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ABSTRACT
 

A theoretical investigation was performed to develop a model for the radar 

return from bare ground. The validity of the model was tested by comparing its 

theoretical prediction with measured data collected by the University of Kansas 

Remote Sensing Laboratory 8-18 GHz radar spectrometer system. 

It was assumed that the target area consists of a collection of small, medium 

and large size facets. Then this model was used to calculate the radar cross section 

of bare ground and the effect of the frequency averaging on the reduction of the 

variance of the return. 
It was shown that by assuming that the distribution of the slope to be Gaussian, 

and by assuming that the distribution of the length of the facet to be in the form of the 

positive side of a Gaussian distribution, the results are in better agreement with 

experimental data than the results of previous facet models. It was also shown that 

for this calculation we do not need to know the exact correlation length of the small 

structure on the ground, instead an effective correlation length was calculated based 

on the facet model and the wavelength of the incident wave. Hence, the parameters 

necessary to specify the surface are: standard derivations of slope in x and y directions, 

standard deviation of the distribution of the facet size, and the dielectric constants 

of the target. 

For investigating the effect of the frequency averaging we expanded the 

previously available results based on the uniform scatterer model and took into 

consideration the penetration effect. It was shown that at small incidence angles, 

the number of independent samples predicted is significantly larger and in better 

agreement with measured data from alfalfa. 

It was also shown that based on the facet model assumption the reduction in
 

the variance of the return is not only a function of the product of the sweep band
 

and the time span of the target, as the uniform scatterer model indicates, but it is
 

also a function of the geometrical properties of the surface, center frequency of
 

the incident wave and the polarization.
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1.0 INTRODUCTION 

The purpose of this investigation is to develop a theoretical model for the 

radar return from bare ground. The validity of the model is to be tested by comparing 
its theoretical predictions with measured data collected by the University of Kansas 

Remote 	Sensing Laboratory 8-18 GHz radar spectrometer system. 
In 1956 Kaezin [7] proposed that the surface of an area-extended target can be 

assumed to be composed of a collection of independent facets of varying sizes and 

slopes. This facet model was developed for predicting sea backscatter at large 
angles of incidence. Over its range of validity (>850), Katzin reports good agreement 

with experimental data. Using the same facet backscatter approach, Katzin later 
developed a second model [8] to cover the other end of the incidence angle range 

(00 to 400). In both models Katzin divides his facet sizes into small and large facets 

and assumes certain facet size and facet slope distributions. 
A study of the backscatter from circular disks indicates that the variation of the 

radar cross section of a disk as a function of its radius (measured in wavelengths) suggests 
that facets should be separated into three different size ranges rather than two. Thus, 
in the present study a medium size facet group is introduced along with other modifications 
of Kaizin's models. The results indicate a significant improvement over Ka-zin's two 
scale model in terms of agreement with experimental data. Furthermore, the proposed 

model does not have any inherent incidence angle range limitations. 

Prior to developing the model proposed in this study (Chapter 3), a detailed 
discussion of Katzin's models is presented in Chapter 2 in order to facilitate the 

understanding of the modifications made in Chapter 3. Chapter 4 describes the 
properties of the 8-18 GHz radar spectrometer used to collect the experimental data. 

Two types of experiments were performed; the first experiment consisted of making about 
140 independent backscatter measurements of different illuminated cells of alfalfa and 

bare-soil fields. Measurements were made at 9 GHz with VV polarization at incidence 

angles of 00 (nadir), 100, 200, 300, 50° and 700. At each angle, the mean and 
variance of the backscattering coefficient were calculated and used to calculate theX2
 
number of independent samples assuming an X fading distribution. In the second 
experiment, the radar return from a bare ground field was measured under several soil 
moisture conditions. Along with the moisture changes, the surface texture changed 
as well. Comparison of theoretical predictions with measured data is presented in 

Chapter 5. 



2.0 TECHNICAL REIVEW 

It is possible to categorize the modeling of extended targets by facets into 

those different types: 

i) Modeling by a collection of plane facets of infinite size each of 

which generates a specular type pattern. 

ii) Modeling by a collection of small facets with a uniform pattern 

and size distribution. 

iii) Modeling by facets of finite dimensions with some assumed 

patterns and size distributions. 

2.1 Specular Point Model 

The basic assumption of this model is that the radar return comes only from 
specular points; in other words, it is assumed that we can ignore all the facets which 

are not normal to the direction of propagation. 

This geometrical optics solution has been shown by Kodis [9] to be equivalent 

to the physical optics solution when the principle of stationary phase is used to 

evaluate the Helmholtz integral. In order to show this he performs the integration 

at a typical stationary phase point and averages the result following integration. 

Then the problem resolves itself into one of determining the average number of 

stationary phase points per unit area and the average contribution from each point. 

Kodis applied his method to a rough surface. Then by assuming that the 

return from each specular point has a random phase, he showed that each illuminated 

specular point scatters like a tangent sphere whose radius is the mean of the two 

principal radii of the surface at the specular point. Thenbecause the radar cross 

r2section of a perfect conducting sphere of radius r is equal to (high frequency), 

the return from the target is: 

C 7 , (2-1) 

where r1 and r2 are the principal radii of curvature of the surface and nA is the 

number of illuminated specular points. 

2 



Barrick [2] examined the geometrical considerations relevant to the occurrence 
of stationary phase points. His analysis is similar to the zero-crossing problem in 
communication theory and his approach follows the same approach that can be found 
in Rice [161. For a two dimensional Gaussian distributed surface Barrick [2] found 
the average points per unit surface area to be 

7.2 5" j . (2-2) 

where 

h = mean square height 
Y,= correlation distance of the surface 

E = local incident angle 
nA= number of specular points per unit area 

From the geometry of the surface, the product of the principal radii of 
curvature can be expressed in terms of the derivatives of the surface of the target, 
E(x,y), as follows [24]: 

-
Iir { (2-3)(,t ) 


From the use of the stationary phase technique Cx and y are known 
quantities. Hence, the variables in Eq. (2-3) only appear in the denominator. 

Barrick argued that because in getting Eq. (2-1)we use the stationary phase 
technique, it follows that the denominator of Eq. (2-3) is not very small. Hence, 

he assumed that 

(i-- AK.% ) (2-4) 
<YizI? - 2 I 
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Then by averaging the denominator he obtained 

K\ 1 I>; 013o9 - I ta (2-5)
 

- where 

Y = correlation distance 

S = rms slope 

6 = incident angle 

Then he substituted<1r, r2 1> and nA in Eq. (2-1) and obtained an expression for 
scattering coefficient, O0 given by: 

an 0/ (2-6) 

Barrick's method of calculating nA differs from Longue-Higgin's [121 method 
in that the latter examines the average total number of specular points rather than 

the average number per unit area. 

Longuet-Higgin [I1] in a special case, assumes that the surface is isotropically 
Gaussian. Then he calculated the joint probability distribution function of the first 
and second derivatives of the surface. By using this probability in a method similar 

to zero crossing technique he calculates the probability of having a specular point 
in an area equal to dxdy. Then by. integrating this probability he calculates the 
total number of specular points on the surface. His result is as follows: 

( if z -r M,2 (2-7) 
Al~o 

where TL 

(2-8) 

E( u, v ) = power spectrum of the surface
 
h the distance between source and surface
 

4 
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Barrick [2] in his investigation assumes that the surface height and its second 

derivatives, ( g I Exx), are uncorrelated. Seltzer [201 improves Barrick's derivation 

by first using a correlated distribution function to calculate the probability of having 

a specular point for a given height. Then by averaging this conditional probability 

for a given height distribution he calculates the average number of-specular points per 

unit-area. Fo a 'one dimensional surface, he obtained 

271 (2-9) 

where 
$2=
 

N = number of specular points
 
P"= correlation distance
 
2
h = mean square height 

2.2 Small Scatterers Model 

2.2.1 Spetner's Random-Scatterer Model [22] 

In this model it is assumed that the radar return is composed of the summation 

of the returns from a collection of randomly located scatterers. Then 

CO F, (2-10) 

where 

P = the density of the scatterer 
a,1 = the average RCS of each scatterer 

It is further assumed that the density of the scatterers remains a constant up to 

a cutoff wavelength Xc and then decreases as T2 for X > Ac; 

64 h,= (c,/p)Z. (2-11) 

(6 



whe re 

Po = the actual density of scatterers 
c, = a constant which is a function of surface properties 

If the effective area of the 	scatterer is large in comparison to wavelength then: 

A (2-12) 

where 

X = wavelength 
A = effective area of the scatterer 

s 

But if As is small then the 	RCS will obey the Rayleigh law and will be 

S = Cz 	 / , (2-13) 

where C2 is a function of 	the scatterer size. So the average RCS of a scatterer will 

be 

(2-14) 

where 	 X0 is the transition wavelength. 

By substituting Eq. (2-11) through Eq. (2-14) into Eq. 2-10, the results shown 
°in Table 1are obtained. Graphically o vs. wavelength is shown in Figure 3. 

2.2.2 	Waite's Model 126] 

In this model it is assumed that 1) the target may be represented by a collection 

of scatterers which are located randomly on the target, 2) amplitude of the return from 
each scatterer is a sample of a Gaussian distribution function with zero mean, and 

3) it is further assumed that RCS of scatterers are independent of the frequency of the 
incident wave. 

7
 



TABLE 1 

(PV0 2<(Cl/Po) 1/ 0 47rpo p A2 s  0 2 p_0 
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Figure 3. Wavelength dependence of normalized radar cross-section 
- (random scatterer model) from Spetner and Katz, 1960. 

