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I. Introduction

This report follows two independent lines of research. The first is

an investigation into the coordinate independence of gravitational :radiation

discussed in Section II and the second is an extension of the parameterized

post Newtonian (PPN) approximation given in Section III. We conclude the

report by speculating on the direction of future research indicated by the

work complete	 here.

II.	 Gravitational Radiation in Asymptotic de Sitter Space

Although an investigation of gravitational radiation seems somewhat 	 s

' remote from the parameterized post Newtonian (PPN) analysis of gravitational'

theories, its importance as a definitive test between theories is just now

being recognized. )	Part of the reason for this budding importance comes_

H."
from a partial failure at the level of the PPN approximation to distinguish

between alternate and viable theories of gravitation. 	 Attempts to firmly

' root Einstein's general theory to experimental. results_has ,resulted in a_

 
_	 .

plethora  of theories that agree experimentally in the PPN approximation.

Deviations between some of the theories are only expected in the "post" PPN

^^

approximation.
3
	It is at this level of approximation that one begins to

1
detect varying contributions to gravitational radiation.

y
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In general the PPN approximation is an expansion of the metric

(Lagrangian) to fourth order in the velocity which is small in the neighbor-

hood of the solar system. In fact near the sun one expects that the

quantities

PW - v2 _ U(x) - Pp

where p is the density, U is the potential and p is the pressure, are all

of the same order of magnitude. Far from the solar system, we expect t5e

metric to take its Minkowskiian form: g uX = (-1,1,1,1)	 [Greek symbols

represent the space-time components 0,1,2,3 whereas Latin symbols represent

spatial components 1,2,3.] Thus if one carried out a consistent approxi-

mation scheme to successively higher orders, gravitational radiation effects

would occur in the seventh order. 4 Therefore, a clear understanding of

gravitational radiation seems necessary in order to interpret such an

-^	 expansion.	 ,

A general unsolved problem exists with the understanding of gravitational

radiation in the interpretation of coordinates in relativistic theories.

Although the covariance of the equations seem to indicate an independence

d of the choice of coordinates in calculation, it does make a difference when

one obtains the "physical components" necessary for comparison with experi

u^	
ment.p For instance, the formulation of gravitational radiation in one

frame of reference (theory) may parrot the properties of gravitational	 w

radiation but in the end, fail the test of coordinate independence. This

might occur if, for instance, a spaceli•ke coordinate could become timelike

and vice versa as inside the horizon of a blackhole
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Here we have investigated the gravitational radiation conditions in

k an asymptotic de Sitter space, a theory conformally equivalent to general

:- relativity.	 Physically, this is an interesting problem for at least two

i reasons:

(1)	 The results will help demonstrate the coordinate independence

of gravitational radiation, i.e., a physical 	 interpretation

Mr useful in the detection of gravitational radiation.

(2)	 It leads directly to an investigation of the group structure

dpi k"' imposed on space-time by an asymptotic de Sitter universe.

h The second case' has its importance in the possible classification schemes

i

for elementary particles. 	 The former is a necessary step towards correctly

4 quantizing the gravitational 	 field.$

i Gravitational radiation t in asymptotic spaces has been investigated by
i

€

.

"'
g

many, notably the works of Bondi, Van der Burg and Metzner 	 (BVM) in an

E 4^" empty, asymptotically flat space (i.e. asymptotically Minkowskiian) and of

Hawking in a dust-filled,-asymptotic conformally flat Friedmann universe

,' with negative curvature. 10	Here we investigate a matter-less but asymptotic

de Sitter universe.	 For completeness, we include the effect of the cosmo-

logical constant.	 We use the method of the BVM empty space approach which

is well suited for this type of investigation.

To use the BVM method, it is necessary to transform their metric intort ^

a de Sitter-space metric.	 This can be done thru a conformal transformation

T of the metricll

=goe 	 1
gas	

gas^^

., r



5

where
2

4R
a	 Ln'	 -	 (2)

4R2-u2-2ur

where R is the "radius" of de Sitter space, u 	 t	 r is the null coordinate

and r is the ordinary radial coordinate.	 Since the BVM metric is axially

symmetric, so will the de Sitter space metric be axially symmetric.	 After

the correction of several misprints in the work of Bondi, et a1, 12 one 4
4

obtains the main field equations

4	 ry 
2)

2
R	

r	
+2cT	 40	 2a1	 (3)

2
2	 4 2(y-O) U 	 2	 $2-2r	 +2	 2y1 cot 0)[r e	 -2r (512 -YI 2 y , Y212	 r

^` ^ 2	 2 2(y-5)U+ 4r W + -1 r e2	 2	 01	 (4)1

e 
2(0+y)

2(0--y )	 1	 4 2(y-0)	 2	 2 -4U 
2-ff2 e	 +R	 U1	 r33	 2V 

I 
+	 r e	

1
r U

T2	 2	 12sin 0

2U1
	 2(0-y)

-r 	 cot 0 -4rU cot 0 +2e

-(3y2 -O2 ) cot	 -y22+022+02 
2 
+2Y2(Y2-Y1

..8ra+(2rV +6V-4r 2
2U -4r2 U cot 6)G1

0

+6rVa ,-4r 2 
Il l 0-8r 

2ao aI	
(5)

A
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e2(R-Y1[- 1- (3y' 2S )cot Q -Y +2Y ( y S )] x

	

2- 2	 22 2 2- 2

I	 00(4r-2r2y1)+3VrQl1-2r2aol-4r2a0a1

-a,(-2r2yo+3r2U cot_'0 -2r2y2U-3V

f{

t r n.

+2ry,V-rVl+r2U2)	 (6)	
r

a

	

'^	 The supplementary field equations become

?ppi

R-Y +2y y -2y cot 8
o2	 02 02 o 2 0

i	 *	
V 12	

V	 V	 .,

-UN +2S 2 -2$  	 cot 6)-	 + 2 
+(y 3 )?22 2	 2Y2" 2	 2r	

2r2	
1 1 r

+r
3UU	 Y

e (Y-o2 2	
[32{1012+ r 2 +2U(y

ol+ r )+ 2 ^o1 +2y12^2 x.

