General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



ERIM 109600-13-F

Final Report

ESTIMATING PROPOR1TIONS OF OBJECTS
FROM MULTISPECTRAL SCANNER DATA

H. M. HORWITZ, J. T. LEWIS AND A. P. PENTLAND
Infrared and Optics Division

MAY 1975
I N75-26473
NASA-CR-141862) ESTIMATING PROPORTIONS OF
ﬁgJECTs'FEOM MULTISPECTRAE SCAN?gsquT?u
P3 chnical Report, 15 Hay U Unclas
Sl tal Research Inst. of S EEhG

1975 (Environmen CSCL 05B G3/43

e 117 p HC $5.25

Michigan)

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Johnson Space Center

e /
§

Houston. Texas 77058
Contract No. NAS9-14123, Task IV

ENVIRONMENTAL

RESEARCH INSTITUTE OF MICHIGAN

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN
BOX 618eANN ARBOR®OMICHIGAN 48107

NASA CR- /# /84 2

3

Earth Observations Division ¥ <
s l g

Technical Monitor: Dr. A. Potter/TF3lﬂ‘ &



L e S ST T

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. wASA CR- 2. Government A:cession No.
ERIM 109600-13-F )

3. Recipient's Catalog No.

4. Title and Subtitle
ESTIMATING PROPORTIONS OF OBJECTS FROM MULTISPECTRAL

SCANNER DATA

5. Report Date
May 1975

6. Performing Organization Code

8, Performing Organization Report No.

Infrared and Optiecs Division
P.0. Box 618
. Ann Arbor, Michigan 48107

7. Author(s)

H.M, Horwitz, J.T. Lewis, & A.P. Pentland 100600=13=-F
9, Performing Organization Name and Address 10. Work Uait No.
Environmental Research Institute of Michigan Task IV

11, Contract or Grant No.
NAS9-14123

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Johnson Space Center

EArth Observations Division

Houston, Texas 77058

13. Type of Report and Period Covured

Final Technical Report

15 ¥ay 1974 through
14 March 1975

14. Sponsoring Agency Code

15. Suppleméntary Notes
Dr. Andrew Potter/TF3 is Techmnical Monitor for NASA

16. Abstract

even when the number of spectral bands is small.

Further progress was made in developing and testing methods of estimating, from
multispectral scanner data, proportions of target classes in a scen? when there are
a significiant number of boundary pixels. Procedures Wwere developed to exploit:
(1) prior information concerning the number of object classes normally occurring in
a pixel, and (2) spectral information extracted from signals of adjoining pixels. Two
algorithms, LIMMIX an. nine-point mixtures, based on (1) and (2), respectively, are
described along with supporting processing techniques.
new procedures, in contrast to the previous method, is that they are often appropriate

An important by-product of the

Preliminary tests on LANDSAT data sets —— where target classes were (1) lakes

and ponds, and (2) agricultural crops -- were encouraging.

17. Key Words
Multispectral Data Processing
Proportion Estimation
Mixtures Processing
Signature Set Amnalysis
LIMMIX

Nine-Point Mixtures

18. Distribution Statement

Initial distribution is listed at the
end of this document

19, Security Classif. (of this report)
UNCLASSIFIED

20. Security Classif. {of tius page)

21, No. of Pages 22, Price
UNCLASSTFIED
117




Z FORMERLY WILLOW RUN LABQRATOQRIES, THE UNIVERSITY OF MICFIGAN

PREFACE

This report describes part of a comprehensive and continuing program of
research in multispectral remote sensing of the enviromment from aircraft and
satellites, The research is being carried out for NASA's Lyndon B, Johnson
Space Center, Houston, Texas, by the Environmental Research Institute of Michigan
(formerly the Willow Run Laboratories, a unit of The University of Michigan's
Institute of Science and Technology). The basic objective of this program is to
develop remote sensing as a practical tool for obtaining extensive envirommental
information quickly and economically.

In recent times, many new applications of multispectral sensing have come
into being. These include agricultural census-taking, detection of diseased plants,
urban land studies, measurement of water depth, studies of air and water pollutiom.
and general assessment of land-use patterns. Yet the techniques employed remain
limited by the resolution capability of a multispectral scanner. Techniques
described in this report may help to overcome this limitation. They may produce
more accurate estimates of target classes in a scene when a significant number of
pixels are on boundaries.

To date, our work on estimation of proportions has included: (1) extension
of the signature concept to a mixture of ground materials; (2) development of a
statistical and geometric model for sets and mixtures of signatures; (3) evaluation
of computational methods used to estimate proportions of a mixture by maximum
likelihood; (&) creation of a computational technique for assessing the expected
accuracy of estimation as a function of the signature set; (5) development of
techniques to identify alien objects; {(6) testing and evaluating the proportion
estimation algorithms on artificial as well as actual multispectral scamnner dataj
(7) extension of the basic proportion estimation techniques to exploit prior and
spatial information; and (8) preliminary evaluation of these extensions on
space-gathered multispectral scanner data.

The research covered in this report was performed under Contract NAS9-14123,
Task IV, and covers the period from 15 May 1974 through 14 March 1975. Dr. Andrew
Potter has beer Technical Monitor for NASA, and Dr. A.H. Feivison has been

Task Monitor. The program was directed by R.R. Legault, Vice-President of the
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Environmental Research Tastitute of Michigan (ERIM); J.D. Ericksen, Project
Director and Head of the ERIM Information Systems and Analysis Department;
and R.F. Nalepka, Principal Investigator and Head of the ERIM Multispectral
Analysis Section. The ERIM numbker for this report is 109600-13-F.

The authors acknowledge the direction provided by Mr. R.R. Legault,
Dr. J.D. Erickson, and Mr. R.F. Nalepka, the technical counsel furnished by
Mr. R.J. Kauth, Dr. R.B. Crane, Dr. W. Richardson, and Dr. W.A. Malila; and
the secretarial services of Mrs. L.A. Parker, Miss G. Sotomayor, and

Miss D. Dickerson.
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1
SUMMARY

The potential applications of remote sensing are numerous. However,
some of these applications are hampered by the limited spatial resolution
of the semsing device. To surmount this difficulty, procedures have
been developed to permit more accurate estimates of proportions of target
classes in a scene when there are & zignificant number of boundary pixels.

Thi: report covers a fourth phase in the development of proportion
estimation techniques. In the first three phases, a basic solution to
the problem was developed and tested, first on artificial data; and later,
when it became available, on actual space data. Along with the estimation
technique, two ancillary developments were pursued: 1) a statistical
test to detect pixels containing alien (unknown) materials, and (2) a
geometrical test on the signature set to determine the suitability of
the associated data set for proportion estimation processing. *

Experience with processing actual space data led to two extensions
of the tasic proportion estimation technique., These extensions constitute
the fourth phase reported herein. One of them (LIMMIX) incorporates
prior information in that it is based on the assumption that the number
of object classes that can occur simultaneously in a pixel is very limited.
The other (nine-point mixtures) is also based on this concept; but, in
addition, utilizes spatial informaiion, For a particular pixel, this
spatial information is extracted from the signals of the adjoining pixels.

Along with these two extensions, suitable alien object detection
procedures were devised. Also, a geometrical test of the signature set
was constructed for determining the suitability of the associated data for
LIMMIX or nine-point mixtures processing, In addition, it was found
necessary to develop a c<lustering procedure for obtaining signatures when
the training fields were narrow, These two procedures have an important
advantage over the olaer procedure (MIXMAP). Whereas, for MIXMAP the size
of the signature set can be no larger than the number of spectral chamnels N
plus one; for LIMMIX and 9-point mixtures the size of the signature set,
in principle, may be unlimited even when the number of spectral channels

is as low as two.

{
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Preliminary tests of LIMMIX and nine-point mixtures were made on
space data and the results superior to those obtained by conventional
recognition processing or the previous proportion estimation procedure.
Further investigation is required for solving the problem of setting the
parameters of the procedures. Also, it appears that additional experiusentation
with multiple signatures for single object classes would be fruitful,
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2
INTRODUCTION

In recent years the staff at ERIM has participated in the development
of various techniques for multispectral remote sensing applications, including
agricultural land use measurement, geologic classification and water depth
measurement,

In conventional multispectral recognition, the total area of each
ground material is measured by identifying the material in each ground :
area (pixel) covered by one resolution element of a multispectral scanmer. i
The total area covered by a ground material is found by adding up the )
pixels identified with that material, If almost every pixel in the ground |
scene contains just one of the possible materials, this technique provides
adequate estimates of acreages., However, if the pixel contains substantial
amounts of more than one material, the pixel cannot be properly classified.
For LANDSAT satellite data over agricultural scenes, in which each pixel
covers about 1,1 acres, the number of pixels containing significant portions
of more than one material may approach 30% of the total,

The purpose of the present effort is to obtain improved area estimates
of ground materials in thege cases. We attempt to overcome the problem
of boundary pixels in two ways, First, we determine which pixels are
likely to be on a boundary, Then, for these, we estimate the proportion
of materlals within,

Since its inception, this effort has consisted of a mix of theoretical
modei studies and tests with both simulated data and modest amounts of
ground~truthed real data, Now that real data sets with adequate associated
ground truth are becoming available, we are using these exclusively in
testing and developing mixtures procedures. The past history of the effort

is summarized below to provide a context for this report.

10
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Our work on estimation of proportions was accomplished in several

phases, In the first Phase[1’2]

, & mathematical model was constructed
which related the multispectral signatures of a mixture to the signatures
of componment materials, ‘“his model permitted the maximum likelihood
estimate of the proportion vector to be formulated in terms of the observed
data point. The computational aspects of the problem required this
simplification: that all of the covariance matrices of the signatures of
the component materials be taken as equal to their average. Theoretical
and empirical results gupported the validity of this assumption. With
this simplification, propotrtion estimation becomes a quadratic programming
problem, Several existing computational methods of quadratic programming
were adapted and tested on simulated scanner data, Results indicated

that this method for proportion estimation was feasible.

[3]

The second phase of the program included investigating the problem
of detecting alien objects—--i.e., objects in the scene not represented
in the signature set, A procedure was devised for rejecting those pixels
vhich probably contained significant amounts of alien materials., In
addition, aircraft scanner data were smoothed over LANDSAT sized resolution
elements to simulate spaceborne scanner data. When proportion estimation
techniques were tested on this data, estimates of crop acreage based on
the estimated proportions were found to be bettsr than estimates obtained
with conventilonal recognition techniques,

The third phase of the program was devoted largely to reducing
computation time required for the procedures, This was accomplished by

improving the basic algorithm, It takes about 20 msec on an IBM 7094 computer

[1] Horwitz, H. M., R.F. Nalepka, P.D. Hyde, and J.P. Morgenstern, 1971,
Egtimating the Proportions of Objects within a Single Resolution
on Remote Sensing of Environment, Report No. 10259-1-¥, May 1971
Willow Run Lzboratories of the Institute of Science and Technology,
The University of Michigan, Ann Arbor,

[2] Nalepka R,F., H, M., Horwitz, and P.D. Hyde, 1972, Estimating
Proportions of Objects ¥From Multispectral Data, Report No. 31650-73-T
Willow Run Laboratories of the Imnstitute of Science and Technology,
The University of Michigan, Aun Arbor.

[3] Nalepka, R,F., and P,D. Hyde, 1973, Estimating Crop Acreage From
Space~Simulated Multispectral Scanmer Data, Report No., 31650-148-T,
Environmental Research Institute of Michigan, Ann Arbor.

11
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to process LANDSAT signal assuming there are five signatures. In order to
reduce processing time still further, averaging procedures were considered.
Averaging improved the speed of estimation by a factor approximately equal
to the number of points included in the average; but accuracy of estimation,
contrary to theoretical expectations, was unsatisfactory. During this
phase, satellite data with associated ground truth information became
available, Testing of the procedures on this data, as well as results of

other investigators[5,6,7]

suggested extengions of the basic proportion
estimation procedure,

Investigation of two extensions constitutes the fourth phase of our
program and covers the period of this report. One extension is based on
the assumption that the number of object classes that can occur simultaneously
in a single pixel is very limited, Although our experimental computer
program (called LIMMIX, permits taking this limit as large as 4, experience
shows that two is an effective value, The other extension {(called "nine-
point mixtures") incorporates this Llimiting concept; but, in additiom,
utilizes spatial information., For a particular pixel, this spatial
information isextracted from the signals of adjoining pixels.

These twe procedures, LIMMIX and nine-point mixtures, have an important
advantage over the original proportion estimation procedure, MIXMAFP., A
necessary requirement for MIXMAY processing is that the size of the
signature set be no larger than the number of spectral channels plus one,
However for LTMMIX and nin-point mixtures, the size of the signature set
may be , in primciple, unlimited even when the number of spectral channels

is as low as two,

[5] Malila, W.A,, and R,F. Nalepka, 1973, Atmospheric Effects in ERTS-1
Data and Advanced Information Extraction Techniques, Symposium On
Significant Results Obtained From the Earth Resources Technology
Satellite~l, Vol, 1, Goddard Space Flight Center, Greenbelt, MD,

[6] Thomson, F. J., 1973, Crop Species Recognition and Mensuration
in the Sacramento Valley, Symposium on Significant Results Cbtained
From the Earth Resources Technology Satellite-1, Vol, 1, Goddard
Space Flighi Center, Greenbelt, Md.

[7] Richardsomn, W.,, 1974, A Study of Some Nine-Element Decision Rules,
Report No. 190100-32-T, Environmental Research Institute of Michigan,
Amn Arbor.
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Preliminary tests of these new procedures were-made on ERTS data
gsets, One scene contained a number of lakes and ponds and the objective
of the tests was to measure the surface water acreage. The other scenes
were agricultural with selected target crops. Results were encouraging.

The next section reviews our basic approach to proportion estimation,
The LIMMIX procedure is explairad in Section 4 and vesults of tests are
presented, Section 5 contains a description of the nine-point mixtures
algorithm. It also contains comparison tests of this procedure with
selected other procedures, More or less burdensome details of all

sections have been relegated to appendices.

13
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3 . P
APPROACH TO PROPORTION ESTIMATION .

