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PREFACE

This report describes part of a comprehensive and continuing program

of research in multispectral remote sensing of the environment from air­

craft and satellites and the supporting effort of ground-based researchers

in recording, coordinating, and analyzing the data gathered by these means.

The basic objective of this program is to improve the utility of remote

sensing as a tool for providing decision makers with timely and economical

information from large geographical areas.

The feasibility of using remote sensing techniques to detect and dis­

criminate between objects or conditions at or near the surface of the earth

has been demonstrated. Applications in agriculture, urban planning, water

quality control, forest management, and other areas have been developed.

The thrust of this program is directed toward the development and improve­

ment of advanced remote sensing systems and includes assisting in data

collection, processing and analysis, and ground truth verification.

The research covered in this report was performed under NASA Contract

NAS9-l4l23. The program was directed by R. R. Legault, Director of ERIM's

Infrared and Optics Division and an Institute Vice-President, and J. D.

Erickson, Head of Information Systems and Analysis Department. The

institute number for this report is l09600-l6-F.

The authors wish to acknowledge the administrative direction provided

by Mr. R. R. Legault and Dr. Jon D. Erickson and the technical assistance

given by Mr. W. W. Pillars. Ms. D. Dickerson, L. Parker, and G. Sotomayor

are thanked for their secretarial assistance.
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1

INTRODUCTION

With the development of satellite multispectral scanners (MSS) it has

become possible to gather data from large areas. This data collection

effort has the potential of providing timely information concerning the

state of world-wide crop production. In order that this potential is

realized it is necessary to find methods of processing the data in a timely

and cost effective manner.

A major stumbling block in the way of achieving cost effective pro­

cessing is the requirement of large amounts of ground information. This

ground information is required to train the computer to recognize different

crop types. Because of variations in measurement conditions when the data

is collected the computer must be retrained on a regular basis. The crop

signatures are not constant in either time or space. The need to retrain

the computer requires new ground information which is both costly and time

consuming.

The first objective of this investigation is to develop signature

extension techniques which will allow the crop signatures to be updated or

corrected for variations in the measurement conditions so that signatures

*derived froDl the training data set (TDS) can be successfully used for

recognition on a different, removed, recognition data set (RDS). This

objective can be accomplished using the following approaches:

1) Extract signatures from the TDS and then find a transformation

which will map those signatures onto the RDS. The transformation

will correct for the differing measurement conditions of the two

data sets.

2) Preprocess the two data sets to remove the effects of the varying

measurement conditions and then extract signatures from the TDS

and apply them to the RDS.

*Appendix IV lists the abbreviations used in this report.
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We will call these two signature extension methods Type 1 and Type 2,

respectively.

In this report we will examine the sources of variation in the data

and two Type 1 and two Type 2 methods for correcting for those variations.

The Type 1 methods are the ASC and MASC algorithms which are discussed in

sections 5.1 and 5.2 respectively. The Type 2 methods are Ratios and

RADIFF. These are discussed in sections 6.1 and 6.2. In section 7 we will

discuss the results of an experiment to determine the possible effects on

recognition of variation in atmospheric state and scanner view angle.

While the signature extension methods which we examine in this report

are applied to single pass data the general approaches can also be used to

extend multitemporal signatures. In the future some of the methods

developed here will be extended for use on multitemporal data sets.

The second objective of this study is to investigate methods of

defining training fields without in situ ground information. If training

fields can be identified without the use of ground information then locally

derived signatures may be used for the recognition of every data set. In

section 8 we discuss some preliminary investigations into this problem.

8
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2

SUMMARY

Investigations into the sources and nature of between-scene data

variations were carried out. The variations in the data were seen to be

due to three types of variations in the measurement conditions. These

were:

1. Instrumental,

2. Environmental,

3. On the Ground Changes.

These variations in measurement conditions were responsible for multiplicative

and additive variations in the crop signatures when going from one data set

to another.

In order to correct for varying measurement conditions four signature

extension methods were developed and tested. The four were:

1. ASC,

2. MASC,

3. Ratio of Spectral Bands,

4. RADIFF.

Each method was, in theory, capable of correcting for a subset of the possible

variations in measurement conditions.

The four methods were tested on LANDSAT-l data that was collected for

the CITARS project. Of the four methods the ASC and MASC algorithms performed

the best. MA.SC showed the most promise as a signature extension technique and

as a tool for further investigating the nature of the inter-scene data

variations.

9
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Initial investigations into defining training fields without the aid

of ground information have been carried out. These investigations have been

based on the attempt to define regions of the data space which are occupied

by single crop types. To aid this attempt two methods of transforming a

region from one data set's space to another data set's space were developed.

The methods are:

1. Overlay Method,

2. Method of Affine Transformations.

The work in this area is at too early a stage of development to be able to

make any judgements as to the best method of defining the regions in the

data space that are associated with particular crop types.

10



ER:.:I.:.:M.:.....----------------~FO::::R:':':M~ER:::"L'::'Y':::W;::-,L~LO;::W~RU:7':N:;-;L~A':::BO;:::R::':A';':TO;:::R:;;,E~S~.T~H~E~UN::',V:;;E~R~S,~TY:-:O;:::F~M::::,C:-::H;';';:,G~AN

3

SOURCES OF DATA VARIABILITY

In order that we can develop methods to correct for variations in

the data between the TDS and RDS we must investigate the source of those

variations.

There are a number of factors which can be sources of variation in

scanner signals. Some of these sources are listed below t where we have

divided them into three categories: instrumental sources t environmental

sources, and scene related sources of variation.

SOURCES OF VARIATION IN MULTISPECTRAL SCANNER SIGNALS

A. Instrument
Scanner Electronics and recorder i.nstabilities
Gain changes
Nonuniform angular responsivity

B. Environment
Changes in irradiance
Changes in atmospheric transmittance
Changes in atmospheric path radiance

C. Scene
Geometric effects
Reflectance effects

Instrumental sources are associated with the mechanics, optics t and

electronics of the multispectral scanner. Included in this category are

gain changes t non-uniform angular responsivitYt and other recorder and

electronic i.nstabilities. Since many of these effects are deterministic,

they can be eliminated from the data during an initial data preparation

stage.

Environmental sources of variation include changes in the magnitude

and spectral make-up of the irradiance at ground level, changes in atmos­

pheric transmittance t and changes in path radiance. Changes in irradiance

result from changes in the atmospheric state as well as from solar positional

changes that occur between the times the data sets are collected.

11
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Atmospheric transmittance and path radiance will also change as the

atmospheric state changes. These quantities are also functions of scan

angle since they depend on the path length from the ground to the scanner.

In Fig. 1 we see the variation of path radiance, as calculated using the

ERIM Radiative Transfer Model [1], for different atmospheres (as repre­

sented by visibility). It is clear that path radiance can vary considerably

with changing atmospheric state, up to 37% for the visibilities shown in

Fig. 1. Shown in Table 1 is the effect of scan angle on both the path

radiance and total radiance received by a scanner. The change in path

radiance over a range of scanner view angles, from +6
0

to _6
0

relative to

nadir, is greater than 18%. The change in total radiance, over the same

range of view angles, can be as large as 10%.

The in-scene effects are of two types. The first effect is the geo-

metric variations due to sun-angle and bidirectional reflectance. These

will cause the amount of radiation reflected in a particular direction to

depend on time of day and position of the target in the scene. The other

in-scene effect is variation in target reflectance. This may be caused by

differences in moisture content of the soil or soil type. Also differences

in irrigation and fertilization or crop vigor will cause variation in the

crop reflectances.