8
 



Based on these assumptions Waite has shown that the distribution of the 
returned power will have the form: 

I ( 1/1-1j 	 (2-15) 

where 2 2. 

N = number of independent samples which is equal to one for 
monocromatic case 

a= amplitude of the return from the nth scatterer 
p(w) = probability distribution of the return 

He 	further showed that: 

N = transmitted signal bandwidth 
system 	resolution bandwidth 

2.3 Facet Model 

2.3.1 	 Spetner's Model 

In this model it isassumed that the surface is reflective, continuous, and 
with continuous derivatives. It is further assumed that : 

i) 	 The effective mean square slope of the surface is constant if we increase 
the wavelength from zero to some number X2, but if we increase it 
further, the effective mean square slope starts to get smaller (Figure 4). 
It is further assumed that the density of the facets at normal incidence, 
dSL(O) 	 , varies with the wavelength as follows 

?,>I 	 (2-16)wh3 	 3 { / 

where C3 is a constant close to one. 

9 



(ii) 	 The radar cross section of a large facet for.vertical incidence it 

equal to 

6-eL ) 90

(2-17) 

where As is the area of the facet and C4 is a constant. 

Then, 

(2-18) 
CYir~L' 	 2 

So from the above assumptions, and when the angular effect is included, 

the return from a target which consists of small and large facets, assuming a Gaussian 

slope distribution for the large scatterers, will be in the form.of 

• ,- u -4"2
 

rA 	 5 2 (2-19) 

where 
C3 ,C4 , C5 = are only function of surface properties 

A s = average area of large facets 

X2 transition wavelength which is a function of surface= 

properties
 

e = look angle
 

A = wavelength
 

10 
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Figure 5. Wavelength dependence of a5, from Eq. (2- 19). 
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S = actual mean square slope
 
2 °
 

so A,2/ = effective mean square slope
 

C5/6 = contribution from small facets
 

°
The 	wavelength dependence of aJ at normal incidence is shown in Figure 5. 

2.3.2 Katzin's Model [7,81 

This model differs from Spetner's in that he introduces a pattern of finite 

width for the main beam of large facets, thus large facets which are not located 

along the specular direction also contribute to the backscattered return. 

Katzin's first model [7] is primarily concerned with backscattering at large 

incident angles. In fact it is only valid for angles larger than about 850. In his 

second model the range of validity is broader and itranges from 0° to 400 incident 

angles. 

2.3.2.1 Katzin's First Model: Grazing Angles [7] 
In the first model the facets are divided into Iwo types: 1) large facets, which 

are large compared to the wavelength so that their return is highly directive and can 

be predicted by the physical optics mbthod, and 2) small facets, which are so small 

that the return can be assumed to be proportional to f4 (f is the incident frequency) 

and the pattern of the return is uniform. In addition, the following assumptions are 

made: 

1) The surface of the target may be considered to be composed of 
a collection of facets of different sizes distributed around a mean 

surface in Z direction. 

2) The facets are randomly located so that the backscatter powers from 

the two types of facets are additive. 

3) Shadowing and multiple reflection effects are neglected. 

4) 	 For a large facet, in small grazing angles, the relation between the 

average radar cross section per unit area and the actual area may be 
derived through the following three assumptions 16] 

2 	 plane of facet lies vertically(i) G/IA "( Ah/ ' 

(ii) 	 ") 1/%,)0 plane tilted at an angle 6 
from the vertical position 

12 



__ 

(iii) 	 /A'/'z 5 plane tilted at an angle e 
from the vertical and rotated 
by an angle 4 in azimuth 

where a = RCS, A = area, and X.= wavelength. From (H) and (i) it follows that 
for facets for which 6 = constant, and 7r > q' > 0 an average RCS over 5' may be 

obtained, i.e. 

/: < /> ,-,, /(2-20) 

where- is the average RCS for a fixed e. 

The mathematical proof for the last result is given in Aopendix A. 
5) For small facets it can be assumed that the RCS is proportional to 

X.4 (Rayleigh region). Then from [19] 

9 LA 

If 	 2. (2-21) 

A A q 

where 6 is the grazing angle (6 = 1T/2 - 69 
6) Because 5/A is an increasing function of A/ \2 for small facets 

and it is a decreasing function for the large ones, (assumptions 4 and 

5), Katzin assumed that we can 	extrapolate -6-/Avs. A/ X2 for 
large and small facets into the intermediate region with the intersection 

point serving as the transition point (Figure 6). 

13 
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Figure 6. Average or' for small and large facets. 
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By using the physical optics method, it can be shown, (Appendix A) that 

( 2gZ tOjO~ 4ccr -7//z (2-22) 

Consider first the horizontally polarized case. As stated earlier for small facets 

62

q 4) (i1 J(2-23) 

The transition point is defined by 

(2-24) 

small facets large facets 
from Eq. (2-21) from Eq. (2-20) 

where A1 is the transition area for horizontal polarization, given by 

457- i __6 (2-25) 

From the above equation and from the relation between the diameter of a 
circular facet and its area 

D It 

then 

k , nZ (2-26) 

A 
15 



where 

where D is the diameter for a facet with transition area and is a number which 
varies from .4 to 1.2 for grazing angles changing from 100 to 300. 

For vertical polarization we can argue in the same way and get a 
similar equation for (AIV. 

Figure 6 shows that the normalized radar cross section for facets with area 
equal to A1 is maximum. It follows that the facets for which the diameter is 
comparable to the wavelength have the largest RCS. So for a target, the bigger the 
number of facets with a diameter comparable to the wavelength the larger the return 

will be (Figure 6). Hence there is a direct relation between the distribution of the 
facet size of a target and the wavelength dependence of the return. 

If the distribution of the slope and the distribution of the area of the target face 
are known we can calculate the backscattering coefficient as follows 

o 0 

4o t )(2-27) 

toA' 

JI 

where 
Ps and PR = are respectively, the distribution function of slopes for 

small and large 	facets 

N and N, = 	 are the distribution functions of facet sizes 
AF 1 ,A 2 = 	 are repectively, the areas of the smallest, transition, 

and largest facets 

Z - slope 
16 



a0 return contributed by small facets
 

r 
0 

= retufn contributed by large facets
 

as = average RCS of a small facet from Eq. (2-21),
 
a = average RCS of a large facet from Eq. (2-20)
 

2.3.2.2 Katzin's Second Model: High Depression Angle [7] 
For near vertical incidence the radar cross section of large facets computed 

by using the physical optics method is 

~ (2-28) 

where 

i =sine-Z cose 
y 

= -Z cos 0 

cosx -cos e - Z sin e
 
y
 

and 

.,w = are dimensions of the facet 
A = the area and is equal to , x w 

Z x,Zy = are, respectively, slopes of the facet in x and y directions 
X = wavelength 

For this model the RCS of the small facets, for small incidence angles, 
is assumed to be 

Ci )4 /1,, A' (2-29) 

With the RCS for the two types of facets known, the total RCS can be obtained 
by averaging each individual RCS over its size and slope distributions and then sum 
them together, i.e. 

(2-30) 

17 



where 
' 

o 4 A.IA jf 

S ,'? )(2-32)

57 ( 

--H At MLA L;, M) (m-ydP.) (b 

dz(fit Kit")' Jdth (2-32) 

where 

A0r A1, A2 = are respectively, [he smallest, transition, and the largest 
are in facet distribution 

P(Zx, Z ) = distribution function of slope 

N(A) = distribution function of area 

In order to calculate the above equation Katzin assumes that 

(2-33) 

18
 



where 

K= 20/2, 

w = width of facet, x direction 

, = length of facet, y direction 
6 = incident angle 

o-x, a>y = are respectively, the standard deviation of the slope along x 
and y directions 

19
 



3.0 	 PROPOSED FACET MODEL 

Data taken from disks of different sizes shows that the variation of the RCS 

as a function of the disks dimensions has the shape shown by the solid line in Figure 

7 below; where Ka = 2rA x radius of the disk [19]. It is apparent from the solid 

curve in this figure that there are at least three recognizable regions, and hence 

it appears appropriate to separate the size of facets into the three categories rather 

than two. Approximately, the following three types of facets may be defined: 

(i) 	 Large facets for which Ka>n and the return can be determined by the 

physical optics method. 2T 

(ii) 	Medium size facets for which T > Ka > 5. For this region the return 

is almost constant and does not change more than 3 dB for the whole 

range. It may be assumed that the value of the RCS for the whole range 

varies with A 5/ 4 . 2 

(iii) 	Small size facets for which T > Ka. For this case the small perturbation 

method can be used to evaluate the RCS. 

By dividing the facets, according to their sizes, to three instead of two 

categories, we overcome the problem of extrapolating the curves for large and small 

facets to intermediate sizes. This should give us an improved result over the two 

scale model; since the assumptions on facet sizes are less severe. To see this note 

that in reference 19: 
6 

o 2 

Hence, for 	 (3-2) 

(3-3) 

It follows that Ka - 1. The dashed line in Figure 7 shows that Ka=1 belongs to the 

small region and by this extrapolation not only the entire intermediate region but 

part of the small region are grouped into the large size region. 
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-5 

Figure 7. RCS of a disk as a function of deminsion/wavelength. 
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Katzin assumes that the probability distribution function of the area is in the 

form of 

LA)--	 (?-4) 

where N and m are constants and P(A) is the area probability distribution function. 
o 

In order to overcome the problem of determining P(A), we start from the 

dimensions of the rectangular facets instead of their areas. Then the three regions 

will be as follows: 

(i) 	 Small facets for which dimensions are smaller than 2X/5. 

(ii) 	 Medium facets for which dimensions are bigger than 2A/5 but smaller 

than X. 