A basic application of remote semsing is the determination of the
propértian of a scene covered by a target class (object class of interest).
For example, what proportion of a 5 x 20 mi, segment of Fayette County,
I1linois was covered by wheat on 12 June 1973? The usual approach to
obtaining an estimate of the proportions of target classes in a scene is

based on the assumption that each pixel contains a single object class,

For multispectral data gathered at space altitudes, we know that pixel

size is relatively large compared to field size for a typical agricultural

scene, and that often 30% of the pixels may be boundary pixels (pixels which
contain more than one object class), Reference[s] containg a discussion

of the mechanism by which errors are introduced into the estimate of the
proportions of target classes by processing procedures which do not

account for boundary pixels.,

To the best of our knowledge, ERIM was the first to take into account :
. 1,2 !

boundary pixels by associating signatures with mixtures of object classes[ ? ].
Later Detchmendy and Pace [8] published an approach which was quice similar

(see reference [9] for a comparison of the methods. More recently, H. O, Hartley

[1] Horwitz, H. M., R.F. Nalepka, P,D. Hyde, and J.P. Morgenstern, 1971.
Estimating the Proportions of Objects Within a Single Resolutien
Element of a Multispectral Scanmer, Seventh International Symposium
on Remote Semsing of Enviromment, Report No, 10259-1-X, May 1971,
Willow Run Laboratories of the Institute of Science and Techmology,
The University of Michigan, Ann Arbor.

[2] Nalepka, R. F., H. M, Horwitz, and PnD, Hyde, 1972, Estimating
Proportions of Objects From Multispectral Data, Report No. 31650-73-T
Willow Run Laboratcries of the Institute of Science and Technology,
The University of Michigaum, Ann Arbor,

[3] Nalepka, R. F,, andP,D, Hyde, 1973, Estimating Crop Acreage From
Space-Simulated Multispectral Scanner Data, Report No. 31650-148-T,
Environmental Research Institute of Michigan, Ann Arbor,

[8] Detchmendy, D.M., and W, H. Pace, 1972, A Model for Spectral
Signature Variability for Mixtures, Earth Resources Observation and
Information Analysis Systems Conference, Tullahoma, Tennessee.

[9] Salvato, Jr., P. 1973, Iterative Techniques to Estimate Signature
Vectors for Mixture Processing of Multispectral Data, Conference

on Machine Processing of Remotely Sensed Data, Purdue University,
Lafayette, Indiana.
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has suggaested a modified moment method approach to aceount for boundary
pixels, Many other current methods for proportion estimation (see, for :
example, [10]) take as a model what is termed "mixtures of distributions”
in the statistical literature. This model does not account for boundary
pixels,

This section sketches the basis of ERIM's approach to proportion
estimation, Included is a discussion of the correlation assumption
implicit in the model for signatures of mixtures of object classes within
a single pixel, Evidence supporting the validity of this assumption for
LANDSAT~size pixels is presented., The procedure for estimating the
; proportions of object classes within a pixel is then explained and the
7 rationale for making the simplifylng assumption of equal covariance
matrices of the signatures is presented. Finally, .possible fruitful
extensions of the basic proportion estimation procedures are discussed,
3.1 MODEL FOR SIGNATURES OF MIXTURES

- When the IT0V (Instantaneous Field of Vieow) of a multispectral scanner

ig large with respect to the structure of the scene being scanned, a single
resolution cell (pixel) may contain more than a single object or material,
A mathematical model has been constructed which relates the signature of

a2 mixture of materials to the signatures of the component materials,
Suppose the scanner has n spectral channels and that the signature of

object class i, where 1 £ i < m, is represented by the n-dimensional Gaussian

digtribution with mean A and covariance matrix Ml Let the proportion

of object class i be At and let A be the vector (A Az,...km)t, where the

superscript t denotes transpose, The signature of the mixture with proportion

; [10] odell, P,L., J.P. Basu, & W. Coberly, 1974, Concerning Several
I Methods for Estimating Crop Acreage Using Remote Semsing Data,
i Progress Report June 1, 1974-August 31, 1974, The University

; Of Texas at Dallas.
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vector is taken to be a Gaussian distribution, with mean AA and covariance
matrix MA given by
A

il

y =1 )\iAi . A

M

) AiMi

where A is the matrix with ith column Ai. These formulas constitute our
mddel for signatures of mixtures of materials in terms of signatures of
the individual materials,

3.2 ERIM CORRELATION ASSUMPTION

Examination of the derivation of the model given in Referende [2],
section 2.1, reveals that it is assumed that the correlation is zero
between random variables associated with signals from nonoverlapping small
areas in a pixel, Critics have pointed to this as being a serious Fflaw,

R, Crane of ERIM suggested an experiment to test the extent of the validity
of the ERIM correlation assumption. The generzl idea is as follows. From
Aircraft data, select a number of fields containing the same crop type.

Use field center pixels only and assume that the correlation funection of
the signals from the pixels depends only on the distance between the
pixels, Estimate the correlation function for selected channels of data,
If we find that the correlation distance is small relative to the size of

a LANDSAT size pixel, then the ERIM model would be validated to some extent
for LANDSAT size pixels, Although the details of the experiment appear
straightforward, there are two complicating factors: between field
variations and scan angle effects,

In order to minimize the effect of the first factor, an estimate of
the correlation function is made for each field separately and then an
average taken over all fields., In order to reduce the effect of the second
factor, estimates do not utilize pairs of observations along lines of data,
only between lines, Also, a sample mean and variance is used for each
angle in a field, Details of the estimation procedure are contained in

Appendix A,

[2] Nalepka, R.F., H,M, Horwitz, and P.D. Hyde, 1972, Estimating
Proportions of Objects From Multispectral Data, Report No. 31560~73-T

Willow Run Laboratories of the Institute of Science and Technology,
The University of Michigan, Ann Arbor.
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The correlation assumption of the ERIM mixtures model was tested
accordingly. The data used was from segment 203 of the Corn Blight Watch
Experiment gathered by aircraft at 5000 ft. over Indiana on 13 August, 1973,
Seven large fields were chosen at random for the correlation test, For
each £ield and each of four channels,* correlations were computed for
distances of up to 47 aircraft pixels or slightly lees than three LANDSAT
satellite pixels. The average correlation per channel for all the fields
was calculated and plotted.

Figure 1l shows that each of these plots quickly falls to near zero.

As separations become large, there are fewer correlation measurements that
can be made, Thus, at large distances, this correlation test becomes
statistically unreliable, In channel 4 there is clearly some sinusoidal
noise superimposed on the signal,#®%

Figure 2 shows correlation curves of four individual fields in channel
1, They appear to be random when compared to the average curve of channel
1 in Figure 1, The other channels displayed as much or more randomness.

The resultsaf this test, as displayed in Figure 1, support the validity
of the correlation assumption in the ERIM model with respect to LANDSAT
data. The correlation falls to near zero in a distance that is small
with respect to the size of a LANDSAT resolution element. This closely
approximates the model's assumption of no correlation between signals from
different locations within a LANDSAT pixel. UTFigure 2 shows that what
little correlation there is cannot be used as a correction to the mixturas
model because the correlation function seems to be a random variable om
a field by field basis,

%#10~channel airecraft data was used for the correlation test. To limit
the test to a reasonable amount of computation time, only the first
4 channels were uscd, It was felt that four was enough to make the
correlation test valid, although eventually the longer wavelength
bands should be checked.

**The peaks are separated by more than 3 aircraft pixels, which rules
out row structure as the reason for the sinusoidal pattern.
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FIGURE 2, CORRELATION IN CHANNEL ONE VS DISTANCE. The plot is of
four individual fields.
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After our experiment had been performed, we learned that Coberly[ll]

of NASA/JISC had previously conducted z similar investigation. His pixel
size was approximately 12 feet, The details of the experiment varied

from ours in that he used a2 single large rye field and a slightly different
estimation procedure, Nevertheless, our results and his were very close.
Thus we have additional evidency of the validity of the ERIM correlation
assumption for LANDSAT data.

3.3 ESTIMATION OF PROPORTIONS (MIXMAP PROCEDURE)

The model for a mixture signature can be used to estimate the proportion
vector corresponding to a signal data vector from a multispectral scanner.
Let y denote the n-~dimensional data vector from the scanner., A maximum
likelihood estimate of the proportion vector [2] is a wvalue of which
minimizes

FQA) = nIMA| + <y~ A M;l(y - A>

A? A

subject to the comstraints that

At=t1andatzo0 for 1cd

fin

m

Here |M[ denotes the determinant of M, Mfl is its inverse, and u,v denotes
the inmer or dot product of the vectors u and v.

In general, minimizing F(\) subject to the given constraints is
quite difficult. Investigatious[zl showed that a good approximation to
the minimal A could be obtained if a simplifying assumption is made, The
assumption is that the average of the covariance matrices of the pure

signatures can be substituted for each Mi' By using the simplifying assumption

[11] Coberly, W.A,, 1973, Serial Correlation of Spectral Measurements,
NASA Internal Memorandum, JSC, Houston.

{2] Nalepka, R,F,, H, M, Horwitz, and P,D. Hyde, 1972, Estimating
Proportions of Objects From Multispectral Data, Report No.
31650-73~T, Willow Run Laboratories of the Institute of Science
and Technology, The University of Michigan, Amn Arbor.
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and applying a linear transformation which reduces the common covariance
matrix to the identity, the problem of estimating becomes one of
minimizing a function G(A) of the form

e = |ly - 4,1 *
subject to the constraints on A. Now y represents the transformed data
point, and Ah the mean of the signature associated with the proportion
vector A after the pure signature means have also been transformed.

The problem of minimizing G(A) subject to the constraints on A can b
viewed geometrically, The set of points AA - A, where A is a proportion
vector, is the convex hull of the A and is called the signature simplex
The problem is to find a proportion vecter A such that AA is the point
in the signature simplex closest to the data point y.

The optimal K will be unique if the signature simplex is non-degenerate,
i.e,, has positive m - 1 dimensimnal volume, This is equivalent to the
(n+1l)~dimensional vectors A;, 1) being linearly independent, Non-degeneracy
of the signature simplex implies that the number of materials m in the pure
signature set does not exceed the number of spectral channels n by more
than one,

The problem of minimizing G(A) can be identified as a quadratic programming
problem. A program adapting the Theil & van de Panne method for solving this
tvpe of problem is used to estimate the proportions of cbhbject classes within

a pizel, Detalls may be found in References [2,4,12], The computer program

[ 2] Nalepka, R.F,, H.M, Horwitz, and P.D., Hyde, 1972, Estimating
Proportions of Objects From Multispectral Data, Report No.
31560-73-T, Willow Run Laboratories of the Institute of Science
and Technology, The University of Michigan, Ann Arbor,

[ 4] Horwitz, H.M,, P.D. Hyde, and W, Richardson, 1974, Improvements in
Estimating Proportions of Objects From Multispectral Data,

Report No, 190100-25-T, Environmental Research Institute of
Michigan, Ann Arbor.

{12] RKunzi, H,P., W, Krella, and W, Oettli, 1966, Nonlinear Programming,

Blaigdell Fublishing Co., Boston,
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is called MIXMAP, and in view of the fact that otherprocedures for estimating
proportions are introduced in sections 4 and 5, we shall refer to this
basic algorithm as the MIXMAP procedure. It requires about 20 msec to
estiﬁate a mixture of 5 materials with 12 channels of data,
3.3.1 DATA AVERAGING

In order to reduce computation time, the MIXMAP program has a data
averaging option[él. This option provides for averaging a number of data
points and then estimating proportions of the target classes in the region
corresponding to the totality of the data points averaged. This averaging
procedure reduces computation time by a factor approximately equal to the
number of data points averaged, It also has theoretical advantages in that
the estimates of proportions are asympotitically unbiased in an ideal
situation, However, up to now, results of limited tests on LANDSAT data
using data averaging have not been impressive. More testing is necessary
in order to evaluate this procedure more completely,
3.4 EQUAL COVARIANCE ASSUMPTION

The substitution of the average covariance matrix for the individual
covariance matrices of the different object classes has been criticized.
This assumption was made to facilitate the computation of proportion
estimates after making simulation runs using typical agricultural signature
sets to test the validity of this substitution. Results indicated that
this approximation was reasonable, But the decisive factor in making this
substitution was the fact that we know of no reasonable numerical
procedure for obtaining the exact maximum Iikelihood proportion estimate,
nor has anyone recommended any appropriate alternative procedure,
3.5 DETIECTION OF ALIEN OBJECTS

Estimating proportions of unresclved cbjects from a signal y is based
on the assumption that the signal comes from a pixel which contains a micture
of materials. These materials are represented by known signatures that
constitute the pure signature set. If the pixel should contain a material
not represented in the signature set, significant additional error in the

estimate of proportions may result, The amount of this error depends upon

[4) Horwitz, H.M., 2,D, Hyde, and W. Richardson, 1974, Improvements in
Estimating Proportions of Objects From Multispectral Data, Report
No, 190100~25~T, Environmental Research Institute of Michigan,
Ann Arbor.
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the proportion of these alien materials and the geometric relationship

of their signatures t. those in the pure signature set., Those materials
oceuring in a scene but not represented in the pure signature set are
referred to as alien materials or alien objects. Procedures have been
designed to reduce the error resulting from the presence of alien objects.
These procedures take the form of thresholding tests--hence the designation
"alien object threshold,"

One might attempt to avoid the alien object problem by obtaining
signatures for all materials present in the sceme. This approach is usually
impractical because of the large number of materials present and the
impossibility of obtaining definitive signatures for many of them. An
alternative is to use essentiall a chi-square test as in coaventional
recognition processing.

The new mixtures program contains improved procedures for dealing
with alien objects. These procedures can be described most easily in terms
of the pure signature set and signals after a linear transformation has
been employed, After this transformation, we assume that the i-th material
in the pure signature set has mean Ai’ and its covariance matrix is the
identity. Now given a signal (data point) y from a pixel with unknown
proportions of various materials, the estimate i of the proportion is
obtained as follows, Let Z denote the point in the signature simplex
closest to y. Then Z may be represented in the form

zZ = AK E
where i is a proportion vector and is taken as the estimate of proportions ﬂ
in the pixel represented by the signal y, 1In order to apply an alien object -
test, we ask, "What is the probability that we would have observad the signal
with value exceeding y if the true proportion of the pixel was ﬁ?" Assuming
Gaussian signature distributions, this amounts to a chi-square test with n
degrees of freedom, where n is the number of spectral channels used. The
level of significants is determined by a value xi, which is the alien
object threshold. If

lly - 2]12 = ||y - &3] |% 2 s.

then the estimate fails the chi-square test; we then say that the pixel

contains significant amounts of alien materials and make no estimate of
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proportions for the pixel in gquestion. If the estimate passes the test,
we accept it as the estimate of proportions of materials in the pixel
in gquestion.

3.6 SIGNATURE ANALYSIS

The quality of the estimates of proportions ome can expect can be
determined to a large extent by examining the pure signature set. In
conventional recognition processing we know that the quality of results
depends upon the distances between pairs of signature means relative to
their spreads (covariances). When these distances are large, good results
can be expected, Not only is this requirement necessary for good proportion
estimates, but a more stringent condition must be satisfied: that no
pure signature be close in a probability sense to any signature of a mixture
of the other materials.

