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1.0 INTRODUCTION

The problem of classification arises when an observer must

determine the class of an object by investigating a set of measure-

ents or features taken from the object. It is assumed that the

object belongs tc one of a finite number of classes (e.g. crops)

and that each class is described by a probability distribution of its

measurement vectors. When the dimension of the measurement vector

is high and a large number of objects are to be classified the

computational 'oad increases significantly. As a result, one

employs feature selection techniques which allow classification in

spaces of lower dimension while preserving as much as possible the

discriminatory power inherently available in the original measure-

ments.

In the sequel we discuss the computational 1 , rocedure and

associated computer program for a linear feature selection technique.

The technique assumes:

1. A finite number, m, of classes.

2. Each class is described by an n-dimensional multivariate

normal density function of its measurement vectors.

3. The mean vector and covariance matrix for each density

function are kno-.m (or can be estimated).

4. The a priori probability for :ach class is known.

The technique produces a single linear combination of the

original measurements which minimizes the one-dimensional probability
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of misclassification defined by the transformed densities.

The procedure for two classes with equal a priori probabilities

was developed in [4). Subsequent theoretical results from (5),

which are summarized in Section 2.0, form the basis for the proce-

dure described herein. Th^ computational procedure and a description

of the associated computer grogram appear in Section 3.0. Procedures

for using the program and example input decks appear in Sections

4.0 and 5.0, respectively. Section 6.0 contains a Gample output

based on one of the examples from Section 5.0.

I
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2.0 MATHEMATICAL PRELIMINARIES

Let R	 R 2 ,...,11m be distinct classes (e.g. crops of interest)

with known a priori probabilities a
I
, a...,(Am# respectively. Let

x - (x l , x2,...,xn)T E En denote a vector of measurements (e.g. ERTS

multispectral scanner data from either a single pass or several registered
m

passes) taken from an arbitrary element of U JI . Suppose that the
i-1 i

measurement vectors for class R  are distributed according to the

n-dimensional multivariate normal density function

pi(x) = (2Tr) -n / 2
J
Ei 1-1/2exp- Z (x-u i ) TEi l (x-1J	 1 < i < m .

L

We assume that the nxl mean vector u i and the nxn cova •-iance matrix

E  for each clasF n  are known with E i positive definite, 1 < i < m.

The symbol JAI is used to denote the determinant of the matrix A. The

n-dimensional probability of misclassification, denoted by PMC, of
m

objects from U R  is given (see [l]) by
i=l

PMC = 1-	 max aipi(x)dxfl< i <m
En - -

m
1 -	 oci	 pi (x)dx

1.=1

R 
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where the sets Rip 1 < 1 < m, called the Bay es' decision regions,

are defined by

R - ^xEEn : ap (x)-^ max ap W	 1<i <m.
i 	 i i	 1<j<M j j	 -	 -

The resulting classification procedure, ca l led the Bayes' optimal

classifier, is defined as follows:

Assign an element to H i if its vector x of measurements

belongs to R i , 1 < i < m

If B - (b ...,b 
n

) is a nonzero lxn vector and x e En , then
i

v = Bx c E 1 and the transformed measurements (i.e. y - Bx) for class

II i are distributed according to the univariate normal density function

(see [ 1]) given by

(y - Bu ) 2

p i ( y , B ) = (27T)-
1/2(BE1BT)-1/2	

i
eXp -	 1 < i < m	

1i2BEiB T
m

The probability of misclassification g of an object from U H i in
i=1

terms of the transformed measurement y = Bx a E 1 , as a function

of nonzero B, is given by

g(B)	 1 - h(B)

- 1 -	 max cc i p i (y,B) dy
1<i<m

E1	 - -

a  f	 pi(y.B) dy
i=1

Ri(B)
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where the transformed Bayes' decision regions are given by

R (B) - + y e E 1	a P (y, B) - max a p (Y, B)	 1 < i < m
i	 i i	 1<j<m j j	 -	 -

We use h(B) to denote the probability of correct classification for B.

The computatic:21 procedure and associated computer program described

in the sequel pr,:sent a method for determining a nonzero l x n vector B

which minimizes g, or equivalently, which maximizes h. The method

yields a linear feature selection procedure in that classification is

ultimately performed in E 1 using only a single feature; namely, an

optimal linear combination of the original measurements. The classi-

fication procedure in E 1 is described as follows:

If B is a nonzero lxn vector which minimizes g, then assign

an object to H i if, for its measurement vector x,

Bx a R i (B) .

It is readily verified that h(tB) = h(B) for each scalar t f 0,

and as a consequence the problem reduces to maximizing h over the

compact set ofl x n vectors of norm one. The existence of a maximizing

B follow; from the continuity of h.