(iii) Large facets for which dimensions are bigger than X. 

In order to compute the return we have to know the distribution of the dimensions 

of the facets. This distribution can easily be calculated by using the distribution 

function for height and slope of the target; -Thus, an independent assumption about the 

facet area distribution can be avoided. 

For the facets with dimensions less the 2Y/5 we suggest to use the small per

turbation method. In this case it can be shown that (Appendix B) 

' 	 (3-5) 

where 
h2 mean square height
 

Z, length of facet (max.)
 

We should add that the answer from this model has the local incident angle and if we 

want to consider it as a superposition of the small facets over the large ones, we 

should average it over the variations of the angle due to the variation of the slopes 

of the large facets. 

In what follows we calculate the RCS of the large, medium, and small facets. 

It is assumed that the distribution of the facet size is in the-form of 

V 	 22 IZo 



It is also assumed that the slope has a Gaussian distribution with zero mean. 

3.1 Large Facets 

From physical optics the radar cross-section of a plate with a length of "a" 
and a width of "b" is equal to 

L xZ (3-6) 

Now if we assume that the direction of propagation is in YZ plane and has 
an angle E with the Edirection, and the plate has a slope Zx in x direction and Z 

in the y direction than from [7] the cross section of an arbitrarily oriented rectangular 
plate is 

(3-7)(~~~~24.k(ff~?40 

where 

K = 2rT 
a/b, are respectively length and width of the plate 

ZxrZy are respectively the slopes in x and y directions 

In order to get contribution of the large facets to the return power we should 
average UL (e) over all possible slopes and all possible size. We assume that the 
slope distribution in both x and y directions are Gaussian with zero mean and 
standard deviation of s and s . Then 

x y
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= TV) b2 p 	 )crO) jzo~r~~
6 

Doo
 

Ka) -O 62' .	 

7. b(4 

oq x1s' 2.,C . 2 2. ;& .t~ 

- (S-8) 

where 

a L~ 	 contribution of the large facets 

p(a), p(b) 	 are respectively the probability distribution 

functions of the length and width of the plate 

a1 , bI are respectively the smallest length and width for a 

plate to satisfy the physical optics requirement. 

As stated earlier we assume that the distribution of the size of the facet is a 

Gaussian function. i.e. 

.2 

Ia 2 
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By assuming that 

i) - b 6 

ii) O.t b I 

The contribution of large facets will be 

52 

.22 

£ b p 
(3-10) 

y b 

3-11) 

where 

8=the size of the largest facet on the target 

The integral over Zxand Zyhave the general form of 

x y )5PCcu) 

', p(ci-SU) 
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where the parameters are as follows: 

i) integral over ZX 

A} = _ 5= V(3-13)P-=oo 

ii) integral over Zy 

(3-14) 

Appendix D shows that the answer to the integral in Eq. (3-12) is 

LL 

7LAY- lU vt 7r 

(3-15)-( 

where 

(3-16) 
0 

Z x iyx+ 

Z*=x- iX 

x = PB/A
 

y = AC,, 
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From Appendix D 

to 

U 

A p(c--d) 

Av P 

A-

L)n! 0o 

(3-17) 

Now if we consider the last integral of Eq. (3-11) we have 

±2~~i7.. 666 

7 Kb ' 

1- 9 e (3-18) 
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We see that the first integral in. the right hand side has the form of Eq. (3-12), the 

second is zero, and the third one has the form of Eq. (3-17). So in order to calculate 

this integral we first calculate it from Eq. (3-15) then differentiate it vs. A2 and 

get ;I 

For the case wheh the parameters x of the error function is large i.e. when 

we are dealing with very large facets in comparison with wavelength, and these are 

the facets which contribute the most, we can assume that the error function is equal 

to unity and this will make the computation much easier. For this case 

(i) Integral over Zx 

From Eq. (3-11) 

integral over Zx = I 

where I is defined in Eq. (3-12). Then by using the result of Eq. (3-15) and by 

assuming that the parameters are as indicated in Eq. (3-13) 

2 f (3-19) 

where 

x Ka FS cosO 
x
 

K= wavenumber
 
a = length of facet
 

Sx standard deviation of slope in x direction
 

6 = incidence angle 
2 

then from here because it is assumed that x>2 so erf(2) 1 ;e 0, 

LTfertn01'a r uV i. [z 28
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Now if we further assume that
 

IT S Ka cose>>1, i.e. facet size is large and the standard deviation of (3-21)
 

the slope is not very small.
 

Kaos (3-22)integral over Zx = 


ii) Integral over Zy
 

From Eq. (3-18) and by using the results of Appendix D as indicated in Eq. (3-17)
 

T frt64, k &_ev-r &C- i ) , (3-23) 

where I is defined in Eq. (3-12) and its parameters are given in Eq. (3-14). Then 

by using the results of Eq. (3-15) with the same procedure as indicated in getting 

Eq. (3-22) 
Z 

¢ / (3-24) 

eteJL'~ r17 

Now if we assume that 
(3--25)1) x>>1 
(3-26)2) x> y 

i.e. consider large facets only near specular direction, then 

(3-27)J, 17 

Kb4,&2 
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from here 

Kb10 q. (3-28) 

then by substituting in Eq. (3-23)
 

Integral over ze A t s- S Ly
 

Kb -(3-29) 

By substituting these results in Eq. (3-11) 

L 2# e: -,rSA2 


e. - I b- -

(3-30) 
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assuming that 1 , i.e. the size of the largest facet is very large,-

7C 

r2 ( 

(3-3 1) 

This result, as it is expected, is in general form of the result that one would get 

by using the geometric optics method. The only difference is that we have (it -tA) 

rather than ( i-r t2-&') * The reason for this is the assumption that is made in 

Appendix D, i.e. 

U elO J (3-32)F (C- 80)
 

which is not true for the extreme case when B - and the angle of incidence is 

not equal to zero. 

It should be noted that in comparing the theory with the measured data we 

do not use the assumptions indicated in Eqs. (3-25), (3-26) and (3-31). For this 

purpose we use the result of Eqs. (3-15) and calculate it numerically or digital 

computer. 

3.2 Medium Size Facets 

The facets whose dimensions are less than X but larger than 2X/5 are con

sidered to be medium size facets. 

There is no exact easy solution to the RCS of the medium size facets0 Figures 

8 and 9 [19] show that for small and large facets, as it is expected, the normalized 

RCS versus area varies, respectively, with A2 and A (A is the area). We also see 

that the slope of the curve for medium size is smaller than the slope for both large 

and small size, and it varies almost as a A1/ 4 . Figure 10[ 19] gives us the variation 

of'the return versus the local angle of incidence. This variation is in the form of 
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Figure 10. 	 Measured VV polarization backscatter cross-section versus the angle of 

incidence for perfectly conducting rectangular planes with heights of 2%6. 
and lengths of 0.5 ' 0 and X.. 
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So in view of the measured data shown in Figures 8,9, and 10 we-assume 

2,(6"' /J-------- J,,,6 'd. &b/f) )\21 (3-33) 

where 

K 27r/X 

A= wavelength
 

a = width of the facet
 

b = length of the facet
 
1
' = local incidence angle 

If We write Eq. (3-33) in terms of incidence angle 

-( ) - 2 6 ',xa; 7 I,' ( x ,4.'o- ) / (3-34) 

where S is the slope 

Because we assume that the slope of the medium size facets are not large and because 

the slope of the return versus angle is small for the medium size facets, then s 0. 

Hence Eq. (4-34) will be: 

3(3-35) 
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In order to calculate the contribution of the medium size facets we have 

to average Eq. (3-35) over a and b. Then 

b9M(~e)= 3-36) 

2$'
 

where 

K = 2r/X 
A = wavelength
 

a = width of the facet
 

b = length of the facet
 

p(a) = distribution function of the width of the facet which is assumed 

to be Gaussian 

p(b) = distribution function of the length of the facet which is assumed 

to be Gaussian 
aM(e) = contribution of the medium facets to RCS 

In order to compare the result of the theory with the data we have to take 

into consideration the reflection coefficient of the facets. The assumptions-for • 

calculating the-refle-ctibn coefficient has been explained in Section 5.1. 

3.3 Small Facets 

In order to calculate the contribution of small facets i.e. facets whose 

length is less than 2A/5 we use the perturbation method as first formulated by Rice 

[17] and then further developed by Peak [141 . 
In this technique unlike the tangent-plane approximation there is no require

ment indicating that the radius of curvature at any point must be large in comparison 

with the wavelength. So we can easily use it for the return from small facets of the 

natural surfaces. 

The requirement of this model are as follows [19]: 

i) 2-,7 h/ , i.e. roughness height issmall 
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i K , i.e. surface slopes are relatively small 

i.e. roughness is isotropic 

In the previous section we showed that the first requirement is correct for 

small facets and by assuming that the second and third requirements are also correct, 
the radar cross section will be [19] 

± y. e" I. (3-37) 

where 

X= wavenumber 
h = r.m.s. height 

6 = angle of incidence 

In this equation a, for horizontal, cross, and vertical polarization are given, 

respectively, by 

(/rtlIMCI)JG 9*6rIrk 2(v 

h (3-38) 

[z¢ vh 

S.....)[ .. 1(3-39) 
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and I is defined as, 

o (3-40) 

where Jo( ) is the zero-order Bessel function and 10(r) is the surface-height correlation 

coefficient for an isotropically rough surface and is defined as 

2 -2~(1,-1A)> (3-41) 

where 

(txt % (3-42) 

For the case that the surface is not isotropic the result for Eq. (3-40) is given in 

[ 5 1. Now if we assume that the correlation coefficient has a Gaussian form, i.e. 