A feature of the MIXMAP program is a simple test called geometric
signature analysis (GEOM)., We deal with the transformed signature simplex
with vertices Ai, 1 <1i<m and assume that the common covariance matrix
of all the transformed signatures is the identity. Let r, be the distance
of Ai to the closest point in the hyperplane through the face of the
signature simplex opposite Ai. The face opposite Ai is the convex hull
of all the vertices Aj except for Ai. Then ¥, measures this digtance, in
standard deviation units of Ai, to the mean of a mixture of the other
materials in the signature set, If some r, is small, we would expect data
points representing some Ai’s to be confused with data points representing
mixtures of the other materials, Figure 3 illustrates a signature simplex
well-conditioned for proportion estimation, The circles at the vertices
indicate the spread of the distributions at the vertices; these circles
were formed by points which are one standard deviation away from the vertex.
Each vertex is several standard units away from the vertex, FEach vertex
is several standard units away from the closest point in the opposite
hyperplane, Figure 4, on the otherhand, shows an example of an ill-
conditioned signature simplex., The pure signature mean Al is less than a

standard deviation away from the closest point in the opposite hyperplane.
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FIGURE 3. WELL-CONDITIONED SIGNATURE SIMPLEX

CHANNEL 2

CHANNEL 1

FIGURE 4. TLL-CONDITIONED SIGNATURE SIMPLEX
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3.7 EXTENSIONS OF BASIC PROPORTION ESTIMATION PROCEDURE

In order to improve performance, the basic ERIM proportion estimation
procedure (MIXMAP) has been extended in two directions. One of these
extensions results from using prior information about the probable content
of pixels. Normally, a majority of pixels are pure (contain a single
material). When a mixture pixel occurs, it generally contains a small
number of component materials; say 2, 3, or 4, The LIMMIX procedure,
described in Section 4, incoxrporates this kind of prior information.

The o'her extension results from utilizing spatial information in
order to restrict further the combinations of object classes which ecan
occur simu.taneously within a single pixel. The spatial information
employed «onsists of the sigmnals from adjoining pixels, The resulting
procedure is referred to as nine-point mixtures and is treated in Section
3. It will become clear that nine-point mixtures may be considered an
extension of the LIMMIX concept,

Both the LIMMIX and nine-point mixtures procedures have a very important
advantage over MIXMAP, especially when the number of spectral channels of
information is relatively small as in LANDSAT data, It has been pointed
out in Section 3.3 that a necessary requirement for the suitability of
MIIMAP processing is that the size m of the signature set and the number
n of spectral channels be such that

m<n-+l
i Thus, for example, the maximum size of the signature set permissible for
' MIXMAP processing of LANDSAT data ig 5.
The corresponding restriction for LIMMIX and pine~point mixtures
processing is much milder although more complicated. Let L demote the
E maximum number of object classes which are assumed to occur simultaneously
L in # single pixel. Then a necessary condition for the suitability of
i LIMMIX or nine-point mixtures processing may be expressed by the following
! two inequalities:
1 Lzn+1 when L =m
and
i L<n when L # m
Thus for LANDSAT data any size signature set will satisfy this condition

as long as L does not exceed 4.
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UTILIZATION OF PRIOR INFORMATION IN ESTIMATING PROPORTIONS

The experience gained at ERIM with estimating proportions of unresolved
objects has led to a number of modifications of the mixtures algorithm.

Many of these modifications are similar im that they place limitations on the
combinations of object classes which are assumed to occur in a single pixel.
Methods for implementing such limitations appear to be of two types. The
first type depends on spectral characteristics only, while the second type
depends on both spectral and spatial characteristics. The LIMMIX procedure,
described in this section is of the first type:; while ﬁine—point mixtures,
presented in Section 5, is of the second type.

Techniques which support the LIMMIX procedure are also described in
this section. In addition, results of preliminary tests are presented.

4.1 LIMMIX PROGRAM

We have found that the number of object classes which occur simultaneously
in a single pixel is very limited. LIMMIX exploits this fact. It assumes
that no pixel contains more than L, L £ 4 (L is a parameter), object
classes simultaneously. In order to facilitate testing and evaluation,
the LIMMIX program produces a tap: output for further processing. This
tape will now be described. Figure 5 is a record of the tape generated
for each data point assuming the parameter L was taken to be four. The
first four positions give the results for the maximum likelihood single class.
Here A = 1 because the pixel is all class Cl. Then the likelihood wvalue (al)
of the data point is stored along with the chi-squared vaiue dlz).

The next five entries record the best two at a time choice for the data
point. The two A's are the proportions of the two materials found best and 02
codes the particular pair chosen. a, is the likelihood of the data point with
respect to the signature of this best mixture of two objects classes, and dz2
is the chi-squared value of the data point with respect to the signature of
this pair. Similarly the next six entries on the tape record are the best mixture
of a comiination of three at a time, and the last seven entries record the best
mixture of a combination of 4 object classes. Best is used in the sense of

maximum likelihood.
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LIMMIX uses the MIXMAP procedure for determining the best mixture of K
classes at a time. For example, to find the best three at a time mixture, all
subsets of three classes are considered. TFor each of these subsets, the
best mixture of the three classes is obtained via MIXMAP along with the
likelihood of the mixture. It is that mixture of three classes yielding
maximum likelihood value for the data point that f£inally appears on the output
tape.

In order to obtain results from the LIMMIX tape, further processing must
occur. Tpe present processing approach is summarized below. Say the parameter
value L is three. Then we choose chree threshold values

X Ky's amd X ?
3
If

then the pixel is all class Cl. if

2 2 2 2
> <
dl Xl and d2 b XZ
then the pixel is taken to contain the mixture associated with the pair C

on the LIMMIX tape. If

2

2

2 .2
-
1 Xy » 4y

2

d 3

2 2
> <
X2 , and d3 5 X
ther. the pixel is said to contain the mixture associated with the combination

C3 on the LIMMIYX tape. I

2 2 2 2 2 2
> > >
d1 Xl s d2 X2 and d3 Xs

then the pixel is taken to contain alien (unknown) materials., Further details

of LIMMIX are contained in Appendix B.
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4,2 ALIENZ

A computer program, ALIEN2Z, was developed to operate with LIMMIX to
facilitate experimentation. The current version of LIMMIX, as described above,
puts all of the calculated results on an output tape, without deciding which
k-signatures-at-a-time winne; to accept as an overall winner. ALIEN2 then uses
this outpug_éape'és input, and permifs a wide range of decision rules (xz
parameters)., In effect, LIMMIX is ruﬁ many times, using only one output tape per
scene. ALIEN2 also tabulates the results for each parameter setting, making it
relatively easy to evaluate the working parameters of LIMMIX.

In a production set-up (i.e., when it is known how to set the Xiz parameters)
the two programs will be combined, with no intermediate tape generated. Since
most of the pixels in a scene are pure, it will not always be necessary to calculate
the most likely pair triple, etc., of signatures. For instance, if the chi-square
distance from the most likely signature to the pixel is within the limit set by
the Xlz parameter, the algorithm will call this signature the soluti;n, and go
on to the next pixel. If the chi-square distance is greater than X » @ search
will be made to find the most likely signature pair whose distance is less than
the x22 parameter. This process will continue until the pixel is either
designated as some combination or is checked as alien. Details of ALIENZ are
in Appendix C.

4.3 GEOMETRICAL SIGNATURE ANALYSIS

A prime factor affecting the performance of LIMMIX is the geometrical
configuration formed by the signatures of the object classes occurring in che
scene. In the previous ERIM mixtures approach implemented by the program
MIXMAP, geometrical signature analysis (program GEOM) is normally performed on
the signature sets to determine its adequacy for MIXMAP processing. GEOM supplies
measures of how close (in a probability sense) each signature mean is to a point
in the hyperplane through the other signature means of the signature simplex.

The larger these distances are, the more non-degenerate is the signature
simplex in a probabilistic sense; and the more sguitable is the scene for MIXMAP

processing. When the number of signatures m in the signature set and the
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number n of chamnels of data are such that

m>n +1
it follows that at least one of these distances is zero, which means that
the signature simplex is degenerate, and the associated scene is unsuitable
for MIXMAP processing because the maximum likelihood proportions estimate is
then ambiguous. Thus a necessary requirement for the appropriateness of MIZMAP
processing is that

m<n+1

This requirement can be a severe limitation, especially when the number of
channels of information is relatively small as in LANDSAT data. The corresponding
conditions for LIMMIX processing which limit the values of parameter L may be
stated as follows:

A necessary condition for the suitability of LIMMIX processing is that
every subset of L + 1 or less signature means form a nondegenerate simplex.

When L = m, the limitation is L £ n + 1. When L £ m, the limitation is

L=g n

Thus, in theory, we can use LIMMIX processing with L=4 on LANDSAT four-channel
data with any size signature set. Figure 6 illustrates an example of 6 signature
means and 2 channel data., Any subset of 4 or meore of these signature means forms a
degenerate simplex, buit any subset of 3 or less forms a nondegenerate simplex;
therefore, the data associated with this signature set might be suitable for LIMMIX
processing with parameter value 1L=2., To obtain a more quantitative

meagure of suitability of a signature set for LIMMIX processing, geometrical
signature analysis is performed on each subset of L+l signature means, The
requirement for suitability is that each of the Li#ldistances obtained for

m _ m!
each of the (L+l) T @TFD! (m-L-1)!

gsubsets be adequately large.

The distances obtained for the geometrical signature analysis for
LIMMIX processing (GEOM2) will now be defined more precisely, To avoid
notational complexity we will assume that a specific subset of L+l signatures
has been chosen and relabeled, if necessary, so that their means are denoted

by Al’ Az,...,AL+1and covariance matrices by Ml’ MZ""’ML+1' Let Hl
denote the hyperplane of dimension L=l though the means A2"'AL+1 and let
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Z be the point in Hy which maximizes the Gaussian density with parameters

Al, Ml. Then dl is defined by

2 -1,
dl = <Z—A1, Ml (2 A1)>

Figure 7 is an illustration for the case L=2 and n=2, In this example,

di is approximately 3.

There is an interpretation of the distances di asgociated with a
simplex that may be helpful. It is understood most easily when the
covariance matrices are all equal and the usual transformation to the

identity is utilized., Then the radius r of the largest inscribed sphere

is given by L
L+
= z
i=1 i

"=
(=N

Then r may be taken as a summary measure of the suitability of the simplex.
When covariance matrices are not equal, then r as given by this formula,

although lacking a simple geometric interpretation, appears to have merit.

*[13] data

Table 1 displays the output from GEOMZ with respect to a CITARS
set. This data was gathered 21 August 1973 over Fayette County, Illinois. The
target crops were corn and soybeans. The data was used in tests reported in
Section 5.2. The signature set contained six classes and the limit L was taken
to be two. Thus all possible combinations of three materials required examination.
Since there are 20 of these combinations, there are 20 rows in the table. In
the first row, first column, for example, 1.7 is the closest distance (measured
in standard deviation units of the corn signature) of the mean of the corn signature
to the line through the means of soy and trees. In the second column of the
first row the entry 2.3 is the closest distance {(measured in standard deviation

units of the soy signature) of the mean of the soy signature to the 1line through

*CITARS was a joint research task for Crop ldentification Technology Assessment for
Remote Sensing.

[13] Malila, W.A., D.P. Rice, and R.C. Cicone, 1975, Final Report on the Citars
Effort by the Environmental Research Institute of Michigan, Report 109600-12-F,
ERIM, Ann Arboi, Michigan.
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Unit Contour Ellipsoid

FIGURE 7, GEOMETRICAL SIGNATURE ANALYSIS (GEOM2)
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TABLE 1~ DISTANCES CALCULATED BY GEOM2, Fayette Co.,
12 August 1973 (Units of Standard Deviation)

CORN
1.7
2.7
‘1.6
1.9
1.1
2.5
1.6
2.2
3.4

2.5

S0Y
2.3
2.2
2.4
2.2

2.7
3.7
2.9
3.3
5.9

3.4

TREE

9.3

2.6
9.2

3.5

9.1
7.7
9.4

3.4
18.9

3.0

BARE

3.6

5.0

1.3

1.0

3.8

1.5

0.7

1.5

1.1

1.5
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CLOVER

4‘-4

2.9

5.2

5.1

2.8

4.1

4.1

2.7

2.7

11.5

WEED

9.9

10.8
llB
2.4
9.8

3.5
14.9

1.0
12.1

1.5

S
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the means of corn and trees. Overall, the distances are fairly large, although
the 0.7 for bare soil wversus soy and weeds may indicate possible difficulties.
4,3 CLUSTERING PROGRAM

We have found that poor multispectral data processing results are often
due to signatures which are not representative of ground class distributions.
This in turn may stem from two sources: (1) an insufficient number of data
points to obtain a good estimate, and (2) the incorrect determination of the
mumber of modes of the distribution.

The large error that may be introduced in this manner often makes it
difficult to evaluate the efficacy of a classification procedure. Clustering
algorithms offer hope of a solution. These algorithms may be loosely defined as
algorithms which identify data points which are 'alike'. Because this project
has heen hampered by the errors arising from this problem, suitable algorithms
were developed.

4.4,1. Description

To provide versatility, three different algorithms were incorporated into
the program,

Algorithm one uses small, normal distributions to approximate the cumulative
distribution fumction of the ground classes in a scene. Then it combines these
elements, on the basis of high probability of misclassification, to form signatures.

A description of this follows.

, . 2 2
(1) Suppose we have m cells Pl...Fm, with mean Ai, variances (Ui 10000y n)

1<i<m, where n is number of channels. Let Ki denote the number of samples within
the ith cell. Given a new sample X, calculate the distance of X from each cell
center by

n

2 .
d(X,Ai) = E_ (Kj—Aij)/Uij (i=1l,...m)
3=l

Find r such that d(X,Ar) = MINi d(K,Ai), lzizgm

Then X is classified as one of the following.
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d(X,Ar)< t then X assigned to r.

d(X,Ar)> 6 then X creates a new cell T

otherwise X is stored. mrkl

h cell, this cell's

parameters are adjusted as follows:

(a) increa-e the number of samples (Ki) by'one

(b) ecalculate a rew mean vector (Ai)

Ai=% Z:Xi
'l

all xi‘ in cell I‘i

(c) determine new variances by

where

where the Xg’

are classified to the i

_ 2 2
. = MAX(ci,j (0),Si

1,3 :j)

th cell and G?.j (0) is an initial

. 2 2 2 2
assignment of Gij , Only when Sij exceeds gij (0) do we replace Uij (0)

with S"'.1 ..
1]
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(3) The first sample always creates a new cell. The second sample is
tested and classified by (1) and so on. When all samples have been classified,
the stored samples are forced into the nearest cells according to (L). Each
cluster is then tested against every other cluster for a high probability of
misclassification. Whenever two clusters are found to have a high probability
of misclassification, they are combined with a weighting based on the number of
points in the clusters. This process is iterated until one cluster has more
than a certain percentage of the points, or the largest several clusters have
more than some cther percentage of the points. The measure of probability
of misclagsification used is:

_ 1/2
p=(2()) P(W,))

exp (- (&,-A,) T (41,3 /2) ™ (4,-4,))

Wl and Wz are the two classes involved. The A and M symbols stand for the
meant vectors and covariance matrices of the two clusters.