In seeking a maximum of h, it is natural to consider the

differentiability of h with respect to the elements of B. In the

sequel we make use of the Gateaux differential of h at B with

increment C, denoted by dh(B;C), and defined (if the limit exists)

by



6p i (y,B;C) - lim
s+0

Pi(Y.B + sC) - PS(Y,B)

s

6

6h(B;C) - lim 
h(B + sC) - h(B)-

B-0
s

e
for a lx n vector C. If, for a given nonzero B, the above limit exists

for each lxn vector C, then h is said to be Gateaux differentiable at B.

Similarly, if B is a l x n vector, we define (when the limit exists)

for a l x n vector C. For an excellent discussion of Gateaux differentials

see [7].

The computatienxl procedure is based on the following theoretical

results from [S].

Lemma. Let B be a nonzero l xn vector. Then (omitting subscripts)

T	 T

6 P(Y, B ; C ) _ - p(Y,B)	
CF.BT

 - Cul	
(Y - BU) - - CEB 2 (y - BU)2

I BZB	 BEB	 (BEB )

for each l x n vector C.

Theorem 1. Let B be a nonzero l x n vector for which aip i (Y,B) I ajpi(Y,B)

for i # J. Then h is Gateaux differentiable at B, and

m
6h(B;C)	 ai	 6pi(Y,B;C)dy

i=1

Ri(B)



Theorem 2. Let B be a nonzero l x n vector at which h assumes a maximum.

Then h is Gateaux differentiable at B.

•
By substituting the expression foz 6p i (y,B;C) given by the Lemma,

	

•	 into the expression	 from Theorem 1, and using integration by parts,

we obtain the following result.

Theorem 3. Let B be a nonzero lx n vector for which a ip i (y,B) I ajpi(y,B)

for 1 f J. Then h is Gateaux "ifferentiable at B, and

	

m	 CE BT

	

6h(B;C) _ - I	 a ip i ( Y. B )	 i T (y - Bu i ) + CPi

	

i= 1	 BEiB

. R  (B)

where the notation	 denotes the sum of the values of the

Ri(B)

function at the right endpoints of the intervals comprising Ri/B)

minus the sum of its values at the loft E

If B is a nonzero l x n vector which c

then B must satisfy the vector equation

6g(B;C I )	 0

aB

dg(B;Cn)	 0

where C j , 1 < j < n, is a 1r n vector wit'.
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and zeros elsewhere. Using the formula for ^ resulting from

Theorem 3, and using the fact that -3B
aB	

- 38 , we obtain a numerically
a8

tractable expression for the variation in the probability of misclassi-

fication g with respect to B. The use of this expression in a

computational procedure for obtaining a nonzero B which minimizes g

is discussed in subsequent sections.
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3.0 COMPUTATIONAI. PROCEDURE

The computational procedure for determining the nonzero l x n vector

B which minimizes the probability of misclassification g with respect to

the one-dimensional transformed density functions is embodied in the

FORTRAN program LFSPMC. Included in the program is the capability to

classify input measurement vectors tieing the computed B vector. In

addition, the program provides the capability of estimating the pro-

bability of misclassification in the original feature space.

Apar	 : the var:,.ous program parameters and option flags (discussed

in th ,. sequel), the basic input data to the program consists of the mean

vectors anJ covariance matrices which comprise the class statistic s deck.

All input data to the program is from unit reference S (usually punched

cards). All output from the program is printed on unit reference 6.

Several additional options are built into the program which provide the

user with the capability of making successive runs using designated

subsets of the original classes or features already provided by the class

statistics deck.

The program is divided into the following six subsections which

are discussed in turn in the sequel:

Parameter Initialization

Initial Vector Determination

Optimization Algorithut

Computation of g(B) and

Classification Procedure

Estimation of PMC .
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3.1 Parameter Initialization

All input variables to the program are of a fixed format and must be

entered as shown in Section 4.0 and as illustrated in the examples in

•	 Section 5.0. These variables are:

M . . . . . . . . Number of classes, <MTOT.

N . . . . . . . . Dimension of feature space, <N-k PC.

CLS . . . . . . . Class names, 12 characters, double

subscripted array.

MTOT. . . . . . . Number of classes in the class

:..atistics deck.

NFPC. . . . . . . Number of features per class in the class

statistics deck.

K,MS. . . . . . . Numeric labels of the M designated

classes from the MTOT classes in the

class statistics deck, single subscripted

array.

IFEA. . . . . . 	 Numeric labels of the N designated features

from the NFPC features in the class

statistics deck, single subscripted array.

COVARB.	 Input covariance matrices, triple

subscripted array.

XMEANB. . . . . . Input mesa vectors, double subscripted array.

APROB	 A priori probabilities for the M classes,

single subscripted array.
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A variety of flags must be initialized in the program during each

run in order to select program options and establish program controls.

These flags are designated as follows*

IST	 Class statistics deck input flag

0 input a new class statistics deck

according to a specified format

(discussed below).

1 use current class statistics deck.

IOP . . . . . . . Computation flag

= 1 compute the minimizing B vector.

2 clacaify measurement vectors after

computinb the minimizing B vector.

= 3 classify measurement vectors usi:g the

current B vector

ICLSN . . . . . . PMC estimation flag

= 0 no computation of estimated PMC in

N-dimensional space.

= 1 compute estimated PMC in N-dimensional space.

Parameter initialization (Fig. 1) is accomplished by entering M, N,

CLS, IST, IOP, and ICLSN. If IST = 0, then MTOT and NFPC are entered

for the new class statistics deck. If MTOT differs from M or NFPC

differs from N, then the desired class and feature numbers, KCLS and

IFEA, respectively, are entered. If equality between MTOT and M and

between NFPC and N occurs, then the program sets the class and feature
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numbers in ascending order. In either case, the corresponding mean

vectors and covariance matrices are defined in XMEAN and COVAR

respectively. The class statistics deck is comprised of the MTOT mean 	 #

vectors in the order of ascending class numbers followed by the MTOT

covariance matrices in the order of ascending class numbers. The

entries of each mean vector in the order of ascending feature number

are entered according to the format (5X, 5D15.8). The NFPC(NFPC + 1)12

elements on and above the diagonal of each covariance matrix are

entered by column in the format (5X, 5D15.8). .t is assumed that the

diagonal elemerts of each covariance matrix are in order of ascending

feature number. The first entry of each new mean vector or covariance

matrix starts on a new card. The values for APROB are entered for

each run regardless of the value of IOP. The mean vector, covariance

matrix, aad a priori probability for each c'* the designated classes

are printed. Control is then given to the minimization routine

BVECT or to t1.e classification routine CLSNEW according to the value

of IOP. Computation of the estimated PMC in the original feature

space is determined by the value of ICLSN.



Fig. 1. Para

SUBROUTINE PRDIM

SUBROUTINE BMHT
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3.2 Initial Vector Determination

A nonzero lxn vector B which minimizes g cannot, in general, be

obtained in closed form, and a numerical optimization (minimization)

procedure is required. Any such optimization algorithm must be given

an initial vector B	 Two methods for determining initial vectors are
0

provided by the input flag IZ.

IZ . . . . . . . .	 Initial vector flag

0 compute the initial vector B .
0

1 input the initial vector B .
0

When IZ = 0, the initial vector B is computed within t11e
0

program. For the special case of two classes with equal a priori

probabilities, B is computed iii SUBROUTINE BC2CP using the formula
0

(see [4], 151)

B = (U -u ) T (E +E )-1
0	 1	 2	 1	 2

In all other cases the initial vector is computed in SUBROUTINE BCOMP

using the procedure described below (see [9], [61)•

Given ail P i , and E i , 1 < i < m, let

1 mC
•	 E II 

m ill 
ai Ei

and determine (using SUBROUTINE EIGEN) an nxn matrix A such that

A F. AT = I. :.etting ui = Au,, 1 < i < m, the problem can then be

*Provided by TRW Systems, Inc. - Programmer: Jane Montgomery
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reduced to finding a fixed point of the !unction C defined as

follows:

For a given lxn vector C, choose indices i j , 1	 j < m, for

the u' i 's and a i 's such that

Cu' i < Cu' i < . . . < Cu' i 	.
1	 2	 m

For

	

In (01
/ai	 C ( I i	 +U' i )

ajC u , j -u+1 	+	 j21 --^	 1 < j < m-1

\ ij+l	 i
we let

m-1

F (C) = y ai Pi (a j , C) (u' 1	
-u' 1 )

j = 1	 j	 j	 j+l	 j

Then

G(C) =

	

	 F(C)T
IF(C)T11 2

To find a fixed point of G (C =G(C)), we let C
o 	 j

= 11	 - u'	 , where
i 

u1 j l 1 
2= max 

I I p ' r - u' S 11 2 .

and compute successive vectors C  using the mean iteration formula

(see (8])



1	 1

C
k+1	 k+1 Ck + K. C(C

k), k - 0, 1, 2, ... .

The number of iterations is specified by the internal parameter ITER

(25 is a reasonable value). Upon completion of the iterations, the

final C k , uay C, is used to compute an initial vector B o from the

formula

B = CA
0

16
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IZ^I	 O
SUBROUTINE

BCOMP

MON OR	 O
PROB(I)OAPROB(Z)	 SUBROUTINE

BC2CP
FRCTnR

YES	 (L +L )

E M i!1"i Ei

CALL EIGEN
TMU : EIGENVECTORS OFE
FB : EIGENVALUES OFF

R(I IJ)w__
TMU( I Ll )/ ,IFB(I )

LC
0 ~u i^J

NORMALIZE C

	

1	 2

1NT13
A TA-L I + L

INVERT A

COMPUTE

(E +E )-1

	

1	 2

B
0

) r (E +E )-1
1	 2	 1	 2

TO
EE

(FIG 3)

COMPUTE CU,



3.3 Optimization Algorithm

The numerical minimization algorithm used to find a local

minimum of g is SUBROUTINE DFMFP from the IBM Scientific Subroutine

Package [10]. The procedure is based on the method of Fletcher and

'awell [3]. Computation of the minimizing B is controlled by

SUBROUTINE BVECT which initializes the following input parameters

used by DFMFP.

EST . . . . . . . 	 An estimate of the minimum value

of g(B).

EPS . . . . . . . 	 Tolerance for the expected absolute

error of the optimization algorithm.

Experience has shown 10 4 to be a

reasonable value.

LIMIT . . . . . . . Maximum number of iterations for

the optimization algorithm. Fifty

iterations appears to be a reasonable

value.

The iteration routine parameters may be defined internally if

the user's application is o` - repetitive nature. Calculation of

Lg(B) and 
3B 

is discussed in the following subsection.

18
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SUBROUTINE
BVECT

TO RR
(FIG S)

EE
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AFMFP
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ERRORS
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TO LL
(FIG 6)

ICLSNmI

TO
STRRT

Fig. 3. Minimization of g(B) Flowchart.
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3.4 Computation of g(B) and B

The computation of g(B) and ^ using the expressions given in

Section 2.0 is performed in SUBROUTINE FUNCT (Fig. 4). The function

subprogram DPHI computes

0(a) Z +-!	 fE RF (a/ 	 )

used in the computation of g(B), dhere ERF is a library function

subprogram give- by

a
_ 1	 I

	ERF(a) = 2(2 n) 2 J	 exp [- Z t 2 j dt .

0

	

The transformed density functi ons p i (y,B), 1 < i	 m are evaluaLvd in

the function subprogram XNDF.

In order to evaluate g(B) and ^ , it is necessary to determine

the regions R i (B), 1 < i < m, defined in Section 2.0. An equivalent

definition of the regions R i (B) is given by

R i (B) = {y E E 1 : f ij (y,B) > 0 for each J1 , 1 < i < m ,

where

aipi(y,B)
f ij (Y,R) 

= In a P (y, B)
+ i f j , i , j	 1,	 m

•	 jj

Oi j (B)Y 2 + 26 i j ( B )Y + Yi j (B)

D

with
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rn i j (B)	 B E  BT - B L j BT

Si 
j (B) - (B E  BT) Bui - ( B E  BT)BU.

'Y	 (B) - (B E i BT )(BU j ) 2 - (B E i BT)(BUi)2

a2 BE BT
+ (B E BT )(B E BT ) In	 i	 )

aj 2 B	 B

To determine the regions R i (B), 1 < i < m, the roots of the quadratic

equations f ij (y,B) = 0 are first determined. For the case where

n ij (B) - 0, a single root

CI

(Bu j ) 2 - (BU i)
2
 + (2 In ^i ) (B E i BT)

y i j (B) _
2 (Bµ j - Bu i)

is obtained which reduces to

Bu i + Bp^

y i j (B)	 2

when ai - aj . it the case where nij (B) :4 0, the roots of f ij (y,B) - 0

are computed using the quadratic formula.

Once all the roots y ij (B) of the quadratic equations t ij (y,B) - 0,

i # j, i, j - 1, 2, . . . , m, have been found, we determine the

regions Rj (B), 1 < j < m, by the follow!ng ordering defined on a

(possibly proper) subset of the rootE:



1

a) Choose 1  such that

B E	 BT a ma;; B E BT
1 1 	1<j<m	 j

If

B E BT - B T  BT max B E i ET
j	 1<i<m

for j 0 k, then choose 11 such that

BW i 	min {BU j , Bu k}

1	 j,k

b) Choose 1 2 such that

y	 = min y
1211	 1<j<m ji1

c) Given i t and 1 2 , choose 1 3 such that

min {	
Y	

>
yi 3 i 2	 1<j<m yji 2 ji2	

yi211}

d) In general choose ik+1 such that

y i	 i m min {y 

j i 
lY j i > Y i i	 } .

k+1 k	 1< j<m	 k	 k	 k k-1

pro% ided

22

{y j1 

k 

lyji 
k 

>y1 
k i k-1 } 

00

If the above set is the null set, the procedure is terminated.
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If in the above procedure,

yi 	
min {

k+l ik	 1<jkm yjik{y
	 >jik	

yikik-1

for r choices (j l' " ''Jr) of ik+l, then choose ik+l such that

Bu i 	min lBU JBU	 > y i 	 i }
	k +1	 1<r < s	 js	 ^s	 k+l k

if the above set i` nonempty; otherwise choose ik+I such that

BP 
	 " min	 BV,

	k+1	 l^r <g 	js

The regions R j (B) are then given by

k j (B)- U { y l yii 	 <y<yi	 i }

I 
	 k k-1	 k+1 k

where

I 
	 - { ik { ik ' j } 9 j ' 1, 2, .... m	 .

For both the initial B vector and the final normalized B

vector, SUBROUTINE FUNCT outputs R (B), B E i B 
T
', Bu i , g(B), A

DB

and B. For the final normalized B, the entries 
qij 

of the

•	 confusion matrix are computed from the formula

	

q i j	 p j ( y , B)dy

Ri(B)

and output.
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The parameter IOUT is an internal output control flag pravidcd to

SUBROUTINE FUNCT.

IOU, . . . . . . . Control flag

-1 first pass (B )
0

- 0 intermediate iteration of DFMFP.

- 1 last pass (final B).
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Fig. 4a. FUNCT Flowchart
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FIND R (8)
i

I OUT+

yt:y OUTPUT , 
i( 

B )

COMPUTE ag
all

ZOMPUTE g( 8 )

IOUT--1

OR

I OUT= 1

(OUTPUT

ig

c^,BE i B , Bu

RETURN

0	 Fig. 4b. FUNCT Flowchart
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3.5 Classification procedure

Provision is made for classification of labelled measurement

vectors using the B vector and associated decision regions determined

by the minimization procedure (:'ig. 5). The format of the input data

is provided by the user at object time. Input parameters are as

follows:

NFPC . . . . . .	 number of features per class in the

input vectors.

IO . . . . . . .	 output flag.

0 no output of vectors.

- 1 output measurement vectors.

MI . . . . . . . . number of vectors per class for

input data, single subscripted array.

IFEA . . . . . . . numeric labels of the N desired features

from the NFPC features in the measurement

vectors, single subscripted array.

FMT . . . . . .	 format of the input data, single subscripted

array.

If NFPC differs from N, the desired feature numbers are input. Each

input vector is transformed to one dimension and classified according

to the rule given in Section 2.0. An error matrix is constructed

which counts the number of labelled vectors classified into each

class. Output of the original classified vectors is under the

control of the flag 10.



SUBROUTINE. ERRMAT outputs an estimated confusion matrix computed

from the error matrix generated by the classification routine. The

ij th entry is the fraction of the vectors from class j which are

classified into class 1. The percent of misclassification, defined

as the percent of the total vectors which were misclassified, is

computed and output. Control is then returned to the start of the

parameter routine or else is given to SUBROUTINE RANCLN according

to the value of ICLSN.

ze



29

RRI SUBROUTINE CLSNEN

SET IFEH TO
USURL ORDER

ZERO ERROR
MHTRIX

r INPUT
NFPC.IO'rMI,

FP

INPUT
IFER

I NPUT
FMT

INPUT
_VECTOR

I
U M=F1 Ê7,CT

CLFI	 FY

INCREMENT
RROR MHTRIX

IOQI	
Y

NO

ILL VECTOR!
CLHSSIFIED

YES

11UTt'^j i
VECTOR

Fig. 5a. Classification Flowchart
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5UBROUTINE ERRMHT

OUTPUT ESTIMAT

COMPUTE
x MC

OUTPUT
A MC

ICLSN- I

YES	 6070

LL	
STHRT

F'IG 6

Fig. 5b. Classification Flowchart
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3.6 Estimation of PMC

SUBROUTINE kANCLN (Fig. 6) provides an estimate of the probability

of misclassification in the original feature space. Random vectors

are generated using the class statistics of the original problem.

