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I. Introduction

kThﬁs veport follows two independent lines of research. The first is
an investigation into the coordinate independence of gravitational radiation
discussed in Section II and the second is an extension of the parameterized
post Newtonian (PPN) approximation given in Sectidn III. We cohé]udé the
report by speculating on the direction of future research indicated by the

work completed here.

II. Gravitational Radiation in Asymptotic de Sitter Space

Although an investigation of gravitational radiatign seems somewhat
remote from the parameterized post Newtonian (PPN) analysis of gravitationa]
theories, its importance as a definitive test between theories is just now

being recqgnized.]

Part of the reason for this buddihg importance comes
from a partial failure at_the 1eve110f the PPN abpfoximation to distinguiéh
between alternate and viable theories of gravitation.? Attempts to firmly
root Einstein's general theory to experimental results.has resulted in a
plethora of theories that agree experimentai]j in the PPN apprOXimafiont
Deviation$ between some of the theories are only expected in the "post" PPN
approximation.3 It is at this level of approXimation‘that oné begins to

detect varying contributions to gravitational radiation;]




In general the PPN approximation is an expansion of the metric
(Lagrangian) to fourth order in the velocity which is small in the neighbor-
hood of the solar system. In fact near the sun one expects that the

quantities

p(x) - V2 - u(x) - XL

where p is the density, U is the potential and p is the pressure, are all

of the same order of magnitude. Far from the solar system, we expect the
metric to take its Minkowskiian form: guv = (-1,1,1,1). [Greek symbols
represent the space-time components 0,1,2,3 whereas latin symbols represent
spatial components 1,2,3.] Thus if one carried out a consistent approxi-
mation scheme to successively higher orders, gravitational radiation effects
would occur in the seventh order.4 Therefore, a clear understanding of
gravitational radiation seems necessary in order to interpret such an
expansion.

A general unsolved problem exists with the understanding of gravitational
radiation in the interpretation of coordinates in relativistic theories.
Although the covariance of the equations seem to indicate an independence
of the choice of coordinates in calculation, it does make a difference when
one obtains the "physical components" necessary for comparison with experi-
ment.? For instance, the formulation of gravitational radiation in one
frame of reference (theory) may parrot the properties of gravitational
radiation but in the end, fail the test of coordinate independence. This

might occur if, for instance, a spacelike coordinate could become timelike
6

and vice versa as inside the horizon of a blackhole.
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Here we have investigated the gravitational radiation conditions in
an asymptotic de Sitter space, a theory conformally equivalent to general
relativity. Physically, this is an interesting problem for at least two
reasons:
(1) The results will help demonstrate the coordinate independence
of gravitational radiation, i.e., a physical interpretation
useful in the detection of gravitational radiation.
(2) It leads directly to an investigation of the group structure
imposed on space-time by an asymptotic de Sitter universe.
The second case has its importance in the possible classification schemes
for elementary partic]es.7 The former is a necessary step towards correctly
quantizing the gravitational fie]d.8
Gravitational radiation in asymptotic spaces has been investigated by
many, notably the works of Bondi, Van der Burg and Metzner9 (BVM) 1in an
empty, asymptotically flat space (i.e. asymptotically Minkowskiian) and of
Hawking in a dust-filled, asymptotic conformally flat Friedmann universe
with negative curva’cur'e.]0 Here We investigate a matter-]ess but asymptotic
de Sitter universe. For completeness, we include the effect of the cosmo-
logical constant. We use the method of the BVM empty space approach which
is well suited for this type of investigation.
To use the BVM method, it is necessary to fransform their metfic info
a de Sitter-space metric. This can be done thru a conformal transformation

of the metric]]
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where R is the "radius" of de Sitter space, u= t:- r is the nu]liggordinate

5 ‘?

where . §
4R? |

o= N ——= (2) B

4R2-u2-2ur §

and r is the ordinary radial coordinate. Since the BVM metric is axially

symmetric, sc will the de Sitter space metric be axially symmetric.' After v ;*4
the correction of several misprints in the work of Bondi, g&_gl,lz one % s
obtains the main field equations
- 4(81' %‘ rle) 2 3
2 4 2(y-8) 2 28, *
-2r R]Z = [r'e U]]'l -2r (612-Y12+2Y1Y2 - = -2y, cot 9) z :
+ 4r2(82+ %-rzez(Y'B)U])o] (4) %
2(B+y) |
7 o2(B-Y),g_ e - 1 4.2(y-B),.2_.2, .
sin“6 :
-rZU] cot 6 -4rU cot 6 +2e2(B'Y)[-1
2 s
“(3Y2‘82) cot © "Y22+822+82 +2Y2(Y2"'82)] 1 :
-8ro_+(2rV +6V-4r2U —4r2U cot 8)o i E
0 1 2 1 : ]
¥6rVo -4rZg, -8r% o I (5) 1
1 107" "o} 1




e2(Y8)
0

Ryqa = 2r(ry.), + (1-ryq)V
$in 33 o'l 1771
(P, W-r(1-ry; U, -ré(cot 8 —,)U;
+r(2ry]2+2y2+ry] cot 6 - 3 cot 0)U
2{R-
e (8 Y)[']‘(3Y2"232)C°t 8 ‘Y22+2Y2(Y2‘52)]
2 2 2

2 2

2
-o](-Zr Yo t3r-U cot 6 -2r7y,U-3V

+2ry V-r¥ +r2U,) (6)

