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1.0 INTRODUCTION

The problem of classification arises when an observer must

determine the class of an object by investigating a set of measure-
.ents or features taken from the object. It is assumed that the
object belongs tc one of a finite number of classes (e.g. crops)
and that each class is described by a probability distribution of its
measurement vectors. When the dimension of the measurement vector
is high and a large number of objects are to be classified the
computational ‘oad increases significantly. As a result, one
employs feature selection techniques which allow classification in
spaces of lower dimension while preserving as much as possible the
discriminatory power inherently available in the original measure-
ments.,

In the sequel we discuss the computational procedure and
associated computer program for a linear feature selection technique.
The technique assumes:

1. A finite number, m, of classes.

2. Each class is described by an n-dimensional multivariate

normal density function of its measurement vectors.

3. The mean vector and covariance matrix for each deasity

function are known (or can be estimated).

4, The a priori probability for :ach class is known.

The technique produces a single linear combination of the

original measurements which minimizes the one-dimensional probability




of misclassification defined by the transformed densities.

The procedure for two classes with equal a priori probabilities
was developed in [4]. Subsequent thecretical results from [5],
which are summarized in Section 2.0, form the basis for the proce-
dure described herein. Th= computational procedure and a description
of the associated computer program appear in Section 3.0. Procedures
for using the program and example input decks appear in Sections
4.0 and 5.0, respectively. Section 6.0 contains a sample output

based on one of the examples from Section 5.0.
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2,0 MATHEMATICAL PRELIMINARIES

Let Hl. nz....,nm be distinct classes (e.g. crops of interest)
with known a priori probabilities al, uz,...,um, respectively. Let
X = (xl. xz.....x“)'r € E" denote a vector of measurements (e.g. ERTS

multispectral scanner data from either a single pass or several registered
m

passes) taken from an arbitrary element of U Il
i=1

i Suppose that the

measurement vectors for class Hi are distributed according to the

n-dimensional multivariate normal density functioa

p ) = (2m) 2|z | ey [- 3 e eeup |, 1cicnm.
L

We assume that the nx1 mean vector ui and the nxn covariance matrix
Ei for each clase II1 are known with Ei positive definite, 1 < i < m.

The symbol |A| is used to demote the determinant of the matrix A. The

n-dimensional probability of misclassification, denoted by PMC, of

m
objects from U Hi is given (see [1]) by
i=1
PMC = 1 - ‘max aipi(x)dx
1<i<m
gD
Paf
=] - o p, (x)dx "
o i i
R

i




where the se\s R, 1 <4 <m, called the Bayes' decision regions,

are defined by

n
R, = (%€ E : uipi(x) - 1;;;- a, j(x) sitiCm.,

The resulting classification procedure, ca led the Bayes' optimal

classifier, is defined as follows:

Assign an element to Hi if its vector x of measurements

belongs to Ri' 1£4<a .

If B = (b;"'°'bn) is a nonzero lxn vector and x € E“, then

v = Bx € E! and the transformed measurements (i.e. y = Bx) for class

IIi are distributed according to the univariate normal density function

(see [ 1]) given by

2
& B (y = Bu,)
p, (y,B) = (2m) /2 (g5 oM 2exp|- ——2— | , 1<1<nm.
i 5 z -
23213
m
The probability of misclassification g of an object from Llni in
i=1

terms of the transformed measurement y = Bx € El, as a function

of nonzero B, is given by
g(B) = 1 - h(B)

-l-f max o, p,;(y,B) dy
1<i<m

m
"y ,B) dy ,
12:-1 “1_[ P (v,B) dy
Ri(B)

gt s, iy

R
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where the transformed Bayes' decision regions are given by

R,(B)= yekE':a, p(y,B) = max a, p,(y,B) ! , 1 <i<m .
 § - B | 1:)5- j J o e

We use h(B) to denote the probability of correct classification for B.

The computaticn2l procedure and associated computer program described

in the sequel prusent a method for determining a nonzero 1l X n vector B
which minimizes g, or equivalently, which maximizes h. The method
yields a linear feature selection procedure in that classification is
ultimately performed in E! using only a single feature; namely, an
optimal linear combination of the original measurements. The classi-

fication procedure in E' is described as follows:

If B is a nonzero 1xnvector which minimizes g, then assign
an object to II:l if, for its measurement vector x,

Bx € R1(B) $

It is readily verified that h(tB) = h(B) for each scalar t ¢ 0,
and as a consequence the problem reduces to maximizing h over the
compact set of 1 Xn vectors of norm one. The existence of a maximizing
B follows from the continuity of h.

In seeking a maximum of h, it is natural to consider the
differentiability of h with respect to the elements of B. In the

sequel we make use of the Gateaux differential of h at B with

increment C, denoted by Sh(B;C), and defined (if the limit exists)

by




Sh(B;C) = lim 9_{3_+_-_¢£_-_h(!l
s+0

for a 1xnvector C. If, for a given nonzero B, the above limit exists

- for each 1xn vector C, then h is said to be Gateaux differentiable at B.