To see how these effects combine to affect the variability of the

MSS signals we write the equation for the signal recorded by the scanner

in channel i for crop a,

(1)

The instrumental effects are contained in the gain term G(i) , while the

atmospheric effects are contained in the irradiance E(i), the transmittance

T(i), and the path radiance L(i). The in-scene effects are contained in

the reflectance p(i). Thus, ~he effect of variations in atmosphere and
a

[l]Robert E. Turner, "Radiative Transfer in Real Atmospheres", ERIM
Report No. 190100-24-T, December 1973.
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FIGURE 1. DEPENDENCE OF PATH RADIANCE AS A FUNCTION OF WAVELENGTH
FOR SEVERAL VISIBILITIES. Altitude = 910 km, Solar
Zenith = 62°, Green Vegetation Target on Green Vegetation
Background. (Calculation based on ERIM Radiative Transfer
Model)
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TABLE 1. SCAN ANGLE EFFECTS ATTRIBUTABLE TO THE ATMOSPHERE

2
Azimuth Scan Angle Spectral Radiances* (mW/ em •sr·).lm)

Relative Relative
to Sun, to Nadir A = 0.55 ).lm A = 0.75 ).lm

~ e Path Total Path Total

38G! (-) 6° 2.51 4.70 0.98 2.78

0° 2.71 4.90 1.06 2.86

218° 6° 2.98 5.17 1.17 2.96

Percent Change From Nadir (8=0°) Value

A - 0.55 ).lm A = 0.75 ).lm

</! e Path Total Path Total

38° (-) 6° -7.3 -4.2 -7.2 -2.8

0° 0 0 0 0

218° 6° 10.2 5.5 10.1 3.7

Percent Change From One Side of Nadir To Other

Scan Angle
Change

A = 0.55 ).lm
Path Total

A = 0.75 ).lm
Path Total

18.9 10.1 18.7 6.6

*Target Reflectance = Background Albedo = 8%
Solar Zenith Angle = 39°
Optical Thickness of Atmosphere = 0.3812 for 0.55 ).lm

and 0.2854 for 0.75 ~m.

14
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instrumental response is to produce both multiplicative and additive

variations in the recorded signal. The in-scene variations will produce

multiplicative variations in the scanner signal.

In thi.s report we investigate a number of approaches to remove these

variations. The ASC method produces an additive signature correction and

is thus primarily concerned with variations in path radiance. The MASC

algorithm produces both an additive and multiplicative signature correction.

It is thus potentially capable of correcting for all of the variations we

have discussed, however, variations in the reflectances can only be corrected

for in an average way. The Ratios of Spectral Bands method can correct for

all multiplicative variations if they are correlated between channels and

if the path radiances are negligible. The RADIFF method removes from the

Ratio method the restriction that the path radiance be negligible •

15
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4

DESCRIPTION OF DATA

The data sets used in this study were originally designed for the

CITARS [2] project. They consisted of a number of 8 km x 32 km sites in

*Indiana and Illinois collected by LANDSAT-l during the 1973 growing

season. In particular the data sets Fayette Co., Illinois, June 10,

June 11, and August 21; Shelby Co., Indiana, June 8; and White Co.,

Indiana, August 21 were employed.

For the June period the Fayette, June 11 (F6-ll) data set was arbi­

trarily defined as the training data set (TDS). The Shelby, June 8 (S6-8)

and Fayette, June 10 (F6-10) were chosen as the recognition data sets (RDS).

For the August period White, August 21 (W8-2l) was defined to be the TDS

while Fayette, August 21 (F8-2l) was chosen as the RDS.

For the CITARS study certain fields of each site were chosen for

training and others were designated as test fields. In our TDS, signatures

were extracted from the CITARS designated training fields while all fields

in the RDS (i.e., both training and test) were used to test the recognition

performance of the various signature extension methods. The results of the

recognition experiments are described in terms of field-center pixel recog­

nition and confusion of the major crops. Field-center pixel recognition

performance was used to evaluate the techniques rather than crop proportion

estimation because the objective of signature extension is the mapping of

class spectral information from one data set to another. Proportion esti­

mation depends on the correct recognition of impure boundary pixels and is

therefore a function of the type of classifier used. During June the major

[2]W. A. Malila, D. P. Rice and R. C. Cicone, "Final Report on the CITARS
Effort by the Environmental Research Institute of Michigan", ERIM Report No.
109600-l2-F, February 1975.

*The LANDSAT-l MSS bands are numbered 4,5,6,7, in this report we have
renumbered them as channels 1,2,3,4.
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crop was wheat and the results are reported as percent correct wheat

recognition and percent correct "other" recognition. Actually "other"

crops were considered correctly recognized if they were classified as

anything other than wheat. Using this definition of "correct other", we

could leavl~ everything unclassified and have 100% "correct other". For

this reason the "percent other correct" results may be somewhat misleading

in terms of evaluating the value of a particular signature extension method.

During the August period corn and soybeans were the maj or crops. The

"percent other correct" has the same meaning as for the June period.

One change was implemented in the June Fayette data sets. The original

test field designated 29-29 was labeled as being all wheat. Investigations

into the datum values as well as the photo-imagery led to the conclusion

that field 29-29 was in fact three separate fields. The middle field was

determined to be wheat and the coordinates of field 29-29 were adjusted to

include the central ten pixels.

The signatures, for this investigation, were extracted from each of

the training fields in the TDS and then were combined on the basis of

ground information concerning the crops of each training field. Thus the
2field signatures from every wheat training field were combined, using a X

2rejection test, to form a wheat crop signature. The X rejection test was

based on a final x2 distance rejection threshold corresponding to a .001

probability of false rejection under the assumption of normality and four

degrees of freedom. This resulted in rather large signature covariances
2and' a smaller X level may have produced better signatures. As it was, two

wheat modes remained apparent and a second wheat signature, designated

"wheat 2", was produced. The signature set used during the June period

included: wheat, wheat 2, water, trees, bare soil, and weeds.

For the August period, the signatures from W8-2l were formed in a
2similar maImer to the F6-ll signatures. The only difference is in the X

rejection level used when combining the individual field signatures. The

final X2 di.stance rejection threshold corresponded to a .01 probability of

17



ER=IM ~~~~~ --
FORMERLY WILLOW RUN LARORAT()RIES, THE UNIVERSITY OF MICHIGAN

false rejection. The August signatures used were: corn, soybeans,

pasture, quarry, and trees.

Recognition was performed on the RDS using the ERIM Linear

Classifier [3].

bility was used.

A null test threshold corresponding to a

Thus each pixel was classified into one

2
.001 X proba-

of (n+l) bins

where n was the number of signatures. Non-major crops put in the unclassi­

fied bin were considered to have been correctly classified.

[3]R. B. Crane, W. Richardson, R. H. Hieber and W. A. Ma1ila, "A Study
of Techniques for Processing Multispectral Scanner Data", ERIM Report No.
3l650-l55-T, September 1973.

18
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5

TYPE 1 SIGNATURE EXTENSION METHODS

As described in the introduction (section 1) a Type 1 method is one

which produces a mapping of the TDS signatures onto the RDS. This mapping

may account for some or all of the inter-scene variability which exists

between the TDS and RDS. In this report we investigate two Type 1 methods:

ASC (additive signature correction), and MASC (multiplicative and additive

signature correction). Both methods have performed reasonably well on the

data sets tested.

5.1 ASC

The equation for the signal recorded by the scanner in channel i for

crop a is (see discussion after equation (1)):

If we use subscripts 1, and 2 to denote the TDS and RDS, respectively, the

crop signature for the RDS can be related to the TDS crop signature by

We have defined

(2)

and

(3)

19
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While E(i), T(i), and L(i) all depend on atmospheric conditions, it is
p

apparent that different L 's for two data sets amounts to a change in the
p

reference level with respect to which the radiance measurements of the

target are made. Thus for signatures obtained from the TDS the means of

the various crops may be translated up or down compared to the crop means

in the RDS. If we assume that C(i), E(i), T(i) and p(i) are the same for
a

both data sets, or more precisely that

1, (4)

then the TDS signatures may be extended to the RDS by finding the appro-

priate translation. That is

note that under the assumption of equation (4) B(i) is independent of the

crop type a.