1(r)> er/e (3-43) 

then from Eq. (3-40) [19] 

where , is the correlation distance. 
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By substituting Eq. (3-44) in Eq. (3-37) and assuming pr 1 

2 

(3-45) 

(L) gB. 0 (3-46) 

U': (Cc4-~ 

K < . j3 

z 

(3-47) 
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4.0 PROPERTIES OF THE SYSTEM 

In this chapter we explain the principle and the construction of the large 

time-bandwidth FM-CW radar which is used to collect data from the bare ground. 

Section 4.1.1 is devoted to briefly state the principle of the radar. In 

Section 4.1 .2 we have calculated the frequency -spectrum of the radar and have 

shown that it is uniformly spread over the sweeping bandwidth. This result has been 

used in Section 4.2 to calculate the variance of the return power. 

Section 4.2 examines the effect of the frequency averaging. We first show 

the predicted reduction of variance due to frequency averaging by assuming a uniform 

scatterer model [26], then we extend this result to take into consideration the pene

tration effect. Then we calculate the reduction in the variance for the case that the 

target is assumed to consist of a collection of facets. 

Section 4.2.3 compares the theoretical results obtained in Sections 4.2.1 

and 4.2.2 to the measured data. It is shown that by considering penetration we can 

explain the reduction in the variance of the backscatter data from alfalfa. We also 

show that the facet model can explain the difference between the measured curve from 

the bare ground and the curve predicted by assuming that the ground consists of small 

scatterers. 

4.1 System-and -Frequency-Spectrufl 

4.1.1 Radar
 

The radar used in this investigation is a FM-CW radar which has a very large 

time-bandwidth product. A FM-CW radar transmits a modulated signal as shown in 

Figure 11 . Then from 1211 the IF frequency after the mixer is equal to 

(4-1) 
E c 

where 

FIF = intermediate frequency 

R = range 
c = speed of light 

F = RF frequency deviation 

FM = frequency of modulation 
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Figure 11. Illustration showing frequency relationship between transmitted 
and' received signals. 



A block diagram for the radar 	used is given in Figure 12 and its characteristics 

are as follows [3]: 

TYPE 	 FM-CW 

Modulating Waveform Triangular
 

Frequency 8-18'GHz
 

FM sweep: Af 400 MHz
 

Transmitter Power 10 dBm (10 mW)
 

Intermediate Frequency 60 kHz
 

IF Bandwidth 3.58 kHz
 

Antennas
 

Height above ground 26 m
 

Reflector Diameter 61 cm
 

Feeds 	 Cavity backed, 

log-periodic 

Calculated 
Frequency Antenna Effective Beamwidths of Product Patterns 

(Degrees)
(GHz) Gain 


(dB) Az El
 

-8 31.2 2_94 3.43
 

10 33.0 3.07 3.24
 

12 34.6 2.42 2.38
 

14 35.9 2.35 2.34
 

16 37.1 1.65 1.46
 

18 38.1 2.02 3.20
 

4.1.2 Frequency Spectrum of 	the Signal 

In this section we would like to show that the frequency spectrum of the return 

signal of an FM-CW radar with which the data has been collected is flat over the 

sweep band. If the frequency of the wave varies with time as shown in Figure 13, 

then the wave form will be: 
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Figure 12. Basic block diagram of 8- 18 GHz radar spectrometer. 
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Figure 13. Frequency of the transmitted signal as a function of time. 
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(4-2)5(f)= 


Because s(t) is a periodic function we can write 

el'ot (4-3) 

where 

4
F 4t 3 (4-5)C-


(4-6) 
_ Sn 

T 

then 

6 2v(4-7) 
-oj 

First we should calculate Fn. By substituting Eq. (4-2) in Eq. (4-5) we get 

1, (4-8) 
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By using the relation
 

V,K 
(4-9) 

2 

Eq. (4-8) becomes: 

-r
 

(4-1o) 

E C(z 3) -<rTC~i ltt)~ 

where
 

c lto , Aw 

Y 3 EI 'T3 
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C ) ( Z)J+ Fresnel cosine integral 

-S(( )= J lt Fresnel sine integral 
0 

From the Fresnel integral properties 

C(_-6) -z - .

(4-12) 

5Cos') -5~ 

and because the system used has a very large time-bandwidth product, i.e. 

(4-13) 

It can easily be shown [4] that from Eq. (4-10) the signal has spectrum only around 

the U, carrier frequency, and its magnitude is 

/ a. 

-T =(4-14) 

So from Eq. (4-7) 
c6/ 2 

This spectrum is shown in Figure 14. 
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Figure 14. Frequency spectrum of the radar. 
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4.2 	 Frequency Averaging 

It is a well known fact that radar return from irregular targets may fluctuate 

due to insufficient averaging. In order to overcome this problem, over the years 

many techniques have been used, and frequency averaging is one of them. Waite 

has shown that if we average the return of the target for different frequencies[26] 

the standard deviation of the average will be much smaller than the standard 

deviation of the data measured in each frequency. For doing this, Waite assumed 

that the target is composed of small scatterers for which the pattern is assumed to 

be 	uniform. 

In Section 4.2.1 we shall first explain the work done by Waite then we 

shall expand his work by taking into consideration the penetration of the wave into 

the target. 

In Section 4.2.2 we assume that the target is composed of the facets rather 

We have shown that if the return from differentthan small uniform scatterers, 

facets are comparable than the reduction of standard deviation of the return due to 

frequency averaging will be the same as predicted by Waite. But if the return from 

different facets are not comparable, then we have to have some information, about 

the facets whose contribution to the return is very large, in order to be able to 

determine the reduction of the standard deviation of the return. 

In Section 4.2.3 we compare the theoretical results obtained in this chapter 

by the 	actual measurement and show that alfalfa is a good example of a target composed 

of layers of small scatterers. We then use the results of the facet model to explain the 

number 	of independent samples in the RCS measurement of the bare ground. 

4.2.1 	 Uniform Scatterer Model 

4.2.1 .1 Uniform Scatterer Model with no Penetration 1261
 

In this mod-el it is assumed that the target may be represented by a random
 

collection of discrete independent scatterers. Each scatterer has a uniform pattern
 

and its reradiation amplitude is a sample of a Gaussian random process with zero
 

mean and standard deviation.
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As Figure 15 shows the illuminated area of the target is a function of D and S 

then the returned signal will be in the form of 

6v4+). a,, 5 [4-t Lr) (4-16) 

where 

s(t) = transmitted waveform 
to 2Rnf = roundtrip time delay of nt h scatterer and is equal 

n th c 
an = scattering amplitude of n scatterer 

The total return from the illuminated area is: 

Sr[t) - 7. 5 (4-to) (4-17) 

From the characteristic of delta function we can write the transmitted signal as 

SSt) (4-18) 

or 

+) J(4-19) 
Hence, the return signal may be written as 

T
 

~00 

(420 

where the symbol @ denotes convolution of two function [10]. 
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Figure 15. Radar illuminated area. 
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The target effect is only introduced in the second term of this convolution so if we 

define c(t) as 

(~4 (+ t4 (4-21) 

then c(t) will be the target impulse response. 

In order to obtain the reduction in the standard deviation of the return signal 

due to frequency averaging, consider the Fourier transform of c(t), 

C~{ LP-01 zj27onS+-+wJ i+ d 

(4-22) 

a-c e,3on 

From Eq. i4-22) the autocorrelation of the response of the target in the frequency 

domdin can be calculated as: 

(4-23) 

or 

aa e 0 (4-24) 
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From the requirement of the model that the scatterers are independent samples of a 
Gaussian process with zero mean we obtain: 

a[,%a ;eFa0jIJo (4-25) 

Hence 

QL E{ Q.v g2~)1 (4-26) 

By the assumption that an and tn are independent 

(Q) [4 e (4-27) 

By assuming a uniform distribution for time delay i.e. 

- ?~ t~~-;(4-28) 

] iEtV%) 9C.1 

rZ -e (4-29)4, +4 

A,2T
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So,
 

oK'2h tL7 A )T (4-30) 

where T is the time span-of the target-and- is equal-to ' 2D (cis the speed'of
c 1 

light and D is shown in Figure 15). In Eq. (4-30) if we put v T ten 

(4:-31) 

which indicates that for two frequencies L Hz apart the target effect will be
T 

uncorrelated. 
In what follows we will obtain the mean and the variance of the returned 

power and by using the correlation of the target in frequency domain from Eq. (4-30), 

we will calculate the reduction in the variance of returned power due to the frequency 

averaging. 

Variance of the Returned Power 
As'stated earlier in Eqs. (4-20) and (4-21) 

L+) C (4-32)(+4)S aL) 

Hence, the Fourier transform of Sr(t) is 

'r(j ) !S ) cLf) (4-33) 

then the received power will be equal to 

(4-34) 
) 0 
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2 
Now by using this relation we will calculate the variance of the return power, 

wr 

(4-35)u¢"II" 

Now we calculate each term separately 

i) Mean 

F a : k4# J {(-)(fc J'i 

-0O 

ii) Expected value of Wr2 

-j [Cm)I jc(u 2 jsu-i' t / (4-37) 
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In order to calculate thisintegral we use the procedure as stated in reference [101 

i.e. 