	

AIM	

U11
V 	 UVl+2U1V

+(Y -R )U +Y UU + ( 2Y 3 )UU 1
 +U

1 U
	 2r	 2
- - 

0 0 1 1 2	 2- 2	 2t	
r	 .

i

i

w^
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Y UV+'( .y	 )u I V+y l UV I 	 y l uv	 2y2U 
2	

u I + !^ .
il	 + — + U(—	 +y U)cot el

rr	 2	 r	 2 r I

I r 4e 
4(y-s')UU 2_2a [a -r 2 e 2 (y-5) (ul	 +Ylu)

f	 1	 0 2	 2	 r

V 2 + r!2e	 [U(2(y-$) 	 V +	 y	 -YU	 U)+ UIV-2a 1 
2r	 r2	 r	 0- 22	 2r

+Ue 2(y-a) [-3Vra l 2+2r 2 010+4r 2 a o a I +2rao

+a,(-rV,-V+r 2 U2 +r 2 U cot 0)]

20o1 v	 vvil	 all 
v 2	 a l V2 	 alvvi - v o- 2a 0 v—  —

R	 r	 Tr2	 r2	 2	 2
00	 r3	 r	 r

2512UV+5A V"02 V+251 UV2 %UV U2V U2VI
r	 2	 ,)_2	 2r

r

2UV2 	u I V 2
2rr2

2y, UV2
	

2j3	 U	 2^ u	 + 2y	 U	 2-y u
r	 o2	 0 2	 o2	 0 2

+ u 
o2 + UU 22

UV
U2 2

 + 2 (y2-Y UU 2 +	 r
I 2

+ (2a2
	2^	 +2yo

2 	 cot 0(25 0 U-2y 0 U-U 0
2

2y2+y22) U

2

'T

kr
2	 UV

IJU -Y U +2	 2

uv	 a uv
1	 1	 2 2(y-a)—	 + r e	 [-UU 

ol2	 2r'	 r
2r

Yo	 2
2(y	 + T) L1

ol

2	 3
2(	 -a )UU	 2 U U-y	 - 

2UU U	 2y, 2 uyo -So )	 1 2	 1 2

7

(7)



t

1 8a	 .

'

UUIV	 YllU2y
+ 2 (Y1 -01 
	

+ YlU2yi+
r	

+
YlU2V - 

3U2U2 -	 2
r	 Yl U U 

2r,r r	 r r2

'^.

2	 2
U V^	 Ul V	 2

+	 r2	 +	
2r	

- U (Ul+ r + y,U)cot
1	 4 4(Y-0) 2	 2

8]+ 
2 

r e	 U U.1

I _	 1 3 e2 (0-Y) [V
22+2022V

2r

+( 202-2Y2+cot 8 Xv2+2 S2V) I+ B

V
V	 -	 _

2r2ao^^00
+ 

2r

VSl	 -2a r2e
r	 ]

U2(Y-0)	 U + U +
(1	 r	 Y 1

U 
)

I Vo	 $OV	 V2 VVl	01 v2 Uv2	02UV

p

- 2a1	
2r -	 r	 2r3 + 2r2 +	 r2 -	 2r _
	 r

+ r2e2(Y_0) - UU
1 V +

r

U 2(U +
	 U- V—2+Y2	 r2 - YlV + Y )]r	 o

I
(Ve2s - r2U2e2Y) a

r
-20 [-3Vra 2+
r2	 1

2r2 	 +4r2a a
to	 0 1

p. + 2ra
0
+a (-rV

l
+r2U2-V+r2U cot 8)]_

(B)

1

f
where

Ev,

a2
= e	 = B/(B -u -

2
ur) (9)	

y

and

B = 4R2 (lp)	 ,.

For completeness we list the consistency field equation

01

rV
R2$..	

2r1of	 j0

sr^l	
^2^

r	
+ 012U+0201

A

r
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+ 252 U + U12 + r2 + Y12U+Y1U2+2y,yo

U	 2(0-Y)
+ (2 + 

r 
+ Y1 U)cot 6- 

a 
r2	 [022+2 2 (52 -Y2 ) +

0
2cot a]

UU	 U 
2 

2UU
+ r 22(Y-S)[ 211 + 2 + r 1 + YIUUI-^iUUI] .

+ 4Q
of
 +2a

t ao
 + 2Qo _ 3V a 2

+
Q1 

[U
2 
+U cot 81

- Ql[ 2r1 + 2S^ V - 2g2U-r2e2(Y-f3)UU1']

4, Y
The origin of the name s for the various field equations comes from the way

^

in which a solution for the functions Y,S,U and V occur. 	 An expansion is

t	 5 assumed for Y at some instant in retarded time u. 	 Eqs.	 (3) - (5) then yield

solutions for S, U and V at the same time. 	 Eq.	 (6) then gives the time
j^ 	 {^

J development of Y from which (3, U and V can be found for all time. 	 Eqs. (7)
3

t;	
I

and (8) then represent relations between the expansion parameters and

w

initial conditions	 (integration constants), and finally Eq. 	 (11) must be t

trivially satisfied providing the solution for Y, 	 U and V is correct. t

-; Since we are working in a cosmological space, in particular de Sitter '.
k

13
space, the field a nations take the generalized form_P	 q	 9

>a

Ruv	
guv R + aguv	Tun	 (i2)

^i	 x 2

where a is the cosmological constant.

1
,

j
s
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In empty space, they become

Ruv a guv

,4'
so that, in general, the empty space equations are not	 se	 equal to zero.

In order to see how the field equations are solved, we note that the metric

t

;if
is now

2^ Ve2s _ r2^2U2e2Y	 02e2$ r2^2Ue2Y	0
r

$2e2s	
0

0	 0
r 1;

g v = 02 9u	 -
PV

(14)
11V

r2 2Ue2Y	 0 -r2$2e2Y	 0

j
,h

Slt T

p0 0	 -r22e-2Ysin26
F,	 1

1

}} Since911 - 0 	
then

R11;	 911	 0
(15)

Thus (3) becomes

,»
_	 1
4($1	

20=-

2
rY1	

) + 2e	 -4^ cs -2Q 2
1	 1

16(	 )
r 11	 1

' From the definition of a =	 Zn	 then
°

Q	 = 2u
1	 B

(17)

a

zwp

e ,:

3

i
(13)
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and then

2

- of (18)Q11

t

Also
i
[

2

1 + ra l = 
BBu

(19)
^..$

1 Then (16) now becomes

t 0= $ (1+rQ)	 1 ry, 2
1	 1	 - 2	 1

j
B
-u2	 1	

2
B	 "l _ 2 rYl (20)

In terms of the variables.

q-r^
(21)

j u 	 u
F

" X (20) finally becomes (after dropping primes) ;.

L
O

2

=Bq (
B-u	

) ^-'
1
 rY 2g 2

1 1	
--g—
	 2	 1	 l

(22)	 y

yy

++x

where derivatives are with respect to q except for the function

x q a9 = B-u2 ^2

a

(23)$ 1 ar	 6

i

which occurs in the charge of variables

'
_
- q	

a
1

24( 24)ar	 aq

E

i
i
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After using (23) in (22), we get finally

S1	
2

2
g Y1	 (25)

i

Since R
12 = X912 = 0, then in terms of the variables q, u, (4) now becomes

(BBu2)[g4e2(Y-B)U11
= 2g2Y(2Y Y -Y	 -2Y	 cot e)12	 12	 l

G
+ 2q4 (	 )1	 (26)

q
F

Since

i R	 e2(S-Y)+
22 R	

e2^Y+^)	
_ - 2g 2e2sa	 (27)33 sing 8

then (5) becomes

i
2g2e2s^ = 2( B-u2 ) 2 ($3^)	 + 1 q4( B-u2 ) 2e2(Y-6) U 2

F:

B	 1	 2	 B	 1
I

- 1^B-u2
)( g

4U )	 1	 (6-u2)(g4U) cot 9B	 12	 q2	 B	 1q2

_ 4 ^
6-u2 ) ( g2a )B	 of

n ^.

N

2e2(S-Y)[-1-(3Y2-S2) cote -Y22"22+S22+2Y2(Y2`B2)] (28)

e
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Since

e2(Y+S) _

2	 R33 - - q2e26a	
(29)	 3

sin 8

then (6) becomes

2 20	 B-u2	 2	 2u	 2	 B+u2	
4(q Y1 )1

q e	 X = 2( B	) q ( gY0 ) 1 + 2(B
B u )[
	 2 +	 (B	

2)q]
B-u	 B-u	 q

_ 4u	 6-u 2	2	 + ( B-u2 2	 3
B-u	 (B	 ) q Y1 _	 g	 )	 ^(^-gY1 )(	 v)^1

2

- q ( B
-u 

)(U +3U cot e) +2q(B-
B u22

)Y

2 UB 	 ,a^
i	 f

Ij
E 	 ,I

2 6-u2	 2	 u 2	 2 B-u 2g ( B	 } U1 cot e + q (
B-
B	 )Y2 U1 + 2q ( B	 )Y 1 2U

2	 2
+ g2(BBu )Y1(U2 + U cot c)-2( B

 
Bu	

)(9260)1

k i3 + e2(a Y) P-(3Y2 -2S2 )cot 0 - Y22+2Y2(YR2 )2 - 1 	 (30)

r-
—	 2	 2Since Rot = Xq Ue	 then (7) becomes

ag2Ue2Y - 
620+8300 ( 2 ) 1 -g0oY21 Y20+2Y2(quOY1+Yo)	

s
q

- 2(qu	 +Yo )Cot 0 - U(6	
+262 2+2^2Y2"	 cot 6)

i1	 t

ii
(q36 U)	 2(g2cr) U

_	 + (BBu2)g2e2(Y-^)	
U01 +	 0 1 1 +	 0 1	

+;(Y	 )2: 2q2	 g2	
0^ 1

1	
..

Z-t	 M,

_.

1
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+ ( g2Yo ) J U	 2 ( g20oY 1 ) 1U + (q2 a0 ) l Y l ( g2U) 1 	3U(g2U2)1

q2	

+	

q	
q3	 2q2

(g4U2),cot 6	 (Y2g2U2)1	 2+ U l u2 + (Y1 U) 2U +	
4g	 q

4	 +	 2	 + Y l u cot 6

i
c

9

t

i

B-u 2	M3V)1	 (g2U1)1($3V)_ 
g0os1Ul -SoU1_s2UU1+(B )[_
	

2	 3
q	 2q

(gYlU^3V)1 + 01 U 1 ( ^3V)	 - 1 B-u?	 e2 4 4(Y-B)_ 2
q	 2( B ) q
	 UU1

2 (Y -B )($3y )	 63V

+ ( BBu )[ 1 q	
2	 2 ( q2 )l]	 (31)

*

	

	 Si nce Roo = a[ 3V e2s g 2
U2e2 ], then (8) becomes

q

^[ 3V)e2s g2 U2e2Y ] 	4 (B+2uq) 	
4qQ 2^ -4cr B

q	 B	 o 1	 0 oB-u"`

	

2	 4 V)	 2(926) 4 V )`	2($3V )( g6)	 2(^ V)(g 3cs s)	 a+ B-u	 _	 .o+	 01	 +	 01+	 011

	

( B )	 g2	 g3	 q2	 q3

3	 u	 3	 (g

	

4u ) (4'3v)	 U (^3V )
+2(q)^ co t 6 +22(q)1

	 5	
2 +
	 q21..	 2g

(g2 a2U ) 1 (^3V)	 lu^3V)2	 Bl u ( 3V)
+	 +	 +	

q	
cot 63	

q 

g

2YlU(^3V2) 	B-u2 ( ^3V)(^3V)ll	 Sl(4^3V)($3V),
-( B )^	 2	 +	 2q	

2q	 q

(g61)J(^3V)2	 2 2(y-0	 2(g26o)JU2
+	 3	 ] + q e (	 ) -

0001	 2
q	 q

f
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! -	 U(g3a0ul)l -	 2 2U(Ug3aoy l ) l - 2U(gU),yo
2	 2YO l u-	 2	

q

	

q	 q

€(U3 ) 2 	(g3U3 )1	 (g2Y2U3)1	 2
^{	 - 2U(UU^)2-	

q	
-	

3	
cot 6	

2	 (YlU)2U
M 3q	 q

ij	
3	 B-u2 (q4U ) (03V)U	 U2 ( $3^) 	 u 2($3V)

	

1 1	 1	 1- Yl U cot:	 + ( B ) [	 5	 +	 2	 +	 2
g	 g	 q

	

(YIU 
2 
qo

3
 V) l 	20 1 uu l (0

3 
V)	 2

E	 +	 2	 -	 q	 ] + 2(gaos 0)UU1+202u ul }t	 ))
t	

,
4	 ,

;#	 t

- 2gao ( S 1 U ) 2- 2{SoU) 2 + 2gao(YlU)2 + 2 (Yo U ) 2 + q°ou12
A

X.

E	 + uo2 + Z (U2^22 + 
(YtU2

)2 	 2$2UU2 + (2522-2 52y2)U2

2+2 a +	 -cot82 a + -a - U

	

(q oYl Yo)	 (4 osl So 9 oYl Yo)

2
2	 l 6-u 2 4 4	 2 2f	 - qv u U uu Y,,uJ+-(	 ) g e (Y5) u u

k	 ,.	 0 1" 0- 2- 2	 2	 B	 l

2 ($-Y)
- e	 {^3V +25 {^V)+(25 2y + cot 0)L^3V +25 ^3V J}	

3

	

2g3	 (	 22	 22	 2	 2	 2	 2	 )

(32)

m<
Since Rod = X^ e25 , then (11) becomes

2 2( g2a )	 (q25 U)	 (g2U)	 (q2U) cot 6
ae25 - ( B Bu )^	

0 11 +	
22 

1 +	
22 

1 +---t ^	 -

	

q	 q	 2q	 2q

r
,.	 + 25to +2(ga 0 51 ) 1	 l2+ (Y U) +Y1' U cot e +2Y1 (Yo +qa01Y )J

h

i



E

16

	