To examine the validity of equation (4) we plot the F6-ll signature means

versus signature means obtained from F6-l0 (Figure 2) and versus signature

means from S6-8 (Figure 3). In figures 2 and 3 the dashed lines are the

equation

=

the solid line is a lease square fit of the equation
L(i) = L(i) _ B(i)
al a2

to the data. We see that for F6-l0 equation (4) holds quite well but for

S6-8 the assumption is not as good. From the figures we can estimate the

amount of translation required to extend the F6-ll signatures to F6-l0 and
(')

S6-8. The values of B 1 obtained from the fitted lines in the figures

are listed in table 2.
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TABLE 2. TRANSLATION VECTORS FOR EXTENDING F6-ll SIGNATURES
TO F6-l0 AND S6-8. Values from Figures 2 and 3

F6-11 -+ F6-l0 F6-11 -+ S6-8
Channel i B(i) B(i)

1 +1 +1

2 +1 +1

3 +1 +2

4 +1 +2

The values of B(i) in Table 2 are not of any use for signature

extension since it was necessary to use ground information from F6-10 and

S6-8 to obtain them. This, of course, is not the objective of signature

extension. A different method must be found to estimate the translation

vectors B(i). We recall from equation (3),

(using eq. (2) and (4», that the translation vector is just the difference

between the recorded path radiance of the two data sets. Thus if the gains

and path radiances were known the vectors could be calculated. To find the

path radiances, a model, such as the ERIM Radi.ative Transfer Model, could

be used with measured atmospheric inputs.

In the absense of atmospheric inputs it is necessary to get information

concerning the relative magnitudes of the path radiances from the two data sets.

One method of doing this would be to search both the TDS and RDS for the

darkest objects in each channel. However, even if in one data set the darkest

object had zero reflectance, so that all of the radiation received by the

23
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scanner was path radiance, in the other data set no such object may exist.

In order to try to avoid the problem that isolated dark objects may corre­

spond to different targets in the two data sets, the dark objects whose

scanner values lie at the bottom of the histogram continuum are used. By

choosing the dark objects in this way we are using more information than

is contained in the data value alone. The dark object is determined by its

relationship to the majority of other targets in the scene. To illustrate

this we have constructed a hypothetical histogram of the scanner values in

a single channel. In Figure 4 is shown the lower portion of the histogram.

The value which is chosen to represent the dark object from this histogram

is 13. Denoting the dark object by DO we empirically estimate the trans­

lation vectors by

DO(i) _ DO(i)
2 1

Using this method for extending from F6-ll to F6-l0 and S6-8 yields

the translation vectors listed in Table 3.

TABLE 3. TRANSLATION VECTORS OBTAINED USING DARK OBJECT SEARCH

F6-ll -+ F6-l0 F6-11 -+ S6-8
Channel i B(i) B(i)

1 2 4

2 0 4

3 1 -1

4 0 0

The results of using the ASC method to extend signatures for recognition

are shown in Table 4. Also listed, for comparison, are the results of using

untransformed (UT) signatures.
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TABLE 4. COMPARISON OF RECOGNITION USING ASC TRANSFORMED
AND UNTRANSFORMED SIGNATURES

Signature
Training Data Extension Recognition

Set Method Data Set Center-Field Pixel Recognition

Correct Wheat Correct Other

Fay, 11 June UT Fay, 10 June 64.0% 89.3%

Fay, 11 June ASC Fay, 10 June 89.5% 84.6%

Fay, 11 June UT She, 8 June 41.5% 95.9%

Fay, 11 June ASC She, 8 June 84.9% 86.3%
,

Correct Correct Correct
Corn Soy Other

White, 21 Aug VT Fay, 21 Aug 1. 7% 10.0% 70.9%

White, 2l Aug ASC Fay, 21 Aug 18.4% 55.9% 92.7%
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As can be seen from Table 4 the ASC method, in two of the cases,

significantly improved major crop recognition. It should be recalled that

the "Correct Other" category includes targets which may not have been

recognized as the correct class but which weren't recognized as wheat.

In the next section we will investigate a Type 1 method which does

not rely on the assumption of equation (4).

5.2 BASC

MASC is an algorithm which provides a mapping of signatures from one

data set to another. It is potentially capable of correcting the differences

in signatures caused by variations between the two data sets of:

1. Atmospheric and solar illumination conditions. This includes

differences in sun-target-scanner geometries .

2. Electronic gain and other instrumental parameters,

3. And, in an average way, soil type and moisture.

In order to discuss the MASC algorithm we must see how these three

sources of variations affect the datum values recorded by the scanner.

To do that we will begin with a review of the sources of data variation.

Consider first the radiance received by the scanner from the "mean"

of crop a in channel i,

For two datais the scattered path radiance in channel i.

a difference in atmospheric and solar illumination conditions

different values for E(i), T(i), and L(i). Differences in soil
p

E (i) , h 'd' "d (i)lS t e lrra lance lncl ent on the target in channel i, T is the

the radiation through the atmosphere from the target to thetransmittance of

sensor, and L(i)
p

sets, 1 and 2,

will result in
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conditions may also result in different values for the reflectance p~i)

for the two data sets. If we further allow for a change in gain, G(i),

between the two data sets then the signals actually recorded for the same

crop from two different data sets are:

G(i)E(i)T(i) (i) + G(i)L(i)
2 2 2 Pa2 2 p2'

(5)

(6)

If we wish to extend the signatures extracted from data set 1 to

data set 2, in a way which will yield accurate recognition, then we must

find a mapping such that

A(i) SCi) + B(i)
a 0.1 a (7)

By substituting equations (5) and (6) into equation (7) it is found

that

and

(8)

(9)

Equation (7) defines a multiplicative and additive signature

correction (MASC) which maps the signature for crop a in the TDS onto

the signature for crop a in the RDS. What is necessary for successful

signature extension is to obtain the MASC parameters A(i) and B(i).
a a
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The two parameters A(i) and B(i) contain the effects of all measure-
ex ex

ment variabll~s including target reflectance. If the distribution of

reflectances for target ex is different for the two data sets then the MASC

mapping will. in general. not be unique. The two MASC parameters will have

an explicit dependence on the target type ex. In what follows we will

assume that the distributions of reflectances for the various targets are

approximately the same for the two data sets. In this way we are able to

employ a unique mapping using the parameters A(i) and B(i). If the above

assumption does not hold then we will define a unique mapping by the

parameters A(i) and B(i) which are the averages over ex of the parameters A(i)
ex

and B(i)
ex '

A(i)
- L:a(i)A(i)

ex ex
ex

B(i)
- L: b (i)B (i)

ex ex
ex

where

Thus equation (7) becomes

(10)
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So far everything we have done is formal and of little use unless

the MASC parameters can be found for the data sets of interest. If the

gain and target reflectances were the same for both data sets, A(i) and

B(i) could in theory be obtained by making appropriate atmospheric

measurements at the time of data collection. Even this, however, may not

be practical for timely large area inventories.

What is required is equivalent "looks" at the two data sets. In this

way information concerning the relative natures of the data sets can be

obtained without resort to ground observations. One method of obtaining

this information quantitatively is with the use of unsupervised clustering.

The MASC algorithm which has been developed to obtain A(i) and B(i) uses

an ERIM clustering routine [4]. Any good clustering routine should work

provided it be applied in exactly the same way to both data sets.

The clustering routine is applied separately to both data sets. (It

isn't necessary to cluster over every point in the data set, a sampling,

e.g. over every other scan line would be sufficient.) The output from the

ERIM clustering routine is a set of clusters. The number of pixels in each

cluster is given in the output. The clusters are represented by multi­

variate Gaussian distributions. Only those clusters are retained which

contain more than 1% of all the pixels clustered.

These clusters are unidentified for both data sets; no ground truth

has been used. In order to use these clusters to obtain the MASC parameters

of equation (10) it is necessary to find a correspondence between the

individual clusters of each data set. To form this correspondence we order

the clusters of each data set on the basis of their means in one of the

channels. Other, perhaps better, methods of forming this correspondence

are in the process of being programmed. In the present implementation the

channel chosen for this ordering is the channel with the largest range of

values. After both sets of clusters have been ordered in this way a one to

one correspondence is made -- the number one cluster of data set one is

[4]H. M. Horwitz, J. T. Lewis and A. P. Pentland, "Estimating Proportions
of Objects From Multispectral Scanner Data", ERIM Report No. 109600-l3-F,
April 1975, Section 4.4 and Appendix E.
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matched up with the number one cluster of data set two, etc. Using the

means of the Gaussian distributions representi.ng the clusters as points

defining a line

where the c~i) and ci i ) are the set of cluster means in channel i for data

set 2 and data set 1 respectively; a regression routine is used to deter­

mine the parameters A(i) and B(i). These parameters are then applied to

the signatures of the TDS, as in equation (10), and the resulting trans­

formed signatures can be applied to the RDS.

The basic assumption behind this MASC algorithm is that the two data

sets contain the same types of targets, although not necessarily in the

same proportions. If the correspondence of unidentified clusters in the

manner described is to have any validity this assumption must hold at

least approximately. Forming such correspondences would make little sense

if one data set was agricultural and the other was woodlands, or urban.

The test of any signature extension method lies in its performance on

real data. The results of applying MASC to our data sets are listed in

Table 5 which gives the data set from which the signatures were derived

and the data set to which they were extended. The results are for field­

center-pixel recognition.* Also listed are the results of applying untrans­

formed (UT) signatures.

We see that the MASC algorithm results in significant improvement in

major crop recognition for all three cases. Also there is very little change

in "Correct Other".

Both Type 1 methods we have investigated have been found to be potentially

viable signature extension methods for large area crop surveys.

*The multiplicative terms, A(i), were used to scale the signature
covariances as well as the signature means.
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TABLE 5. RECOGNITION USING UNTRANSFORMED AND MASC SIGNATURES

Signature
Transfor-

Training mation Recognition
Data Set Applied Data Set Center-Fie1d-Pixe1 Recognition

Correct Wheat Correct Other

Fay, 11 June UT Fay, 10 June 64.0% 89.3%

Fay, 11 June MASC Fay, 10 June 93.0% 84.2%

Fay, 11 June UT She, 8 June 41.5% 95.9%

Fay, 11 June MASC She, 8 June 83.0% 95.0%

Correct Correct Correct
Corn Soy Other

White, 21 Aug UT Fay, 21 Aug 1. 7% 10.0% 70.9%

White, 21 Aug MASC Fay, 21 Aug 83.4% 83.2% 72.2%

32



ER;,;I..;;;M..;....--·-------------';:Fo~R:::M~ER~L7Y'7':'W~IL'7'"LO:-:-:W~Rl~IN':"':L-:A':::'BO:-:-:R::-::A~TO::-::R~,E:':'S-:.T':"':H":"E~UN:':':'I~VE:':'.R":"51":"TY-O~F:':':'M~IC~H~,G~AN

6

TYPE 2 SIGNATURE EXTENSION METHODS

As described in section 1, a Type 2 method is one which requires the

preprocessing of both the TDS and RDS. This preprocessing is performed in

an attempt to remove the effects of variations in the relative measurement

conditions of the two data sets. In this secti.on we investigate two Type 2

methods: Ratios of Spectral Bands, and RADIFF. While both methods had

worked well with aircraft data in the past they failed to perform satis­

factorily, in terms of recognition, on LANDSAT-·l data. The reasons for

these failures are discussed.

6.1 RATIOS OF SPECTRAL BANDS

Ratios of Spectral Bands (Ratios) [5,6] is a Type 2 signature extension

technique. It requires the preprocessing of every data point in both the

training and recognition data sets.

The preprocessing of the data consists of forming new channels which

are the ratio of the scanner signals in two of the LANDSAT-l bands. Because

there are four HSS LANDSAT-l bands one can form three independent ratio

channels. As we will see, the usefulness of the Ratio method depends on

two assumptions concerning the relative measurement conditions between the

TDS and RDS:

1) The variations in target reflectance, between the TDS and RDS, are

systematic in the sense that a variation in one channel is matched

by variations in the other channels.

2) There is no path radiance term in the signals of either data set.

A further restriction on the usefulness of the Ratio method is imposed by

the fact that the separation between the target signatures is reduced when

[5]R. K. Vincent, G. S. Thomas and R. F. Nalepka, "Signature Extension
Studies", ERIH Report No. 190100-26-T, July 1974.

[6]R. F. Nalepka and J. P. Horgenstern, "Signature Extension: An Approach
to Operational Hultispectral Surveys", ERIH Report No. 31650-152-T, Harch 1973.
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the Ratio channels are formed. This may not be true for other data sets

where interclass variation is large.

As seen previously, the signal for target a in channel i is given by

where G(i) is the system gain in channel i, E(i) is the total downward

irradiance incident on the target, T(i) is the transmittance which

effectively attenuates the reflected radiation from the target, p(i) is
a

the reflectance of the target, and L(i) is the path radiance which has
p

been scattered into the field of view from something other than the target.

A ratio channel is formed from the signals in two of the MSS channels:

+ L(j)
p

R(ij)
a

If we denote the TDS with the subscript 1 and the RDS with the subscript 2

then for the two data sets we have:

R(ij)
al

and

R(ij)
a2
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We now assume that the variation in the terms C(i)E(i)T(i) is matched by

a similar variation in C(j)E(j)T(j), Le.,

and

Using this variation we can write

R(ij)
0.2

+ L (i)
p2

+ L (j)
p2

Now making our two assumptions, namely:

1)

2)

we find that

R(ij)
a2

o

R(ij)
al

Thus the Ratio channels, if the above assumptions hold, will yield "universal"

signatures i.n the sense that the crop signatures will be the same for both

data sets 1 and 2.
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If the assumptions of the Ratio method hold approximately then the

method could prove useful for extending signatures. However, due to the

spectral characteristics of the LANDSAT-1 scanner the RATIO method has

not proven to be too successful with present satellite data. The LANDSAT-1

bands are very broad and widely separated therefore the condition that any

change in C(i)E(i)T(i) is matched by a similar variation in C(j)E(j)T(j)

is probably not well satisfied. Also the shapes of the spectral curves

for the various vegetative types are very similar in the LANDSAT channels.

Most of the discriminatory information is contained in the relative magni­

tudes of the signals. When Ratio channels are formed a good deal of the

magnitude information is lost, while differences in spectral shape are

emphasized. To see this quantitatively we look at the separation between

signals for the various vegetative crops. For the four LANDSAT channels

typical values for the separation are

S(i) _
a

l/2(S(i)
a

~ 10-20%,

where Sa and Ss are the signature means of wheat and grass for F6-11. For

the Ratio channels, however, the separation is much smaller:

!'> (ij)
as

z 1-3%.

Thus the ability to discriminate between crops a and S is reduced when Ratio

channels are used. It should be noted that the Ratio technique has been found

to be quite effective when other scanners, e.g. aircraft, are used.

If one is to attempt to employ ratios for identifying different vegetative

types then the channels to be ratioed must be chosen so that !,>~~j) is maximized.

A more rigorous method of choosing the channels is to compute the pairwise

probability of misc1assification, PPM, for all possible ratios and then choose
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the best set of three ratios. Using this method for the F6-10 data set

one obtains the ratio set 2/4, 3/1, 3/4. Using the first criterion the

best set obtained is 2/4, 3/1, 3/2. A comparison of the results using

these two ratio sets on the test fields of F6-10 using the F6-10 signatures

is shown in Table 6.

TABLE 6. COMPARISON OF PPM AND MAX I
a,S

w 6(ij) CRITERION
as as

Ratio Set % Recognition of Wheat % Correct Other

(2/4, 3/1, 3/4) 52.6% 93.0%

(2/4, 3/1, 3/2) 55.3% 95.7%

Thus the use of the criterion that a weighted sum I was6~~j), be maximized,
a,S

(waS represents a weighting of the vegetative types to be distinguished),

while not rigorously justified, seems to be a useful method for choosing

ratio channels.

Using this ratio set to extend the F6-11 signatures to F6-10, (see

Table 7), does not improve recognition results. It should be noted however

that an optimum set of Ratios for one data set may be sub-optimum for a

different data set.

TABLE 7. RECOGNITION OF F6-10 TRAINING AND TEST FIELDS

Signatures

F6-11 UT

F6-11 (2/4,3/1,3/2)

% Recognition of Wheat

64.0%

64.0%
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*6.2 RADIFF

RADIFF (ratio of differences) [7] is a Type II signature extension

method. It provides a means of preprocessing the data such that t if certain

assumptions hold t the three types of variation listed in the MASC section

are eliminated from the data.

From the results of calculating the path radiance using the ERIM

Radiative Transfer Model it was found that the ratio of path radiance in

adjacent channels was approximately constant. In order to take advantage

of this fact the RADIFF method has been developed.

We shall begin by deriving the equations that define the RADIFF trans­

formation and then will point out the assumptions which are implicit in

those equations. Starting with equation (1) for the signal recorded in

channel i for a particular crop type, a, in data set 1:

are, respectively, the gain, total

path radiance for data set 1 in

of crop a in channel i for data set 1.

h 'C(i) E(i) T(i) d L(i)w ere aga~n 1 ' 1 t 1 ,an pI

downward irradiance, transmittance and

channel i and p~~) is the reflectance

We now form a new channel:

(11)

where

S(i t i+l t i+2)
al - S(i+2)

al
(i+l) 1 '

Sal Ki+2ti+l

(12)

1
K, '+1
~t~ - L(i+l) •

pI

*The general concept for RADIFF was developed under the name DIFF/DIFF.
See reference [7].

[7]R. F. Nalepka and J. P. Morgenstern t "Signature Extension: An Approach
to Operational Multispectral Surveys", ERIM Report No. 3l650-l52-T t March 1973,
p. 36.
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Using equation (11) in equation (12) we find that

1
- K, '+11,1

1
Ci +2 ,i+1

where

c(i,i+1,i+2)
~'a1

1
C, '+11,1

(i)
Pal
(i+1)

Pal

(i+2)
Pal

(i+1)
Pal

1
- Ki +2 ,i+1

(13)

1
C, '+11,1

In deriving equation (13) we have assumed that the gain factor is the

same for each channel, i,e.,

G(i+2)
1

etc.

We now make the additional assumptions that,

1) Any variation in the path radiance in one channel is matched

in the adjacent channel. Thus: we assume that the ratio

1
K, '+11,1 L(i+1)

p1

is independent of the particular atmospheric state, i.e.,

th>:= ratio of path radiances can be written as K, '+1'
1,1

2) In the same way any variation in the product E(i)T(i) is

matched in the adjacent channel, thus the factor C1
i,i+1

becomes C, '+1 and is independent of atmospheric state.
1,1
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If these assumptions hold then the new RADIFF channel will be independent

of atmospheric state. If we further assume that we are interested in

extending signatures to data sets for which the crop reflectances do not

vary, then the RADIFF channel should have the same value for each crop

in all data sets:

S(i,H1,i+2)
cd

S(i,i+1,H2)
a2

S(i,i+1,i+2)
an

S(i,i+l,i+2)
a

If all of the above assumptions hold then the RADIFF transformation

will yield universal crop signatures. The degree to which the universality

of the RADIFF signatures fails is a reflection of the limited degree to

which the assumptions are satisfied. In order to form the RADIFF channels

(equation (12» we must calculate the values for the K, '+1' at the
1,1

same time we can test the assumption that they are independent of atmospheric

state. The independence of the C, "+1 could be examined in the same way
1,1

but this has not as yet been done. For purposes of using the RADIFF channels

we wish in particular to form S(l,2,3) and s(2,3,4). We thus must calculate

Kl,Z' K
3

,4' and KZ,3' The ERIM Radiative Transfer model was used to calcu­

late the path radiance for a number of atmospheric states, as described by

over simulated LANDSAT bands as shown in Fig. 6.

visibility values (see Fig. 5). These values for L were then integrated
p

The results of the inte-

gration are given in Table 8. Finally the ratios Kl,Z' KZ,3' and K
3

,4 were

formed and are plotted versus visibility in Fig. 7. Also shown in Fig. 7

are the averages of the ratios over visibility and the maximum variation

from this average. As can be seen, the assumption that the K's are constant

over atmospheric state is correct within approximately 10%.
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TABLE 8. PATH RADIANCE INTEGRATED OVER LANDSAT-1 BANDS

r--~ 1 2 3 4

Visibility

5 km 2.79 2.06 2.33 1.86

10 km 2.45 1.60 1. 70 1.32

15 km 2.22 1.40 1.42 1.09

20 km 2.07 1.28 1.27 .98

25 km 1.95 1.19 1.16 .88

The channels S(2,3,4) and _[s(1,2,3)]-1 were formed for both the F6-11

and F6-10 data sets. (Note: the latter channel was formed in that particular

way to insure that it was positive and greater than 1.0.) The values used

for the KI S "rere the average values as shown in Fig. 7. Training was then

accomplished using the training fields of F6-11 and these signatures were

then used to perform recognition on the F6-10 data set. The results are

listed in Table 9.

TABLE 9. RECOGNITION OF F6-10 USING F6-l1 RADIFF SIGNATURES

Center Field Pixel Recognition

Correct Wheat

64.0%

Correct Other

85.4%
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These results are not as good as the MASC or ASC results. At this

point it is not possible to say if the poor results are due to the failure

of the basic assumptions to not be satisfied exactly. It may be necessary

to recalculate the K's with better approximations to the response functions

of the LANDSAT-I scanner. It may also be necessary to restrict the limits

of applicability of the model so that the assumptions are more nearly

obtained. It is also possible that in forming the RADIFF channels, i.e.,

preprocessing the data, the information content of the signals may be reduced.

This in turn could be either due to round-off errors in the calculation of

the RADIFF channels or it may be inherent in the nature of the transform.

Further investigations are required to answer these questions.
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7

EXPERIMENT TO DETERMINE EFFECT OF ATMOSPHERIC-GEOMETRIC
VARIATIONS ON RECOGNITION

As discussed in a previous section, there are a number of variables

which could lead to changes in the target signatures when going from one

data set to another. One of the possible sources of variation results

from a change in sensor gain. Since this is strictly an instrumental

variation, and our experiment will involve two data sets taken only one

day apart, we will assume that the gain is a constant. It is, of course,

difficult to determine if, in fact, this is the case, but, in light of the

calibration methods [8], it seems to be a good assumption.

For the purpose of this experiment the other sources of variation can

be considered to fall into two classes. The first class is essentially com­

posed of on the ground variations. These include changes in soil type, and

moisture content, cultural practices (irrigation and fertilization), and

changes in crop maturity. The second class consists of variations in sun

angle (time of day), atmospheric profile (optical depth, aerosol content,

etc.), and scanner view angle. The question which this experiment attempts

to answer is: what is the effect on recognition of variations in only

atmospheric profile and scanner view angle? This question is of importance

because the current LACIE approach may not adequately correct for these

variables. These two variables will result in both additive and multipli­

cative changes while the MLA (mean level adjustment) yields only an additive

correction.

In order to answer the question we have posed it is necessary to find

two data sets for which, to the best of our knowledge, the only variables

are atmosphere and scanner view angle. Fortunately in the CITARS study two

such data sets were available. These were the Fayette June 10 and June 11

[8]ERTS Data Users Handbook, NASA Document No. 7lSD4249, Appendix G.
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data sets (F6-10 and F6-ll). In particular we will consider only the

training fields which were identified in the CITARS study. Thus we have

two data sets composed of exactly the same fields; the only difference

between the two sets is that they were collected on successive days.

Obviously, since we are looking at the same fields only one day apart

(there was no rainfall between the collection of the data sets), factors

such as soil type, and moisture content can be assumed constant. Further,

since both data sets were collected at the same time of day the sun angle

is not a variable.

To see that the state of maturity of the wheat was constant we plot

mean signature values obtained from both F6-l0 and F6-ll in Fig. 8. The

upper line for each target is the mean signature value from F6-10 and the

lower lines are the mean signature values from F6-11. As can be seen

there is no substantial change in the wheat signature going from F6-10 to

F6-11 which is not reflected in the change in the signature for trees.

The weed signature shows a similar variation. For the June period, a change

in maturity for wheat would primarily be due to "browning", i.e., loss of

chlorophyll. This would in turn result in an increase in reflectance in

channel 2. In fact, however, the signature for wheat in channel 2 for

F6-1l is 10\oier than for F6-l0. We can therefore assume from this analysis

that the sta.te of maturity of wheat is not a variable when going from F6-1l

to F6-10.

Thus the primary variables are atmosphere and scanner view angle.

While on the ground horizontal visibility readings were the same for both

June 10 and June 11 at nearby airports, there was one obvious difference

in the atmospheres for June 10 and June 11 in the imagery of the respective

LANDSAT franles. While the June 10 frame was clear of all clouds there were

some small cumulus clouds in the June 11 frame. Neither these clouds, nor

their shadm.7s, covered any of the training fields.
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FIGURE 8. COMPARISON OF MEAN SIGNATURE VALUES FOR FAY 6-10 AND FAY 6-11.
Upper curve for each crop is mean signature value for F6-10;
lower curves are for F6-11.
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Because the data were collected 24 hours apart there was a small

difference in scanner view angle (see Fig. 9). For the data taken on

the lOth the view angle was approximately 2°50' west of nadir while on

the 11th it was approximately 3°40' east of nadir. Thus there was more

than a 6° difference in view angle.

In order to test the effect of variations in atmosphere and scanner

view angle on recognition we derive our training statistics from all of

the training fields from F6-ll. These signatures are then used for recog­

nition on the very same fields for both F6-ll and F6-l0. Obviously if the

variations in atmosphere and view angle do not affect recognition accuracy

then the results should be approximately the same for both F6-ll and F6-l0.

As can be seen in Table 10 there is a clear reduction in recognition

accuracy when signatures from F6-ll are applied to F6-l0.

TABLE 10. RECOGNITION RESULTS OF FAY 6-11 AND FAY 6-10
TRAINING FIELDS USING F6-11 SIGNATURES

1
Recognition
Data Set Central Field Recognition

Correct Wheat Correct Other

Fay 6-11, Training 91.6% 97.2%

Fay 6-10, Training 72.9% 97.7%

We see" therefore, that variations in atmosphere and scanner view

angle alone can seriously affect recognition. As discussed in the previous

section the MASC algorithm has the capability of correcting for these varia­

tions, as well as other possible variations. In Table 11 we give the results

of applying the MASC algorithm to the F6-l1 signatures and then using them

to perform recognition on the F6-l0 training fields.
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TABLE 11. RECOGNITION OF F6-l0 TRAINING FIELDS USING
MASC TRANSFORMED SIGNATURES FROM F6-ll

I Data Set Central Field Recognition

Correct Wheat Correct Other

F 6-10 Training 100% 94.3%

Because of the nature of the data collection it is difficult to separate

the effects of atmospheric state and scanner view angle. This experiment

clearly demonstrates, however, that one or both of these effects can have a

real impact when recognition with extended signatures is attempted. In the

future we hope to be able to separate these effects by using atmospheric

and canopy raodels in conjunction with real data and the MASC algorithm.

It should be noted that the results of the CITARS study have demonstrated

that there is a direct correlation between the degradation of non-local

recognition (using untransformed signatures) and the difference in optical

depth betwe,en the TDS and RDS [9].

[9]Personal communication from R. M. Bizzell.
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8

DETERMINING TRAINING FIELDS WITHOUT IN SITU GROUND INFORMATION

Signature extension is one approach to reducing the large amounts of

ground information required for operational crop surveys. Another approach

which may prove fruitful is to attempt to determine training sites, for

each data set, without the use of in situ ground information. In this

section we will describe some initial attempts to attack the problem in

this way.

Our approach is based on the assumption that regions of multi­

dimensional MSS data space can be defined such that each region contains

the MSS data for a single spectral vegetation class. In addition it is

assumed that each region is uniquely defined for all data sets in terms

of its relationship to every other region of the space. If these assump-

tions are to hold then it is necessary that the same crops exist in both

data sets. The maturity of the various crops should be approximately the

same for both data sets.

Rather than examine the entire LANDSAT-l four-dimensional data space

we will deal only with the sub-space of channels 2 and 3. This reduction

of the space causes only a slight loss of information since there is a

high degree of correlation between channels 1 and 2 and between channels 3

and 4 (see Figures 10 and 11). In order to visualize the pattern formed

by the data in our subspace we cluster over the data set and plot two­

dimensional (channels 2 and 3) representations of the clusters. Each

cluster is represented by a one standard deviation ellipse. The cluster

mean is located within each ellipse by a point. The clusters are labeled,

for identification purposes, by the first two digits (see Figure 12). The

second two digits represent the percentage of all the points clustered over

which are included in the cluster. Percentages less than 1% are represented
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by double zeros while all other percentages are rounded off to the nearest

integer percentage.

For purposes of displaying the general pattern, clustering was per­

formed over the quarter sections which contained the training fields

identified by the CITAR5 project. This subset of the entire data set

was chosen to save computation time. A better method may be to sample

over the entire data set.

The resulting cluster plots for F6-ll and 56-8 are shown in Figures

12 and 13. Refering to Figure 12 we see that the general pattern is

triangular. The vertices of the triangle being clusters 39, 29 and 30.

This form turns out to be quite general for agricultural data sets. The

side of the triangle extending from 39 to 29 represents a progression of bare

soil types from darker to lighter soils. The sides from 29 to 30 and 39

to 30 represent variations in such scene parameters as percent vegetation

cover, plant geometry, leaf structure, etc. coupled with the soil effects.

For a more detailed interpretation of the general cluster pattern, see

Appendix III. If we could identify a region of this triangular pattern

as belonging to a particular crop type then by mapping the triangle from

F6-ll into the triangular pattern for 56-8 we would obtain a mapping of

the single crop region from F6-11 to 86-8. The clusters which fall within

this crop region of 86-8 could then be used to identify fields for training

on that crop. The clusters within the crop region of 56-8 may also be used

to perform recognition on 56-8.

Two methods were used to map the triangular pattern from F6-ll into

the triangular pattern of 56-8. These were the Overlay Method and the

Method of Affine Transformations (MAT). In addition to these two methods

the MA5C algorithm may prove useful in the future. The MA5C algorithm is

a restricted type of affine transformation.
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The Overlay Method consists of physically overlaying the cluster

plot of F6-ll on top of the cluster plot of 86-8. The F6-ll plot is

then adjusted, by translations and rotations, until a "best fit" of the

two triangular patterns is obtained. This of course involves the

judgement of the analyst.

The Method of Affine Transformations consists of choosing the means

of the three vertex clusters of the two triangular patterns to define a

general affine transformation. Thus the cluster means of clusters 39,

29 and 30 define three points in the F6-ll space while clusters 13, 27

and 25 are used to define the equivalent points in the 86-8 space. These

two sets of points are then used to derive a transformation matrix which

allows a mapping from F6-ll to 86-8 as described below.

The affine transformation can be written as

[M] A[N] ,
"v

(14)

where ~ is the matrix which transforms the space N into the space M. For

our purposes the space N corresponds to F6-ll while M corresponds to 86-8.

8ince we are working with two dimensions we will define our spaces by two
~... -,...lo

vectors ml ,m
2

and n
l

,n2 • We define these vectors as:

~

Cluster 29 - Cluster 39m
l

...
Cluster 30 - Cluster 39m

2

and

....
Cluster 27 - Cluster 13nl

.....
Cluster 25 Cluster 13n

2

(15)

(16)
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What we have done in equations (15) and (16) is translate the origin

in the F6-11 plot to cluster 39 and the origin in 86-S to cluster 13.

In this way we are building into the transformation matrix, ~, a trans­

lation. We have reduced the spaces M and N to two x two matrices so that

equation (14) becomes

M = A N
'V 'V 'V

which can easily be solved for A, formally,
'V

The transformation matrix for going from F6-ll to 86-S, derived in

the above manner is

A
'V [

.SOI

-.20S

-. 17Sl
.SSOJ

The diagonal elements of A correspond to the multiplicative constants of
'V

the MA8C algorithm. In fact the MA8C multiplicative constants can be

written in matrix form (for the transformation from F6-ll + 86-S) as

~8C [

902 0 ]

o .652

The fundamental difference between a linear transformation of the MA8C type

and a general affine transformation is the exclusion of rotations of the axis.

This rotation is represented by the non-zero off-diagonal matrix elements.

In the case of M88 data, where the axis are spectral channels, the non-zero

off-diagonal elements can be interpreted as resulting from some dissimilarity
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between the two data sets. This dissimilarity may be due to some

different crop types or to different reflectances for some of the crop

types. Another possibility is that the use of only three points to

define the transformation is not precise enough so that the off-diagonal

elements are "accidently" non-zero.

In order to test the effectiveness of the two methods they will be

used to locate the position of trees in the 56-8 pattern space. This

object class was chosen because there were relatively few clusters repre­

senting it and because trees were known to be rather distinct, spectrally,

from most other object classes. This pattern may be observed by comparing

Figure 14 with Figure 12 and Figure 15 with Figure 13. Three clusters

were obtained for trees for F6-ll and one cluster for 86-8. Of the F6-ll

clusters, cluster 1 contains the majority of the pixels. The two methods

will be tested by how close they are able to map the tree cluster 1 from

F6-ll onto the tree cluster of 56-8. This mapping is shown on Figure 13

where the "X" locates the mapping as obtained using the Overlay Method.

The mapping using the MAT is located by the "E9". The actual position of

the 56-8 tree cluster is located by the dot. As can be seen from Figure 13,

the Overlay Method came closer to mapping the F6-ll tree cluster onto the

56-8 tree cluster. It should also be noted, however, that the tree cluster

of 56-8 does not fall within the pattern formed by clustering over the

quarter sections. This seems to support the idea of increasing the size

of the data sample operated on by the clustering algorithm. A larger

sample size would increase the probability of including the wide range of

soils and soil covers probable in any data set.

The actual mapping of crop regions and the use of those crop regions

to define clusters which can be used to identify training fields has not,

as yet, been attempted. In the future, the further development of these

methods may prove valuable for the location of training fields without in

situ ground information.
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CONCLUSIONS AND RECOMMENDATIONS

We have shown that the use of untransformed signatures from a TDS,

when applied to a temporally-spatially removed RDS, yield poor recognition

results. We have investigated the sources of data variability which are

responsible for the degraded recognition results. From this investigation

four signature extension methods have suggested themselves.

In Fig. 16 we display the F6-10 recognition results using untrans-

formed (UT) F6-11 signatures as well as F6-11 signatures modified by our

four methods: Ratio, RADIFF, ASC and MASC. In Fig. 17 and Fig. 18 we

display the recognition results using UT, MASC and ASC signatures from

F6-11 on S6-S and from W8-2l on F8-21. We see that the ASC and MASC methods

are quite suc.cessful -- the MASC method showing significant improvement in

recognition in all three cases. In addition, if we plot the average probabilities

of misclassification, Fig. 19, we see that the MASC algorithm is fairly constant

in its performance. The UT signatures result in more variation in performance.

Since the variations between respective TDS and RDS are random, the relative

constancy of the average probability of misclassification implies that the

MASC algorithm is indeed capable of correcting for those variations.

The W~SC algorithm, in particular, may prove helpful in further

isolating the physical factors which are the cause of the variations in

data between the TDS and RDS. For instance the ERIM Radiative Transfer

model can be used to calculate the multiplicative and additive constants

based on equations (8) and (9) with the added assumptions that the

atmospheric state is the only variable. In Figures 20 and 21 we have

plotted the nmltiplicative and additive constants based on such a calcula­

tion and as ~lere derived using the MASC algorithm. While the values can not

be expected to match exactly the curves should have similar shapes if we

have not neglected an important source of variation. As seen in Figures 20

and 21 the shapes of the MASC curves and the model curves are quite similar.

The one exception is between channels one and two for the multiplicative

constant. TIle additive constant depends both on a correct calculation of the

path radiance and of the multiplicative constant. The large differences in
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FIGURE 17. RESULTS OF RECOGNITION EXPERIMENT ON S6-8 USING ASC AND MASC
TRANSFORMED F6-11 SIGNATURES. The striped bar is the per­
centage correct wheat while the open bar is the percentage
other correct.
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TRANSFOR}lliD W8-2l SIGNATURES. The solid bar is percentage
correct corn recognition while the striped bar is percentage
soy correct. The open bar is percentage other correct.

66



·4

.3/30

.3

.2335

.2

.3623

. I
.//40

FAY6-IO SHE6-B FAYB-2/

FIGURE 19 AVERAGE PROBABILITY OF MISCLASSIFICATION

(Striped bar is for ~~SC transformed
signatures; Open bar is for untransformed

signatures)

67



A
aJ

I BC;') I
I~

15 ~

1.9l- -/t. ~........--- /
to7r
~

-2'" /1 %'5

1.51
9fs
~

-3

0'
CXJ

1.3r- ------- ~o. .. --
~

I. It- 1~5 -5

I I

I 2 :3 4 I Z
CHAN

FIGURE 20. MULTIPLICATIVE SIGNATURE CORRECTION
CALCULATED FROM ERIM RADIATIVE
TRANSFER MODEL AND FROM MASC FOR
THE TRANSFORMATION F6-ll + F6-l0.
Ratios are assumed visibility (km)
for F6-ll to visibility for F6-l0.

FIGURE 21. ADDITIVE SIGNATURE CORRECTION
FOR F6-l1 ~ F6-l0



ER;;.;I.;.;M.;.,.---,--------------FO-"-M-ER-L-'-w-'L-lJ-'W-qU-N-L-A-RO-"-A-TO-"-'E-S-.T-~-E-UN-'V-E-"-5'-TV-O-F-M-'C-~-'G-AN

magnitude apparent in Fig. 21 may be due to not having the correct values

of A(i) calculated by the model. This anomaly could very possibly be due

to the fact that visibility was used as an input to the model rather than

the more exa.ct optical thickness. Also the model calculations are not

exact since the parameter values at the middle of the LANDSAT-l bands

were used ra.ther than integrating over the bands. More investigation into

such questions as this may prove fruitful in the future.

It should be noted that none of the signature extension algorithms

presented here should be considered to be in their final form. For

instance, other methods of forming correspondences between clusters in

the MASC algorithm are possible. When these methods are examined it may

be possible to devise an improved version of MASC.

We have: shown that similarities exist between cluster patterns based

on spatially separated data sites • Two methods were described which

allowed the cluster patterns from different data sets to be numerically

compared. These methods were also used to transfer information between

cluster patterns. The location of one object class was transferred

between a pa.ir of cluster patterns with reasonable results.

In the future recognition should be used to evaluate the accuracy of

the methods used to map crop regions from one cluster pattern to another.

In addition, phenological models of various vegetative spectral classes

should be de:veloped.
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APPENDIX I: MASC ALGORITHM

We present here a step-by-step guide and flow chart for the MASC

algorithm.

STEP 1. Both the extended from (Set 1) and extended to (set 2) data

sets are input.

STEP 2. Unsupervised clustering is performed on both data sets. All

input parameters to the cluster program should be the same

for both data sets.

STEP 3. All clusters containing less than 1% of all pixels are removed

from consideration.

STEP 4. After Step 3 above there are N
l

clusters from data set 1 and

N2 clusters from data set 2. The minimum of N
l

and N
2

is

chosen so that a one-one correspondence between the two cluster

sets is possible.

STEP 5. The channel containing the largest range of values is chosen for

ordering clusters.

STEP 6. Both cluster sets are ordered on basis of their mean values in

the above mentioned channel. The cluster in data set 1 with the

largest mean in the selected channel is labeled number one.

the cluster with the second largest mean is labeled number two.

etc. The same ordering procedure is applied to data set 2.

(Note: By cluster mean we intend the mean of the Gaussian

distribution which represents the cluster.)

STEP 7. A one-to-one correspondence is formed between the first N clusters

of the data sets (N = min(Nl .N2)). The means of the corresponded

clusters define points in two space.

STEP 8. Regression is used with the set of points from Step 7 to yield

the parameters to the equation

C(i) =
2

A(i) c(i) + B(i)
1 •

where the subscripts represent data sets 1 and 2.
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STEPS 9
and 10.

STEP 11.

P~y points whose percentage deviation, in any channel, from

the line of equation (1) is greater than 10% are removed and

regression is re-entered.
(i) (i).

The parameters A and B WhlCh result from the regression

are used as multiplicative (A(i)) and additive (B(i)) signature

corrections for the signatures from data set 1. Thus the

signatures from data set 1 can be extended to data set 2.
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APPENDIX II

MASC PARAMETERS

The multiplicative, A(i), and additive, B(i), MASC parameters used

on the CITi~S data sets are listed in Table A1 below.

TABLE A1. MASC PARAMETERS USED FOR TDS TO RDS TRANSFORMATIONS

Training Recognition
A(i) B(i)Data Set Data Set Channel (i)

1 1.201 -5.308

Fayette 2 1.212 -3.242
June 10 3 1.185 -4.729

4 1.139 - .997Fayette
June 11 1 .794 8.665

Shelby 2 .902 3.575
June 8

3 .652 17.711

4 .605 9.688

1 2.15 -22.449

White Fayette 2 2.23 -12.841
August 21 August 21

3 .78 13.156

4 .87 2.488
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APPENDIX III

GENERAL CLUSTER PATTERNS FOR AGRICULTURAL SCENES

In order to achieve a better understanding of just what is portrayed

in the cluster patterns and why a general or 'complete' cluster pattern

has the shape it does, ERIM's vegetative canopy model [10] was called into

play. As it happened, the necessary model inputs for a certain type of

vegetation, Ionia wheat (a variety grown in Michigan) were readily availa­

ble. And so, two soil reflectances were selected, one to simulate a darker,

perhaps more organic or moist soil and the other to simulate a lighter

colored, perhaps sandier or drier soil (for more information of the importance

of soil moisture on soil reflectance, see Blanchard et al., 1974 [11] and

Parks et al., 1974 [12]) and a construction made of the phenology of a sample

of wheat, Ionia variety with two very different soil backgrounds (See Figure Al).

As may be seen, the soil background plays a dominant role in the bidirectional

reflectance of a stand of Ionia wheat until the onset of plant maturity. If

the bare soil points are connected by a line, hereafter called the bare soil

line, the outline of the phenology of Ionia wheat is very similar to the

outline of the 'complete' cluster pattern. It is not unreasonable to suspect,

therefore, that location within a cluster pattern represents, to a degree,

vegetative state of development as modified by such factors as soil reflectance,

stress of various kinds, mixtures of vegetation and so on. As an actual example

[lO]G. Suits, "The Calculation of the Directional Reflectance of a Vege­
tative Canopy", Remote Sensing of Environment, V. 2, 1972, pp. 117-125.

[ll]M. B. Blanchard, R. Greeley and R. Goettelman, "Use of Visible, Near­
Infrared, and Thermal Infrared Remote Sensing to Study Soil Moisture", Pro­
ceedings of Ninth International Symposium on Remote Sensing of Environment,
Ann Arbor, Michigan, April 1974.

[12]w. L. Parks, J. 1. Sewell, J. W. Hilty and J. C. Rennie, "Utilizing
ERTS Imagery to Detect Plant Diseases and Nutrient Deficiencies, Soil Types
and Soil Moisture Levels", Report No. NAS5-2l873, NASA/GSFC, March 1974.
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of the extreme variability present in the reflectance characteristics of

a crop such as soybeans (varieties unknown) at the emergence stage see

the cluster plots for soybeans based on the Fayette 16 July and Livingston

16 July data sets (Figures A2 through AS). By overlaying the Fayette soy­

bean cluster plot (Figure A2) onto the cluster plot based on Fayette

quarter sections (Figure A3) the fact emerges that soybeans in Fayette Co.

were planted in soils on the upper (brighter) half of the bare soil line.

When one follows the same procedure for Livingston Co. (Figures A4 and AS

respectively) one sees that soybeans were planted in soils on the lower

(darker) half of the bare soil line. The important soybean clusters (with

most of the points) are 1, 2, 3, Sand 8 for Fayette Co. and 1, 2, 3, 4, S

and 7 for Livingston Co. Analysis of a time sequence of plots such as

these for a variety of vegetative types can aid in predicting where in the

cluster pattern a certain crop should be (allowing for the sources of

variability discussed previously) at a certain point in its crop calendar.
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APPENDIX IV

ABBREVIATIONS USED IN THIS REPORT

•

ASC

MASC

MAT

MLA

MSS

RADIFF

Ratio

RDS

TDS

Data Sets

F6-l0

F6-ll

S6-8

F8-2l

W8-2l

P~ditive Signature Correction

}mltiplicative and Additive Signature Correction

}1ethod of Affine Transformations

~~an Level Adjustment

~lultispectral Scanner

Ratio of Differences in Spectral Bands

l~tio of Spectral Bands

Recognition Data Set

Training Data Set

Jl!'ayette Co., Illinois, June 10, 1973

:I!'ayette Co., Illinois, June 11,1973

Shelby Co., Indiana, June 8, 1973

Fayette Co., Illinois, August 21, 1973

1Nhite Co., Indiana, August 21, 1973
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