Algorithm two is almost identical to algorithm one, except that it is a
supervised algorithm, i.e., each data point is labeled (by crop class) and
algorithm one is carried ocut separately for each class.

Algorithm three is an unsupervised, iterative algorithm which estimates
the means and variances of ground class distributions. It is, in part, similar
to NSPACE, developed by Eigen and Northouse at the University of Wisconsin[la].
Algorithm three proceeds as follows. First, the user inputs his initial guess
of starting means and variances, or allows the program to spread starting means
evenly throughout the data space, with a common starting variance. Data points
are then classified to these means using either the standard L1 metric or the
linear Bayes decision rule. The estimates of each mean and variance may be
updated every time a2 data point is classified to that mean, or after each scan
line or region. The new means and variances are used for further classification.
This process is repeated until the estimates of the means and vatiances change
very little from iteration to iteration. Further details are contained in

Appendix E.

[14] Eigen, D.J., a-! R.A, Northouse, 1972, N Space--An Unsupervised Clustering
Algorithm Based on Discretized Marginal Distributions, Report No. TR-AI-72-3,
The University of Wisconsin, Milwaukee.
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It was found that these algorithms, especially one and two, produce highly
accurate signatures. They have been useful in analyzing variations in the data,
multi-modality, and identifying troublesome 'other' classes. The use of these
algorithms has reduced the error stemming from poor correspondence between
signatures and ground class distributions. This has resulted in better evaluation
of classification schemes.

4.5 PROBLEM OF ESTABLISHING LIMMIX PARAMETERS

The effectiveness of the LIMMIX procedure is dependent on setting the
parameters properly. As an algorithm becomes more sophisticated, it is usually
more difficult to set the parameters, because there are more of them. Such is
the case with LIMMIX. Even when pixels are limitred to mixtures of two signatures,
there are three parameters to set. They are xlz, X22= and T, the proportiom
threshold. There is also the option of renormalizing the remaining proportions
after thresholding. In MIXMAP there were only the T and one x2 parameter (the
alien object threshold) to set. The only known method for establishing parameters
is to run the algorithm on training data. A wide variety of parameter combinations
are used. The parameter set giving the closest estimate of the training area
ground truth is then used on the test area. It is also difficult to set the
parameters in the nine-point algorithm as explained in Section 5. 1In Section 4.6,

tests are made on LANDSAT data in order to devise techniques for establishing

parameters.

4,6 PRELIMINARY TESTS

Two data sets were chosen for preliminary testing of the LIMMIX algorithm:
(1) A water data set consisting of 20 generally small lakes and ponds in an
eight square mile area near Lansing, Michigan, and (2) a fourteen section
agricﬁltural data set from Hill County, Montana.

The first data set was chosen for an initial test because water is a
relatively high contrast target. Also, other algorithms had already been tried

on the water data. This provided a basis for comparing the results that LIMMIX
generated.
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The Hill County Data was selected as the agricultural test of LIMMIX.
for two reasons. The area's main crop is wheat, the target crop of the soon to

*[15]

be implemented LACIE project, and the area concains many narrow f£ields.

The latter insures that there will be numerous wixture pixels to exercise the
LIMMIX algorithm.
4.6.1 WATER DETECTION

A water detection project

13 previously done with MIXMAP was

redone using LIMMIX. As before, the data set was divided into water and
non-water regions. The detection rate is defined as the 2rea of water
found in the water region as compared to the area knewn from ground truth,
The false alarm rate is the area of water detectad in the non-water region
divided by the area of that region. When the detection rate is plotted
against the false alarm rate, we obtained the so-called operating curves
of the algorithm.

Figures 8, 9, 2nd 10 shows the operating curves for MIXMAP
and LIMMIX. These curves represent the best performance of each algorithm,
and will be compared as such.

The MIXMAP graph (Figure 8) is for various rejection probabilities
and thresholds (water only). The thresholding, needed to cut down the
numercus false alarms, gives the best operating curves.

LIMMIX on the other hand, thresholds all materials. Thresholding
all of the signatures will reduce the detections and false alarms. TFalse
alarms are not as large a problem with LIMMIX due to the recognition portion
of the algorithm., The renormalization process, whiclh increases the detections,
is the:<fore the preferred operating mode. The opeéraiing curves of LIMMIX

for vario.s combinations of xi and xg values are presented in Figure 9.

*LACIE is a joint project for a Large Area Crop Isventory Experiment. LACIE
results will contribute to a future operational system for worldwide crop
inventory using remote sensing and computer technology.

[15] Large Area Crop Inventory Project Plan, November 18 1974, NASA-NOAA-USDA
Report No. LAEOQ1, NASA/JSC, Houston, Texas

[3] Nalepka, R.F., and P.D. Hyde, 1973, Estimating Crop Acreage From Space-
Simulated Multispectral Scanner Data, Report No. 31650-148-T, ERIM,

Ann Arbor, Michigan.
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A much higher detection rate with a smaller false alarm rate is

evident in the LIMMIX operating curves, The LIMMIX curves show that it
is possible to detect 100% of the water while having only about 0.5% false
alarms. MIXMAP is only able to detect about 93% of the water for the same

rate of false alarms. Figure 10 was included to show that even the

operating curves for LIMMIX without thresholding are the equal of those
for MIXMAP at its best,
4,6.2 ESTIMATING THE PROPORTION OF WHEAT

LIMMIX was tried with wheat as the target crop. The data set selected
was from Hill County, Montana. Its long, narrow fields create many mixture
pixels making recognition difficult (Figure 11). The purpose of the experiment
was not to train parameters to be used on test data, but rather to see if LIMMIX
had the capability of achieving good and comsistent results.

The data consisted of several different LANDSAT passes over Hill County.
On the basis of previous unpublished results generated by NASA/JSC/Earth
Observation Division personnel, the July 16 pass was selected for
processing. Unfortunately, the data tapes were unlabeled, and thus a
considerable amount of effort was required to discover which data set corresponded
most closely to known characteristics of the July 16 data (these characteristies
were mean signal levels of various crops in two channels).

When the July 16 data set was identified the conventional process
for identifying field location was carried out, i.e,, various features
were identified on a line-printer map of one channel, and then a regression
fit was performed to determine the coordinate transformation from an aerial
photograph to the data set. Signatures for the data set were then obtained.

It would be difficult to get representative signatures from such
narrow fields by conventional methods since many of them are less than 1
pixel wide. For this reason it was decided to use a clustering algorithm
to obtain the signatures. The equivalent of 5.5 sections was clustered
(farms N-1, 2, 3, 5, 6, 7, 8, 14, 15, 16, 17) and 13 signatures were
obtained, To show that they were indeed different, program EPLOT was run.
The program plotted the mean and cuvariance matrix for each signature for

3 pairs of chammels (2 vs 1, 3 vs 2, 1 vs 4). The plots were examined

43




E——— NP e

eSS G R

4
b |

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

(%) MLVY NOLLDA LA

“w.
=8 o _/ 52 i}
f
LA
2, ! I
-A_I— ey
S N
3 N
| q4 \ B E
i _.” ._n// e
i i | i
I\ S i
» 1 / r ./.! R
1 F N
A \ e o
: ]
\l @ N
. 137 <
ady ™
~J
L o
Ty
I
// s
\ =~ gl
o i i 155 ! ol e ™~ i il
] .I...I. -
/TN
£L8 N | L §
I~ I~
¥ \l rll!lﬂ.ll =P~ llln. i
o Lol i B e N pal Al 128 e = e 1S W e
I B e i < S
”ll. .Ilrll. - B ) _J..I.lr. : uNf
'1"” —— ] B N_ | -
8 2 3 2 g a -]
M
o~
>

FALSE ALARM RATE (%)

FIGURE 10. LIMMIX OPERATING CURVES FOR WATER DETECTION, NO THRESHOLDING

G4




ch

HILL COUNTY, MONTANA (NORTH)

MAY 5, 1973 GROUND TRUTH

Small Area #1 Small Area #2

LEGEND
.WAIE! .05‘5 [Cstuseee PREPARED BY
od B ot [EBRlorA el v sl By B acratea [ spring wrear [l orass NASA JOMNEON SPACE CoNTES —
rsid e — — -t
e Wino crors [CIwinter wHeaT  []BARLEY (1974
R 2 7 B el K Rl e :
T [l summer FaLlow  []CRESTED WHEAT GRASS
B russian wiLD RYE Dﬁ%’éﬁ'&‘ﬁu{'l‘éhos
L2 L
miwjirjwiisgia
AR L
Miwln|nin

FIGURE 11. GROUND TRUTH PAPER PRINT OF 6 SECTION TEST AREA AND SMALL
AREAS ONE AND TWO

TN

NYOIHDIW 40 ALISHIAINN IHL SIIHOLYHOBYTINNH MOTTIM ATHIWHOS



ERIM

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

80.00

70.00

11,7 0

o @
3.8 4: 613 @

60.00

2

CHANNEL
40.00

30.00

10.00

8 + +
%00 10.00 20.00 30.00 40.00 $0.00 $0.00

PLOT NUMBER 001 800911 5685 28 AUG 1974
FIGURE 12. HILL COUNTY SIGNATURES (CHANNEL 1 VS CHANNEL 2)

46




-_
L FORMERLY WILLOW RUN LABORATCRIES, THE UNIVERSITY OF MICHIGAN

2,6

3

CHANNEL
40.00

3,5 13 1,9, 12 7, 10

30.00

.00 10.00 20,06 0,89 40,09 50.00 $0.00 70.0
CHANNEL 2

PLOT NUMBER 002 BO00911 S585 28 AUG 1874

FIGURE 13. HILL COUNTY SIGNATURES (CHANNEL 2 VS CHANNEL 3)

47




ERIM

FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

70.00 80.00

60.00

5,9, 10

1

50.00

CHANNEL
40.00

2,3, 4, 12
1. 6,7 8 11,18

30.00

.00 10.00 20.00 30.00 10.00 50.00 60.00
CHANNEL 4

PLOT NUMBER 004 800911 3685 28 AUG 1974

FIGURE 14. HILL COUNTY SIGNATURES (CHANNEL 1 VS CHANNEL 4)

48

LR S S i e o 2 g e




o ———— ! 3

"'T

[e— 3 [OOSR N e e e e e e T T

E

=
=

FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

5 e A, N

T SN L NN

CHANNEL A
]

CHANNEL B

FIGURE 15. EXAMPLE OF A LIMMIX SOLUTION AMBIGUITY

49




e . ; | i | DT NS S e A PP

Z FORMERLY WILLOW RUN LARBORATORIES. THE UNIVERSITY OF MICHIGAN

and the signatures were found to be distinct. TFor the 78 combinations
of signature pairs. none of the covariance plots overlapped on all three
graphs, and only 9 pairse overlapped on two graphs. (Figures 12, 13, 14).

The next task was to correlate the signatures to crop types known to
be in the scene. Recognition processing was runm on Hill County for the
13 signatures. The ground truth map and a recognition map were used to
identify the clustered signatures, Three of the signatures were found
to be wheat. (Numbers 2, 6, 11). LIMMIX, was then used to classify the Hill
County area.

Mixtures of no more than two materials were used in processing Hill
County. That two signatures is the maximum which can be used can be clearly
seen in Section 3.7. The reason for this is perhaps less clear, considering
that MIXMAP is capable of using one more signature than the number of channels
of data. Here is an explanation by example: For 2 channel data and a signature
set of three members, LIMMIX and MIXMAP can both consider mixtures of at most 3
object classes in a single pixel. When the set has four members, MIXMAP
breaks down completely, since it must consider mixtures of four, and there can be
many ambiguities, LIMMIX, of course, cannot calculate the best four at a time
either, again because of the ambiguities; but it can find the best one and two
at a time. The 3 at a time is a special case where there is usually just one
ambiguity. Figure 15 shows four signatures in twc channels. The data point
(x) could represent a combination of signatures 1, 3, and 4 or 1, 2, and 3, since
the likelihood for either is the same. It is for this ambiguity that three
at a time must be discarded for LIMMIX.

The criterion chosen for determining classification accuracy was the
percentage of each material found in a relatively large area as compared to the
true percentage of each material in that area. This was because the normal
method of determining classification accuracy (testing field center pixels) is
inappropriate for the LIMMIX. algorithm, since much of its value lies in its
potential to deal with mixture pixels.

LIMMIX was run on Hill County data using the 13 signatures for combinations
up to two at a time. To save processing time, only 6 sections (N-1-8, 12, 13)

were chosen for further analysis.
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Program ALIENZ was run on the LIMMIX vape for a variety of xlz and
x22 values., The output, in number of pixels detected for each signature
and each pair of Chi-Squares, was compared with the ground truth to
obtain the detection rate for wheat over the 6 sectioms.

Due to the small field sizes, 1t was not possible to define non-wheat
areas and therefore to record false alarms by use of the ALIEN2 program,
and consequently the usual operating curves (i.e., detection rate vs false
alarm rate) are replaced by a graph of detection rate vs. the chi-square
values. Results are presented in Figure 16. Since the graph does cross
100% detection (including false alarms), it was decided to use these
parameter values in two subset areas to test their universality. Small
areas 1 and 2 are defined in Figure 11. The results for the 2 smaller
areas are presented in Figure 17 and 18, These figures are the
same general shape as Figure 16 but are shifted along the detection rate
axis. Parameter settings of x12=1 and x22=17 where the detection rate is
100% for the 6 section area would give detection rates of 92% and 1147
for small areas 1 and 2. Even though we did not use separate test and training
regions, this preliminary experiment indicates that there may be parameters

gsettings which are approximately correct over subregions.
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5 _
UTILIZATiON OF SPATTIAL INFORMATION 1IN ESTIMATING PROPORTIONS

Mény-cﬁrrént multispectral data proceSsing schemes classify pixels on

the basis of their associated signals; the signals from neighboring pixels do not
~ influence the outcome. But for many applications, schemes which take neighboring
‘data into account would be expected to perform better than these single element

rules. In addition, sﬁch schemes should make the distinction between pure and
-mixture pixels better than a single element scheme, _

Nine element rules are designed to gain these advantages while presexviag
simplicity and speed. Such rules are applied in turn to each pixel of the srnene
in the context of its eight immediate neighbors érranged in a 3 x-3-grid ag -
diagrammed in Figure 19. These rules assume that when most of these nine pixels

-are. assigned the same clasgification on a prellmluary recognition pass, then the
center pixel is unequlvocally this material. When there is no clear consensus
amont these nine pixels, the center pixel may then be a mixture. Modest storage

- reqﬁiréments and the small number of pixels playing a role in each decision make
these Tules practical.