= - (4-38) 

Then 
td 

lea)~7 c(?~Jls~?) df(4-39)~5() j 

then 

-cfc i - f-9fl dtd (4-40) 

Now by using the results of Eqs. (4-36) and (4-40) we calculate the variance of the 
2returned power, wr" 

00 

cq (IC'J'j { Me~Ic i1- 4-41) 
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Because, as shown in Eqs. (4-46) and (4-47) I

is not a function of frequency

fI't [ 

-"3S~ A?(4-42) 

then by letting 

(4-43) 

0 (4-44) 

In what follows we will calculate this integral by using the assumption that the target 

is composed of small scatterers with uniform pattern. In reference E261 it is stated 

that in this case 

c I#)',) J(-PJ£ eJ{)) 2] - C) r, (4-45) 
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This result is correct if the following assumptions are satisfied: 

i) Number of the scatterers contributing to the return is large. 
ii) T, where f is the frequency and T is the time span of the target 

is very large. 

Then by using Eqs. (4-23) and (4-30) we obtain 

21fL I[VL+ El\ (4-46) 

and 

o K) 
_(4-47) 

Because both of these results are independent of the frequency we can use 

Eq. (4-44) to obtain the variance of the returned power 

2 041 
2 de 

Z-t 

I
 
-,, A-j[ I
j,CvT )sc-Q) 

j bb) 2) dv (4-48) 

where p(v) is defined in Eq. (4-43). 
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Now in order to calculate the improvement due to the frequency averaging 
we compare the standard deviation of the return when the frequency is swept over 
fm with the case when the sweep is zero. 

Petft (4-49) 

In Section 4.1.2 itwas shown that the signal has a frequency spectrum as 
shown in Figure 16, where the power of the incident signal is assumed to be one 

je I . 4 (4-50) 

then from Eq. (4-43) 

00 .2 

d4 (4-51) 

57
 



1 
fm 

f_ fm f f + f..m 
2 2
 

Figure 16. Power spectrum of transmitted wave. 
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or 

2.j(4-52) 

,In order to calculate Eq. (4-49), we first calculate the standard deviation 

of the return signal by substituting Eq. (4-52) in Eq. (4-48) 

p 

(4-53) 

For the case, when [here is no frequency averaging fm -- 0, i.e. 

z 	 . 9 & 71T Z I 

4O 

(4-54) 
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Therefore, from Eq. (4-49) 

~~'IrV e~ 

L~~~ L&~Q(-55) 

So 

1:: 2 A1 P (4-56) 

Where I is the reduction ratio of the variance that we get when we perform frequency 

averaging (Figure 17 ). Note that from Eq. (4-54) and Eq. (4-44) 

Y 1it *4 (4-57) 
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Figure 17. . Variance reduction with rectangular spectrum 
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so Eq. (4-55) can be written as 

(4-58) 

So by the assumption of small scatterers we can calculate the average pi and the 
deviation (Yof the data taken by a FM-CW radar, and then the variance reduction 
due to the frequency averaging will be 

/ -1
 
(4-59) 

4.2.1.2 Uniform Scatterer Model with Penetration 
- In this section it is assumed that the target can be represented by independent

scatterers located-in layers. The pattern for each scatter is uniform and its return 
is a sample of a Gaussian random process with zero mean and astandard deviation. 

The procedure for calculating the variance reduction due to frequency averag
ing is very close to the method used in Section 4.2.1.1. We first calculate the 
correlation of the target return in frequency domain then use this correlation to 
calculate the variance of the return signal. 

From Figure 18a 

;1 . h; ICr (e-,/z) (4-60) 

p~t h,/ i (.elm 44) (4-61) 
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Figure 18a. Uniform scatterer model with penetration. 
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where 

e = incidence angle 

8 = beamwidth of antenna 

hi = height of the source from the ith layer 

SRi_ = smallest distance between the source and the illuminated area 

of the ith layer 

Ri2 = largest distance between the source and the illuminated area 

of the ith layer 

then 

(4-62) 

2-((4-63) 
C 4O ('Aj. 

where 

-C = speed of a, light 

Til smallest time required for travel, a roundtrip distance, 

between the source and the it h layer 

Ti2 largest time required for travel, a roundtrip distance, 

between the source and the it h layer 

As stated in Eq. (4-1) the return from the nth scatterer of the ith layer is 

(4-64)
Sr ) = , 5 (4 -t-)
io
 

Then the total return will be 

(4-65)5 (fa 1SyLah-A 
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with the same procedure that is used. to get Eq. (4-22) 

-32 -Z, (4-66) 

C a~n* 

then by the definition of Eq. (4-23) 

RO)r e c(Vf) cf-?j (4-67) 

or 

K)- % e 21 (4-68) 

then by the assumption 

0jL. E$ 0IlEL' (4-6 9) 

we have 

- "(4-70) 
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or 
or-L 177 I -1 Znf f Z -

RU E a, Y? 2 V? _r(4-71) 

where 
R(v ) is the correlation function of the return in frequency domain and 

is the contribution of i layer 

By assuming that the time delay of the return from each scatterer isa sample of a 

uniform distribution, i.e. 

(4-72) 

(-f*J-T, 1. - "fC" 

otherwise (4-73) 

and by assuming that the return from the scatterers of each layer are comparable in size 

before attenuation through layers above them is accounted for, we obtain from Eq. 

(4-71) 

Z- a,*,  . (4-74) 
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by the same procedure as stated in Eq. (4-29) 

e 71 -T(4-75) 
rv¢ ( r,:. - -), 

so in view of Eqs. (4-60) and (4-61) we can write 

I - (4-76) 

where 

~" S 'II 
67(477)
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The incident power that reaches the ith layer has already been attenuated by the 
The power which isscattered from a scatterer in i layer is 

first (i-1) layers. 

also attenuated by the first (-i) layers before it reaches the receiving antenna. 

So assuming that the average RCS of all layers are equal the contribution of the 

lower layers will be much smaller. From Figure 18b it can be easily seen that the 

distance -in which the power gets attenuated is (h -Ih,) /u 0 where e' is the 

refraction angle and from the Snell's law is equal to 

-- v 1 (4-78) 

where 

e = angle of incidence 

Er relative dielectric constant of the target 

So if we assume that the attenuation function is exponential, then 

I31 2(4-79)-~ C~t~) 

where 6 is the skin depth and a function of the dielectric properties of the target. 

By substituting Eq. (4-79) in Eq. (4-76), we obtain 

168 t 

2~ j ~WL ~ ~(4-8b)-
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hi I 
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Figure 18b. Uniform scatterer model with penetration. 
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By substituting Eq. (4-77) into Eq. (4r80) 

e.-1 

[V -6 2 C__-1. (4-81) 

C eC,~j Ck11 
77"/
 

Because the distance between source and surface islarge, the" skin depth is very 

small, and the refraction angle as defined in Eq. (4-78) is small, so the area of 

illumination for different layers isalmost constant. Taking hi to be equal to h 

except' in the exponent, we obtain 

77L2-4h(cp1 ,a-f 
-e Co ,A2 2) 

A - 77t hq"L 2(N;-h) (4-82) 

The above sum can be approximated by the following integral 
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'1 

£h 

(4-83) 

-N Iee[ j(isr6h ct-huIjd inkl~ 

Equation (4-82) will be 

I__-
a

{rh _ _ 1 , E 

(4784) 
- L J 

I
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Where 
N = number of the layers (4-85-) 

NVf of the variance of all scatterers located (4-86)J A]= sum 
V inall layers 

In order to calculate the standard deviation of the average return signal we substitute 

Eq. (4-84) and Eq. (4-52) into Eq. (4-48). We obtain 

(4-87) 

414 

where R(v) is defined in Eq. (4-84). 

The reduction of the standard deviation due to frequency averaging from 

Eq. (4-49) will then be:. 

I (4I48) 
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From Eq. (4-84) 

k -hFEI 'l,' II (4897 


So Eq. (4-88) will be 

2 -)- C,-)2 

*1/86-&J 

7 (4-90) 

where 

max
 

6I.1 

is the time span of the target . Now if we let the depth of the target go to infinity, 
i.e. 

h
 
max
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Then Eq. (4-90) will be 

..
S7T 7 P '_.( 4-91)_ 

where 

T = the time span of the target 

6 = skin depth 

c = speed of light
 

e = angle of incidence
 

B = antenna beamwidth
 
V = sweep frequency
 

fm = sweep band of the signal
 

I improvement factor
 
e' = refraction angle 

Because the requirements leading to Eq. (4-59) are correct for the layer assumption 

so for the measured data the reduction ratio of variance due to frequency averaging 

2 

(4-92) 

where 
a = variance of the measured data 

P1= mean of the measured data 
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4.2.2 	 Number of Independent Samples Based on Facet Model 
In this section we assume that the target consists of a collection of facets 

of different sizes, and the return from different facets are independent. 
In the previous section it was shown that the target effect can be represented 

in the form of: 

(4-22) 

The mean arid the variance of the return power can be expressed in terms of c(f) as 

follows: 

e[ 4 jcij(4-54) 

2F 

E I0& ciC-Jwj ~E[c{J\) 	 (4-41) 

It was also shown for the uniform scatterer model, that in the absence of 

frequency averaging, the variance of the return power is equal to its mean, i.e. 

V-2e 

E[ICL)I2 ~(4-93) 

Based on this assumption for calculating the reduction factor of the variance 
of the return power due to frequency averaging, instead of conducting two experiments, 
one with frequency averaging and the second at a single frequency, and calculating 
the variance of each set of the data, we only need to know the mean and the variance 
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of the first set. The reason is that because we are sweeping over a narrow band, 

c6mpared with the center frequency, so the mean with frequency averaging will 

be equal to the mean that one would get from the second experiment. On the other 

hand from Eq. (4-93) the mean square is equal to the variance for the single frequency 

Hence based on the uniform scatterer model, if we conduct one experiment withcase. 


frequency-averaging- then the reduction factorof the variance can be obtainedby
 

dividing the mean square of the data by its variance. That is:
 

C' (4-94) 

2. 

where N is the number of independent samples. 

The experimental data shown in Section 4.3 are from reference [3] and are 

calculated based on this assumption. 

In this section we will first show that when the target is assumed consists of 

a collection of facets, the assumption of the equality of the mean and the variance 

of the return power in the single frequency case does not hold--this is especially 

true for the case that the product of the sweep band and the time span of the target,fmT, 

is small, i.e. at small incidence angles. So we will conclude that the calculated 

number of independent samples as shown in Figure 21 are not correct; because they 

are based onEq. (4-94). 

In the second part we will calculate the number of independent samples 

based on the facet model assumption and show that the results for small incidence angles 

are almost the same as the results predicted by the uniform scatterer model assumption. 

For large incidence angles the number of the independent samples predicted by the 

facet model is smaller than the number predicted by the uniform scatterer model and 

is closer to the number calculated based on the experimental data Figure 21. 

4.2.2.1 Mean and Variance of the Return 

In what follows we will first calculate El lc(f)l 2 1c(f-V )l2 then by putting 

v = 0, we will obtain E[ I c(f)l 41. We will then calculate the mean of the return 

i.e. E[ I c(f)i 2] and will show that, unlike the uniform scatterer model, thepower, 

mean square is larger than the variance, i.e.
 

(4-95) 
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or
 

m21 -~ I 1 0(4-96)
 

from Eq. (4-22)
 

j[flffM-, . )ap 'e
2 


Because it is assumed that an and tn are independent and tn in uniformly distributed, 
we get 

- N (jJt'/v}_#z()-3) 4%> 12 (j( (a)
I C Lf-)
 

/V L**-j ? ae.
 

YIM$~ 

TA) 774 )Li- IO~ (b)T 

7 (4-Q)-T(c)
 

fI2-)T 7 ( d)
 

-& (10J-I)(di-Z) A> <>-T (e)
 

v T 

77 



Al-

J 

nt m 

W-TzY Ari > (aso> . I± 
f T 

•I-

jZ(9) 

n7--&PT 
(-6) 

> 

a.2- > 

" 

77( 

-r(T_;R-) 

78 

fAJTM 

(-) 

At n( 5 b 

_,M-) ><.A J- 3 in 

* M~c.7 
CW 

V(o 

783 (M-9) 



Now we wil calculate E[ Ic(f) 12 El ic(f-v)l 2 and by substituting v 0 we 

get the mean square. 

e 7
z_ z ? 

<'~ L4 (d. 77-~ T4(rJf)± j (4-98) 

<ta44ftr)+ ,()J-ij QK 

Now we want to prove that in general mean square is larger than the variance, i.e. 

(mean) 2 - variance > 0 

or 

p7L jFf9CL [II~IJ\ (4-99)e#13 )I§ 

or 

)I(4-100)( (f 
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If we substitute v = 0 in Eqs. (4-97) and (4-98), and assuming:,that N is large
 

and
 

We obtain 

2~ A f 7,j C (f Al 3 OT 
A)r 2]f F ,-',l 1/>'~f 

.4-I-r 

.., /] (4..r zT~OLA > A4l-0) 

2 n3 4 
As will be shown <a n > ,<an > ,< a >,and< a >h. ~27 ilrueiT T IIVJ vfel!L-T )J4$ ,,Zan')/ &-'L 
magnitude, so for the srnql incidence -angles where the time spab ofthe farget, TL. _z (-101) 

" is very small fT"will not be large and consequently (ldJ ( n$TJ/iiT )Z 

is not very small, and because N is lare, the'first term in Eq. (4-101) will 
dominate . So 

In other words the mean is larger than the variance. 
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4.2.2.2 Number of Independent Samples 
We want to calculate the reduction in the variance from Eq. (4-44). From 

Eqs. (4-97) and (4-98) the integrant in Eq. (4-44) will be: 

~3M '2-F1{c 14ICI 9J j -Cf I-)Iz 

77Y T T(y i 

Q" (4-103)a> 

From Eqs. (4-44) and from the definition of the number of the independent samples 

We obtain 

6rzT- /4 z z 

2A,3. 

(4-104) 

where p(v ) is defined in Eq. (4-52). When the product of sweep band and time 

span of the illuminated area is small i.e. ' Tc< 1, the answer to both integrals 

will be one, so 1, as expected, will be equal to unity. But when the product is 

not small and since f >> v , fT will be large and 5 T) Z-Tr 0, so Twill 

be equal to 
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> 
(4-105)
 

or letting I = [a-n e fl ) d9 and dividing the 
2 >numerator and the denominator by N2 < an

'1 

, -t - ,(4-106) 

where I' is the number of independent samples predicted by uniform scatterer 

assumption (see Section 4.2.1). If we substitute N < > by summation in 

Eq. (4-106) we'obtain 

[a 
It4
 

t{Zr~~33 (4,107) 
_8
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Al 
It should be mentioned that the summation E is for all facets-large, medium, 

and small-so in order to calculate the second term in the denominator we break it and 

group each size separately 

E1an" 1 L3If>4 r2-FIJ rRV 
,
P_ 
 (4-109) 

where 
n = number of large facets 

nmm number of medium facets 
n number of small facets s
 

n nm +nsN = -n+ 

Now we calculate N, nz, nm and ns. 
Time delay due to each facet with a length L from Figure 19 is 2 sin e c n 

where en is the local incidence angle. The average value of this delay will be: 

83(L) PLs) 45 
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Figure 19. Time delay based on facet"model. 
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0- I 
[L 2 , 3 

(41L 19) 

= . 00o.] 
-# (zK3

DO (2 -4e-Oj4-1i 

._a-,_ 

e + 4 

So : ,(4-121) , 

7 8LA] 



_____ 

2e 

42 

\/ , (4-110) 

where 

s = slope 

p (s) = probability distribution of slope 

p(L) = probability distribution of facet lengthV 

Since the time delay is-equal to-theaveragetime delay times the total number 

of facets, we get 

or
 

(4-112)oT 

tJ~T(4-111) 
then n,, nm, and n. will be 
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- (4-114)Y 2 JL 

e2dL4 
Z~55' 

- .T -J (4-115) 

Y, A'e I e 2je L 

0 
5

where, as before, it is assumed that the targets whose size is, smaller fhan 2 X/5 

are considered to be small, larger than X are considered to be large, and between 

2 /5 and X are considered to be medium. 

In what follows we calculate Elan 2] and E[an4] for large, medium, and small 

size facets and substitute the results in Eq. (4-108) to calculate the number of the 

independent samples. 

i) For large facets note that 

2' 4n L e A A
 
X
A 

Z 

(4-116) 
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Then assuming a Gaussian distribution for facet length, we obtain 

a- vzkA KLa-)

00t

2-/ j )L 1 . -L 

to 

(ZK -r $ 

2, e, 

e.} (4-117) 
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For relatively large incidence angles 

oEK3 (4-122) 

((4-123) 

then 
1(4-124)

EL& 
~3 

ii) Medium size facets 

(4-125) 

So 

L SJU 

(4-126) 
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2.L 

6-

where 

(4-128) 

and 

B _tz4(4-129) 

MH) Small facets 

From reference [19] 

S3(4-130) 

and 

+ 420--4--%A* 

T (4-132) 

C (4-131) 

7 2 *~190 

93 



where
 

(4-133)
 

655 	 (4-134) 

Now if we substitute the results of Eqs. (4-131), (4-132), (4-127), (4-126), 
(4-118), (4-117), (4-115), (4-114), and (4-113)into Eqs. (4-108)and (4-109) 

we obtain -,E[o-,iJ and j ELf ,andby 
substituting these results in Eq. (4-106) we calculate the number of the independent 

samples.
 

In Figure 21 we have shown one typical result of this calculation. 

4.2.3 	Comparion of the Results with Measured Data 
In this section we compare the results obtained in Section 4.2 with 

measured' data. 
An experiment was conducted to measure the effect of frequency averaging on 

the reduction of the variance of the returned power [ 31. The results of this experiment 
for alfalfa and bare ground are shownin Figures 20 and 21. 

4.2.3.1 Alfalfa 
At incidence angles smaller than 600 alfalfa can be considered a layered 

medium consisting of uniform scatterers. In Figure 20 we compare the theoretical results 
obtained assuming no penetration, Eq. (4-56), and the case that we have some 
penetration, Eq. (4-91), with the result of the experiment. It canbe seen that for 
incidence angles smaller than 600 the penetration, model can very well predict the 
experimental result. For incidence angles larger than 600 the alfalfa behaves like a 
collection of facets, so the number of the independent samples should be calculated 
based on the facet model assumption, Eq. (4-107). 

4.2.3.2 Bare Ground 
In Figure. 21 we compare the result obtained based on Waite's [261 derivation 

and the result obtained based on the facet model theory, Eq. (4-107). It is clear that 
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Figure 20. Number of independent samples for alfalfa. 
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at small incidence angles, the facet model does not agree with the calculated number 

of independent samples based on the experimental data. This may be due to following 

reasons: 
i) At small incidence angles, as was shown in Section 4.2.2, the 

return power does not have a Chi-square distribution. Hence the 

number of the independent samples calculated based on the 

experimental data, Figure 21, are not correct. 

i) The theory of the reduction of the variance of the return power based on 

the facet assumption is not complete and needs more refinement. The 

derivations in Section 4.2.2 consider only the two dimensional case, 

although the actual target consists of three dimensional facets. This 

deficiency can introduce errors, particularly at small incidence angles. 

94
 



5.0 RESULTS 

In this chaper we will compare the theoretical results obtained in Chapter 3 
with the experimental data obtained from the bare ground. 

Because in general the target is not perfectly conducting, in Section 5.1 we 

will calculate the reflection coefficient of the target as a function of its dielectric 

constants. 

In Sections 5.2 and 5.3 we will compare the prediction of the model developed 
in Chapter 3 and Katzin's model [8], with the measured data. It will be shown that 
the new model predicts results better than Katzin's model. 

5.1 Reflection Coefficient 

5.1.1 Large Facets 

From reference [23] the reflected field from a plqne boundary between two 

media is 

C . ~Z.(5-1) 

N- (5-2)
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where 

K22 
= h7 e w'.. Fir ~* 

E1 = Complex permittivity of the first medium
 

E2 Complex permittivity of the second medium
 

V = Complex permeability of the first medium 

P2 = Complex permeability of the second medium 

For our case 112= 1= , so from Eq. (5-1) 

RH - 4 a(53 

and from Eq. (5-2) 

-- C-L 0- [6- T 
6r ir - - &(5-4) 

where 

/ * 
Cv B -v .1(5-5) 

In order to calculate the reflection coefficient for the ground we use the 

moisture and the type of the soil to calculate E'and E" from Figures 22 [25] 

and then use these results in Eqs. (5-3) and (5-4). The calculated reflection coefficient 

for HH and VV polarization are shown in Figure 23. 
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V LOAM, 9.5 GHz (LESCHANSKII et al., 1971) 
* WATER, 9.3 GHz, 200 C (PARIS, 1969) 

60 	 . - "---. 

/ IMAGINARY PART 
50 / A ABILENE CLAY LOAM, 

/ 10.6 GHz (WIEBE, 1971) 
/ a AMARILLO FINE SANDY 

/ LOAM, 10.6 GHz 
40 / (WIEBE, 1971) 

o / 	 * WATER, 9.3 GHz, 200 C0, (PARIS, 	 1969) 

30 	 -
LOSS K2 A/d-REAL PART, K1o TANGENT /i / - IMAGINARY PART,K 2 

/ .50 

2 0 	 -0 .4 

I o / 
/ 	 i/V 0 /0. 	 3 

10 1 V / 	 0.2 
* 	 U, 

0.1 

0 	 0.0 
-0 10 20 30 40 50 60 70 80 90 100 

SOIL MOISTURE (PERCENT BY WEIGHT) 

Figure 22. 	 Measured dielectric constant data of loamy soil as a function of moisture 
content by weight around 10 GHz. Solid curves were drawn to fit the 
data points and the broken curves were extrapolated [251 . 
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5.1.2 	 Small Facets 
From Eq. (3-37) the dielectric constant enters into the equation in the form of 

%~-i ) [~~~-tfy 	 1)Thene we]d-fine ani 
(5-6) 

-V-')"L/-J4~B-	 (5-7) 

For the case of bare ground we can always assume that p1r I . Then if we define an 

effective reflection coefficient, we obtain 

aH(65-8)r0An 

2. 

v 	 AJ) / a 8 

(5-9) 
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In Figure 25 1RHHI 2 IRs VVI2 are shown as a function of incidence angles and 

and soil moisture content. 

5.1.3. Medium Size Facets 

For the medium size facets we assume that the reflection coefficient is the 

average of the reflection coefficient -of the -small-and the large site facets, i.e. 

R 1 T h9. /2 (5-10) 

or 

and 

- . . - "(5 i2
 

22 

Figure 24 shows IRMHHI 2 and IRMVVI 2 versus angle of incidence for different 

soil moistures. 

5.2 Comparison of the Results of the Theory With Data 

In the following pages we will compare some samples of the measured data 

with theoretical. predictions. 

As Figures 26 through 31 show close to nadir in both polarizations, almost 

all the return comes from the large facets. But at large incidence angles- in HIH 

polarization case, the-predicted return is determined by the return from medium 

size facets while in VV polarization it is mainly determined by the returh from small 

facets. To facilitate comparison of theoretical prediction with experimental data 
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Figure 24. Reflection coefficient for medium size facets. 
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Figure 26. Contribution of the large facets to the return. 

103
 

70 



25 

20 -

15- -

Frequency =9 GHz 
Sweep Frequency - 1.2GHz 
Moisture Content - 5.9% 
Polarization a HH 
Sy- 0.1 
S--S, 2 cm S-,= G. 
Si =4 cm S,=O.1 
S- =6cm S,- 0.1 
Sl == cm S,-l.O 
S1 =6cm Sx 1.0 

o 5 

0 ' It 

f-" 

-10 

-15 
'-20 

-0. 10 20. 30- 40 5b 60 70 

Incidence Angle-in Degrees 

Figure 27. Contribution of the large facets to the return. 
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Figure 29. Contribution of medium size facets to the return for HH polarization. 
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Figure 30. Contribution of medium size facets to the return for VV polarization. 
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Figure 31. Contribution of small facets to the return. 
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(Figures 32-47), which represent an average return over a 1.2 GHz bandwidth, 

the theoretical calculation shown in Figures 26-47 represent the average of the 

calculated return at the indicated center frequency and the returns at the 

neighboring frequencies 400 MHz on each side. 

In fitting the theory to the data curve we use the level of the curve at 

large angles in HH polarization to determine the standard deviation of the distribution 

of the facdt size, then use the level and the shape of the curve near zero angle 

to determine the standard deviations of the slopes. Once these parameters are deter
mined, they are used to predict the return in VV polarization. It should be noted 

that in large angles in VV polarization the return predicted by the theory is only 

a function of the frequency and the dielectric constants of the target. 

When we increase the frequency the standard deviation of the facet size must 
stay constant, but because we include smaller facets to the large catagory, it is 

possible that the standard deviations of the slopes also increase. 

The results of the fittings are shown in Figures 32 through 47, where 

Sx = standard deviation of the slope in x direction 

S = standard deviation of the slope in y direction 

S. = standard deviation of the distribution of the facet size 

In order to check the accuracy of the predicted variance of the slope distribution, 

we calculate the variance of the slope of the ground from the data taken at the time 

of the radar measurement. After smoothening the surface curve, Figure 48, by the 

length of the smallest facet in the large catagory, i.e. ? , the variance of slope was 

calculated to be 0.07, and this is very close to the predicted value of 0.075 that 

has been used to calculate the data in Figures 40 through 43. 
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Figure 35. 	 RCS of bare ground; moisture content = 5.9%, 
frequency = 14.2 GHz, polarization = VV. 
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Figure 38. 	 RCS of bare ground; moisture content = 9.4%, 

frequency= 14.2 GHz, polarization = HH. 
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Figure 43. 	 RCS of bare ground; moisture content = 17.8%, 
frequency = 14.2 GHz, polarization = VV. 
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Figure 48. Four samples of ground contour. Moisture content 17.8%. 
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5.3 Comparison of Facet Model with Katzin's Facet Model 

As stated earlier Katzin assumes that the target is composed of small and 

large 	facets and the return power is the sum of the return from each category. 

For large facet 

00 

(5-13) 

where 

-y =cose+Z sine 

Bt=KaZ cose x 

cu= Kb(-Z cos e8+ sin e)
 

K =21T/X
 

x= wavelength 

P(A) = probability distribution function of the area of the facet. 

P(Z Zy) = joint probability distribution function of the slopes in 

x and y directions 

A1 = the transition area from small to large which is equal to 
.1104x2 
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then by assuming that the slope has a Gaussian distribution: 

V~ I' 

1 PCA) C (5-15)G,:: 

where 

a kg (5-16) 

In Eq. (5-16) we can define gl and 92 such that: 

195-17) 
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__ ____ 

where 

26k S (5-1 -8) 

- ___(5-19) 

then, from Eq. (5-15) 

,4 
 (5-20) 

The return from thesmall facet is assumed to be in the Rayleigh region, hence 

A)
 

q.-~pTYd (5-21) 

where 

(5-22) 

q 

A1 and P(A) are the same as defined in Eq. (5-13). 
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Then the return from the target will be 

(5-23)A /O puA )A 

Now Katzin assumes that the distribution of the facet area is 

l(5-24)A. R, 


If we substitute this relation in Eq. (5-23) 

AA 

Az __ (5-25) 

I13 
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where 

l '-it 

mis the same as in Eq. (5-24). 

For the case that n /O & n4, i.e. 

.2. 

m 2 & m/4, Eq. 

l, 

(5-26) 

5-25 becomes 

(5-27) 

When n = 0, then 

and when n = 4 

~ ( 4 'W/z}(5-28) 

J{ ;- Al - (5-29) 

- 13 
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The problem with these equations is that they sometimes give results which are not 
acceptable. For example in Eq. 5-29 when the smallest facet of the target goes to 

zero ar goes to infinity, or in some cases one gets a negative number for cr from 

Eqs. (5-27) and (5-28). 

One other problem is that Katzin does not take into consideration the case 

that the target is not perfectly conducting, so in order to compare his results with 

the measured data we have to only look at the shape of the curves not their level. 

In what follows we have calculated Eqs. (5-27), (5-28), and (5-29) for 

different values of the parameters; frequency, the size of largest facet, the size 

of smallest facet, shape of the facet distribution function, and standard deviations 

of the slope in x and y direction. If we compare these results as shown in Figures 49 

and 50 with the value of the measured RCS which have been shown in Figures 32 

through 47, we see that Katzin's model predicts the return from the bare ground very 

poorly. One important point is that for incidence angle range 200-500 the measured 

data has a positive curvature, and this is the same as the result predicted by our model, 

while Katzin's model gives us a negative curvature; so fitting Katzin's model to the data 

is not possible. 
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Figure 49. RCS based on Katzin's derivation. 