The internal parameter NPC determines the number of vectors to be

generated for each class. The user inputs the seed value for the

random number generator, ISE, in order to insure the desired degree

of randomness. SUBROUTINE GAUSS [10] computes a vector of N(O,I)-

distributed random numbers using SUBROUTINE RANDU [10] to first

generate a vector of uniformly distributed random numbers. Each

vector so generated is used in the evaluation of the log of the

density function for each class. SUBROUTINE MCHLSK (see [111)

computes the modified Cholesky decomposition of the covariance

marr:x in order to simplify the evaluation of the N-dimensional

density function. The class whose density function times its a priori

probability assumes the maximum value at the generated vector is

assigned to that vector and the error matrix is incremented accord-

ingly. The generated vector is printed if the value of the user

entered parameter IO - 1. SUBROUTINE ERRMAT is called to print the

estimated confusion matrix and to compute an estimate of the

probability of misclassification and percent of misclassification.

i!
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L l SUgR[lUT I NE RHNCLN

INPUT
10^ 15C

ZERO ERROR
MHTR IX

DECOMPOSE

TR I HNGULHR I ZE 7;i

GENERHTE N(0. 1 )
N—DIMENSIONHL

VECTOR

GENERHTE N(u i E 1 )

VECTOR

CLASSIFY VECTOR
USING

BAYESIAN CLASSIFIER

INCREMENT
ERROR MHTRIX

TN O	 OUTPUT
VEC'rOR

ILL VECT pRS	 YE
CLHSS 1 F I ED
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Fig. 6a. Estimation of PMC Flowchart
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PMC Flowchart

OUTPUT r1NHL
SEED VRLUC

OUTPUT ES'iIMATED/ SUBROUT I NE ERRMRT
ONFUSION MATRIX/

COMPUTE:
x MC, PMC

OUTPUT
X MC A PMC
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4.0 OPERATING PROCEDURE

In order to simulate object Lime dimensioning, the user must

•	 provide a calling routine of the following form:

DIMENSION ALRGE(IDIM)

DOUBLE PRECISION BLRGE(IDIM2)

COMMON MX,NX

MX

NX

CALL PRDIM(ALRGE,BLRGE)

STOP

END

The values of MX, NX, IDIM and IDIM2 are determined as

follows:

MX - maximum value of MTOT for the program run.

NX • maximum value of NFPC for the program run.

IDIM - MX(4+MX+NX(n+1 )) + NX(^NX + 2)

IDIM2 - MX(3+4MX+3NX+2NX Z ) + NX(NX/2 + 1112)

If available storage is not a problem, the user can incorporate

maximum fixed dimensions into the program.

The program is suitable for interactive operation with the

inclusion of parameter request messages. The program was written

in IBM Fortran G with development on the Texas A&M University IBM

360-65.

34
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Input parameters are of fixed format and must be in a specified

order. The form and order are illustrated in Fig. 7. Sample input

decks are presented in Section 5.0. In order to demonstrate the

z1assification option, the standard iris data set from [2j is used.
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START

Col. 1

MW	,No

class names

(12 characters, one name per card)

IST-_ _,IOP-_ _,ICLSN-_

f	 Col. 1

k!	MTOT-_ _,NFP,

means

i

covariances(
i

Col. 1
	

Yes

KCLS-

IFEA-

U

Fig. 7a. Input Parameter Deck Set-up



37

Q

a priori probabilities	 (5X,5E15.8)

Col. 1	 Yeb

EST-. — _ _,EPS-_ __ _E_ _ —,LIMIT--

IZ-1?	 No

Yes

B vector	 (5X,7F10.5)

IOP-2	 No
or

IOP-3?



Col. 1

•	 (input dat

input data

Col. 1

I0-	 ,ISE
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G

lz)D

I	 i	 !_

Fig. 'C• Input Parameter Deck Set-up
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5.0 EXAMPLE INPUT DECKS

Example 1.

9 class Flight Line 210 data.

•	 4 feature subset (9,11,2,101 of 12-dimensional statistics deck

read in.

compute minimizing B vector.

compute estimated PMC in 4-dimensional feature space.

equal a priori probabilities.

compute B
a

M-09,N-04
CLASS 1
CLASS 2
CLASS 3
CLASS 4
CLASS 5
CLASS 6
CLASS 7
CLASS 8
CLASS 9
IST-00,IOP-01,ICLSN-01
MTOT-09,NFPC=12

statistics deck
K LS=01,02,03,04,05,06,07,08,09
IFEA-09,11,02,10

.11111111	 .1111111	 .1111111	 .1111111	 .1111111

.11111111	 .1111111	 .11111111	 .1111111
EST-.250,EPS=1.00E-04,LIMIT-050,I2-00
10-00,ISE-1110001110

Example 2.

