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ABSTRACT

A theoretical investigation wos performed to develop a model for the radar
return from bare ground. The validity of the model was tested by comparing its
theoretical prediction with measured data collected by the University of Kansas
Remote Sensing Laboratory 8~18 GHz radar spectrometer system. ‘

It was assumed that the target area consists of a collection of small, medium
and large size facefs, Then this model was used to calculate the radar cross section
of bare ground and the effect of the frequency averaging on the reduction of the
variance of the return.

It was shown that by assuming that the distribution of the slope to be Gaussian,
and by assuming that the distribution of the length of the facet to be in the form of the
positive side of a Gaussian distribution, the results are in better agreement with
experimental data than the results of previous facet models. I was also shown that
for this calculation we do not need to know the exact correlation length of the small
structure on the ground, instead an effective correlation length wos calculated based
on the facet model and the wavelength of the incident wave, Hence, the parameters
necessary to specify the surface are: standard derivations of slope in x and y directions,
standard deviation of the distribution of the facet size, and the dielectric constants

of the target.

For investigating the effect of the frequency averaging we expanded the
previously available results based on the uniform scatterer model and took into
consideration the penetration effect. It was shown that at small incidence angles,
the number of independent samples predicted is significantly larger and in better

agreement with measured data from alfalfa.

It was also shown that based on the facet model assumption the reduction in
the variance of the return is not only a function of the product of the sweep band
and the time span of the target, as the uniform scatterer model indicates, but it is

also a function of the geometrical properties of the surface, center frequency of
the incident wave and the polarization.



1.0 INTRODUCTION

The purpose of this investigation is to develop a theoretical model for the
radar return from bare ground. The validity of the model is to be tested by comparing
its theoretical predictions with measured data collected by the University of Kansas
Remote Sensing Laboratory 8<18 GHz radar spectrometer system,

In 1956 Katzin [7] proposed that the surface of an area~extended target can be
assumed to be composed of a collection of independent facets of varying sizes and
slopes. This facet mode! was developed for predicting sea backscatter at large
angles of incidence. Over iis range of validity (>85%), Katzin reports good agreement
with experimental data, Using the same facet backscatter approach, Katzin later
developed a second model [8] to cover the other end of the incidence angle range
(0° to 40%). In both models Katzin divides his facet sizes into small and large facets
and assumes certain facet size and facet slope distributions.

A study of the backscatter from circular disks indicates that the variation of the
rader cross section of a disk as a function of its radius (measured in wavelengths) suggests
that facets should be separated into three different size ranges rather than two. Thus,
in the present study a medium size facet group is infroduced along with other modifications
of Katzin's models. The results indicate a significant improvement over Katzin's two .
scale model in terms of agreement with experimental data. Furthermore , the proposed
mode| does not have any inherent incidence angle range limitations.

Prior to developing the model proposed in this study (Chapter 3), a defailed
discussion of Katzin's models is presented in Chapter 2 in order to facilitate the
understanding of the modifications made in Chapter 3. Chapter 4 describes the
properties of the 8=18 GHz radar spectrometfer used fo collect the experimental data.
Two types of experiments were performed; the first experiment consisted of making about
140 independent backscaiter measurements of different illuminated cells of alfalfa and
bare~soil fields. Measurements were made at ¢ GHz with VV polarization at incidence
angles of 0° (nadir), 10°, 20°, 30°, 50° and 70°. At each angle, the mean and
variance of the backscattering coefficient were calculated and used to caleulate the
number of independent samples assuming an X2 fading distribution. In the second
experiment, the radar refurn from a bare ground field was measured under several soil
moisfure conditions. Along with the moisture changes, the surface texture changed

as well, Comparison of theoretical predictions with measured data is presented in
Chapter 5,



2.0 TECHNICAL REIVEW

It is possible to categorize the modeling of extended targets by facets into
those different types:
i) Modeling by a collection of plane facets of infinite size each of
which generdtes a specular type pattern.
i) Modeling by a collection of small facets with a uniform pattern
and size distribution.
iii) Modeling by facets of finite dimensions with some assumed

patterns and size distributions.

2.1 Specular Point Model

The basic assumption of this model is that the radar return comes only from
specular points; in other words, it is assumed that we can ignore all the facefs which

are not normal to the direction of propagation.

This geometrical optics solution has been shown by Kodis [9] fo be equivalent
to the physical optics solution when the principle of stationary phase is used to
evaluate the Helmholtz integral. In order to show this he performs the integration
at a typical stationary phase point and averages the result following integration.

Then the problem resolves itself into one of determining the average number of

stationary phase points per unit area and the average contribution from each point.
Kodis applied his method to a rough surface. Then by assuming that the
return from each specular point has a random phase, he showed that each illuminated
specular point scatters like a tangent sphere whose radius is the mean of the fwo
principal radii of the surface at the specular point. Then,because the radar cross
section of a perfect conducting sphere of radius r is equal fo ‘1TI'2 (high frequency),

the return from the target is:
F =7 {Innldn, @-1)

where £ and r, are the principal radii of curvature of the surface and na is the

number of illuminafted specular points.



Barrick [2] examined the geometrical considerations relevant to the occurrence
of stationary phase poinis. His analysis is similar to the zero=crossing problem in
¢ommunication theory and his approach follows the same approach that can be found
in Rice [16]. For a two dimensional Gaussian distributed surface Barrick [2] found

the average points per unit surface area to be

- B o]

where

h? = mean square height
L = correlation distance of the surface
8 = local incident angle

n = number of specular poinis per unit area

From the geometry of the surface, the product of the principal radii of

curvature can be expressed in terms of the derivafives of the surface of the target,

£ (x,y), as follows [24]:

CLrhh) &

From the use of the stationary phase technique £, and g, are known
quantities. Hence, the variables in Eq. (2-3) only appear in the denomunal’or.

Barrick argued that because in getting Eq. (2-1) we use the stationary phase
technique, it follows that the denominator of Eq. (2-3) is not very small. Hence,
he assumed that

Urdeh ) -4

lrel> = .
< <[fx.x.§§}" §x‘§1>



Then by averaging the denominator he obtained

A
4
{inoly - 0138 7 A e (2-5)

- wh‘efe
2 = correlation distance
S = rms slope

8 = incident angle

Then he substituted<| r r2|> and ny in Eq. (2=1) and obtained an expression for

scattering coefficient, gCgiven by:

2

4 z Imbs

6 - __Af_‘_.;?—%f'i.-‘t"”a/Sl (2¢)
S .

Barrick's method of calculating ny differs from Longuet=Higgin's [12] method
in that the latter examines the average total number of specular points rather than
the average number per unit area.

Longuef=Higgin [11] in a special case, assumes that the surface is isotropically
Gaussian. Then he calculated the joint probability distribution function of the first
and second derivatives of the surface. By using this probability in a method similar
to zero crossing technique he calculates the probability of having a specular point
in an area equal to dx dy. Then by. integrating this probability he calculates the

total number of specular poinis on the surface. His result is as follows:

2

(Wi €2 Moy, T ™0 ) (2-7)
| N e T

N’ﬁO‘f‘bl g {—5',

o
where P
m o Jj E(_U;V) v v dudv
4 (2-8)
E( u, v )= power spectrum of the surface
h = the distance between source and surface

4
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Figure 1. Average number of specular points Figure 2. Average backscattering cross=section
from Eq. (2~ 2). per unit area o From Eq. (2- 6).




Barrick [2] in his investigation assumes that the surface height and its second
derivatives, ( £, &y,), are uncorrelated, Selizer [20] improves Barrick's derivation
by first using a correlated distribution function to calculate the probability of having
a specular point for a given height. Then by averaging this conditional probability
for a given height distribution he calculates the average number of-specular points per

unit-area. Fof a one dimensional surface, he obtained

N= % xp S’_,‘imz&/sz}

(2-9)

,QL
N = number of specular points

% = correlation distance

h2= mean square height

2.2 Small Scatterers Model

2.2.1 Spetner's Random=Scatterer Model [22]

In this model it is assumed that the radar return is composed of the summation

of the returns from a collection of randomly located scatterers. Then
6, - b5 (2-10)

where
P, = the density of the scatterer

oy = the average RCS of each scatterer

It is further assumed that the density of the scaiterers remains a constant up to

a cutoff wavelength A and then decreases as A-z for A > A
C1/o 2
p 2l he= (SR)* (2-11)

C!/)L A Ae

6



where
P, = the actual density of scatterers

¢y = a constant which is o function of surface properties

If the effective area of the scafterer is large in comparison to wavelength then:

- bz *

= Ty s (2-12)
where

A = wavelength

As = effective area of the scatterer
But if A_ is small then the RCS will obey the Rayleigh law and will be
6. Cofst (2-13)

where C, is a function of the scatterer size. So the average RCS of a scatterer will

be

z
ﬁ.’—’- F{S )430
Al
b =
) (2-14)
- cZ/}‘f %7%0

where 1° is the fransition wavelength.
By substituting Eq. (2=11) through Eq. (2-14) into Eq. 2-10, the results shown

in Table 1 are obtained, Graphically ¢° vs. wavelength is shown in Figure 3.

2.2.2 Waite's Model {26]

In this model it is assumed that 1) the target may be represented by a collection

of scatterers which are located randomly on the target, 2) amplitude of the return from
each scatterer is a sample of a Gaussian distribution function with zero mean, and
3) it is further assumed that RCS of scatterers are independent of the frequency of the

incident wave,



TABLE 1

A< }‘o A > ho
2 2
dnp_pA~Ss C,p.v
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Figure 3. Wavelength dependence of normalized radar cross=section
(random scatterer model) from Spetner and Katz, 1960.



Based on these assumptions Waite has shown that the distribution of the
returned power will have the form:

(ﬂ/z" )
? 2=~15
P(\JJ = Wl W %P[,W/z{;&) ( )

where 6:: Z N :
N = number of independent samples which is equal to one for
monocromatic case
a = amplitude of the return from the rlrh scatterer

p{w) = probability distribution of the return

He further showed that:

iransmitted signal bandwidth
system resolution bandwidth

2.3 Facet Model
2.3.1 Spetner's Model

In this model it is assumed that the surface is reflective, continuous, and

with continuous derivatives. It is further assumed that :
i) The effective mean square slope of the surface is constant if we increase
the wavelength from zero to some number Aor but if we increase it
further, the effective mean square slope starfs to get smaller (Figure 4).
It is further assumed that the density of the facets at normal incidence,

dg I_(0) , varies with the wavelength as follows

C.‘a/’uz ) { A

dgt (o) =
st (o 2> > N2 (2-16)

where C3 is a constant close to one.



