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Thu orbits of the satellites of the outer
planets are poorly known, due to lack of
attention over the past half century. We
have been developing a new theory of Saturn's
satellites Enceladus and Dione which is
literal (all constants of integration
appear explicitly), canonically invariant
(the 11ori-Lie method is used), and which
correctly handles the eccentricity-type
resonance between the two satellites. The
algebraic manipulations are being performed
using the TRIGMAN formula manipulation	 ,`^ 3 q 5 6 ^^

language, and the programs have been
Developed so that with minor modifications INS 	 A a L
they can be used on the Mimas-Tethys 	 n
and Titan-liyperion systems.	 ° ^a

INTRODUCTION

Our current knowledge about the orbits of the outer planets' satellites -

is quite poor. The theories now in use date back to the early part of this

century, and no longer provide accurate ephemerides. At the same time,

these satellites have been virtually unobserved for the better part of this

century. As a result, it has been estimated by Mulholland 1 that the errors

in the predicted coordinates may range into the tens of thousands of kilometers.

A primary purpose of the upcoming missions to the outer planets will be to

dotz-mine improved positions for these satellites, in addition to making

physical observations. It is Therefore very important that their orbits be
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redi.scussed in the light, of modern as well as older observations. The re-

observation of the satellites is already well udder way at McDonald

Observatory 2, and to go along with it, a new theoretical discussion of

several of the satellites of Saturn has been undertaken. The system
Enceladus-Dione is the first for which results have been obtained, and

it is on this system that we report in this paper.

REMARKS ON PERTURBATION THEORY

Traditionally, there have been two principal approaches to solving perturbed

motion in Dynamical Astronomy. Otte, numerical integration of the equations

of motion, has much to commend it, and in fact, is the usual approach these

days. It is straightforward and easy to implement, and can model a 'aide

variety of situations accurately. The other approach, the so-called

"literal" method, attempts to produce explicit formulae for the determina-

tion of a body's position at any arbitrary time. It is difficult to

implement, as it requires special series manipulation programs -- programs

which are very complicated to write and which require unfamiliar techniques

in Their construction. In addition, numerous technical problems arise in

practice, the most common being the ease with which it is possible to

build up very long expressions which threaten to overrun the entire

core memory available.

Despite these disadvantages of the literal method, there are several

important advantages. One is that the formulae may be good for very long

periods of time, and it takes no more effort to obtain a prediction for a

time far removed from the epoch of the theory than it takes to determine a

prediction for a time near the epoch. With the numerical approach this

is not so. A second advantage is that the constants of integrations and

other parameters of the theory (e.g., the masses and oblateness parameters)

can be made to appear explicitly in the formulae. This means that the

theory can be used even if better values of the parameters are determined.

Yet a third advantage is that each particular term in a formula arises in

a predictable way and has a predictable effect on the motion of the bodies.

This gives one deeper insight into the problem, particularly when resonances

are of importance (as they are in this case). Thus, there are good reasons

1
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for the interest which has been shown by celestial mechanicians in the

recent progress which has been made in the area of computerized algebra

'or dynamical astronomy.

NSTEMS FOR COMPUTERIZED ALGEBRA

In order to see what is presently possible, let us look a little more

deeply into the kinds of processors which are currently available. We

will concentrate on the Poisson series processor, which is the most commonly

available. Such programs have been written by Barton 3 , Broucke4, Brumberg5,
Chapront at al. 6 , Jefferys7

 and Rom$ . With several variations on a theme,
they are capable of adding, subtracting, multiplying, differentiating,

integrating, and performing certain substitution operations on series

of the general form of Eq. (1):

S = E t Cle (x) Cos( k. y ) + S  (x)sin( k• y ) } , 	 (1)

where k = p<1 .... ,kn) is a vector of integers (positive, negative and

zero), x = (xl, ...,xm) and y = (yl,...yn) are vectors of polynomial

variables and trigonometric variablts, respectively, C k (x) and Sk (x) are

polynomials in the x variables having rational or real coefficients

(depending on the system), and k•y = k1yl + ... + knyn is the dot

product. Thus a Poisson series is a multiple Fourier series in a l.ineIr

combination (with integer multipliers) of trigonometric variables,

with its coefficients drawn from a ring of polynomials in several

independent variables.

Series of the form of Eq. (1) are of particular importance in dynamical

astronomy because the motion of bodies in the solar system is in general

quasiperiodic, and can be expressed in the form of Eq. (1) provided that

the angles are linear functions of the time (with, in general ) frequencies

that are not rational ratios of each other). More generally, one can

write the equations of motion in the form

X = e f (x, Y)	 (z)
Y =v +eg(x)Y)

where the components of the vector functions f and g are Poisson series,

v is the vector of the mean motions of the angles, and a is a small
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quantity. To first order we can write down the formal solution of these

equations as

x = x0 + e rf(x0)y0+vt)dt,
(3)

y = y0 + vt + e  g(x0)yO+vt)dt,

calculations which can easily be performed with any of the Poisson series

processors currently available.

RESONANCES

A difficulty arises - one which is of great importance in the case of

Enceladus and Dione - whenever there exists a nearly exact relationship

between the components of the vector v such that, for some vector of

integers J. one has v.j p 0. Since, in general, all possible vectors of

integers j are 4 in £act represented in the series f and g, and since any
real number can be approximated arbitrarily closely by a ratio of integers,

this situation (as has been known for a long time) seriously threatens the

convergence of Eqs. (3) and their higher order approximations. What

happens is that in taking the integrals in Eqs. (3), divisors of the form

v•j appear. Since these divisors are dense on the real line, and

in particular possess 4 as a limit point, the convergence of the series

is in question.

It is usual to ignore this problem as being of little practical interest

(although of great theoretical interest), unless one of the terms having

such a "small divisor" also happens to have a large coefficient. This is

indeed the case for Enceladus and Dione, and is due to the fact that the

mean motion of Enceladus is almost exactly twice that of Dione. In fact,

'there are two terms which are greatly amplified by the presence of a

small divisor: one is the term in the angular argument X = - 2t 1 +'Ea;

where V is the longitude of Enceladus, V is the longitude of its perisaturnium,

and the primed variables rap-resent the same quantities for Dione (Fig. 1).

This argument has a mean motion of 30° per year, while most terms have mean

motions which are over 1000 times as great. As a result, this term is

amplified in Eqs. (3) by a £actor which is over 1000 times greater than

that for a typical term. In addition, the unamplified coefficient of this
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term is one of the largest in the entire series.

An even more serious problem is posed by the term in the argument

e = V - 2v'+ W I for which the mean motion averages out to precisely zero,

a situation which Garfinkel9 has called "deep resonance." The presence

of an exact resonance such as this one causes the character of the solution

to change completely. The angle 6 1 instead of either increasing or decreasing

at a more or less constant, albeit slow rate, librates, or oscillates

about some mean value (here, 0°). The reason for this behavior is that

the phase plane turns out, in the lowest order, to be the same as that

for a nonlinear pendulum (Pig. 2). Because of this, a different approach

to this problem must be taken than the naive one indicated in Eqs. (3).

DESCRIPTION OF THE PRESENT THEORY

The detailed equations employed in the present theory will be published

elsewhere l0, and therefore will-not be given here. Instead, we shall try to

give an overall view of the theory and point out some of its more interest-

ing features.

Our approach has been to make use of one of the recently developed Lie

series methods for canonical perturbation theory (since the present problem

is conservative and can be derived fru:s a Hamiltonian). The Mori-Lie

methodll that we have used has a number of advantages from our point of view:

(1) It is canonically invariant, so that the theory, once completed,

is valid for any coordinate system. The reason for this is

that the Poisson bracket, on which the method is based, is

a coordinate-independent notion.

(2) It is readily -idapted for systematic calculation by machine.

(3) The perturbations in any desired quantity, including directly

observed quantities such as the position or velocity vector,

are obtained by application of a simple and uniform formula

which is readily programmed.

(4) Perturbations are derived from the reduced Hamiltonian

and only one other single function, the determining function.

Since the actual coordinate system chosen is of little importance in applying

r'
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the nw-thod, it can be chosen for convenience. We have chosen to work in

variables closely related to the classical elements of semimajor axis,

eccentricity and sine inclination, since it is relatively straightforward

to write down the defining formulas for the disturbing function in terms

of Them.	 One modification we have adopted is to use as our actual

variables, deviations from nominal values; the nominal values have been 	 a ".
adopted from Struve's theory. The advantage of this approach is that only

low order polynomials in -the deviations need to be retained in the develop-

ment of the Hamiltonian in order -to retain sufficient accuracy. Thus the

theory can be made more compact.

The first, and most difficult task is to develop the term in the

Hamiltonian that describes the interaction between the two satellites.

Because the ratio of the semimajor axes of the two satellites is so large

(about 0.63), the series for this term converges very slowly. It is

relatively straightforward to obtain an expression for the square of the

distance between the two bodies, and a very short series results. However,

the Newtonian interaction is proportional to the inverse of the distance,

and is developed in powers of the ratio 0.63, which only slowly approaches

zero.

'.

	

	 Many methods have been developed for performing the calculation, most of

them prior to the advent of modern Poisson series processors. Our method,

which harks back to one described by Brouwer and C1tm:;.lie 13, has been

simply to raise the expression for the square of the mutual. distance to the

inverse one-half power. We have employed for this an iterative technique

advocated by Broucke14 which converges quadratically, i.e., the error at

each step is of the order of the square of the error at the preceding step.

This method has been very satisfactory and converges with great rapidity.

The rest of the Hamiltonian is very simple to calculate, having none of

the problems of convergence associated with the above term. This includes

the "indirect" term in the Newtonian potential which arises from choosing

the origin of the system at the center of Saturn, and also the terms which

arise from Saturn's gravitational quadrupole moment.

Our next step is to perform a coordinate transformation, using the Hori-Lie

method, to eliminate from the Hamiltonian all terms in angular combinations

4
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which are not simple multiples of the resonant argument 0. This includes

the terms in -the shallowly resonant argument x, which, although they are

considerably amplified and contribute significantly to the solution,

nevertheless do not change the actual character of the solution as does

the argument 0. A determining function is obtained which allows the

calculation of the effects of all the angular arguments except 0 on the

motion of the two satellites. we have also programmed a subroutine which

allows the perturbations in any desired quantity to be determined, insofar

as they are affected by these angular arguments.

The remaining system, which contains the deeply resonant argument 0, must

now be solved. Since this is the only angular argument remaining, the

system has effectively been reduced to one degree of freedom. Looking

again at Pig. 2 1 it can be seen that the motion in 0 and a is 'basically

oscillatory in nature. In the actual case, the amplitude of the motion

is quite small, only about 14' of are in 0, so that it is not even necessary

to worry about the nonlinear nature of the pendulum presented when the

amplitude is large. In the latter case, elliptic integrals are required

to get the solution; but in our case, it is sufficient to approximate

the system with a linear harmonic oscillator. This we have done by intro-

eucing an appropriate new set of canonical elements, centered on the

origin in Pig. 2, such that in these coordinates the equations of motion

are reduced to an (amplitude depender;c) harmonic oscillator. The solution

-to this being well-]mown, we have therefore arrived at the complete solution

of -the problem.

FINAL FORM OF THE THEORY

In -this form, the theory is not immediately useful, particularly if one is

lacking a Poisson series processor. Therefore we have employed another method

in order to make the theory accessible to the "outside world." Since

FORTRAN is nearly ubiquitous as a programming language, we have chosen -to

have our Poisson series processor punch out FORTRAN-compatible expressions

for each of the formulae required to obtain perturbations in any desired

quantity. Thus, given numerical values of the various parameters in the

theory, these expressions can be used to compute numerical values of any

Le
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desired quantity at any time.

We are in the process of setting up a series of subroutines for the computation

of all the necessary quantities. As can be imagined, many of the expressions

are quite long and involved, so a fair amount of machine time is consumed

in their evaluation. However, modern machines are really quite fast,

and experience has shown that the time required for a single evaluation

is not prohibitive (amounting to many evaluations per second). Thus,

our method is quite practical. Furthermore, anyone who has access to a

competent FORTRAN compiler will be able to use our theory.

At the present time, we are setting up programs for the comparison of our

liteval theory with an ephemeris generated by numerical Integration, as

• check on the accuracy of the theory. At the same timr;, we are programming

• set of subroutines to obtain definitive values for the parameters of

the theory (constants of integration, masses and oblateness parameters)

by a differential correction procedure. Since the data are still being

gathered for this step, we are checking this phase also against numerical

integrations, but eventually we expect to use both the old and new observations

to produce a definitive theory. We will be greatly helped in this step

by the recent publication by Pierce 15 of a bibliography of observational

material on the satellites of Saturn.

Eventually it is hoped to include observations of the satellites from the

space missions themselves. To this end, we are working for an ultimate

predictive capability for the theory of ±1 km.

Finally, we mention -that the programs we have written are adaptable to more

problems than the Enceladus-Dione case. Both the Mimes-Tethys and Titan-

Hyperion systems also have strong resonances (involving different angular

arguments). We have attempted to write the programs so that with minor

changes they can be applied to these systems as well.

ACKNOWLEDGEMENTS

µ°1 e-3

The authors wish to thank Drs. J. Derral Mulholland and Peter J. Shelus for

numerous conversations which materially aided in the completion of this work.

The support of the National Aeronautics and Space Administration, under Grant

i
NGR 44-012-282, is gratefully acknowledged.

'yC

i



f
i

	
I^

.	 .	 .

9

REFERENCES

1. J. D. Mulholland, remarks made at the Outer Planet Worlcshop, Jet

Propulsion Laboratory, Pasadena, October 11-21, 1972.

2. R. Abbot, J. D. Mulholland and P. J. Shelus, Astron. J. Vol. 80, in

press.

3. D, Barton, Astron, J., Vol. 71, no. 6, 1966 ) p. 438.

4. R. Broucke and K. Garthwaite, Celest. bfech., Vol. 1, No. 2, 1969 ) p. 271.

5. V. A. Brumberg, Algoritmy Nebesnoi Mekhaniki, Vol. 1, 1975, p. 3 (in

Russian).

6. J. Chnpront, L. Ghertzman, and J. Kovalevsky, "Programmation de

ea^.euJ q sur series litterales," Colloquium of Celestial Mechanics,

Moscow, 1967.

7. W. II. Jefferys, Celest. Mech., Vol. 2, No. 4 (1970), p. 474,

8. A. Rom, Celest. Mech. Vol. 1, No. 3/,4, 1970, p. 301.

9. B. Garfinkel, Astron. J., Vol. 71, No. 8, 1966, p. 657.

10. W. 11. Jefferys and L. M. Ries, Astron. J., Vol. 80, in press.

11. G.-I. Hori, Publs. Astron. Soc. Ja an, Vol. 18, No. 78, 1966, p. 287.

12. G. Struve, VeroLfentlichungen der Universitatssternwarte zu Berlin-

Babelsberg, Vol. 6, No. 41 1930, p. 61 and vol. 6, No. 5, 1933, p. 10.

13. D. Brouwer and G. Clemence, Methods of Celestial Mechanics, Academic

Press, New York, 1961, p. 469.

14. R. Broucke, Celest. Meeh. Vol. 4, No. 3/4, 1971 ) p. 490.

15. D. Pierce, "Observations of Saturn's Satellites: Bibliography and

Literature Search," Jet Propulsion Laboratory Report #900-698,

March, 1975.



•	 ^	 a

lO

FIGURE CAPTIONS

Figure 1: Geometry of the Orbits

Figure 2: Resonance Phase Plane
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