B-u2 2	 (03V) 11	 ( 95103^ ) l + 2 2(Y-8) 
(g4UU

1 ) l+	 + -

( B ) -	 2q	 2	 9 e	 [	 4	 (Yl 61)UU1]

	

9	 29

{	 2(8-Y)e 2

	 [822+2$2(62-Y2) + 
82cot e]	 (33)

q
TA

The complex of Eqs. (25), (26) and (28) for 8, U, and V respectively,

k	 can be solved if we assume a power series expansion in 1/q for y of the form

	

f(u,e) d( u,e)	 g (u,e)	k(u,6)	 _5
Y	 +	 2	 + 3	 + 4
	

+ e(q )	 (34)q

fl
The d term is dropped since it gives rise to a log term in the solution for

	

r 1
	 U. The solution for (25) then becomest

„y

4 f2	 fg 5 
fk

-

6

8	 H(u l e) -	 2 -	 4 -	 5 + e(9)	 (35)
q	 q	 9

where H is an integration constant. The H ` term is also dropped since it

	

gives rise to a log term in the solution for V. However, this term can be 	
j

	

'' 1	
reduced to zero by a suitable coordinate transformation.

9
 Using(34)and	 ?

	

(35) in (26), we obtain 	
a

t
,

2
( 8 B 	2̂ )U	 L - (f +2f cot 6) 12 + (2N+3ff2+4f2cot 'e) 13	

s

	

R	 q	 q

4 (12fN+13f2f2+14f3cot e -6g 2-12gcot e) 14 + e (9 -5 )	 (36)

-	 q

where L and N are integration constants.

i.,

P. i .
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i

a

Using (36), the solution for V from (27) is

2 2	 3	 1	 12 B+u2B-u	 4u--L - a]q
3
 +[B_ + L2+L cot e]q

2
( B	) 	 V ) = 3 [ 62

' + (1+ 2
 f2(1+

	 cot e- f22-4ff2cot 9

-	 f2 (l+8 cot26) +^+(2 f9- $ f4)] q
r

7
w - 2 [g22+3g2-2g+6N(f2+2f cot 0)+9ff22

µ

+ 2 ff22+ ,
21 f

2f2cot e + 16f3cot26 - 3 f3

+	 fka] 12 + e( q 3 ) (37)

+ If we replace the parameter f 	 C-c 3/6, the solution represented by Eqs.

(34), (35),	 (36) and (37) will then reduce to the assymptotic-flat-space

results9 in the limit B	 and a	 0 providing we put L = 0. In asymptotic

flat-space, the constant of integration L in the equation for U (Eq.	 (36))

must vanish in order to preserve the signature of the metric. In flat-space

V - r and U - L.	 Thus v

$
2S

goo	
Vr	

U2re2Y (38)

^	 )

1

`' M would eventually change sign for large enough r,- 	 But in asymptotic de Sitter

space,	 3V	 O(q3) and U - L; so that goo does not change sign for large q.

y

1

t



fo
i

y
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l g	 g

Thus we cannot a priori set L _ 0 as in the flat-space case. 	 The solution

represented b	 {Eqs.	 (34) - (37)) are then substituted intoY Y^ ^^ U and Vp	 : 

the time development Eq. 	 (30).	 This yields the following conditions on

the expansion:

3 fa = L2 - L cot 6	 (39)
*t

and
s ^ 2

4( B-u )g	 _ 2fM-N
2
+N cot 6 + 3 ka

B	 o

- 6gL2-49 2L-6gL cot 6	 (40)

With these conditions, the form of Y is preserved and the development of

the system is fully determined from initial conditions provided the functions

f, k, N, M, L are known. 	 The consistency field equation (33) is trivially

' satisfied to 6(q -4 ) by this solution for Y, S, U, and V.

It

This solution, along with the constraints (39) and (40): , reduces the

supplementary field equations (31) and (32) to inverse-square form. Setting'b

these 6(q 2 ) terms equal to zero yields_repsectively the following relations

f: a

B-u 2	__	 B-u 2 2	 2	 B-u 2	1

(	 )Mo 	 (B	 ) {o+ ( 
B	 )^2 (f220+3f2ocot 8 -2f

B	
o)

i,

-ffoL cot 0-2fof 2L-2ffoL2I+ Z a(N2+N cot 6)

1
a' + 2 ag(L2-L cot 6)- Z L(2M2+3M cot 6-f222

4
++

y

1



-VU L 3M-4f -lOf cot e -2fcot26 +4f2 2 ( 	22	 2	 --	 )

	

t	 - 2 L2 (a2ff22+2 f22+ 2 ff2cot a +f2+ 25f2cot2e)

- 1 LL (8N+ 1-9 ff + 13 f2cot e)- S L 2f2+ 3 L f	 (41)2	 2	 2	 2 2	 8 2	 2 22 2

	

i	 - 3(6-u2 )N	
M 

+( B u 2 (3ff +4ff cote+f fB	 o	 2 B	 20	 0	 0 2
4

	

!	 a(92+9 cot 0)+L2(2N+ 
45 

ff2+ 2 f2cot 0)

+ L 3N +3N cot e +3ff +f + - ff cot' 0	r^	 2( 	 9
2	 22 2 4 2

3f2- 
2 

f2cot26)	 (42)

where (42) was used in Eq. (31) in order to remove the N o dependence from

r: a	 (41),. Thus,the time development of M and N are known provided the functions

	

r	 ;

	_	 g, L, M, N are given for one value of a and f is given as a function of

u and e. Thus, we are at the peculiar point that we need to know f, k

and L as functions of u and 6. The reason we need to know L is that the

constraint between f and L from Eq. (39) still leaves L unknown up to an

arbitrary, function of u. We can,'however, obtain an equation for ko
r..

provided we carry out the expansion of the time development field equation

(30) to 6(q ). But this would still leave L arbitrary.
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An a lr	 ternate approach to this problem is to require that the solution

{
has a definite form in the limit of q	 This would be, of course, the 	 }}}}$

Y

}

"asymptotic'de Sitter space form of the metric'

4

9 -
► ^2	 4u2	 q2+ 4uB	

q +

	 B2	
(43)

00	
(B-u2)2	 (B-u2 ) 2	(B-u2)2

But from the solution (34) - (37) and the form of goo from the metric (14),
K

we have i

oo	
B-u2 2	 62	

3
oil

t

+ 
[4u + L + L cot 8 - 2fL2]9 +[1 + 2 f2

X
	 (44)

.	 B	 2	 3

4

i	 r i
2f2 B+u2	

2f2L2+ 2L(f +f cot 8)] + e(q)	
s

B

	

2	 2

Thus in the limit of large q, we must have

J

22
	

2)4u __	 B	 r4	4 (B+u	
- L2 ]	 (45)	 s

	(B-u2 )2'	 (B-u2)2
	 62	 3

ti

or

X 4 L2_	 (46)

3

and similarly

	2fL2 = L2+ L cot @	 (47)

I.
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2 f 2 A- 2 f2(B+ u2 > - 2f 2 L 2
+2L(f +fcot 6) = 0 (48)

g2 2

Eq.	 46) immediately implies that L is independent of the coordinates and

is therefore an invariant.	 But this implies-with Eq.	 (47) that either L=0

or f	 a	 cot 6. The latter case does not have the correct regularity

properties 	 for y as 6 -} 0.	 Thus

L-0

(49)

-B2

Finally Ea.	 (48) implies that either f = 0 or B = u 2/6.	 Previously we ruled

out f a cot 6 on the basis of regularity for y.	 But from Eq.	 (39) we must

now conclude that either f = 0 or a = 0.	 The consistent choice is

f _ 0 (50)

(
Thus by comparison with the asymptotic flat-space case, the character of

the solution is very different in asymptotic de Sitter space.	 Indeed, the

,. mass aspectp E(q.	 (41_)) now depends on a different "news" function that becomes,

F due to (40), (49) and (50)

1

7 M	 =	 6
MO
	 2	 (N2+ N cot 6) (51)

(B-u )

2412	 96_ .. 
B	 90

+— 
2 

N cot a+	 2	 k
.:, $B(B-u	 -u

k	 1
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Similarly for No , we find

No = -	 BM22 + 4 2 
(92+ g cot 6)	 (52)

3(B- u 	(B-u )

On the other hand, the radiation condition 
9114 

in asymptotic flat space

expressed in,(q,u) coordinates becomes

ar ( r`1'') = a—q ( qy ) ( B+B ) - 26
	

(53)

where Y' is a function of 1/r; so in the limit of q -> -, the right hand

side will not vanish unless f = 0.	 Thus the condition for radiation in

q-coordinates seems to be satisfied if f = 0, and that the description of

mass or mass-loss now depends consistently on go in the supplementary

conditions, i.e.  Eq.	 (51) .	 Thi s different dependence of y i s not surpri s  ng

since the asymptotic space cannot be described by an empty space axially
z

' symmetric static metric and therefore related to Weyl's form from which 1
1

t' Bondi, et al. could identify the mass function.

We conclude that radiation will occur in an asymptotic de Sitter space

but that the nature of the solution requires that the 1/q dependence of the

solution for	 begins with the e(q -3 ) term.	 This implies that in the

^x
limit B	 we do not obtain the radiative flat-space results. 	 That is,

the requirement for radiation in asymptotic de Sitter space seems to be more
f ^^

restrictive than in asymptotic-flat-space. 	 We now are ready to return to

M*: the argument following Eq.	 (49) in which we concluded that f = 0.	 This

choice was, however, only consistent with ' a solution in asymptotic de Sitter'

kL .°. r°
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space. Instead, if we had chosen a 0, then B	 which would then

automatically estrict our solution to flats ace. Thus we are left withY	 P

the unusual consequences of radiation in de Sitter space or no de Sitter

space solution at all.

III. Gravitational Theories with Non-Zero
Divergence of the Energy-Momentum Tensor

Until recently it was generally believed that any viable (acceptable)

theory of gravitation must be a metric theory. In particular, any theory

must satisfy the following two metric postulates:15,16

(1) There exists a metric of signature 2, which governs the proper-

j	 length and proper-time measures: ds2 	 ga^dxadx^.

(2) The response of stressed matter is embodied in the divergenceless.

energy-momentum tensor.

wrw
i	 Based upon this assumption, the Caltech program15 has vigorously compiled

f	
and analyzed various theories which can be tested against experiment

through the parametrized post-Newtonian (PPN) expansion of the-metric.l7

Unfortunately a number of difficulties have arisen in this program.

Among other problems is that it is now known that there are theories which

agree with the experimental values of the PPN parameter's and hence the

18Einstein theory,	 but may disagree theoretically with the Einstein theory

;. in the as-yet-experimentally-inaccessible next-order expansions of the

metric.	 Furthermore, there is at least one example of a nonmetric theory19

which approximates a metric theory to first order and is in agreement with	
'e:

` the Einstein theory to this same limit.	 Finally, we `iave shown that if we

Y

t

1
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replace the second condition for a metric theory (although perhaps not the

more generalized integral form discussed by Thorne and Will 
15 

in the partic-

ular case of a Brans-Dicke gravitational theory,20 we still obtain a con-

sistent solution in the post-Newtonian expansion of the metric tensor, 21

gah. As a result,we have published a paper 
22 

where we have modified the

Brans-Dicke theory by assuming that the divergence of the energy-momentum

tensor is proportional to the covariant derivative of the scalar curvature.

Rastall argues that the form of the divergence of the energy-momentum tensor

is not ruled out experimentally, at least for the Einstein theory, 17,23

However, no ad hoc additions to the usual Brans-Dicke field equations are

required as i'n Rastall's case or as in the steady-state theories of which

24
this is a natural possibility.	 Very general approaches to scalar-tensor 	

Y

j	 theories obtainable from Lagrangians have been considered by Bergmann 25 and

Harrison. 26 In particular, Harrison shows that many theories thought distinct,

such as the Einstein theory, Brans-Dicke theory, and some steady-state

f i;	 theories (among others), are in fact conformally equivalent. This _implicit

f

embodiment in the field equations of general relativity of various physically
k

inequivalent but conformally equivalent versions of the scalar-tensor

formalism has been recognized by others. Dicke 27 showed that even a unit

transformation has this effect on the scalar-tensor theory. McCrea 28ra	 m	 eLY,^	 y

".'	 recognized that formally the steady-state theory of Hoyle logically has

the same structure as the Einstein equations if one adds a suitable term to

Tuv . Indeed, Hoyle's original approache 4 to the steady-state theory is i
N	 equivalent to the assumption that T"' 	 0. However, his later identi

fication29 of this source with a scalar creation field does not apply here.
st

x	
Formally we differ in that no ad hoc additions to the field equation or Tuv
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?	 t
i

are required as in Hoyle's steady-state theory or as in Rastall's case. i

The extra degree of freedom of the scalar field determines uniquely the
i

k

field equations for which we need only supply a reasonable assumption for

the divergence of T	 such as done by Rastall.	 It is thus noteworthy that

the Caltech group is now actively considering nonmetric as well as other

possible theories of gravity, 30

In a second paper, 31 we have discovered the formal equivalence of

massive Brans-Dicke theories of gravitation with Brans-Dicke theories with

non-zero divergence of the energy-momentum tensor. 	 As an added bonus, we

1 find that this equivalence constrains w S 49.q 

In order to demonstrate the general theory we carry out in detail the !„

general calculation of the 	 PPN	 parameters4 for two different modifications, M

as yet unpublished, of the generalized scalar-tensor theories referred to

as the Bergmann-Wagoner theory. 32 	In the first case we let
A

Rau	 (54)
Tuv;v 8^r i

where a is an unknown coupling constant. 	 As a matter of distinction, we

note that this modification immediately implies a correction to the

continuity equation

8P + o	 ( Pv) - 0	 (55)
at

by adding a term proportional to

A
a at	 (56)

y	 ^

Ll L
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e

to the right hand side of (55).	 This can, of course, be obviated by	 a

2
priori	 requiring that a = 6(v ). 	 However, Euler's equation

P(v 0)v + poU + Qp = 0	 (57)

N

u

will still	 be modified even if a is a second order parameter. 	 A modification	 _.

of the form

U
Tuv	

= g^'^$.^'u
	 (58)

t

where	 is the scalarfield does not suffer the above problems since the

vlfi
e

right hand side of (58) is obviously sixth order since ^, u is either

second or third order depending on whether it is spatial or time derivatives,

respectively.	 The modifications of the form (58) satisfy the usual Newtonian

equations of perfect fluid hydrodynamics. 	 Furthermore, in this case the

t coupling parameter a is completely free.

In order to obtain the PPN parameters, we must work in the so called

standard gauge so we can compare with the work of Will 	 and others.	 For us

33
this is equivalent to choosing the Chandrasekhar =Nutku gauge:

(2)	 (2)	 (2)8g	 ag	 ag
M R 1	 Oo	 1	 JJ 

+	

ik _ as(2)
—	 -

-2—	
_

2	
axk 	 ax 	 ax'	 ax

(59)

ag

(3)	 (2)

ag	 (2)^ o - - 1 
_= aEj

axk	
z	 at	 at

e

C

^ 3

t

f
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From these it follows thaj34

a29 (2).. 
	 a2 

9 
(3)	 2 (2) io	 a C

—
at
-2	 —ax, ;t	 2at

4

a 9	 00
	

a29 (2)	 a 9	 g	
a C 

(2)
+ 2

2 atax	 atax	 ax ax	 atax 	 ataxy

a9
2 (2)	

a2 9 (2)

  
	 2 

9 
(2)	 a2 9 (2)  
	 2 (2)

+
00 kk 	 ki	 jk	 a C

2	 (60)
axiax I	 axiax I	 ax I a —XI	 ax,axi

For the above we expanded

74
A

(2)	 (+ g	 + g 4)
9 00	 00 +00

ij +9	 9	 +ij

(3)	 + (61)
g io	 9	 io

The equations for the various orders of R
11V 

become

a(2) 
oo	

I 
2 9 (2) 00-	 (62)

2 (2)	
a2

(3)	 a2 (2)
9	 9	 9(4)	 1	 ii	 io	 1 2 (4)	 1	 (2)	 00

R	
T	 V 9 oo	 9 

ij

oo	 —2	 i	
+	

-7	 yax at	 ax i 
ax

2	 g(2) 00 	 (2)	 (2)	

2 00	

g (2) jj

Y)

tag

00)(	 i	 irax—j	

i	

4 gxi	 + f (
^ax,
 —

3x	 +	 axi

- - ---------
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2	 (2)
a2e (2) + 1 o2g (4)	 _ 1	 a g	 00g (2)

at 	
2	 00	 2	 ij	 ax ax

ag (2)	 _
1	 (2)	 l2 _ 1	 oo	 ae (2)

+ 2 ^09 (63 )ooJ axax	 ax

2	 (2)	 2	 (3)	 2	 (2)
a	 a	 9

R
9	

JJ - 1	
9	

jo - 1	
e	

^^ + 12 p2 g(3)
io	 i	 2	 i	 j-	 2	 j	 2

ax at	 ax ax	 ax at
of

E

_ 1 a2g ( 2 ) 00 _- a 2e (2) + 1 
02 (3)

6
94	

atax'	 atax'	
2	

10
(4)

t	 f _

a2g(2)oo 	 a2gt2kk	
a2g(2^

a2g(2)x	 ` 2
R O 1___	 1	 1	 A

tJ	 2	 i	 j —+ 2	 i	 j - 2	 k	 j -ax ax	 ax

k^ 1	 2	 (2)
2	 g	 ijk	 i +ax	 ax ax ax ax

i^ Y—- - 
a2e(2) 

+ 1 v2 g(2) (65)

f

ax ax 	 - 
2	

'^

We assume the energy momentum tensor has the form

Tuv _ (p
0 
+P0 'f + P) uuuV + P9u

V
(66)

po _ energy density of rest mass

. p-P
° = specific interval energy density

Po

- total energy density

It

Y
p = pressure;	 all quantities are measured in the frame-comoving with

k the fluid element	 and where the four-velocity 	 s g ivenY	 9 b Y

a



(67)
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71,

dx1i

UP - dT

In order to obtain an expansion for T ug , we require an expansion for u 0 to

4th order and u	 to 3rd order:

0	 V^U	 +	 U + O(V4
2

L4
(68)

o	 i	 3
U	 U v	 v	 + 6(v

Then to the required order

1 
. (0)00	 P

0
(69)

J

(2)oo	 2T	 P (v	 2u) + p
0

(70)

(2)ij	 v j + P6T
0 

v (71)

it T (1)0 '	 P V'
0

(72)

A

i.
3	 N

where the superscript in parentheses indicate order (p/r )8(v-). A

We now modify the Bergmann-Wagoner field equations
32

R	 g	 R	 B 	 [T	 +
Pv	 Mpv	 T 

^Jlv2	 pv
(73)

t.
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oil

i and
87tT

q2^ 3+2w(o) + F(^)O'PO,P (74)

I

4 " which arises when we assume

U - Q
TM v;u	 8 ,n R;v (75)

K where a is a constant of 2nd order in v, and where IF	 has the general

form x

-1
uT	 = A(0)0;110	 + B($)duv$'P;P + C($)^'u^+ duV0O[] 2$ (76);V

From equation (73)

' Rug - 2 duV 
R = --^ [TMu

V 
+ T ug] (77)

or
i t R[TM + T (78)

where

u.	 u
a

-T =	 T	 = TT
M	 MuU

From equation (74) we can solve for TM	 and from equation (76) we can find

E;
T

8^r	 3+2w(	 2	 3+2w 	; p
R - +	 [	 81r	 -	 8^r	 F($)$	 ^;P

}
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f

` ' + (A+Q)^' P^	 + (C+4D)O2$J (79)