[7]

voting rule was selectéd as the one most likely to detect boundary pixels.

Afrer a study of investipgations of nine-point rules by Richardson” °, the

' The voting rule is applied aftexr a1preliminary-recagnition pass has been

made on the nine pixels. The center pixel is assigned the material recognized

most frequently among the nine if N, or more pixels of the nine have been

1 o
recognized as that material (N is a parameter of the procedure). If no material

gets at least N, votes, than the center pixel may be either a pure pixel or a

1
mixture pixel. =

The advantage of the voting rule in proportion estimation is that a large
number of pixels contain a single materlal and this rule detects most of them.

For these plxels, the procedure terminates after the vote, TFor the remalnder

L ) L

" of the pixels, the procedure terminates after the vote. TFor the remainder of

ffﬁ , [7] Richardson, W., 1974 A Srudy of Some Nine-Element Decision Rules,
v Report No. 190100-32-T, Environmental Research Imstitute of Mlchlgau,
Ann.Arbor Michlgan.
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the pixels, the voting rule provides contextual information which may be used

, to determine which materials are present in a mixture.
gy 5.1 NINE-POINT MIXTURES PROCEDURE
The votlng rule was comblned with the LIMMIX processing scheme. Three

i% . algorlthms were developed for testing. These are desorlbed beldw. AdditiOnal
details are contained in Appendix F.

s 5.1.1 ALGORITHM 1 | o

| A, Make.a preliminary pass through the data, classifying each pixel

according to the quadratic Bayes deecision rule.
B. TFor each'pixel, look at it and the adjoining eight pixels, and take a

Tyote'! as to their identity (pixels may participate in the vote only if their

associated Chi-Squared level is less than ni), 1E at ;eaet_Nl,of the pixels
Sy agree as to identity, the center pixel is classified as this materdial.

- é C. If less than N,
' Squared level of the center pixel's classification. . If this Chi-Squared level

of the pixels agree as to identity, examine the Chi-

is less than n;, accept the recognition.

D. If the Chi-Squared level of the center pixel ie greater than ng, find
the two largest vote wiﬁners in the vote of (B). Call the pixel a mixture of
these two materials, i.e., if 4 pizels 'voted' for corn, 3 pixels 'voted' for.

v wheat, and 2 pizels 'voted' for soy, call the center pixel 4/7 corn and 3/7 wheat.
Sy 5.1.2. ALGORTTHM 2. | |
This is the same as Algorlthm 1 except for step D, whlch becomes.

D, If the Chm—Squared level of the center pixel is greater than ng, flﬂd
the best two—atfa~t1me nixture via the LIMMIX.procedure.
5.1.3 ALGORITHM 3.

;c;' - _ ThlS is the same as Algorithm 1 except for D, which becomes'

D. If the Chlquuared level of the center plxel is greater than ng, and

'E. if the totals of the two largest vote winners in the vote of (B) ate greater
g ‘han or equal to Nz, the pixel is assumed to be a mixture of these two materlals._
Find their proportlons via the LIMMIX procedure (The 51gnature set contains only
these two materlals) If the totals of at 1east one of the two largest vote
winners is less than Nz, find the best two—at—a—tlme mrxture via the LIMMIK procedure"

(all signatures are included in the signature set).
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-.5.2 TEST RESULTS

Tn order to determine which of the three algorithms performed the best, and

' to determine proper parameter settings for each, these algorithms were tested

on three types of data sets: (1) a water data set from an eight ‘square mile area

near Lansing,. Michlgan, consisting of 20 small lakes and ponds, which ranged in

gize from seventy acres to one-third of an acre, averaglng about 10 acres

(Section 5.2,1). (2) An agricultural data set, gathered 21 August 1973, with
target_Crops of corn and soybeans (one of the CITARS data sets), with training

and test data taken from a 5 x'20 mile area in Fayette County, Illinois (Section
5.2.3). (3) Two.agricultural data sets with wheat as the target crop. The first
was a lh-section data sétszom Hiil County, Montana with 6 of the sections taken
to be test data'(SectionZS.Z.Z). The second was a CITARS data set, gathered

10 June 1973, with training and test data taken from a 5 x 20 wmile area in Fayette
County, Illinois (Section 5.2.4).

Preliminary testlng was done on the water data set and omn the Hill County

data set. These prellmlnary test results showed that the performance of

algorithm one was markedly inferior to that of conventional recognition, and

it was discarded. Algorithms two and three were found to perform approximately -

~ the same in all cases, although algorithm three is preferable'because of shorter

processing time. Consequently, only algorithm three was tested further, amd

it will be referred to as 'the nine-point mixtures algorithm'.

Examination of the four parameters, Nl’ NZ’ ni, and ng, in algorithms

two and three chowed that the best values of both Nl and N were invariant over

the_data sets studied, N was found to be optimum at e1ght, and severely
degraded performance resulted from any other setting. The optlmal value of N2 '
was found te be four.

The best settlngs of ni and n; vary from,data set ta data set, much as the

_parametnrs xl and xg do in LIMMIX. And as 1n LIMMIX, tralnlng is the only method

we 10w have for selecting parameter settlngs.

“5,2.1 “WATER. DETEGTION

-The‘water data was the first - set QSed for testing of nine-point mixtures.

,Bgcause_cqﬁventional_recognition_and LIMMIX prqceséing results wgre.alrgady .
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other procedures. These procedures were developed at NASA
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available for this data set, a direct comparison was possible. TFigure 20 shows
a comparison of results for a range parameter settings for LIMMIX and nine-point

mixtures processmng, and the best parameter settlng for conventlonal recognltmon

processing.

In the nine-point mixtures processing on the water data, it was found'that
the results were quite. sen51t1ve to changes in nz, Whlle the results were almost
invariant for any ni greater than 25. .

It can be seen from ‘the flgure that both LIMMIZX and nlne—polnt mixtures
performed better than conventional recognition. It is noteworthy'that'fox-"'
nine-point mixtures when the detection rate was 100%, the false alarm rate was

only about 0. 85. In addltlon, nlne—p01nt mixtures was qulte accurate even on

a lake by lake basis.

In this test only three signatures were used, and we found that the speed
of processing with nine-point mixtures was approximately .that of conventional
recognition. As the number of 51gnatures 1ncreases, processzng time of n1ne—p01nt
mixtures increases more rapldly than that of conventlonal recogn1t10n. in a
productlon setup, the proce531ng tlme of nlne—p01nt mixtures would be approx1mately:

2 m!
37 G2l

times that of oonventlonal recognltlon, where m is the number of algnatures.
5.2.1.1 Comparison of Surface Water Detection Procedures

For purposes. of comparlson, the water data set was -processed with two . _
[16] and NASA personnel,

suggested that thlS comparlson be made. One of them employe a two—channel

'”isdmscrlmlnant w1th a unxversa1 dec1510u algorlthm ' The other uses a tailored two-

channel discriminant establlshed with training data v1a4procedures obtained from

. the reference. It should be emphasazed that these dlscrlmlnant technlques were .- -

[16] Andersomn, A.C., 1973 ' Development of a Two-Channel Linear Dlscrlmxnant :
Function for Detectlng and Identlfylng Surface Water Usmng ERTS—l Data, :
Report No. J5C-08450, NASA, Houston.: . : : i
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developed for detecting all water bodies of 10 acres or more¥®, and they did just
that., Results are given for these discriminant methods as well as for nine-point

mixtures in Table 2.

Lot
P ,___.;'_“-".,__.v..,_.___m.ﬁ_._,.,__.-_w\,(.,
-

It is clear that nine-point mixtures is best for this scene insofar as
the number of lakes detected and % total water detected is concerned. However,
processing time for this procedure is much slower than for the other two, by

i abou. two orders of magnitude.

Signatures for water and non-water were obtained from a training area which
s ' comprised approximately'SZ'ofﬁthé'scene. These signaﬁures are shown in Figuré 21.
: In this figure, the universal discriminant obtained from the reference is showﬁ
in line 1. The tailored diseriminant, shown as line 2, was drawn by eve.

" The universal discriminant requires no signature extraction or experimenta-

. tion, and is extremely rapid. This procedure was found to detect lakes of greater
than ten acres, however it functioned erratically on lakes of significantly
smaller size. Overall accuracy was the lowest of the three in area determination.
It should also be mentioned that it found two lakes where there was actually one
narrow lake. '

The tailored discriminant requires signature extraction and some experimenta-
tion to determine the linear discriminant function. The speed of classification
is equal to that of the univexrsal discriminant. Performance, however, was better.
in as much as lakes of ten acres or more were again reliably found, but the
determination of lake size was more accurate. This procedure correctly identified
a narrow lake as just one 1aké instead of two. '

Nine-point mixtures requires both signature extraction and experimentation

to establish operatinj; parameters. This requires more effort than the tailored

discriminant. Nine-point mixtures detected all but one lake with an area of one-

'; i half acre or more while detecting a lake whose area was less than one-half acre.-

This procedure can be expected to reliably detect lakes of one acre or more. Area
el determination accuracy is also very high -- the average error on each lake was less
' than one acre, with almost zero total error. _The_main disadvantage isvprocessing”

pime. '
. *Report JSC 08449, table 8, page 7-4, documents the fact that the procedure was
. developed according to the criteria required for the National Program for the
. Inspection of Dams, These requirements were-that the procedure must accurately
detect the exlstance of lakes of 10 acres or more. Further, the procedure was
not required to estimate sizes of water b lies.

6L
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st e oo TABLE L2
' COMPARTSON OF WATER DETECTION PROCEDURES

NO. OF LAKES .~ EQUIVALENT NO.
_ : DETECTED OF WATER
PROCEDURE (OUT OF TWENTY)  PIXELS FOUND % DETECTION

' Universal Discriminant 13 - 162 | 67.1%
Tailored Discriminant 12 193 79. 9%
‘Nine-Point Mixtures : 19 S 245 101.4%
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TFor each of the above procedures there were an insignificant aumber of
false glarms. .

Figures 22, 23, and 24 are classification maps for the three procedures.
The tailored discriminant (Figure 23) fills out the lake areas more completely
than the universal discriminant (Figure 22). even. though the latter detected one

more lake. The classification map for nine-point mixtures (Figure 24) shows how

this procedure not only detects interior water pixels (denoted by the symbol

M), but alse delineates boundary, or mixture, pixels (denoted by the symbol *).
5.2.2 PRELIMINARY WHEAT DETECTION TEST

The nine-point mixtures algorithm was applied to the Hill county data set,
where results of conventional recognition and LIMMIX processing Wére available for
comparison. Table 3 shows results of the three processing procedures on this
data., The conventional recognition shown is the quadratic rule with a rejection
threshold of ©, LIMMIX is shown employing parameter values of x§=5, x§=
and proportion threshold 1= .4 (proportions less than T are set to zero, and the
remaining proportions renormalized so that they sum fo one). The nlnewpoint
mixtures rule is shown using parameter values of Nl=8, N2=4, ni=30, and n§=5.

Table 3 compares the detection of wheat for the three procedures. Thirteen
signatures were employed. Three of these represented wheat. Detection rates
were obtaired as follows. All the pixels in the test area were designated, using
gfound truth information, as wheat or non-wheat. The detection rate is defined
to be the equivalent percentage of wheat'pixels found by the procedure to be

wheat, The false alarm rate is defined to be the equivalent percentage of

- non-vwheat pixels found by the procedure to be wheat,

- The results in Table 3 were obtained by the use of classification mapé and
overlays: as such they should be treated as close estimates, rather than exact
figures. For purposes dficoﬁparison,HWe-ndte that field center recognition is -
about 80% for wheat on this data. However, on all vheat pixels recognition'was
only 63.47Z. It can be seen from.thls table that the nlne—pomnt mlxtures algorlthm
shows itself superior to both conventlonal recognltlon and LIMMIX. LIMMIX, on

the other hand, is sxgnlflcantly better than conventional recognltlon'aé a wheat

" detector.

it e b e e e 4 AE r  rmim comreliat
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 DARLE 3 |
WHEAT DETECTION (HILL COUNTY)

; ?roce&ﬁié Detection Rate”‘.'Faléé A1armfRéte'

. 9-Point Mixtures 78.7% 4.b%

Recognition . . 63.4% . 12.8%

| LIMMIX 71.4% ' 6.7%

68
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5.2.3 ESTIMATING PROPORTIONS OF CORN AND SOYBEANS

Tests were conducted on Fayette county data employing a set of signatures
derived during the post-project analysis of the CITARS project results. These
51gnatures were obtalned after breaking the data set into three parts: training
(20 quarter sections), pilot (10 sectlons), and test (10 sections). Thess three"
parts contain 2880 pixels, 5630 pixels, and 5529 pixels, respectively. The
'other' signatures were those previously obtained from the training quarter
secrions, while the signatures for corn and so7beans were obtained from the
pilot sectioms. | o

This was done because the corn and soybean fields in the training-afeai
had been found to be unrepresemntative of the corn and soybean fields in the
test data. _ _

The parameters of the nine-point mixtures rule were then established on
the training quarter-sections, using accuracy of area determination as the
criterion for selecting the best parameters. The results of the effort to establish
parameters are shown in Table 4.

Nine-point mixtures was then used on the test sections with parameter values
n§=20, n§=5. Results were poor. Examination of field center pixels shawed a
problem with misclassified 'other' pixels. TIuvestigation showed that the poor
results were due principally to the fact that there was no rejection threshold
used for mixtures. To correct this, a third chi-squared parameter, ng, was added
to the algorithm which sets a rejection threshold on mixtures, as ni does in
LIMMIX, WMixtures which are rejected are called ‘other'., With this addition, the
parameters were again established on the training quarter—sections.” The results
obtained are shown in Table 5.

The best settlngs of the parameters (nl—ZO, n2—5, n§—5) were employed on thn
test sections but again the results were poor. o

The parameters were then established on the larger set consisting of both
the pilot sections End'training-duarter;sections. ‘Results. are shown ia Table 6.

A selectlon of four parameter settings including the hest settmngs of the

parameters (n1—20, n2—2 3, n§ 2. 5) were then used on the test sectlons.
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TABLE 4

‘RESULIS. OF ESTABLISHING NINE-POINT MIXTURE PARAMETERS

PARAMETER SETTINGS
A 31,4.

20

20
20

- 20

2

_.”1_

2.5

5
7.5

10

Ground Truth

PROPORTION

Go:n

26.4
- 22.52
- 18.05
15.76

23.53

ESTTMATES. (/)
Soybeans
45.56
47.02
50.66
53,43
45.31 )
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. TABLE 5 ;
 RESULTS OF ESTABLISHING NINE~POINT MIRTURES PARAMETERS |

(Tra:mmg Quarter—-Sectlons Only)

Parameter Settings Proportlon Estimation (/)

ni n;: Tl§ . Gorn Soxbe:.ns
20 5 2.5 1812 43.83
20 5 5 : 22,96 45,47
. 20 2.5 2.5 - 18.76 40.47
20 2.5 5 26,46 43.35
) Ground Truth Do 23,53 45,31
. | |
71 |
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TABLE 6
RESULTS OF ESTABLISHING NINE-POINT MIXTURE PARAMETERS
(Training Quarter~Sections Plus Pilot Sections)

Parameter Settings Detection (%)
2 2 2
nl n2 n3 Corn Soybeans
20 5 255 21.75 38.13
20 5 5. 18.30  28.75
20 2.5 2.5 21.50 34.88
20 2.5 5 28.99 36.85
Ground Truth 24.54 33.63
72
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The "best" parameters (ni=20, n§=2.5, n§=2.5) yielded excellent results

when used on the test sections as shown in Table 7.

Why then were results so poor when parameters were established only on the
training quarter-sections? We knpw based on detgiled examinations, ;hat the corn
and soybeans fields in the training’region are not adeguately representative of
the corn and soybean fields in the test vegion. This is why the corn and soybean
signatures were obtained from the training quarter-sections plﬁs pilot sections,
rather than from the training sections alone. We believe that this is the
explanation for the poor reéults'obtained when the parameters were established on
the training quarter—sectioﬁs‘alone.

An analysis of the error was made in order to establish the consistency of
nine-point mixtures as an estimator of crop proportions. To do this the RMS
error between nine~point mixtures crop proportion estimate and ground truth
proportions was computed for each of the 10 test sections (averaging 553 pixels
each). The RMS error between the true percentage corn and the estimated percentage
corn over the ten test sections was 3.53(%). TFor soybeans the corresponding
figure was 4.33(%).

5.2.4 ESTIMATING PROPORTIONS OF WHEAT
. Another test of-nine~point mixtures on a data set with a target crop of wheat
was made using the CITARS data set of 10 June 1973 on a 5 x 20 mile area of
Fayette County, Illinois. There were twenty training quarter sections containing
a total of 2880 pixelé aﬁd nineteen test sections cohtéining a total of 10,223 bixels.

Because of time limitatibns, it was decided that we should at first limit
ourselves to the two best values of ni; ng, and ng, as indicated by the corn and
soybean test. When using these two parameter settings, an attempt to establish
parameter settings on the tralulng data was made. The results of this test are
" given in Table 8. The parameter settlng of ni—ZO n2 =2.5, n§ 2.5 gives the closer
estimate.

| Examination of these results from the training area showed that most of the
errors came from wheat recognitions in hay and summer faliow fields. As the ni
level for accepting a p1xe1 into the vote was rather 1arge, it appeared that
‘decreasing ni should help the results. Parameter settlngs With ni—l4 and n1—7 Were;

then tried on training data, and the results of this test are given iIn Table 9.
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_ TABLE 7 -

PROPORTION ESTIMATION ON TEST DATA

(Fayette County, August 21, 1973)

'vni | ng ng | Corn

0 5 2.5 13.56
20 5 5 20.12
20 2.5 2.5 15.85
20 2.5 5__:_ 24,56
‘ Ground Truth | 14.16

. Parameter Settings = .Proportion‘Estimatipn‘(%)

) Sogbeans-”
33.58
37.30
31.06
33.63

31.41

#Note: The parameter"set.éstablished by training
gives the best results on the test sections.
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" TABLE 8
PROPORTION ESTIMATION ON TRAINING DATA

Péfametéf:Settings Proportion Estimate (%)
2 2 2

i My T3 . BHEAT

20 . 2.5 5.0 23.3

200 2.5 2.5 18.1

Ground Truth 13.1

AR
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(TABLE 9 . |
PROPORTION ESTIMATION ON TRAINING DATA (CONTINUED)
Parameter Sgttings '  ?fb§brtion Estimate,(%)‘

2 2 2 —
mom, N3 . WEEAT

4 2.5 5.0 o 22.5

¥;g e . 16 2.5 2.5 . 16,5

| 7 2.5 5.0  aLs |

7 2.5 .25 - 135 = - A R R

Ground Truth . 13.1
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These parameter settings and results were then graphed, Extrapolation from

‘}2.5,

this graph indicated that the correct parameter settings would be ni=6, n
n§=2.5. The results for this test is shown in Table 10. rihe results on the
test data were then computed for each of the parameter settings previously tried.
These results are given in Table 11. A graph of the training and test results
plotted against the parameters is shown in Figure 25.
5.3 DISCUSSION

Analysis of the results obtained by nine-point mixtures reveals that:
(1) Nine-point mixtures has performed significantly better than conventional
recognition as a crop proportion estimator for each data set examimed. (2) Nine-
point mixtures has shown itself capable of extremely accurate crop proportion
estimation on one agricultural data set (Section 5.2.3). (3) On the other
agricultural data set (Section 5.2.4), while nine-point mixtures performed better
than conventional recognition, it is clear that better methods of setting the
parameters should be investigated. (4) Nine-point mixtures has shown itself
capable of extremely accurate proportion estimation of water, even with very
small (.3 acre) lakes. (5) Nine-point mixtures appear to be consistent in this
respect: it retains much of its accuracy even over small areas, as indicated by
both the corn and 50yBeam test, and the water test. (6) Nine-point mixtures
is comparable to conventional recognition in processing time for a reasonable

number of signatures.
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2 . TmBLE10 | |
' PROPORTION ESTTMATING ON TRAINING DATA
(CONTINUED)

j | o Parameter Settings Proportion Estimate(%)
WHEAT -

, 6 2.5 2.5 | 12.6
;ﬂ ' .'_ .- CGround Truth = 13

TABLE 11
PROPORTION ESTIMATION ON TEST DATA
Parameter Settings ‘Proportion Estimate (%) =
2 2 2 ‘
My Ay Mg _ ~ WHEAT

20 2.5 5.0 32.7
200 2.5 2.5 . 26.6
1 2.5 540 - 29.3
14 2.5 2.5 221 o
2.5 2.5 a2 e L TR
Groumd Trath . . 9,0 B | S
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6
CONCLUSTONS AND RECOMMENDATIONS

Results of tests performed on LANDSAT data sets show that the LIMMIX and
nine-point mixtures processing schemes offer significant improvement over
both conventional recognition and MIXMAP processing. The reason for this
superior performance seem to stem from the incdrpuration of prior information
about mixture pixels and their spatial arrangement. The reduced number of
speétral channels required for these procedures offers a further advantage over
MIXMAP, For these reasons we believe that further testing of these newer
concepts is warranted. In addition, reevaluation of data averaging should be
considered,

The attainment of superior performance via LIMMIX and nine-point mixtures
is possible only when the parémeters of these procedures are cbrfégtly'set;
thus the problem of setting these parameters warrants further study. This is
especially true for nine-point mixtures because of it's. greater number of
parameters.

Analysis of signatures shows they are often clea:ly mdltimodal, and the
employment of unimodal signatures may degrade performarnce severely. This
indicates that the effect of the utilization of several unimodal signature to
represent a single object class be investigated in conjun;tipn.with_;hege newer
proportion estimation procedures. The possibility of doing thi$ with MIXMAP
is limited because of the restriction on the size of the signature set permitted

relative to the mumber of spectfal channels.
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APPENDIX A
! ESTIMATION OF CORRELATION FUNCTION

The computation of the estimate of the correlation function for a

single field and single element chamnels is as follows. TFor simplicity, we

assume that the field center pixels form a rectangﬁlar grid with line numbers
A L oL.4lsH. : point <p<P., N =P.~P.+l. i -
N L,L,21<E,, LZ.L1+1 N point numbers P,P,<P<P,, Np Py P;+l. The signal

o at coordinates (L,P) is denoted by X(L,P). The sample mean along point P is

denoted by ié where

l  X(L,P)
=L

£ |

§% =

 §} The sample variance along point P is denoted by s% and is computed by

L L

2 2
N I 2P - K] N I X(LLP-E)
L=L1 L'—'Ll

Then an estimate R(j), Oéjéytfl, of the correlation function R() for the field,

crop type, and channel is taken as:

R(B)=R(0)=1
7 P  L.~j = R
: R(T) = =k 2 2 _[X(L,P) X J[X(L+,P) ;Ep]
L (3) f_fffﬁ—:rf-.z 3 — ]
Np (8 -3) ¢ .
S P=P, L=y P

If we transform the'&ata by
| o y(LP) = —5—
E P
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then we have

e Py Ly
R() = TLT) I y(L.B)e y(43,B)  IZis -l
P= 1 L=Ll

The transformation from X to ¥ may be thought of as correcting for a simultaneous
multlpllcative and addltlve scan angle effect.

"Now let us assume that there are K fields and that the estimated correlatlon
function for the k field is denoted by:

R () Isk<K,  OsisN, -1

="L,k

TLet the average of the correlation functions over the K fields be denoted by

n
| K(3)
i where j ranges over Q_JﬁNmi -1
' and'. Nmin = mié NL,k
" Then
,
R(0)=1
1 K A
iy = = ‘ 4 <j< -
R(i) = ¥ ) BR.(D) 1SN, -1

j=
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APPENDIX B

DESCRIPTION OF LIMMIX

The following is a step by step explanation of the LIMMIX algorithm. The
step numbers correspond to the accompanying f£lowchart. (Figure 26). Also
included is a list of program variables.

EXPLANATION OF ALGORITHM

1, The mean (&) and covariance matrix (M) for each signature is ‘entered

and stored. A is an n x 1 matrix and M is n x n (n = number of channels),

2. To save i:i'me., four frequently called terms are precomputed and Stored.

A, TE
c

The inverse of the average of the covariance matrix for zll
combinations of up to L at a time are calculated. The subscript c
designates the combination number. For combipations of one at a

time, c goes from 1 to m (m = number of signatures.) The combimation .

aumbers for 2 at a time begin at mt+l and are in this order: signatures

1and 2, 1 and 3,440y L +m, 2 and 3, 2 and 4,...,etec.
1
M A,
c i
Each of the previously stored matrices are multiplied by each
of the A (mean) vectors which correspond to the cr_:mpbn_ent matrices
used to compute ezach ﬁc matrix.

=1 : CoL - .- e
Examplet MZ 5 is multiplied by Az'and the result stored
H] .

Then M_ 5 is multiplied by &_5 and the result stoted
Each of -these products tesult in an n x 1 matrix,

L K

c. rt

First, thé I' (gamma) matrix is célcule;ted. ,Here»isvan example

where .t:,he‘matrix~Qdmbiﬂ.néiti‘on"c‘or‘rp'a;:.'l‘.nii;t‘g‘ covariances of signatures ong, -
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two, and four are used. ¥ will stand for ﬁzlz 4
L Rt |

4

[ape, ey Aqus

To= | AgA ADEA, KA, |

oy, e,

-

I' iz an m x m matrix, independent of the number of channels. (Each

At P dis - 1x1 matrix, or just 2 number).

F*, the augmented matrix, is the I matrix with an extra row

and column of ones, and & zero in the mtl, m+l position.

Example:
U117 Tio Tig 1
e Tax1 Tpa Ty 1 1
T T r 1

31
, x\k 1 1 1 0

The inverse of the above matrix is stored for all the combinations.

D. 1in|H |
c

As a biproduct of taking the 1nverse of the average covarlanhe
matrlx, the determinant is computed. The natural log of these
determinants are stored for use later in the llkelihood and chi-

squared calculatlons.

3-6. The llkellhood chl—squa ed and p*oportlon vector Ehoragc blns are
. _ glven 1n1tia1 values. The data Vector (o x 1) from the flrst plxel is
multiplied by the transpose of the f£irst MB vector (l x n) to yield g.
- For the first m calculations, there is one.A-pqr:M and g is just a number.,
When MAls, are called from stbrage in sequences where two or more Alg are

multiplled by a common M, g is a vector whose length 1s the number of

" components of M.

8
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7.

8-10.

11“14 .

15-17.

-1 R
The g vactor is augmented and then multiplied by the F matrix that used
the same M matrix. The product gives the proportion vector of the com—

ponent 51gnatures and A (which serves the role of a Lagrange multiplier).

1f any one of the proportiens is negatlve, that signature set is rejected
as a solution and. the next MA-and F -1 matrices are used to find a new A
vector. When an all positive proportion vector is found, the likelihood

and chi-squared values are calculated.

If this calculated likelihood i greater than (i.e., less likely) the
stored wvalus (a ), the 51gnature set is rejected ds 2 solution. However,
if a, > a, the new values for the likelihood, chi-gqiiare, and proportion
vector are substituted into temporary storage. When the level is complete
(i.e., when all the one at a time or two at a2 time etc. combinations have
been looked at) a s xz and the Ao's are stored to be output on tape later.
If the level has not been completed, the matrices for the next combination
of signatures are brought from storage and the calcuiations starting from

step 6, are done again.

When a level has been complewed, the values that will be caleulated in
the next level are initialized with those calculated from the previous
level. This is not really a step, since the winning values from the
previous level are already in temporary storage (step 13).

Step 16 is lncluded to clarify the fact that the values are not
initialized to the same numbers in the succeeding levels as they were
in the first (step 5). This method of initialization prevents solutions
at the 1 + 1 level being less likely than the solutions at the i level.
8.8., the most iikely two at a time may be a recognition with the second
proportion equal to zero,

When all four {or less) 1evels are complete, the 1ikelihood, chi«square,
and proportion vector for each level are put on tape, and the algorithm
proceeds to the next pixel.
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2
' Pi'ecomputé
and Store
=] -1
Mc ' 2 P* ’
Inlﬁlg -ﬁ-'lﬂi
3 -
Pick Data | _
Point X
4 16
Chloose Fu-si; _ Inzi_tiali_z_e a5,
S T .
M Ai &T xo’ho s with
praviously
5 Stored Values
8, =®
2 _
Xo =
A's=0
0 -
8 9 Y

Choose Next

. Levels Com-
plete ?