134 



25 Frequency - 9'GHz 

Sweep Frequency =1.2 GHz 
Amax 400 

0 5Amin= . 
P(A) =No A20\ 

I -- S SyO.- 05 cmI -- S× Sy=: 0. 2 cm 

I
15 / 

C / = 

m~ 5 

/
a/ 

a/ 
-5

-01 

-0 10 20 30 40 50 60 70 

Incidence Angle in Degrees 

Figure 50. RCS based on Katzin's derivation. 

135
 



6.0 CONCLUSION 

TheTheoretical work was conducted to investigate the radar return terrain. 

target area was modeled as a collection of facets described in terms of facet size 

and slope-distribution. 

The facet model was used to calculate the radar cross section of bare ground 

and the effect of frequency averaging on the reduction of the variance of the return. 

Starting with the results obtained by Katzin [8] it was shown that when he 

divides the facets into two categories, small and large, he actually groups not only 

the medium size facets but also some of the small facets as large. So we divided the 

Katzin in his derivationfacets into three categories, small , medium and large. 

because getting an experimentalassumes some distribution function for the area, 

function for area is very difficult we changed the distribution function of the area to 

We also introduced an effectivethe distribution function of the length and width. 


reflection coefficient in our equations in order to be able to compare the result of the
 

theory with the measured data.
 

We showed that by assuming that the distribution of the slope is Gaussian, 

and by assuming that the distribution of the length of the facet is in the form of the 

positive side of a Gaussian distribution, the results are in better agreement with 

-experimental data than Kafzih's model. 

We also showed that for this calculation we do not need to know the exact 

the ground and introduced an effectivecorrelation length of the small structure on 

correlation length which is only a function of the wavelength, i.e. the radar wave 

has some smoothing effect. The comparison of the theory and the measured data 

shows that our conclusion is correct. 

We showed that at near zero incidence angles in both polarizations the major 

part of the return is due to large facets but at larger incidence angles it depends on the 

polarization, i .e. for HH polarization medium size facets have a major role in the 
the small facets contribute the most. 

return while in VV polarization, 


So by knowing the level of the return at large incidence angles for HHt and
 

VV polarization, and by knowing the shape and level of the return as a function of 
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angle near nadir we are able to, respectively, calculate standard deviation of the 
facet size, moisture content, standard deviation of the slope in y direction, and 
standard deviation in the x direction. 

In the second section of the work, namely the prediction of the number of 
independent samples due to frequency averaging, we started from Waite's [261 
uniform scatterer model and extended it and took into consideration the penetration 
effect. Comparison with data taken from alfalfa shows good agreement. We then 
assumed that the target consists of a collection of two dimensional facets and 
calculated the number of independent samples. Comparison with the data taken 
from the bare ground reveals that our result is correct for large incidence angles but 
at small incidence angles, both due to the limited number of available data points 
and the assumption of the equality of the mean and the variance in a single frequency, 
the facet model cannot predict the same number of independent samples calculated 
based on the measured data. 

We showed that based on the facet model assumption the reduction in the 
variance of the returned signal is not only a function of the product of the sweep band 
and the time span of the target, as small scatterer model indicates, but it isalso a 
function of the surface properties-distributions of the slopes and facet size-, 
center frequency of the incident wave, and the polarization. 
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APPENDIX A 

KATZIN'S ASSUMPTION 

From physical optics, the RCS for a large circular disk with a diameter D 

is given 

21o CO 6/ (A--l) 

where Oa is the grazing angle. 

Figure A-I shows that for x> 9r -) has an envelope 

defined by the equation "V 3 Hence its value on the average over x will 

be equal to half of the value of the envelope, i .e. it/r77, 

So for the case when 2,7oy C,j 6 5 i.e. 

(i) e is small 

(ii) D>, 

We can approximate ( ) by 4 /0,3 and obtain the average RCS. 

)317 -7?,V (A-2) 

By substituting the relation for the area of a circular disk, 

" (A-3) 
33Z 

or 

n.j A(A-4) 
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Figure A-I. Radar cross section of a large circular disk. 
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APPENDIX B
 

RMS HEIGHT FOR SMALL FACETS 

We would-like to calculate the r.m.s. height of small facets. Because 

from the assumption of the small perturbation technique ?2 Z I , we assume 

that the angle is uniformly distributed between - 7 and 7 , i.e. 

Piel 

15 1 (B-1) 

- Fig. B-I 

then because the distribution of the length of the facet is assumed to be Gaussian and 

because the length of the facets issmall compared to the standard deviation of the 

facet distribution then we assume that it is uniform, i.e. 

0 (B-2) 

Fig. B-2 

We know that 

(B-43) 
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If we assume that 

A 
x, I~ l6 (B-4) 

then, 

'.- : ----- (B-5) 

Joe (B-6) 
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VY= '5L 
)! 

I 

D( 

Figure B-3 Figure B-4 

OC (40 
!to 

ic.. "- Z U .. l- . ~ 

d;.. 

-(B-7) 

vt 

For -the casethat - >0o the result will be in the same form and the only change 
will be to substitute 6C in place of -o< So the probability density for 

will be 
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- --e
 

o , (B-8) 

412> }dPo~4e x~d:J 
vz 

Figure B-5 

145 



Because what we are doing is actually integrating over shaded area in Figure B-5 

so we can change the order of integration and will have 

0 0 

S(B-I 0) 

o 

If we substitute 

-Ar 

>2 

7(B-l) 

3/7; 
714
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APPENDIX C 

CORRELATION RADIUS OF SMALL FACETS 

We would like to calculate the correlation radius for the small facets. 

The auto-correlation function of the surface is defined to be 

R(zh KzL+) tkt~7(C-I) 

Figure C-i 

From Fig. C-1 if the distance of 'C is in a way that t and t-C 

are not on the same facet then from the basic assumption of the facet model, 

indicating that the facets are independent, we know that 

/4tu+)X(+i t) > = 0. (C-2) 
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So in order to contribute to the average of Eq. (C-1) 

(C-3) 

where 

= length of the facet 

= the distance between point t and the first point of the facet 

Because the distribution of over the facet "[ is uniform, i.e. 

KU: (C-4) 

then 

p~zA~ ~[K (C-5) 

is the length of the facet and has a Gaussian distribution, i.e. 

4(C-6) 

149
 



So by using Eqs. (C-5) and (C-6) in Eq. (C-I) 

A Z 

j [3(C-7)~ 

where . is the correlation distance and S is the size of the largest facet in the 

small facet category. By assumption stated in Chapter 3 

So from Eq. (C-7) by putting 1, V" 

"- rf - .4 (C-8) 

Because 

.(c-9) 

(C-10)e 

then from Eq. (C-8) 
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I
 

(C-1I)
 

or 

ALT-) 6 -- j7(. ) - (33_ 3) (C-12) 

where 

(C-13) 

A - (C-14) 

then because both A and B are small 

z 8- tA In -9-(C-15)
P 

From Eqs. (C-13), (C-14), (C-15) we determine z in a way that 

l-I(C-16) 

or 

8 
(C-17) 

or 

OE1 (C-18) 
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and from Eqs. (C-13) and (C-14)' 

- - L s___= e 

(C- 19) 

If we put 

(C-20) 

then the left hand side of Eq. (C-19) will be 

LNS = i_ , - (C-21)InS z37: 

so 

2. 3- (C-22) 

r. in Eq. (C-22) is the effective correlation radius of the surface when it is 

looked at by a wavelength equal to x. 
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APPENDIX D 

EVALUATION OF THE INTEGRAL FOR LARGE FACETS 

In discussing the return from large facets we have to calculate the integrals 

in the form of 

V- - v (D-1) 

We first assume that 
-00

V1- rO (D-4) 

- . (UL qr -Z4r (D-5) 

If we integrate both sides vs. p twice the result will be equal to 

dpz 
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If we expand the cos term 

4 .Z " 
}00 -O 0 

(D-6) 

Because the integrant of the second integral is an odd function of u the result 

is zero. So 

d2 2 

t e(D-7) 

From the table [11 

1!'V (D-8) 

So 

df1 

1 
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By substituting the exponential for the 

2I' 

- -

cos function 

, " - 0, 

(D-i 0) 

By defining 

(D-11) 

Eq. (D-10) becomes . )1 

(D-12) 

From here 

_ 25 { eK (D-13) 
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From the table [1] z A W -v 

't1 Lw (D-14)-

then 

{ 
7 

M 

nr 

5 (D- 15) 

where K1 and K2 are independent from Por from Eq. (D-10) 

(D- 16) 

where 

Now we will use the boundary condition principle to calculate K1 
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i) XVOC I i.e. looking at a facet with a
 

length zero vertically. In this case the return should be zero.
 

H) -X-o Y:'O , i.e. looking at a facet with
 
a length zero, in an incidence angle 6. In this case the return should
 

also be zero.
 

From the above boundary conditions 

b -- a ,,nLznI)Ltntu) "o 

(D-17) 

and if we write this expression in the compact form 

.2 r19 OL 

(D-18) 

and from Eq. (D-1) 

(D-19) 
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where 

(.7 (D-20)
 

Now we want to calculate 9r . If we differentate both sizes of Eq. (D-1)
2 vs a 

P2 Q-i(D-21) 

From here 

(D-22) 

The next problem is to calculate W3. From )Eq. (D-3) if C is zero, the integrant" 

is an odd f untion of u so the result willI be zero. But" if: C is not zero because 

- k.'Jc (D-23) 

is very large the exponential will be very small before u gets large enough to 
have.a significant value for A. 2 pC-rbo ) /C-r b t)2 
So the result of the integral will be very small, i.e. 

iJ3 7 0. 158 
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