87r	 2w'	 2	 3+2w(	 )	 2
$	 87r	 v	 8,ff	 ;vw	 ,

_ 3
+87r	 F' ( )^;V0 P ;P

	 287r(^,^;vF($)^'p$;P

2 3+2w	 F(^)^' PO.	 + (A'+4B')O.v0 p ^
87r	 , P,v	 P

+ 2(A+4B)o' P0,	 + (C'+4D')O.v O 20P;v
k

+ (C+4D) (0 20) ^^^ - 
8

-1-T 0^^^3+8
	 2^

i

3

4

2	 +	 ;P	
3+87T+ (C+4D) O	 (A+4B)¢	 0,p-	 )	 ($)'P;P^ (80)

Equation (77) implies

,. = {RI1	
- 2 su^R ) ^^u =
	 8^r[TMuv^U 

+ T Pv^u '
(81)

^ H

t. so that

y
^-	 3+2w	 _ 26	 8"T	 2w'	 OT	 + C'+4D'	 -R.H-S.	 _ - 8^r	 sir ^^vq ADC-	 8^r	 8Tr$

C+4D
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t

+ (1320).v ^3♦8w	 + C + 4D] +	 ;v^P^	
3+8T	 F`(^)

A+46	 3+2w2w8^	 F (^) + A' + 46' - 	 +	 87ro	 F ( ) ]

:',
^
P

3+2w	 F
t	 ¢;P;v(2(A+4B) - 2	

87r	
O]

+ (A+D ' )^	 02	 + (02B+C' )$
P ;v	 ;v	 ;P;v

1
F

j + p (O 2^)	 + CO2 C^. (82)

tj
;v ,v

L.H.S. _ (O 2 ). v	 02(^;v)	 2v^	 3+8^r	
2

L

{` m_
3+2w	 F	 P

+ ( (A+4B) 
-	 87r	 O]	 ^^P],

(83)

^` 4

Equating coefficients from both sides in (82) and (83)

9

t ` (02^).	 1 = —87rD — 8"" 
[3+87wr	 + C + 4D]	 (84)-

e

02 (x.	 )	 —1 _ —8nC	 (85)
;v

a

r f

k

,

Y
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9

0. 0
2 	 _ 47r [3+2w	 + C + 4D] _ -87r(AD'

, v	 0	 87r

8wa2w'	 ' _ 3+2w	 _ C+4D

-	 [ 87r+ C + 4D	 Biro	 0 ]	
(86 )

	

0, 
P^ ;v 

==>A'—'[A + 4B — 3+8^
	

F]

f' .F	 8w(A'+B')	
8	

[A + 46
	 3+2w(0)F]

+ 8^ [A' + 46' - 2wg 	 F _ F
^38^w ]	 (87)

t(	 x.

^i^t

+	
^'P P 'v	 0 = 8ffa [2A + 8B - 2 3+8^

	
F] + 8n(A+2B+C')	 (88)

i

t
a 5 ,	 Equations (84)	 (88) can be solved for A, B, C, D, F giving

•	
ti.

l ^(w+2)
A=$ ^'-	 C 8	 D=- 87T	 4a

	

w	
l 2a

	

_(^)	 8Qw ,	 w	 9B	
16zr (1	 ) 2	 gar (l -)	 F	 3+2w	 ( )

hThe field equations are ten

	

k	

.

	

1	 87r	
90

uv 2 pv	 Muv	 ^uv

y

y.
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3+2w	 ;P3+2w
	 ;PO 

;P

Rewriting (90), we get

(91)

n	
34

{

8ff
1— W^
	 'PV 

o ' P^ • P

11V11V	 87r	 (1 4Q ) 	87r	 87r	 (1) 2

R
W+l	

+ 2a W+2)
	 9	 (1-2a)WOT ( 91)

P	 (1+—)(3+2W)	 (1)(3 2w)

If we expand all terms on right hand side with

1+e} (92)

A ' where E	 e (2) + E( 4) +'	 i s a constant of order of the
N

gravitational constant and once again the e(v ) is given in the
parentheses;

J

and further if we write

E(2)
W( )	 W(00) + --r- Wo(^p)

(2)

WiWo	

^'

	 0
(93)
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we find

R(2)00
T(o)

' " 84  3

w++2
(94)two	 00

R (4) = 8^BT(o)oo,(2) two+2
	

- 8^bT(2)
	 + r i 	 ae(2)

00 3+two	 00	 00	 aX

e W O (oe (2) ) 2
	

w +'

— ) 	 - 8^,(dT(°)00g(2)oo(-3+2(,,0)3+2w

- 8^rpT
(°)o0 2°Gw0	 _	

8^r^g ( 2)	 T
(o)oo	 wo+l

{ +2wo#!	 300	 3+2wo

I

a

t,	 _E
s.. + 8^{ T (2)00	

w
°+'	 - 8^' T(2)JJ

(-3+2wo

Wo

*'J	 +2w 3

a
_	 ^ 2e(2) + 8
	

T(o)oo	
s	

w o'
(95)	 p

at 	 (3+2wa)2
zE

R(2)	 -i`
a2e(2)	

8	 T{o)008.	
wo+1

-	 - (96)
i	 i`

ax axJ ^5-2wo)

R(3)	 _ -	 ^rbT ( ^ )	-	 a2E(2)B (97)

is

oj of	 i
atax

{!

s	 ,	 ,
e

i



36

r

Using Equations (69) - (72) in Equations (94) - (97), we find

;

	f	
R(2)	 1 v2g(2) 	8^r, W°+ 	T (° )00	 (98)

	

f	 oo	 2	 00	 2

2 22	 -	 a E ( )	 (2)
RO	

1
--	 + v 

2 
g

	' 3 	ax ax 	 2 

8^ T(0)o06 Wo+1 - a2E(2)	
(99)ii 2wo+3 ax' ax3

	

k	
2	 82 (2)

R(3)	 = 1 02 (3)	 a e (

2 
) + 1	 g	 00

g

	

of	 2	 of	 axe at	 4	 ax' at
j

E;	 C1)	
a2E(2)

8T	 o i -	
(100)

atax
i

,

Therefore	 a

	

w+2	 2w +4

v29t2)oo	
167OT(°)00 3°2^ 	 _ - 8^r, T(o)00 3+2w	

(101)
0	 0

W +1

v29(2)iJ
	
16,r T(0)ooa1J 3+2w	 (102)

i

2 (2)

	

2 (3)	 (1)oi	
1 a 9	 00

9 9 of = + 16JT	 2	 i	 (103)
ax at

}

r

4
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But (101 and (102) imply that

029(2) 'j
 ! Y6ij V2g(2)oo (104)

with
wo+l

1
Y = wo+2

(105)

{

By definition (agreement with Newton's Law of gravitation) (-.
F

p w +2	 P(' t)d3X^()	
2 U2U - 4-	 l

r

_

9 _-
3+2woJ	 x-x'

P(X'lt)d3X^
-+2G (106)

which implies that

rf 2w +4

bl 3+2wo	
G (1o7)

{
where G is the measurable gravitational constant. 	 To second order,Eq.	 (91) x:

'
becomes i

o2E (2) _ 	 T(o)go (108)
3+2wo

By _comparison with Eq.	 (101), we note that

( 2w +4	 e(2) _	 (2)
)	 9 109(	 )o	 00

a

v-

a	 Y
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k
ff

f

f
Next we find that

2 (4)	 _ (2)	 a29(2) 00 _	 (2) l 2 + ag(2 )00 ae(2)
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(110)

E
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which gives

9

2 (4)	 2 2	 3+2wo	 2	 (4jo+' 
3	

3

	

z	 V 9	
oo - 2v U (1+A)-81rGpo w0+2	 V+ wo+2	 p/Ao }
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l 2w.+1	 3+2wo

+ n + 2	 2 w +2 + /l U	 16ffGp0	 2 2aGw
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	(111 }

o 	 (2w
0
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 K

By comparison with Will's generalized PPN metric, 	 wewe find
p a

3=1 +n	 03	 1

3+2 w	 w +1-	 o
BI 

-
 2w+ 4	 54 wo+2

2wo+1

^2	 2w +4 A	
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o

Y
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where

A = w°	 (113)
G (2wo+3)2(2wo+4)

But the observable G now has a 2nd order correction

*	 3+2w

G = G 1 +Q	 °2 Gwo 	(114)

( wo+2 )

Finally	
a2 (2)9	 ,

V2g(3) oi	 i 
00 + 167TVpov^	 (115)

ataxk

1n

In order to solve this equation, we use the so called superpotential36

G	
r	 9(2)00	 o2X	 (116)

where

X Gf po ( —X ' ,
—

t) x-
-
x' d3 x 	 (117)

a	 ^

and note that

d3  p v J(x3 -x'3)(x^ -xi3
a	 a	 -	 _ 0	 3 + 	 o}	 at X--G	 dx	 G	

3	
(118)

ax 	 X-X	 X-X
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Then (115) becomes

t^
x	 ^	 r

f;	
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l v2 Gpov'^ 
d 3x 1

+	 V2 GPov'• ^x=X' ^(x^-x'^)
—	 __9	 of 2	 ^x_x^)	 2 	 X-X 3
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iy
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a
with the solution

( 3 )	 _	 7	 Two+10	 Gpov'i
	

3

g of	 7wo
	 ^X+X I

	

+14	
d x'

,,	 l Gpov j(xJ -x'j)(xi-x'') 3
d x'	 (120)2	 X-X

Again by comparison with Will, 35 we find

7r<= +10

Al	 7w +14	
A2	 1	 121

0

_	
By comparison with the Brans-Dicke scalar tensor theories, the only

difference is in the parameters

B SBD + A

C and

S2 S2BD A
a

Experimentally 
32 

we find that

;a

0.46 < A < 0.64

As an aside we note that the gauge equations are both satisfied providing
-	 ^	 l

4s	 a is second order.

As a second example, we assume the same Bergmann-Wagoner field equation 	
k

u	 (73) and (74) but with second form of the divergence of the energy-momentum

tensor given by Eq., (58).

n	 }
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This assumption leads to field equations

87r	 ;P
8Tr$	 87ruv	 $ uv	 ;P

w+l	 _ guv	 w' +2a	 ; p
guv 3+2w TM	 16Tr	 3+2w	 $	 $ ;p
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F
,:

22	 87r	 _ w' (	 +1 b^rQ	 ; p	 2	 a' (	 ) -2 a ($^
q $ = 3+2w $	 TM	 3+2w(fl	 $	

$;P+	 3+2w($) (123)

where prime denotes differentiation with respect to the scalar field $.	 We

f then expand each side of the equations as before
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16Trb T (2)oo wo
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From which we obtain

(2) 2	 2wo+4
	 potx^lt) d3x' (128)

u
900 3+2wo
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2U

E which implies that
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By (124) and (125)
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(130)

! r

which implies_

W
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Eq.-(127)	 then yields
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i Lill
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., ^ _	
wog	

1
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(133)

i
2Q	
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s

By comparison with generalized PPN metric, we get

2wo+3
=l+A+ st 	s	 =1	 2wo+4

fi

r; T.. 2w +1

-r
^2 	 2	

+4 - A + Q	 ^3	 1 (135
o

w +l

S4	 wo+2

Similarly from Eq.	 (126) we find

7w +10

I

A1 	
7	 +14	 A2 = l

o
(136)

We note that Q allows an added degree of freedom in comparison with experi-

ment.	 At present there is no experiment which can detect its value. The

most probable test willcome from lunar laser ranging which depends on the

combination of parameters	 + S2 .	 In this case A drops out leaving only

•

^W.
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At

an St dependent term. At present the experiment is still consistent with

zero oscillation in the radial variable and therefore no strict limitation

on 0 is possible. 37

IV.	 Conclusion	 -
r?

Obviously these types of modifications can be extended to more

divergences of Tug then those described by Eqs. 	 (54) and (58).	 Such an

analysis is the subject of another paper which is forthcoming. 	 In this

paper, we consider the coupling a = a(fl and consider the general- con-
,

w sistency of the field equations with the Bianchi 	 identities (which were

used to obtain Eq.-(81)), gauge conditions and the Newtonian limit of the

perfect fluid equations of hydrodynamics. 	 We note that the examples

^z
described above represent viable gravitational theories since their PPN

parameters fall with experimental limits of those parameters as listed by

32,37
Ni.	 We should also note that the technique of modification indicated

here and applied to scalar-tensor theories is in general applicable to

other theories such as vector-metric theories 38 or double metric theories.39

^
k
F

The degree of freedom from a second field allows unique field equations.

A more interesting problem is presented by the "new" PPN parameters;
^x

of Wild and Nordtvedt40 in which for the usual Bergman-Wagoner theory

3 E,r-

^x Y_ 1 	5-1+11

r„

al	 CL	 = ai	 l =	 2 = c3	 t4 - O,

F#

The parameters ai now represent preferred frame effects whereas non-zero

1
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^ i indicate non-conservative theories. However, in the modification given

by Eq. (58)9

^.	 Y = 1	 ^ = 1 +11+ Q

^i

ai =0	 i=1,2,3

^J =0	 J=1,3,4

- 2 + 2 -	 -
^2 -	 ^2	 3Y	

1

- 4 S Z

But this says that these types of theories are non-co

theories, As far as we know, these theories which a

f.
violate conservation of total momentum are the first

"	 are also viable alternatives to general relativity.

this result is the subject of a forthcoming investiga

r

}

A

non-co n 	 gravitational

app  to globally

such theories that

The exact nature of

tion.

4
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