(ii) The radar cross section of a large facet for.vertical incidence it

equal fo
7 Ps AL Ay
?"z.
6';1'(6) =
C"’/;\'f *7 2z
(2-17)
where AS is the area of the facet and C4 is a constant,
Then,
5-: = JSL %
Cas L w7 As A M
3/}\1 :x . 27’ .
(2-18)

¢ Cw
3/}\;_ X /Aq» 17 Az

So from the above assumptions, and when the angular effect is included,
the return from a target which consists of small and large facets, assuming @ Gaussian

slope distribution for the large scatterers, will be in the form.of

¢y amfs 1 e,f,[‘m’a/zsj_ x4 52
3 >
b = ' 2
_ -19
_ tarie €5/, A7 % @19)
C oy —_— A
26 0L T2er 7/a .
where
C3,C4, C5 = are only function of surface properties
As = average area of large facets
Ao = transition wavelength which is a function of surface
properties
o = |ook angle
A = wavelength

10



52 = (Effective Slope)>

I
|
i
|
Ay

Figure 4, Effective slope as a function of incidence wavelength
from Spetner and Kitz, 1960,

d, (dB) (Arbitrary Zero)

Waveiength

Figure 5. Wavelength dependence of o9, from Eq. (2= 19).
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. The wavelength dépéndence of ¢° at normal incidence is shown in Figure 5.

i

actual mean square slope

effective mean square slope

contribution from small facets

2.3.2 Katzin's Model [7,8]
This model differs from Spetner's in that he introduces a pattern of finite

width for the main beam of large facets, thus large facets which are not located
along the specular direction alse contribute fo the backscattered return,

Katzin's first model [7] is primarily concerned with backscattering at large
incident angles. In fact it is only valid for angles larger than about 85°. In his
second model the range of validity is broader and it ranges from 0° to 40° incident
angles.
2.3.2.1 Katzin's First Model: Grazing Angles {71

In the first model the facets are divided into two types: 1) large facets, which

are large compared to the wavelength so that their return is highly directive and can
be predicted by the physical optics method, and 2) small facets, which are so small
that the refurn can be assumed to be proportional to F4 (F is the incident frequency)
and the pattern of the return is uniform. In addition, the following assumptions are
made;
1) The surface of the target may be considered to be composed of
a collection of facets of different sizes disiributed around a mean
surface inZ direction.
2) The facels are randomly located so that the backscatter powers from
the two types of facets are additive.
3) Shadowing and multiple reflection effects are neglecied.
4) For a large facet, in small grazing angles, the relation between the
average radar cross section per unit area and the actual area may be

derived through the following three assumptions [6]

i e ""( Afaz) : plane of facet lies vertically

(i) 579 ~ (A/5? }f; plane tilted ai an angl'e 8
from the vertical position

12



-1

(iii) S‘/A ~ UV;Z ) plane filted at an angle 8
from the vertical and rotated

by an angle 8 in azimuth

where ¢ =RCS, A =area, and X = wavelength. From (i) and (iii) it follows that

for facets for which 8 = constant, and ™ >¢ > 0 an average RCS over ¢ may be

obtained, i.e.

— -
6/p= Ty ~ (Phe) " (2-20)

where @ is the average RCS for o fixed .

The mathematical proof for the last result is given in Aopendix A,
5) For small facels it can be assumed that the RCS is proportional to

A4 (Rayleigh region). Then from [19]

. g 2 = ﬂ'f- z
fu o S, oxl T Al A o )

I

- & a4 z 2 2-21
R T N AR .
A A 4

where 8 _ is the grazing angle ( eg =1/2-8).
6} Because G/A is an increasing function of A/ lz for small facets
and it is a decreasing function for the large ones, (ossumptions 4 and
5), Kaizin assumed that we can extrapolate o /A vs. A/ 1~ for

large and small facets into the intermediate region with the intersection

point serving as the fransition point (Figure 6).

13
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By using the physical optics method, it can be shown, (Appendix A) that
(2~22)

— ~1 _
E/R = (irﬂzyz) i‘a..azaadeo 9} \ﬁ/ﬁz] A

Consider first the horizontally polarized case. As stated earlier for small facets
- : 2
e —=1 () (2-23)

Yha a_
A 1

The transition point is defined by

_ (2-24)
(S‘Hﬂ/ﬂl) = ( GF/F*J)
small facets large facets
from Eq. (2-21) from Eq. (2-20)
where A] is the transition area for herizontal polarization, given by
2
/e
i 2 5
r| =3, tan bq Lec
(Ar)y, = A il : i (2=25)

)

From the above equation and from the relation between the diameter of a

circular facel and ifs area

Y
D= (HA)7
then
S tcmzﬁé ﬂeo&& }/5
70, 7 -ﬂ”ﬂl =47 A | e (2-26)
) 7 bg( MZ&%)‘L
T\ =



where

1
I by O Aec & %
e & <
48 o7 \ e ¢ z%
A
ﬂ'-b:(‘ [+ %—-—""Z.’%‘ )
q

where D] is the diameter for a facet with transition area and g is g number which
varies from .4 to 1.2 for grazing angles changing from 10° to 30°.
For vertical polarization we can argue in the same way and get a

similar equation for (A]X/V'
Figure 6 shows that the normalized radar cross section for facets with area

equal to A; is maximum. It follows that the facets for which the diameter is
comparable to the wavelength have the largest RCS. So for a target, the bigger the
number of facets with a diameter comparable to the wavelength the larger the refurn
will be (Figure 6). Hence there is a direct relation between the distribution of the
facet size of a target and the wavelength dependence of the return.

If the distribution of the slope and the distribution of the area of the target face:

are known we can calculate the backscattering coefficient as follows

-]

v 6« 6
]
-, ,
] j di) B(Z) 6 (Zrdedn
(2=27)
Ao a2
- 7 ’
N J W (8) Bl2) 5 (2ha) d2'en
By
where
P,ond Py = are respectively, the distribution function of slopes for

small and large facets
Ns and va = are the distribution functions of facet sizes

AO’AT’A2= are respectively, the areas of the smallest, tramsition,
and largest facels -
Z' = slope

16
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o = return coniributed by small facets

crog = return contributed by large facets
s = average RCS of a small facet from Eq. (2-21),
T, = average RCS of a large facet from Eq. (2-20)

2.3.2,2 Katzin's Second Model: High Depression Angle [7]

For near vertical incidence the radar cross section of large facets computed

by using the physical optics method is

z 2

2 2 ,d,,“, }(ug 4 K-p_/x
- AR
Ei_ &7 = G % [ s ) LW]

(2~28)

= -'Zx cos 8

cos X = =cos 8 - Zy sin 8

and
2, w =are dimensions of the facet
A =the area and is equal to £ xw
Z ,Z , =are, respectively, slopes of the facet in x and y directions
A =wavelength
For this model the RCS of the small facets, for small incidence angles,
is assumed to be

5 3
&5, = A4 P/ (2-29)

With the RCS for the two fypes of facets known, the total RCS can be obtained
by averaging each individual RCS over its size and slope distributions and then sum

them together, i.e.

§ = FZ * G-e ‘ (2-30)

17



where
“l

s - -

& - _{*.:,J ﬁ?u(ﬂ) da

& -
1a7 ) (2-31)
> h
°_ an (4 2 ) 1y 2
G_,E e jjj A° N (R) P[_?_‘“Ea) & x (/L%%"—) A
s
Sk e

where

AO' A], A2 = are respectively, the smallest, fransition, and the largest
are in facet distribution

P(Zx, Z )} = distribution function of slope
N(A) = distribution function of area

In order to calculate the above equation Katzin assumes that

(i) Kw &0 %% /s
(2-33)
(it} KE Goo 0§ /yz >

(ﬁi) 2](.8 b & G?g /tonzﬁ'> |
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where
K= 27/3

w = width of facet, x direction
length of facet, y direction

=
1]

8 = incident angle
are respectively, the standard deviation of the slope along x

and y directions
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3.0 PROPOSED FACET MODEL

Data taken from disks of different sizes shows that the variation of the RCS
as a function of the disks dimensions has the shape shown by the solid line in Figure
7 below; where Ka = 2%/ xradius of the disk [_1_9]: It is appc;rent from the solid
curve in this figure that there are at least three récognizcble regions, and hence
it appears appropriate to separate the size of facets into the three categories rather
than two. Approximately, the following three types of facets may be defined:
(i) Large facets for which Ka>7 and the return can be determined by the
physical optics method. 2

(ii) Medium size facets for which m>Ka> 5 . For this region the return
is almost constant and does not change more than 3 dB for the whole
range. It may be assumed that the value of the RCS for the whole range
varies with A 4. ‘

(i1i) Small size facets for which _g‘“ > Ka. For this case the small perturbation
method can be used to evaluate the RCS.

By dividing the facets, according to their sizes, to three instead of two
categories, we overcome the problem of extrapolating the curves for large and small
facets to intermediate sizes. This should give us an improved result over the two
scale model; since the assumptions on facet sizes are less severe. To see this note

that in reference 19:

z
o A 32 (ga)®
Fo = I K@ ["/3 v 5z (e } (3-1)
5-;' = (Kﬁb)z
Hence, for (3-2)
§s = 0 (3-3)

It follows that Ka= 1. The dashed line in Figure 7 shows that Ka=1 belongs to the
small region and by this extrapolation not only the entire intermediate region but

part of the small region are grouped into the large size region.
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Figure 7. RCS of a disk as « function of deminsion/wavelength.
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Katzin assumes that the probability distribution function of the area is in the

form of

-m
PLA)= M, A (3-4)

where N, and m are constants and P(A) is the area probability distribution function.

In order to overcome the problem of determining P(A), we starf from the
dimensions of the rectangular facets instead of their areas. Then the three regions
will be as follows: _

(i) Small facets for which dimensions are smaller than 23/5.

(ii} Medium facets for which dimensions are bigger than 23/5 but smaller

than X .
(iii) Large facefs for which dimensions are bigger than A .

In order to compute the return we have to know the distribution of the dimensions
of the facets. This distribution can easily be calculated by using the distribution
function for height and slope of the target. -Thus, an independent assumption about the
facet area distribution can be avoided. ) -

For the facets with dimensions less the 22/5 we' suggest to use the small per-

turbation method. In this case if can be shown that (Appendix B)
3/2 .
(< Wyt 2 Mo - ' (3-5)

where
h2 mean square height
% length of facet (max.)

We should add that the answer from this model has the local incident angle and if we
want to consider it as a superposition of the small facets over the large ones, we
should average it over the variations of the angle due to the variation of the slopes
of the large facets.

In whai follows we calculate the RCS of the large, medium, and small facets.
It is assumed that the distribution of the facet size Is in the. form of

. .
2 2 /a6y £ o

= 0 » '€'<0



It 1s also assumed that the slope has a Gaussian distribution with zero mean.

3.1 Large Facets

From physical optics the radar cross-section of a plate with a length of "a®
and a width of "b" is equal to

+ . t 2
. . k7 B I ~
5;(0)_ z A= = (ab) (3-6)

Now if we assume that the direction of propagation is in YZ plane and has
an angle 8 with the Z direction, and the plate has a slope Z_inx direction and Z

in the y direction than from [7] the cross section of an arbitrarily oriented rectangular

plate is
K 2pr AT (e Kl @r)
E (o) = .;a,b (%&1-2&4»6') ( ),,
L Ka[-2x ®& )
. (3-7)
( Aom, Ko (Ao -2y %] 3
x .
kb (Ao - 2y (8)
where
a,b, are respectively length and width of the plate
Z ’Zy are respectively the slopes in x and y directions
X

In order to get coniribution of the large facets to the return power we should
average o, (6) over all possible slopes and all possible size. We assume that the
slope distribution in both x and y directions are Gaussian with zero mean and

standard deviation of S and sy. Then

23



bt

K ) 2
EI:[G‘) .-'” e bz,P(b) . P(a]
b, a

(Cme ,_2% A )& 4 .

(Am (Ko %e) )?' ( b Kb (Lins “Eﬁ_ﬁﬂ )
Ko Zy @00 Kb (Ao -2y @]

- 2 .33;2;_. -
o] ~Zp - 2| day o dedb

277 SX 5& 2.-5)3— ..
(3-8)
where
{;L(G) contribution of the large facets
p(a), pb) are ;especfive[y the probability distribution
functions of the length and width of the plate
ay, b] are respectively the smallest length and width for o

plate to satisfy the physical optics requirement.-

As stated earlier we assume that the distribution of the size of the facel is a

Gaussian function, f.e.

.Z"
-3
2 267
&) = —_— e &

P(. ) 5_“-'/7;; .
Y A ’ z . .
T 2 "-:?-ET &2

Ploj . —— ¢ b '

6;[277
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By assuming that

i) 6o = by = %
i as b= (3-10)
The contribution of large facets will be
4
. . -2t - b Y.
2 P 2 pye
g (o) = X JJ _:7'__“'__..621 _,2__@3___‘ tlet s
o —eb
T T
Zx . 2 (% - 2%
T sz 2y oo TR
=0, (M Jgax _LS_—- e *%
Ka 2y Cd¢ fz./-;r &
~®
. 2 . *
( Ceo p fza Ae.uy) (,dm, }(b(M‘ZLCf’:)_)lAZa}
Kb ( Ao~ 32 Ce> &
dh da
3-11)
where
B = the size of the largest facet on the target
The integral over Zx and Zy have the general form of
[10.]
2 2
-A 2
- J S (f«g__f_’_(_c_*_‘éﬂl) du (3-12)
P(c+BVY)

—pn
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where the parameters are as follows:

i) integral over Zx

{ :;cﬁﬂﬁ' C-=-0- P:'Ku -
S T S o1

ii) integral over Zy

. (3~14)
P — Ro G & C= Amt p- Kb
Y7 5%
Appendix D shpws that the answer to the integral in Eq. (3-12) is
3 |
. 7 - * * : Ll\%)
T, 2 (aifzﬂftﬂ—tiz\
i- e |24 “f
gy
-2 (- ey
7 L (3-15})
where
Z 2
uj(ta) L 2 e’f d+ (3-16)
7
o

Z =x+iy
Z¥=x - iy
x =PB/A
y =AC/B
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From Appendix D

22.
J v e (M__,E_(_“_‘“B_"-’) dv= -
p(c+8Y)

-

(3-17)

Now if we consider the last integral of Eq. (3-11) we have

S |
z 2580 ’ o — 4 @o ks
Tntoyaal gun 2y - %98 ¢ {w eyt
Kb&M«%‘&Q”)

-

: 25" kb & —Bq z
+ 2 Ams Cooo S Zy e > (W)AZT

% o (Ao 2y G7) S
» ) :
z 7 -""":i/zs1 ‘ Ao _ 2 ) . °
: § Kb [ -2y no
t Ao J % @:—————ﬂ-—"j"” )‘”’2} (3-18)
Kb ( Ams —FY @)

—ta
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We see that the first integral in the right hand side has the form of Eq. (3-12), the
second is zero, and the third one has the form of Eq. (3-17). So in order to calculate
this integral we first calculate it from Eq. (3-15) then differentiate it vs, A? and

get ol .
2AZ

For the case wheh the parameters x of the error function is large i.e. when
we are dealing with very large facets in comparison with wavelength, and these are
the facets which coniribute the most, we can assume that the error function is equal

to unity and this will make the computation much easier. For this case
(i) Integral over Z,

From Eq. (3-11)

integral over Zx =1

where [ is defined in Eq. (3-12). Then by using the result of Eq. (3-15) and by

assuming that the parameters are as indicated in Eq. (3-13)

) ) B
In_’—éXHjM 2y = —-2—--1"‘:;-& [7' ”’f“” + l”%(”)--%ﬁ ('"5 )l (3-19)

Kﬁsx

where
x=Ka V2 S, cosf
K = wavenumber
a = length of facet
Sx= standaljd deviation of slope in x direction

8 = incidence angle )
then from here because it is assumed that x>2 so erf(2) =1; ¢* & 0,

7 2,
-f' SR g PSS
Tn Mw&x Iy ;5);11[ ﬁ]

{
”/Kw@;s—[" m ‘S
28
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Now if we further assume that

VZ 5. Kq cos8>>1, i.e. facet size is large and the standard deviation of ~ (3-21)

the slope is not very small.

. _ o m _
integral over Zx— Racol (3-22)

ii) Integral over Zy

From Eq. (3-18) and by using the results of Appendix D as indicafed in Eq. (3-17)

A

.2
Inhﬁm‘é . ae T o« Ao (25 (3-23)

where 1 is defined in Eq. (3-12) and its parameters are given in Eq. (3-14). Then
by using the results of Eq. (3-15) with the same procedure as indicated in getting
Eq. (3-22)

TI= [(b-rtajv?l(uv%) (L-La)yzf,(;ﬂu‘u 2l1$

2-:—**— X

(3-24)
L) - s "‘“"‘*ﬂ‘ﬂ
Now if we assume that
1) x>>1 (3-25)
2 x> y (3-26)
i.e. consider large facets only near specular direction, then
-y*
I. e o T— ep[-tne/ssg X (3-27)
Kb Gne kb Ge
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from here

21 2h
I A* %Lé?i

rA
_a tans
| o-rre

Kb G

then by s;.lbsﬁ—fuﬁng in Eq. (3-23)

Integral over gu

¢l

1}

Crﬂ&——-—-’*%
kb e

%f{

P[t‘“

e s[5 ot

Kb%e

Kb

By substituting these results in Eq. (3-11)
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K tun’ tens
xiw-&' ” & e”?[’_.z—;-%—l
kb ¢ i
(3-29)
wl-rk?a ‘_I_______ . 7 (HW &
2 6‘{ 205, SZ- Kza,h
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assuming that B + « , i.e. the size of the largest facet is very large,

T

_..t"lf_f_’___ ‘z. p
15y 'Y ) 2 { & T
[+ lan & S {7
SPRLICLC IS EY R R
5,53
(3-31)

This result, as it is expected, is in general form of the result that one would get
by using the geometric optics method. The only difference is that we have {i+ -bmhﬂ)
rather than (i~ tans)® , The reason for this is the assumption that is made in

Appendix D, i.e.

r 4 2z

_Au ' N

JU . A‘M) ~ o (3-32)
P(cr8v)

which is not true for the exireme case when B+ < and the angle of incidence is
not equal to zero,

1t should be noted that in comparing the theory with the measured data we
do not use the assumptions indicated in Egs. (3-25), (3-26) and (3-31). For this

purpose we use the result of Egs. (3-15) and calculate it numerically or digital

compufer,

3.2 Medium Size Facets

The facefs whose dimensions are less than X but larger than 23/5 are con=
sidered fo be medium size facets.

There is no exact easy solution fo the RCS of the medium size facets, Figures
8 and 9 1190 show that for small and large facets, as it is expected, the normalized
RCS versus area varies, respectively, with A2 and A (A is the area). We also see
that the slope of the curve for medium size is smaller than the slope for both large

(191

of the return versus the local angle of incidence. This variation is in the form of

and small size, and it varies almost a5 a A]/AL. Figure 10 gives us the variation
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Figure 8. Measured o° for small and Figure 9. Measured ¢° for small, medium,
medium facets, and large facets.
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Figure 10. Measured VV polarization backscatter cross=section versus the angle of
incidence for perfectly conducting rectangular planes with heights of 2,
and lengths of 0.5A _and \..
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: T
(AWX ] . So in view of the mecsured data shown in Figures 8,9, and 10 we-assume

=
Sy | T . . 2
Kb Awe’ )
o )= 25 b (At (3-33)
?\/2 K’O/ﬂbﬂz@
where
K =21/

A = wavelength
a = width of the facet
b = length of the facet

8' = local incidence angle

If we write Eq. (3-33) in terms of incidence angle

5, . 5 . : z
IR ( Ao, Ko { Ao -3 iof) 3 (3-34)

b (8) = 25 :
Mm Kb leme -5 ¥)

A%
where S is the slope

Because we assume that the slope of the medium size facets are not large and because
the slope of the return versus angle is small for the medium size facets, then s ~0.
Hence Eq. (4-34) will be:

YY) X .
WOEY 2’y (,dm(K’oAm.&i)?’
A Kb Ao (3-35)
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In order to calculate the contribution of the medium size facefs we have

to average Eq. (3-35) over a and b, Then

A
% % ST
. 25 2t bt play plo) (A Kbdee)y g dl
6 (o) = 0 SJ Pla) p ( T J (3-36)
2>
5
where
K =21/)

A = wavelength
a = width of the facet
b = length of the facet
p(a) = distribution function of the widih of the facet which is assumed
to be Gaussian
p(b) = distribution function of the length of the facet which is assumed
to be Gaussian

UM(B) = coniribution of the medium facets fo RCS

In order to compare the result of the theory with the data we have to take
info consideration the reflection coefficient of the facets. The assumptions._for .

caleulating the-reflection coefficient has been explained in Section 5.1,

3.3 Small Facets

In order to calculate the contribution of small facets i.e. facets whose
length is less than 23/5 we use the perturbation method as first formulated by Rice
[17] and then further developed by Peak [14] .

In this technique unlike the tangent-plane approximation there is no require~
ment indicating that the radius of curvature af any point must be large in comparison
with the wavelength., So we can easily use it for the return from small facets of the
natural surfaces. '

The requirement of this model are as follows 119]:

o2a h/ﬁ 1 , i.e. roughness height is small
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- 22
it) l %\ , \ '{gl {1 , i.e. surface slopes are relatively small
z Z2.1%
iii) (< ‘25‘_5,.> ) - ({ (%'g ) , i.e, roughness is isotropic

In.the previous section we showed that the first requirement is correct for
small facets and by assuming that the second and third requirements are also correct,

the radar cross section will be [19]

2
Floye &£ K h e jal T . (3-37)

where
A = wavenumber
h=r.m.s. height

8 = angle of incidence

In this equation o. for horizontal, cross, and vertical polarization are given,

respectively, by

of (Ar" ) [(#V"I) /&‘29 "'6"'/}}"] - ﬁrz (é{_g)

( ervl) [(GI—I) ,&;29- .l.év-/,\v_k - e: (pv_,)

" [Grﬁvﬁ'-r mlz

(3-39)
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and I is defined as

oo

T2 20 J v flv) 7, (ZK,Ja;afr)éf
7 : . (3-40)

where Jb-( ) is the zero~order Bessel function and £(r) is the surface~height correlafion

coefficient for an isofropically rough surface and is defined as

{2 (m8) 200040 (3-41)
hZ—

vy () L 8)T (3-42)

For the case that the surface is not isotropic the result for Eq. (3-40) is given in

L) =

where

[ 5 1. Now if we assume that the correlation coefficient has a Gaussian form, i.e.

S

1 /p?
P o (3-43)
then from Eq. (3-40) [19]

-..:.?7£ QF[’KE(QM&)I (3~44)

where £ is the correlation distance.
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By substituting Eq. (3-44) in Eq. (3-37) and assuming M= 1
2

. . 4 hzﬂl & __f_“'_‘l____.—— \ X
b5L0) .#HF. b K o o [&:o'-rma
(3-45)
2,2 2
@)(P[—K /EAMO’]
r:w - 5{(9) =0 (3-46)
By vH
2z
iy
g | G Lerm o)
Vv [Q{ > & «m1
(3-47)

. w;f:[_jf,? L/dévzy]
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4,0 PROPERTIES OF THE SYSTEM

In this chapter we explain the principle and the construction of the large
time=bandwidth FM~CW radar which is used to collect data from the bare ground.

Section 4.1.1s devoted to briefly state the principle of the radar. In
Section 4.1.2 we have calculated the frequency spectrum of the radar and have
shown that it is uniformly spread over the sweeping bandwidth. This result has been
used in Section 4.2 to calculate the variance of the refurn power.

Section 4.2 examines the effect of the frequency averaging. We first show
the predicted reduction of variance due fo frequency averaging by assuming a uniform
scatterer model [26], then we extend this result to fake into consideration the pene-
tration effect. Then we calculate the reduction in the variance for the case that the
target is assumed fo consist of a collection of facels.

- Section 4.2.3 compares the theoretical results obtained in Sections 4.2.1
and 4.2.2 to the measured data. It is shown that by considering penetration we can
explain the reduction in the variance of the backscatter data from alfalfa. We also
show that the facet model can explain the difference between the measured curve from
the bare ground and the curve predicted by assuming that the ground consists of small

scatterers.

4.1 System-and -Frequency-Specirum

4.1.,1 Radar X
The radar used in this investgation is @ FM~CW radar which has a very large
time~bandwidth product, A FM-CW radar fransmits @ modulated signal as shown in

Figure 11. Then from [21] the IF frequency after the mixer is equal to

(4-1)
Fe= - oF K

FIF = intermediate frequency
R = -range

¢ = speed of light

F = RF frequency deviation

F M= frequency of modulation
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A block diagram for the radar used is given in Figure 12 and its characteristics

are as follows [3]:

TYPE
Modulating Waveform

Frequency
FM sweep: Af
Transmitter Power
Intermediate Frequency
IF Bandwidth
Antennas
Height above ground

Reflector Diameter

FM-CW
Triangular
8-18 GHz

400 MHz )
10 dBm (10 mW)
60 kHz

3.58 kHz

26m
61 cm ’
Cavity backed,

Feeds
log=periodic
Calculated ‘
Frequency  Antenna Effective Beamwidths of Product Patterns
(GHz) Gain (Degrees)
(dB) Az El
8 31.2 2.94 3.43
10 33.0 3.07 - 3.24
12 34.6 2,42 2.38
14 35.9 2.35 2.34
16 37.1 1.65 1.46
18 38.1 2.02 3.20

4,1.2 Frequency Spectrum of the Signal

In this section we would like to show that the frequency spectrum of the return

signal of an FM~CW radar with which the data has been collected is flat over the .

sweep band, 1f the frequency of the wave varies with time as shown in Figure 13,

then the wave form will be:



RECEIVE
ANTENNA

MIXER  SPDT#2 < '

3d Lo RF :
Y = g )*—0—}* TRANSMIT

SWEEP
0SCILLATOR (A)
8.0-12,4GHz SPDT#1
4—(—0— 3 d8 POWER
DIVIDER
SWEEP ]
OSCILLATOR (B)
12.4 - 18.0 GHz SPDT #2
oy
O
IF AMPLIFIER
IMPEDANCE
RMS IF % 20 TRANSFORMER
VOLTMETER FILTER \I 3[ lé
FUNCTION SPECTRUM = =
GENERATOR ANALYZER

ANTENNA

DELAY
LINE ﬁ

IF

- Figure 12, Basic block diagram of 8- 18 GHz radar spectrometer.
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1 N
o [(anT) t 2 BE] rsinerm

S(+)° &
oo [(oe b E- B e

Because s(f) is a periodic function we can write

ﬂm),
S4)= 7 Fae

Nz
where
%
- Wy t
Fal Lo St e dt
T
~T
w, £ 27
-7
then

gnost - )
$lw)e F[S(ﬂj }—[Z Fne jzjﬂz Fa § (- nwe)

negy Nz—pg

(4-2)

(4-3)

(4-5)

(4-6)

(4-7)

First we should calculate Fn. By substituting Eq. (4=2) in Eq. (4=5) we get

' 7
_Anwet
S f.u’f L‘T)%w’ "d/z] . d4 + J G—;[(.J" ‘UT)L (4-8)

2 zjlmoo-"
- —L% e eH-{
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By using the relation
PREY
lpa ® 2 e )
. & T2
2

Eq. (4=8) becomes:

(% -1 . : 08 :
Lo B [ ey st < et s £ o [ s ~3303)

Fn = 2
2T
. 14 : :
+clxu)-4 s () +e [CUH) 2 s )+ clrz) -] SLM)} +
; (4-10)
-18 . .
te [C(h) <1 S(xs) + ¢(xu) +ISLew)
where
[ /—["_ J:J JAWT
ot B T
> 22y
w ~NWe T
L= [ I+ T _E——/-
T - (4-11)
W +¥iWe m
3= [;; ___,__,J
A avzg
A
Lq _ [ [‘r u} —rnk)c} __j:’l_
o ) afzp
- P
Ao = /J'T/A
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2
c(z) = J Go (2 t3)dt

Fresnel cosine integral
o

z

s(@) 2 J Ao (B E) 4
2]

Fresnel sine integral

From the Fresnel integral properties

C(_,x,)._-,_ - CLL)
s(-2) = -5(x)
c(w) =5
(4-12)
Sie) =5

and because the system used has a very large time=bandwidth product, i.e.

(4=13)
"ALJT = m PO S LAY

. o0

It can easily be shown [4] that from Eq. (4=10) the signal has spectrum only around
the !, carrier frequency, and its magnitude is

/ 2
Foe o [Th g Wlex2m)
T

2 (4-14)

So from Eq. (4-7)

od 2
(a Ty <9096 | 4-15)
T o LTI g (
Slo) = ’:—r’l f‘?/%: 2 Je
N==p

This spectrum is shown in Figure 14,
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Figure 14, Frequency spectrum of the radar.
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4,2 Freguency Averaging

It is a well known fact that radar return from irregular targets may fluctuate
due to insufficient averaging. In order to overcome this problem, overthe years
many techniques have been used, and frequency averaging is one of them, Waite
[26] has shown that if we average the return of the targef for different frequencies
the standard deviation of the average will be much smaller than the standard
deviation of the data measured in each frequency. For doing this, Waite assumed
that the target is composed of small scatterers for which the pattern is assumed to
be uniform.

In Section 4,2.1 we shall first explain the work done by Waite then we
shall expand his work by taking into consideration the penetration of the wave into
the target.

In Section 4.2.2 we assume that the target is composed of the facets rather
than small uniform scatterers. We have shown that if the return from different
facets are comparable than the reduction of standard deviation of the return due to
frequency averaging wiil be the same as predicted by Waite, But if the return from
different facets are not comparable, then we have to have some information, about
the facets whose confribution o the return is very large, in order to be able fo
defermine the reduction of the standard deviation of the return.

In Section 4.2.3 we compare the theoretical results obtained in this chapter
by the actual measurement and show that alfalfa is a good example of a target composed
of layers of small scatterers. We then use the results of the facet model to explain the

number of independent samples in the RCS measurement of the bare ground.

4.2.1 Uniform Scatterer Model
4.2.1.1 Uniform Scatterer Model with no Penetration [26]

In this model it is assumed that the target may be represented by o random
collection of discrete independent scatterers. Each scatterer has a uniform pattern
and its reradiation amplitude is a sample of a Gaussian random process with zero

mean and standard deviation.
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As Figure 15 shows the illuminated area of the target is « function of D and B,

then the returned signal will be in the form of
Swit)z @p S(+-Ea) - (4-16)

where

transmitted waveform

I

s{t)
f
n

a
n

2Rn

roundtrip time delay of nﬂ'l scatterer and is equal to

1)

scatre;'ing amplitude of nrh scatterer
The total return from the illuminated area is:

Slt)e 2 An S (-1n) @~17)
From the characteristic of delta function we can write the transmitted signal as

0o .
$it) = J Six) & (+-&) aa (4-18)

-
or

Lol

(4=19)
-l
Hence, the return signal may be written as
oo
Selt)z P @n & sy §(t-ta-n) du
_-m -
) J d
= j sw) D.en §(+-1a ) S (4-20)

-2

- S(,‘U @ fa.“ _g(_‘i"".b")

where the symbol ® denotes convolution of two function [10].
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Figure 15. Radar illuminated area.
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The target effect is only introduced in the second term of this convolution so if we
define c(t) os

CH) L Tan §(+-t) (4-21)

then ¢(r} will be the target impulse response.

In order fo obtain the reduction in the standard deviation of the return signal
due to frequency averaging, consider the Fourier fransform of ¢(t),

) _qut
cif) = v}'/[ C[.‘flj =J fan §(+-tn) gju dt

— .
/-1&3{'!: -
T, e (4-22)

_q20f

fﬂ-n £

4

Il

From Eq. (4-22) the autocorrelation of the response of the target in the frequency
domdin can be calculated as:

RU) = E[ ) ¢ (4]

) 7e+ . ot (4-23)
-2y 12 FTm
= E[ Z.”"P? [ g l

2n g

or

e

_,j-zri';g [_+ﬂ—'tn) j.z.g;)'f'm
RiVY= E [Z A Gn e (4-24)
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From the requirement of the model that the scatterers are independent samples of @
Gaussian process with zero mean we obtain:

F [ an Qm] : E [GLAJ € [QW‘J =0 ~ (4~25)

Hence
z -—1l 2179"’:14 -
e e[ Zer &7 429

By the assumption that a and t are independent

R) = 7 E[en] E[ é;mm] (4-27)

By assuming a uniform distribution for time delay i.e.

-l

plta) = — 2taz -1 (4-28)

[\¥)

_qzw? iy " ,9.2,7?15,
E):g/] J =J bith) ¢ 1,

(4-29)
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So.
PR
e ol Aew
Ri)= i 7 elaa S T (4-30)
. . . o - 2D - g
where T is the fime span.of the target and-is equalto "= (cis the speed of

light and D is shown in Figure 15). Tn Eq. (4-30) if we put v= - then
R(7=+%)= Z=5-0 (4-31)

which indicates that for two frequencies —]T- Hz apart the target effect will be
uncorrelated. .

In what follows we will obtain the mean and the variance of the returned
power and by using the correlation of the target in frequency domain from Eq. (4-30),
we will calculate the reduction in the variance of returned power due to the frequehcy
averaging.

Variance of the Returned Power

As'stated ecarlier in Egs. (4~20) and (4-21)

Sy (b)) = S50 & a) (4-32)
Hence, the Fourier transform of Sr(r) is

Sr{g)e S(4) cf) (4-33)

then the received power will be equal to

. 0 © 2
Wy = J |sv @] s =S \sie)) 9e

o) s

% (4~34)

S \St%)lz \ewy] d4

—
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Now by using this relation we will calculate the variance of the return power,

wr’

bj o gfur) - € [l

¢ (4-35)
Now we calculate each term separately
i) Mean
*° 2
e[ /] - E[ g sl el 44 )
~w
© 2
. S E[|cm;j |ste) | I (4-36)
ii) Expected value of wl_2
" i ;2 LY
w;_ J \5(-‘?1]1 ICL‘@)!ZJ\{_S !5(_-@)[ l CL{)I CI'F
[4 )} 2 [ 7 40 !
< Jj e e st [S“é)f d¢ d¢ =37)
“®
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In order to caleulate this.integral we use the procedure as.stated in reference [ 10]

£t (4-38)
Then
T z 2 4
W [ ot e ol BT
-0
then

g[wj : Sg E[ (amz | ct#-?)(j ]s(%)lz lg[f-wfd{;cw

— 63

(4-40)

Now by using the results of Egs. (4-36) and (4~40) we calculate the variance of the

refurned power .
eturned p v

fupe E[u)- E []
(414

JI{ clmartiapa]-cTonlf <

~w

|ste1)7 |stg-n))” A4
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2 T _ 2 ’ g}f'
Because, as shown in Eqs. (4-46) and (4~47) K = UU.?H lC(%—?)\ } 13 L\CL 4&8

is not a function of frequency

S | fefenrree] - ST
) & i1 | sen| 4 447 (4-42)

then by letting

o0

P = J lste) ¥ [ste-?) ) d 4

e

(4-43)

Ty = r i E[}C['%)’lzl qf—?)lz] £ ]Cl%i]ji by 47

— (4-44)

In what follows we will calculate this integral by using the assumption that the farget
is composed of small scatterers with uniform pattern.  In reference [26] it is stated

that in this case

EI leer] | eign Ij - EZ[ }cmjz] + EZ[ c) :K#-’J} (4-45)
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This result is correct if the following assumptions are satisfied:

i) Number of the scatterers contributing to the return is large.
ii) £T, where f is the frequency and T is the time span of the target

is very large.