The supplementary field equations become

RoZ = B02'Y02+ZYOY2'2Y0 cot 6

(8,28, 267,48, cot 0)- 312+ 2 +(y )2
227¢Pp 2Y27h2 T2 Y17Py

3UU2 Y

0,1 2
HUlygrt = 1 g UgytargpU

e (B a4 —
sV UV 42U,V

| Uy 1+eu
+(Yg=Bo Uy +yqUU,+(2y,-B) ) WU+ Upm 1 - ——
) r

1
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r r2 r

4e4(Y'B)UU 2.20,[8,-r 2g2(y- 3)( “+ —-+Y]U)]

2r
+Ue2(Y'B)[-3Vro]2+2rzo]o+4rzoool+2ro0

” 2

+a](-rV1-V+r U2+r2U cot 8)]

2 2

00 r 2',2 rZ r3 r2 r2

ZB]2UV+82U]V+8]U2V+ZB]UV2 . 282UV U2V U2V1
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W, BV
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- SWUit Tz E T ) rre [-Uo1

2 3

Yo,,2
- 2(y°]+ F_)U 'Z(YO'BO)UU]'ZU U]2—2UU]U2 ZY]ZU

\ VUV AUV
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o,V Y]]UZV Y]UZV] y]uzv‘ 3u2u2 )
+ 2(vy-8) r eyt ¥ R (LA
2, . 2y | o
Vv, ol
N s

1 _2(8-v) . : 4
-3 e [V,,+28,,V+(28,-2y,+cot 6XV,+28,V) ]+ FQ

V, BV -
N P 226 r2a2(Y-R) U
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V. BV 2 VW, BVE UV, B,V
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1) 2r r Zr3 2r2 r2, 2r r
uu, Vv Y,V
- 2
+ 2208 Ly 2y, %i---—}— + yo)]}
el 242.2Y, & ° 2, , 2 a2
+ ——-re ) —;7_ [-3Vro, "+ 2r7o, +4rio o,
+ 2roo+o](-rvl+r2U2-V+r2U cot 9)] (8)
where
¢ = €% = B/(B-uP-%ur) (9)
and
B = 4R (10)

- For completeness we 1i$t the consistency field equation

' v B,V 'Bv B,V -
__— n Bn Wi B
Ry = 2Big~ 2r =~ ~ v - 2 ¥ BypUtely
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ZBZU U-|2 U2
My e PR DA S
+ (;l'+‘g + Y]U)COtre' QE;?:I_ [622+282(32‘Y2)+32C0t 6]
+ rzez(Y'B)[U:” + Uf * ZSU] + 7qUU;-84U0, 1 'j
+ 4001+2°100+ E;Q-- %!-o]2+o][U2+U cot 6]
- ol E¥1-+ E?l! - ZBZU-rZeZ(Y-B)UUf] (11)

The origin of the names for the various field equations comes from the way
in which a solution for the functions y,B8,U and V occur. An expansion is
assumed for y at some instant in retarded time u. Egs. (3) - (5) then yield
solutions for B, U and V at the same timeQ Eq. (6) then gives the time
development of y from which B, U and V can be found for all time. Egs. (7)
and (8) then represent relations between the expansion parameters and
initial conditions (integration constants), and finally Eq. (11) must be
trivially satisfied providing the solution for y, B, U and V is correct.
Since we are working in a cosmological space, in particular de Sitter

space, the field equations take the generalized f‘orm]3

p O, RN, =T | (12)

where X is the cosmological constant.
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In empty space, they become

so that, in general, the empty space equations are not set equal to zero.

In order to see how the field equations are solved, we note that the metric

is now

Since E}] =0 , then

Thus (3) becomes

0= -

Ruv

e

1
7™M

=XQH\)

2

¢ Ve

R
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From the definition of o
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Ve28
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42628
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n ¢ , then
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and then

o R
Also

2
1+ roy = QEE— ¢

Then (16) now becomes

2

o
\

= B](]"H‘O]) - ']2' rY‘l

2
B-u 1 2
B By -72™

In terms of the variables

q=ro
u' = u

(20) finally becomes (after dropping primes)

2

where derivatives are with respect to q except for the function

2
- 909 _ B-u~ 2
9 =9 g ¢

which occurs in the charge of variables

d - 4. 9.
ar N 3q

11

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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After using (23) in (22), we get finally

2

B] = %'q Y] (25)

Since R]2 Aglz 0, then in terms of the variables q, u, (4) now becomes

2
(gég—)[q4e2(Y'B)U]]]

Since

ﬁézeZ(B-Y)+

then (5) becomes

2q2e26A

= ZQZY(ZY]Yz'le‘ZY] cot 9)

B
+ 2q% ( —g— M (26)
q
2(y+B)
sin”~ 6

2 2
2( B3 )2(0%v), + § gt Bl )22 (v-By 2

2
?(%‘i—uq“uhz ‘—2—< ><q4U),cote
2
- 48 (o),

+

292(3'7)[-1-(3\(2-82) cot 6 —y22+822+822+2Y2(Y2-62)] (28)

]
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Since

then (6) becomes

4

2
%28y = 2B )q(ay,), + 2B B“ ) 23 z (220 —

b (B2, (B )[anx¢wh
B—u2 B-u2
- Q(‘g"-J(U2+3U cot 6) +ZQ(—§—*JY2U

2 2
: 2,B- 2,B-
%Iy cot 0+ 0" Cghmly + 2735y 0

2 2
+ @55y, (U, + U cot 0)-2(B8) (o%),

+ ez(B-Y)[-]-(3y2~262)C0t 6 - Y22+2Y2(Y2“82)]

Since ﬁbz = quUeZY, then (7) becomes

AqZUe2Y

B
3 B
Bro™a °o(;§°1‘q“oY21‘Y20+2Y2(q°oY1+Yo)