9 class, 12-dimensional.

use previous statistics.

compute minimizing B vector.

compute estimated PMC in 12-dimensional feature space.

equal a priori probabilities.

compute B .
0

I 
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i

M-09,N-12
CLASS 1
CLASS 2
CLASS 3
CLASS 4
CLASS 5
CLASS 6
CLASS 7
CLASS 8
CLASS 9
IST-01,IOP-01,ICLSN-01

	

.11111111	 ,11111111	 ,11111111

	

,11111111	 ,11111111	 ,11111111

EST-.250,EPS-1.00E-04,LIMIT-050,IZ-00
IO-00,ISE-0246897531

,11111111	 ,11111111
,11111111

Example 3.

3-class, 12-dimensional.

use previous statistics.

compute minimizing B vector.

compute estimated PMC,

equal a priori probabilities.

compute B .
0

M=03,N=]2
CLASS 1
CLASS 2
CLASS 3
IST-01,IOP-01,ICLSN=01
KCLS=01,02,03
IFEA-01,02,03,04,05,06,07,08,09,10,11,12

.33333333	 .33333333	 .33333333
EST=.250,EPS-1.00E=04,LIMIT-050,IZ-00
IO=00,ISE=4562301852

Example 4.

9 class, 12 dimensional.

use previous statistics.
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compute minimizing B vector.

compute estimated PMC.

unequal a priori probabilities.

compute B .
0

M-09,N-12
CLASS 1
CLASS 2
CLASS 3
CLASS 4
CLASS 5
CLASS 6
CLASS 7
CLASS 8
CLASS 9
IST-01,IOP-01,ICLSN-01

	

.05	 .05	 .20	 .10	 .15

	

.02	 .08	 .15	 .20
EST-.250,EPS-1.00E-04,LIMIT-050,IZ-00
IO-00,ISE-1234567890

Example 5.

2 class, 12-dimen,,ional.

use previous statistics

compute minimizing B vector.

equal a priori probabilities.

compute B
0

M=02,N-12
CLASS 3
CLASS 4
IST-01,IOP=01,ICL5N-00
KCLS=03,04
IFEA=01,02,03,04,05,06,07,08,09,10,11,12

	

.5	 .5
EST=.250,EPS-LOGE-04,LIMIT=050,IZ=00
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Example 6.

3 class iris data.

4-dimensional statistics deck read in.

compute minimizing B vector.

compute estimated PMC.

equal a priori probabilities.

read in B .
0

classify 10 measurement vectors from each class.

M-03,N-04
VERSICOLOR
SETOSA
VIRCINICA
IST-00,IOP-02,ICLSN-01
MTOT-03,NFPC-04

statistics deck
.33333333	 .33333333	 .33333333

EST-.2jO,EPS-1.00E-04,LIMIT-050,IZ-01
BVEC-0.0	 1.0	 0.0	 1.0
NFPC-04,10-01
MI-010,010,010
(4F2.1)

measurement vectors
I0-00,ISE-9876543210

Example 7.

2 class, 4-dimensional.

use previous statistics

compute minimizing B vector.

compute estimated PMC.

equal a priori probabilities.

compute B
0



M-02, N-04
VERSICOLOR
SETOSA
IST-01,IOP-01,ICLSN-01
KCLS-01,02
IFEA-01,02,03,04

.5	 .5
EST-.250,EPS-1.00E-04,LIMIT-050,IZ-00
IO-00,ISE-2369805804

43
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6.0 SAMPLE OUTPUT

The sample output appearing on the following four pages was

generated as a result of using the input deck given in Example 6 of

Section 5.0.
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()F VW	

Y
P.	 '



M Or,
1 m

N ra
0W
u c

O
v. G
V.

v ^
U

K
O

1 O
hN

v r

M O
O

I ^
V V

Gu
LA

r. C
V d
V:
^ ry
J
U

n J
I O
V
v, .p

0-4 CA
1 IP

•

O
W

u O
O

3r r
N
1 M
Ju
N
O

1 O
P

V
V d

J
•:

•n O
O

1 O

V t

O
W

^O
N w`
N
a K

u

R
O

1 O
R

N
V i

t..

NO N r] N O ^^ O
r^	 O	 Q	 A

1 O	 1 Y'`	 1 N	 1 J
y r y ^+ Y. r Y r
^	 a	 a	 a
O G O d
W W W W
r r r
uCl Y A Y O u•
_C .-O — O ► r
Y	 v J N r V h
N	 N • V1	 N.1 M c M,	 c J
J	 J	 J	 J
^ u u u

r.	 h	 N	 N
V O O

I O	 I O	 1 0	 l i
C	 J	 N ^

3 •f	 V1 kr	 V. Cl	 ^^ r
Q	 a	 a	 b
u	 V	 U	 1.