Similarly, if B is a 1xn vector, we define (when the limit exists)

py(y,B + sC) - p, (y,B)
61’1()“3;3) - :i; et 8

for a l%Xnvector C. For an excellent discussion of Gateaux differentials

see [7].

The computaticral procedure is based on the following theoretical

guulu from [5].

Lemma. Let B be a nonzerolXn vector. Then (omitting subscripts)

T
ép(y,B;C) = - p(y,B) -CZLT . (y - Bu) - __c%__z (y - Bp)
BLB BLB

for each 1Xn vector C.

Theorem 1. Let B be a aonzero 1Xn vector for which aipi(y,B) 7 ajpj (v,B)
for 1 # j. Then h is Gateaux differentiable at B, and

m
Sh(B;C) = ] o, f Gpity.B;C)dy
i=1

nits)
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Theorem 2. Let B be a nonzero 1*n vector at which h assumes a maximum.

Then h is CGateaux differentiable at B.

By substituting the expression for Gpi(y.B;C) given by the Lemma,

into the expression from Theorem 1, and using integration by parts,

we obtain the following result.

Theorem 3. Let B be a nonzero lXn vector for which uipi(y.h) Fd ajpj(y.n)

for 1 # j. Then h is Gateaux uifferentiable at B, and

T
? CEiB
Sh(B;C) = - a,p,(y,B) | ——= (y - By,) + Cu ’
P2 1%4 nzinr i i
Ri(B)
where the notation denotes the sum of the values of the
Ri(B)

function at the right endpoints of the intervals comprising Ri(B)

minus the sum of its values at the left endpoint.
If B is a nonzero 1%n vector which minimizes g(B) = 1 - h(B),

then B must satisfy the vector equation

Sg(B;C ) 0
K = . - . '
aB - .
Gg(B;Cn) 0

where C,, 1 < j <mn, is a 1»nvector with a one in the jth slot

3




and zeros elsewhere. Using the formula for %% resulting from
Theorem 3, and using the fact that %} - - %% , we obtain a numerically

tractable expression for the variation in the probability of misclassi-
fication g with respect to B, The use of this expression in a
computational procedure for obtaining a nonzero B which minimizes g

is discussed in subsequent sections.




3.0 COMPUTATIONAL PROCEPURE

The computational procedure for determining the nonzero 1Xn vector

B which minimizes the probability of misclassification g with respect to
the one~dimensional transformed density functions is embodied in the
FORTRAN program LFSPMC. Included in the program is the capability to
classify input measurement vectors using the computed B vector. In
addition, the program provides the capability of estimating the pro-
bability of misclassification in the original feature space.

Apar .. 1 the various program parameters and option flags (discussed
in th% sequel), the basic input data to the program consists of the mean

vectors and covariance matrices which comprise the class statistics deck.

All input data to the program is from unit reference 5 (usually punched
ceards). All output from the program is printed on unit reference 6.
Several additional options are built into the program which provide the
user with the capability of making successive runs using designated
subsets of the original classes or features already provided by the class
statistics deck.
The program is divided into the following six subsections which

are discussed in turn in the sequel:

Parameter Initialization

Initial Vector Determination

Optimization Algorithm

Computation of g(B) and %g

Classification Procedure

Estimation of PMC .

B i e




3.} Parameter Initialization

All input variables to the program are of a fixed format and must be

entered as shown in Section 4.0 and as illustrated in the examples in

Section 5.0, These variables are:

H - L .

CLs . .

NFPC. .

FCLS. .

IFEA, .

COVARB.

APROB .

e

.

Number of classes, <MTOT.

Dimension of feature space, <NKPC.

Class names, 12 characters, double
subscripted array.

Number of classes in the class

i watistics deck.

Number of features per class in the class
statistics deck.

Numeric labels of the M designated

classes from the MTOT classes in the

class statistics deck, single subscripted
array.

Numeric labels of the N designated features
from the NFPC features in the class
statistics deck, single subscripted array.
Input covariance matrices, triple
subscripted array.

Input mesu vectors, double subscripted array.
A priori probabilities for the M classes,

single subscripted array.




A variety of flags must be initialized in the program during each

run in order to select program options and establish program controls.

These flags are designated

IST . . - - . .

TR G R

Ic LSN - . - - -

as follows:

Class statistics deck input flag
input & new class statistics deck
according to a specified format
(discussed below).

use current class statistics deck.
Computation flag

compute the minimizing B vector.
clagsify measurement vectors after
computing the minimizing B vector.
classify measurement vectors usi~g the
current B vector

PMC estimation flag

no computation of estimated PMC in
N-dimensional space.

compute estimated PMC in N-dimensional space.

Parameter initialization (Fig. 1) is accomplished by entering M, N,

CLS, IST, IOP, and ICLSN.

If IST = 0, then MTOT and NFPC are entered

for the new class statistics deck. If MTOT differs from M or NFPC

differs from N, then the desired class and feature numbers, KCLS and

IFEA, respectively, are entered. If equality between MTOT and M and

between NFPC and N occurs, then the program sets the class and feature
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numbers in ascending order. In either case, the corresponding mean
vectors and covariance matrices are defined in XMEAN and COVAR
respeccively, The class statistics deck is comprised of the MTOT mean
vectors in the order of ascending class numbers followed by the MTOT
covariance matrices in the order of ascending class numbers. The
entries of each mean vector in the order of ascending feature number
are entered according to the format (5X, 5D15.8). The NFPC(NFPC + 1)/2
elements on and above the diagonal of each covariance matrix are
entered by column in the format (5X, 5D15.8). it is assumed that the
diagonal elemerts of each covariance matrix are in order of ascending
feature number., The first entry of each new mean vector or covarliance
matrix starts on a new card. The values for APROB are entered for
each run repardless of the value of 1I0P. The mean vector, covariance
matrix, aad a priori probability for each ¢~ the designated classes
are printed. Control is then given to the minimization routine

BVECT or to the classification routine CLSNEW according to the value
of 10P., Computation of the estimated PMC in the original feature

space is determined by the value of ICLSN.




SUBRDUT INE PRDIM

SUBROUTINE BMRAT

D IMENSION RRRRAYS

—

INPUT
Ms N, CLS, I5T,
loPs | CLSN

Tig. 1.

INPUT
MTOT, NFPC,
XMERNB, COVRARB

SET KCLS
AND |IFER
T0 USUH{L ORDER

¥

DEF INE XMERN
AND COVRAR

OUTPUT
CLRASS
STATISTiC
YES

Parameter Initialization Flowchart
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3.2 1Initial Vector Determination

A nonzero 1xn vector B which minimizes g cannot, in general, be
obtained in closed form, and a numerical optimization (minimization)
procedure is required. Any such optimization algorithm must be given
an initial vector Bo° Two methods for determining initial vectors are

provided by the input flag IZ.

I s s o o o o 6t Indtindl vector flap
= 0 compute the initial vector Bo'

= 1 input the initial vector Bo'

When IZ = 0, the initial vector Bo is computed within the
program. For the special case of two classes with equal a priori

probabilities, B° is computed in SUBROUTINE BC2CP using the formula
(see (4], [5])
-1
B o=@-u)T @)t
0 13 18

In all other cases the initial vector is computed in SUBROUTINE BCOMP
using the procedure described below (see [9], [6]).

Given Ay ui, and Ei. 1<4i<m, let

! f
m i=1 . By

and determine (using SUBROUTINE EIGENS an axn matrix A such that

Al AT = I. Letting ui = Aui, 1 <1 <m, the problem can then be

*Provided by TRW Systems, Inc. - Programmer: Jane Montgomery

14
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reduced to finding a fixed point of the function G defined as

follows:

For a given 1xn vector C, choose indices i , 1 - j < m, for

J

the U'i'l and Gi'l such that

Cu'1 < Cu'1 % 5y € Cu'1 i
1 2 m
For
ln(: la ) C(P' +u' )
i i i
= {1 T4+l i+l i af
% c(u'1 ““'1) g 2 o 1TISw
j*1 h|
we let
nil
F(C) = a, p, (a,,0) (' -, ).
o1 1y 1 a4
Then
o
o - Ll
[IF@) |,

To find a fixed point of G (C=G(C)), we let C° = u':l - u'j , where

Huty = w1l s PR S |

and compute successive vectors Ck using the mean iteration formula

(see [8])
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c E ¢ +—Lc(ck). SR T

T RR = |

The number of iterations is specified by the internal parameter ITER
(25 is a reasonable value). Upon completion of the iterations, the
final Ck. say C, is used to compute an initial vector B° from the !

formula




M¢N DR

APROBC | )¥APROBC 2

YES

Ly
x-Hi_laizi

¥

CALL EIGEN

EIGENVECTORS D

THU: re )
<(-FB= EIGENVALUES OF 3
K2

ACI )=
'rnuu,..n'//rsua

Fig. 2.

NORMAL I ZE €

7

COMPUTE €y

T

ORDER Cu'i'S
AND a, 'S

i

COMPUTE BCC)

¥

COMPUTE NEW C:
/ KA L

™ )
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SUBROUT INE
BCOMP

SUBROUT INE
BC2CP

FACTOR
g *r 2
1 2
INTD
ATA-}; 1+ L2
E

INVERT A

¥
COMPUTE

(L ¢ZL !
i 2
i

Cu =p ¢z 42
1 2 1 2

Initial Vector Flowchart.

B =CR
0

53
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3.3 Optimization Algorithm

The numerical minimization algorithm used to find a local
minimum of g is SUBROUTINE DFMFP from the IBM Scientific Subroutine
Package [10]). The procedure is based on the method of Fletcher and
"owell [3]. Computation of the minimizing B is controlled by
SUBROUTINE BVECT which initializes the following input parameters

used by DFMFP,

EST . «+ ¢« « + « « ¢ An estimate of the minimum value
of g(B).

BP8 o &+ ¢ o 5 ¢ & Tolerance for the expected absolute

error of the optimization algorithm.
Experience has shown 10"* to be a
reasonable value.

LIMIT . . . . « « ¢ Maximum number of iterations for
the optimization algorithm. Fifty

iterations appears to be a reasonable

value.

The iteration routine parameters may be defined internally if
the user's application is of - repetitive nature. Calculation of

g(B) and %% is discussed in the following subsection.
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INFUT
SUBROUTINE /gy, :,5,/
BVECT / LIMIT, 12
u

QUTPUT
ITERRT ION
PRARARMETER

T0 DD
(FIG 20

CALL
DFMFP

CHECK FOR
DPFMFF
ERRORS

Fig. 3. Minimization of g(B) Flowchart.




3.4 Computation of g(B) and %%

The computation of g(B) and %g'ullng the expressions given in

Section 2.0 is performed in SUBROUTINE FUNCT (Fig. 4). The function

subprogram DPHI computes
¢(a) = 5 +3 ERF (a/V% )

used in the computation of g(B), where ERF is a library function

subprogram given by
TR :
ERF(a) = 2(2m) 2 exp [~ 5 e?) 4c .
(]

The transformed density functioms pi(y,B). 1 <1i<mare evaluated in

the function subprogram XNDF.

In order to evaluate g(B) and Bl , it is necessary to determine

the regions Ri(B). 1 <4i<m defined in Section 2.0. An equivalent

definition of the regions Ri(B) is given by

Ri(B) = {y e E! : (y,B) > 0 for each ) R | <i<m ,

fij

where

aipi(YnB)
fij(y'n) = 1n 3;3;?;:37 W T AR L e

= ngy(B)Y* + 28, (B)y + v, (B)

with
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(n)-nzinr-nz BT

T 3

T T
Bij(') = (B ZJ B )lu1 - (B 21 B )Buj

= T 3 o T 2
Yy ® = (B I, B)®Bu)? - (B I, B)(Bu,)
B - 0Bz Bt
+ L G 3" laf] Aedes ],
i J uj’ B 21 B’

To determine the regions R, (B), 1 < 1 < m, the roots of the quadratic
equations fij(y‘l) = 0 are first determined. For the case where

nij(n) = 0, a single root

) - )+ 21n-2) 3z, BT
j (B, “uj &y
Z(Buj-Bui)

(Bu

yij(B) =

is obtained which reduces to

Bui + Bu

when a, = aj. 1n the case where nij(B) # 0, the roots of fij(y,B) =0

are computed using the quadratic formula.

Once all the roots yij(B) of the quadratic equations fij(y.B) =0,

i¢3j, 1, 3=1, 2, ..., m, have been fovad, we determine the

regions nj(n). 1<j<m, by the following ordering defined on a

(possibly proper) subset of the roots:




a)

b)

c)

d)

Choose 1, such that

1
B I, e maxB3E, B .
1 1<j<m 3
1f
T T _ T
B Zj B B Zk B max B 21 B

1<i<m
for j # k, then choose 11 such that

By, = min {luj. 'uk}

1 4,k
Choose 12 such that
y = min y
1l 19w 4
Given 11 and 12. choose 13 such that
y win {y,, ly.,, >y, .}
iy wie iy T4y

In general choose 1k+1 such that

y - unin (5, 17, *7
bl 1ggam 3N I Thdey

b

provided

0y 19, 7 } 40
R L e

1f the above set is the null set, the procedure is terminated.




If in the above procedure,

= min {y }

i %9
et 1)< 1755, " T,

for r choices {jl""'jr} of 1, ., then choose 1  , such that

B  min {Bu, |Bu, >y }
Yer1 l<r<s PR henrtx

if the above set i¢ nonempty; otherwise choose 1k+1 such that

By * min Bu '
hen 15r<s Is

The regions lj(l) are then given by

R, (B) = U {y <y<y =
] I, Iy"k"k-l = e

where
I = “’k“‘k 4} . 3%) isiil

For both the initial B vector and the final normalized B

vector, SUBROUTINE FUNCT outputs R, (B), B I, B', Bu,, g(8), i ,

and B. For the final normalized B, the entrius qij of the

confusion matrix are computed from the formula

Ri(B)

and output.

T e S e




The parameter IOUT is an internal output coantrol flag provided to

SUBROUTINE FUNCT.

I0Ui . . . + « .t Control flag
= -1 first pass (Bo)
intermediate iteration of DFMFP.

last pass (final B).

24
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CLEAR
BOLND
NDRMAL | 2E B ND
L&
\i
1
COMPUTE B8
[
CONPUTE By,
¥
ntsa-sziaTlazjuT

COMPUTE RPLDG

v(B), BCB)

u, T
=2 LOG(~~)BL B
(¥ i

2

'*-10”’

i 2
(Buj) (B“i) +APLOG

Yij 2 2(nuj-nﬁi)

4

} §

ORPER Y !
RDRUS

Fig. 4a. FUNCT Flowchart
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FIND li(l)

y:E/DUTPUT aitn://

—

CONPUTE &
3B

¥
ZOMPUTE g(B)

Fig. 4b. FUNCT Flowchart
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3.5 Classification procedure

Provision is made for classification of labelled measurement
vectors using the B vector and associated decision regions determined
by the minimization procedure (iig. 5). The format of the input data
is provided by the user at object time., Input parameters are as

follows:

NFPC o« « o o o & number of features per class in the

input vectors.

e o s ww v a output flag.

..

= 0 no output of vectors.
= 1 output measurement vectors.

HI . L . . . . .

number of vectors per class for
input data, single subscripted array.

IFPRA « & ¢ o » & numeric labels of the N desired features

from the NFPC features in the measurement
vectors, single subscripted array.

Y .5 e b b format of the input data, single subscripted

array.
If NFPC differs from N, the desired feature numbers are input. Each

input vector is transformed to one dimension and classified according
to the rule given in Section 2.0. An error matrir is constructed
which counts the number of labelled vectors classified into each
class. Output of the original classified vectors is under the

control of the flag 0.
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SUBROUTINE ERRMAT outputs an estimated confusion matrix computed

from the error matrix generated by the classification routine. The
1jth

classified into class 1. The percent of misclassification, defined

entry is the fraction of the vectors from class j which are

as the percent of the total vzctors which were misclassified, is
computed and output. Control is then returned to the start of the
parameter routine or else is given to SUBROUTINE RANCLN according

to the value of ICLSN.

aae e st e

| |




p——

TP AT,

SUBROUT INE CLENEW

SET IFER TO
U!UHL'DRDER

ZERD ERRDR
MATRI X

¥
INPUT
NFPC, 10/HI

SUM=B=VECT
¢
CLRSSIFY

i

INCREMENT
«RROR MATRIX

pUTrur
VECTOR

ALL VECTORS
CLASSIFIED

YES
W

Fig. 5a. Classification Flowchart




Fig. Sb.

l:;l SUBROUT INE ERRHMRT

éOUT?UT ESTIHAT:?/

CONPUTE
X nc

Classification Flowchart

30

—————1




3.6 Estimation of PMC

SUBROUTINE RANCLN (Fig. 6) provides an estimate of the probability
of misclassification in the original feature space. Random vectors
are generated using the class statistics of the original problem.

The internal parameter NPC determines the number of vectors to be
generated for each class. The user inputs the seed value for the
random number generator, ISE, in order to insure the desired degree
of randomness. SUBROUTINE GAUSS [10] computes a vector of N(O,I)-
distributed random numbers using SUBROUTINE RANDU [10] to first
generate a vector of uniformly distributed random numbers. Each
vector so generated is used in the evaluation of the log of the
density function for each class. SUBROUTINE MCHLSK (see [11])
computes the modified Cholesky decomposition of the covariance
matrix in order to simplify the evaluation of the N-dimensional
density function. The class whose density function times its a priori
probability assumes the maximum value at the generated vector is
assigned to that vector and the error matrix is incremented accord-
ingly. The generated vector is printed if the value of the user
entered parameter 10 = 1. SUBROUTINE ERRMAT is called to print the
estimated confusion matrix and to compute an estimate of the

probability of misclassification and percent of misclassification.
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4.0 OPERATING PROCEDURE

In order to simulate object time dimensioning, the user must

provide a calling routine of the following form:

DIMENSION ALRGE (IDIM)

DOUBLE PRECISION BLRGE(IDIM2)
COMMON MX,NX

MK =

NX =

CALL PRDIM (ALRGE,BLRGE)

sTOP

NL

The values of MX, NX, IDIM and IDIM2 are determined as

follows:

MX = maximum value of MTOT for the program run.
NX = maximum value of NFPC for the program run.

IDIM = mum-u-mu—“’zﬁ)) + ux(%ux + %)

IDIM2 = MX (3+4MX+3INX+2NX?) + NX(NX/2 + 11/2)

If available storage is not a problem, the user can incorporate
maximum fixed dimensions into the program.

The program is suitable for interactive operation with the
inclusion of parameter request messages. The program was written
in IBM Fortran G with development on the Texas A&M University IBM

360-65.




Input parameters are of fixed format and must be in a specified

order. The form and order are illustrated in Fig. 7. Sample input

decks are presented in Section 5.0. In order to demonstrate the

classification option, the standard iris data set from (2] is used.




|
|

Col. 1

M= ,Ne

class names
A (12 characters, one name per card)

IST=_ _,10P=_ _,ICLSN=_ _

2o
c°1 . 1
MIOT=_ _,NFPC~
means (5X,5D15.8)
covaéianc.a(sx.SDls.B)
or
OT#
Col. 1 Yes

KCLS=_ , ,. . .

IFEA=

Fig. 7a. Input Parameter Deck Set-up




.4

a priori probabilities (5X,5E15.8)
10P=1
p No
10P=2
Col. 1 Yes
EST=._ _ _,EPS=_, E_ _ _,LIMIT= ,IZ=

<::::EE;EE::::> 2
v Yes

B vector (5X,7F10.6)
10P=2 No
or
I10P=3
Col. 1 Yes
NFPC=_ _,10=_
Ml=

Col. 1

Fig. 7B. Input Parameter Deck Set-up
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Col. 1

(input data format)

input data
tcx.su-u\ No
Yes
Col. 1
10= s ISE=

———————— — —

Fig. 7c. Input larameter Deck Set-up
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5.0 EXAMPLE INPUT DEZKS

Example 1.
9 class Flight Line 210 data.