Then by using Eqs. (4-23) and (4-30) we obtain

E [{cw) 1Y = T glad] (4-46)
and

E[ c4) ¢ (f-’-*"lj = RU) =

0T (4~-47)
( Teles Ji atid)
avT
Because both of these results are independent of the frequency we can use
Eq. (4-44) to obtain the variance of the returned power
2 > e 2 o0 5 2
6, - J Zs[aﬁjj A 77T (s Y] 4449 =
(7T J?
- ___w —
2 o4 . '? 2 ) d7 —
Zerily | (el
= Al
- =50
(4-48)

u

W
J TR pay A9
’ -0

where p(v) is defined in Eq. (4~43),
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Now in order to calculate the improvement due to the frequency averaging

we compare the standard deviation of the return when the frequency is swept over

fm with the case when the sweep is zero.

z
1-M

S::Nl no ﬂ.,z/e’/wa,"‘a

(4-49)

In Section 4.1.2 it was shown that the signal has a frequency spectrum as

shown in Figure 16, where the power of the incident signal is assumed to be one

#e f2
T 144 =
J ‘5{#){ :@ S 7

vl
— ¥« {"."_‘
X

then from Eq. (4~43)

b r4

gl {f{?-a

‘{,{;.‘,a

57

> J d4 ’.ﬁ[ﬁwﬂ v o
® e

1 S’F*%—" | - ‘:gjf[‘g'“*ﬂ

(4-50)

4-51)
v{o
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fm
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f 5 f+ 5

Figure 16. Power spectrum of transmitted wave.
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or

b= 4 ['— Lﬂ“} (4-52)
fn o

In order to calculate Eq, (4~49), we firsi calculate the standard deviation

of the return signal by substituting Eq. (4-52) in Eq. (4-48)

L
’ ' ¢ it dy
2 T A 79T i vl
b-v.lf:. i‘Z—C[ “33 (_";—j:r’) {m [{ %ﬂ
— Fu
(4~53)
For the case, when there is no frequency averaging fm =0, i.e.
. =
z | . { 2’5[%}}% g Ao 0T\ 5 4 T .L"lJ v
e _,ﬂ(””) ‘Fm[ fon
‘?mdyo
. fu 1
L2l
’ fzfz«ﬂ} "S T
e
S L (4-54)

i

2
|z ) (-] a2

{z EWJ}Z -

59

I



Therefore, from Eq. (4=49)

z
5'“’,\ Ffe.r. fve

- Seo

T- - =
iw'r[ re e fn
ffftﬂ:ﬂr Ja(&% w5 ]"" (4-55)
T ) -
(7 el+413
43-'1

Where 1 is the reduction ratio of the variance that we get when we perform frequency
averaging (Figure 17 ). Note that from Eq. (4=54) and Eq. (4-44)

ne hkve
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Variance Reduction Ratio, I, Due to Frequency Averaging
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Figure 17, . Variance reduction with rectangular spectrum
panchromatic illumination . From Eq.4 - 56,
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so Eq. {4=-55) can be written as

2
Gir Frep. Aive (4-58)
oL S e

£ L)

So by the assumption of small scatterers we can calculate the average u and the
deviafion o of the data taken by a FM~CW radar, and then the variance reduction
due to the frequency averaging will be

r- /R (4-59)

4,2.1.2 Uniform Scatterer Model with Penefration

- In this section it is assumed that the target can be represented by independent- -
scatterers located in layers. The pattern for each scatter is uniform and its return
is a sample of @ Gaussian random process with zero mean and ostandard deviation.
The procedure for calculating the variance reduction due to frequency averag-
ing is very close to the method used in Section 4.2.1.1, We first calculate the
_correlation of the target return in frequency domain then use this correlation to
calculate the variance of the return signal.

From Figure 18a

Ri= hi [ 6o (e-8) (4-60)

Riz= l'“-/ oo (9.1,:5/2 ) (4-61)
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Figure 18a. Uniform scatterer model with penetration,
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where

then

As stated in Eq. (4-1) the refurn from the nf scatterer of the ifh layer is

incidence angle

beamwidth of anfenna

height of the source from the iﬂ? fayer

smallest distance between the source and the illuminated area

of the irh layer

largest distance between the source and the illuminated area

of the i'-h layer

TH = 2 hy
¢ @ (o-%)
TI.?. - 2’1|
C C&d (9*6/2_]

speed of a light

smallest time required for fravel, a roundtrip distance,
between the source and the it layer
largest time required for fravel, a roundtrip distance,

between the source and the ith layer

5r(+) = a, 5(-}-‘1:.’.4)

Then the total return will be

Syltl= ZZ a' s (t- T )
| g
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(4=63)

(4-64)

(4-65)



with the same procedure that is used.to get Eq. (4-22)

then by the definition of Eq. (4-23)

Mhrg[cwlfwﬂﬂ

or

then by the assumpfion

. ’)zﬂffm
RO): F IZ‘Z 2., ¢
! n

~M

~32/I‘Ft|ﬂ

clg) - ZZ a"":, 1)

Z

g2 £ tym
o 400

E[@@ %{1:5[@&5[%ﬂ]=0

r':rjl &Y nzxEm

we have

L]

€

Z —'3 zi? -i-m

R(V) = E[TZ %
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(4-66)

(4-67)

(4-68)

(4-69)

(4~70)



or . - .
T -32::9‘1'114 "a -j.z/?f)fm 2 ‘_J*’ﬂ)ef.n

RUI = E iz b € T ay e q el Bm € ]_(4'7.‘-)

where
R{( v} is the correlation function of the return in frequency domain and

_ 927 h
Z % oe " is the contribution of ith layer
)

By assuming that the tHime delay of the return from each scatterer is a sample of o

uniform distribution, i.e.

(4-72)
. |
P (4 )= ﬁ
R 7 - - _‘ ’ )
otherwise (4-73)

and by assuming that the return from the scatterers of each layer are comparable in size
before attenuation through layers above them is accounted for, we obtain from Eq.

@-71)

fl

N _,jzwﬁ:q 2 -1222 b
— Z’ a]-ﬂ . ) ] E 0-.,1 e -
o [ ¢ 7:.:4 [ (4-74)

2 k E[a,‘j]j E_[?W*M J

1

i
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by the same procedure as stated in Eq. {(4-29)

e - Ao 7 (T -Tir)

E 1 ’9.2'7 rfr:}J “’J. 77 (Tf“'T‘-?’) ‘

7)) ( T[-;., - T]—! )

so in view of Eqgs. (4~60) and (4-61) we can write
RU)= f { [Z E[“.;l} 72*.}
- n
i

where

v ?_l'.i[ ! o ]
“ Lot  Gle-4
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(4-75)

(4~76)

(4-77)



The incident power that reaches the ith layer has already been attenuated by the
first (i=1) layers. The power which is scattered from a scatterer in ith layer is -
also attenuated by the first (i=1) layers before it reaches the receiving anfenna.
So assuming that the average RCS of all layers are equal the coniribution of the
lower layers will be much smaller. From Figure 18b it can be easily seen that the
distance in which the power gels attenuated is  ( h[—h,)/gm ¢/  where ©' is the
refraction angle and from the Snell's law is equal to

e i { 22
e = ML ‘{'g: ) (4-78)
where
o = angle of incidence
e = relative dielectric constant of the target

So if we assume that the attenuation function is exponential, then

Etajl
E [’a?;m 1

where § is the skin depth and a function of the dieleciric properties of the target.
By substifuting Eq. (4=79) in Eq. (4~76), we obtain

R = [/ iz E[ '”J "“)‘f’[_'zm hllxﬁ‘ .

~2 (hi-ht)
QXF[ ‘EETE;;;T-l (4-79)

5 o0

2 : (4-80)
E[am] Z @?(F [—ZLht"hl) "Rtf

§ e’

i
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1 layer

-t xexse 3 — —— jth jayer

Figure 18b. Uniform scatterer model with penetration.
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By substituting Eq. (4=77) into Eq. (4-80)

2z hi ________*___‘___-‘ﬂ

R = %ZE[aﬂii? Q”‘I{’W_'i”’? T Lg% wie-h)

Ax

i
1 . i . P
[ g, s oyl Uiz e
§ oo’

!
"

p zht [ ~
> [W} o (o)

Because the distance between source and surface is large, the skin depth is very
small, and the refraction angle as defined in Eq. (4-78) is small, so the area of
illuminafion for different layers is almost constant. Taking hi to be equal to h]

except in the exponent, we obfain

M

) by [ A— -__‘_,_.——J
RL?J: E -Z E[aﬁtlzg A ﬂ’?z-al [Qﬂ(,ﬂ-r%) elo-%)

9 2h L —*-‘—'7]
7 ) G Gole-%)

2 (hizh l (4-82)

"o zh -
* Z Uf’{’ﬁ 7 '[T;@J c«aw-“” Ts®0’
L

The above sum can be approximated by the following integral
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oy,
_‘/Jﬁh _B(ha J
hy — B(lh-Wy )i A
2;_; P[ j A ( )] J T e du
hl oA
\ Jh, =5A 8L )
T
(hM:hr](flﬂTB)

(4-83)

- @;F[-()'ﬂ-rs)(hm-h JJ SrYY
=y ¢

(Prax <hy )(J418)

Equation (4-82) will be

f
R = %F['J ff?%—'(c,al(héz)* @::(a-%:)J N ?E[Q‘;”ZJ ¢

{ J
21 -
A7y = [fm(w% @\c&-%il
Ful
/A% 7’_;.'1 ' - I
C | G ler%) @o (6 J] (4-84)
l |
X —— X )
ho -k 2_2.6[—————~ 2
MaL c Coa(_&‘-r’:f/zjf%’(&'@zj N Elne’

e ["("m—“'K A e A Hwﬂ
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Where
N = number of the layers (4-85})

N Z E[a,",'q = sum of the variance of all scatterers located (4-86)
n

in all layers

In order to calculate the standard deviation of the average return signal we substitute

Eq. (4-84) and Eq. (4-52) into Eq. (4-48). We obtain

A

Oy - J (R pot 4?7

Wl (4-87)

—d

¥m

) j ol | “[' el

L

where R( v) is defined in Eq. (4-84).
The reduction of the standard deviation due to frequency averaging from
Eq. (4-49) will then be:,

2z
7. 0wy \ Frep. Average

2
rwrl Ny A\/e,faf‘tb

1?"72.
j el 3 [ ]

- -
boro f2“‘(/1'22[»”! -f—'f[.— L—l d7 (4~88)
y
i {‘""/2 7 o
f.lf-e-;l?. - [rull -é: [!_ L/] 4y



From Eq. (4-84)

[ " -
R (oY= § ’Zg[am} il %F{ (4~89)

~h, -,

m § o’

¥ e’

So Eq. (4-88) will be

I
Z PR
I'—'( (Q/E&&IJ J M)Z‘
|- @FF[ -2 U’lu‘—-ht)l N 7T
& o ,%v:
~jenv
) { fzx\il“eﬁ(f)[(—“z"

(2‘2? [ GO('&'-(a/j Qﬂ[&—"’z} %Cava J

S I |

lolo<%) ole-%)) Tee

where

\
A ok T 1~ - ———7’1
= = [ G(e<%) Gle-H

is the time span of the target . Now if we let the depth of the target go to infinity,
i.e.

max
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Then Eq. (4-.90) will be

T= ) (Aed ) ‘ X Y
fu X WIT : [ 1 ‘ﬂﬂ*?fmp’-(‘ e, Y‘ S
) T T (e G- @9

where

the time span of the targef
= skin depth

= speed of light

oy =i
Il

= angle of incidence
antenna beamwidrh

= sweep frequency

-+ [« 2 ¢ ]
3 < ™
I

= sweep band of the signal

= improvement factor
R - B -t

[« v
]

refraction angle

' Because the requirements leading to Eq. (4-59) are correct for the layer assumption

so for the measured data the reduction ratio of variance due fo frequency averaging

2
&
I- = (4-92)
where '
o = variance of the measured data
U= mean of the measured dafa
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4,2.2 Number of Independent Samples Based on Facet Model

In this section we assume that the target consists of a collection of facets
of different sizes, and the return from different facets are independent,
In the previous section it was shown that the target effect can be represented

in the form of:

_’)‘ Zﬂzptn (4_22)

C(f‘j= T %y e

The mean and the variance of the return power can be expressed in ferms of c{f) as

fol lows:

el wel- E[ [cu@uj (4-54)
Swe - ELwt ) £ [w]

m{ E [lcum2 | ct{—f)[j —EZ[ICl{)]IJSPU)M (4=44)

!

i

— %

It was also shown for the uniform scatterer model, that in the absence of

frequency averaging, the variance of the return power is equal to its mean, i.e.

6”3(= EI; lCLQ)ILrJ - EZ[ [cuf)]j .

V.>p
{(4-93)

- 52[[&{3)11 = EZ[de

Based on this assumption for calculafing the reduction factor of the variance
of the return power due to frequency averaging, instead of conducting two experiments,
one with frequency averaging and the second at a single frequency, and calculating

the variance of each sef of the data, we only need to know the mean and the variance
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of the first set. The reason is that because we are sweeping over a narrow band,
compared with the center frequency, so the mean with frequency averaging will

be equal to the mean that one would get from the second experiment. On the other
hand from Eq. (4-93) the mean square is equal to the variance for the single frequency
case. Hence based on the uniform scatterer model, if we conduct one experiment with
frequency-averaging then the reduction factor-of the variance can be obtained by
dividing the mean square of the data by its variance. That is:

g [wel (4-94)
Gtw

N =

where N is the number of independent samples.

The experimental data shown in Section 4.3 are from reference [3] and are
calculated based on this assumption.

In this section we will first show that when the farget is assumed consists of
a collection of facets, the assumption of the equai’ify of the mean and the variance
of the return power in the single frequency case does not hold-=this is especially
true for the case that the product of the sweep band and the time span of the target, fmT,
is small, i.e. at small incidence angles. So we will conclude that the caleulated
number of independent samples as shown in Figure 21 are not correct; because they
-are based on Eq. (4~94). - ’ B ) I

In the second part we will calculate the number of independent samples

based on the facet model assumption and show that the results for small incidence angles
are almost the same as the results predicted by the uniform scatterer model assumption.
For large incidence angles the number of the independent samples predicted by the
facet model is smaller than the number predicted by the uniform scatterer model and
is closer to the number calculated based on the experimental data Figure 21,
4.2,2,1 Mean and Variance of the Return

In what follows we will first calculate E[ [c(f)] 2 lc{f=v )] 2 1 then by putting
v =0, we will obtain E[ | c(f)] 4] . We will then caleulate the mean of the return

power, i.e. E[|c(f)] 2] and will show that, unlike the uniform scatterer model, the

mean square is larger than the variance, i.e.

e[| r‘:uf)lj S e[ fear) € [laot]
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il

or

2 EZ[_\a%)fl - [|a£u”]-7o

from Eq. (4=22)

(4-96)

) 27 '1%11

Uc(%)l [etf- 9f|j~ E[ZZZZ Tn %wm &p Q4 ¢

122 Pt -y 27(4-7) o Jan( 7)1,
ot e s

Because it is assumed that a, and t are independent and F in uniformly distributed,
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e[ tenrl el ]
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Now we will calculate El |c(f)| 2] E[ jc(f-v)I 2] and by substituting v= 0 we
get the mean square.

E[]ct%]z} E[lﬂ[:?-”]-‘j -;Ei ZZanﬂm ;ﬂZﬂ'F‘fn é}'z:pr’.“J EiZZo'nam

—.J 2/7(#—9} f’l J-Zﬂ(cf-a) tnt g

e P _
R
£ ) Lol (%)i -5
A R P N T ks s b
7 ET
: g ' I)T .\
+ - Lanyt L%;’)Z (%)

Now we want to prove that in general mean square is larger than the veriance, i.e.

(mecm)2 - varionce > 0

or

e [lanl'] - f e 1] - £ 1ewr]§ »o 4-99)

or

2 EZ[ }c[.g)/zj - E[ [cb'FJ f‘j o (4-100)
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If we substitute v =0 in Eqs. (4~97) and (4-98), and assuming.that N is large
and

P A

We obtain

2E [[ ch@)IJ —E[ ‘C(f}lJ % W (A:;?)
_2 4 AT (Aé 727 4 D IR o v

’T T
=1
=)

2087 T Zai> (ai>" 747
- N [M ) . {an'> (4-101)
2 f/'"QT <¢{: >Z

Aswnﬂbeshown <a, > <c12> <03>,and<a

n4> have comparable
magnitude, so for the smali tnc:dence angles where the time span of the farget, T,
is very small fT will not be large and consequently (Awu ( WFT)/W)GT )2'

is not very small, ond because N is large, the first term in Eq. (4~101) will
dominate . So

Ez. [,IC(J?][IJ— E[ lc[\g)}‘f:! {a,,,> A (/!«.mﬁr > o

74T (4-102)

In other words the mean is larger than the variance.
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4.,2.2,2 Number of Independent Samples

We want to calculate the reduction in the variance from Eq. (4-44), From
Eqgs. (4~97) and (4-98) the infegrant in Eq. (4~44) will be:

E[l ct{l}lz[ c(%—ﬂlj - EZ-[ lcwl"] =2 2 Ns {an ><o-.1>2' ‘

(B DT (AT A ENT) a0 AT
7y T 747 7 (T 771

{an's (4-103)

From Egs. (4~44) and from the definition of the number of the independent sumples

z .
burl ne anw-ama

1=

2 . '
Fuv | Fres. Averegm
We obtain l 1 ¢

3 Ae 787
[ 2l VBB el ety

3 aly fant (3
2Ny ey’ o) J AT 0 by NGRS J(’d"”f; ) PN+ o'y
7 bk

(4~104)

where p(v ) is defined in Eq. (4-52). When the product of sweep band and fime

span of the illuminated area is small f.e. v T<< 1, the answer to both integrals

will be one, so I, as expected, will be equal to unity. But when the product is

not small and since f >> v , fT will be large and (AWW‘TQT) —> 0, so T will
be equal to
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(4-105)

and dividing the

(4-106)

where I' is the number of independent samples predicted by uniform scatterer

assumption (see Section 4,2,1), If we substitute N < > by summation in

Eq. (4-106) we obtain

7 e[ar]

[ ZE[«53}
L ZEl)
T fzely
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N

It should be mentioned that the summation J~  is for all facets—large, medium,
=\ .
and small=so in order fo calculate the second term in the denominator we break it and

group each size separately

# ng Han ne )
Telen) - Z e[ani- :[; elam) ~ ; £ap |

n=} n=t

Iy "9 Mot " 4
> e[ar] - Z efer)e Z elen) < Lol
ne ! net et P (4-109)

where
n, = number of large faceis
n, = number of medium facets
n = number of small focets

= +n_+ n
S TR

Now we calculate N, Ny Ny and ng
Time delay due to each facet with a length L from Figure 19 is —iL sin Gn

where 8_ is the local incidence angle. The average value of this delay will be:

{2 o,y o {5 (o os 0e) -

]

bs [

J j 2L ( Ao -5 Goo) P(L) Ps) ds dL
c
o

il

—p>
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Figure 19. Time delay based on facet model.
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where
$ = slope
pls) = probability distribution of slope
p{l) = probability distribution of facet length

Since the time delay. is-equal to-the average time delay times the fotal number

of facets, we get
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(4-112)
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where, as before, it is assumed that the targets whose size is, smaller than 2 A/5
are considered to be small, larger than A are considered to be large, and between
275 and )\ are considered fo be medium.

In what follows we caleulate E[an2] and E[qn4] for large, medium, and small

size facets and substitute the results in Eq. (4~108) to calculate the number of the
independent samples,

i) For large facets note that

2 KL Ao\ ©
a”‘ _ dr L q,-;.-zg ( _i"_”_.,_-»'—’*)
1= A2 KL Awe
2 © :
_ by G o Ao U(LM]
KAt 4o

(4-116)
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Then assuming a Gaussian distribution for facet length, we obtain
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For relatively lorge incidence angles
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L Ny fay
= ™/ (4-133)
z 2
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Now if we substitute the results of Eqs. (4-131), (4-132), (4~127), (4-126),
.(4-118), (4-117), (4~115), (4-114), and (4;113) into Eqs. (4-108) and (4~109)
. N
we obtain z! Elan] and Z:l Elaﬂ" _J , and by
substifuting these results in Eq. (4-106) we caleulate the number of the independent
samples.,

In Figure 21 we have shown one typical result of this calculation.

4.2.3 Comparion of the Results with Measured Data

In this section we compare the resulfs obtained in Section 4,2 with

measured data.,

An experiment was conducted to measure the effect of frequency averaging on
the reduction of the variance of the returned power [ 3]. The results of this experiment
for alfalfa and bare ground are shown.in Figures 20 and 21,
4.2.3.1 Alfalfa

At incidence angles smaller than 60° alfalfa can be considered a layered
medium consisting of uniform scafterers, In Figure 20 we compare the theoretical results
obtained assuming no penetration, Eq. (4-56}, and the case that we have some
penetration, Eq. (4-91), with the result of the experiment. It can-be seen that for
incidence angles smaller than 60° the penetration model can very well predict the
experimental result. For incidence angles larger than 60° the alfalfa behaves like a
collection of facefs, so the number of the independent samples should be calculated
based on the facef model assumption, Eq, (4=107),
4.2.3.2 Bare Ground

In Figure. 21 we compare the result obtained based on Waite's [26] derivation
and the result obfained based on the facet model theory, Eq. (4=107). It is clear that
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Figure 20. Number of independent samples for alfalfa.
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Figure 21. Number of independent samples for bare ground.
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at small incidence angles, the facet model does not agree with the calculated number

of independent samples based on the experimental data. This may be due to following

redsons:

i)

At small incidence angles, as was shown in Section 4.2.2, the

return power does not have a Chi-square distribution.. Hence the
number of the independent samples calculated based on the
experimental data, Figure 21, are not correct.

The theory of the reduction of the variance of the return power based on
the facet assumption is not complete and needs more refinement, The
derivations in Section 4.2.2 consider only the two dimensional case,
although the actual target consists of three dimensional facets. This

deficiency can introduce errors, particularly at small incidence angles.
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5.0 RESULTS

In this chaper we will compare the theoretical results obtained in Chapter 3
with the experimental data obtained from the bare ground.

Because in general the target is not perfectly conducting, in Section 5.1 we
will caleulate the reflection coefficient of the target as a function of its dielectric
constants.

In Sections 5.2 and 5.3 we will compare the prediction of the model developed
in Chapter 3 and Katzin's model [8], with the measuwred data. It will be shown that

the new model predicts results better than Katzin's model.

5.1 Reflection Coefficient

5.1.1  Large Facets

From reference [23] the reflected field from a plane boundary between two

media is
. Lok Gos - e, m E
_ %_-’—’/—”_ -]
2, =3

o oo o (R K 0 e

—>
L-V?XEO =0)

1 2 ,.Z
/J,Kz(%'?&—ll‘zk\m H

T °

/‘l! K‘: o + I"*'L K, E} K-: - Klzﬁfﬁ (5#2)

(77 xHo =0 )

95



where

K% = fi€ 0 9 fo 0w

K2 = o & oteg br0

€y = Complex permittivity of the first medium

€ = Complex permittivity of the second medium
U.] = Complex permeability of the first medium
M, = Complex permeability of the second medium

For our case u,= py = 1, so from Eq. (5-1)

2 Cﬂﬂ&—-m
"R Go+ ) e - A0

and from Eq. (5-2}

Er Qo6 _‘/:E

6( Q')@""\" 6{_A‘:,?0—

R v

where

/T H
"Ey= e-rjé

(5-3)

(5-4)

(5-5)

In order to calculate the reflection coefficient for the ground we use the

moisture and the type of the soil to calculate €' and €" from Figures 22 [25]

and then use these results in Egs. (5~3) and (5-4). The calculated reflection coefficient

for HH and VV polarization are shown in Figure 23.
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Figure 22, Measured dielectric constant data of loamy soil as a function of moisture

content by weight around 10 GHz. Solid curves were drawn to fit the
data points and the broken curves were extrapolated {25].
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Reflection Coefficient for Large Size Facets for Different Moisture Contents
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Figure 23. Reflection coefficient for large size facets.
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5.1.2 Small Facets

From Eq. (3=37) the dielectric constant enters into the equation in the form of

(B -1) [(ﬂr— 1) dee + €r Pr] - P: (&)

HH [}"r Gro + Wl 56
(Er—! )[(6‘/’])4‘;109 + v P{‘l - YL (Pf“l')
ey =

[ér oo 4 m] * (5-7)

For the case of bare ground we can always assume that M= 1. Then if we define an
effective reflection coefficient, we obtain

, = _o{.HH (er) - €r s - Er Ai's
Rs tup = = e e
s dHHLoo) [Gjao' . lerfﬂ:f&] o (e e
= R
L ]HH (5-8)

ol (&7)
Rolww 2 X
oﬁwm)

(Ev-1 ) [(er-t),&lzg -ré{‘] /[Gr (ave”c@

(1+ /44;2‘9')/ 304219

11

-

(5-9)
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In Figure 25 le HH] 2 and |R5 V\/[2 are shown as a function of incidence angle

and soil moisture content.

5.1.3. Madium Size Facets
For the medium size facets we assume that the reflection coefficient is the

average of the reflection coefficient of the small-and the large size facets, i.e.

2 z
[RM o |z: i |Rs il R, #H#] k/z 5210
2 2z *
Rl = [Rs k] = (R, k! )
and
FA
!Rm W’Jz: IKLWI *IKRS‘_NIE /2’

" (5-12)

Figure 24 shows [RMHH| 2 and iRM A% 2 versus angle of incidence for different

soil moistures.

5.2 Comparison of the Results of the Theory With Data

In the following pages we will compare some samples of the measured data
with theoretical predictions.,

As Figures 26 through 31 show close fo nadir in both polarizations, almost
all the return comes from the large facets. But at large incidence angles in HH
polarization case, the predicted return is determined by the return from medium
size facets while in VV polarization it is mainly determined by the return from small

facets. To facilitate comparison of theoretical prediction with experimental data
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Reflection Coefficient for Medium Size Facets for Different Moisture Contents
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Figure 24. Reflection coefficient for medium size facets.
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Reflection Coefficient for Small Size Facets for Different Moisture Contents
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Figure 25. Reflection coefficient for smail size facets.
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Figure 26. Contribution of the large facets to the return.
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Contribution of the Large Facets to o, in dB
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Figure 27. Contribution of the large facets to the return.

104



Contribution of the Large Facets to.o, in dB
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e 28. Contribution of the large facets to the return.

105



Contribution of the Medium Facets to 6, in dB
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Figure 29. Contribution of medium size facets to the return for HH polarization.
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Contribution of the Medium Facets to g, in dB
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Figure 30. Contribution of medium size facets to the return for VV polarization.
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Contribution of the Small Facets to 6, in dB
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Figure 31. Contribution of small facets to the return.
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(Figures 32-47), which represent an average return over a 1.2 GHz bandwidth,
the theoretical calculation shown in Figures 26=47 represent the average of the
calculated return at the indicated center frequency and the returns af the
neighboring frequencies 400 MHz on each side.

In fitting the theory to the data curve we use the level of the curve at
large angles in HH polarization to determine the standard deviation of the distribution
of the facdt size, then use the level and the shape of the curve near zero angle
to determine the standard deviations of the slopes. Once these parameters are deter-
mined, they are used io predict the return in VV polarization, It should be noted
that in large angles in VV polarization the return predicted by the theory is only
a function of the frequency and the dielectric constanis of the target.

When we increase the frequency the standard deviation of the facet size must
stay constant, but because we include smaller facets to the large catagory, it is
possible that the standard deviations of the slopes also increase.

The results of the fittings are shown in Figures 32 through 47, where
S

X

S
Y

S¢ = standard deviation of the distribution of the facet size

standard deviation of the slope in x direction

standard deviation of the slope in y direction

In order to check the accuracy of the predicted variance of the slope distribution,
we calculate the variance of the slope of the ground from the data taken at the time
of the radar measurement, After smoothening the surface curve, Figure 48, by the
length of the smallest facet in the large catagory, i.e. ) , the veriance of slope was
calculated to be 0.07, and this is very close to the predicted value of 0.075 that
has been used to calculate the data in Figures 40 through 43,

109



RCS of Bare Ground in dB
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Figure 32. RCS of bare ground; moisture content =5.9%,
frequency =9 GHz, polarization = HH,
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RCS of Bare Ground in dB
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Figure 33. RCS of bare ground; moisture content =5.9%,
frequency =9 GHz, polarization = VYV,
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RCS of Bare Ground in dB
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Figure 34. RCS of bare ground; moisture confent =5.9%,
frequency = 14,2 GHz, polarization = HH.
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RCS of Bare Ground in dB
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Figure 35. RCS of bare ground; moisfure content = 5.9 %,

frequency = 14,2 GHz, polarization =VV,
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* RCS of Bare Ground in dB
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Figure 36. RCS of bare ground; moisture content = 9.4%,
frequency = 9 GHz, polarization = HH.
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RCS of Bare Ground in dB
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Figure 37. RCS of bare ground; moisture content =9.4%,
frequency = 9 GHz, polarization = VV,
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RCS of Bare Ground in dB

15r Frequency = 14.2 GHz
Sweep Frequency = 1.2 GHz
Moisture Content = 9. 4%
Polarization = HH

10+
S,=10.025
Sy=0.05
5F S| = 3.5 cm
v Measured
0 -— Predicted

1 N |

10 20 30 0 50 60 70
Incidence Angle in Degrees

Figure 38. RCS of bdre ground; moisture content = 9.4%,
frequency = 14.2 GHz, polarization = HH.
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RCS of Bare Ground in dB

Ly Frequency = 14. 2 GHz

Sweep Frequency = 1.2 GHz
Moisture Content = 9, 4%
Polarization = VV

10
Sx=0.025
Sy=0.05
or S, = 3.5¢cm
v
v Measured
0 ~e Predicted

_25 I L
0

10 20 30 40 50 60
Incidence Angle in Degrees

" Figure 39. RCS of bare ground; moisture content = 9.4%,
frequency = 14,2 GHz, pelarization =VV,
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RCS of Bare Ground in dB

15 Frequency = 9 GHz

Sweep Frequency = 1.2 GHz
Moisture Content = 17. 8%
Polarization = HH

10
S, =0.025
Sy=0.075
or S,l = 3. 5c¢cm
v Measured
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..5 |
_10 L
_15 L
...20 -
_25 1 t 1 |
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Incidence Angle in Degrees

Figure 40. RCS of bare ground; moisture content = 17.8%,
frequency =9 GHz, polarization = HH.
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RCS of Bare Ground in dB

15

10

Frequency = 9 GHz

Sweep Frequency = 1.2 GHz
Moisture Content = 17. 8%
Polarization = VV

S, =0.025
Sy= 0.075
SI =3.5¢cm

v Measured
—=e Predicted

I I ! L }

10 20 30 40 50 60 70
[ncidence Angle in Degrees

Figure 41. RCS of bare ground; moisture content = 17.8%,
frequency =9 GHz, polarization = VV.
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RCS of Bare Ground in dB

Frequency = 14.2 GHz
Sweep Frequency = 1.2 GHz
Moisture Content = 17. 8%
Polarization = HH

S, = 0.075
Sy = 0,075
SI = 3.5 cm

v Measured
v —& Predicted

1 1 1 1 ]

10 20 30 40 50 60 10
Incidence Angle in Degrees

Figure 42. RCS of bare ground; moisture content =17.8%,
frequency = 14.2 GHz, polarization =HH.
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RCS of Bare Ground in dB

157 Frequency = 14. 2 GHz
Sweep Frequency = 1. 2 GHz
Moisture Content = 17. 8%
Polarization = VV
10+
S, = 0.075
Sy=0.075
> S,=3.5cm
v Measured
0k —= Predicted
..5 L
_10 .
_15 -
_20 L
_.25 1 1 t 1 J
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Incidence Angie in Degrees

Figure 43. RCS of bare ground; moisture content =17.8%,
frequency = 14.2 GHz, polarization =VV.
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15r Frequency = 9 GHz

Sweep Frequency = 1. 2 GH
Moisture Content = 21, 1%
Polarization = HH

10
S, = 0.05
Sy=0.075
5r S;=3.5cm
v
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0L —o Predicted

" RCS of Bare Ground in dB
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Figure 44, RCS of bare ground; moisture confent =21.1%,
frequency = 9 GHz, polarization = HH.
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RCS of Bare Ground in dB

br Frequency = 9 GHz
Sweep Frequency = 1, 2 GHz
Moisture Content = 21.1%
Polarization = VV
10+ .
Sx=0.05
‘ Sy =0.075
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Figure 45, RCS of bare ground; moisture content =21,1%,
frequency = 9 GHz, polarization =VV,
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RCS of Bare Ground in dB

Lr Frequency = 14.2 GHz
Sweep Frequency = 1, 2 GHz
Moisture Content = 21.1%
Polarization = HH
10
S,.= 0.05
Sy=10.075
5 Sl = 3. 5 cm
v v Measured
0L —=o Predicted
..5 =
...10 L
_15 =
_20 -
..25 I | ] 1 ] 1 1

n 10 20 30 0° 50 60 70
Incidence Angle in Degrees

Figure 46. RCS of bare ground; moisture content = 21.1 %,
frequency = 14,2 GHz, polarization = HH.
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RCS of Bare Ground in dB

Lr Frequency = 14. 2 GHz

Sweep Frequency = 1.2 GHz
Moisture Content = 21, 1%

101 Polarization = VV
Sx=0.05
Sy = 0.075
oF S, =3.5cm
v
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0F ——o Predicted
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Figure 47. RCS of bare ground; moisture content =21.1%,
frequency = 14.2 GHz, polarization =VV,
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Figure 48, Four samples of ground contour. Moisture content = 17,8%.
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Field No. 1

Average Moisture Content = 5. 9%
(First 2.5 cm)

Field No. 2
Average Moisture Content = 9. 4%
(First 2.5 cm)

Field No. 3

Average Moisture Content = 17. 8%
(First 2.5 cm)

Standard Deviation of Slope = 0. 07

Plate 1. Photographs of bare fields
at four different dates, Field No. 4

Average Moisture Content = 21. 1%
(First 2.5 cm)
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5.3 Comparison of Facet Model with Katzin's Facet Model

As stated earlier Katzin assumes that the target is composed of small and
large facets and the return power is the sum of the return from each category.

For large facet

00
i 2 Bl 7
2 7
¢ A P(R) ﬂ PP (®.3) (22 N
et J Sk ki end
A =9
: 4ﬁjiﬁ.)L dz, d¥y ¢A
(Tew
(5-13)
where
Yy =cos 0+ ZY sin B
BL=KaZ_ cos©
X
cu= Kb("Zy cos B + sin 8)
K =21/}
» = wavelength
P(A) =  probability distribution function of the area of the facet.
P(Zx,Zy) =  joint probability distribution function of the slopes in
x and y directions
A] =  the transition area from small to large which is equal to

.110422

128



then by assuming that the slope has @ Gaussian distribution:

b(Zyr 2y) s — & A %gl '
74 P (5-14)

27 Sy 53 25;' ?_‘Sa"
Az
2 K ¢ dn
a = Aipa) -G (5-15)
]
where
& 7 Fant ( tan &v)
G= —F— oup| - &/,_5‘25 s :
2 Sx 6y Kn
(5-16)
j
s - ~—
[ ez K #%Ge
In Eq. (5-16) we can define g; and g, such that:
3
2 A -1 -7
J%_,e,= g, 8 « & P (5-17)
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where

.__fa.ne'/zsl
5 e fan
WE oy 51
a4,k _ 9, 4 (5-19}

LJ,vJ?’/L Am & Sy
then. from Eq. (5-15)
Az
z ! % d
- | ATPw 3 A Gn IRE

A (5-20)

The return from the small facet is assumed to be in the Rayleigh region, hence

A
| g y dF
- - NG B Ay
= | 4 il (5-21)
Ao
where
5
a x_ (5~22)
%o I

A] and P(A) are the same as defined in Eq. (5-13).
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Then the return from the target will be

§= bg b,
33 .3
. S Alpe) 9,4 <9, 0 ’2} dn
Ay
A
. %o g A pn) da o°2)
A I,

Now Katzin assumes that the distribution of the facet areq is

~m

pay= M A (5-24)

If we substitute this relation in Eq. (5-23)

P“ ﬂ:_-f‘.. H'L _’33_2..

- 2 -2
6'= MD :3_(_’..- )ﬂl &'A +* g| A J'A +
}q‘

Ao 3

A2 pes (5-25)
- 2
4 Gy 5 A da
.2
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where

FaY
N= 1lm-4 (5"26)

m is the same as in Eq. (5-24).

For the case that n#0 & n#4,i.e. m#2 & m#4, Eq. 5-25 becomes

g-n kon

L I % T
b= 2Ne if——"' > (ﬂ| ~Ro ) "'3.'. *(Hl Az )..r
k-n n
_ Nl n+}
2 Tz
ch (gt
n-r'{
(5-27)
When n= 0, then
-4,
r-: VFUN _(_i.'i.?\ (H["ﬁo)_‘- gf[nlqz_‘_
Ir A,
-1 | {5-28)
A - h
T 42 (H, - A; )&
and whenn=4
E-a2nNy1 4 ;\‘L‘ ln A -2 -2 (5-29)
) ° ’ i A, T '—L";' (,q‘ —Az) +



The problem with these equations is that they sometimes give results which are not
acceptable. For example in Eq. 5-29 when the smallest facet of the target goes to
zero o goes fo infinity, or in some cases one gets a negative number for o from
Eas. (5-27) and (5-28). )

One other problem is that Katzin does not take into consideration the case
that the target is not perfectly conducting, so in order to compare his results with
the measured data we have to only look af the shape of the curves not their level,

In what follows we have calculated Eqs. (5-27), (5-28), and (5-29) for
different values of the parameters; frequency, the size of largest facet, the size
of smallest facet, shape of the facet distribution function, and standard deviations
of the slope in x and y direction. If we compare these results as shown in Figures 49
and 30 with the value of the measured RCS which have been shown in Figures 32
through 47, we see that Kaizin's model predicts the return from the bare ground very
poorly. One important point is that for incidence angle range 20°-50° the measured
data has a positive curvature, and this is the same as the result predicted by our model,
while Katzin's model gives us a negative curvature; so fitting Kaizin's model to the data

is not possible.
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Figure 42. RCS based on Katzin's derivation.
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Figure 50. RCS based on Kaizin's derivation.
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6.0 CONCLUSION

Theoretical work was conducted to investigate the radar return terrain. The
target area was modeled as a collection of facets described in terms of facef size
and slope- distribution. '

The facet model was used to calculate the radar cross section of bare ground
and the effect of frequency averaging on the reduction of the variance of the refumn.

Starting with the results obtained by Katzin [8] it was shown that when he
divides the facets info two categories, small and large, he actually groups not only
the medium size facets but also some of the small facets as large. So we divided the
facets into three categories, small , medivm and large. Katzin in his derivation
assumes some distribution function for the area, because getting an experimental
function for area is very difficult we changed the distribution function of the area to
the distribution function of the length and width. We also introduced an effective
reflection coefficient in our equations in order to be able to compare the result of the
theory with the measured data.

We showed that by assuming that the distribution of the slope is Gaussian,
and by assuming that the distribution of the length of the facet is in the form of the
positive side of a Gaussian distribution, the results are in better agreement with
-experimental data than Katzin's model.

We also showed that for this calculation we do not need to know the exact
correlation length of the small structure on the ground and introduced an effective
correlation length which is only @ function of the wavelength, i.e. the radar wave
has some smoothing effect. The comparison of the theory and the measured data
shows that our conclusion is correct,

We showed that af near zero incidence angles in both polarizations the major
part of the return is due to large facets but at larger incidence angles it depends on the
polarization, i.e. for HH polarization medium size facets have a major role in the
return while in VV polarization, the small facets contribute the most.

~ So by knowing the level of the return ot large incidence angles for HH, and
VYV polarization, and by knowing the shape and level of the return as a function of
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angle near nadir we are able to, respectively, calculate standard deviation of the
facet size, moisture confent, standard deviation of the slope in y direction, and
standard deviation in the x direction.

In the second section of the work, namely the prediction of the number of
independent samples due to frequency averaging, we started from Waite's, [26]
uniform scatterer mode! and extended it and took into consideration the penetration
effect. Comparison with data taken from alfalfa shows good agreement. We then
assumed that the target consists of a collection of two dimensional facets and
calculated the number of independent samples. Comparison with the data taken
from the bare ground reveals that our result is correct for large incidence angles but
at small incidence angles, both due to the limited number of available data points
and the assumption of the equality of the mean and the variance in a single frequency,
the facet model cannot predict the same number of independent samples calculated
based on the measured data.

We showed that based on the facet model assumption the reduction in the
variance of the returned signal is not only a function of the product of the sweep band
and the time span of the target, as small scatterer model indicates, but it is also a
function of the surface properties—distributions of the slopes and facet size—,

center frequency of the incident wave, and the polarization.
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APPENDIX A

KATZIN'S ASSUMPTION

" From bhfsicai optics, the RCS for a large circular disk with a diameter D

is given

. Z
4 ﬂ"[ 2 dem 6y 3(270 w09 /3) 1
?‘2

270 @ 8y /) (A=1)

where 6y is the grazing angle. ) )2

Figure A=1 shows that for > >» & ‘3:(. -’Jl‘j;") has an envelope
defined by the equation 4. $/;23 . Hence its value on the average over x will
be equal to half of the value of the envelope, i.e. L /ﬂxs

So for the case when 270/, e &a_ > i.e.

(i) 93 is small

(i) p>»»

We can approximate (%.‘ﬂi.] by 4 / 73  and obtain the average RCS,
/2 ‘

b

/-;-ﬁﬂz — 3 .
( "_”_'?T":-ﬁ?.) (A-2)
4

,AZ

— 2z
6 = /me‘& x

By substituting the relation for the area of a circular disk,

— -2 \
F. A= L — ap” (A-3)
or
- (A-4)
A L”?% %3&% Al
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Figure A-1. Radar cross section of a large circular disk.
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APPENDIX B
RMS HEIGHT FOR SMALL FACETS
We would: like to calculaté the r.m.s, height of small facefs. Because

from the assumption of the small perturbation technique E /) , We assume
]

x
that the angle is uniformly distributed between _.Z. and Z , l.e.
i

ble)
2 7
P 7 47 (B~1)
=1 0’ &mw i &
&

z
Fig. B=1 &

then because the distribution of the length of the facet is assumed to be Gaussian and
because the length of the facets is small compared to the standard deviation of the

facet distribution then we assume that it is uniform, i.e.

blgy = -—'2 43 §o0 | pLa)

- 0 uué'@ (-2)

doi-

Fig. B~2
We know f‘har

he Aor.wv
¢ (8-3)
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If we assume thar
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For the case that # >.0  the result will be in the same form and the only change

will be to substitute o in place of - . So the probability density for
will be
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Because what we are doing is actually integrating over shaded area in Figure B-5

so we can change the order of integration and will have

L
1 -~ Lx
Wy . A S IR S Ny
e ; A -” '
v (VT
W!@J ____'g,.-x:’—-——-—' dx

3 vz
Wl 2
Lo S n
37 5 \fl:_’;z

If we substitute

x 2 e
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- ——— 9, 9,
an A
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7
I . el
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APPENDIX C

CORRELATION RADIUS OF SMALL FACETS

We would like to calculate the correlation radius for the small facefs.

The auto=correlation function of the surface is defined to be

Riv): < xW) x\+:2) C-1)

Figure C~1
From Fig. C=1 if the distance of T is in a way that t and t-T

are not on the same facet then from the basic assumption of the facet model,

indicating that the facets are independent, we know that

{xir) 2 (472) > = 0. (C~ 2)
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So in order to contribute to the average &f Eq. (C=1)

T 4 ‘Et"% (C"‘3)

where

L,

length of the facet

I

the distance between point  and the first point of the facet

3

Because the distribution of | over the facet ﬁ, is uniform, i.e.

PCg) = ':é’\ 2. 7479 (C=4)
= 0 oj‘c/"w‘&e’

then

fretnd 4 (4]
i , is the length of the facet and has a Gaussian distribution, i.e.

ﬂz
| X, 2 .
pd) = —F& exp| -1 /26 ] © (Ce)
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So by using Egs. (C-5) and (C=6) in Eq. (C-1)

A

Rz}~ J —i:‘ ):I.-z].

z

e.

,QZ

287

(C~7)

where % is the correlation dstance and £ is the size of the largest facet in the

small facet category. By assumption stated in Chapter 3

So from Eq. (C=7) by putting
22/
[-

=T
R(T) o j
3

_,_.—-—’
X

Because

22 /e

then from Eq. (C-8)
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then because both A and B are small

From Egs. (C~13), (C~14), (C~15} we determine Z in a way that
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and from Egs. (C=13) and (C-14)

2 2
-8 - b a{ -
27/8 235
If we put
25
C-= =z

then the left hand side of Eq. (C=19) will be

-1
LHsS = 1-4 -k ln3 =.37= ¢

SO

2%
5

(C-19)

(C-20)

(C-21)

C-22)

Z in Eq. (C=22) is the effective correlation radius of the surface when it is

looked at by a wavelength equal to )\ .
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APPENDIX D

EVALUATION OF THE INTEGRAL FOR LARGE FACETS

In discussing the refurn from large facets we have to calculate the integrals

in the form of

© ot 3 +bu) |
W, s L e é’;"’_{_’_{f——i— dy (D-1)
- p? ) Lc—r\oo )]
“ob
P .2
Tt g pledd)
wo o L \ue - (0-2)
2= \03 Ke -th )
]
o2 2 L rd
ARV e 0
' AP LA (D~3)
w3 = T —_—7
ee /. (etb?)
We first assume that
oo zuz T
g A b (crbd) g, (D-4)
. -
1 (cﬂ”)z
-
If we integrate both sides vs. p hwice the result will be equal to
to . 2
o \
éjl_ =2 2 o 2f (”w) $ (D-5)
dpe
—oD
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If we expand the cos term »

(@ 0.2(41»I —a.zu.z ' Am bt)td(k
421 2 J é ¢n 200 @)zpbu dw - 4 Aoy 2PE :p
dp* A A

(D-¢6)

Because the integrant of the second integral is an odd function of u the result

is zero. So

2 ¢
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By substituting the exponential for the cos function

i S ZF 'Z'J{ [ (2 '“ _Lb)}i(o-w)

dp?

By defining

& pb

(8
a
(D-11)

acC

£ ac
¢ b

ZZ—;A- ‘X--rl‘i

Eq. {(D-10) becomes i
4 zf“ qu [e”‘f’te )] (D=12)

dp?

From here

? _,32
P b
n @
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From the table [1] 2 o " 2“" <
—~1)
2dx e:‘l Z L‘""""‘”} TN -8

then 2w w  TnTe
araa "4 va 2 KBk (D-15)
I

where K, and K, are independent from P, or from Eq. (D-10)

. PR
2 " .
gioa 3 f e () LT ok
1= -—‘,:'-;' ¢ o ni. (zn.fajczn-r?.
(D-16)
where
Y
= owlen 3

Now we will use the boundary condition principle to calculate Ky and K

2
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i) zse VF0o , e, looking at a facet with a
length zero vertically. In this case the return should be zero.

i) %zo Y#o . i.e. looking af a facet with
a length zero, in an incidence angle 8. In this case the return should

also be zero.

From the above boundary conditions

3
iy s ) Gl T
7 t nT v}
3= \—-‘:F:r Zo f anwt) W'on e S
b n! {znn )
(D-17)

and if we write this expression in the compact form

1. 2re a[ 075(%)—r2 V%(?)—tzawf”& ’-——-*-e -eqﬁz"a)}

(D-18)
and from Eq. (D-1) ‘

Z
bl -3 a(| ’”Zeowa)]
* ..-——""ﬁ -
‘JJ’ = ) -"fza 'ﬁf L(% V7 <

(D-19)
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where

z

A
¥ )
wf(%)é%g e 4t (D-=20)

Now we want to calculate W, . If we differentate both sizes of Eq. (D-1)

Ys Q
Qw i U"Z ;0-7(,\,2 Aﬁ;z P(c_r):l)] d’U' =W
it = — \- ‘—""\;_i'f
240 P (et 0 ) (D-21)
From here
Lré . -;).—f? ("&)"/J"{
vre - AT [ (2] 2 wft 1of .

« fr-e '% ixﬁﬂ } (D-22)
The next problem is to calculate W3, From £q. (D-3) if C is zero, the infegrant

is an odd function of u so the result will be zero. But if C is not zero because

B e shandend dewichon of e -

is very large the exponential wull be very small before u gets large enough to
have.a significant value for _dye P Cerou) /@-‘r bi)2.
So the result of the integral will be very small, i.e.

W3 = 0. 158
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