R

Data vector
Likelihood

-~
o> NP

Chi-square
Proportion vector
Combination number (subscript)

Signature mean vector
Signature covariance matrix

13

Level
Complete

Yes
?

X2

%o

- X
ta 31
?Los Als

~a
2

3ls, &1t |

in Sequence

10 .

A's Positive

a=<H L

K> - <A L,g> - A+ln {1
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LIMMIX. is a module of POINT. A program whose main function is to transier
data polnts to its mndules in accordance with control data. This. contro1 data
SPECIfIES the ground area to be processed. The format of POINT. -is such that
modules may be called at several different stages of the data processing -
procedure. At step one of POINT., ‘before any data has been read in, LIMMIX.
control variables are read, initialization is completed, and pre-computations are
doné. In step two, the number of output channels is set to 22. This is .after
the POINT. control variables have been read but before any processing is done,
Lastly, POINT. calls the processing part of LIMMIX. (Flowchart Step -3 to the end)

" for each data point until the area is complete. The_ﬁext page contains a list

of the LIMMIX control variables.

CALLING SEQUENCE: SCOMPILE MAD, EXECUTE
POINT. (LIMMIX.)
E'M
§ BINARY
LIMMIX,BINARY DECK

§ DATA |

READ AND PRINT DATA CARD(S) FOR LIMMIX.*
SIGNATURES
INBIN,OUTBIN, FILE,OFILE, . . .
NSA'S (OR POLYGON COORDINATESD)=#

(l)POLYGON coordlnates have been run w1th LIMMIX on the ERIM ERTS pronect
with no apparent errors.
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LIMMIX VARTABLES

IT IS RESET TO
. DEFAULT AFTER

VARTABLE DEFAULT ~HMODEI=S$STARTS* EYPLANATION
: NSIG(Z) ,u  - None | _NO Number of signatures. (each with NV

- ND: A - None
/NV(2)‘ None
ICODE 1,2,3,4,...
¢ o
RANK( ) 4
SCALE - i
MODE 0
(2),

RANK*= NV+1

. and.

No

" No

No

Yes

Yeg .

Yes

" Yes

channels - subsets of channels not
‘allowed for signatures)

Maximum number of channels on +the
data tape.

Number of channelé on the data tape
that 'will be used (NV = NCHAN).

Which channels on the data tape
EX&I: v B ICODE(].) = l y 2, 4

Maximum number of signatures con—
sidered in the identification of
each pixel, RANK must be =<4

(RANK = NCOMP (ALIEN 2))

) . o
Sc e facter for ¥“ (chi-squarad)

0 means read the first NSIG signatures

1 means search tape for NSIG signatures
whose mames are read, one to a card, by
2C6% at the time of the search.

2 means search tape but use the previous
name list,

=-] means return w1thout readlng T

signatures, Do not use this optlon
in LINMAP or CLASFY,

- ==1 print nothing

The values that are set for NSIG NV and RANK are 1nterrelated.

0 print the i.d. card only : :

a character. Print the i.,d. card, mean
vector and covarlance matrix with CC as
the carrlage control character for the i, d.

For'.

1 . a given NSIG and NV, there is a ‘maximum settlng for RANK, The following table
' shows tha relatlonshlp.

when RANK = NSIG

vhen RANK # KSIG

i IS EOUTERE T FE SO SR Dt S
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APPENDIX C |
DESCRIPTION OF ALIEN 2

This'progiém,‘w:itteﬁ in the'programming iaﬁguage.MAb éé iﬁplemented
on an IBM 7094 computer, peérforms- the anéleis algofithm fbr'LIMMIX.
‘This program accepts the output of LIMMIX;; and’?roHﬁces the following
ocutput: . . |
L. How many plxels were classlfled by recognmtlon, maxtures with
o 2 51gnatures, ‘mixtures with 3 sngnatures, mlxtures with 4
signatures, and the number unclassified.
2. Theramqunt:ofreach;matgrlal-classlfled:by’each of the‘aboﬁe
methods.
3. The amount of each materlal classified by each of the above
metnods, but as a fraction of the total number of plxals.
4, The amount of each material classified by each of the above methods,
but as é fraction of the totaJ number of classified*pixels.
i. The amount of each material from recognition, recagnltion plus
2 gignature mixtures, recognition plus 2 and 3 51gnature mlxtures;'
and the total amount of each material, '
6. The mean square error (in pixels) of the subjéct material, both
for each area and the sum of all of the areas.
7. .The percent mean square error. of the. subgect materlal both
 fpr each area, and the sum of all the areas.
Portions of this output can be suppressed,-

The program is a module of POINT, a program Whlch provmdes data

' po;nts tn it's modules in accordance with control data (NSA cards) and in -

a rlgld format whldh 1ncludes calls ‘to all of the modules before ény control

‘data is read, after control data is read, before each line of data is read,
and after each area. has been processed. For each data p01nt, a call £o.

' the internal functlon of c‘a.c:h madule is made, for p1008531ng of data.
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The program ALIEN2 is organized as follows: -
STEP(l) - (Thls step is called before POINT's control data is read)
setup and 1n1t1allzatlon, obtaii control variables.
STEP(2) - (POINT. calls this after initial control data is read),
zero sums of number of pixels of each class if starting
new region, | - '
STEP(S) - (POINT. calls thls after each area is processed) if this
wasn‘t the last area to.be comb:ned into one vregion,
return to POINT, 0therw1se compute and print out statisties.,
Internal Functlun PSUM - (POINT. calls this for each data point) It
is here that the decision as to whether a point is one material,
two materials or more is made, and here the thresholding
and/or renormalization is done, and fimally the pixel is - )
added,to,ﬁhe running sum of the number of pixels of each
material. - | -
The variabias'dfl) through J(&), (in the THROUGH loops, lines 106-109)
correspond to the variables,xi, ng xg, XZ, of LIMMIX, which are used as
thresholds (in lines 114 and 115) to decide whether the pixel is one
material, two or alien. if the pi#el is alien, the alien COUNT is
increased (in line 117), otherwise, the correct N-materials at a time count
is incremented in linevllga _ '
Then, in lines 121 to 129, the combination of materials is decoded,
and tha preportions of these materials are stored in the OUT array.
At this p01nt elther thresholdlng, or thrasholdlng with renormalazatlon
is done to the proportions (in 11nes‘136 to 138 or 139 ao 150, respectively),

: and'finaily,fhase proportiona‘are,added-tqltha_SUM,array,_Vhichihplds ﬁha

accumulated totals for each material,. Optionally, 2 likelihood weightingb

can be used as a deci31on rule, and ths is done in,llnes 151-162. Saa

Flﬂure 27 for ALIENA flowchart. _ o B Con - R
Tha arrays COUNT and SUM are indexed by the variable Z, which ie

- dncremented each. time the data point has been processed by a set of . . . . .
: param tars, and thus the praport1on of each material (1n SUM) and the count .

_ oF how many pmxels were pura, or of two materiqls, ate., (in COUNT) is kept

separate for’ each parameter settxng. Furthar, the array ‘SoM is indexed
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by N the number of materlels in thet pixel, so that the amount of pure
materlal two material mixtures, etc., is kePt separate for each
parameter setiing: and each material. q:;i:' '

- Control variables for this program are. as follows.

R : __'PoésiBLL* SR o
1  VARIABLE ‘_VALUES _|_DEFAULT | FUNCTION

THRESH  ‘ ‘,$ON$-¢},‘ off . [ When THRESHP$ON$, any proyortmon less .
S o R " than TAU* is set to zZero B
NORMAL | &om§ | off | When NORMAL=$ON$, any proportion 1ess

: ' ‘Aehan_gégf.;seeet to zero, Then all

remaining proportions are re-normalized
. o - to sum to one. ;& :
LIKELY SONS T ’,When LIKELY—$ON$, then the llkelz.hood
' dec151ou rule is uged, i.e,, ﬂl,, 93
_{_l 4, are ‘welghted’, and the m;nlmum
is decided upon (see descrlptlon of
TIMMIX output tape). When LIKELY=$ON$, P*
| must be speeified 'When LIKELY is

~not $0N$, the Chi squared .decision rule
: _ _ : .1 3s used. :
'HAFOUT . SON$ | qff_'.. ."When HAFOUT—$0N$, output 1tems (l) (4}
' : are not calculated.
ERROUT - ;. BONS |7 off . | ;When ERROR=$ON$,. output items (5) & (6)" _

| | ‘are caleulated. When ERROR=$ONS, TRUTH , CHAN#
o ‘ N | | must be specifled._ o | ..” T
'.KCOM?‘t’:t"" 1-4 o ﬂ'“A maX1mum of NCDMP—smgnatures per =
S : mixtures was used. L

. NSEG o oo 3-89 ). 1. .. o Number of signatures. R

fATAﬁTI L | Iany | o , b': Thresholdlng value, see NORHAL* )

~ #See Specification of Variable

CooL
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POSSIBLE

VARIABLE VALUES DEFAULT FUNCTION

START (1-4) INTEGER 1 Starting value of index., See Figure 28.

STP(1-4) INTEGER 1 Increment of index. See Figure 28.

JEND (1-4) INTEGER 1 Final value of index. See Figure 28,

CHAN 1-9 1 Material or signature under consideration
in calculating mean square error,

P(1-4,1-21)| any 0 Weights used in likelihood decision rule,
indexed by START*, STP*, JEND*, see
Figure 28.

TRUTH any Garbage The amount of material under consideration
for each area.

LCUT (1-4) any 1000 Alien thresholds for likelihood
decision rule.

SUMOUT $ONS$ off When SUMOUT=$ON$ only output Item

*See Specification of Variable

(4) is calculated.

92
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Point
Order of Steps - Initialize . L
Step(1)-At Start of Program
Step(2)-Next After (1), First
After Each NSA
proces st oo
Step(5)-Any More NSA? -
\'nl No Z vy Step (2)
as Last the
Done Last in This Group? No
lYu
Zero Sums
Process
/\ L Step (5)
Does Yoo Does Halfout=§ON§ ?
Likely=$ON§ ? -
s =
Output # Pixels of
Add Weights P(I) Is x, <J(1) Yes Material for Each |
to Likelihoods L(I) 1
;:: I for Which 7
Smallest
e i Output Sums of Each
| Material for Each I
Is x, <LCUTM? oo i
1 - Output Above Sums
1s xq < J(3) as Fraction of
l Total # Pixels
Yes s x, <) P No
E Does Sumout=§ON$
bt {Yes
Sums
as Fraction of ¢
Non-Alien Pixels
If Any Proportion Is ‘
Less Than Tau, Set Yes Sum (Amount)
S rriine Does Thresh=$ON$ ? oot gyl
¥ t
Does Normal=§ON$ ? Does Errout =§ON§ ?
Yes
e fres
If Any Proportion Add Proportions of Output Mean Square Error
1s Less Than Tau, Each Material Into in Pixels for This Ares |
Set It to Zero. Correct Sum }
Normalize Remaining
Proportions to Sum Output G Mean Square
to One. Error for This Area
Output §, Mean Square Mean Square
Error for All Areas wmw All Areas

FIGURE 27. ALIENZ FLOW CHART

ORIGINAL PAGE IS =
OF POOR QUALITY
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——— DO FROM J(1) = START(1) to
—— DO FROM J(2) = START(2) to
——— DO FROM J(3) = START(3) to
—— DO FROM J(4) = START(3) TO
LIKELIHOOD RULE

TAKE MINIMUM OF
L(I) + P(1,J(1))

FOR I=1, 2, 3, &4

IS Xg < LCUT(I)?

f — YES

i CLASSIFIED *
AS ItP DATA SET

J(1) = JEND(1) BY STEPS OF STF(L)
J(2) = JEND(2) BY STEPS OF STP(2)
J(3) = JEND(3) BY STEPS OF STP(3)
J(4) = JEND(4) BY STEPS OF STP(4)
CHI-SQUARED KULE

IS x, < J(1) _YES

no
1S x, < 3(2) _¥ES
no
IS x5 < J(3) _Y¥ES |
no

Is X4 < J(4) YES

FIGURE 28. EXPANSION OF ALIENZ DECTSION RULE
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APPENDIX D
DESCRIPTION OF GEOM2

The distances obtained for the geometrical signature analysis for
IMMLX processing (GEOM?.) are defined as follows. To avoid notational
complex:.ty we will assume that a specific subset of Lil signatures has
been chosen and relabeled if necessary, so that their means are denoteci

by Al’ A2’ . "’AIA_-J. and covariance matrices by Ml, M?.’ . "M'L+l Let Hl

denote the hyperplane of dimeusion k=1 though the means Az,... A.L +i and let

Z be the point in By which maximizes the Gaussian density with parameters

Al’ MJ. | The_n d_l is dg_fin_ed by
a? = <z-A (z-4,)>
1 12 Ml

it has been shown by W. Richardsen in Reference [2} that d, may be

1
computed-in the follow:.ng fashion, Let I denote the (LAHLl)x(L+l) matrix

with entries A., Ml A >3 L g4, j g L1,

Let e, denote the colum vector of 1ength L with all components egqual to

1, and let I'f be the (L+2)x(L+2) matrix d.efined by

\

T
re = | L o
- . - *

Then —%‘— is the (1,1) element of the inverse of I‘l. More gen=rally

% |

1L , e %
—5— is the (i.1i) element of the inverse of L 1< i< kbl
1 =tz

i.

7 By some manipulation one can obtain a more conveniént form of the

Richardson result for the computation of the d . Let Bil 1-—A and

1

. let:T. be the L x L matrix ‘defined by
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-1 -1
<B2,1, I-Il }32’1> <}32’1, Ml BT_.,l,l>
T -
:l: "‘1 e "'"l
Bryi,1, M By,0” Brya,i ¥ Bra,r
ka
Set
> Ty ®p-1
T, =
1 t
€ni 0
Then _di‘ is the (L,L) element of the inverse of ?%. In general, -di is

the (L,L) element of the inverse of f?.

D,1 OUTLINE OF THE PROGRAM
A, Input control data, signatures. G5ture covariance terms in the
GAMMA matrix, and means in the MATRIX matrix.
B. TFor each signature (say, the mth signature) repeat through B(3).
B(1l) Assipgn MA.TRXZ‘(I,J) + MATRIX(J,I) - MATRIX(M,I)
This moves the mth corner of the signature complex to the origin.
B(2) Assign MATRIX(I,J) < MATRX2(J,I) Invert this translated signature
complex
B(3) Assign GAMMA (M,I,J) + MATRIX(I,J) (GAMEA(M,I,J)H]‘)MATRXZCI,J}
C. For each signature (say, the mf-':'h signature) repeat through C(5).
C{l). For each combaination of (NO-l) signatures, (X1 X, XNO—l) which
' does not include the nt? signature, select the following
elements of GAMMA(M,I,J)

@ x) e e e By Ky )

Fyo-12 ¥ - - - Q&m—_l’_ _XMO_-J_._)
‘and arrange these elements of GAMMA(M,I,J) in a (NO-1)X(NO-1)

matrix, in the above order, assign these elements to
MATRIX(I,J).