‘ 2
'2(qcoy]+yo)cot 6 - U(822+282 +252¥2+82 cot 8)

+

3, 2
B-u?, 2 2(y-g) { Yo1 , (979Y)y 2(a%);U
B9 z "
S - 2q - q

7 * 7+ (YU

13

(29)

(30) |
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(Pvg)yU  2(aPoy)qu  (aPo )y, (a%u),  3u(a?u,),
+ o+ + i + >
q 9 q 2q
(q4U2)]C°t 0 (Yzqzuz)] 2
) + 5 + y]U cot 6
4q q
3 2 3,
Up=v),  (q°Uy),(97V)
B-u ( 1 171}
- Q081 U;-BoUy -BoUU +(5g ) - Z

.3 3
(qy,Up™V);  B,U(o7V) u? -

U0, + (yU),U +

q° q
L2, (-8 e,) g e
b GO By (31)

3
Since R = A[£-!l§—— q U eZY], then (8) becomes

3128
A[iﬁL%lE———- q2U2e2Y] = 2- B+2uq) 4qa, B] -40,8,,.

B-u

(67)y  2(a%0g)1(6%)  2(6%V) (a8 ), 2(63) (a0 ),

( - + + +
B q2 | q3 q2 q3
5 6N U By, (a0 (%) u(edy,),
v (g heot 8 + 5= (557~ 295 M-
(a®8,0); (6%V)  (8,U6PV), By u(o™V)
+ R— = cot 6
2 0(6%,) o2 (63, e ()6,
. - G TR A .
-9 , 2q SRR
3,2 2 2
(qBy ), (¢7V) 2(q°0,) U
q | q
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3 3
U(q OOU])] ) 2U(uq OOY])] Zu(qu)]YO
S I 1 LA T Tg
q q
3
- W, (@), e (a%y,0%), _
- - - co - —a— = Y
172 q 3q3 q2 1772
3 o B-u (q4U])](¢3V)U U2(¢3V)] U]2(¢3V)
- Y]U cotf + B ) 3 + 5 + 5
_ q q q
(y]U2q¢3V)] ZB]UU](¢3V) 2
+ q2 - 3 ]+ 2(q0081+Bo)UU1+282U U,

zqGO(B]U)Z‘ Z(BOU)Z + Zqoo(Y]U)Z + Z(YOU)Z + qUoU]z

+

12 2 2 2

+

2(900Y1+Y0)2' cot 9[2(q0061+ﬁo'q00Y1‘Y0)U

2 -

qooU]-Uo-UUZ-YZU

e2(B-Y) ( 3 3.\ 3 3
3 ) v22+2322(¢ V)+(282—2y2+ cot 8)[o Vo+28,0°V ]

2q
(32)

Since ﬁb] = A¢2e28, then (11) becomes

Z(QZUO)]] i (QZBZU)] + (qzuz)] . (QZU)]COt 6

v 7 —* 7
a. ¢ 2q 2q

2
AEZB = (Béu )[

+ 2810+2(q003])]+(Y]U)2¥Y]U’C0t65+2Y](Y0+q00Y])]

pra—
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3 3
2 (67V) (aB197V) (q* u;)
(B u®y2}_ % 1 12 1, 2e20v-8) 2 171 +{y;-8,)00;]
q 29
o2(B-Y)
e [8,,+28,(By-v,) + Bycot 6] (33)

The complex of Eqs. (25), (26) and (28) for B, U, and V respectively,
can be solved if we assume a power series expansion in 1/q for y of the form
f(u,0) d(u,8) g(u,6) k(u,s)

Yy = t— t— t— + 08(q
9 q q q

) (34)

The d term is dropped since it gives rise to a log term in the solution for

U. The solution for (25) then becomes

£ Tk -6 ‘
B_H(ue)’ 7T TF T 5+8(q) (35)

where H is an integration constant. The H term is also dropped since it

gives rise to a log term in the solution for V. However, this term can be

reduced to zero by a suitable coordinate transformation.9 Using (34) and
(35) in (26), we obtain
(B

)u = L - (f,+2f cot 0) Lo+ (ane3fe +aflcot 0)
2 q° 2 q°

-5 ,
(12fN+13f2f2+14f3cote -6g,-12gcot 8) Ly + o(g”) (36)
q"

.ppa

where L and N are integration constants.
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Using (36), the solution for V from (27) is ‘ %

2 2 .
(BuTy2(,3y) = 1 120B007) | 3903, 18U 4 | cot 0]q2 P
B 3 g2 B "l 2

1,2 2 N
+ (1+ 5 f A)q-2M-[N2+N cot 6 -f,"-4ff,cot ©
- %f (148 cot?o)+A( %fg- Jg )] ]E 3
- L [9,,439,-2g+6N(f,+2f cot 8)+9ff,°
Z 1922799572970 T, 2 j
1 51 . .2 3 .20 1.3 U
+ 5 0+ 5- f,fcot 6 + 16F°cot® - 3 f *?
+ 2l L+ e(a7d) @7
5 &

T L N

If we replace the parameter f - c-c3/6, the solution represented by Egs.

(34), (35), (36) and (37) will then reduce to the assymptotic flat-space ;
resu]tsg iﬁ the 1imit B+ = and A + 0 providing we put L = 0. In asymptotic i
flat-space, the constant of integration L in the equation for U (Eq. (36))

- must vanish fn order to preserQe the signature of the metric. In flat-space

V.rand U.L. Thus

= Ve ‘ Zr ZY 7 (38)

would eventually change sign for large enough r. But in asymptotic de Sitter

space, ¢3V ~ 8(q3) and U ~ L; so that 550 does not change sign for large q.