K O M C M C
O A n

1 0	 I o	 I P
V l V J V Ja	 K	 a
O O O
W W W
Y ^+ 4 0 Y r•-. Cl	 ... V	 C
V n V•	 V C
N • N • N

Q 1.1

U V u

M	 T	 w.O	 O	 r1 0 1 0 I A
N	 A^	 •-•

V	 V ^ N
V r V It V 1a	 a	 a

J
V	 L	 l l

M O n [` ^^ A .-. O
A	 rN	 O	 n

I r	 I J	 1 0	 1^

Y J V t V V+ V V'a	 a	 a	 a
O C G O
V W W W
r r r r

C ..	
Y O 4 0

O	 /	 O	 C
N 4 V 4 V Q ^ L
h •	 V^VI .	 Vi ^
< N 49r. < h t P
J	 J 
u	 1 1	 U	 L

w	 !^	 T	 M
O	 O O

I O	 1	 1 0	 1 0
J	 ^► 	 !	 •n

V	 •/	 V'	 y
F V h U . .L	 V. 1a	 a	 a	 r

J	 ^
u	 V	 1	 l•

49

c o o O 0 0 0 0 A o O o Q 0 0
u	 G1	 Q	 O	 O	 O	 O	 O	 A	 O	 O	 O 0	 O	 qN	 d	 ^	 N	 N	 V1	 m	 m	 m	 ..n	 O	 P	 C	 N	 Y^

O	 O	 O	 fl,	 N	 ..	 .-•	 ..	 N	 .r	 r•	 N	 N	 r

ORIGINAL PAGE IS
OF PWR QUALFEY



50

i
1

ORIGINAL PAGE IS

OF Y VUR QV M-JTY

V

f^

ti
N

a
r z

G
1 ^'

H
z

^ W
O I

` t O
ac

►r LL 2
M 7
0% W Z
• C^
M

OC V
11 W

z Q: O
G 7F

k ..
^.

-^
Z

x u
.- w

r a a >

` «u. ca .4c
I w C I W

F
N

7.
7 a

cr

N O p .r u N Z h r
Q v _ , V O G	 Q

_ p ^: O r t Z O O	 t
C f I > c >va c. .,i

°o
G s w C

C O C O C LL G C O O	 G

1 O r O N r T O .-	 r
^ LL

• C"
z
W J

O a
d o f-

►+^ n C%
o 1 o

U
s

r
2

r-
►- o'

h
P

M
o	 c.

V C
u. u

r
•-

• •
O

u
C Y

V' C
u O O	 4

m
A

w
m

7
Ur
{
v
urHN
VN
I

u
Q

T
11

s
W
G

O
l
a
n

U
W

T

u



51

REFERENCES

I

1. T. W. Anderson, An Introduction to Multivariate Statistical

Analysis, John Wiley and Sons, New York, 1958.

2. R. A. Fischer, The use of multiple measurements in taxonomic

•	 problems, Ann. Eugenics 7(1936), 179-188.

3. R. Fletcher and M. J. P. Powell, A rapidly convergent descent

method for minimization, Comput. J. 6(A.963), 163-168.

4. L. F. Guseman, Jr., and Homer F. Walker, On minimizing the

probability of misclassification for linear feature selection,

JSC Internal Technical Note, JSC-08412, Johnson Space Center,

Houston, Texas, August, 1973.

5. L. F. Guseman, Jr., B. Charles Peters, Jr. and Hs , ,. - . r F. Walker,

On minimizing the probability of misclassification for linear

feature selection, Ann. Statist. (to appear).

6. L. F. Guseman, Jr., and Bruce P. Marion, Obtaining initial

vectors for minimizing the probability of misclassification,

Contract Renort #1, NAS-9-13894, Texas A&M University, Department

of Mathematics, Sept. 1974.

7. D. G. Luenberger, Optimization ^y Vector Space Methods, John

Wiley and Sons, New York, 1969.

8. W. Robert Mann, Mean value methods in iteration, Proc. Amer.

Math. Soc. 4(1953'/, 506-510.

9. J. L. Solomon and B. Charles Peters, Jr., A simplified version

of locating stationary points of the transformed probability of

correct classificr.tinn, 0,.t 3rint. ii

I
i
i



j2

10. System/360 Scientific Subroutine Package, Version III,.5th

Edition, Form GH2O-0205-4, International Business Machines,

August, 1970.

11. D. L. Van Rooy, M. S. Lynn, and C. H. Snyder, The use of the

modified Cholesky decomposition in divergence and classification

calculLtions, ICSA-275-025-008, Institute for Cewputer

Sciences and Applicatimo , R!.ce University, May, 1973.


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf

