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PREFACE
 

This report describes part of a comprehensive and continuing program
 

of research concerned with advancing the state-of-the-art in remote sensing
 

of the environment from aircraft and satellites. The research is being
 

carried out for the NASA Lyndon B. Johnson Space Center, Houston, Texas,
 

by the Environmental Research Institute of Michigan (ERIM), formerly the
 

Willow Run Laboratories of The University of Michigan. The basic objective
 

of this multidisciplinary program is to develop remote sensing as a practical
 

tool to provide the planner and decision-maker with extensive information
 

quickly and economically.
 

Timely information obtained by remote sensing can be important to such
 

people as the farmer, the city planner, the conservationist, and others
 

concerned with problems such as crop yield and disease, urban land studies
 

and development, water pollution, and forest management. The scope of our
 

program includes: (1) extending the understanding of basic processes;
 

(2) discovering new applications, developing advanced remote-sensing
 

systems, and improving automatic data processing to extract information in
 

a useful form; and also (3) assisting in data collection, processing,
 

analysis, and ground-truth verification.
 

The research described here was performed under NASA Contract NAS9-14123,
 

Task VII, and covers the period from 15 May 1974 through 14 March 1975,
 

Dr. Andrew Potter has been Technical Monitor. The program was directed by
 

R. R. Legault, Vice-President of ERIM, by J.D. Erickson, Project Director
 

and Head of the Information Systems and Analysis Department, and by
 

R.F. Nalepka, Principal Investigator and Head of the Multispectral Analysis
 

Section. The ERIM number for this report is 109600-14-F.
 

The authors wish to acknowledge the direction provided by Mr. R.R. Legault,
 

Dr. J.D. Erickson, and Mr4 R.F. Nalepka. Many constructive discussions were
 

held with H. Horwitz, R.J. Kauth, W. Richardson, and many others at ERIM.
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1
 

SUMMARY
 

This report covers the continuation of a study of the use of a
 

Kalman filter for adaptive processing. Included are analytical and test
 

results pertaining to LANDSAT data. An earlier report [1] describes the
 

first portion of the study, including test results using aircraft MSS data.-


The purpose of adaptive processing is to continuously update the mean
 

vectors of the class signatures using the data itself to provide the
 

updating thereby allowing a local signature to have more universal
 

applicability for classification. Originally, the Kalman filter was chosen
 

because it provided an ordered structure into which many attractive ad-hoc
 

updating techniques could be fitted and better understood, with others
 

perhaps being derived. A limitation usually found in Kalman filters, the
 

requirement for excessive processing time and computer memory when a large
 

number of states must be updated, was circumvented by the use of a simplified
 

form of the filter. (Section 3.2 contains an equivalence relationship
 

between the normal and simplified forms.)
 

In one form of the Kalman filter, the state variations are described
 

as a Markov process. Occasionally, this description is replaced with
 

an assumption of correlated variations. Because states are identified with
 

the mean vectors of the class signatures, the correlated variation
 

assumption was used, with a correlation length corresponding approximately
 

to agricultural field sizes.
 

In our earlier report, we presented test results on the Kalman filter
 

form of adaptive processing that were obtained by using aircraft MSS data,
 

In that report, we showed that the modifications to the basic Kalman filter
 

appropriate to decision-directed classification would perform the various
 

optional functions for which they were designed such as line-by-line updating
 

rather than pixel-by-pixel. In this report, it is shown that the same
 

conclusion can be reached from the LANDSAT data test results.
 

[1] 	 Crane, R.B., Adaptive Processing with a Decision-Directed Kalman
 
Filter and Feature Extraction of Multispectral Data, Report No.
 
190100-31-T, Environmental Research Institute of Michigan,
 

Ann Arbor, July 1974.
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In one test it was found that the signature means did not have to
 

be the means of the data classes. With adaptive processing the means
 

can vary approximately 20% without degrading classification accuracy
 

below that obtained with the measured means and non-adaptive processing.
 

This result indicates that adaptive processing may be used to accomplish
 

limited signature extension (i.e., to permit signature established under
 

one set of measurement conditions to be successfully applied under slightly
 

different condition),, For situationswhere mean values differ by more than
 

20% and other signature extension techniques could transform the means
 

so that their values were within the 20% range, adaptive processing could
 

be used to find even better values. The same test showed that if the
 

means were outside of a 35% range of values, then non-adaptive processing
 

This result is not particularly
outperformed adaptive processing. 


significant because unusuably poor classification accuracy was obtained
 

In fact, several test results are available that show that
in either case, 


adaptive processing cannot improve classification accuracy when the non

adaptive classification accuracy is poor. An explanation may be that- the
 

Kalman filter is decision directed, requiring that most of the data points
 

,be classified accurately so that the points can be directed to update the
 

correct means.
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2 

BACKGROUND AND INTRODUCTION
 

Multispectral scanner data acquired by remote sensing will usually
 

cover large areas on the ground. The large amounts of data collected make
 

machine-processing extremely desirable for extracting information. To
 

use machine processing, one must rely on some commonality within the data,
 

usually-spectral invariance among ground covers of the same class. The
 

quality of the extracted information is limited by the extent to which
 

such commonality exists, -as well as by limited knowledge of the commonality.
 

One method of processing multispectral scanner data to extract
 

information is to select data subsets, called training sets; for each of the
 

classes, and use these to derive a signature for that class. The signature
 

consists of a mean vector and a covariance matrix describing the data vectors
 

from the training sets. Then, assuming that the signatures for each class
 

accurately represent that class, a decision rule is defingd which assigns
 

each of the scanner data points to one of the'classes (or to a'null class).
 

There are many reasons why a class signature may not accurately represent
 

that particular class at all times and places; 1) there may be an insufficient
 

number of data points in the training set; 2) the class may be composed of
 

subclasses with different reflectances and the signature could describe
 

only one subclass; 3) atmospheric conditions may not be constant between
 

the training and test areas; and, 4) the illumination and viewing geometry
 

(position of the sun and the sensor relative to the ground resolution
 

element) could differ for training and non-training data. Signatures
 

should be the best obtainable so that classification accuracy is maximized,
 

thereby maximizing the information extracted from the data.
 

One way to increase the accuracy of the signatures is to increase the
 

number of training sets. If the training sets are located throughout the
 

scene, one can use different signatures for different portions of the scene.
 

However, there isa limit to the number of training sets that can be used
 

which is quickly reached, beyond which the cost of obtaining the requisite
 

ground truth becomes prohibitive for operational systems.
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A second way to increase signature accuracy is to preprocess the
 
signatures or data so that variations are accounted for, removed, or
 
reduced. 
This method can be extremely effective for certain types of
 
variations, and can greatly reduce the number of training sets required
 
and hence the cost. 
 However, this method becomes less effective when
 
the variations are different for different classes,
 

A third way to increase signature accuracy and thereby classification
 
accuracy is to use adaptive processing to update the signatures as the data
 
are being processed, 
The -basic idea is simple. Suppose that a number of
 
points are identified as belonging to a certain class, and that the average
 
value of these points is larger than the mean vector of the signature for
 
that class. 
Then the signature is changed by increasing the mean vector.
 
The amount of increase depends on the number of points, the amount by which
 
the average exceeds the mean vector, and a factor which will be called the
 
updating rate. 
This basic adaptive processing method, along with some
 
imaginative variations, was used for processing multispectral scanner
 
data [3]. The success of the initial effort led to the use-of a Kalman
 

filter.
 

A Kalman filter is used to update the mean vectors of the signatures
 
while the data are being classified. We combine the mean vectors for all
 
of the classes into one large state vector, which is then updated. The
 
Kalman filter method has the advantages of being an iterative technique
 
ideally suited for use-with a digital computer, and of providing a general
 
formulation or organization that combines many techniques for improving
 
recognition. 
There are, however, three potential disadvantages: 1) 
The
 
Kalman filter normally requires large amounts of computer memory; 2) 
It
 
requires large amounts of computation time, and 3) there is a possibility
 

of "capture".
 

The reason for the large memory requirement is that the joint
 
statistics of the state variables (the covariance of the state vectors) must
 

[3]Marshall, R.E., F,J. Kriegler, and W. Richardson, Adaptive Multispectral

Recognition of Wheat, Tenth Symposium on Adaptive Processes, Miami
 
Beach, December 1971.
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be stored, as must the covariance of the individual observations of these
 

state variables (i~e., the crop signature covariances). • These can be
 

thought of respectively as the statistics of the underlying process (state
 

vector)-and the statistics of the-noise of observation of that process.
 

