X ---

Ashtabula, 0. 1810 1406 calm 2511 2712 2725 0722 iti' 6
18 May 73 Buffalo, N.Y. 2709 3212 2907 2515 3209 2508 2905 w 8

Erie, Pa. X X X X X X X ---

Ashtabula, 0. 3412 3211 2910 2507 3407 2015 2509 ti 7
19 May-73 Buffalo, N.Y. 2205 1805 2710 2715 2709 X X w 6

Erie, Pa. X X Y. X X Y. X --
A' Ashtabula, 0. 1811 2012 0707 2510 3412 3407 2015 Sit 3
v 5 Jun 73 Buffalo, N.Y. 2205 1803 2505 2008 2709 2703 2705 SW 4

Erie, Pa. X X X X X X X ---

Ashtabula, 0 1812 1810 2207 2508 2009 1812 0905• S 8
23 Jun 73 Buffalo, N.Y. 2511 2007 2208 2512 2008 22.06 2704 S4r 7

Erie, Pa. X X X, X X X X --r
Ashtabula, 0. 2712 2510 calm 2517 2212 2510 calm S"rI 3

24 Jun 73 Buffalo, N.Y. 2214 2010 1404 2512 X X X SW 7
Erie, Pa. X X X X X X X ---

Ashtabula, 0. X X X X X X V ---
11 Jul 73 Buffalo, N.Y. 3410 0208 3609 2210 2207 2508 2510 W 4

•srie, Pa. X X X X X X Y, ---
Ashtabula, 0. X X X X' X N' X ---

29 Jul 73 Buffalo, N.Y. 3206 2708 2708 2020 2213 2224 2205 SW 13
Erie,' Pa. X X Y X X X X ---
Ashtabula, 0. 3415 3412 2520 3620 2016 222.0 1812 w

9
30 Jul 73 Buffalo, N.Y. X 2005 2510 2712 X X X SW 9

Erie, Pa. X X X X Y, v Y. ---
- Ashtabula X X X X' Y, X X ---



TABLE A7. L A-{E ONTARIO SURFACE WIND DATA (COMPLETE)
(tens of degrees, mph) X = missing data

Date Station TO T-6 T-12 'T-18 T-24+ T-48 T-72 esultant Wira
N;d 15

19 Aug 72 Oswego X_ X X X X X X ---
Rochester 2209 2209 3206 3210 1604 1605 0506 SW 2
Fort Niagara X X X X X X X --- -

20 'Aug 72 Os.:ega ,, .ry X X X X X X X ---
Rochester 3607 3607 3409 2909 2209 1604 1605 N'v 2
Fort Niagara X x X X X X X

-

6 Sep 72 Oswego X X X X X X X ---
Rochester 2008 2010 :2710 3608 2009 2209 • 3408 SW 6
Fort Niagara 3605 3110 2712 2908 2507 3410 3415 SW 9

7 Sep 72 Oswego X X X X X X X ---
' Rochester loos 1604 0508 1605 2008 2009 2209 S 4
' Fort Niagara 2511 2507 2510 3613 3605 2507 3410 W 6

13 Oct 72 Oswego X X X X X X X ---
k" Rochester X X X X X X X ---

Fort Niagara 2507 3613 3215 3220 3210 2510 2510 ral 10

29 Jan 73 Oswego X X X X X X X ---
Rochester X X X X X X X ---
Fort Niagara 3423 3430 3420 3616 3607 3613 2705 N 17

23 Mar 73 Oswego X X X, X X X X ---
Rochester X X X X X X X ---
Fort Niagara 3205 0904 0904 0514 0520 0915 0528 NE 11

24 Mar 73, Oswego X X X X X X X ---
Rochester x X X X X X X ---
Fort -Niagara calm 2703 0905 3208 3205 0520 0915 \E 7

12 Apr '73 Oswego 3210 3412 0525 3225 2725 2707 3610 N 10
Rochester X X X X X X X ---
Fort .Niagara calm 2705 2714 3620 3620 2910 3610, Niel 9

29 Apr 73 Oswego 3225 2927 1810 3210 calm 0912 0505 NW 3
,Rochester X X X X X X X --- '
Fort Niagara 3210 3218 2517 3620 3617 2720 0912 A+l 12

16 May 73 Oswego calm 2508 2710 3215 0505 3205 2.715 W 8
Rochester x X x X X X X ---
Fort Niagara 2214 2710 2712 3205 3208 3605 2219 W 7

2 Jun 73 Oswego 0508 3608 3610 2710 2715 3205 calm 1W 6
Rochester X X X X X X Y. ---
Fort Niagara 2505 2505 2502 2708 2514 2710 3405 W 6

3 Jun 73 Os-.:ego 1810 1805 calm 2705 .	 0508 2715 3205 W 5
Rochester X X X X X X X ---
Fort Niagara 3603 2512 3609 3614 2505 2514 2710 W 8



TABLE A7. Continued 2

Da
t
e Station TO T-r, T-12 T_18 T-24 T-48 T-72 Resultant Wind

0 0
is

20 Jun 73 Oswego 1807 calm 11303 calm calm 2710 0508 W 2

Rochester x x x x x x x

23 Jun 73
Fort Viagara 2510

calm
2902
calm

3610
1802

3618
1805

3610
1805

27072
1805

3605
1807

NVI
S

6
4Oswego

Rochester x it x x x x x ---
Fort Niagara 2505 2510 2705 2923 2507 2205 2510 W 8

8 Jul 73 Oswego 2708 2205 2708 3210 calm 3210 2910• W 7

Rochester x x x x x x x
Fort Niagara 2510 2510 2515 2515 2510 2505 2910 W 10

9 Jul 73 Oswego 3207 2905 2705 2210 2708 calm 3210 W 4
Rochester x x x x x x x
Fort Niagara 2908 2705 2515 2510 2510 2510 2505 W 9

11 Jul 73 Oswego x x x x x x x ---
Rochester x x x x x x x
Fort Niagara 3419 3413 3210 2703 2205 2908 2510 W 8

27 Jul 73 Cswego 1808 1810 calm 1805 3605 1805 calm S 4
Rochester x x x x x x x
Fort Niagara 2515 2510 2508 2510 2509 2205 2210• SIR 8

28 Jul-73 Oswego 1810 1805 2210 2708 1808 3605 1805 SW 3
Rochester x x x x x x x ---
Fort Niagara 2509 2510 2513 * 2728 2515 2509 2205 W 12

29 Jul 73 Osv.,ego x x x x x x x
Rochester x x X, x x x x ---
Fort N i agara 2711 2710 2712 2510 2509 -2515 2509 W 10

15 Aug 73 Oswego 1405 1805 1805 1806 1806 3210 3207 W 3
Rochester, 3605 1603 1505 0505 1405 2211 2510 SW 5
Fort Ifiaaara 3615 3413 3610 3611 2507 2508 2908 Nei 7

2 Sep 73 Oswego 2705 1805 1805 3202 calm 1808 2710 S 5
Rochester 2208 1807 1804 0905 1810 2004 2010 S 5
Fort Niagara 2.807 1609 1607 3L;05 1604 1806 1610 S 6

19.SeD 73 Oswego 2208 1805 3210 3215 3220 1409 3218 IA4 4
Rochester 1808 2208 2210 2512. 3225 1408 3212 SW 5
Fort Niagara x x x x x x x ---

25 Oct 73 Oswego 1807 1805 1305 calm 2007 2205* calm S 4
Rochester 0703 1607 1403 3604 1805 2705 1808 S 3
Fort Niagara calm 2203 0505 3602 1804 calm 1605 SE 1

-26 Oct 73 Oswego 3209 1805' 1810 1807 1607 2007- 2205 S 7
Rochester 2210 1812 2005 2008 0703 1805 2705 S 6
Fort Niagara, 1810 1615 1405 1414 calm 1804 calm SE 7