18

Thus we cannot a prioriset L = 0 as in the flat-space case. The solution

represented by v, B, U and V (Eqs. (34) - (37)) are then substituted into
the time development Eq. (30). This yields the following conditions on
the expansion:
Zer=1,-L coto (39)
3 2
and

a(Bzu_ B“ Jg, = 2fH-N,+N cot 6 + 53‘- KA
- 6gl,-4g,L-6gL cot 6 (40)

With these conditions, the form of y is preserved and the development of
the éystem'is fully determined from initial conditions provided the functions
f, ks N, M, L are known. The consistency field equation (33) is trivially
satisfied to e(q'4) by this solution for vy, B, U, and V.

This solution, along with the constraints (39) and (40), reduces the
supplementary field equations (31) and (32) to inverse-square form. Setting

these e(q'z) terms equal to zero yields repsectively the following relations

(& )M - - (B )2f2+(B u® )y (f,5,+3f, c0t 6 -2F )

220 "' 20

. . '| .
-ffOL cot @ -zfonL-fooL2]+ 7 3(N2+N cot 8)

] o 1 :
+ é-xg(Lz-L cot 8)- ?-L(2M2+3M cot()-fzzz

it e
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2

- Zfzzcot 0 +2f2+4f2<:tzat ‘8+2fcot 6 +2fcot3e)

2

- 3 L,(34-4f,,-10f ,cot 8 -2fcot’p +4f)

1,2 2, 9 2, 25.2 .2

19 + 13 22

1 5 2 2, 3

- 3( )N

2
B-u
M2+(————B )(3ff20+4ffocot 0 frfofz)

5 5 2

x(gz+g cot 6)+L,(2N+ 3> 15 ff,+ 2 focot o)

+ L(3N+3N cot(3+3ff22+f22+ %-ffzcot 0

2 2

- 3% 3 focot?e) (42)
where (42) was used in Eq. (31) fn order to remove the N, dependence from
(41). Thus,thertime development of M and N are knoWn’provided the functidns
g, L, M, N are given for.one value of u and f i§ given as a function of
u and 6. Thus; welére at the peculiar point thét we need to know f, k
and L as'fuhctions of u and 8. The reason we need to know L is that the

‘constrainfkbetween f and L from Eq. (39) still leaves L unknown up to an
arbftrar} function of u. We can, however, obtain an equation for k

prov1ded we carry out the expans1on of the time development f1e1d equatlon}

(30) to o(q" ) But this would st111 leave L arbltrary
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An alternate approach to this problem is to require that the solution
has a definite form in the limit of q - «. This would be, of course, the

"asymptotic'de Sitter space form of the metric

2
2 4uB + B (43)

+
-2 (B-ud)?

2

— 2 4u
2y2 9

990 > ¢ =

But from the solution (34) - (37) and the form of 560 from the metric (14),

we have
5 - B2 (AB®) A2y 2
00 (B_u2)2 BZ 3
+ [g4+ Lyr Lcot 6 - 2fL%0q +[1 + 5 2 (44)
22 (B+u%) .22 1
- 5 - 2F°L+ 2L(f2+f cot 8)] + e(a)
B
Thus in the limit of large g, we must have
al 8% aend) a2 (45)
602 BaDE B 3
or
Fog-t | (46)
and similarly
2fL° = L+ Lcot o | IR (47)

2

S R T R Ry T P T T T T T TN 1Y L

5 ’”K(ﬁh-v\:l» s

FLEFCH ERRORBNT et
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2 2

Z ¢2y- 20 (Bru) | 2621 2401 (Fyrfcot 6)= 0 (48)
Y B

Eq. (46) immediately implies that L is independent of the coordinates and

is therefore an ihvariant. But this implies with Eq. (47) that either L=0

or f a cot 6. The latter case does not have the correct regularity

properties9 for y as 6 ~ 0. Thus

L=0
(49)
_2
A=g

Finally Eq. (48) implies that either f = 0 or B = u2/6. Previously we ruled
out f o cot 6 on the basis of regularity for y. But from Eq. (39) we must

now conclude that either f = 0 or A = 0. The consistent choice is
f=0 (50)

Thus by Comparison with the asymptotic flat-space case, the character of
the solution is very different in asymptotic de Sitter space. Indeed, the
mass aspect (Eq. (41)) nowdepends on a different "news" function that becomes,

due to (40), (49) and (50)

6 R
M = (N,+ N cot o) (51)
0 (B_UZ) 2 :
24 12 96
=-£1g + -5 _Ncot o+ —22 .k
B "o @ B(B-u?)

G
1€
% :




22
Similarly for No, we find
B, 4
No = - 5o+ 5 (gz+ g cot 9) . (52)
3(B-u”") (B-u")

9,14

On the other hand, the radiation condition in asymptotic flat space

expressed in (q,u) coordinates becomes

3 (ry') = 3 (an) (BP9 - B (53)

where v' is a function of 1/r; so in the limit of q + =, the right hand
side will not vanish unless f = 0. Thus the condition for radiation in
g-coordinates seems to be satisfied if f = 0, and that the description of
mass or mass-10ss now depends consistently on 9% in the supplementary
conditions, i.e. Eq. (51). This different dependence of y is not surprising
since the asymptotic space cannot be described by an empty space axially
symmetric static metric and therefore related to Weyl's form from which
Bondi, et al? could identify the mass function.

We conclude that radiation will occur in an asymptotic de Sitter space
but that the nature of the solution requires that the 1/q dependence of the
solution for y begins with the e(q'3) term. This implies that in the
limit B » «, we do not obtain the radiative flat-space results. That is,
the requirement for radiation in asymptotic de Sittér space seems to be more
restrictive than in asymptotic flat-space. We now are ready to return to

the argument.folloWing Eq. (49) in which we concluded that f = 0. This

choice was,'however, only consistent with a solution in asymptotic de Sitter




23

space. Instead, if we had chosen A = 0, then B + « which would then
automatically restrict our solution to flat space. Thus, we are left with
the unusual consequences of radiation in de Sitter space or no de Sitter

space solution at all.

III. Gravitational Theories with Non-Zero
Divergence of the Energy-Momentum Tensor

Until recently it was generally believed that any viable (acceptable)
theory of gravitation must be a metric theory. In particular, any theory
must satisfy the following two metric postu]ates:lS’16

(1) There exists a metric of signature 2, which governs the proper-
dxude.

length and proper-time measures: ds2 ® 948

(2) The response of stressed matter is embodied in the divergenceless.

energy-momentum tensor.
Based upon this assumption, the Caltech program15 has vigorously compiled
and analyzed various theories which can be tested against experiment
through the parametrized post-Newtonian (PPN) expansion of the metric.]7
Unfortunately a number of difficulties have arisen in this program.
Among other problems is that it is now known that there are theories which
agree with the experimental values of the PPN parameters and hence the
Einstein theory,18 but may disagree theoretically with the Einstein theory
in the as-yet-experimentally-inaccessible next-order expansions of the
metric. Furthermore, there is at least onekexamp1e of a nonmetric theory19

which approximates a metric theory to first order and is in agreement with

the Einstein theory to this same limit. Finally, we have shown that if we




24

replace the second condition for a metric theory (although perhaps not the

more generalized integral form discussed by Thorne and Nillls

20

in the partic-

we still obtain a con-
21

ular case of a Brans-Dicke gravitational theory,

sistent solution in the post-Newtonian expansion of the metric tensor,

22

As a result,we have published a paper ~ where we have modified the

9up°
Brans-Dicke theory by assuming that the divergence of the energy-momentum

tensor is proportional to the covariant derivative of the scalar curvature.

Rastall argues that the form of the divergence of the energy-momentum tensor

is not ruled out experimentally, at least for the Einstein theory.u’23

However, no ad hoc additions to the usual Brans-Dicke field equations are

required as in Rastall's case or as in the steady-state theories of which

24

this is a natural possibility. Very general approaches to scalar-tensor

theories obtainable from Lagrangians have been considered by Bergmann25

26

and

Harrison. In particular, Harrison shows that many theories thought distinct,

such as the Einstein theory, Brans-Dicke theory, and some steady-state
theories (among others), are in fact conformally equivalent. This implicit
embodiment in the field equations of general relativity of various physically

inequivalent but conformally equivalent versions of the scalar-tensor

27

formalism has been recognized by others. Dicke™" showed that even a unit

transformation has this effect on the scalar-tensor theory. McCrea28

recognized that formally the steady-state theory of Hoyle logically has

the same structure as the Einstein equat1ons if one adds a suitable term to

™, Indeed, Hoyle's original approach24 to the steady-state theory is

,equiva1ent to the assumption that Tuv_u # 0. However, his later identi-

29

fication™” of this source with a scalar creation field does not apply here.

Formally we differ in that no ad hoc additions to the fie]d'equation or THY

L AT A TR R
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are required as in Hoyle's steady-state theory or as in Rastall's case.
The extra degree of freedom of the scalar fie]d’determines uniquely the
field equations for which we need only supply a reasonable assumption for
the divergence of THY such as done by Rastall. It is thus noteworthy that
the Caltech group is now actively considering nonmetric as well as other

possible theories of gravity.30

3 we have discovered the formal equivalence of

In a second paper,
massive Braris-Dicke theories of gravitation with Brans-Dicke theories with
non-zero divergence of the energy-momentum tensor. As an added bonus, we
find that this equivalence constrains w < 49.

In order to demonstrate the general theory we carry out in detail the
general calculation of the PPN parameters4
as yet unpublished, of the generalized scalar-tensor theories referred to

32

as the Bergmann-Wagoner theory. In the first case we let

W g psu
™. = & R (54)

where ¢ is an unknown coupling constant. As a matter of distinction, we
note that this modification immediately implies a correction to the

continuity equation

3 A
sgt 7 (V) =0 (55)

by adding a term proportional to

@ _3_(_) 6
g 5% (56)

for two different modifications,
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to the right hand side of (55). This can, of course, be obviated by a

priori requiring that ¢ = e(v2). However, Euler's equation
A A '
p(v e W)v+pil+9p=0 (57)

will still be modified even if ¢ is a second order parameter. A modification

of the form

LN S~ I (58)
where ¢ is the scalar field does not suffer the above problems since the
right hand side of (58) is obviously sixth order since ¢;u is either

second or third order depending on whether it is spatial or time derivatives,
respectively. The modifications of the form (58) satisfy the usual Newtonian
equations of perfect fluid hydrodynamics. Furthermore, in this case the
coupling parameter o is completely free.

In order to obtain the PPN parameters, we must work in the so called

standard gauge so we can compare with the work of w1114 and others. For us
this is equivalent to choosing the Chandrasekhar-Nutku gauge:33
(2) (2) ~q(2)
1% o0 189 N5y, 39 ik ael®
2, Bxk 2 Bxk ax' axk
(59)
(3) (2)
29" o 189 55 ael?
2 ot ot

o
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From these it follows that>*
2) 3
AT _ %@
7 5¢? ax'at at?
2 (2) 2 (2) 2 (3) .2.(2)
;.3 g 00 _ AT + 0 ? io +_a.g _dd . 825(2
2 ataxd st ax'axd  atax] ataxd
2.(2) 2,20 2.(2)  ,2.(2) ,
L L M S Y WAL N S 5\ (60)
Jd 73 K3 T K N |
X" 9X oX" ax 9X 9Xx o9X 9X 9X 9X
For the above we expanded
2
990 = -V * g( )oo * 9(4)00 ¥
- 2
9; %5 T 94;
= q(3)
01 = 874+ - BENGP
The equations for the various orders of Ruv become
() 1202
R 00 =2V 9 g0 ' ' (62)
2.(2) 2.(3) 2 (2)
R (19 i ¥ e 12 4) 12 29 oo
oo 2 atz ax ot oo 2 13 4V axd

2 2 2 2
_ l.ag(.)ij ag(.)oo + 1 ag(_)oo 29! ?oo N
A ad | ax' 4 sz ax'

)

ag(?)oé ag(?)jj -
3x1 , ax1 |

i R R —— - e e




3
R( )io

2) .
r{ )ij -

We assume the

THY

28
| 2 (2)
S NN 10 S RC A
ot oo 2 13 axTaxd
(2)
3 e -y e 2 o
2 00, 2 axl axl
2 (2) 2 (3) 2 (2)
199 53 129 o 189 5, 1.2.(3)
2 oot 2 axdaxd 2 5dat o1
2 (2)
199 700 928 1 2 (3
T — - Ttz Vet (64)
atax 3tox -
2 (2) 2(2)  .2.(2)  .2(2)
199 "00,1%9 'k 129 ik 9 5 1 2(2)
T?2A.3 TTTTALG T2 IN.G T kG o tzVey;
ax ' ax ax ' ax ax ax X 3x J

2_(2)
- B_§:___ + l V29(2)
ax ' ax9

1

energy momentum tensor has the form

= (pgtp, m+p) utu’ + pgt"

P, = energy density of rest mass

p-p,

T = —Bf9-= specific interval energy density
o

p = total energy density

p = pressure; all quantities are measured i

(65)

(66)

n the frame comoving with

the fluid element, and where the four-velocity is given by
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QEE (67)

In order to obtain an expansion for Tuv, we require an expansion for u® to

4th order and ui to 3rd order:

| 2
W =1+ %—-- u+ 6(v4)
(68)
W o= = 6(v3)
Then to the required order
plodoo - o | (69)
()
T(2)oo = p (v2 - 2u) + p.w (70) :
0 "0
(2)id . ] 5
T PV VTt PGij (71) =
o
(o povi | (72)
where the superscript in parentheses indicate order (p/r3)e(vN).
We now modify.the;Bergmann-Wagoner field equations32
1 . 8 |
Rv =29 ™ " % _[TMWJr Touv ] (73)




and
8nT

[]2¢ = §;§a¥$y + F(¢)¢;p¢;p

which arises when we assume

H =9
TM viu 8w R;v

where o is a constant of 2nd order in v, and where T¢uv has the general

form

o v

From equation (73)

uo_lup . _ 8T u
R v 2 § R [ [TM v * T¢ v]
or
8
= =0 +
R b [TM T¢]
where
= u . = u
TM = TM s T¢ = T¢ "

TR 3 u o 3 u 2
T = A(¢)¢ 0.y * B(¢)s Wbt C(o)e N §,0(¢)7¢

30

(74)

(75)

(76)

(77)

(78)

From equation (74) we can solve for Ty > and from equation (76) we can find

T¢.

_ o, 81 3+2u(9) 2 3+2u0( o)
R = +T$” [*‘g%?g“'fj ¢ - “‘fgylhl F(o)o ¢;p

~” - »:
o2 L&A&MMM*.‘.{,“JAM.W.Mda-m-;mﬁm‘.“&.«.h,

T
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Equation

so that

R.H.S.

3 i
+ (ma8)s*P0, | + (c+aD)D%0] (79)

__gﬂ¢ D¢+M(D ¢)

32000) £ (g)g, 9%, - 2oty (g0,

3+2w H e ' ' 'p
2 3120(0) £(g)g3Pp, .+ (A'+4B")0, 0 Pou

2(A+aB)6* Py, | + (€440 )6, D%

+

+ (cHiD)(D%0), - 37' 342 |
¢ (cHan) 0% + (AraB)oPo, - 3E8OL £(4)43%, ] (80) ]
|
(77) implies §
vl iRy = - TH o7 o ~
(R, - 5 & Ro,, = - BrlTy g+ T | (81)
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4 ([32¢);v [éi%#LQL +C+4D] + ¢;v¢;p¢;é[- §i%%i¢l.pl(¢)

S 20 pg) + v+ ap - AEB 4 32ul0) (g))

+ 4300, [2(artp) - 2 JLL F(y))
b (A48 )0%00, o+ (AD')0, OO + (M2BeC)0™Po
so@%), s o0l (82)

L.H.S.

(o), - 00,0 - boy, [+ 5 EleL o 0 v 10"

+

[(asag) - 22208 F(g)To*Po, ) (83)

Equating coefficients from both sides in (82) and (83)

—
a
N
=
~—
<
pa—
1

_ 8o 3+2uw(¢)
_gﬂp 3 [ e ‘+ C + 4D] (84)

e | (85)

a
™N
o~
©
<
U
A ]
el
)




0,,0% =>- 4 [(3280) + ¢ + 4p] = -Bn(AD")

87[0 ‘Ql ) v o 3+2m(¢l - C+4D
[ +C' +4D 8 5 ]

%0, 0. :$> [A + 4 - 3t20(0) ¢

= SH(AI_*.BI) 8'"’0' [A + 4B - 3+2w§Q! F]
+ _8__119_ [Al + 4B - Zw'(Q) F - |3+20) ]
¢ 8m
6, 030, =>0 = 8% [on + gp - 2 #20) £ 4 gr(arzpec)

Equations (84) - (88) can be solved for A, B, C, D, F giving

20
1 e®) | .l p..l lewd

w(6)(142%) ; .

16n¢(1+$—)2 8ﬂ¢(1+$—)

The field equations are then

Ruv -5 guvR b [TMuv + T¢uv] ,

33

(86)

(87)

(88)

(89)

(90)
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8nT w' 0,
* 3wu(e) T (o) * e (1)

Rewriting (90), we get

3P
R = %1 T +L m¢,u¢,v + v o ¢ ¢

817 (]'*'_"‘) % 8 8'"' d) ¢)(] )2

() + Bar2) g, (1-270" (0)

HY
-9 - ¢*"9. ] (91)
WO ) T ) T
If we expand all terms on right hand side with
b = Hi+e) o (92)

where ¢ = 6(2) + e(4) + . ..,8is a constant of order of the
gravitational constant and once again the e(vN) is given in the parentheses;

and further if we write

.

‘ >
w(e) = wlg,) * —E—(c—)-w"(cb )
0 .41 0''o

11l

w +~——-—-w(') ; (93)
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we find

2 s
R )oo o7 87@ 3H2u (0)00 . (54) *

4) | : (2)
3 )oo ) anr(o)oo (2) (3+2w ) 8"3T(2)oo F 3_:;_

v 5.(2)42 P
1w (Ver) 2 w,+1
B2 B 0 anfr(0100g(2) (322&'0)

w, 1
8"bT(0)00 342 Z - 8"&’(2) T(o)oo (3+2w)

+

W, +1 ‘
BﬂﬁT(Z)OO (3+2 ) aﬂﬁT(Z)JJ(}i-Zm )

- (2) .
| %D, gfjr(0doo ° w°2 (95)
at | d (3+2u,)
(2) __ 2% wotl \ | |
RV g = - ;x—%;; - SnBT(O)OOGiJ. —3—?%-; (96)
3) 1 2% (2) |
R )OJ. - gl )m. at:xi (97)

g
B
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Using Equations (69) - (72) in Equations (94) - (97), we find

+2
(2) _1.2(2) . “’ (o0)oo
R 00 =279 oo"'&'me-lﬁT (98)
" 1
R 2% 122
ps = - = : g .
1] ax'axd 2 ij
a0 .2.(2)
= (O)OO w €
z - 8WBT 613 2w 73" axiaxj (99)
2 (2)
RE3) . 214203 a2§(2) 129 o
o1 2 of axtat 4 axlat
2 (2) ' 1
1) 3¢
- - eyl e s (100) j
0o atax’ j
Therefore ]
20 +4 | |
2,(2) (0)oo (0)oo %o _3
‘V 9" oo 161&T 3+2w Bﬂiﬂ- 3+2m (101) j
w_+1 '
\7,29(2).ij = - T6myT °)°°<s (—3—%%~) (102)
2,(3) ot _1 P9
‘ = e-(T)oi _ 1 00
Vgt = + TEfiT o . (103)

&
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But (101 and (102) imply that
- 2
Vzg(z)_ij = Ysij v 9(2)00 (108)
with
m0+1
YT o2 (105)
0
By definition (agreement with Newton's Law of gravitation)
w +2 p{x’ t)d3x'
g2 s-zu=4ﬂ( 0 )f "1
00 3""2(1)0 l?(-_f"
o(x* t)dx’ |
Ix-x"|
which implies that
2w0+4 (
g W | =6 (107)

where G is the measurable gravitational constant. To second order, Eq. (91)

becomes

2(2) . . 8 f(o)oo | (108)

3+2mo

By comparison with Eq. (101), we note that

(2u +4) €!?) - o2 ©(109)

AT TR S ok v‘fﬁf.@v:uﬁeﬂlﬁﬁ‘swwWT&\&‘»“&"{'@;-

TR R ST

R O WIS

© oaceadils:




o ey s

38

Next we find that

X0

. (2) W +1
i g (2) (2) lo)oo (
+ 21‘ 8 (3+2 ) (Ve ) 321ﬁg T 3+2(L)°
20 W
(2)33 Wﬁ (0)oo
- 16 o | 1T (110)
which gives
3+2w w. +1 \3
() (6}
1 2m0+1 3+2wo ' )
+N+2]|-5—5*+AMNU|- 161Gp, — 206w M
2 w0+2 | ( (2w0+4)2 (]
By comparison with Will's generalized PPN metric,35 we find
B=1+4 By = 1
3+2w 7, w +l
B = . A ) . B = .__o.....
1 Zub+4 4  w +2
2w§+1
"o

o 3. o i e e W e 8 10 L e o e RV RS X DA PP

2 (2) (2)
L0 D% (), 5 5@
00 W oaxTaxd 00 9 xY

W, +2 w, !