.The reason that the Kalman filter normally requires a large amount of 

computation time is that both of the above forms of covariance enter the
 

calculation. The calculation time for each update varies as the product
 

of state vector calculation time and noise calculation time. If the
 

basic signal is n channels and there are m materials; then the state vector
 

is mn in -length,the state covariance is nm x nm, and the noise covariance
 

is n x n for each signature.-


The statistics of the state vector were not known initially; these
 

could only be learned by observation of the Kalman filter process itself.
 

Hence an initial assumption had to be made: that the state covariance was
 

a higher dimensional image of the average noise covariance. This assumption
 

turned,out to be fortuitous since it simplified the Kalman filter equations
 

greatly, and both calculation times and memory requirements became
 

negligible.
 

The third possible disadvantage mentioned above was the possibility
 

of "capture", wherein the mean signature for material A becomes adapted
 

to the true mean of material B. In this case material B has captured the
 

signature for iaterial A and, as a result, material B systematically
 

becomes classified as material A. Capture can occur when false classifications
 

cause the mean vectors of one or more classes to be updated using the wrong
 

data points,
 

Use of the Kalman filter necessitated three assumptions, the
 

justification for which is that the resulting updating equations increase
 

classification accuracy. One assumption is that the recognition decisions
 

are correct. Because this assumption is questionable, we borrowed a
 

technique from our initial study [4] to modify the amount of updating by a
 

confidence factor which reflects the uncertainity in the correctness of
 

the decisions. Another assumption is that all of the covariance matrices of
 

[41 Kriegler; F.J;, RE. Marshall, H.H. Horwitz, and M.P. Gordon, Adaptive
 
ultispectral Recognition of Agricultural Crops, Eighth International
 
Symposium on Remote Sensing of Environment, ERIM, Ann Arbor, October 1972.
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the signatures are equal. This assumption is made to derive the Kalman
 

filter, and is not used when the decision rule is computed. A third
 

assumption that we also make, is that the covariance of any two mean
 
vectors is proportional to the same common covariance matrix. 
We do not
 
anticipate sufficient ground truth in most data sets so that more accurate
 

statistics could be used, 
We also assume that the data are Gaussian, or
 

equivalently, that we want the optimum (in the mean square sense) linear
 

updating equations.
 

We have built several functions into our Kalman filter. In its
 
simplest form, the filter 
can be used to update, after each decision, the
 

mean vector of the class that was recognized. One of the functions is the
 

ability to update all mean vectors, when we wish to include interaction
 

i.e., 
non-zero covariance between pairs of mean vectors.. Additionally, we
 

can update after every line or fraction of a line has been classified, a
 
feature which reduces the time required for processing a data set compared
 

to updating after every point. 
We also have incorporated the confidence
 

factor mentioned previously,
 

Thus far the discussion has been limited to updating the signature
 
mean vectors. 
We also have the capability of estimating and updating angular
 

dependence of the data. 
For large data sets it may prove desirable to update
 
the angular dependence, because some of the reasons for needing an updating
 

algorithm; e.g., atmospheric changes, are also reasons why the angular
 

dependence of the mean vectors would change.
 

Another feature of this program is the capability to use auxiliary
 

traihing fields to 
improve the updating accuracy and lessen the probability
 

of capture. When this feature is used, the updated value of the mean vectors
 
depends not only on the original signatures and the data already processed,
 

but also on signatures of training sets to be processed downstream. The
 

use of auxiliary training fields should reduce the ground truth requirement,
 

because signatures of the auxiliary training fields are used for data
 

collected both before and after the training sets, with continuity between
 

training.sets provided by the Kalman filter.
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The original adaptive processing [3] and our first implementation of
 
the Kalman filter were used with the quadratic (maximum likelihood)
 
decision rule. 
 One step in improving the adaptive processing procedure
 
was to change to the linear decision rule'[5], Previous comparisons of the
 
two decision rules showed that when the same number of data channels were
 
used, the classification accuracy'obtained with the two rules were
 
approximately the same for test data, and the linear rule required
 
approximately one-third the processing time of the quadratic rule. 
The
 
fact that the linear rule provided slightly higher classification accuracy
 
was felt to be statistically insignificant. A recent comparison made as
 
part of the CITARS program [6] 
confirms the approximate classification
 
accuracy equivalence of the two decision rules.
 

A test program was initiated to show the usefulness of the Kalman
 
filter approach to adaptive processing. Initial results, using aircraft
 
MSS data, indicated that the approach was useful for processing data
 
gathered under a variety of conditions [1].
 

This report summarizes our modifications and testing of the Kalman
 
filter for LANDSAT data. Simplifications of the theory presented in our
 
earlier report are contained in Section 3. 
Also included are extensions to
 
the theory that are applicable to LANDSAT data. 
Results of testing the
 
modified Kalman filter are presented in Section 4, Conclusions and
 
recommendations are presented in Section 5 which includes a recommended test
 
plan applicable:to the LACIE program.
 

f3] Marshall, R.E., 
F. J. Kriegler, and W. Richardson, Adaptive Multispectral
Recognition of Wheat, Tenth Symposium on Adaptive Processes, Miami
 
Beach, December 1971.
 

[5] Crane, R.B. & W. Richardson, Performance Evaluation of Multispectral

Scanner Classification Methods, Eighth International Symposium on

Remote Sensing of Environment, Willow Run Laboratories of the

Institute of Science and Technology, The University of Michigan,
 
Ann Arbor, October 1972.
 

[6] Malila, William A., Daniel P-. 
Rice and Richard C. Cicone, "Final
 
Report on the CITARS.Effort by .the Environmental Research
 
Institute of Michigan" ERIM Report No. 169600-12-F, Environmental

Research Institute of Michigan, Ann Arbor, Michigan, February 1975.
 

[1] 
Crane,R.B., Adaptive Processing with a Decision-Directed Kalman

Filter and Feature Extraction of Multispectral Data, Report No. 190100-31-T,

Environmental Research Institute of Michigan, July 1974.
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3 

DESCRIPTION OF MODIFIED KALMAN FILTER
 

In previous work [1] a general formulation of the Kalman filter was
 
presented and the way such a filter could be used to update the signature
 
mean vectors was discussed in qualitative terms. Various terms of the
 
equations were identified with observed phenomena. The dependence of the
 
equations upon the statistical properties of the data was 
shown explicitly,
 
One possible approximation to the statistics was shown to 
lead to a
 
simplification of the equations along with greatly reduced computational
 

and 	memory requirements of a general purpose digital computer. 
Also
 
shown were some extensions of the filter that appeared at the time to
 
be most useful for either aircraft or satellite data.
 

In this section we repeat the analytical description of the Kalman
 
filter, although the approach is different. We then show a general
 
equivalence between the Kalman filtertand a simplified filter. 
Finally,
 
the equivalence relationship is used to 
show various modifications to the
 
Kalman filter that have proven useful.
 

3.1 BASIC KALMAN FILTER
 
Beginning with one version of the Kalman filter equations, the first
 

problem is to estimate Xk using measurements Z, .. .,Zk. We identify X 
with a vector composed of all of the class mean vectors, and identify the
 
Zi with data vectors, An optimum estimate of X which we shall label
A 
k, must be found which minimizes:
 

M = 	E{([Xk-g1(Z)]t[Xk)g(Z). 

Here, g(Z) represents a function of Zo,.. .,Zk 
 The 	probability distribution
 

of Xk and Z can be written as
 

f(Xk)Z) = f(xkIz) f(Z) (2)
 

[I] 	Crane, R.B., Adaptive'Processing with a Decision-Directed Kalman

Filter and Feature Extraction of Multispectral Data, Report No.
 
190100-31-T, Environmental Research Institute of Michigan,
 
Ann Arbor, July 1974.
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so Equation 1 becomes
 

M = Jf(Z) [J[-g(Z)]t1[\-g(Z)] f(XkZ)dkJ dZ (3) 

Now M is nonnegative, so we minimize the bracketed.integral for every Z.
 

In this integral, g(Z) is a constant, which is minimized if g(Z) is the
 

mean of Xk. Thus the minimum mean square estimate of k is 

Xk g(Z) = E(XIZ) (4)
 

Equation 4 can be rewritten when Xk and Z are jointly gaussian in the form
 

E(XkfZ) = E(XkZt ) [E(Z Zt)]-Z (5)
 

Equation 5 is true for any pair of jointly gaussian vectors, and will
 

be used repeatedly in the development. We now define anoerror vector
 

X = Xk -Xk (6)
 

and note that the minimization operation served to minimize the norm of
 
Xk i.e., see Equation 1. Using Equation 5, it can be shown that:
 

E(k kt) = 0 (7) 

E(k zt) = 0 (8) 

The Kalman filter is now developed using,the state model just described.
 

It is assumed that one can update after every line of data, rather than
 

after every data point. Each data point is related to the state by the
 

equation
 

Zki = Ri X ' Vki (9) 

where Hki is a matrix that picks the mean vector of the class, after
 

classifications, from \. The noise vector, Vki,.is measurement noise, 

with statistics 
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E(vki) = 0 
 (10) 

-E(Vkiv j ) -6k 6ip R (11) 

One measurement vector will be used for each line, and is given by
 

Zk = 	
N
Z= CkiZki (12) 
i =1 

The Cki are weighting factors which represent the confidence that the
 
classification decision for each data point was correct,
 

Combining Equations,9 and 12 gives
 

zk HkXk + vk (13)
 

where
 

N
 
= 	 Z ckii (14) 

i=l 

N
 
Vk CkiVki 	 (15)
 

and vk is a measurement noise vector for the kth line. 
To find the
 
statistics, equations (1) and 
(1) are used:
 

E(vk) - 0
 
t N
 

2E(Vkt) = Nkji.C= R (16)
kj ki
 

We have now completed the preliminary derivation of the filter
 
problem. From Equation 4 it is seen that one must find
 

Xk = E(XklZo,..,Zk) (17)
 

=E (xk lIZo, ..-.,zk) 

where
 

zk = zk - IN Xk-l (18)
 

= 	Hk(WkI - ' 2k-1 ) + v k 
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The second equality in Equation 17 occurs because Xkl is a linear
 

combination of Z0 ,... Zkl'- Equation 8-can.-be used to show that:
 

E(Z 'z) = 0 (19) 

for j < k, Using Equation 5 it is seen that Equation 17 becomes
 

2
E(Xkz, ... E +(XkZ (20), E..,Z1) 

(DXkl + E(Xkizk) 

We now use Equation 5 to find
 

E(XkI2 ) E(\ u) IE(Z Zk)] Zk (22) 

Evaluating the separate parts of Equation 22, 

"St t
E(Xk Zk) = P Hi (22) 

where 

P kt + (23) 

E(w.Wk) = (24) 

p = E(xk ') (25) 

and
 

E(k) + - (26) 

Combining Equations 20-26, we rewrite Equation 20 as 

Xk = xk-i + KkZk (27) 

where 
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pQ(He& R)=
+ R)-' (28)
 

xk =( - KHi) (4Xkl - Wkl_) + Kvk (29) 

To complete the development, we evaluate Equation 25;
 

Pk = Pk - KkHkPk (30)
 

The adaptive processing equations that could be used are Equations 18, 23,
 

27, 28. and 30.
 

3.2 EQUIVALENCE OF SIMPLIFIED KALMAN FILTER
 
The main purpose of this section is to explain why previous adaptive
 

processing developments can be put into a simplified form. 
An additional
 

purpose is to provide logical justification for, and description of, a method
 

whereby new developments can be formulated directly in the simplified form.
 

The advantages of this simplified form over the normal form of adaptive
 
processing are reduced computation time and storage requirements,
 

We start by writing the equations that define the Kalman filter that
 

we have been using.
 

Xk = xk-. + k-l (31)
 

i= k (k,i) 
(32)
 

Zk = xHk+ nk (33)
 

E(nknit ) = bk R t(k,i) (34) 

In these equations, as before, Xk is a state vector composed of the 
mean vectors of all of the classes that exist at a sampling time tk' The 
vector Wk is-a random vector, normally distributed, with mean zero and 
covariance defined by Eq. 32. Equation 33 defines the measurement vector 

Z k' identified to be the MSS data vector, as a function of 1) the state 
vector, 2) a pointing matrix, Hk and 3) a random Gaussian vector, nk. 
The
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pointing matrix uses recognition results to select the components of the
 

state vector that form the mean vector of the class,that was recognized-.
 

The random vector, nk, has zero mean and covariance defined by Eq. 34.
 

Because all random processes have a normal distribution, the minimum
 

mean-squared estimator for Xk is
 

Xk = E(XkIZ, ... ,Z.) (35) 

The matrix Tk . is defined to be
 

Tk± = E(XkXi t ) (36) 

Note that by using Eqs. 31 and 32, one can show that
 

Tk,k Tk-l,k-1 + Qk-1 (37)
 

We are now ready to evaluate Eq. 35. A vector Z is defined as
 

Z =Q ) (38) 

and Eq. 35 written as
 

Xk = E(XkjZ) = E(XkZ Z (39) 

Components of E(XkZt) and E(ZZt) are
 

E(XkZ.it) = E[\(HiXi + ni
) = TkiH (40) 

and
 

E(ZiZZt) = E[(H:X +'n )(HIX.+n)t H ' t + b. R 6(i,i) (41)
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The formulation of the Kalman filter is 
now complete. This formulation
 
is equivalent to the iterative formulation that we have been using. 
The
 
next step is to introduce a second Kalman filter which will later be
 
related to the simplified form.

nk = "k-1 + Yk-i (31a) 

E(YkYit) = 0kk,i (32a)
 

t 
=
4k M fk + k 
 (33a) 

E(aka) = bk S(k,i) (34a) 

"k = E(nkj ,',c ) (35a) 

E(ki t) = Sk,i (36a)
 

k,k Skl,k kl
1 + (37a)
 

=0:) (38a)
 
t t -1(3)

nk = E(nk4 t (39a) 

E(nkcit ) =s Hkl
i (40a) 

E(49 t) = Mits + bi 
it ±L + 8 k)(41a) 
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To relate'the two Iformulations; we rar-ite Eq. 39a as
 

(42)

nk = qk4 

where 

ak = E(nkct)[E(Ct)]-1 (43) 

Next, we make the assumptions
 

(44)

Qk = k ® R 

= Q (45) 

Too =S QR (46)0 


where the symbol ® represents the Rronecker product. Using Eqs. 46, 31, 

and 32,jone can show that 

Tik = Sik ®R (47) 

Next, Eq. 41 is evaluated 

) R) (MP  HiT iHkt + b R 6 = (MitS))(SiZ I ) + bi R (i,k) (48) 

= (MitSiMk + b i ) R 

and, by using Eq. 41a, we see that 

E(ZZt ) = E( t ) ®R (49) 
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In a similar manner,
 

TkiHit = (SkiOR)(Mi®I)= S MiT R (50) 
T1. ki i'~ (50) 

so that
 

E(XkZt) = E(nkt) QR 
 (51)
 

Combining Eqs. 39, 49, 51 and 53, results in
 

kk = (ak®I)Z 
 (52)
 

Equation 52 is an important result. It says that if one can find the
 

optimum filter for the simplified system, defined by Eqs. 31a to 41a, one
 

has also found the simplified form of the filter for the system defined
 

by Eqs. 31 to 41. 
 In addition, one can also show the relationship between
 

the convariance matrices for the state estimation errors for the two systmes,
 

which are
 

Pk = E[(kl-nk) (k- (53) 

Pk = E[(Xk-Xk)(k-Xk t = PkGR (54) 

3.3 AUXILIARY FIELDS
 

The use of auxiliary fields was introduced in [1]. Auxiliary fields
 

provide a method of reducing the undesirable characteristic of signature
 

capture in an updating method, including the Kalman filter. In multispectral
 

scanner data p :ocessing, signature capture occurs when the mean of 
one
 
class actually describes the data from another class. 
Data from one (or
 

more) material is recognized incorrectly, clearly an undesirable situation,
 

Of course, the same misclassification can occur without updating, and it
 

is possible that updating may eliminate the problem.
 

21
 



Auxiliary fields are ground truth fieldsM.which are-Iocated throughout
 
-the scene. 
The 	mean °values of the-data from the fields are considered to
 

be additional measurement vectors, and are used to determine how much the
 

mean vectors are to be updated. Because the auxiliary fields are correctly
 

identified, their use should tend to overcome capture caused by incorrect
 

classification of other data vectors.
 

The formulation of the updating equations to include the auxiliary
 

fields has already been presented. Equation 35 is interpreted so that
 

the measurements Z.,j>k denote the measurements from the auxiliary fields.
 

The 	updating equation is (39), which is shown in simplified-form in [1].
 

3.4 	 COLORED NOISE
 

One of the assumptions used for the Kalman filter is that variations
 

in the state vector between sampling .times Are uncorrelated. (This
 

assumption is described in Eq. 24.) We now describe a method whereby this
 

assumption can be removed. First the state vector is formed in the 

following manner. 

) + (+ (55) 

The 	Yk is the vector composed of all of the class mean vectors. The
 

variation between Yk-l and Yk is
 

Yk ='Yk-l + W 	 (56)
 

where
 

wl= a9k-1 + nk-1 	 (57)
 

[1] 	Crane, R.B., Adaptive Processing with-a Decision-D *rected'Kalman
 
Filter and Feature Extraction of Multispectral Data, Report No.
 
190100-31-T, Environmental Research Institute of Michigan,
 
Ann 	Arbor,-July, 1974.
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The basic difference between this development and that found in [1]
 

can be explained by Equation 52. In the previous developments, the state
 

variations for different sampling times were independent. In-this
 

development, they are dependent, To show the dependence, we start with
 

E(nknt) = Rn 6kj 	 (58) 

which is similar to the assumption in [1].
 

We find
 

E(we t = a2i E( i t ) + R 	 (59)kk k-i k-i 2 n
 

for all i < k. For large k and lal < 1, 

E(k4) % 122 	Rn (60) 

The 	correlation of the is
 

E(mkw) Ak-j E( k j _.A 	 (61) 

for k > j. If 

1 

ae 
 n 	 (62) 

then for large k,
 
(k-j)
 

E(ckw ' e n 	 R 
 (63)
 

Thus n can be considered to be analogous to a correlation length.
 

[1] 	 Crane, R. ., Adaptive Processing with a Decision-Directed Kalman
 
Filter and Feature Extraction of Multispectral Data, Report N6.
 
190100-31-T, Environmental Research Institute of Michigan, Ann
 
Arbor, July 1974.
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The simplified equations are now found by making the following
assumptions:
 

= O(64) 

Q0 (65) 

R = 0 ®R (66)
 

' ki = (Mk 0)(9I (68) 

N 
Mk 	 Cki"ki (69)

i-il 

The Kronecker product, ®, is described and used in [1]. 
 The vector
 
Mki represents the classification decision for the data point, and is
 
composed of ones and zeros. 
 The simplification of the filter equations
 
is straightforward and tedious, so will be omitted. 
The updating equations
 

become
 

Yk= Yk-l + ++k-i(IDk1®I)2k 	 (70) 

I)Zk (71)Wk a Wk-l + (qk2®I)zk 

where
 

(M "k 	 Z-k I)Yk-l-(M x I)wk1 (72)
 

[1] 	Crane, R.B., Adaptive Processing with a.Decision-Directed Kalman
Filter and"Feature,'Extraction of Multispectral Data, Report No.

190100-31-T, Envroniental Research Institute of-Michigan,

Ann 	Arbor, July 1974.'
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Ckl and Dk2 are defined by
 

= 

(Dkl AD (73) 

k2 = bkDA (74) 

with recursive relations:
 

(75)(ak+bk)d (ak+bk) tMk 
= a 

-bkFl = Fk+k ak D 

[bk+ Dt b 
b II, (akOk) kNI bk (76) 

bk+l k D 

da~,2[dk 4k Db 1 + (77)' 

where
 

D=4ak + C2 (78) 

i'=
 

Some obvious characteristics of this technique should be noted. The
 

size of the state vector is increased; with m materials and n channels,
 

the state vector becomes 2mn rather than mn. The error matrix that must
 

be stored becomes 4 times as large. The increased dimensionalities may
 

not be too important, because the storage requirement for the filter is
 

not large. Also, we do not expect a large increase in processing time.
 

The filter without the correlated state variations increased processing
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time, as compared to non-adaptive processing, by either 3% or 11%, the
 

smaller percentage increase occuring when the quadratic decision rule was
 

used. Most of the computation time was used on operations required for
 

each data point, e.g., forming CkiZki , rather than for the updating.
 

With the new method, only the updating equations have been changed,
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4 
EMPIRICAL EVALUATION OF MODIFIED KALMAN FILTER
 

A test program was initiated to show the usefulness of the Kalman
 

filter approach to adaptive processing of'LANDSAT data. Selected data
 

sets were chosen which contained agricultural data since data could not
 

be tested for every conceivable application and under every possible
 

atmospheric condition. Indications of the usefulness of the technique
 

for other applications can be inferred from the results presented in this
 

section. However, additional testing should be performed so that parameters
 

can be chosen to ensure that maximum benefits can be realized.
 

4.1 EFFECT OF DECISION RULE ON CLASSIFICATION ACCURACY
 

The major purpose of the adaptive processing now being developed is
 

to correct the decision rule used for classification of multispectral
 

scanner data. We now adapt the mean signature vectors which, with the
 

covariance matrices, are used to determine the decision rule. An addi

tional function sometimes employed is to update preprocessing transforma

tions by updating an estimation of the angular variation of the data.
 

Insight into the usefulness -of the updating can be gained by determining
 

how important it is to have the correct decision rule. We have determined
 

the error rate for different decision rules applied to normal data from
 

two classes with the same covariance matrix and the same a priori proba

bilities.
 

When the covariance matrices are equal no generality is lost in
 

assuming unit distance between the means because the covariance matrix of
 
2 

either class is a times the identity matrix. A linear decision rule is 

assumed which can be characterized by two numbers, the distance from the 

origin, q, and the complement, 4, of the angle that the decision plane 

crosses the line joining the two means. See Figure 1. The optimum values
 

are q = 1/2 and 0
=00.
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Decision surface
 

- \ 
 Class#1
 

Class # 2
 

FIGURE 1. GEONETRY OF TWO-CLASS DECISION RULE
 

For different values of q, 4, and'a, we have computed an average
 

error rate, which is the average of the two types of error (choosing the
 

second class, given data from the first class and vice versa). Figure 2
 
shows the effect of the choice of q-for different values of a/cos 
. The
 
value of q is most important when a/cos4 is small and q is not near 0.5.
 

Otherwise, small changes in q have a very small effect on the error rate.
 
The same equations-were plotted in Figure 3 with 4 
= 450. With such a large
 
error in 4, it is not surprising that the choice of q is not very important
 

unless a is rather small.
 

The effect of 4 is shown'in Figures 4 and 5 for two different values
 
of q. Once again, small changes in 4 have very small effect on the error
 

rate. When 4 is large, there can be a large error rate.
 

Recently5 there has been an interest in estimating ttal acreage of
 

wheat from a data set. 
In our simple example, we can consider the proba

bility, P, of deciding the second cltss. This probability is shown in
 
Figure 6, for different values of q and a/cosO. If a/cos4 is very small,
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say <_/8, then there is a range of q for which the probability of choosing
 
the second class is approximately the correct value of 0.5. 
 If U/cos is
 

11/2, then there is an approximately linear 'relationshipbetween -pand-q:
 

P ; 112 + (1/2 - q)[1/2 -. (79)4(a/cos4)] 


2
 z
 
where Ow(x) = e dz (80) 

Let As now consider the usefulness of adaptive processing. When the
 
criterion is minimum error rate, it appears that adaptive processing will
 
be most useful when there are slowly varying changes in the means and the
 
covariance matrices are not large compared to the separation of-the means.
 
For small deviations in estimating the means the error rate will be small
 
so the adapting can correct the deviations. Thus if the means change
 
slowly, the adaptive processing can track the means. 'If the means are not
 
changing, the adaptive processing will find the correct means, but there
 
will be little effect on the error rate. For large deviations, the error 

rate will be greater, and either the adaptive processing will respond 

slowly, but correctly, or capture will occur. 
When the criterion of excellence is total acreage, a different picture 

emerges, at least for LANDSAT data. The linear relationship wil hold for q, 
so that any percentage of recognitions can be obtained. If q is incorrect, 
then the farther 4 is from the correct value the better the acreage estimation. 
It appears that average error rate is a better criterion for evaluating the 
usefulness 'of adaptive processing, even though small changes' in the decision 

rule parameter may not be noticeable. 
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4.2 PROCESSING WITH INCORRECT MEANS
 

One of the advantages of adaptive processing is that it may enable
 

the use of signatures that are somewhat in error. 
 To test this concept,
 

we tried different signatures, with and without adapting, on LANDSAT data.
 

The fields were divided so that one half of the fields were test fields
 

and the remaining fields were training fields. 
Both sets of fields were
 

distributed through the scanned area. 
For each test result we increased
 

or decreased all signature mean vectors by the same percentage and computed
 

the percent correct recognition. The results are shown in Figure 7, which
 

shows the percent correct recognition as a function of percent change in
 

the means-for both adaptive and non-adaptive processing. The means can
 

vary approximately 20% with adaptive processing without degrading classi

fication accuracy below that obtained with the measured means and non

adaptive processing. For 90% processing accuracy, the means can vary
 

either 9% or 23%, depending upon whether non-adaptive or adaptive process

ing is used. For 85% accuracy, these numbers change to 19% and 29%. When
 

we used very large percentage changes, neither method produced acceptable
 

accuracy, although the non-adaptive processing would be preferred because
 

capture cannot occur.
 

A visualization of the effects of adaptive processing can be seen in
 

Figure 8, obtained from the same data and signatures as were used for
 

Figure 7. The means of the ground-truthed fields were computed and compared,
 

for each field, with the signature mean. Of course, without adapting, the
 

signature mean is fixed while with adapting the mean is modified as the data
 

changes. These differences are shown as a function of the beginning line
 
number (indicative of the order of processing) for both non-adaptive and
 

adaptive processing. For adaptive processing, the field means are centered
 

around the true means, although there is a significant deviation which is
 

caused by inter-field variations within each class. 
For,non-adaptive -pro

cessing, the field means are not centered around the signature means.
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one can see the manner in which the signature means are updated in
 

Figure 9which shows the mean values in channel 2 (LANDSAT channel 5)
 
for four classes. 
 The values shown for line 1350 are the values obtained
 

from the signatures. Note the gradual change in values as the line number
 

increases. A slightly different set of curves is shown in Figure 10 which
 
was obtained by changing the Kalman filter program so that three auxiliary
 
fields would be used. 
 The stars indicate the auxilidry fields, which are
 

on the mean curves because the program is written so that the means coincide
 

with the means of the auxiliary fields at the time the fields are being
 

processed.
 

4.3 PROCESSING TIME REQUIRED FOR ADAPTIVE PROCESSING
 

An important consideration in adaptive processing is the additional
 
processing time that the adapting requires. 
 In Table 1, we compare pro

cessing times and accuracies for various operating modes. 
The preprocessing.
 

that was used was our standard scan angle correction program named ACORN.
 
There is an approximately 11% processing time increase when adapting is used',
 
which would reduce,to approximately 3% had a quadratic decision rule been
 

used rather than a linear decision rule. 
There is also an increase in
 
processing time when we adapt the angle correction. For this data set,
 

it appears that we gain by adapting the means, but adapting the angle
 

correction is not as good as using ACORN.
 

4.4 EFFECTIVENESS OF MODIFICATION FOR COLORED NOISE
 

The algorithm considered here was described in detail in Section 3.4.
 
It differs from the original adaptive processing algorithm principally in
 
that it assumes that-variations for different sampling times of the class
 
mean vectors are correlated. A correlation length associated with this
 

correlation is an input parameter to the program. Thus it may be set to
 
approximate the average field length for the data being processed.
 

Programming of this algorithm was completed and tests were made to
 

confirm the correctness of the-program-and the characteristics of- the
 

algorithm.
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ALTERNATIVE CLASSIFICATION METHODS 

No Adapting 
No Preprocessing 

No Adapting 
Preprocessing 

Adapting 
No Preprocessing 

Adapting with Scan 
Adapting Angle Correction 

Preprocessing No Preprocessing 

% CORRECT 
RECOGNITION 83.4 86.9 85.7 90.6 86.1 

EXECUTION 
TIME (min.) 

7 11 8 12 13 

Figures based on classification into 5 classes using 5 channel aircraft data 

TABLE 1 
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For these tests ERTS data from'N. Dakota were used. This data set
 

has been used extensively in tests- for the original Kalman filter program.
 

Fields in this data set are generally larger than those in the CITARS data

sets, although probably not as large as could be found in major wheat grow

ing data sets.
 

Storage requirements for the correlated state variation program are
 

greater than for the original program. The state vector is twice as long
 

(40 elements) and the error matrix 4 times larger (5 x 5 elements). This
 

has not caused any problems. Storage requirements of the new program are
 

well within the limitations of the 7094 computer (32 K words). Total pro

cessing time for the test data set was virtually the same as with the
 

original adaptive program.
 

Figure 11 shows classification accuracy vs. 01 for both the original
 

algorithm and the correlated state variation version. These figures are
 

based on classification of 35 fields into 5 classes. 
 Also shown for com

parison is the accuracy obtained with conventional non-adaptive linear rule
 

classification.
 

It can be seen that the new algorithm actually attains a slightly
 

higher accuracy than the original, but at a much smaller value of 81'
 

This difference is in agreement with the theory presented in Section 3.4 which
 

predicts that 01 for the new algorithm should be smaller by a factor of 

1-a2 to obtain the same updating rate. For this case 1-a2 % .02. 
Figures 12 and 13 show the effect of changing the correlation length
 

parameter. In both figures the lower plot shows the change in the mean
 

vector for a particular class and channel as a function of line number.
 

The upper plot shows the change in the corresponding element of W in
 

equation 55.
 

In Figure 12 the value of n was 30. In Figure 13 n is increased to
 

90. As expected, the mean changes more rapidly in Figure 13 due to the
 

higher effective updating rate caused by the higher value of n
 

0 
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4.5 ADAPTIVE PROCESSING LIMITATIONS
 

Further tests have been conducted to evaluate the performance of
 

adaptive processing. For these tests both conventional linear rule
 

classification and adaptive classification were performed on the same
 

data set using signatures extracted from the data set being processed.
 

Adaptive processing periodically updates the signature means on the basis
 

of previous classification decisions to account for inter- and intra-field
 

variations. Conventional classification uses the -samemeans throughout the
 

data set. To compare the recognition accuracy of the two methods, average
 

percent correct recognition for a number of fields of known crop type was
 

computed.
 

Previous comparisons of adaptive and conventional processing using
 

LANDSAT data have shown that adaptive processing is capable of reducing
 

The tests described below
classification errors by as much as one-third. 


That is,
offer further confirmation of another previously reported result. 


if two or more signatures are similar enough so that confusion exists
 

between them with conventional classification, adaptive classifying will
 

give even poorer results. However, if the signatures are reasonably dis

tinct, adapting can generally be expected to improve classification accuracy.
 

Two LANDSAT data sets from the CITARS project were used for this testing.
 

Fayette Co., Illinois data from 21 August and White Co., Indiana data from
 

the same date were processed.
 

Table 2 shows the results of processing these data sets using both
 

conventional and adaptive classification. The percentages shown are based
 

on 125 fields from Fayette Co. and 166 fields from White Co. Signatures for
 

six materials were obtained from the CITARS project.
 

TABLE 2. 	% CORRECT RECOGNITION WITH AND WITHOUT ADAPTING FOR
 

FAYETTE AND WHITE CO. CITARS DATA
 

FAYETTE CO. FAYETTE CO. WHITE CO. WHITE CO. 

NO ADAPTING ADAPTING NO ADAPTING ADAPTING 

CORN 87.4 89.5 72.0 71.2 

SOY 85.5 85.5 77.7 77.7 

OTHER* 68.7 66.8 90.4 90.4 

Other includes trees, bare soil, clover, and weeds.
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The White Co. data is essentially unchanged by adapting. There is a 

slight (<1%) reduction in classification accuracy with adapting. 

The Fayette Co. data show approximately 2% increase in accuracy of corn 

recognition with adapting and a corresponding 2% decrease in accuracy of 

the "other" class (trees, bare soil, clover and weeds). 

An increase in recognition of one class and a corresponding decrease
 

in another is characteristic of signature capture during adaptive processing.
 

For these two data sets there is sufficient similarity in the signatures to
 

cause capture. As has been noted previously, this precludes the successful
 

use of the present adapting algorithm.
 

Capture can also occur with reasonably separated signatures if too
 

rapid an updating rate is used, Figure 14 illustrates this. The solid line
 

shows total recognition accuracy vs. 0I for Michigan LANDSAT data classified
 

into 5 classes and representing 107 fields from Ionia and Clinton Co. The
 

dashed line shows ife percentage of corn correctly classified, Maximum
 

- 9
accuracy is obtained with 01 in the range of 10 to 10 . Classification
 

accuracy decreases for larger values of 0I (faster updating).
 

The dashed line shows a major cause of this decrease in accuracy,
 

Virtually all of the corn pixels which were not classified as corn were
 

classified as senescent vegetation, a class which included grass, field beans
 

and alfalfa, 
The senescent vegetation signatures are close enough to the
 

corn signature to cause just over 35% of the total corn pixels to be
 

incorrectly classified as senescent vegetation even with small 0l.' 
This
 

causes the senescent vegetation means to be updated such that these signatureE
 

capture even more corn pixels. The higher the updating rate the more
 

-
complete this capture process becomes. For 81 = 10 7 the senescent vegetatio
 

signatures have captured over 90% of the corn pixels,
 

Tables 3 and 4 show the classification results in greater detail for
 

the two extremes of 01. The left hand column gives the class name. This
 

is -followed by the number of fields and number of pixels actually belonging
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TABLE 3. 	 CLASSIFICATION RESULTS WITH 8 10-7
 

IONIA AND CLINTON CO. LANDSAT DATA'
 

SIGNATURES..
 
NR. 	 NR. 
 SOY 
 BARE 	 SENESC.
CLASS PLOTS 
 POINT 	 CORN BEANS TREES 
 SOIL 	 VEG.
 

CORN 
 37 297 7.1 
 .3 92.6,
 

SOYBEANS 
 6 27 3.7 66.7 
 29.6
 

TREES 
 6 47 38.3 
 19.1 
 42.6t 

BARE SOIL 
 10 	 53 
 100.0
 

SENESC. VEG. 48 
 260 
 2.7 	 18.5 78.8
 

107 	 684,
 

TABLE 4. CLASSIFICATION RESULTS WITH 61 = 0
10-


IONIA AND 	CLINTON CO. LANDSAT DATA
 

SIGNATURES.
 
NR. 	 N, 
 SOY 
 BARE 	 SENESC.
CLASS PLOTS 
 POINT CORN BEANS TREES 
 SOIL 	 VEG.
 

CORN 
 37 297 64.0 
 .3 
 35.7
 

SOYBEANS 
 6 27 3.7 85.2 
 11.1
 

TREES 
 6 47 40.4 2.1 51.1 
 6.4
 

BARE SOIL 10 53 
 100.0
 

SENESC. VEG. 48 
 260 .8 4.6 
 12.3 	 82.3
 

107 	 684
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The remaining columns form a matrix showing what percentages
to that class. 


of this total were assigned to the various-classes.
 

Recall that the updating rate, as developed in [I] is defined 
as
 

Assume that a sufficient number
follows for updating after every point. 


of zero measurement vectors have been sampled so that the estimate 
of the
 

first mean is the zero vector.' Now, if the measurements become 
vectors
 

composed entirely of the numbers, 1, the updating rate is 
the number of
 

This number of
 updates required for the mean estimate to become 1 -e 1 

- . A more useful form ishas been shown to be approximatelyupdates 

to express thisin terms of lines rather than updates. The present program
 

updates after every 1/3 scan line, each of which contains 
N points. 
If we
 

let the variance-of each state variable be NO1 because the 
state variation
 

is assumed to occur after each line rather than after each update, 
then the
 

1- lines, for M materials, Updating rates on
updating rate becomes 1
 

the order of tens to hundreds of lines proved to be suitable 
for LAIDSAT
 

agricultural data.
 

Table 5 shows updating rate information for data sets from 4 different
 

In each case
IAWDSAT frames representing different geographical locations. 


the value of O1 shown is the value which resulted in the maximum percent
 

correct recognition for all known-fields in the processed area. Parameters -"
 

not shown were held constant while processing all 4 data sets,
 

For the North Dakota and Kansas data the updating rate is of the same
 

The Michigan and
order as the size of typical fields found in the scene. 


Illinois data required slower updating to avoid capture since the materials
 

being classified were more easily confused than for the other data sets.
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TABLE 5
 

OPTIMUM UPDATING RATES FOR 4 DATA SETS
 

NUMBER OF NUMBER OF UPDATING 
LOCATION MATERIALS POINTS PER LINE l RATE (LINES) 

North Dakota 5 650 5xlO 8 26
 

- 5
Kansas 3 101 10 6 

Michigan 7 310 10- 8 72
 

- 9
Illinois 6 126 10 383
 

There is another parameter, %, that can have an effect on the
 

classification accuracy, 4o is the initial value of the state error matrix
 

in simplified form, It represents an estimate of the starting error in the
 

material means. In normal use, the starting means are obtained from fields
 

near the beginning of the area to be processed. In this case o may be
 

assumed to be zero. However, if it is known that the starting means are
 

nor representative of the area being classified, then a non-zero *Q is
 

appropriate, This situation might arise when means from one area are used
 

to classify another geographically distant area. Thus 4)0 can be used to
 

introduce a transient updating rate that is different from the steady-state
 

rate.
 

Table 6 illustrates the use of non-zero values of 4 when the means

0
 

being used are not representative. Four classification runs were made on
 

a data set from the North Dakota LANDSAT frame. For the first two runs,
 

signatures were used which were obtained from the data set being classified.
 

The runs differed only in having different values of 'P . For the second
0
 

two runs the signature means were increased by 5% to make them intentionally
 

non-representative, Again two different values of o were used.
 

Table 6 shows percent correct recognition for the four runs. It can'
 

be seen that a zero value of 4o is preferable when the correct means are
 

used but a non-zero 4o is preferable when the means are not correct.
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TABLE 6. EFFECT OF TRANSIENT UPDATING RATE 

0' = 0 0 0
142AN CHANGE a ___0 __ 

0, 92.7 90.4
 

+5 88.1 92.9
 

Another test of adaptive vs. conventional processing with CITARS data
 

involved the use of signatures for Fayette Co., data of 11 June to classify
 

Fayette Co, data of I0 June, The 11 June signatures were adjusted using
 

*a MASC (Multiplicative and Additive Signature Correction) transformation
 

before being used to classify the 10 June data. The MASC transformation
 

technique is explained in detai1 in [2]. The details of the process are
 

not important to this test, however, since we are using the same
 

signatures with both classifying techniques. What is significant is the
 

choise of materials in this particular signature set, Signature for
 

wheat, water, trees, bare soil, and weeds were included. These signatures
 

are not as easily confused as the ones used in the test described above,
 

so betEer results would be expected using adapting.
 

Table 7 shows the percentage of pixels correctly classified by
 

conventional processing and adaptive processing for four classes. 
 Three
 

sets of figures are given for adaptive processing corresponding to different
 

updating rates. Adaptive processing with e = 10- 8 or 10- 9 gives results
 
somewhat better than conventional processing.
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TABLE 7. 	% CORRECT RECOGNITION WITH AND WITHOUT
 
ADAPTING FOR FAYETTE CO. CITARS DATA
 

ADAPTING
 

NO ADAPTING =10 1=10-8 83=10-9 

WHEAT 93 86 92 93 
WATER 95 97 97 97 
TREES 71 66 69 72 
OTHER 88 91 90 88 

AVERAGE 86.8 85.0 87.0 87.5 

In another test, we tried adaptive processing on a data set for which
 
the classification accuracy had been poor. 
The main cause of the poor accuracy
 
was the classification of 38% of the corn data points as another class,
 
namely trees. 
 We hoped that we could increase the classification accuracy
 
by inserting into the filter a large correlation coefficient between
 

the corn and trees means.
 

The data set was collected in the same general area as that used for
 
the surface water test. The classification accuracy with normal processing
 
was 62%. With accuracy this poor, we would not expect that adaptive
 
processing would be useful. 
Indeed, the accuracy was reduced to
 
51%, with 70% of the corn data misclassified as trees. 
 Figure 7 provides
 
further confirmation of the result that when normal processing has poor
 
accuracy, 	adaptive processing has poorer accuracy. 
It-is also worth
 
repeating the converse, that when normal processing has high accuracy,
 
adaptive processing improves the accuracy.
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5 

CONCLUSIONS AND RECOMMENDATIONS
 

The Kalman filter approach to adaptive processing appears to be useful
 

for classification of LANDSAT data. 
The approach fails when the data are
 
difficult to classify, because the successful operation of the filter
 
depends upon the correctness of the decisions. 
However, when the decisions
 

tend to be correct, each data point is used to update the proper mean
 
vector which improves the decision rule, thereby improving classification
 

accuracy.
 

The use of auxiliary fields appears to be useful when processing entire
 
LANDSAT frames. 
When small portions of frames are to be processed, e.g.,
 
LACIE, then there is a choice between using ground-truthed fields as
 
auxiliary fields or for signature extension. Tests should be conducted to
 
determine which use of the fields is preferable.
 

The increases in computer processing time and memory requirements that
 
adaptive processing causes are probably not significant. There are also
 
negligible penalties in processing time and memory when using the colored
 

noise modification.
 

For the limited amount of tasting that has been performed, all of the
 
Kalman filter modifications appear to perform the function for which they
 

were designed. Exactly which modification should be used for a specific
 

task should be determined for that task by additional testing. The testing
 
that would be most appropriate at 
this time would be for the LACIE project.
 

Let us now consider how such a test program might be conducted,
 

LACIE data would be used to perform experiments designed to test the
 
following hypothesis: 
 given a data set on which conventional linear rule
 
recognition processing gives reasonably good classification accuracy, a
 
decision-directed Kalman filter adaptive,classifying algorithm will provide
 

more accurate classification, More specifically we would compare the
 
performance of conventional and adaptive processing in three different
 

applications.
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First, local recognition: For this case one or more intensive study
 

sites would be classified using signatures extracted from the same site.
 

Second, non-local recognition: In this case, signatures from one site
 

would be used to classify a second site. Third, signature extension:
 

Here, a'large area containing two intensive study sites would be processed.
 

These area would be selected so that one study site is near the beginning
 

of the data to be processed and the other is near the end. Signatures
 

would be obtained from the first site and classification accuracy would
 

be determined for the second site.
 

For each of these tests we must consider the method of evaluation to
 

be used and the selection of training and test areas. The evaluation
 

technique would be the same for all three tests. For both conventional
 

and adaptive processing the total acreage of the materials classified as
 

well as percent correct recognition for all individually identified
 

fields would be found,
 

For the local recognition tests, site selection is not critical.
 

Any of the intensive study sites could be used. Training fieldsshould
 

be selected from the beginning of the site since the adapting algorithm
 

assumes that the initial error in the means is zero, The study site could
 

be divided into training and test sections at some arbitrary point
 

leaving, for example, the first third of the site for training and the
 

rest for test. Within these areas all fields large enough to contain
 

at least as many field center (pure) pixels as data channels would be
 

identified.
 

Non-local recognition tests would be restricted to the use of two or
 

more intensive study sites found on the same LANDSAT frame. Four such
 

instances are listed below:
 

FRAME DATE INTENSIVE STUDY SITES 

1457-16551 23 October Finney & Morton 

1635-16395 19 April Saline & Ellis 

1689-16382 12 June 1974 Saline & Ellis 

1725-16371 18 July Saline & Ellis 
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The most sttingent requirements are presented by the signature
 
extension test. 
 Here we need two study sites on the same quarter frame
 
(tape) so that processing-can be carried on uninterrupted from one site
 
to the next. 
No quarter frame exists which contains any two of the
 
Kansas sites. The situation for the Texas sites is not known to us 
since
 

we do not yet have the tapes.
 

If no 
suitable tape contains two intensive study sites it may be
 
necessary to use one study site and one SRS area for this test. 
 SRS
 
areas are smaller and less accurately examined than the intensive
 

study sites but there are more of them.
 

We should add one final thought. The adaptive processing techniques
 
discussed in this report have been tested using a multi-class decision
 
rule. The techniques should apply directly to the LACIE decision rule,
 
which is one that uses multiple signatures to form a two-class ratio test,
 
When the ratios are formed, all of the quadratic functions needed for a
 
multi-class decision rule are computed. 
The only computer functions that
 
would be required to make a multi-class decision, which would be required
 
when adaptive processing is to be used, are additions and amplitude
 
comparisons. Consequently, the advantages of adaptive processing could be
 
realized with only a small increase in processing time, probably less than
 

a five percent increase,
 

56
 



L 	 IM FORMERLY WILLOW RUN LAOORATORIES. THE UNIVERSY OF MICHIGAN 

REFERENCES
 

1. 	Crane, R.B., Adaptive Processing with a Decision-Directed Kalman
 

Filter and Feature Extraction of Multispectral Data, Report No.
 

190100-31-T, Environmental Research Institute of Michigan, Ann Arbor
 

July 1974.
 

2. 	Henderson, R.G., G. S. Thomas, and R.F. Nalepka, Methods of Extending
 

Signatures and Training Without Ground Information, Report No.
 

109600-16-F, Task II, March 1975.
 

F.J. Kriegler, and W. Richardson, Adaptive Multispectral
3. 	Marshall, R.E., 

Recognition of Wheat, Tenth Symposium on Adaptive Processes, Miami
 

Beach, December 1971.
 

4. 	Kriegler, F.J. R.E. Marshall, H.H. Horwitz, & M.F. Gordon, Adaptive
 

Multispectral Recognition of Agricultural Crops, Eighth International
 

Symposium on Remote Sensing of Environment, ERIM, Ann Arbor, October 1972:
 

Crane, R.B. & W. Richardson, Performance Evaluation of Multispectral
5. 

Scanner Classification Methods, Eighth International Symposium on
 

Remote Sensing of Environment, Willow Run Laboratories of the
 

Institute of Science and Technology, The University of Michigan,
 

Ann 	Arbor, Michigan, October 1972.
 

6. 	Malila, William A., Daniel P. Rice and Richard C. Cicone,
 

"Final Report on the CITARS Effort by the Environmental Research
 

Institute of Michigan" ERIM Report No. 109600-12-F, Environmental
 

Research Institute of Michigan, Ann Arbor, Michigan, February 1975.
 

57
 



LRIM OMERLy WILLOW RIN LAeORATORIaS. THE UNIVSRSIY OF MICH 

Technical and Final Report Distribution List
 

NASA Contract NAS9-14123
 

Tasks II thru X 

NAME NUMBER OF COPIES 

NASA/Johnson Space Center
 
Earth Observations Division
 
Houston, Texas 77058
 

ATTN: Mr. Robert MacDonfld/TF (1) 
ATTN: Mr. B. Erb/TF2 (1) 
ATTN; Dr. F. Hall/TF2. (i) 
ATTN: Mr. J. Murphy/TF2 (1) 
ATTN: Dr. A. Potter/TF3 (8) 
ATTN: Mr. J. Dragg/TF4 -(i) 

ATTN: Earth Resources Data Facility/TFl2 (8)
 

NASA/Johnson Space Center
 
Earth Resources Program Office
 
Office of the Program Manager
 
Houston, Texas 77058
 

ATTN: Mr. Clifford E. Charlesworth/HA (1)
 
ATTN: r. William E. Rice/HA (I)
 

NASA/Johnson Space Center
 
Earth Resources Program Office
 
Program Analysis & Planning Office
 
Houston-, Texas 77058
 

ATTN: Dr. 0, Glenn Smith/HD (1)
 

NASA/Johnson Space Center
 
Earth Resources Program Office
 
Systems Analysis and Integration Office
 
Houston, Texas 77058
 

ATTN: *Mr. Richard A. Moke/HC (1)
 

ATTN: Mr. M. Jay Harnage, Jr./HC (1)
 

NASA/Johnson Space Center
 
Technical Library Branch
 
Houston, Texas 77058
 

ATTN: Ms. Retha Shirkey/JM6 (4)
 

58
 



RI FORMERL WILLOW 

NAME 

NASA/Johnson Space Center 
Management Services Division
 
Houston, Texas 77058
 

ATTN: Mr. John T. Wheeler/AT3 


NASA/Johnson Space Center
 
Technical Support Procurement
 
Houston, Texas 77058
 

ATTN: Mr, J. Haptonstall/BB63 


Earth Resources Laboratory, GS
 
Mississippi Test Facility
 
Bay St. Louis, Mississippi 39520
 

ATTN; Mr, D. W. Mooneyhan 


EROS Data Center
 
U.S. Department of Interior
 
Sioux Falls, South Dakota 57198
 

ATTN: Mr. G. Thorley 

Department of Mathematics
 
Texas A&M University
 
College Station, Texas 77843
 

ATTN: Dr. Larry Guseman 


NASA/Johnson Space Center
 
Computation & Flight Support
 
Houston, Texas 77058
 

ATTN. Mr. Eugene Davis/FA 


U.S. Department of Agriculture
 
Agricultural Research Service
 
Washington, D.C. 20242
 

ATTN: Dr. Robert Miller 


U.S. Department of Agriculture
 
Soil & Water Conservation Research Division
 
P.O. Box 267
 
Weslaco, Texas 78596
 

ATTN: Dr. Craig Wiegand 


59
 

RUN LAOORArOAIC T$S UNIVSITY OF MIC 

NUMBER OF COPIES 

(')
 

(1)
 

(1)
 

(1)
 

(1)
 

(1) 

(1)
 

(1)
 



SJ2IRIM 

-FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSy 0 MICHiGA 

NAME, NUMBER OF COPIES 

U.S. Department of Interior 
Geology Survey 
Washington, D.C. 20244 

ATTN: Dr. James R, Anderson (1) 

Director, Remote Sensing Institute 
South Dakota State University 
Agriculture Engineering Building 
Brookings, South Dakota 57006 

ATTN: Mr. Victor I. Myers (iA 

U.S. Department of Interior 
Fish &.Wildlife Service 
Bureau of Sport Fisheries & Wildlife 
Northern Prairie Wildlife Research Center 
Jamestown, North Dakota 58401 

ATTN: Mr. Harvey K. Nelson (1) 

U.S. Department of Agriculture 
Forest Service 
240 W. Prospect Street 
Fort Collins, Colorado 80521 

ATTN: Dr. Richard Driscoll (i) 

U.S, Department of Interior 
Geological Survey 
Water Resources Division 
500 Zack Street 
Tampa, Florida 33602 
ATTN: Mr. A.E. Coker (1) 

U.S. Department of Interior 
Director, EROS Program 
Washington, DC 20244 

ATTN: Mr, J. M. Denoyer (1) 

U.S. Department of Interior 
Geological Survey 
GSA Building, Room 5213 
Washington, DC 20242 

ATTN: Mr. W.A. Fischer (1) 

60 



NAME 


NASA Wallops
 
Wallops Station, Virginia 23337
 

ATTN: Mr. James Bettle 


Purdue University
 
Purdue Industrial Research Park
 
1200 Potter Drive
 
West Lafayette, Indiana 47906
 
ATTN: Dr. David Landgrebe 

ATTN: Dr. Philip Swain 

ATTN: Mr. Terry Phillips 


U.S. Department of Interior
 
EROS Office
 
Washington, DC 20242
 

ATTN: Dr. Raymond W. Fary 


U.S. Department of Interior
 
Geological Survey
 
801 19th Street, N.W.
 
Washington, DC 20242
 

ATTN: Mr. Charles Withington 


U.S. Department of Interior
 
Geological Survey
 
801 19th Street, N.W.
 
Washington, DC 20242
 
ATTN: Mr. M, Deutsch 


U.S. Geological Survey
 
801 19th Street, N.W., Room 1030
 
Washington, DC 20242
 

ATTN: Dr. Jules D, Friedman 


U.S. Department of Interior
 
Geological Survey
 
Federal Center
 
Denver, Colorado 80225
 

ATTN: Dr. Harry W. Smedes 


NUMBER OF COPIES
 

(1)
 

(1)
 
(1)
 
(1)
 

(1)
 

(i)
 

(i)
 

(1)
 

(1)
 

61
 



.FORMERLY WILLOW RUNLABORATOSIES THEUNIVER YOFMICI 

NAME NUMBER OF COPIES
 

U.S. Department of Interior
 
Geological Survey
 
Water Resources Division
 
901 S. Miami Ave.
 
Miami, Florida 33130
 

ATTN: Mr. Aaron L. Higer (1)
 

University of California
 
School of Forestry
 
Berkeley, California 94720
 

ATTN: Dr. Robert Colwell (1)
 

School of Agriculture
 
Range Management
 
Oregon State University
 
Corvallis, Oregon 97331
 

ATTN: Dr. Charles E. Poulton (1).
 

U.S, Department of Interior
 
EROS Office
 
Washington, DC 20242
 

ATTN: Mr. William Hemphill (1)
 

Chief of Technical Support
 
Western Environmental Research Laboratories
 
Environmental Protection Agency
 
P.O. Box 15027
 
Las Vegas, Nevada 89114
 

ATTN: Mr. Leslie Dunn (i)
 

NASA/Langley Research
 
Mail Stop 470
 
Hampton, Virginia 23365
 

ATTN: Mr. William Howle (1)
 

U.S. Geological Survey
 
Branch of Regional Geophysics
 
Denver Federal Center, Building 25
 
Denver, Colorado 80225
 

ATTN: Mr. Kenneth Watson (i)
 

62
 



.RI FO RLY WILLOW RUN LABORATORIES. ThE UNIVERSITY Or MIC 

NAME NUMBER OF COPIES
 

NAVOCEANO, Code 7001
 
Naval Research Laboratory
 
Washington, DC 20390
 

ATTN: Mr. J. W. Sherman, III (i) 

U.S. Department of Agriculture
 
Administrator
 
Agricultural Stabilization and Conservation 

Service 
Washington, DC 

ATTN: Mr, Kenneth Frick (1) 

Pacific Southwest Forest & Range Experiment
 
Station
 

U.S. Forest Service
 
P. 0. Box 245
 
Berkeley, CA 94701
 

ATTN: Mr. R. C. Heller (i) 

United States Department of Agriculture/Forestry
 
Service
 

Division of Forest Economics and Marketing
 
Resources.
 

1200 Independence Avenue
 
Washington, D.C. 20250
 

ATTN: Dr. P. Weber (1) 

University of Texas at Dallas
 
Box 688 
Richardson, Texas 75080
 

ATTN: Dr. Patrick L. Odell (1)
 

Department of Mathematics
 
University of Houston
 
Houston, Texas 77004
 

ATTN: Dr. Henry Decell (1)
 

Institute for Computer Services and Applications
 
Rice University
 
Houston, Texas 77001
 

ATTN: Dr. M. Stuart Lynn (1-) 

63
 



FORMERLY WILLOW RUN LABORATORIES. THE UNIVRSfY OF ICH 

NAME 
 NUMBER OF COPIES
 

U.S. National Park Service
 
Western Regional Office
 
450 Golden Gate Avenue
 
San Francisco, California 94102
 

ATTN: Mr. M. Kolipinski (1)
 

U.S. Department of Agriculture
 
Statistical Reporting Service
 
Washington, DC 20250
 

ATTN: D. H. VonSteen/R. Allen (2)
 

U.S. Department of Agriculture
 
Statistical Reporting Service
 
Washington, DC 20250
 

ATTN: Mr. H. L. Trelogan, Administrator (1)
 

Department of Watershed Sciences
 
Colorado State University
 
Fort Collins, Colorado 80521
 

ATTEN: Dr. James A. Smith 
 (1)
 

Lockheed Electronics Co,
 
16811 El Camino Real
 
Houston, Texas 77058
 

ATTN: Mr. R. Tokerud 
 (1)
 

TRW System Group
 
Space Park Drive
 
Houston, Texas 77058
 

ATTN, Dr. David Detchmendy (1)
 

IBM Corporation
 
1322 Space Park Drive
 
Houston, Texas 77058
 

ATTN: Dr. D. Ingram 
 (1)
 

S&D - DIR
 
Marshall Space Flight Center
 
Huntsville, Alabama 35812
 

ATTN: Mr. Cecil Messer (1)
 

64
 



R
FORMCRLy WILLOW RUN LAeORATORIES. THE UNIVSRSITY OF MICHIAjIM -

NAME NUMBER OF COPIES 

Code 168-427 
Jet Propulsion Laboratory 
4800 Oak Grove Drive 
Pasadena, California 91103 

ATTN: Mr. Fred Billingsley (1) 

NASA Headquarters 
Washington, DC 20546 

ATTN: 
ATTN: 
ATTN: 
ATTN: 

Mr. W. Stoney/ER 
Mr. Leonard Jaffe/ER 
Mr. M. Molloy/ERR 
Mr. James R. Morrison 

(1) 
(1) 
(1) 
(1) 

Ames Research Center 
National Aeronautics and Space Administration 
Moffett Field, California 94035 

ATTN: Dr. D. M. Deerwester (1) 

Goddard Space Flight Center 
National Aeronautics and Space Administration 
Greenbelt, Maryland 20771 

ATTN: Mr. W. Nordberg, 620 
ATTN: Mr. W. Alford, 563 

(1) 
(1) 

Lewis Research Center 
National Aeronautics and Space Administration 
21000 Brookpark Road 
Cleveland, Ohio 44135 

ATTN: Dr. Herman Mark (i) 

John F, Kennedy Space Center 
National Aeronautics and Space Administration 
Kennedy Space Center, Florida 32899 

ATTN: Mr. S. Claybourne/FP (1) 

NASA/Langley 
Mail Stop 214 
Hampton, Virginia 23665 

ATTN: Mr. James L, Raper (1) 

65
 



NAME NUMBER OF COPIES 

Texas A&M University 
Institute of Statistics 
Col-lege -Station, TX 77843 

ATTN: Dr. H. 0. Hartley (1) 

Texas Tech University 
Department of Mathematics 
P. 0. Box 4319 
Lubbock, TX 79404 

ATTN: Dr. T. Boullion (1) 

Mr. James D. Nichols 
Space Sciences Laboratory, Rm, 260 
University of California 
Berkeley, CA 94720 

(I) 

EXXON Production Research Co. 
P. 0. Box 2189 , 
Houston, TX 77001 

ATTN: Mr. J. 0. Bennett (1) 

66
 


