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PREFACE
 

This final report summarizes a program of research in modeling the
 

vegetative growth, yield, and reflectance of wheat. The research was
 

carried out for NASA's Lyndon B. Johnson Space Center, Houston, Texas, by
 

The basic
the Environmental Research Institute of Michigan (ERIM). 


a practical
objective of this program was to develop remote sensing as 


tool for obtaining information to improve the accuracy and timeliness of
 

wheat yield forecasts.
 

The research covered in this report was performed under Contract
 

NAS9-14123 and covers the period from 15 May 1974 through 14 March 1975.
 

Dr. Andrew Potter has been the Technical Monitor for NASA, and Dr. Tom
 

Barnett has been the Task Monitor.
 

Work on this contract is performed in the Infrared and Optics Division
 

Dr. Jon D. Erickson, Head of
under the direction of Mr. Richard R. Legault. 


the Information Systems and Analysis Department, is the project director for
 

this contract, and Mr. Richard F. Nalepka, Head of the Multispectral Analysis
 

Section, is the Principal Investigator.
 

The authors wish to acknowledge the assistance provided by Mr. R.R. Legault,
 

particularly in making ERIM Internal Research and Development funds available
 

to augment this work. We also wish to acknowledge the assistance of personnel
 

of the Michigdi State University Agricultural Experiment Station for providing
 

information concerning the physiology of wheat.
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ABSTRACT
 

A preliminary model describing the growth and grain yield of wheat has been
 

developed. The modeled growth characteristics of the wheat crop have been
 

used to compute wheat canopy reflectance using a model of vegetation canopy
 

reflectance. The modeled reflectance characteristics have been compared-with
 

the corresponding growth characteristics and grain yield in order to infer
 

their relationships. It appears that periodic wheat canopy reflectance
 

characteristics potentially derivable from earth satellites will be useful
 

in forecasting wheat grain yield.
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1 

SUMMARY 

In an effort to maximize the utility of earth satellite data, we have
 

investigated the possibility of using such data to forecast the grain yield of
 

wheat. Thusfar, the investigation has been based on theoretical models, rather
 

than empirical data.
 

A preliminary model describing the growth and grain yield of wheat has
 

been developed. The model is constrained by genetically related parameters
 

through known or inferred physiologic processes. The vegetative growth and
 

grain yield are affected by environmental conditions such as soil type, soil
 

moisture, climate (radiation, temperature, relative humidity, precipitation),
 

and weather sequence for a particular climate. Implementation of the growth model
 

for a variety of climates indicates that it performs qualitatively in a reasonable
 

way.
 

The modeled growth characteristics of the wheat crop are used to compute
 

wheat canopy reflectance using a previously developed and field-tested model of
 

vegetation canopy reflectance. The resultant sequential reflectance characteristics
 

of a particular crop are then compared with the corresponding growth characteristics
 

and grain yield to infer their relationships. Preliminary analysis of these
 

results suggests that the sequential reflectance characteristics of the crop are
 

indicative of certain plant characteristics which are highly correlated with
 

wheat grain yield. It appears, therefore, that it may be possible to forecast
 

wheat grain yield by appropriate analysis of periodic wheat canopy reflectance
 

data such as is being collected by LANDSAT.
 

Many factors affect vegetation canopy bidirectional spectral reflectance,
 

and hence affect the interpretation of what the spectral reflectance "means"
 

in terms related to yield. Some real world problems in this regard, and
 

possible solutibns to those problems, are discussed in Appendix I.
 

7
 



I - FORMERLy WILLOW RUN LABORATORIES THE UNIVERSETY OF MICHIGAN' 

2 

INTRODUCTION
 

The objective of the research described in this report is to determine
 

the optimum way of utilizing periodic remotely sensed data for forecasting
 

the grain yield of wheat grown under common as well as extreme environmental
 

conditions. In order to do this it was necessary to develop a model of
 

the growth and grain yield of wheat which would describe those characteristics
 

of wheat that are necessary for the simulation of the reflectance of the
 

crop. The model which we have developed to describe the physical growth and
 

production of grain of wheat will be called the ERIM Growth Model. Since the
 

model computes wheat grain production, it could technically be called a yield
 

model. However, this Growth Model is not a yield model in the traditional
 

agricultural-meteorologicalsense in that it is not an algorithm for calculating
 

grain yield through a series of meteorological or other variables by means
 

of a regression equation.
 

Certain outputs of the ERIM Growth Model are used as inputs to the ERIM
 
Vegetation Reflectance Modell]. These inputs include projected leaf area index
 

and canopy structure. This information,,together with appropriate ancillary
 

data, makes it possible to simulate the bidirectional spectral reflectance during
 

the growth and development of.wheat.
 

The calculated reflectances from the Vegetation Reflectance Model are
 

compared with the yield output of the Growth Model. An analysis of these two
 

model results could lead to a yield model which will describe the optimum way
 

in which wheat yield can be inferred from sequential bidirectional spectral
 

reflectance. The development of the Growth Model, and the resulting relationships
 

between wheat canopy growth, yield, and sequential spectral reflectance measurement
 

are described in this report.
 

[] Suits, G.H., 1972, "The Calculation of the Directional Reflectance of a
 
Vegetative Canopy", Remote Sensing of Environment, Vol. 2, pp. 117-125.
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2.1 	 BACKGROUND
 

Traditionally, yield models, especially those for estimating economic
 

yield of agricultural crops, have been regression equations of the form
 

n ym
 

Yield =a + b Xn + c y...
 

where various meteorological parameters, generally those that were routinely
 

available from weather stations. Among the numerous yield models that have
 

been 	developed are those by Thomson [2] and Bajer [3]
 

Yield models have generally been developed statistically from a large
 

empirical data base of yield and associated meteorological parameters. The
 

lack of detailed physiologically-based causative factors in models developed in
 

this way has resulted in their performance having a tendency towards the
 

following characteristics: (1) they tend to work well in "normal" years but not
 

as well in abnormal years, precisely those years for which accurate estimates
 

of yield are most important; and (2) they may not perform well in geographic/
 

climatic regions other than the region for which they were developed.
 

Growth models generally are those which predict the development of a
 

vegetation canopy, especially the amount of photosynthetic material produced.
 

A number of growth models have been developed and are continuing to be developed.
 

[4]1 	 [5]
These include models of individual leaves e.g., , , and models of entire 

[2] 	Thompson, L.M., 1969, "Weather and Technology in the Production of Wheat
 
in the United States", Journal of Soil & Water Conservation, V 24 #6,
 
Proceedings of the IBP/PP Technical Meeting. Trebon. Published by Centre
 
for Agricultural Publishing & Documentation, Wageningen, The Netherlands.
 

[3] 	Baier, W., 1973, "Crop-Weather Analysis Model: Review & Model Development"
 
Journal of Applied Meteorology, V. 12 #6.
 

[4] 	Chartier, Ph. 1970. "A Model of CO Assimilation in the Leaf", In Prediction
 
and Measurement of Photosynthetic Productivity. Proceedings of the IBP/PP
 
Tehhnical Meeting. Trebon. Published -by Centre for Agricultural Publishing
 
& Documentation, Wageningen, The Netherlands.
 

[5] 	Lommen, P.W., C.R. Schwintzer, C.S. Yocum, and D.M. Gates, 1971. "A Model
 
Describing Photosynthesis in Terms of Gas Diffusion and Enzyme Kinetics",
 
Planta (Berl.) 98, 195-220.
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vegetation canopies e.g.,([6] [7] [8] [9] [10] [11] [12] [13] [14])

Growth models tend to have more physiological validity associated with

them than do yield models. Most growth models have been developed as

engineering aids for building better (more productive) plants, and for

determining better ways to grow plants [l5] In addition, growth models may have

biological yield (total biomass) as their output, rather than economic yield

(useful biomass) (Van Keulen, personal communication). Growth models also

generally do not provide the necessary output to relate yield with a time

sequence of reflectance measurements, which is our objective.

[6] Ross, J. 1970, "lathematical Models of Photosynthesis in a Plant Stand",
In Prediction and Measurement of Photosynthetic Productivity. Proceedings
of the IBP/PP Technical Meeting. Trebon. Published by Centre for Agricultural
Publishing and Documentation. Wageningen, The Netherlands.

[7] Van Keulen, H., and W. Louwerse, 1-973, "Simulation Models for Plant
Production", W.M.O., Symposium on Agrometeorology of the Wheat Crop",
Braunschweig, Germany.

[8] Tooming, H., 1970, "Mathematical Description of Net Photosynthesis and
Adaptation Processes in the Photosynthetic appartus of Plant Communities",
In Prediction & Measurement of Photosynthetic Productivity.

[9] Monsi, M., 1968, "Mathematical Models of Plant Communities", Functioning
of Terrestrial Ecosystems at the Primary Production Level, Proc. Copenhagen
Symposium. UNESCO pp. 131-144.

[10] Duncan, W.G., Loumis, R.S., Williams, W.A., & R. Hanau, 1967. "A Model for
Simulating Photosynthesis in Plant Communities", Hilgardia: 38, pp. 181-205.

[11] Haun, J.R., 1973, "Evaluation of Wheat Development Relative to Environment
From Quantitative Morphological.Data", Symposium on Agrometeorology of
the Wheat Crop. World Meteorological Organization. Braunschweig, Germany

[12] de Wit, C.T., R. Brouwer, and F.W.T. Penning de Vries, 1971, "A Dynamic
Model of Plant Growth", in Potential Crop Production, Edited by P.F. Waring
and J.P. Cooper, Heinemann Education Book Ltd., London.

[13] Lupton, F.G.H., 1972. "Further Experiments on photosynthesis and
Translocation in Wheat", Ann. Appl. Biol. 71:69-79.