4 feature subset (9,11,2,10) of 12-dimensional statistics deck

read in.
compute minimizing B vector.
compute estimated PMC in 4-dimensional feature space.
equal a priori probabilities.
compute Bn.

M=09,N=04
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
1ST=00,I0P=01, ICLSN=01
MTOT=09,NFPC=12

statistics deck
KCLS=01,02,03,04,05,06,07,08,09
IFEA=09,11,02,10

.11111111 .1111111 sddiiil) +313111) +1111111

.11111111 +1311111 +11111111 131311}
EST=,250,EPS=1, 00E~04,LIMIT=050,IZ=00
10=00,ISE=1110001110

VoENOnLESWN -

Example 2.

9 class, 12-dimensional.
use previous statistics.
compute minimizing B vector.
compute estimated PMC in 12-dimensional feature space.
equal a priori probabilities.

compute Bo'

21 PR gl 1 ra




M=09,N=12
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
1sT=01, 10P=01, ICLSN=01

. 11111111 . 11111111 . 11111111 L 11111111 ,11111111

. 11111111 . 11111111 ,11111111 ,11111111
EST=,250,EPS=1.00E~04,LIMIT=050,12=00
I1C=00, 1SE=0246897531

VOB WN -

Example 3.
3-class, l2-dimensional.

use previous statistics.
compute minimizing B vector,
compute estimated PMC ,

equal a priori probabilities.
compute Bo'

M=03,N=12

CLASS 1

CLASS 2

CLASS 3

IST=01, I0P=01, ICLSN=01

KCLS=01,02,03

1FEA=01,02,03,04,05,06,07,08,09,10,11,12
.33333333 .33333333 +33333333

EST=,250,EPS=1,00E=04 ,LIMIT=050, 1Z=00

10=00, 1SE=4562301852

Example 4.
9 class, 12 dimensional.

use previous statistics.




compute minimizing B vector.
compute estimated PMC.

unequal a priori probabilities.
compute B..

M=09,N=12
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
CLASS
I1ST=01, 10P=01, ICLSN=01

.05 .05 .20

.02 .08 .15
EST=,250,EPS=1.00E-04,LIMIT=050, I1Z=00
10=00, ISE=1234567890

VN UBMBWN M-

Example 5.
2 class, l12-dimen<ional.

use previous statistics
compute minimizing B vector.
equal a priori probabilities.
compute Bo'

M=02,N=12

CLASS 3

CLASS 4

IST=01, I0P=01, ICLSN=00

KCLS=03, 04

IFEA=01,02,03,04,05,06,07,08,09,10,11,12
L 5 - 5

EST=,250,EPS=1, 00E~04,LIMIT=050, IZ=00

.10
«20

.15




k_.-q

Example 6.
3 class iris data.

4-dimensional statistics deck read in,
compute minimizing B vector.

compute estimated PMC.

equal a priori probabilities.

read in l..

classify 10 measurement vectors from each class.

M=03,N=04
VERSICOLOR
SETOSA
VIRGINICA
1ST=00, I0P=02, ICLSN=01
MTOT=03 ,NFPC=04

statistics deck

.33333333 .33333333 .33333333
EST=,250,EPS=1,00E~04, LIMIT=050,1Z=01
BVEC=0.0 1.0 0.0 1.0
NFPC=04,10=01
MI=010,010,010
(4F2.1)

measurement vectors
10=00,1SE=9876543210

Example 7.

2 class, 4-dimensional.

use previous statistics
compute aminimizing B vector.
compute estimated PMC.

equal a priori probabilities.

compute Bo‘

42
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M=02,N=04
VERSICOLOR
SETOSA
1ST=01, I0P=01, ICLSN=01
KCLS=01, 02
IFEA=01,02,03,04
] 5
EST=,250,EPS=1,00E~04,LIMIT=050,1Z=00
10=00, I3E=2369805804
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6.0 SAMPLE OUTPUT

The sample output appearing on the following four pages was
generated as a result of using the input deck given in Example 6 of

Section 5.0.




45

EEE*3 =€ 5SV1D 803 ALlTl8VeLHd 180ic .¥

L 24" i58°S vi6*2 ad "y

9)inl0alhr - € S$S772 303 wu.J43r wiam

%La* % &Y.V e 2y.".
5%3°C sOe*y 140°0 T i Rl
«*0*0 1o %CGl1*"0 b LAPRIY
6. "L ECE"y "*0."% L 1% baY

¥IINIDela = & S5VIJ 8dd Xid.Va diwvletAd.s

€E€e*Q =2 SSV1) oua ALl 1lav3dsd isDicayd

9%Z°C €991 T4 A 3 ¥00°s

VSJU.i3S = & SSVID du3d HULI3/A wWad

| § S sCL®y 6Ll”. WY
S00°*n 000 clo*0 910°v
600°0 zZlo*¢ **1%0 66G*0
V) T¥R] 910°0 660°0C ¥Z.:°0

VSUL3S - € SSYIJ 304 XI¥iva 3INVIBVAUD

€EC U =1 SSVID w04 ALilievelsd iso0lady

9Ze"1 092"y OLL®¢ 9k °S
YOW0IISHEIA - 1 SSVYID ¥ud ¥OLI3IA wVYiw

o€0°0 £L0%0 1#0°0 9500
€L0*0 12¢%0 t¥0 "0 £81°0
1.6 €8y f6.%w sHLt
9s0°0 £81°0 $80°0 99"y

WO0J1ISH3A = 1 SSV1D ¥04 XId.¥Vw IINVIEVADD

L e e T




&0

0°C = (€ )8 IC 2CCCCCLCOTO0CUCul"0 = (2 )8

CC OZOTT9CL98658098°0-= (€ IXING CO QOESPIY2Z91L0%6ZT12€"0 = (2 IXINI

|GINAL PACH 18
OR L

OF POOR

o0

G0 JSHCOL1Z0LZL%60EE"C =8 INJzeil) ¥13 *S5v ISIn du

10 CO000C00000000001°0 = (= )@

0°0 = (1 I
dusdaA e

v USBITYZITLLYSZIZE " == (9 I X.N,
L6sviLecZ9elylgol*o-= (1

JAinva
Saih3i0%e9 34 du.laA

*udec
10 ¢000000000L86666%°0 00 JEL95910%%Lco9%Le"0 .
10 GuvOOCIUUIY6HELIE"L wd UrolLuilsecteEal” Z
10 GC0000000068656C%°0 00 LE2S0LlElivcBo5120 i
SNV3IW J3mWdu4Shvda SAINViEvAD) UdnoUaSNVas P A M
] 1€ QuUUJCOCUOUOoLAWIT*y  2A> 10 uSelZIZ2esl00essy 0
a 10 USETZT1¢Z95C0UESS7*0 2A> 10 U9c95dBb95%69946L °C
] 10 U9E9S2864SY659¢HE"U  2A> 00 uwlZ10cvd0%lebLe Be* .
@ YU UIZ10e8091€E6LE082°0 DA 10 CLIFCLIYS9LLL0ESE "0~
a 10 CLIFELTISSHLILOEIE*O= 2A> 1E LOCOQICO000000VO L0~
>l Dﬂh.

Buid3A 94 IVILIND Bud .53k

05 =SNOL.iVe3sl 40 dabmliiN miWwikdi

9u=30°1 =pUdnd J.07058%
SZ°0 =WMWiNim Qdawmilda

SUILINTEVe JNI.Nud NOLLVedld

e e i T




47

 ES—

—

S s o

00 CO6ISZBBEYIELLIEL 0 = (¥ )w
00 COGEFYREINZE9E0EY"0 = (E )8 00 C96LESYIIBISLE6SE"0-= (Z )8 00 CxQE%5686%5991L12°0-= (1 )9
ad Jah ¥

LO-ULLBEZBOBLBYSLEZI®D = (% JKina
LC-CIOTTELSBIRTISOSY 0-= (E IXINS L0-06%E09L200816STEE"0 = 2 JXING LO-00L29SE0yYT1896L498°0 = (1 )x.nz
S.ndluvad 0 82 DA

10-CR6IT9LYS18SE6961°0 =d iNJBEND ads LSV 105ia 3U ‘wude

10 QLLB0EIE666SYI0S1 Y 10-Clos 1829495248329 ° - .
10 UN99SIPSILEEYSEY T 0~ 10-06 10S 1098998 2217 °0 ¢
00 0606922654 11E909°0 10-02205146266:306 150 1
<2 SNV 34 CIWB03SNVYL S3ONTIAVAC, U3InbU3ISNTaa $Sv 12
=
m 696°0 ©°0 820°0
23
m G00°C 0UO*1 0000

1£0°C 000°0C 2is°0

Xidivew N ISM=Nu3

ORIGIN
oF

(gl @ 1€ GuoOGUGCUUGUILIUT"y 24> 10 UCe? lellBssBly 1%

(6l a 10 U0S%02EL185681%01°0 DA> 00 Gl98LLe0599L05¢05°0-
(Wil @ 00 QI9BLLEOSIILUSLCS 0~ 2A> 20 UIOSLO%S0Les60L%170~
8l @ 20 CLOSLO9S6CESO LT "u= 2A> TE L.oteod Luvivinnni®e

anlbilYa¥

dULJ3IA 8 TVNLZ dud SN e

s raw—"




s |

48

00%°0

00Z*0

oo¥°1

Q0E"1

Qo0°1

009°1

[ |

00s*1

00E"1

00s5°1

cos-1t

oo0y°1

gos*1
= 5%

(4 A |
2 - o

00s”*i
2 =Sy
009°1
- sY
ocs*1
=5
CCe’e
=

oce™y
| Ml
00E"e
=W

oLy
1 -5

cCs”y
1 -5V
00S°Y
1 =-5Y
000°%
1 -5

005°y
1 - 5"

vis*y
| Bl

ooL*y
T - SV

00<°t
LETEIF LR

ff‘lr
Qis53lsSv3

(R
Q3alals>svid

007"t
G313ia5v 1D

co0":
Q3lalssvid

tul*e
Q3l3is35v1)

e
Q31=155v1D

0ot
g3lslssv1d

1] g 3
QU3laissv)

(¥ 4
G3iai>Svd
[+1+] " 4
Qalalssv1)
ooe2
0313555712
ool*e
Q3lalssv)
it
a31a155v1)

oo02°¢t
Q312135712

ocL"”
- v

wheé®s
Z - 5vl)

00Z*s
Z = v

Q00°s
2 - swid

000°s
Z - 55v1D

whé®s
1 - Ssvll

00%°9
1 = SSsv)

006°%
1 = Ssvid

0ce"*y
L= 55viJ

wCl®s
T = S5¥V1)

00s°5
1 = 5%W¥ND

00s°s
L - SsYl)

0C6" Y
1 - ssv1)

(U B
1 =-3S5v1d

Qoo*L
1 - SS¥1)




oo1°2

ooe*1

00s°2

00Z°0

oGy "0

wgZ s

oc1i*s
I1=-%

009"s
£ = S

A e
£ - %%

001°%
£ -W

oce*s
E -

00s°s
£E-5

uCe*s
€E =%
oce"y
E=-W

000°9
&£ =W

c00*y
£ - s
ues*1
Z -5y

cce*1
2 =5y

00s°1
& =S

eos i
e -5

gl9°1
2 -5

Q08 "¢
Q3lalssvl
00s8°¢
Q3laiasSvl
wall”s
Q3lalsasviz
00" ¢
UETEI RS bl
000"
Q3alalssv)
a2
dal3lssvil
wOutt
Q3kais5Sv1)
009" ¢
G3lalssvd
0Cec*xe
Q3laissv1d
[+ 193
Q314i55v12
0ol°c
Q313iS5v1)
Wity
Q3isi35v1)
oty
A3131S5v 1)
co%"e
G314155v1)

col-e
Qa3laissv)

00E"Yy

E = Ssvi3
008y

€ - $5%13
e

£ - Savid

00%"¢
£ - S
00<"L
&= §$9a
00%*9
11 & P
«Cl°y
e - Ssvu
00c¢™ v
£ = v
00Z*L
£ - SsvVI12
00e "9y
t - S>vl)
006"y
Z - Savil
. «CS"y
Z - 5svW)
002*s
2 = 55v10

00%°s
Z - 5SY1)

008°*»
€ - S55v13

S ST AT 4 Tt

PAGE I8
QUALITY

ORIGINAL
OF




50

B10°0=1nd J3.¥miid53
$E€8°1 =NOI.VII31SSVIISIA 30 .Nz_d34q

sie*. 9*C CEutv
0°0 000°1 00
§20°0 0°0 046°C

SNOISNIWIO N NI SYOLI3A U3.VB3INIY ATWUUNVE Bu3
X18iVW NULSNaNO) Q3.Whilba

SEYSLLTIFET ~ (HOLVEINID HIEWIN WUONTE) 31IVA Jd3s TNl

LEE"E =NOLLVOLIJISSVIISIN du .N3Jdae

coe*0 00 0°0
4*C w1 e
oni*0  0°0 vGo-1i

ViU iS3. dua
XloaVe NOISNANGD Qa_wwiisi

OF POOR QUALITY

ORIGINAL PAGE 18




1.

2.

3.

4.

5.

6.

8.

9.

51

REFERENCES

T. W. Anderson, An Introduction to Multivariate Statistical
Analysis, John Wiley and Sons, New York, 1958.

R. A. Fischer, The use of multiple measurements in taxonomic
problems, Ann. Eugenics 7(1936), 179-188.

R. Fletcher and M. J. P. Powell, A rapidly convergent descent
method for minimization, Comput. J. 6(.963), 163-168.

L. F. Gueeman, Jr., and Homer F. Walker, On minimizing the
probability of misclassification for linear feature selection,
JSC Internal Technical Note, JSC-08412, Johnson Space Center,
Houston, Texas, August, 1973,

L. F, Guseman, Jr.,, B, Charles Peters, Jr. and Hon:r F. Walker,
On minimizing the probability of misclassification for linear
feature selection, Ann. Statist. (to appear).

L. F., Guseman, Jr., and Bruce P. Marion, Obtaining initial
vectors for minimizing the probability of misclassification,
Contract Report #1, NAS-9-13894, Texas A&M University, Department
of Mathematics, Sept. 1974.

D. G. Luenberger, Optimization by Vector Space Methods, John

Wiley and Sons, New York, 1969.

W. Robert Mann, Mean value methods in iteration, Proc. Amer.
Math. Soc. 4(1953), 506-510.

J. L. Solomon and B. Charles Peters, Jr., A simplified version
of locating staticnary points of the transformed probability of

correct classificetion, P.eorint.

| Sy N T ——" | AL . 'Y B A s 4B



L s ey

e P

10.

11.

System/360 Scientific Subroutine Package, Version III, 5th
Edition, Form GH20-0205-4, International Business Machines,
August, 1970,

D. L. Van Rooy, M. S. Lynn, and C. H. Snyder, The use of the
modified Cholesky decomposition in divergence and classification
calculations, ICSA-275-025-008, Institute for Cruputer

Sciences and Application:, Rice University, May, 1973.




	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf

