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PREFACE

This report describes part of a comprehensive and continuing program
of research concerned with advancing the state-of-—the-art in remote’ sensing
of the environment from aircraft and satellites. The research ig being
carried out for the NASA Lyndon B, Johnson Space Center, Houston, Texas,
by the Environmental Research Institute of Michigan (ERIM), formerly the
Willow Run Laboratories of The University of Michigan. The basic objective
of this multidisciplinary program is to develop remote sensing as‘'a practiecal
tool to provide the planner,and decision-maker with extensive information
guickly and economically, )

Timely information obtained by remote sensing can be important to such
people as the farmer, the city plammer, the conservationist, and others
concerned with problems such as crop yield and disease, urban land studies
and development, water pollution, and forest management, The scope of our
program includes: (1) extending the understanding of basic processes;

(2) discovering new applications, developing advanced remote-sensing
systems, and improving automatic data processing to extract information in
a useful form; and also (3) assisting in data collection, processing,
analysis, and ground-truth verification,

The research described here was performed under NASA Contract NAS9~14123,
Task VII, and covers the period from 15 May 1974 through 14 March 1975,

Dr. Andrew Potter has been Technical Monitor. The program was directed by
R. R. Legault, Vice~President of ERIM, by J.D. Erickson, Project Director
and Head of the Information Systems and Analysis Department, and by

R,F. Nalepka, Principal TInvestigator and Head of the Multispectral Analysis
Section, The ERIM number for this report is 109600-14-F. )

The authors wish to acknowledge the direction provided by Mr. R.R. Legault,
Dr, J.D, Erickson, and Mr; R.F. Nalepka, Many constructive discussions were

held with H. Horwitz, R.J. Kauth, W. Richardson, and many others at ERIM,
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1
SUMMARY

This report covers the continuation of a study of the use of a
Kalman filter for adaptive processing. Included are analytical and test
results pertaining to LANDSAT data. An earlier report [1] describes the
first portion of the study, including test results using aircraft MSS data.-

The purpose of adaptive processing is to continuously update the mean
vectors of the class signatures using the data itself to provide the
updating thereby allowing a local signature to have more universal
applicability for classification, Originally, the Kalman filter was chosen
because it provided am ordered structure into which many attractive ad-hoc
updating technigques could be fitted and better understood, with others
perhaps being derived, A limitation usually found in Kalman filtérs,'the
requirement for excessive processing time and computer memory when a large
nunber of states must be updated, was circumvented by the use of a simplified
form of the filter, (Section 3,2 containg an equivalence relationship
between the normal and simplified forms.)

In one form of the Kalman filter, the state variations are described
as a Markov process, Occasionally, this description is replaced with
an assumption of correlated variations. Because states are identified with
the mean vectors of the class signatures, the correlated wvariation
agssumption was used, with a correlation length corresponding approximately
to agricultural field sizes,

In our earligr report, we presented test results on the Kalman filter
form of adaptive processing that were obtained by using aircraft MSS data,
In that report, we showed that the modifications to the basic Kalman filter
appropriate to decision-directed classification would perform the various
optional functioms for which they were designed such as line-by-line updating
rather than pixel-by-pixel, In this report, it is shown that the same

conclusion can be reached from the LANDSAT data test results,

[L] Crane, R.B., Adaptive Processing with a Decision-Directed Kalman
Filter and Feature Extraction of Multispectral Data, Report No,
190100-31-T, Environmental Research Institute of Michigan,

Amn Arbor, July 1974.
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In one test it was found that the signature means did not have to
be the means of the data classes, With adaptive processing the means
can vary approximately 20% without degrading clagsification dccuracy
below that obtained with the measured means and non-adaptive processing.
This result indica?es that adaptive processing may be used to accomplish
limitad signature extension (i,e., to permit signature established under
one set of measurement conditioms to be successfully applied under slightly
different conditiomn), For situations where mean values differ by more than
20% and other signature extension techniques could tramsform the means
so that their values were within the 20% range, adaptive processing could
be used to find even betier values. The same test showed that if the
means were ocutside of a 35% range of values, then non-adaptive processing
outperformed adaptive processing. This result is not particularly
significant because unusuably poor classification aceuraey was obtained
in either case, In fact, several test results are available that show that
adaptive processing canmot improve classification accuracy when the non-
adaptive classification acturacy is poor, An explanation may be that- the
Kalman filter is decigion directed, requiring that most of the data points
be classified accurately so that the points can be directed to update the

correct means,
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2
BACKGROUND AND INTRODUCTION

Multispectral scamnner data acquired by remote sensing will usually
cover large areas on the ground, The large amounts of data collected make
machine processing extremely desirable for extracting information, To
use machine processing, one must rely on some commonality within the data,
usually-spectral invariance among ground covers of the same class. The
quality of the extracted information is limited by the extent to¢ which
such commonality exists, .as well as by limited knowledge of the commonality.

One method of processing multispectral scanner data to extract
information is to select data subsets, called training sets, for each of the
classes, and use these to derive a signature for that class. The signature
consists of a mean vector and a covariance matrix describing the data vectors
from the training sets. Then, assuming that the signatures for each class
accurately represent that class, a décision rule is defineéd which assigns
each of the scanner data points to one of the classes (or to a null class),.

There are many reasons why a class signature may not accurately represent
that particular class at all times and places; 1) there may be an insufficient
number of data points in the training set; 2) the class may be composed of
subclasses with different reflecéances and the signature could describe
only one subclass; 3) atmospheric conditions may not be comstant between
the training and test areas; and, 4) the illumination and viewing geometry
(position of the sun and the sensor relative to the ground resolution
element) could differ for training and non-training data. Signatures
should be the best obtainable so that classification accuracy is maximized,
thereby maximizing the information extracted from the data.

One way to increase the accuracy of the signatures is to increase the
number of training sets. If the training sets are located throughout the
scene, one can use different signatures for different portions of the scene.
However, there isa limit to the number of training sets that can be used
which is quickly reached, beyond which the cost of obtaining the requisite

ground truth becomes prohibitive for operational systems.
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A second. way to increase signature accuracy is to preprocess the
signatures or data so that variations aré accounted for, removed, or
reduced. This method can be extremely effective for certain types of
variations, and can greatly reduce the number of training sets required
and hence the cost., .However, thig method becomes less effective when
the variations are different for different classes, )

A third way to increase signature accuracy and thereby classification
accuracy is to use adaptive processing to update the signatures as ;he data
are being processed, The basic idea is simple. Suppose that a number of
points are identified as belonging to a certain class, and that the average
value of these points is larger than the mean vector of the signature for
that class, Then the signature is changed by increasing the mean vecto}.
The amount of increase depends on the number of points; the amount by which
the average exceeds the mean vector, and a factor which will be called the
updating rate. This basic adaptive processing method, along with some
imaginative variations, was used for processing multispectral scanner‘
data [3]. The success of the initial effort led to the use-of a Kalman
filter,

A Kalman filter is used to update the mean vectors of the signatures
while the data are being classified. We combine the mean vectors for all
of the classes into omne large state vector, which is then updated. The
Kalman filter method has the advantages of being an iterative technique
ideally suited for use with a digital computer, and of providing a general
formulation or organization that combines many techniques for improving
recognition., There are, however, three potential disadvantages: 1) The
Kalman filter normally requires large amounts of computer memory; 2) It
requires large amounts of computation time, and 3) there is a possibility
of "ecapture", .

The reason for the large memory requirement is that the joint

statistics of the state variables (the covariance of the state vectors) must

[3]Marshall, R.E., F,J. Kriegler, and W. Richardson, Adaptive Multispectral

Recognition of Wheat, Tenth Symposium on Adaptive Processes, Miami
Beach, December 1371.
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be stored, as must the covariance of the individual observations of these
state variables (i.e., the crop signature covariances), - These can be
thought of respectively as the statistics of the undérlying process (state
vector) .and the statistics of the.noise of observation of that process,

The reason that the Kalman filter normally requires a large amount of
computation time is that both of the above forms of covariance enter the
calculation. The calculation time for each update varies as the product
of state vector calculation time and neisge calculation time. If the
basic signal is n channels and there are m materials, then the state vector
is mn in length,.the state covariance is nm x nm, and the noise covarisgnce
is n x n for.each signature, -

The statistics of the state vector were not known initially; these
could only be learned by observation of the Kalman filter process itself,
Hence an initial assumption had to be made: +that the state covariance was
a higher dimensional image of the average noise covariance. This assumption
turned. out to be fortuitous since it simplified the Kalman filter equations
greatly, and both calculation times and memory requirements became
negligible,

The third possible disadvantage mentioned above was the possibility
of "capture™, wherein the mean signature for material A becomes adapted
to the true mean of material B, In this case material B has captured the
signature for material A and, as a result, material B systematically
becomes classified as material A, Capture can occur when false classifications
cause the mean vectors of one or more classes to be updated using the wrong
data points,

Use of the Kalman filter necessitated three assumptions, the
justification for which is that the resulting updating equations increase
classification accuracy, One assumption is that the recognition decisions
are correct. Because this assumption is questionable, we borrowed a '
technique from our initial study [4] to modify the amount of updating by a
confidence factor which reflects the uncertainity in the correctness of

the decisions., Another assumption is that all of the covariance matrices of

[4] Kriegler; F.J:, R.E, Marshall, H.H, Horwitz, and M,F. Gordon, Adaptive
Multispectral Recognition of Agricultural Crops, Eighth International

Symposium on Remote Sensing of Environment, ERTM, Ann Arbor, October 1972.

10
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the signatures are equal, This assumption is made to derive the Kalman
filter, and is not used when the decision rule is computed. A third
assumption that‘we also make, is that the covariance of any two mean
vectors is proportional to the same common covariance matrix. We do not
anticipate sufficient ground truth in most data sets so that more accurate
statistics could be used, We alsc assume that the data are Gaussian, or
equivalently, that we want the optimum (in the mean square sense) linear
updating equations. .

We have built several functions into our Kalman filter., In its
simplest form, the filter can be used tc update, after each decision, the
mean vector of the class that was recognized, One of the functions is the
ability to update all mean vectors, when we wish to include interaction
i.e., non-zero covariance between pairs of mean vectors.. Additionally, we
can update after every line or fraction of a line has been classified, a
feature which reduces the time required for processing a data set compared
to updating after every point, We also have incorporated the confidence
factor mentioned previocusly,

Thus far the discussion has been limited to updating the signature
mean vectors., We also have the capability of estimating and updating angular
dependence of the data. For large data sets it may prove desirable to update
the angular dependence, because some of the reasons for needing an updating
algorithm; e.g,, atmospheric changes, are also reasons why the angular
dependence of the mean vectors would change,

Ancther feqture of this program is the capability to use auxiliary
training fields to improve the updating accuracy and lessen the probability
of capture, When&his feature is used, the updated value of the mean vectors
depends not only on the original signatures and the data already processed,
but also on signatures of training sets to be processed downstream, The
use of auxiliary training fields should reduce the ground truth requirement,

"because signatures of the auxiliary training fields are used for data
collected both before and after the training sets, with continuity between

training.sets provided by the Kalman filter,

11



Z - T, N FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

The original adaptive processing [3] and our first implementation of
the Kalman filter were used with the quadratic (maximum likelihood)
decision rule. One step in improving the adaptive processing procedure
was to change to the linear decision rule'[5]. Previous comparisons of the
two decision rules showed that when the same number of data channels were
used, the classification accuracy ‘obtained with the two rules were
approximately the same for test data, and the linear rule required
approximately one-third the processing time of the quadratic rule, The
fact that the linear rule provided slightly higher classification accuracy
was felt to be statistically insignificant. A recent cpmparisdn made as .
part of the CITARS program [6] confirms the approximate classificatign
accuracy equivalence of the two decision rules.‘

A test program was initiated to show the usefulness of the Kalman
filter approach to adaptive processing. Initial results, using aircraft
MSS data, indicated that the approach was useful for processing data
gathered under a variety of conditioms [1].

This report summarizes our modifications and testing of the Kalman
filter for LANDSAT data. Simplifications of the theory presented in our
earlier report are contained in Section 3. Also included are extensions to
the theory that are applicable to LANDSAT data, Results of testing the
modified Kalman filter are presented in Section 4, Conclusions and
recommendations are preésented in Section 5 which includes a recommended test

plan applicable’to the LACIE program, -

[3] Marshall, R.E,, F. J. Kriegler, and W. Richardson, Adaptive Multispectral
Recognition of Wheat, Tenth Symposium on Adaptive Processes, Miami
Beach, December 1971.

[5] Crane, R.B, & W. Richardson, Performance Evaluation of Multispectral
Scanner Classification Methods, Eighth International Symposium on
Remote Sensing of, Environment, Willow Run Laboratories of the
Institute of Science and Technology, The University of Michigan,

Ann Arbor, October 1972,

[6] Malila, William A., Daniél P Rice and Richard C. Cicone, "Final
Report on the CITARS Effort by .the Environmental Research
Institute of Michigan" ERIM Report No. 109600~12-F, Environmental
Research Institute of Michigan, Ann Arbor, Michigan, February 1975.

[1] Crane,R.B,, Adaptive Processing with a Decision-Directed Kalman
Filter and Feature Extraction of Multispectral Data, Report No. 190100-31-7,
Environmental Research Institute of Michigan, July 1974,

12
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3
DESCRIPTION OF MODIFIED KALMAN FILTER

In previous work [1] a general formulation of the Kalman filter was

presented and the way such a filter could be used to update the signature
mean vectors was discussed in qualitative terms. Various terms of the
equations were identified Witp observed phenomena. The dependence of the
equations upon the statistical properties of the data was shown explicitly,
One possible approximation to the statistics was shown to lead to a
simplification of the equations along with greatly reduced computational
and memory requirements of a general purpose digital computer. Also

shown were some extensions of the filter that appeared at the time to

be most useful for either airecraft or satellite data.

In this section we repeat the analytical description of the Kalman
filter, although the approach is different. We then show a general
equivalence between the Kalman filter:and a simplified filter. Finally,
the equivalence relationship is used to show various modifications to the
Kalman filter that have proven useful.

3.1 BASIC RALMAN FILTER

Beginning with one version of the Kalman filter equations, the first
problem is to estimate Xk using measurements ZO,...,Zk. We identify Xk
with a vector composed of all of the class mean vectors, and identify the
Zi with data vectors., An optimum estimate of Xk’ which we shall label

~
Xk’ must be found which minimizes:

M = B{[X,-g(2)]°[X, ~g(2)]}. (1)

Here, g(Z) represents a funection of Zo""’zk' The probability distribution

of Xk and 2 can be written as

£(%,,2) = £(x|2) £(2) (2)

[1] Crane, R.B,, Adaptive Processing with a Decision~Directed Kalman
Filter and Feature Extraction of Multispectral Data, Report No.
190100-31~-T, Envirommental Research Institute of Michigan,

Ann Arbor, July 1974,

13
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so Equation 1 becomes

M = I £(2) U[}%—g(mt.[xk—gczn f(XkIZ)dxk} az  3)

Now M is nomnegative, so we minimize the bracketed integral for every Z.
In this integral, g(Z) is a constant, which is minimized if g(Z) is the

mean of Xk' Thus the minimum mean square estimate of Xk is
X, = g(2) =E&]2) - @
Equation 4 can be rewritten when Xk and Z are jointly gaussian in the form
E(%, |2) = Bx2%) [E@ 2917z (5)

Equation 5 is true for any pair of jointly gaussian vectors, and will

be used repeatedly in the development, We now define an.error vector
n, A
ho-% -x ©

and note that the minimization operation served to minimize the norm of
Ny
X, i.,e,, see Equation 1. TUsing Equation 5, it can be shown that:

k
0 (7

(X, ;('kt)

Il

EEX, 25 =0 (8)

The Kalman filter is now developed using the state model just described,
It is assumed that one can update after every line of data, rather than
after every data point, ZEach data point is related to the state by the

equation

Fq = Mg X v (9

where Hki is a matrix that picks the mean vector of the class, after
classifications, from Xk' The noise vector, vki’ is measurement noise,

with statistics

14
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E(vki) = {(10)

t

E(vkiv jg) = 51<j 8§, R (11)

One measurement vector will be used for each line, and is given by

a3

Z =

k Craycs (12)

i=1

The Cki are weighting factors which represent the confidence that the
classification decision for each data point was correct,

Combining Equations 9 and 12 gives

Z, = M X + v (13)

]

where
N

Be =) o Cplg 16

i=1
v, = 2 ChoiVyes (15)
dm]

and V. 1s a measurement noise vector for the kP line., To find the

statistics, equations (1) and (11) are used:

E(vk) = 0
N
£y _ 2
E(rvy) = 6y §=1Cki R (16)

We have now completed the preliminary derivation of the filter

problem. From Equation 4 it is seen that one must find

X, E(xklzo,,_L.,zk) an

il

!L,
EGE|Z 0002

where

e
il

kTl T H ;‘k-l (18)

=H O g -2 d )t

15
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N Ay
The second equality in Equation 17 occurs because Xk~1 is a linear

combination of zo""’zk—lf\ Equation 8 .can.be used to Show that:
Nt _
E(zjzk) =0 ‘ {19)

for j < k, Using Equation 5 it is seen that Equation 17 becomes

il

E(xk|zo,...,%k) E(Xklzo,...{zk_l) + g(xklgk{ (20)

-~ - = E - ’1’
¢ Ny + EG |z
We now use Equation 5 to find
x |2 = 2x 8D [BQ, 217 (22)

Evaluating the separate parts of Equation 22,

S
E(X zk) = ?k H (22)
where
L — t .
PL=0PR . @ +Q . (23)
E(w,W0) = 6,.Q (24)
ik k" k
_ N
Pk = E(Xk Xk) (25)
and
N S
E(Z %)) = BEE + R (26)
Combining Equations 20-26, we rewrite Equation 20 as
~ Fal m
e = ¥ K1 YR, 27

where

16
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[ U ~1
K = PRl (P + R) (28)
A ) _ ! y
X, =T~ K.H ) (®X, , - W)+ K v, (29)
To complete the development, we evaluate Equation 25;
P = P[ - K.HP: ' (30)

The adaptive processing equations that could be used are Equations 18, 23,
27, 28. and 30,

~

3.2 EQUIVALENCE OF SIMPLIFIED KALMAN FILTER

The main purpose of this section is to explain why previous adaptive
processing developments can be put into a simplified form, An additional
purpose is to provide logical justification for, and description of, a method
whereby new developments can be formulated diréctly in the simplified form,
The advantages of this simplified form over the normal form of adaptive
Processing are reduced computation time and stbrage requirements,

We start by writing the equations that define the Kalman filter that

we have been using,

K= K Yoy (31)
E(w ) = Q 8(k,1) (32)
Z, = BX +n (33
E(nknit) = by R 6(k,1) (34)

In these equations, as before, Xk is a state vector composed of the

mean vectors of all of the classes that exist at a sampling fime t The

K
vector Wy 1s' a random vector, normally distributed, with mean zerc and
covariance defined by Eq, 32. Equation 33 defines the measurement vector
Zk’ identified to be the MSS data vector, as a function of 1) the state

vector, 2) a pointing matrix, Hk and 3) a random Gaussian vector, The

I'.I.k.

17
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pointing matrix uses recognition results to select the components of the

state vector that form the mean vector of the class, that was recognized.

The random vectot, nk,‘has zero mean and covariance defined by Eq. 34.
Because all random processes have a normal distribution, the minimum

mean-squared estimator for Xk is

x = E(xk]z.o,...,zj‘) (35)
The matrix Tk i is defined to be

T . = E(X,X,5) (36)

ki ki

Note that by using Eqs. 31 and 32, one can show that

Tk = T, 11 ¥ Yt (37)

We are now ready to evaluate Eq. 35. A vector Z is defined as

Z
) .
Z= . (38)
Z,
J
and Eq, 35 written as
~ t -—
X, = B(%]2) = B2 [E@51 2 (39)
Components of E(szt) and E(ZZt) are
£y _ £.
E(X 2, ) = EIX (X, +n)"] = T H (40)

and

t - :
E(Zizg ) = E[(HiXi + ni)(HQX

oot 4 .
2+n2’) ] = HiTiEHR’ + b, R §(i,2) (41)

18
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The formulation of the Kalman filter is now complete, This formulation
is equivalent to the iterative formulation that we have been using. The
next step is to introduce a second Kalman filter which will later be

related to the simplified form.-

Me T Mg e (312)
By _
E(GY,5) = 08 ; (32a)
t
By = M’k ' + Oy {33a)
E(crkdi) = bk'é(k,i) (34a)
N = E(nklco,--.,r:j) (35a)
E(n,n,") = s (36a)
My )= Spg a
S,k = Si-1,k-1 T Ox-1 (37a)
c0
r =| .. {(38a)
&
n, = E(n g% [EzzSy1 s (39a)
k K
E(n,z,5) =S .M (40a)
A e 1 a
E(z;z;t)=MtSM+b 8(i,2)
1% 1 Sty t By : (h1a)

19
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To relaté-the two formulations; ‘we rewrite Eg. 3%a as

n = 4l (42)
where

K = 'E(nkz;t)[E(cct)]"l (43)

£2
[

Next, we make the assumptions

Q=9 @ R (44)
Bo=d" @I 45)
T.o = So0 & R (46)

where the symbol () represents the Kronecker product, Using Eqs, 46, 31,

and 32, one can show that

Tix = S5 @R (47)

Next, Eq. 41 is evaluated

I

t t , .
HT H =~ +b; R 51’2 M, @D (sﬂ@R_) (MQ@I) + b, R 8(i,2)

L]

t
QL " S;pMy + by 85 @R
and, by using Eq, 4la, we see that

E(zz") = E@c®) ®¢r (49)

20
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In a similar manner,

t . . = =
ol = @R M D =5 M R (50)

so that
t t
E(X2) = E(niz) @R (51)
Combining Eqs. 39, 49, 51 and 53, results in
Xk = (ak®1) Z (52)

Equation 52 is an important result. It says that if one can find the
optimum filter for the simplified system, defined by Egs. 3la to 4la, one
has also found the simplifiéd form of the filter for the system defined
by Egs. 31 to 41. 1In addition, one can also show the relationship between
the convarignce matrices for the state estimation errors for the two systmes,

which are

o = Bl(n) (n)®l (53)

P = EL(G %) (%) = o, @R (54)

3.3 AUXILIARY FIELDS

The use of auxiliary fields was introduced in [1]. Auxiliary fields
provide a methoé of reducing the undesirable characteristic of signature
capture in an updating method, including the Kalman filter. In multispectral
scanner data processing, signature capture occurs when the mean of one
class actually describes the data from another class. Data from one (or
more) material is recognized incorrectly, c¢learly an undesirable situation,
Of course, the same misclassification can occur without updating, and it

is possible that updating may eliminate the problem.

21
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Auxiliary fields are ground tFpﬁh_fields“which are located throughout
.the .scene. The méeh'yeiuee of the~data from the fields are considered to
be additional measuremeﬁt'vectors, and are used to determine how much the
mean vectors are to be updated. Because the auxiliary ﬁields are correctly
identified, their use should tend to overcome capture caused by incorrect
classification of other data vectors.

'Tﬁe formulation of the updating equations to include the auxiliary
fields has already been presented. Equation 35 is interpreted so that
the measurements Zj,j>k denote the measurements from the auxiliary fields.
The updating equation is (39), which is shown in simplified form in [1].
3.4 COLORED NOISE

One of the assumptiens used for the Kalman filter is that variatioms
in the state vector between sampllng tlmES are uncorrelated (This
assumptlon is deserlbed in Eq 24.) We now descrzbe a method whereby this
assumption can be removed. Flrst.the state vector is formed in the

folloﬁing manner.

- ¥

o [T [k 0
7 A% T loer) \“e1] * n_; (53)
= 8X ¢ W

The Yk is the vector composed of all of the class mean vectors. The

variation between Yk—l and Yk is

Y. =%

Y = Y1 + mkél (56)

where

Il

wli ; + nk"'l (57 )

T
EXIE S

[1] Crane, R.B., Adaptive Processing with .2 Decision-Directed Kalman
Filter and Feature Extraction of Multispectral Dat s Report No,
190100-31-T, Environmental Research Institute of Michigan,

Ann Arbor, -July, 1974.
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The basic difference between this development and that found in [1]
can be explained by Equation 52. In the previous developments, the state
variations for different sampling times were independent. In-this
development, they are dependent, To show the dependence, we start with

E(nkn;) = Rn akj (58)

which is similar to the assumption in [1].

We find
2i
t, 2i t 1-a
E(mkmk) = a E(mk_iwk_i) + 2 Rh (59)
1-o
for all i < k., TFor large k and lul <1,
ty o 1
E(wkmk T R.n (60)
1-o
The correlation of the W is
Ew, w°) = M E(w .o )] (61)
K7 T k=33
for k > §, If
1
a=e o {62)
then for large k,
D)
n
Elw,ul) ~ e © - R (63)
k7] 1—a2 n

Thus n  can be considered to be analogous to a correlation length.

[1] Crane, R.B,, Adaptive Processing with a Decision-Directed Kalman
Filter and Feature Extraction of Multispectral Data, Report No.
190100-31-T, Environmental Research Institute of Michigan, Ann
Arbor, July 1974,

23



Z N - Fe ¢ 0o - Y FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN

The simplified equations are now found by making the following.

assumptions:

+ - (e @

« -6

R = 8@®R (66)
b. \

P - :Ed:@g (67)

M 0 @I (68)

N
Lyt (69)

i=1

Hes

]

e

The Kronecker product,(), is described and used in [1]. The vector
Mki represents the classification decision for the data point, and is
composed of ones and zeros, The simplification of the filter equations

is straightforward and tedious, so will be omitted. The updating equations

become
" - o~ m
Y =1 ;+ w g+ (@kl@l)zk (70)
o = . (6 @)Y 7
G S oo g F Q@02 (71)
where
.0y t A t .
i = B - U x DY =04 x Dy (72)

[1] Crane, R.B., Adaptive Processing with -a Decision-Directed Kalman
Filter and Feature Extraction of Multispectral Data, Report No.

190100-31-T, Epﬁi%bhﬁentaltﬁgsearch Institute of Michigan,
Ann Arbor, July 1974.
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and @k are defined by

®1 2

a M

1= "D (73)
t
b
"

with recursive relations:

t
KL ak+bk+bk + dk -

(a,+b, ) M (4D, ) (75)
D

-
|

(ak+bk)thM; b,
)

bk+l ﬁ o bk+dk - (76)
t t
b b
2 Pk ,
dk+l = g dk - 3 + @ | a7
where
t N o
D = MM + ) Ciy (78)

i=1

Some obvious characteristics of this technique should be noted. The
size of the state vector is increased; with m materials and n channels,
the state vector becomes 2mn rather than mn. The error matrix that must
be stored becomes 4 times as large. The increased dimensionalities may
not be too important, because the storage requirement for the filter is
not large. Also, we do not expect a large increase in processing time,

The filter without the correlated state variations increased processing

25
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time, as compared to non-adaptive processing, by either 3% or 117, the
smaller percentage increase occuring when the quadratic decision rule was
used, Most of the computation time was used on operationms required for
each data point, e.g.,, forming Ckizki’ rather than for the updating,
With the new method, only the updating equations have been changed,

26
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4
EMPIRICAL EVALUATION OF MODIFIED KALMAN FILTER

A test'program was initiated to show the usefulness of the Kalman
filter approach to adaptive processiﬁg of 'LANDSAT data. Selected data
sets were chosen which contained agricultural data since data could not
be tested for every conceivable application and under every possible
atmospheric condition. Indications of the usefulness of the technique
for other applications can be inferred from the results presented in this
section. However, additional testing should be performed so that parameters

can be chosen to ensure that maximum benefits can be realized.

4.1 EFFECT OF DECISION RULE ON CLASSIFICATION ACCURACY

The major purpose of the adaptive processing now being developed is
to correct the decision rule used for classification of multispectral
scammer data. We now adapt the mean signature vectors which, with the
covariance matrices, are used to determine the decision rule. An addi-
tional function sometimes employed is to update preprocessing transforma-
tions by updating an estimation of the angular variation of the data.
Insight into the usefulness -of the updating can be gained by determining
how important it is to have the correct decision rule. We have determined
the error rate for different decision rules applied to normal data from
two classes with the same covariance matrix and the same a priori proba-
bilities.

When the covariance matrices are equal no generality is lost in
assuming unit distance between the means because the covariance matrix of
either class is 02 times the identity matrix. A linear decision rule is
assumed which can be characterized by twoe numbers, the distance from the
origin, q, and the complement, ¢, of the angle that the decision plane
crosses the line joining the two meaps. See Figure 1. The optimum values

are q = 1/2 and ¢ = 0°.
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Decision surface

Class # 1

Class #/2 \

FIGURE 1. GEOMETRY OF TWO-CLASS DECISION RULE

For different values of q, ¢, and g, we have computed an average
error rate, which is the average of the two types of error (choosiﬁg the
second class, given data from the first class and vice versa). Figure é
shows the effect of the choice of q-for different values of of/cos$. The
value of q is most important when ¢/cos¢ is small and q is not near 0.5.
Otherwise, small changes in g have a very small effect on the error rate.
The same equations-were plotted im Figure 3 with ¢ = 45°. With such a large
error in ¢, it is not surprising that the choice of q is not very important
unless ¢ is rather small.

The effect of ¢ 1s shown in Figures 4 and 5 for two different values
of q. Once again, small changes in ¢ have very small effect on the error
rate. When ¢ is large, there can be a large error rate.

Recently, there has been an interest inp estimating total acreage of
wheat from a data set. In our simple example, we can consider the proba-
bility, P, of deciding the second class. This probability is shown in

Figure Q, for different values of q and ofcos¢, If o/cosd is very small,
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say <1/8, then there ie a range of d for which the probability of choosing
the second class is approximateig the correct value of 0.5. If ¢/cost is

<1/2, then there is an approximately linear'nelationghip.between»p-and-q:'

PR 1/2+ (1/2 - @)[1/72 - ¢(o/cos)] (79)
e _z?
where p(x) = j L e 2 dz (80)
3
X

Let us now comsider the usefulness of adaptive processing., When the
criterion ie minimum errow rate, it appears that adaptive processing will
be most useful when there are slowly varying changes in the means and the
covariance matrices are not large compared to the separatiép of the' means.
For small deviations in estimating the means the error rate will be small
so the Adapting can correct the deviations. 'Thus if the means change
slowly, the adaptive processing can track the means. 'If the means are not
changing,‘tﬂe adaptive processing will find the corréct means, but there
will be little effect on the error rate, For large dé?iations, the srror
rate will be grester, and either the adaptive processiﬁg will respénd
slowly, but correctly, or capture will ocecur.

When the criterion of excellence is total acreage, a aifierent picture
emerges, at least for LANDSAT data. The linear relationship will hold for q,
so that any percentage of recognitions can be obtained. If q is ingorrect,
then the farther ¢ is from the correct value the better the acreage estimation.
It appears that average error rate is a better criterion f?r evalgating the
usefulness ‘of adaptive processing, even though small changéS‘in'thé decision

rule parameter may not be noticeable.
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4.2 PROCESSING WITH INCORRECT MEANS

One of the advantaées of adaptive processing is that it may enable
the use of signatures that are somewhat in error. To test this coneept,
we tried different signatures, with and without adapting, on LANDSAT data.
The fields were ﬁivided so that one half of the fields were test fields
and the remaining fields were training fields. Both sets of fields were
distributed through the saannéd area. For each test result we increased
or decreased all signature mean vectors by the same percentage and computed
the percent correct recognition. The results are shown in Figure 7, which
shows the percent correct recognition as a function of percent change in
the means- for both adaptive and non—adaptive processing. The means can
vary approximately 207 with adaptive processing without degrading classi-
fication accuracy below that obtained with the measured means and non-
adaptive processing. For 907 processing accuracy, the means can vary
either 9% or 237, depending upon whether non-adaptive or adaptive process—
ing is used. For 85% accuracy, these numbers change to 19% and 29%. When
we used very large percentage changes, neither method produced acceptable
accuracy, although the non-adaptive processing would be preferred because
capture cannot_ occur,

A visualization of the effects of adaptive processing can be seen in
Figure 8, obtained from the same data and signatures as were used for
Figure 7. The means of the ground-truthed fields were computed and compared,
for each field, with the signature mean. Of course, without adapting, the
signature mean is fixed while with adapting the mean is modified as the data
changes. These differences are shown as a function of the beginning line
number (indicative of the order Qf processing) for boéh non—-adaptive and
adaptive processing. For'adaptive processing, the field means are centered
around the true means, although there is a significant deviation which is
caused by inter-field variations within each class.  ‘For,K non-adaptive pro-

cessing, the field means are not centered around the signature means.
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One can see the;manner in which the signature means are updated in
Figuré 9-which shows the mean values in channel 2 (LANDSAT channel 5)
for four classeé. The values shown for line 1350 are the values obtained
. from the signatures. Note the gradual change in values as the line number
increases. A slightly different set of curves is shown in Figure 10 which
was obtained by- changing the Kalman filter program so that threg auxiliary
fields would be used. The stars indicate the auxilidry fields, which are
on the mean curves because the%piogrém is written so that the means coincide
with the means of the auxiliary fields at the time the fields are being

processed.

4.3 PROCESSING TIME REQUIRED FOR ADAPTIVE PROCESSING

An important consideration in adaptive processing is the additional
processing time that the adaptipg requires. In Table 1, we compare pro-
cessiné ti@es and ‘accuracies for various operating ﬁodes. The preprocessing .
that was used was our standard scan angle correction program named ACORN.
There is an approximately 11% processing time increase when adapting is use@;
which would reduce. to approximately 3% had a quadratic decision rule been
used rather than a linear decision rule. There is also an increase in
processing time when we adapt the angle correction. For this data set,
it appears‘fhat we gain by adapting the means, but adapting the angle

correction is not as good as using ACORN.

4.4 EFFECTIVENESS OF MODIFICATION FOR COLORED NOISE

The algorithm considered here was described in detail in Section,3.4.
It differs from the original adaptive processging algorithm principa11§ in
that it assumes that variations for different sampling times of the class
mean vectors are correlated. A correlation length associated with this
correlation is an input parameter to the program. Thus it may be set to
approximate the average field length for the data being processed.

Programming of this algorithm was completed and tests were made to
confirm the correctness of the.program-and the characteristics of the

algorithm,
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ALTERNATIVE CLASSIFICATION METHODS

Adapting with Scan

No Adapting No Adapting Adapting Adapting Angle Correction
No Preprocessing Preprocessing No Preprocessing Preprocessing No Preprocessing
% CORRECT . '
ceoonmon| 834 .| 869 85.7 90.6 86.1
EXECUTION
TIME (min.) 7 n 8 12 13

Figures based on classification into 5 classes using 5 channel aircraft data

TABLE 1
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For these tests ERTS data from N. Dakota were used. This data set
has béen used extensively in tests for the original Kalman filter program.
Fields in this data set are generally larger than those in the CITARS data-
sets, although probably not 35 large as could be foundlin’major wheat grow-
ing data sets. ) '

Storage requirements for the correlated state variation program are
greater than for the original program. The state vector is twice as long
(40 elements) and the error matrix 4 times larger (5 x 5 elements). This
has not caused any problems. Storage requirements of the new program are
well within the limitations of the 7094 computer (32 K words). Total pro-
cessing time for the test data set was virtually the same as with the
original adaptive program. -

Figure 11 shows classification accuracy vs. el for both the original
algorithm and the correlated state variation version. These figures are
based on classification of 35 fields into 5 classes. A;sojshown for com-
parison is the accuracy obtained with coﬁventional non—adaptive linear rule
clasgification. - )

It can be seen that the new algorithm actually attains a slightly
higher accuracy than the original, but at a much smaller value of 61.

This difference is in agreement with the theory presented in Section 3.4 which
predicts that 81 for the new algorifhm should be smaller by a factor of
1-a2 to obtain the same updating rate. For this case l—gz A& .02,

Figures 12 and 13 show the effect .of changing the correlation length
parameter. In both figures the lower plot shows the change in the mean
vector for a particular class and channel as a function of line number .

The upper plot shows the change in the corresponding element of w in
equation 55.

In Figure 12 the value of n, was 30, In Figure 13'_n0 is increased to

90. As expected, the mean changes more rapidly in Figure 13 due to the

higher effective updating rate caused by the higher value of no.
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4.5 ADAPTIVE PROCESSING LIMITATIONS

Further tests have been conducted to evaluate the performance of
adaptive processing., For these tests both conventional linear rule
_classification and adaptive classification were performed on the same
data set using signatures extracted from the data set being processed.
Adaptive processing periodically updates the signature means on the basis
of previous classification decisioﬁs to account for inter— and intra-field
variations. Conventional classification uses the -same means throughout the
data set. To compare the :écognition accuracy of the two methods, average
percent correct recognition for a number of fields of known crop type was
computed.

Previous comparisons of adaptive and conventional processing using
LANDSAT data have shown that adaptive processing is capable of reducing
classification errors by as much as one—third. The tests described below
offer further confirmation of another previously reported result. That is,
if two or more signatures are similar enough so that confusion exists
betweenlthem with conventional classification, adaptive classifying will
give even poorer results. However, if the signatures are reaéonably dis—
tinct, adapting can generally be expected to improve classification accuracy.

Two LANDSAT data sets from the CITARS project were used fox this testing.
Fayette Co., Illinois data from 21 August and White Co., Indiana data from
the same date were processed.

Table 2 shows the results of processing these data sets using both
conventional and adaptive classification. The percentages shown are based
on 125 fields from Fayette Co. and 166 fields from White Co. Signatures for

six materials were obtained from the CITARS project.

TABLE 2. % CORRECT RECOGNITION WITH AND WITHOUT ADAPTING FOR
FAYETTE AND WHITE CO. CITARS DATA

FAYETTE CO.  FAYETTE CO. WHITE CO. WHITE CO.
NO_ADAPTING ADAPTING NO ADAPTING  ADAPTING
CORN 87.4 89.5 72.0 - 71.2
S0Y . 85.5 85.5 777 77.7
OTHER® 68.7 66.8 90.4 90.4

#
Other includes trees, bare soil, clover, and weeds.
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The White Co. data is essentially unchangéd by adapting. There is a
slight (<1%) reduction in classification accuracy with adapting,

The Fayette Co., data show approximately 2% increase in accuracy of corn
recognition with adapting and a corresponding 2% decrease i%'accuracy of
the "other" class (trees, bare soil, clover and weeds),

An increase in recognition of one class and a corresponding decrease
in another is characteristic of signature capture during adaptive processing,
For these two data sets there is sufficient similarity in the signatures to
cause capture, As has been noted previously, this precludes the successful
use of the present adapting algorithm,

Capture can also occur with reasonably separated signatures if too
rapid an updating rate ic used, Figure 14 illustrates this. The solid line
shows total recognition accuracy vs. 81 for Michigan LANDSAT data classified
into 5 classes and representing 107 fields from Tonia and Clinton Co. The
dashed line shows the percentage of corn correctly classified, Maximum

9 -10

accuracy is obtained with 6. in the range of 10 ° to 10 . (lassification

accuracy decreases for 1argir values of 61 (faster updating).

The dashed line shows a major cause of this decrease in accuracy,
Virtually all of the corn pixels which were not classified as corn were
classified as senescent vegetation, a class which included grass, field beans
and alfalfa, The senescent vegetation signatures are close enough to the
corn signature to cause just over 35% of the total corn pixels to be
incorrectly classified as cenescent vegetation even with small el.. This
causes the senescent vegetation means to be updated such that these signatures
capture even more corn pixels., The higher the updatiﬁg rate the more
complete this capture process becomes. For 81 = 10—7 the senescent vegetatios:
signatures have captured over 90% of the corn pixels,

Tables 3 and 4 show the classification results in greater detail for
the two extremes of Bl. The left hand column gives the class name. This

is -followed by the number of fields and number of pixels actually belonging
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TABLE 3. CLASSIFICATION RESULTS WITH 6, = 1077
IONTA AND CLINTON CO. LANDSAT DATA'
STIGNATURES, _
R, NR. SOY BARE SENESC,
CLASS PLOTS POINT CORN  BEANS  TREES SOTL, vEG,
CORN 37 297 7.1 .3 92.6a
SOYBEANS 6 27 3.7 66.7 29.6
TREES 6 47 38.3 19.1 §2.6
BARE SOIL 10 53 100.0
SENESC. VEC. 48 260 2.7 18.5 78.8
7 107 684
TABLE 4, CLASSIFICATION RESULTS WITH 0, = 10710
TONIA AND CLINTON CO. LANDSAT DATA
STGNATURES, .
NR, ) SoY BARE SENESC,
CLASS PLOTS POINT CORN  BEANS  TREES SOTL VEG.

CORN 37 297 64.0 .3 35,7
SOYBEANS 6 27 3.7 85.2 11.1
TREES 6 47 40.4 2.1 51.1 6.4
BARE SOIL 10 53 100.0
SENESC. VEG. 48 260 .8 4.6 12.3 82,3

107 684
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to that class. The remaining columns form @ matrix shnwing'what percentages
Sf this total were assigned té the waricus- classes.

Recall that the updahing rate, as developed in [1] is defined as
follows for updating after every point. Assume that a sufficient number
of zero measurement vectors have been sampled so that the estimate of the
First mean is the zerp vector.’ Now, if the measurements become vectors
composed entirely of the numbers, 1, the updating rate is the number of
updates required for the mean estimate to become 1 ~e"1‘ This number of

updates has been showm to be approximately - L . A more useful form is

o

to express thisin terme of lines rather than updates, The present program

updates after every 1/3 scan line, each of which contains N points, 1f we
let the variance -of each state variable be Nel because the state wvariation

is assumed to occur after each line rather thanm after each update, then the

updating rate becomes lines, for M materisls, Updating rates on

3746
the order of tens to hundreds of lines proved to be suitable for LANDSAT
agricultural data,

mable 5 shows updating rate information for data sels from 4 different
TANDSAT frames representing different geographical locations. In each case
the value of 0, shown is the vélue which resulted in the maximum percent
corrgct recognition for all known‘?ields in the processed area. Parameters ~
not shown were held constant while processing all 4 data sets,

For the North Dakota and Kansas data the updating rate is of the same
order as the size of typical fields found in the scene. The Michigan and
Illinois data required slower updating to avoid capture since the materials

being classified were more easily confused than for the other data sets.
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TABLE 5
OPTIMUM UPDATING RATES FOR 4 DATA SETS

NUMBER OF NUMBER OF UPBATING

LOCATION MATERIALS  POINTS PER LINE % RATE (LINES)
North Dakota 5 650 5x10;8 26
Kansas 3 101 10_5 5
Michigan 7 310 1078 72
Illinois 6 126 107 383

There is another parameter, by that can have an effect on the
classification accuracy, ¢0 is the initial value of the state error matrix
in simplified form, Tt represents an estimate of the starting error in the
material means. In normal use, the starting means are obtained from fields
near the beginning of the area to be processed. In this case ¢, may be
assumed to be zero., However, if it is known that the starting means are
nor representative of the area being classified, then a non-zero ¢0 is
appropriate, This situation might arise when means from one area are used
to classify another geographically distant area. Thus*¢0 can be used to
introduce a transient updating rate that is different from the steady-state
rate,

Table 6 illustrates the use of non-zero valueé of ¢0 when the means
being used are not representative, Four classification runs were made on
a data set from the North Dakota LANDSAT frame. For the first two runs,
signatures were used which were obtained from the data set being classified,
The runs differed only in having different values of ¢o. For the second
two runs the signature means were increased by 5% to make them intentionalily
non-representative, Again two different values of ¢0 were used,

Table 6 shows percent correct recognition for the four runs. It can-
be seen that a zero value of ¢o is preferable when the correct means are

used but a non~zero ¢0 is preferable when the means are not correct,
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TABLE 6. EFFECT OF TRANSIENT UPDATING RATE

. " — ' T = -2
MEAN GHANGE - ¢, =0 ¢, = 10
o 92,7 90.4
+5 88,1 92,9

Another test of adaptive vs, conventional processing with CITARS data
involved the use of signatures for Fayette Co., data of 11 June to classgify
Fayette Co, data of 10 June, The 11 Jﬁnq signatures were adjusted. using
-a MASC (Multiplicative and Additive Signature Correction) transformation
before being used to classify the 10 June data. The MASC transformation
technique is explained in detail in [2]. The details of the process are
not important to this test, however, since we are using the same
signatures with both classifying techniques. What is signifigant is the
choise of materials in this particular signature set, Signature fof
wheat, water, trees, bare s0il, and weeds “were included. These signatures
are not as sasily confused %s the ones used in the test described above,
so ‘better results would be expected using a&épting.

Table 7 shows the percentage of pixels correctly classified by
conventional processing and adaptive processing for four clagses. Three
sets of figures are given f&r‘aéaptive bProcessing corresponding to different

8

updating rates. Adaptive processing with 81 =10 ° or 19"9 gives results

somewhat better than conventional processing.
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TABLE 7. % CORRECT RECOGNITION WITH AND WITHOUT
ADAPTING FOR FAYETTE CO. CITARS DATA

ADAPTING
/W
NO ADAPTING 6,107 6 =107 8,=10""
WHEAT 93 86 92 93
WATER 95 97 97 97
TREES. 71 66 69 72
OTHER 88 .91 90 88

AVERAGE 86.8 85.0 87.0 87.5

In another test, we tried adaptive processing on a data set for which
the classification accuracy had been poor. The main cause of the poor accuracy
was the classification of 38% of the corn data points as anéther class,
namely trees. We hoped that we could increase the clasgification accuracy
by inserting into the filter a large correlation coefficient between
the corn and trees means.

The data set was collected in the same general area as that used for
the surface water test. The classification accuracy with normal processing
was 62%. With éccuracy this poor, we would not expect that adaptive
processing would be useful. Indeed, the accuracy was reduced to
51%, with 70% of the corn data misclassified as trees. Figure 7 provides
further confirmation of the result that when normal processing has poor
accuracy, adaptive processing has poorer accuracy. It.is also worth
repeating the converse, that when normal processing has high accuracy,

adaptive processing improves the accuracy.
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3
CONCLUSIONS AND RECOMMENDATIONS

The Kalman filter approach to adaptive processing appears to be useful
for classification of LANDSAT data. The approach fails when the data are
difficult to classify, because the successful operation of the filter
depends upon the correctness of the decisions, However, when the decisions
tend to be corfect, each data point is used to update the proper mean
vector whiéh improves the decision rule, thereby improving classification
accuracy.

The use of auxiliary fields appears .to be useful when processing entire
LANDSAT frames. When small portioms of frames are to be processed, e.g.,
LACIE, then there is a choice between using ground-truthed fields as
auxiliary fields or for signature extension. Tests should be conducted to
determine which use of the fields is preferable.

The increases in computer processing time and memory requirements that

adaptive processing causes are probably not significant. There are also
negligigle penalties in processing time and memory when using the colored
noise modification,

For the limited amount of testing that has been performed, all of the
Kalman filter modifications appear to perform the funcétion for which they
were designed. Exactly which modification should be used for a specific
task should be determined for that task by additional testing. The testing
that would be most appropriate at this time would be for the LACIE project.
Let us now consider how such a test program might be conducted,

LACIE data would be used to perform experiments designed to test the
following hypothesis: given a data set on which conventional 1inear rule
recognition processing gives reasonably good classification accuracy, a
decision~directed Kalman filter adaptive. classifying algorithm will prov1de
more accurate classification, More specifically we would compare the
performance of conventional and adaptive processing in three different

applications,
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First, local fecogn@tion: For this case one or more intensive study
sites would be classified using signatures extracted from the same site.
Second, non-local recognition: In this case, signatures from one site
would be uéed to classify a second site. Third, signature extension:

Here, a’'large area containing two intensiée study sites would be processed.
These area would be selected so fhat one study site is near the beginning
of the data to be processed and the other is near the end. Signatures
would be obtained from the first site and classification accuracy would

be determined for the second site.

For each of these tests we must consider the method of evaluation to
be used and the selection of training and test areas. The evaluation
technique would be the same for all three tests, For both conventional
and adaptive processing the total acreage of the materials classified as
well as percent correct recognition for all individually identified
fields would be found, ]

For the local recognition tests, site selection is not critical,

Any of the intensive study sites could be used. Training fields should
be selected from the beginning of the site since the adapting algorithm
assumes that the initial error in the means is zero, The study site could
be divided into training and test sectioms at some arbitrary point
leaving, for example, the first third of the site for training and the
rest for test. Within these areas all fields large enough to contain

at least as many field center (pure) pixels as data channels would be
identified.

Non-local recognition tests would be restricted to the use of two or
more intensive study sites found on the same LANDSAT frame. Four such

instances are listed below:

FRAME DATE INTENSIVE STUDY SITES
1457-16551 23 October Finney & Morton
1635-16395 19 April Saline & Ellis
1689-16382 12 June 1974 Saline & Ellis
1725-16371 18 July Saline & Ellis
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The most stiingent reduirements are presented by the signature
extension test. Here we need two study sites on the same quarter frame
(tape) so that ‘processing can be carried on uninterrupted from one site
to the mext. WNo quarter frame exists which contains any two of the
Kansas sites. The situation for the Texas sites is not known to-us since
we do not yet have the tapes,

If no suitable tape contains two intensive study sites it may be
necessary to use omne stﬁﬁy site and ome SRS area for this test. SRS
areas are smaller and less accurately examined than the intensive
study sites but there are more of them.

We should add one final thought. The adaptive processing techniques
discussed in this report have been tested using a multi-class decision
rule. The techniques should apply directly to the LACIE decision rule,
which is one that uses multiple signatures to form a two-class ratio test,
When the ratios are formed, all of the quadratic functions needed for a
multi-class decision rule are computed. The only computer functions that
would be required to make a multi-class decision, which would be required
when adaptive processing is to be used, are additions and amplitude
comparisons, Comnsequently, the advantages of adaptive processing could be
realized with only a small increase in processing time, probably less than

a five percent increase,
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