9%
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. _ - G(2)., Augment MATRIX(I,J) by placing 1.0 in ths (NO-l)th row and

2 ' : : column, and 0,0 in the ((¥o-1), (NO-1)) position,

\ ~ €(3). Invert MATRIXCI J) and place the inverse back 1nto MATRIX(I J)

o c(s), Assign MATRIE(NO, NO)  (-MATRTX(NO,N0))MZ

' '0(5). The element_MATRIX(NO,NO) then contains the desired answer,
and,is_printed:out.

b, End of Program -

D,2 HOW T0 RUN THE PROGRAM o
GEOM2 needs the follow1ng 1nput.

NO - the size of smmplex used measurlng the dlstances, i. e., in
' Figures -'énd ", No=3,

j% NSIG - the total number of signatures to be input (1ess than twelwve)
-~ NCHAN  ~ he number of chanmnels in the data (less than twelve)
. | A typical deck might Look llke
L '$COMPILE MAD, EXECUTE '
' ’ - GEOM2, -
| EM
3 $BINARY

{GEOM2 BINARY DECK}
SDATA .
V0=5 Nbi&=b, NCHAN~4*

{SIGNATURE DECKS IN STANDARD ERIM FORMAT}

97
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" APPENDIX E -
-DESCRIPTION OF CLUSTR

ThlS mrogrem'wrltten in the prngrammlng 1anguage MAD as 1mplemented
on an IEM 7094 computer, 1mplements the clusterlng algorlthme descrlbed

in Sectlon 4.3,

E.1 ALGORTTHM ONE

NCHAN ~ number of channels, if dlfferent from :

A (must ‘be < 8) : -
Any POINT control varlahles (i, e., NC, NV IGODE(l))
LASTID~ ID FIELD of last NSA to be clustered Default
| i STTTTTTS o - IR

Rare:

oo If only a very few clusters are produced, it may be necessary to

sat RHOSRT to less than 8. With more than 5 channels, increase
' RHOSRT as follows:

S ' RHOSRT - thlS should be set to

1—NGHAN
.M (Range of 2 standard devmatlons in channel i)
i=1

. _ L
NCHAN = (KNCHAN)NCHANJ

¢ Where KNCHAN 150 for NCHAN 1 to 6, 100 for NCHAN - 7, 70 for NCHAN =
vf Also, set REPLAcmﬁ ?REQSRTv,f'v,

many clusters prcduced it may be necessary to reset PERCTl and PERCT2,

98

- This is the default algorithm, The following veriableevmust"be'Set::v'-

Tf some clusters contaln too many data polnts, or 1f there.are too . -
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" PERCTL e'whéhEVEf“a.cluétef holds more than PERCT of the-éoints,
' clustering is stopped, Default is .166 ' 7
PERCT2 - whenever the largest NUM clusters ‘hold more than PERCTZ of
T the p01nts, ‘clustering is stopped default is .666 .

E.z' ALGORTTHNM THO

FNER varlables are the same as in algorlthm one, except T
INIT - if INIT-$ON$, points from NSA's with dlfferlng FIRST SIX
GHARACTERS in the ID field will be separated and these _

first six characters will be used as ‘the name of ‘the B

cluster, this is useful to 1dent1fy multzmodallty.

E.3 ALGORITHY THREE

POINT CONTROL VARTABLES (i.e., NG, NV, ICODE(L))
i NSPACE - must be set to SON%. _
SEQ - if SEQ—$ON$, updatlng of means and varlances w1ll ocecur
after each point, otherwise after each NSA Recommended
$ONS For < 2000 polnts only, o e .
NNIEB - if NNIEB“$OFF$, the linear c13551flcat10n rule is used
for point e351gnment, otherw1se, euclldlan distance is
used o TR
NUM ~ only the largeet-NUM,clusters arevdieplayed.'
. "NUM < 30, default is 15,
LASTID - as above.
NCHAN - as above but < 5. .

E.4 HISTOGRAMMING

Histogramming! After the eompletion of any of the above algoritﬁms,

a histogram of “all the magor clusters can be obtalned at. 1o addltloual eoste T
. This type of hlstogrem hgs the advantage that it represents the data set,

. sans no;se and niytures, and it requires no. tape mnunts.

HIST $ON$—default is §ON$

.JMIN' ;- the smallest data value displayed default is 1,
" MAX - the largest data value dlsplayed ‘default is 100.‘
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After clusters have been produced 1t may be necessary Lo further
comblne them.‘
Thls program has the oapebllity of combining elgnatures together on.

the basis of probability of mmscla551f1catlon, and this combinmng is

stopped whenever more than PERCTL of the points 1n all of smgnatures have

been comblned, or whenever the most populous M clusters have. more than
PFRCT2 of the points in all signatures.

To use this capability, eimply specify COMCOV=$O0N$, and NSIG=Number -
of smgnatures' this is to be followed by the s1gnetures. If it is desmred ‘

that signatures with unlike ID fields (i. e., the first szx charecters of
the ID) not be combined, specmfy INIT—$0££$ also.  If it is desired to combine

the signatures with weighting by the number of points in the signature,

- specify WELGHT=SONS§, -

SAMTLE SET TPS:

 DECK

CLUSTR,
OBJEGT

CLUSTERING ALGORITHM ONE, HISTOGRAMMING,
CHANNELS.#,-S,-6,-7,~8-u5ed out-oﬁ 24
$COMPILE MAD

 POINE, (CLUSTR, )
S Em

{$EENARX

SDATA
Nc-24 NV=5, NCHAN=S, ICODE(L) = 4,5,6,7:8
HIST=SONS% '
NSA'S TO BE { NaA=

CLUSTERED } o L

GLUSTERING OF SIGNATURES, &' GHANNELS 28 SIGNATURES WEIGHIED comEININGe
$COMPILE MAD; EXECUTE . .
POINT (CLUSTR.,)

 E™M
o - SBINARY
- CLUSIR. 7
OBJECT
DECK . '°“4DATA - - .

-100

e A 8 T T b ke

g e a3
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CLUSTERING ALGORITHM TWO, NO HISTOGRAMMING, LAST NSA ID IS $QQ100$
FOUR CHANNELS

$COMPILE MAD
POINT, (CLUSTR, )
E'M
$BINARY
CLUSTR.{
| OBJECT
g DECK
§ $DATA
| INIT=$0N%, LASTID=$QQLO0S*
gg ] NSA= $50Y$
'% NSA= $50Y$
% ] NSA'S NSA= $CORNS
I TO BE etc.
CLOSTERED | ysas $QQ1004+
} CLUSTERING ALGORITHM THREE, UPDATE AFTER EACH POINT, LINEAR RUJE FOUR CHANNELS
] $COMPILE MAD
| POINT, (CLUSTR. )
;% EM
i $BINARY
| CLUSTR.{
OBJECT
DECK
S$DATA
NSPACE=$0N$, SEQ=$0N$, NNIEB=$0FF$*
NSA'S NSA=
TO BE {
. CLUSTERED { o, O —
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E.5 LIST OF THE CONTROL VARIABLES

VARTABLE

NAME

NCHAN

INIT
NSPACE

NUM

LASTID

NNIEB

SEQ

cuT(3)

CARDS

PERCT1

PERCT2

HIST

DEFAULT
VALUE
4

$OFF$
$OFFS

10

$TTTITTS

$ONS

S0FF$

10

$ONS$

.106

.666

$ONS$

EXPLANATION

Number of channels to be used (<8) (This
must always be specified if different from 4)

An option to 'mame' clusters, see algorithm 2,
To effect use of algorithm 3, set NSPACE=$ONS

The most populous NUM clusters are used for
display (NUM < 30)

This is the ID field of the last NSA used for
each operation, BSee examples

This specifies that the distance measure to
be used with algorithm 3 is the Ll or Euclidian
metric

When SEQ=$0N$S, the means and variances in
algorithm 3 are updated after each point;
when off, after each pass

Any cluster with > CUT(3) points in it will
have a signature deck punched up for it,
unless CARDS=30FFS

When CARDS=$0FF$, no signature decks are
punched,

In algorithms 1 and 2 whenever a cluster
contains more than PERCT1 of the points, the
combining is halted,

In alporithms 1 and 2 whenever the NUM
largest clusters contain more than PERCT2
of the points, combining is halted.

Whenever HIST=$0N$, histograms of the clusters
will be made for each channel,

Number of approximating cells, Program runs
faster with fewer cells, but less accurately,
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VARIABLE

Y
&

MIN

SMX

NSIG

WEIGHT
coMCov
CUT(2)

THETA
RHORST

wnerLAC

SIZE

DEFAULT
VALUE

$ONS

SOFF$

8.0

-
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EXPLANATION

CMX Defaults to: 150, for NCHAN=1-6
100, for NCHAN=?
70, for NCHAN=8

Smallest value displayed in histogramming
(MIN > 0)

Largest value displayed in histogramming

(MAX < 300)

Maximum number of points stored, in Algorithms 1
and 2
SMX Defaults to: 800, for NCHAN=1-3

700, for NCHAN=4

500, for NCHAN=5-6

400, for NCHAN=7-8

Number of signatures to be combined, used
only with COMCOV=$0ONS,

When WEIGHT=$0NS$, combining of signatures is
weighted as to the number of points in each
signature, Used only with COMCOV=$ONS.

When COMCOV=$0NS$, the program will 'cluster'
signatures, 1l.e,, combine signatures on the
basis of high probability of misclassification

Any cluster with less than this number of
points in it is ignored for purposed of combining,

This is the © of algortihms 1 and 2 (step 1 of
description) '

This is the cig(O) of algorithms 1 and 2 (step 2

of description%

Any cluster with a ci§<REPLACE has that ci§ set equal
to REPLAC during the computation of the probability
of misclassification. It is assumed that for a
cluster with a variance less than REPLAC has, the
estimate of the variance is poor.

This is a vector giving the minimum and maximum
values of each channel, (SIZE(1l)=max wvalue of first
channel, SIZE(3)=max value of second channel, etc.),
used with algorithm 3 to specify the data space.
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APPENDIX F
DESCRIPTION OF NINE-TOINT PROGRAM (NPM)

This program, written in the projramming language MAD as implemented on
a IBM 7094 computer performs the algorithm of nine-point mixtures.

It uses the output tape of LIMMIX as input, and determines the amount
of each material found in a regiom, Ti.z program NPM is a module of POINT,
a program which transfers data from the input tape to its modules on a
pcint-by-point basis. POINT calls its modules as follows: STEP(l) of NPM
is transferred to before any processing takes place, STEP{4) after each
scanner line of data has been processed, and STEP(5) after each area in
the region has been processed. A call is made to the iatermal function
of NPM for each data point to be processed,

The organization of the program is as follows:

In STEP(1l), input of control variables, set-up and initialization is
done,

In STEP(4), after each line is processed, the actual declsion rule
is implemented, and a running sum of the amount of each material
found is kept.

In STEP(5), after each area of the region is processed, the ID field
of the POINT control card isg examined to determine whether or not
the end of the region has been reached, if so, the totals are printed
out, otherwise nothing is done.

In the internal function, the data which is passed by POINT is stored
into the vectors LINE, LINEl, LINE2, LINE3, LINE4, LINE5, for processing
after the end of a gcanner line of data.

An outline of the program is as follows:
A. read in coatrol data, initialize storage
B, for each point of data, store DATUM(2) in LINE, DATUM(4) in LINEL,
DATUM(5) in LINE2, DATUM(6) in LINE3, DATUM(7) in LINE4, DATUM(9) in LINES,
Fach DATUM is entered into the appropriate LINE vector in the position
corresponding to the data point's position in the scanner line.
DATUM{Z) 4is the identity of the recognition
DATUM(4) is the chi-squared level of the recognition (x 500)
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DATUM(5) is the proportion of material one in the mixture {x 500)
DATUM(6) is the proportion of material two in the mixture (x 500)
DATUM(7) is the code giving the identities of the materials in
the mixture
DATUM(9) is the chi-squared level of the mixture (x 500)
DATUM(2) and DATUM(4) are stored only if DATUM(2) < CHICUT, where CHICUT

is the n? of nine-point mixtures,

C. After each line, perform the following for each point of the previous
data line:

¢(L) take a vote of the 9 pixels forming a block around the center
pixel with regard to their identity, which is obtained from the
LINE vector.

C(2) find the largest and second largest vote totals and store these
in HOLD and HOLD2, with the number of the corresponding signature
in SAVE and SAVEZ2,

C(3) if the vote is > HOWMNY (HOWMNY is the Nl of nine-point mixtures),
add one to the corresponding signature's total, which is kept in
SUM, Go to C,

C(4) if thewote (C(3)) fails, examine LINEl, to see if the center
pixel's chi~squared level is < CHI2 (CHI2 corresponds to ng in
nine-point mixtures). If this chi-squared level is < CHI2, accept

the center pixel's recognition and add one to the corresponding

signature's total.
C(5) if C(4) fails, examine HOLD and HOLD2, to see if they are both
> CUT2 (CUT2 corresponds to N, in the nine-point mixtures), if this
is so, add (HOLD/(HOLD+HOLD2)) to the SAVE signature's total, and ;
(HOLD2/HOLD+HOLD2)) to the SAVE2 signature's total. Go to C. 3
C(6) i:i C(5) fails, check LINE5, to see if it is < CHICTZ (CHICT2
corresponds to ng in nine-~point mixtures). If this is so,
Jecode the combination number in LINE4 to determine which :
materials are in the mixture and add the correct proportion to 5
each of these two material's totals (obtained from LINE2, LINE3)
after > CHICT2, call the pixel alien, and go to C. |
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D. After 211 the lineg in the area have processed, examine the ID field
of POINT's control card to determine whether or not the next area
is to be added to this one, If so, go to B, otherwise, print out
the totals in SUM, zero all sums and go to B.

E. End of Program,

VARTABLE DEFAULT EXPLANATION

CHICUT - “?. of nine-point mixtures
CHIZ — ng of nine~point mixtures
CHICT2 - n§ of nine-point mixtures
UM - Nl of nine-point mixtures
NUM2 — N2 ¢f nine-point mixtures
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