(0)00 (2)
16nffT
W (3+2‘° ,H(3+2w)

+

) b

ik

-
ke e A e etk kil
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where

A

111

wo'
G 2 /
(2w0+3) (2m0+4)

But the observable G now has a 2nd order correction

* 3+2u)0
G =6 (l4o —— Gu, (114)
(w0+2)
Finally 2 (2)
a%g\¢ .
2 (3) _ 1 00 i
Vg . = -y ————— + 1678p _V (115)
oi i.ataxl (V)

In order to solve this equation, we use the so called superpotential36

o) | = v (116)

where

X = sfpo(sz-, t)|x-x'| d3x’ T

and note that

|i 3 ] .j j lj i lj
p.V dx'p v (x%-x"Y)(x"-x"")
E....?-—x=¢ef——° d3x'+ef ° « (118)

3x1 ot l;;;wl '“‘—.|3

Then (115) becomes

W1 V'elvay! i_ i
v29(3) ” l_ vz vaoV d3x'+ lvz GPOV lx X l(x X )
R = U I I

_ 3+2m6 ' 3
+ ]61\"2‘(;.;_'_—4‘ Gpov RN (119)

] (113)
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with the solution

. . |i
01 2 7(u0+]4 I-)a_;(‘; |
Gp v'j(xj-x'j)(xi-x'i)
- %-f o a3 (120)
[x-x"|
Again by comparison with Wi11,35 we find
7!;F0+10 :

A]=7-W ) A2=] (]2])

By comparison with the Brans-Dicke scalar tensor theories, the only

difference is in the parameters

and

By = Bygp - A

Experimentaﬂy32 we find that
- 0.46 < A < 0.64

As an aside we note that the gauge equatiwnskare both satisfied providing
¢ is second order.

As a second example, we assume the same Bergmann-Wagoner field equatfon
*(73) and (74) but with second form of the divergence of the energy—momentum

tensor given by Eq. (58).




4]

This assumption leads to field equations

o, .
8n (Q) sH3V
w9 [% 8 ¢;u ¥ By

+1 guv w'+20¢ . ip
~ 9y §+2m T~ Tor 3720 ¢ ¢;é] (122)
and
24 = 8T . w(9)Hl6moy yspp 2@ A (9)-2¢2(9) (123)
Q 3*2u(9) Tv = “F2u(o) 30 3+2w(¢)

where prime denotes differentiation with respect to the scalar field ¢. We

then expand each side of the equations as before

vig(2) - . 16m&(§2;z‘)) p(0)oo  (124)
v‘?g(z)ij 2 lﬁnﬂ((;_;] )T(°)°°<s” (125)
» (i) _ 3%4(2)
gl =4 16nffri1lol %mﬂ (126)
: 2,(2)
Pl®),g + o) TT_s0 yle) )2

+ 16n¢7(0)00.(2) [%«rz Yo
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2 +2 %

. (2)oo [“0'¢ (2) +(2)oo [“o i

]6"8 T 3+ 2u + 321l g 00! '3175; ’

-1
vy +20Y o+
0 (2),2 0 (2)kk
- (ve'“)- 167 d{mes— | T 127
377, d\5za (127)

From which we obtain gﬁé
(2) . 2wyt Po(x"t) 3 (128) iy
9 00 3+2w —_— d”x 9{5
lX-X'I : '

= - 2U f

which implies that

ﬂ =G (2w0+4) (129)

By (124) and (125)

2.(2) . 2 (2)
V'O Y83 V9 oo (130)
which implies
I w0+] 3
Y= w0+2 , - (131)

Eq. (127) then yields

V29(4)00

‘ 2 | 2w +3
- . 2V2U2(]+A+g)-161er°;.121+_‘£_.( 0 )
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3 [51\p (2051 ] |
+ 5 - |5z - AQJU (132)
2 mo+2 Po 2w°+4 ‘ '
where
m [}
N ] (133)
(3+2m0) (2w0+4)
az 2 (134)
G(3+2w )
0
By comparison with generalized PPN metric, we get
2mo+3
p=lrAara By = 25 8
()
2w0+1 ,
BZ=W—A+Q -83-'-] (135
w,+1
= .9 _ =
By = w,+2 t=0
Similarly from Eq. (126) we find
7u>0+10
A] = "—m;jﬂ*@ AZ =1 (136)

We note that @ allows an added degree of freedom in comparison with experi-
ment. At present there is no experiment which can detect its value. The
" most probable test will come from lunar laser ranging which depends on the

combination of parameters B + 62' In this case A drops out leaving only

e




a4

an Q dependent term. At present the experiment is still consistent with
zero oscillation in the radial variable and therefore nostrict limitation

on Q is possible.37

IV. Conclusion |
Obviously these types of modifications can be extended to more
divergences of T"V then those described by Eqs. (54) and (58). Such an
analysis is the subject of another paper which is forthcoming. In this

paper, we consider the coupling o = o(¢) and consider the general con-

sistency of the field equations with the Bianchi identities (which were
used to obtain Eq. (81)), gauge conditions and the Newtonian limit of the
perfect fluid equations of hydrodynamics. We note that the examples
described above represent viable gravitational theories since their PPN
parameters fall with experimental Timits of those parameters as listed by

1._32,37

N We should also note that the technique of modification indicated

here and applied to scalar-tensor theories is in general applicable to

38 39

other theories such as vector-metric theories™ or double metric theories.
The degree of freedom from a second field allows unique field equations.
A more interesting problem is presented by the "new" PPN parameters

of Will and Nordtvedt40 in which for the usual Bergman-Wagoner théohy

The parameters ai now represent preferred frame effects whereas non-zero

e
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%
by Eq. (58),

indicate non-conservative theories. However, in the modification given

<
i
—
os)
]
-——t
+
-
A
B-o)

z. =0 ,j=1,3,4

Ly = 28 + 282 - 3y - ],

4 Q

But this says that these fypes of theories are non-conservative gravitational
theories. As far as we know, these theories which appear to globally
violate conservation of total momentum are the first such theories that

are also viable alternatives to general relativity. The exact nature of

this result is the subject of a forthcoming investigation.
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