[14] Miles, G.E., R.J. Bula, D.A. Holt, M.M. Shcreiber, and R.M. Peart, 1973,
"Simulation of Alfalfa Growth", American Society of Agricultural Engineers,
Paper No. 73-4547, St. Joseph, Michigan.

[15] Waggoner, P.E., 1970, "Consultation on How Models are Made, How They are
Tested and What They Tell Us of2 Experiments to be Done", In Prediction and
Measurement of Photosynthetic Productivity. Proceedings of the IBP/PP
Technical Meeting, Trebon, Published by Centre for Agricultural Publishing
and Documentation, Wageningen, The' Netherlands.

10



Z~$IM RORMELY WILLOW RUN LABORATORIES THE UNIVERSTY OR MICHIGAN

2.2 PURPOSE OF THE ERIM GROWTH MODEL
Our goal is to derive a reliable and accurate functional relation between a

time series of signals caused by reflection, and the expected yield of grain using
a growth model as the best available means for such a derivation. The purpose
of ERIM developing a growth model incorporating physiological and environmental
detail is not to advance the state of knowledge in plant physiology, growth
modeling, or "yield modeling" in the traditional sense, but rather is to supply
the necessary means to an end, which is to interpret correctly the significance
of periodically, remotely sensed field reflectances with regard to probable
field conditions and, hence, the probable yield to be expected. Consequently,
the form and contents of the ERIM Growth Model are governed entirely to serve

that yield forecasting end.

It is important to bear in mind the nature of that end objective.- We are
attempting to interpret signals of -reflected daylight where the mechanism of
reflection is intimately related to the mechanism of photosynthetic production.

There is no large reservoir of reflectance data which can presently be
correlated with field development and eventual yield. Thus, the interpretation
of the remote sensing data- collected from space must be correlated with field
condition and eventual yield by way of a qualitatively realistic Growth Model
and its predicted-reflectances. In this way, the ERIM Growth Model, itself, is.
not used to predict yield directly, but rather it is a means by which meaningful
implications between reflectance measurements and yield can be learned. The
Growth Model need not be quantitatively accurate as long as it responds correctly
in a qualitative manner. The ERIM Growth Model and associated Reflectance Model
are the next best substitutes for a very large historical data bank from
which a yield model depending upon periodic reflectance values may be derived.
In addition, the ERIM Growth Model can potentially be used to infer important
environmental parameters that may ultimately be included in a yield model, if
that proves to be necessary in order to improve the performance of a yield model
which uses only data on periodic reflectance values.

ll-



We know from previous work e.g., [16] that it is frequently possible to
 

make good estimates of vegetation development and condition of small grains by
 

use of reflectance data. Other work e.g., [17] has shown good relationships
 

between various aspects of yegetation development and wheat grain yield. It is
 

expected that information on vegetative development will be particularly useful
 

since field condition is likely to be.indicative of many environmental parameters
 

and cultural practices which affect wheat grain yield. Accordingly, we have
 

chosen to try to infer wheat grain yield from certain aspects of vegetation,
 

development and condition which are detectable by reflectance data. We will
 

use the Growth Model to determine which aspects ,of vegetation development and
 

condition are best correlated with grain yield. We will then attempt to deduce
 

these important features by calculations using the Vegetation Canopy Reflectance
 

Model. The final step in the development of a yield model is the substitution of
 

the Growth Model values of vegetation development by the Reflectance Model
 

indicators of these values. The result is a model for predicting yield which
 

is dependent only on sequential spectral reflectance values. The steps toward
 

producing a calibrated yield model are shown in Figure 1-a. The Growth Model
 

and the Reflectance Model will be used to develop the functional forms, fi(p),
 

and a relatively small sample of satellite data and associated field-determined
 

grain yield data will be used to calibrate the model by fixing the values of ai.
 

[16] 	 Colwell, J., 1973, "Bidirectional Spectral Reflectance of Grass Canopies
 
For Determination of Above Ground Standing Biomass", Ph.D. Dissertation
 

University of Michigan, Ann Arbor, Michigan
 
[17] 	 Welbank, P.J., S.A.W. French, and K.J. Witts, 1966, "Dependence of Yields
 

of Wheat Varieties on Their Leaf Area Durations", Annals of Botany,
 
N.W. Vol. 30, No. 118.
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3 

GROWTH MODEL DESCRIPTION
 

The ERIM Growth Model includes two classes of causative factors -­

genetically related factors and environmental factors. The combination of these
 

factors is used each hour or day of growth to produce a response or consequence.
 

Such a response changes the influence of the prevailing environmental factors
 

as can be expected from changes in size and structural features of the canopy and
 

from soil moisture depletion. The next response to environmental factors is
 

governed by the consequence of the previous response. The hour-by-hour computation
 

to obtain the next response.from the consequences of the previous response
 

simulates the unidirectionality of biological time. The genetically related
 

factors remain fixed.
 

Figure 1 illustrates schematically the logical structure of the ERIM Growth
 

Model. The boxes represent computations required by the model and the arrows
 

indicate the output of the results of one computation to be used as computational
 

input parameters in another.
 

Notice that Environmental Factors are wholly driving factors through outputs
 

A, B, C, and D to other computations. It is assumed in this model that the
 

canopy does not influence the local environmental factors significantly, but
 

that such factors are determined by regional influences. The parameters sent
 

through A to Photosynthesis and Respiration are: 1) day type (sunny, partly
 

cloudy, or cloudy); 2) sun angle; 3) diurnal air temperature; and 4) sky and sun
 

irradiance values at the top of the canopy.
 

The parameters sent through B to Transpiration are diurnal air temperature
 

and dew point for the calculation of air moisture potential. The parameter sent
 

through C to Precipitation and Soil moisture is daily precipitation. The
 

parameters sent through D to Canopy Reflectance are sun angle and day type.
 

Photosynthesis and Respiration for the canopy is calculated utilizing the
 

current canopy structure for intercepting radiation. Stomatal closure due to
 

reduced light level influences transpiration through output E. Daily net
 

production of photosynthate is the output through I to Plant Response. Transpiration
 

is calculated using current soil moisture potential and soil moisture diffusive
 

15
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resistance using input H and depletes soil moisture by output F. Output G to
 

Photosynthesis and Respiration is stomatal control'by leaf moisture potential.
 

Plant 	Response calculates the allocation of net production of photosynthate to
 

vegetative growth, to storage and to reproductive systems. The translocation
 

process, the slough-off of leaves to the necrotic state, and the geometric
 

orientation of the canopy components are also determined. The appropriate­

results are returned by outputs J and L.
 

The output M from Plant Response also provides the spectral class of
 

the canopy components and geometric properties which are required for
 

reflectance calculations. Since canopy reflectance also depends upon the type
 

of illumination, the sun angle and day type are required inputs from D.
 

One of the results of the Plant Response calculation is moles of fixed C02
 

in the reproductive system. It is this value which is assumed to be
 

proportional to yield. The proportionality factor is discussed in Appendix II.
 

3.1 PHOTOSYNTHESIS AND RESPIRATION
 

The primary source of free'energy of the canopy is the utilization of solar
 

radiation in photosynthesis. Thermal radiation equilibrium between the canopy
 

and the terrestrial environment is assumed to exist otherwise. Transpiration
 

is driven by the free energy difference between soil moisture and the moisture
 

potential of the surrounding air.
 

The photosynthesis model we are using is that of Lommen, et.al. [5 ]. It
 

incorporates the nonlinear influences of both illumination level and temperature

2
 

on the expected respiration rate and net photosynthesis of 1 cm area of a single
 

leaf. The values of many of the parameters in the photosynthesis model were
 

available from published data. Values of other parameters which were not known
 

precisely were derivable by adjusting them so that the photosynthesis model
 

.
accurately simulated the results of experiments on ph6tosynthesis of wheatt1 8
 

The geometric properties of the canopy are important both to the calculation
 

of incoming radiation as well as to the calculation of the reflected radiation
 

that serves as the remote sensing link. "The assignment of photosynthate to the
 

[5] Lommen, P.W., C.R. Schwintzer, C.S. Yocum, and D.M. Gates, 1971, "A Model
 
Describing Photosynthesis in Terms of Gas Diffusion and Enzyme Kinetics",
 
Planta (Berl.)'98, 195-220.
 

[18] 	 Stoy, V., 1965, "Photosynthesis, Respiration, and Carbohydrate Accumulation
 
In Spring Wheat in Relation to Yield", Physiologia Plantarum Supplementuna, IV.
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production of new tissue is done so as to create the expected morphological

features which are related to the interception of radiant energy.

A portion of the intercepted radiation is the source of photosynthetic

free energy. Because of the nonlinear response of photosynthesis to light level,

the upper portion of a dense canopy will generally respond quite differently from

the lower portion. In addition, the leaf orientation will also influence the

illumination level and, hence, the photosynthetic activity. Accordingly, the

illumination level at each hour of the day is calculated for the various leaf

orientations and leaf locations within the canopy. Five different depths within

the canopy are considered for this purpose. The same fundamental concepts are used
[1]

here as are used in the calculation of reflected radiation from a canopy

Only those particular features of plant morphology which influence the interception

and reflection of incoming radiation need to be considered for this aspect of

the problem.

This is done by simulating the morphological features of the plant as

horizontal and vertical components. Such a procedure leads to quantities which

will be called projected leaf area indices (see Fig. 2). The sum of the

horizontal and vertical projected leaf area indices will be called the total

projected leaf area index, and will be symbolized as PLAI.

The projected leaf area index is not the same thing as biological leaf

area index, which is the total one-sided surface area of leaves per unit area

of ground. However, the two parameters are probably highly correlated for a

given kind of vegetation. There are several advantages to using projected leaf

area indices rather than biological leaf area indices for this investigation.

Using projected areas allows us to simulate the structure of the crop, at least

in a coarse sense. This capability is important both for accurately simulating

the irradiance conditions impinging on the canopy as well as for simulating

the radiance coming from the canopy.

[1] Suits, G.H., 1972, "The Calculation of the Directional Reflectance of a
Vegetative Canopy", Remote Sensing of Environment, V. 2, pp. 117-125.
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FIGURE 2. ORTHOGONAL PROJECTIONS MAKING IDEALIZED 
BIOLOGICAL COMPONENTS. The Horizontal Projections
 
Taken Together Lead To A Quantity Called The
 
Horizontal Projected Leaf Area Index. The Vertical
 
Projections Taken Together Lead to a Quantity
 
Called The Vertical Projected Leaf Area Index. The
 
Sum of All of the Projections Defines The Total Projected
 
Leaf Area Index (P.L.A.I.). 
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In addition, a significant amount of photosynthesis is done by components
 

of the canopy other than the leaf laminae which generally are used to define
 

biological leaf area. All of the photosynthesizing area of the canopy will be
 

included in our description of projected leaf area index, unless explicitly
 

stated to the contrary. A finer breakdown of these components is discussed
 

later in this report.
 

Figure 3 illustrates the idealization of the crop canopy as it functions
 

to intercept, absorb and reflect incident radiation. It is necessary to divide
 

the photosynthetic contributions into a variety of parts to account for the
 

nonlinear response to incident radiation levels. Skylight irradiance decreases
 

with depth of penetration into the canopy, but all components are irradiated.
 

Direct solar irradiance does not decrease, but only the fractional areas of
 

irradiation are decreased with depth of penetration.
 

Figure 4 illustrates the diffuse flow diagram of CO2 in photosynthesis
 

as published by Lommen, et.al. [5 ] . The serrated lines represent diffusive
 

resistances, and Pl and P5 represent diffusive flow rates. The respiration in
 

this portion of the model proceeds at a rate governed by vegetative growth
 

rate and by leaf temperature and illumination. Respiration represents the
 

combined loss of free energy expended in performing the various functions such
 

as cell maintenance, translocation, cell .multiplication and expansion.
 

The fact that the respiratory energy is not allocated entirely in accordance
 

with each particular activity may require correction. Preliminary calculations
 

indicate that the parameter controlling the magnitude of respiration may be the
 

most sensitive parameter of the entire Growth Model. 
Since the various activities
 

are not necessarily in steady progress at the same time, the observable portions
 

of the canopy may change at noticeably different rates and in this way influence
 

the progression of reflectance values.
 

3.2 	 TRANSPIRATION
 

The schematic diagram of Figure 5 shows the logic of the transpiration
 

calculation. The boxes represent moisture potentials and the serrated lines
 
[5] 	 Lommen, P.W., C.R. Schwintzer, C.S. Yocum, and D.M. Gates, 1971, "A Model
 

Describing Photosynthesis in Terms of Gas Diffusion and Enzyme Kinetics",
 
Planta (Berl.) 98, 195-220.
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represent resistances to~ioisture flow. The parallel lines designated as CAP

represent the total capacity of a plant to retain water under a turgor pressure.

Two different moisture currents are considered. CUR1 from soil through roots

and stalk to leaf cells is a capillary flow, and CUR2 from cells through the leaf

surface to the air is a diffusion flow. CUR1 is the loss of water from the soil,

and CUR2 is the loss of water to the air. The soil moisture potential, RTSP,

is governed by soil properties and by soil moisture concentration. RTSR, the

soil resistance, also depends upon soil properties and soil moisture concentration.

RTOP is the root-soil interface osmotic potential and has been considered a small

fixed value in calculations to date. RSR is the root and stalk capillary resistance

combined. This resistance is assumed to change with plant growth so that the

resistance of the root and stalk is reduced in proportion to the projected leaf

area of the plant. It is assumed that new capillary pathways are created to

accommodate the expanded projected leaf area.

The leaf osmotic potential, LFOP, depends inversely upon the amount of

moisture contained in the cell while the turgor pressure is proportional to the

amount of moisture within the cell. The algebraic sum of these two potentials

is the leaf moisture potential. Stomatal closure is governed by the amount of

moisture within the cell. The turgor pressure also controls the leaf orientation.

In the present Growth Model the morphology of wilt begins at about 3 bars turgor

pressure, and complete wilt occurs at 0 bars.

The surface parallel resistance, SFPR, represents high resistance alternate

pathways from the cell to the outside surface of the leaf. The boundary layer

resistance, BDYR, completes the moisture pathway to the air which draws moisture

due to the air-moisture potential, AIRP.

3.3 PRECIPITATION AND SOIL MOISTURE

A flow chart indicating the way that precipitation and soil moisture are

determined is presented in Figure 6. A statistical precipitation model was

developed so that 10 or 20 year growth histories can be computed at very low cost.

The use of a statistical precipitation model permits introduction of realistic

alterations in climate simply by altering the long term averages for the region.

Precipitation is zero unless a cloudy day occurs. When a cloudy day does occur,
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the amount of -recipitation is chosen by random number choice in such a way that
 

the greatest rainfall recorded for that month in the geographic region cannot
 

be exceeded and the long term average rainfall reported for that month will result
 

after many trials. The result is a day-to-day precipitation pattern which
 

resembles the frequency and magnitude of rainfall reported by the weather
 

station for that region.
 

Precipitation is accumulated in the first meter of soil depth. If soil
 

moisture concentration exceeds the field capacity for the soil, run-off or
 

gravitational drainage of the excess occurs. Plant transpiration also removes
 

moisture from the soil. The soil moisture is assumed to be evenly distributed
 

in a fixed thickness of soil (I meter soil depth in present calculations)
 

without any change in soil properties with depth. Soil moisture extraction
 

is assumed to take place evenly within this region. More realistic root-soil
 

relations are exceedingly complex and sweeping simplifications are required
 

in order to maintain a tractable model. The major requirement of the soil
 

moisture portion of the model is to require accountability of the available
 

moisture and to induce moisture stress morphology as. soil moisture is
 

depleted.
 

3.4 PLANT RESPONSE
 

Plant Response calculates the allocation of net photosynthetic production
 

to vegetative growth, "vacuole storage", or reproductive organs. In the event
 

that respiration exceeds p oduction of photosynthate, the difference is made
 

up by depletion of "vacuole" storage. During the vegetative growth phase a
 

depletion of vacuole storage below some fixed fraction of the biomass results
 

in suspension of vegetative growth until vacuole storage has been resupplied.
 

If vacuole storage falls-still farther, leaf slough-off occurs with the translocation
 

of remaining'storage into the rest of the plant. A change in dimension due to
 

water loss and a change in orientation of the necrotic part is specified as
 

required by the morphology of necrosis. The presence of such necrotic tissues
 

in the canopy forms an important part of the remote sensing link. According to
 

this model, two different circumstances can induce leaf slough-off. Extensive
 

moisture stress causes stomatal closure resulting in a reduction of production
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and an excess expenditure of storage, which may result in slough-off. In the
 

absence of moisture stress, a growing upper story of the canopy shades the
 

lower 	portion resulting in a reduction of production and an excess expenditure
 

of storage, which may result in slough-off.
 

During normal vegetative growth, photosynthesis in excess of storage
 

requirements is allocated to an increase in the biomass. The precise manner
 

in which this allocation is made will'very likely be different for different
 

varieties. For purposes of exploring the consequences of the current model, a
 

simple allocation system was used. The projected leaf area index of the canopy
 

was assumed to be proportional to the biomass. The proportionality constant
 

represents the allocation proportions between producing area and .non-producing
 

(support) organs. Preliminary calculations indicate that the results are
 

moderately sensitive to the value of this constant. A value was used which
 

appeared to be consistent with published results [19] Further model refinement*
 

in this allocation may be required since the consequences affect both producing
 

area and also vital components of the remote sensing link.
 

The leaf orientation is also related to the particular morphology of the
 

wheat variety and to age of the plant. Three kinds of orientation are required -­

the normal orientation of healthy vegetative growth, the orientation sequence
 

of wilt due to moisture stress, and the orientation of leaf necrosis. Orientation
 

is expressed, in an idealized fashion, as the ratio of total projected leaf
 

area to the total horizontal projections of leaf area within the canopy. Previous
 

field measurements of the orientation of one variety of wheat [201 were used as
 

a guide for preliminary calculations.
 

3.5 	ENVIRONMENTAL FACTORS
 

The environmental factors affecting the growth of the crop may be introduced
 

from recorded data or by simulation. The above model was operated with simulated
 

environmental data.
 
[19] 	 Strebeyko, P., M. Wislocka, and T. Krzywacka, 1963, "Dynamics of Growth
 

and Development in Spring Wheat", Physiologia Plantarum, Vol. 16.
 
[20] 	 Safir, G.R., G.H. Suits, and M.V. Wiese, 1972, "Application of a
 

Directional Reflectance Model to Wheat Canopies Under Stress", Presented
 
at .International Conference on Remote Sensing in Arid Lands, Tuscon, Arizona.
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The sun angle for a particular latitude is easily computed if one assumes
 

that the earth's orbit is circular with a yearly period of 365 days. The
 

noon sun angle from zenith oscillates about the equinox position in a simple
 

harmonic fashion. The diurnal variation of sun angle is calculated for
 

each day using trigonometric relations. Thus,
 

n = 7r/2 + .410*cos(2r*(ND+lO)/365) 

is the relation for the angle in radians of the sunlight direction from the
 

north pole direction on day number, ND, with ND=l on January 1. The number
 

.410, is the angle 23.5 degrees expressed in radians.
 

The local polar angle, 0, of the sun as a function of the hour of the day,
 

NH, and latitude of location, V1, is then
 

cos4 = sinncosVsin(2ir(NH-6)/24) + cosnsin
 

Midnight is given by NH = 0.
 

The solar illuminance (400-700 nm), ESN, normal to the suns rays in kl/m
2
 

is calculated from the relation,
 

ESN = 138.8 exp(-.158/cose).
 

This relation accounts for some atmospheric attenuation as the sun approaches
 

the horizon. The relation was determined by curve fitting data in graphical
 

form from ITEK [21] ESN is restricted to positive values.
 

Clear day sky light illuminance, ESKY, in kl/m2 was similarly obtained by
 

curve fitting. In addition, the sky is assumed to be uniform and Lambertian.
 

Thus,
 

ESKY = 113.8 (1/2 - 0)exp(-2.29(7r/2 - 8)) + 6.75 

where ESKY is restricted to positive values. The twilight condition is incorporated
 

in the relation for ESKY.
 

Three types of daily weather are considered: sunny, partly cloudy, and
 

cloudy. Illumination conditions for cloudy skies, ECLO, are derived from the
 

[21] ITEK, 1965, Photographic Considerations for Aerospace, p. 15.
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above illuminance values by assuming that a cloud layer, on the average, transmits

luminous flux as a plane Lambertian diffuser with a hemispherical transmittance

of 0.1. Thus,

ECLO = .l(ESKY+ESN*cosO)

A partly cloudy day is taken as one where the cloud cover is exactly half -cloudy

and half sunny every hour.

The choice of day type is presently obtained by pseudo random number

selection in such a way that the 10 year averages match the proportions desired.

The pseudo random number series (one number for each day) is initiated by

the date of the year, e.g., 1961. In this way, the same weather sequence is

used for all calculations of a given year.

The mean daily temperature, TM, is assumed to vary harmonically about the

mean annual temperature, TMB, for the year for a given geographic region with a

seasonal amplitude, TMA. Thus,

TM = TMA*cos[27r(ND-NDM)/365] + TMB

Where NDM is the day number when the mean temperature reaches maximum. The

diurnal temperature (Tl) variation around the mean depends upon the day type.

The amplitude of diurnal variation for a partly cloudy day, AMPA, is increased

for a sunny day by the quantity, AMPR, and is decreased by the same amount on

a cloudy day. Thus,

Tl = TM+[AMPA+AIPR*(NSW-2)]cos[2i(NH-15)/24]

where NSW is 1 for cloudy day, 2 for partly cloudy, and 3 for sunny day. NH is

the hour number.

The maximum diurnal temperature occurs at 1500 hours (3 p.m. sun time). The

values of ANPA and ANPR can be made consistent with historical weather data.

In the present arrangement, no fluctuations in the yearly mean temperature are

permitted.
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4 

GROWTH MODEL RESULTS
 

- A sample of the green projected L.A.I. and yield outputs from the Growth 

Model is shown in Figure 7. The vegetative growth phase approximates the typical 

S curve. Deviations from a smooth curve are due to a chance sequence of 

favorable or unfavorable days. The reproductive activity occurs near the top
 

of the vegetative growth phase where a fall-off in projected leaf area index
 

begins. The rate of this fall-off is highly dependent on the rate of translocation
 

of stored carbohydrate. Details of the hourly performance of the model during
 

several days in the growing season are presented in Appendix III.
 

In order to assess the performance of the Growth Model under varying
 

environmental conditions, the Growth Model was exercised for four drastically
 

different hypothetical climates and initial values of soil moisture. The results
 

were then analyzed with respect to the relationships between vegetation condition
 

and yield. It was found that there was a direct correlation between green
 

projected leaf area index at the time of heading and final grain yield. This is
 

not unexpected, since the amount of grain produced is a function of the amount
 

of functioning photosynthetic material present.
 

There is some indication from the literature that there is a good correlation
 

between the summation of the green photosynthetic area over time and final yield.
 

This-is particularly true during the period after heading [17. The summation of
 

the green photosynthetic area may be approximated by the projected leaf area
 

duration (PLAD), defined here as the summation of the daily projected leaf area
 

index over the number of days of interest; i.e.,
 

n 

PLAD = LAT (i) 
i=l
 

where PLAI (i) is the projected leaf area index for day i.
 

The projected leaf area durations after heading for the four hypothetical
 

sets of environmental conditions mentioned above were computed and compared with
 

[17] Welbank, P.., S.A.W. French, and K.J. Witts, 1966, "Dependence of Yields
 
of Whdat Varieties,on Their Leaf Area Durations", Annals of Botany, N.S.
 
Vol. 30, No. 118.
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their corresponding values of yield. The results for the four cases are graphed
 

in Figure 8. As can be seen, for this very limited trial there is an almost
 

linear relationship between projected leaf area duration and wheat grain yield.
 

These results are very preliminary and on a very small data set, but they
 

suggest that PLAD may be a useful indicator of grain yield. Since PLAI can
 

potentially be approximated using remote sensing data, the results suggest that
 

remote sensing data may be a valuable indicator of wheat grain yield.
 

In fact, a rudimentary and illustrative yield model based solely on
 

sequential reflectance data can be written based on these results. A simple
 

regression equation can be developed relating yield to projected leaf area
 

duration, and having the form
 

yield = A + B* (PLAD)
 

For the specific modeled results presented in Figure 8 this equation is
 

yield 2 = 3.24 + .22*(PLAD)(moles CO2/n field area) 

In addition, a relationship can be established between green PLAI and
 

reflectance data of the form
 

PLAI = C + D (650) ) + E ( 2 

For modeled results of reflectance of a hypothetical crop similar to wheat
[1 6 ]
 

the above relationship accounted for 95% of the variability in PLAI when using
 

the coefficients.
 

C = 1.17, D = -.14, E = .017.
 

Simple substitution of radiometric indicators of PLAI for actual PLAI at daily
 

intervals produces a yield model dependent only on periodic reflectance data.
 

The form of the yield model would be
 

[16] Colwell, J., 1973, "Bidirectional Spectral Reflectance of Grass Canopies
 
for Determination of Above Ground Standing Biomass", Ph.D. Dissertation
 
University of Michigan, Ann Arbor, Michigan.
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P(i 750)2
+] (P(i,750)
yield = A+B n 
+ 


yiel = p(i,650)) p(i,650))
 

This yield model is only illustrative of the type of relationship we are
 

attempting to define, and it may have to be modified as a result of future work.
 

The limiting factor to the usefulness of remote sensing data for exploiting the
 

apparent relationship between PLAD and grain yield may prove to be the degree
 

to which PLAD can be approximated from the PLAI estimates available from a
 

limited number of remote sensing observations.
 

In order to assess the performance of the Growth Model under less drastic
 

variations in environmental conditions, two runs were made with identical climate
 

and initial soil moisture, but with the weather sequence altered. The two weather
 

sequences will be identified as 1960 and 1961. The weather sequence 1961
 

resulted in 127 sunny days, 120 partly cloudy days, and 119 cloudy days. Total
 

precipitation was 17.19 inches, and runoff or gravitational moisture loss was
 

6.97 inches. The precipitation for weather sequence 1960 was about 24 inches, but
 

of more importance to plant growth, the precipitation timing in 1960 was more
 

favorable to modeled wheat production. The 1960 modeled wheat required
 

approximately 13" of water for good wheat growth. With the initial soil moisture
 

set at field capacity (20%), the 17 inches of additional precipitation in the
 

1961 sequence should have been adequate. However, the precipitation arrived
 

at the wrong time, producing runoff instead.
 

Figure 9 shows the values of computed soil moisture concentration and projecte,
 

leaf area index of healthy green photosynthetic material at 10 day intervals
 

throughout the growing season. The soil moisture potential in the Growth Model
 

is made to increase rapidly in magnitude at a concentration of 10% (the permanent
 

wilting point), thereby inhibiting growth and production of grain. The
 

relatively high rate of increase of PLAI in the 1961 sequence from days 125
 

to 145 is due mainly to a period of sunny days with adequate soil moisture. The
 

1960 sequence increased more slowly over this period due to cloudy days which
 

both conserved and replenished soil moisture. The subsequent more favorable
 

moisture conditions from day 145 to day 155 allowed the 1960 wheat crop to attain
 

a higher peak value of green PLAI. The resulting grain yield in 1960 was more
 

than 50% greater than in 1961.
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5

WHEAT REFLECTANCE MODELING

In order to simulate the sequential bidirectional spectral reflectance

of the wheat canopies, it was necessary to devise a strategy for dividing

the above ground parts of the wheat canopy into appropriate morphologic and

radiometric components (horizontal and vertical projected areas of live and
dead leaves and stalks, in two layers.) The specific strategy used is presented

in Appendix IV. This strategy is based on data from the literature [19 , and

on our own observations of wheat. However, it is admittedly a very simplified and

coarse strategy that needs refinement. In addition, there was not sufficient

time to incorporate this strategy into the Growth Model, so the stategy was

applied to the output of the Growth Model. Such a procedure is not strictly

correct, since crop characteristics affect the amount of radiation absorbed,

as well as other aspects of the functioning of the Growth Model. Nevertheless,

this procedure enables us to make calculations of wheat canopy bidirectional

spectral reflectance which should be approximately correct, and which permits

us to demonstrate the connection between the Growth Model and the Reflectance

Model.

The characteristics of the crops simulated for 1960 and 1961 weather

sequences which were discussed previously were determined by the strategy in
Appendix IV. The resulting projected areas of each type of component (live

leaves, dead leaves, live stalks, dead stalks) were used as inputs into a

vegetation canopy reflectance model. Previous measurements [20] were used to

describe the radiometric properties of the vegetation components and the soil.

The wheat canopy bidirectional spectral reflectance measurements were

made for a vertical look angle and a solar zenith angle of 30* . In practice, it

would be entirely possible to vary these and other parameters, as appropriate.

An example of the bidirectional spectral reflectance which was computed for one

day in the 1960 weather sequence is presented in Figure 10.

[19] Strebeyko, P., M. Wislocka, and T. Krzywacka, 1963, "Dynamics of Growth
and Development in Spring Wheat", Physiologia Plantarum, Vol. 16.

[20] Safir, G.R., G.H. Suits, and M.V. Wiese, 1972, "Application of a Directional
Reflectance Model to Wheat Canopies Under Stress", Presented at
International Conference on Remote Sensing in Arid Lands, Tuscon, Arizona.
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Sequential reflectance characteristics at 10-day intervals for the 1960
 

and 1961 weather sequences are presented in Figures 11 and 12. The spectral
 

regions shown are 550 nm (green), 650 nm (red), and 750 nm (IR). The reflectance
 

characteristics therefore approximate what could be derived from LANDSAT
 

channels 4, 5, and 6.
 

The IR reflectance trends for the two seasons can be seen to have
 

approximately the same shapes as the corresponding graphs of PLAI which were
 

presented in Figure 9. This similarity suggests that the trend in vegetation
 

condition can be monitored by appropriate interpretation of LANDSAT Channel 6
 

data. The red reflectance trends for the two seasons have shapes that are
 

approximately the inverse of the IR reflectance trends and the trends of
 

vegetation development. The relationship of the trends of green reflectance'
 

to vegetation development are less clear.
 

The IR spectral reflectance seems to be the most sensitive of these three
 

spectral regions to vegetation condition, but the red spectral reflectance also
 

has considerable sensitivity to vegetation condition. The green spectral
 

reflectance is not particularly sensitive to vegetation condition.
 

The inverse relationship between IR and red reflectance with respect to
 

vegetation development suggests that a ratio of these reflectances should be.
 

more sensitive to vegetation development than either spectral band separately.
 

IR/red re~flectance ratios for the tw growing seasons are presented in Figure 13.
 

The addition&Vutility of an IR/red reflectance ratio is that it tends to normalize
 

the effects of varying soil reflectance due to varying soil type and soil moisture.
 

(see Appendix I).
 

The precdedifigdischslion--Euggests that V6getatioi dfiv&lopment 6an be
 

estimated by appropriate analysis of remote sensing data such as is collected by
 

LANDSAT. Since there also seems to be a relationship between vegetation development
 

and wheat grain yield, LANDSAT data would appear to have the potential to estimate
 

wheat grain yield. What remains to be done'is to further rfihe our understanding
 

of the relatfonships between vegetation development'and yield and between reflectance
 

characteristics and vegetation development. We will then be prepared to formulate
 

a yield model which will predict wheat grain yield by sequential spectral
 

reflectance.
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CONCLUSIONS
 

Any conclusions concerning the significant implications of this
 

effort must be considered as being tentative until validity of the results
 

can be verified by field experiments. Given that fact, the following
 

points seem to be indicated by'this effort.
 

1) Various aspects of wheat vegetation condition are related to
 

grain yield, including peak value of green projected leaf area index,
 

and projected green leaf area duration after heading.
 

2) Sequential- spectral reflectance is indicative of wheat vegetation
 

condition, especially in spectral regions similar to LANDSAT channels
 

5 and 6 (600-700 nm and 700-800 ram).
 

3) The degree to'which LANDSAT can monitor wheat vegetation condition
 

and forecast grain yield will depend upon both the timing and number of
 

observations available.
 

4) Water availability and its timing seem to be the most important
 

environmental variables, and information related to water availability
 

would probably enhance the performance of a yield model based primarily
 

on periodic reflectance data,
 

5) The results of this effort have contributed toward our goal of
 

determining the feasibility of using periodic remotely sensed data to
 

forecast the grain yield of wheat.
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7 

RECOMMENDATIONS
 

There are a number of additional things that can be done to
 

facilitate the objectives of this project. Some of the more
 

important ones are listed below:
 

1) Improve the strategy for .describing wheat canopy structure and
 

-incorporate into Growth Model.
 

2) Adjust water relations parameters to those of wheat.
 

3) Implement differences in diffusive resistance for CO2 and 

H20 for wheat. 

4) Adjust translocation parameter values to those of wheat, 

5) Test the overall performance of the Growth Model and as many of 

the subsystems as possible -withactual field data. 

6)' Implement the Growth Model for a variety of weather sequences, 

climates, and/or other environmental parameters. Compute 

associated mo4eled sequential bidirectional spectral reflectances 

and compare with associated yield in order to derive the functional 

form of a yield model dependent only upon sequential-spectral 

reflectance, Implement such a model on actual LANDSAT data in 

order to calibrate the model and assess its performance, 
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APPENDIX I 

EFFECT OF SOIL REFLECTANCE VARIABILITY -

The following material addresses some practical problems in using
 

remote sensing data effectively to infer crop characteristics. It
 

illustrates possible solutions to some of the problems, and also shows
 

the value of investigating these problems by a modeling approach. The
 

particular factors discussed include: 1) The effect of variable soil
 

reflectance on vegetation canopy reflectance as a function of a) the
 

percent vegetation cover, and b) the solar zenith angle; plus 2) a possible
 

approach to minimizing the effect of variable soil reflectance by means of
 

ratio processing, Some of the material presented is based on previous
 

work and/or work on other current projects.
 

The only way it is possible to specify the amount of vegetation
 

present in a canopy using Suits' analytical model is by means of the
 

projected leaf area indices (horizontal, vertical, and total). The
 

ratio of horizontal to vertical projected leaf area indices will be
 

symbolized as H/V, and the reciprocal will be given by V/H.
 

Percent vegetation cover is the proportion of ground area obscured 

by vegetation when looking straight down (@= 00) at a vegatation canopy. 

Percent vegetation cover, percent cover, and cover will be used synonymously 

Horizontal projected leaf area index is not equivalent t6 percent 

vegetation cover. The relationship between the two parameters can be 

demonstrated by using some of the theory inherent in the reflectance model, 

A fundamental assumption of the model is that the horizontal components 

are randomly distributed, an assumption which was confirmed for some of 

the canopies discussed in this investigation. This random distribution 

means that leaves can overlap each other. The proportion of vegetation 

cover [or, alternatively, the probability of at least some vegatative 

material being in the vertical (4 = 00) line-of-sight] for a vegetation 

canopy with horizontal P.L.A.I, = H is therefore given by the negative 

exponential relationship 

- H
 
l-e
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A comparison between some values of horizontal P.L.A.I. and l-e - H is given
 

in Table I-a.
 

-

TABLE I-a. HORIZONTAL P.L.A.I. vs. (l-e H)
 

1-e-H
 Horizontal P.L.A.I. 


1 	 .63
 

2 	 .86
 

3 .95
 

4 	 .98
 

5 	 .99
 

Therefore, as one term increases, so does the,other, but at a
 

different rate,
 

Variable soil reflectance can have a substantial effect on the
 

reflectance of a vegetation canopy. Therefore, it is important to
 

understand this effect if we are to infer information about yield from
 

remote sensing of vegetation canopies,
 

In an attempt to clarify the effect, a number of calculations.of
 

vegetation canopy reflectance were made using a canopy reflectance model
 

and two different values of soil reflectance. The canopy reflectance
 

model is the same one which is being used for some of the concepts of the
 

yield model. The complete canopy reflectance model is described by Suits[1].
 

All canopy reflectance data presented are bidirectional reflectances, with
 

the angle of view being straight down. The results and conclusions may be
 

different at other angles of view, as discussed by J. Colwell [1 6].
 

[1] 	Suits, G. H. 1972. 'The calculation of the directional reflectance
 
of a vegatative-canopy." Remote Sensing of Environment, V.2,
 
pp. 117-125.
 

[16] Colwell, J., -1973, "Bidirectional Spectrl 'Reflectance of Grass
 
Canopies for Determination of Above Ground Standing -Biomass",
 
PhD Dissertation, University of Michigan, Ann Arbor, Michigan.
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Effect of Soil Reflectance as a Function of Vegetation Cover
 

Some of the relevant parameters which were used as inputs to the
 

reflectance model for the following discussion are listed in Table I-b.
 

The spectral regions investigated include the green, red, and near IR.
 

Specifically, the characteristics were chosen to be reasonably representative
 

of the 500-600nm region, the 600-700nm, and the 700-800nm region. The
 

results, therefore, are approximately what would be expected in LANDSAT
 

channels 4, 5, and 6. The structural relationships used [principally the
 

ratio of the projected vertical leaf area (V) to the projected horizontal
 

leaf area (H)] are consistent with physical measurements made on wheat
 

plants by Safir et alL20]
 

TABLE I-b. 	 HEMISPHERICAL REFLECTANCE AND TRANSMITTANCE
 
VALUES USED IN MODELING FOR VEGETATION COVER
 

Percent Percent 	 Percent
 
Vegetation ,Vegetation Soil
 

Spectral Region Reflectance Transmittance Reflectance
 

LIGHT SOIL 	DARK SOIL
 

Green 	 20.0 25,0 10.0 5.0
 

Red 	 5.0 5.0 15.0 5.0
 

Near IR 	 50.0 45.0 25.0 10.0
 

Some of the results are presented in Figures I-a and I-b. As can be
 

seen, there is a considerable difference in vegetation-canopy reflectance
 

for the two soil reflectances at low values of projected leaf area index.
 

For example, at a total P.L.A.I. of .325 (vegetation cover of approximately
 

10%), the canopy with the high reflecting soil has an IR reflectance (LANDSAT
 

channel 6) of 27.2%, and the canopy with the low reflecting soil has an IR
 

[20] Safir, G.R,, G.H. Suits, and M.V. Wiese. 1972, "Application of
 
A directional reflectance model to wheat canopies under stress".
 
Presented at International Conference on Remote Sensing in
 
Arid Lands. Tuscon, Arizona.
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reflectance of 13.5%. Corresponding values for green (channel 4) and red
(channel 5) reflectance are given in Table I-c. The canopy spectral

reflectance values for a total P.L.A.I. of 5.00 (vegetation cover of 86%)
are presented for comparison to show that variable soil reflectance

affects vegetation canopy reflectance very little at high values of percent

vegetation cover.

TABLE I-c. VARIABILITY OF VEGETATION CANOPY
SPECTRAL REFLECTANCE DUE TO VARIABLE
SOIL REFLECTANCE AS A FUNCTION OF
PERCENT VEGETATION COVER AND P.L.A.I.

% Cover Green Reflectance Red Reflectance IR Reflectance

(%)
TOTAL

P.L.A.I. .(1-e -H) x 100 Light Dlarkj Ap Light Dark Ap Li ht Dark Ap

0.325 10 10.0 5.9 4.1 12.1 4.3 7.8 27.2 13.5 137

5.0 86 10.9 10.9 0.0 2.3 2.2 0.1 51.8 49.6 2.2

Empirical data were also collected-to investigate the effect of

variable soil reflectance as a function of vegetative cover. The data

were collected outdoors under nearly clear skies and a solar zenith angle

of 40 for canopies of oats that were morphologically similar to wheat'.

Important canopy parameters are presented in Table I-d. Some of the

results are presented in Table I-e.
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TABLE I-d. 	 RELATIVE VALUES OF HEMISPHERICAL REFLECTANCE
 
AND TRANSMITTANCE FOR COMPONENTS OF EXPERIMENTAL
 
OATS VEGETATION CANOPIES
 

Soil
 

Spectral: Region Vegetation Light Dark
 

p 	 .p p 

Green 17 16 20.3 2.6
 

Red 6 2 25.1 4.0
 

IR 47 46 27.2 6,8
 

TABLE I-e, 	EFFECT OF SOIL REFLECTANCE ON OATS 
CANOPY REFLECTANCE AS A FUNCTION OF 
PERCENT VEGETATION COVER 

Green Red 	 IR
 

Vegetation Cover (7) light dark light dark light dark
 

"40 16.6 2.8 19.8 3.6 25.7 8.1
 

80 	 6.4 6.7 2.5 2.8 42.3 43.5 
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The preceding data clearly indicate that soil reflectance can have a
 

significant effect on vegetation canopy reflectance. They also show that
 

the magnitude of this effect is dependent on the percent vegetation cover.
 

This situation makds it -very difficult to correct for the effect of soil
 

reflectance without considerable a priori knowledge, Without such a priori
 

knowledge it can be very difficult to unambiguously infer anything about
 

the vegetation from the canopy reflectance (which includes the effects of
 

the soil) using single band data.
 

For example, for the conditions for which the vegetation canopy
 

reflectance modeling was done, light soil with no vegetation (0% cover) is
 

virtually indistinguishable in the near IR band (Channel 6) from a canopy
 

consisting of dark soil and a total projected leaf area index of 1.25 (cover
 

r,40%). In the red band (Channel 5), dark soil with no vegetation is
 

virtually indistinguishable from a canopy consisting of light soil and a
 

total projectedleaf area index of about 1.75 (cover ',50%),
 

For the conditions under which the empirical data on oats canopy
 

reflectance were obtained, light soil with no vegetation is virtually
 

indistinguishable in the near IR band from a canopy consisting of dark
 

soil and approximately 50 percent vegetation cover. In the red band, dark
 

soil with no vegetation is virtually indistinguishable from a canopy
 

consisting of light soil and approximately 60 percent vegetation cover.
 

Effect of Soil Reflectance as a Function of Solar Zenith Angle
 

The preceding examples illustrate some of the single band ambiguity
 

involved in interpreting characteristics of the vegetation in the presence
 

of soil reflectance variability. Clearly, some means of minimizing the
 

effect of soil reflectance variability (or correcting for it) would be
 

highly desirable.
 

The solar zenith angle is one of the parameters which determines the
 

magnitude of the effect of variable 'soil reflectance. As the solar zenith
 

angle increases, more of the soil is shadowed by the vegetation. As a
 

result, there is a decreasing contribution to the vegetation canopy reflectance
 

from the soil, so variations in soil reflectance have less effect on canopy
 

reflectance.
 

50
 



jRI FORMERLY WILLOW RUN LASORATORIES ThE UNIVERST OF MICNIGAN

It has been shown that at high percent vegetation cover, the effect
of variable soil reflectance is neglibible. Therefore, in showing the
effects of solar zenith angle on minimizing variable soil reflectance,

it is necessary to use an immature crop (low percent vegetation cover).
For this investigation, immature, crops were simulated from data

[22] [20]collected by Suits and Safir , Safir et al and Suits and Safir
(personal communication) on reflectance, transmittance, and structural

properties of wheat, sugarbeets, and corn. Since percent vegetation

cover (and horizontal PL.A.I.) has already been shown to have pronounced
effects on vegetation canopy reflectance (Figures I-b and I-c), all

three types of canopies were made to have approximately the same percent

vegetation cover (50%), while still retaining their distinct optical

and structural properties,

The effect of solar zenith angle on simulated wheat canopy reflectance

is shown in Tables I-f and I-g. Note the decreasing effects of soil

reflectance as solar zenith angle goes from 10' to 500 to 700. The

greatest absolute change in canopy reflectance at all solar zenith angles
occurs in the IR region because of the greater diffuse flux which results

from the generally high vegetation transmittance.

These calculations indicate that the optimum solar zenith angle for
minimizing effects of soil reflectance occurs as Q approaches 900 (the
horizon). However, it is important to appreciate the ancillary effects

that solar zenith angle has on two important functions: 1) crop

identification; and 2) crop yield estimation.

The effect of solar zenith angle on the ability to differentiate

between various simulated crop types with approximately the same percent
vegetation cover is shown in Tables I-f, I-h, and I-i. It can be seen that

for these canopies there is a greater difference in reflectance among the

[.20] Safir, G.R., G.H. Suits, and M.V. Wiese. 1972. "Application of a
Directional Reflectance Model to Wheat Canopies Under Stress."
Presented at International Conference on Remote Sensing in Arid
Lands, Tuscon, Arizona,

[22] Suits, G.H., and G.R. Safir, 1972. "Verification of a Reflectance
Model for Mature Corn With Applications to Corn Blight Detection."
Remote Sensing of Environment. V. 2 pp 183-192.
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TABLE I-f. SIMULATED WHEAT CANOPY REFLECTANCE FOR 
LIGHT AND DARK SOIL AS A FUNCTION
 
OF SOLAR ZENITH ANGLE, e
 

WHEAT 

GREEN RED IR 

6 Light Dark Light Dark Light Dark
 

100 8.5 5.4 7.4 3.2 36.7 23.3 

500 4.2 3.3 2.5 1.3 27.5 19.8 

700 3.1 2.6 1.3 0.8 23,2 17.3 

TABLE Ig, DIFFERENCE IN .SPECTRAL REFLECTANCE'
 
OF SIMULATED WHEAT CANOPIES WITH 
LIGHT SOIL AND WITH DARK SOIL AS
 
AFUNCTION OF SOLAR ZENITH ANGLE; 6 

Ap (%) (Light, Dark) 

0 Green Red IR 

100 3.1 4.2 13.4 

500 0.9 1.2 7.7 

70 0,5 0.5 5.9 
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crop types at large solar zenith angle (700) in many of-the cases. In

general, it appears that the ability to differentiate between crop types
of similar percent vegetation cover and horizontal P.L.A.I. but different
structure (H/V) is enhanced by large solar zenith angle. This is because
at near-vertical look angles the only way the vertical components (which
may be the distinctive components) can be "seen" is by means of the shadow
they cast. The amount of shadow cast by vertical components approaches a

maximum as 8 approaches 90'.

These results should be viewed in proper perspective, however, The
simulated crops have similar spectral reflectance at small zenith
angles because they were made to have approximately the-same percentage

cover (horizontal P.L.A.I.) They tend to look more dissimilar at large
solar zenith angles because large solar zenith angles accentuate the
differences in structure (H/V), The exceptions to this trend are probably
due to small but significant differences in vegetation cover or canopy
radiometric properties. In the real world, however, different crops
are planted at different times and develop at different rates, and to
different extents (maximum % cover and P.L.A.I.) Accordingly, the most
distinguishing feature for most real crops during the growing season is

likely to be percent vegetation -cover (or components with distinctive

radiometric properties), rather than structure. As will be discussed
later, differences in percent vegetation cover are frequently not manifest
as distinctly at large solar zenith angles, at least at high values of
percent vegetation cover. Therefore, in realistic situations large solar

zenith angle may actually degrade the ability to differentiate among various

crop types.

In addition, it should be noted that the parts of the canopy which
furnish the vast majority of the projected area viewed at the near-normal

look angles encompassed by a satellite such as ERTS are the horizontal
"components" (including the soil). At large solar zenith angle the

irradiance on these horizontal "components" is quite small, Therefore,
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TABLE I-h. SIMULATED SUGARBEETS AND CORN 
CANOPY REFLECTANCE FOR LIGHT
 

SOIL AND DARK SOIL AS A 
FUNCTION OF SOLAR ZENITH ANGLE, 8 

SUGARBEETS
 

GREEN RED T'IR 

6 Light Dark Light Dark Light Dark 

100 10.2 6.2 9.8 4.2 42.5 26.1 

700 6.3 4.4 4.8 2.5 32.5 22.1 

CORN 

GREEN RED IR 

6 Light -Dark Light Dark Light Dark 

100 9.5 6.6 9.7 5.5 40.7 27.5 

700 4.2 3.8 3.1 2.5 27.4 21.8 
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TABLE I-i. DIFFERENCE IN REFLECTANCE 
BETWEEN SIMULATED CROP TYPES 
FOR LIGHT AND DARK SOIL AS A 
FUNCTION OF SOLAR ZENITH ANGLE, S 

6 

100 

700 

Ap SUGARBEETS - WHEAT 

GREEN RED 

Light Dark Light Dark 

+1.7 +0.8 +2.4 +1.0 

+3.2 +1.8 +3.5 +1.7 

Il 

Light 

+5.8 

+9.3 

Dark 

+2.8 

+4.8 

0 

100 

700 

Ap CORN - WHEAT 

GREEN RED 

Light Dark Light, Dark 

+10 +1.2 +2.3 +2.3 

+1.1 +1.2 +1.8 +1.7 

IR 

Light 

+4.0 

+4.2 

Dark 

+4.2 

+4.5 

GREEN 

Ap SUGARBEETS 

RED 

- CORN 

IR. 

6 

100 

700 

Light 

+0.7 

+2.1 

Dark 

-0.4 

+1.7 

Light 

+0.1 

+2.7 

Dark 

-1.3 

0.0 

Light 

+1.8 

+5.1 

Dark 

-4.0 

+0.3 
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the radiance from the canopy becomes quite small. Atmospheric path
 

radiance, on the other hand, has been found to increase steadily from a
 

solar zenith angle of 00 to about 70° [ . As a result, at satellite
 

altitude the radiance from the canopy may become less than the radiance from
 

the atmosphere in certain spectral bands at large solar zenith angles.
 

Evidence presented in this report indicates that crop condition and
 

potential yield within a given crop type are associated with P.L.A.I.,
 

and hence percent vegetation cover. Therefore, it is important to know
 

how solar zenith angle effects the capability to measure such parameters,
 

The optimum solar zenith angle for measuring the full range of values
 

of percent vegetation cover and horizontal P.L.A.I. in the spectral regions
 

where soil reflectance is greater than vegetation reflectance (generally
 

green, and red) is 00. 
 At any other solar zenith angle, canopy reflectance
 

will become nearly insensitive to change in vegetation cover when the
 

combination of sunlit vegetation cover and shadow seen becomes 100 percent
 

(i.e., virtually no illuminated bare soil is seen). On the other hand,
 

when solar zenith angle is greater than 00, canopy reflectance is probably
 

more sensitive to changes in P.L.A.I, and percent cover in the region where
 

shadow and vegetation seen is less than 100 percent. This enhanced sensitivity
 

results because the drop in reflectance due to increased percent cover will
 

be amplified by increased percent shadow.
 

Sensitivity to change in percent vegetation cover at low values of
 

percent vegetation cover is generally greatest in the red spectral region
 

due to the high soil/vegetation reflectance contrast, the low transmittance
 

of the vegetation (which produces dark shadows), and the intermediate level
 

(between green and near IR) of skylight irradiance (the only additional
 

source of illumination for the shadowed areas). These factors suggest that
 

the optimum way of distinguishing recently emergent vegetation (10 percent
 

vegetation cover) from bare soil is, to monitor the red band data with the
 

sun at large solar zenith angle (1.e., near the horizon). This procedure
 

might be useful, for example, for early detection of fields planted to
 

winter wheat.
 

[21] ITEK. 1965. Photographic Considerations for Aerospace, p. 15.
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For spectral regions where vegetation reflectance is greater than
 

soil reflectance (generally the near IR), 00 is still the optimum solar
 

zenith angle for differentiating the full range of values of PL.A.I, and
 

percent cover. On the othek hand, any deviation of the solar zenith angle
 

from 00 will decrease the sensitivity over the region where vegetation
 

and shadow is less than 100 percent. This situation suggests that large
 

solar zenith angle is generally the worst condition for early detection
 

of winter wheat in the near IR spectral region.
 

Since large solar zenith angle appears to have a number of disadvantages
 

for measuring important crop characteristics, other ways of suppressing the
 

effects of variable soil reflectance should be investigated. One possible
 

approach is described in the following discussion.
 

Effect of Ratioing on Variable Soil Reflectance
 

Soil reflectance variability is primarily due to either variability
 

in soil type (texture, mineral composition, etc.) or soil moisture,
 

Condit(23] has investigated the effects of the Variability in both factors
 

for a sample of major soils types in the United States. This investigation
 

disclosed a very large degree of variability in soil reflectance, even
 

larger than represented in the previous discussion. For example, for dry
 

soils the reflectance at 650 nm varied from 7,5% to 69.5%, and at 750 nm
 

the corresponding figures were 38.2% + 16.2%. A general characteristic of
 

the soils, however, is that the reflectance usually steadily increases with
 

increasing wavelength over the visible and near Il region. This general
 

spectral property of soils leads one to suspect that a ratio of signals
 

from adjacent spectral bands may be more nearly independent of soil type
 

than single band signals. Nazare [2 4 found this to be the case for a
 

large variety of rock types.
 

Ratios of a number of pairs of spectral bands were computed using
 

Condit's raw data. The ratio of reflectances at 750 m and 650 m (IR/Red)
 

[23] 	Condit, H.R. 1970. "The spectral reflectance of American Soils."
 
Photogrammetric Engineering. V. 36 #9 pp. 955-966.
 

[24] 	Wazarel, C. 1973. "An analysis of laboratory hemispherical
 
Reflectance Spectra of Selected Rocks in the Wavelength Range
 
0.35 to 3.50 micrometer." M.S. Thesis, University of Michigan,
 
Ann Arbor, Michigan.
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was found to be reasonably constant for all soil types. The mean value for
 

this ratio was 1;19 and the standard deviation was 0.12. The variability
 

within the three general "classes" of soils identified by Condit was even
 

less.
 

The major cause of soil reflectance variability other than soil type
 

is soil moisture, Accordingly, the reflectance variability for the same
 

soils as a function of whether they were dry or wet has been computed from
 

Condit's raw data. The change in reflectance with moisture content for a
 

given soil type was found to be as great as 22% in absolute reflectance in
 

the red and 25% in the IR (750 rm), The mean value of red reflectance for
 

the wet soils was computed to be 20.5% + 13.1%. In the IR the mean
 

reflectance was 23.8% + 13.8%.
 

In every case, the wet soil was found to have a lower'reflectance
 

than the dry soil in all spectral regions. Furthermore, the absolute
 

decrease was generally less in low reflecting spectral regions than in
 

high reflecting regions. This situation suggests that the percent relative
 

change might be similar in two spectral regions, and that a ratio of
 

reflectance in two spectral band signals might be an effective normalizer
 

of soil moisture.
 

Accordingly, ratios were computed for all of the wet soils. The
 

750/650 ratio had a mean value of 1.20 and a standard deviation of 0.11.
 

The-variability in the ratio was even smaller within the three soil
 

"classes" identified by Condit.
 

The relative variability of reflectance was calculated for the
 

individual bands and the IR/red ratio by dividing the standard deviation
 

by the mean value. These results are summarized in Table I-j.
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TABLE I-j. VARIABILITY IN SOIL REFLECTANCE 
FOR WET SOILS AND FOR DRY SOILS 

Red IR IR/Red
 

Dry Wet Dry Wet Dr Wet
 

.48 .65 .42 .58 .10 .09
 

It can be seen that the variability is considerably less for the ratio,
 

both for wet and dry soils.
 

If the s6ils are stratified into the three general "classes" of
 

soils of Condit, the variability can be reduced even further. For example,
 

for the most common general soil class (representing 16 different soils), the
 

ratio of the standard deviation divided by the mean is presented in Table I-k,
 

TABLE I-k. VARIABILITY IN SOIL REFLECTANCE
 
FOR A PARTICULAR GENERAL SOIL
 
CLASS (16 soils).
 

Red IR IR/Red 

Dry Wet Dry Wet Dry Wet 

.35 .51 .33 .49 .05 .05 

The mean value of the IR/Red ratio for the soils in this class is 1.11 for
 

dry soil and 1.12 for wet soil, less than a 1% difference.
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The behavior of reflectance was also investigated for variability of
 
soil moisture at various levels between "dry" and "wet", using data of
 

Bowers and fanks [2 5 , The red and IR reflectance both decrease continuously
 
as soil moisture increases, The IR/red reflectance ratio, on the other
 

hand, remains virtually constant and equal to the dry and wet values.
 

The reflectance values of all soils in both the wet and dry state
 

were subsequently analyzed together, 
The relative variability was again
 
calculated by dividing the standard deviation by the mean. 
The results are
 
presented in Table L-l. As can be seen, the variability is again much
 

smaller for the ratio than for either spectral region individually.
 

TABLE I-1. VARIABILITY IN SOIL REFLECTANCE FOR
 
ALL SOILS IN BOTH THE WET AND DRY STATE
 

RED ftR 
 R/RED
 

x a Gix x a Gix x -a a5 

26:90 15.85 .59 30.99 
 16.59 .54 1.19 .11 .09
 

Apparently, then, the 750/650 ratio 
(and perhaps other ratios) is a
 
very effective normalizer of both variability in- soil type and moisture
 
content, simultaneously. 
If the soils are grouped into classes as Condit
 

did, the ratio is an almost perfect normalizer of these phenomena.
 
Another question that needs to be addressed, however, is whether this
 

ratio is useful for differentiating between different species of crops or
 
different crop conditions. That question can generally be answered in
 

the affirmative.
 

At any one time crops might be different from each other in terms of
 
crop structure (morphology), amount of vegetative cover and/or projected
 

[25] Bowers, S.A., 
and R.J. Hanks. 1965. "Reflection of Radiant
 
Energy From Soils." Soil Science, Vol. 100 #2.
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leaf area index. J. Colwell [1 6 ] and others have found that the 750/650
 

reflectance ratio is quite sensitive to changes in phenomena-such as
 

these. For example, two plant canopies with the same amount of accumu­

lated material (biomass), but different canopy structure were found to
 

be markedly different in their 750/650 reflectance ratios. And the
 

750/650 reflectance ratio was found to be an excellent indicator of
 

percent cover and projected leaf area index.
 

However, the 750/650 ratio is not a panacea for data normalization
 

or crop species/yield determination. For example, this ratio is not a
 

perfect normalizer of effects of solar zenith angle (which changes during
 

the growing season) or amount of dead or chlorotic material which is
 

present in the plant canopy. In addition, there may be soils with
 

different characteristics than those represented here for which ratloing
 

is not as useful.
 

These problems need to be more thoroughly investigated. Only after
 

a thorough analysis of these and other factors (such as angle of view) can
 

one determine what is gained and what is lost by any data collection or
 

processing procedure. Only after such a thorough.analysis is it possible
 

to know how to interpret the data under varying conditions. Clearly,
 

there are so many variable factors involved that the problem must be
 

approached initially by analytical modeling. Once this is done, a realistic
 

and effective empirical investigation plan can be constructed for
 

validating the results of modeling.
 

[16] 	Colwell, J. 1973, "Bidirectional Spectral Reflectance of Grass
 
Canopies for Determination of Above Ground Standing Biomass."
 
Ph.D. Dissertation, University of Michigan, Ann Arbor, Michigan.
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APPENDIX II 

YIELD TRANSFORMATION 

There are a number of ways the relationship between moles fixed
 

CO2/m2 and bushels/acre of grain yield can be approximately determined.
 

The following is-a description of one such method.
 

The basic reaction involved in photosynthesis is:
 

6C02 + 6H20 - C6 H12 06 + 602
 

If we make the simplifying assumption that wheat grain is basically
 

C6 HI2 06 or reasonable equivalent then we can assume that it takes 6 moles
 

of CO2 to make a mole of grain yield (C6 KI2 06).
 

A bushel of wheat weighs approximately 60 lbs (Safir, personAl communi­

cation; Jebe, personal communication), or .453 x 60 = 27.18 kg. Since a
 

mole of C6 H12 06 weighs 180 gms, a bushel is
 

27.18 kg/bushel 4 18 kg/mole 151 moles fixed C6 112 06/bushel
 

= 906 moles fixed CO /bushel
2 

Since one acre is 4047 square meters, one bushel-of wheat/acre = 

906 moles C02 .224 moles Co2
 
2 2
 

m
 
4047 m 


Therefore, 50 bushels/acre = 11.2 
moles C02/m

2
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APPENDIX III
 

RULES FOR ASSIGNING TOTAL AREA TO
 
COMPONENT PROJECTED AREAS
 

I) Before Heading Geometry Rules
 

The ratio of leaf area to stalk area is approximated from published
 

data as a function of days after first spring growth.
 

A(leaf)/A(stalk) = 4 (NY-85)/70 + 4.
 

Thus
 

A(stalk) = A(NDY)/(l + A(leaf)/A(stalk). 

Hence 

A(leaf) = A(NDY) - A(stalk) 

Orientation of these total areas are then as follows: 

H(leaf) + 0 = A(NDY) * ASP 

and.since 

V(leaf) + V(sialk) = (1-ASP) * A(NDY) 

then 

V(leaf) = (1-ASP) * A(NDY)- A(stalk) 

where 

A(stalk) = V(stalk) 

= -.5, X2 = -1.0, for all times before heading.
X1 


"A" represents the total projected in the canopy (both layers for
 

the indicated component).
 

"NDY" is the day of the year.
 

"ASP" is the ratio of horizontal projected area to the total
 

projected area.
 

!X"1,2 is the distance from the top of the canopy through the first
 
and second layer of the canopy of unit thickness.
 

"1,"tV" are the horizontal and vertical projected leaf area indices,
 

respectively.
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II) SLOUGH OFF AND BEFORE STALK NECROSIS RULES 

Determine A(peak). 

Then A(necrotic) = 1/2 (A(peak) - 1/8 A(peak)) by shrivel factor, 

and because A(stalk) is 1/8 A(NDY) at time of heading.
 

H2(necrotic leaf) = .1 * A(necrotic).
 

V2 (necrotic leaf) = .9 * A(necrotic).
 

X, = -(1 - A ( peak) - A(NDY)
A(peak) -1/2 A(peak)") 

where
 

A(stalk) 1/8 A(peak) and remains fixed.
 

-1.0 < X1 <0. 

X2 = -1.00.
 

H2 and V2 are both layer 2 necrotic class.
 

H1 (green healthy) = A(peak) * ASP. 

V1 (green healthy) = A(peak) * (1 - ASP) - 1/8 A(peak). 
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III) STALK NECROSIS RULES
 

Stalk necrosis begins when A(NDY) < 1/8 A(peak) 

1/8 A(peak) = V(stalk healthy) + V(stalk necrotic). 

Since all of A(NDY) refers to V(stalk healthy) then 

stalk values are changed so that 

V1 ,2(stalk healthy) = A(NDY) 

V 1 ,2(stalk necrotic) = 1/8 A(peak) - A(NDY) 

X = -.001 

x2 = -1.000 

All other values are used as in II. 
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APPENDIX IV

DETAILED PERFORMANCE OF THE GROWTH MODEL

Hourly values of a number of important parameters calculated by the

Growth Model were printed out for selected days in an attempt to assess

the performance of the model. The following discussion concentrates on

calculated values of transpiration and net photosynthesis.

Transpiration

The following discussion presents material concerning the hourly

transpiration values for a number of days presented in Figure IV-a. The

number 12 on the abscissa represents the twelfth hour of the day. Day 90

was a sunny day, the P.L.A.I. was .38, and the soil moisture was not an

inhibiting factor, Note that the transpiration value is zero at hours 5

and 19 due to stomatal closure caused by inadequate illumination. The

discontinuity in the curve is somewhat of an artifact caused by values being

computed only once an hour. Day 110 was partly cloudy (half sunny, half

cloudy). The P,L.A.I. was .92, and there was adequate soil moisture. The

transpiration value is higher at all corresponding hours of the day due to

a greater P,L.A.I. and a higher temperature which caused a greater air

moisture potential. Day 140 was a cloudy day, the P.L.A.I. was 2.92, and

the soil moisture was adequate. Note that with the longer daylength of day

140, the stomates remain open on hours 5 and 19. Even though the day was

cloudy, the transpiration value was greater than on previous days due to

the greater P.L.A.I. and the greater temperature of each corresponding hour.

Note also the lag in the peak transpiration value until hour 14, which is

largely due to the daily lag in temperature which was incorporated into the

model.

Net Photosynthesis

Hourly values of net photosynthesis were computed for the same days

as transpiration. The results are graphed in Figure IV-6. Note that the

net photosynthesis curves are not entirely different from the transpiration
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Figure TV-a. Hourly Values of Transpiration For 
Three Days in the Growing ,Season. (The Abrupt
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For Three Days in the Growing Season
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curves. The similarity in the respective curves is due to the fact that
 

stomatal resistance is one of the main things controlling both transpiration
 

and photosynthesis.
 

However, there are significant differences in the transpiration and
 

net photosynthesis curves. Gross photosynthesis is very sensitive to the
 

level of illumination, Gross photosynthesis of wheat is quite sensitive
 

to temperature at low values of temperature (<15'C) and rather insensitive
 

at high values of temperature, whereas the response of respiration is
 

exactly opposite with respect to temperature. Net photosynthesis is
 

the difference between gross photosynthesis and respiration.
 

Only positive values of net photosynthesis are graphed in Figure IV-6.
 

Positive net photosynthesis begins at the same hour of the morning as
 

transpiration for days 90 and 110, This is probably because the stomates
 

are open and there is sufficient light for photosynthesis, but not such
 

high temperatures that respiration is significant compared to gross
 

photosynthesis. Positive net photosynthesis for these two days ceases
 

before the corresponding hour for transpiration, however, probably because
 
of the temperature lag causing respiration to be a more significant factor
 

late in the day. This same factor probably also accounts for the premature
 

cutoff of net photosynthesis for day 110 as compared to transpiration for
 

the same day.
 

The shift in the peak value of net photosynthesis towards earlier in
 

the day from day 90 to day 140 probably represents the greater relative
 

response of respiration to the built-in temperature lag at increasingly
 

high values of temperature, and the smaller relative response of gross
 

photosynthesis.
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GLOSSARY
 

Growth Model: A model which predicts the development of a vegetation 
canopy, especially the amount of photosynthetic material 
produced (see Section 2.1). 

Yield Model: A model which predicts yield, generally using a regression 
equation of'meteorological variables (see Section 2,1).
 

Biological Leaf Area Index: the total one-sided area of leaves per unit
 
area of ground (see Section 3.1)
 

Projected Leaf Area Index: orthogonal projections of vegetative material
 
simulating idealized biological components (See Figure 2).
 

Percent Vegetation Cover: the percent of ground area obscured by vegetation 
when looking straight down at the canopy (See Appendix I). 
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