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EXPLORATORY FLIGHT INVESTIGATION OF AIRCRAFT RESPONSE TO THL

WING VORTEX WAKE GENERATED BY THE

AUGMENTOR WING JET STOL RES'ARCH A1RCRAF)

Robert A. Jacobsen and Fred J. Drinkweter III

Ames Research Center, NASA
Moffett Field, California 94035

INTRODUCTION

STO, tircraft could be used for short-haul transportation to increase the capacity and conveni-
ence of our domestic transportation system. These aircraft would operate from existing interurban
airfield s and provide transportation both to other interurban locations and to major airports serving
urban areas.

The capacity of the interurban airfields to handle the increased traffic imposed by a STOL nc
work may be adversely affected h; STOL wake vortex characteristics. Even though STOL aircraft
"re smaller and lighter than current i ,:! transports, it is possible that their wake will create an equiva-
lent hazard due to the high lift and low speed typical of STOL terminal area operation. Further-
more, use of interurban airfields implies an operational mix of the STOL aircraft with general avia-
tion aircraft. and the latter have been shown to require large separations from current jet transports
to eliminate the hazard from wake vortices (see refs. I through 3).

As noted above, on the basis of speed and lift alone, the wake vortices from a STOL aircraft
v ould be expected to be as hazardous as those from much heavier conventional aircraft. However,
other factors such as the use of very high lift flap systems, and powered-lift .night alter the vortex
characteristics markedly. To investigate this possibility a brief flight invest igation of the wake vortex
characteristics of a specific powered-lift STOL aircraft was conducted. This report presents the
results of this investigation and compares the hazard with that generated by conventional aircraft.
The results were obtained in a single flight in which the response of a : essna 210 flying in the wake
of the Augmentor Wing Jct STOL Research Aircraft (AWJSRA) w;s measured. The Cessna 210 was
chosen as the probe aircraft to permit comparisons with an earl i :r study in which this aircraft probed
the wakes of conventional jet transports (r,.-f. 1).

TEST AIRCRAFT

The general arrangement of' the two aircraft used in the wake vortex study is shown on figures
1 and 2. Further details of the AWJSRA aircraft may be found in reference 4. For this flight test,
the wake of the AWJSRA aircraft was marked by 	 finely ground diatomaceous earth from
each of its wing tip,. The probe aircraft, a Cessna ;:10, was insL:nmented to measure linear



accelerations near its center of gravity, angular rates about three axes and angles of pitch and roll,
control wheel and rudder pedal deflections, airspeed and altitude. The accuracies of these recorded
parameters were within tolerances normally accepted in a stability and control or handling-qualifies
study.

TEST PROCEDURES

The altitude for the flights was maintaineu near 2750 m (9000 ft) in a stratum of low atmo-
spheric turbulence. Each test series was initiated with the Cessna 210 positioned about 5 wini.
behind the AWJSRA. The Cessna 210 would then close on the AWJSRA and encounter the wake
at progressively smaller separation distances. The diatomaceous earth for marking the wake vortices
was released in 10-sec bursts. The separation for each encounter was estimated from the elapsed
time until the probing aircraft reached the segment of the wake marked by a particular burst. The
flight conditions and the configurations of the AWJSRA for which data were obtained are listed in
table I.

DISCUSSION OF RESULTS

In the following sections the responses of the Cessna 210 to the AWJSRA wake are presented
in terms of maximum recorded wake-induced rolling and yawing moments as compared with the
Cessna 210 aileron and rudder control power. Upset dynamics resulting from the vortex encounters
are summarized in terms of maximum rmrasured excursions anu accelerations at various spacings
between the aircraft.

AIRPLANE RESPONSE TO VORTICES

A time history of a response of the Cessna 2 10 during a vortex encounter is shown in figure 3.
These results illustrate the nature of a severe er 3unter and the techniques used to deduce roll rate
and acceleration from the flight records.

The particular record shown was obtained at a separation distance of' I n.mi. with the AWJSRA
in the takeoff configuration. In this instance, the pilot attempted to hold the lateral controls fixed.
The aircraft initially encountered the vortex at approximately 3.8 sec. This was followed 2 sec later
by an encounter of somewhat greater severity that returned the aircraft to wings-level flight with
a nose-down, yawed attitude.

The motion caused by the vortex was sufficient to exceed the limits of the instrumentation.
The missing roll rate records were approximated by taking the slope of' the roll angle trace as illus-
trate ± in figure 3a.

_J
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VORTEX INDUCED MOMENT

Net moments, expressed in coefficient form, were calculated from the Cessna _ 10 response
data by the method detailed in reference 2; namely, subtracting airplane static, dynamic, and con-
trol moments from the measured angular acceleration. The following e..0ressions were used for the
computatons

Cgvortex ( 	 CRO 0 + Cgba ba + Cgbr br + V fC'g p p + Cq r r t I	t I )

('nvortex l Igsb — CnoO + Crtba ba + Cn br S r + b Wnp p + Cn r r)]
	

(:.)

table 2 lists inertias and aerodynamic derivatives used for the computations.

Air-flow direction sensors were not installed on the probe aircraft for direct measurement of
sideslip angle. An estimate of sideslip angle was obtained by integrating change in yaw rate and
lateral accelerations over a short time span immediately preceding the buildup in roll acceleration,
as follows.

o	 t

Q = tan-I 
C V ft ay dt f r tit	 (3)
LIo	 to

The integration extended from a steady flight point before the vortex en;C ,v- e er. t ee, to the point of
maximum roll acceleration, t.

Net vortex-induced moments in roll and yaw derived from the flig!it u .;a are summarized ui
figure 4 as a ratio of the vortex-induced mon-ent to the maximum control power of the encounter-
ing aircraft. The data are plotted against botk; separation between the aircraft and vortex age. The
severity of the encounter at any sep: ration distance will depend upon the trajectory of' the pene-
trating aircraft relative to the vortex core. The envelope of the data points representing the maxi-
mum moments encountered is therefore of' primary interest.

The flight data are compared with the maximum rolling moment to be expected on the basis
of an empirical expression from reference 2 which, in turn, was based on the best fit to data
obtained under similar conditions for conventional transport aircraft. Comfarison of the induced
moments anticipated from the AWJSRA with the envelope of the data points indicates that the
level of the maximum induced moment is roughly 70 percent of that which would have been antici-
pated at one nautical mile separation distance. Furthermore. the data indicated that the rate of de-
cay is more rapid than for conventional aircraft. This conclusion is tentative, however, because of
the limited number of encounters at the greater separation distances and because of the decreased
likelihood that any given encounter was of maximum severity. This is a consequence of the increased
difficulty of visually locat?ng the vortex trail at greater separation, the "dust" trail being only faintly
disc.rnible at distances greater than I nautical mile. The rapid diffusion of the dust that was ejected
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from the wine tips could he caused by two effects. First, it was observed that the material was not
ingested into the core of the principal vortex shed from the wing but instead spread thinly over a
large area. Second, the rapid diffusion of the wake-marking material could have been caused by
vortex dissipation. In the latter instance, the data are more likely to represent the envelope of tine
maximum expected response.

The data points were too few and scattered to establish consistent differences due to augmentor
flan or Pegasus nozzle setting. It may be noted, however, that the maximum inoments were ob-
tained with the AWJSRA in the takeoff and landing configurations.

Previous studies of the wFKe encounter problem have presented summaries of the flight experi-
ence in terms of' maximum --%cursions measured by the prohing aircraft. Shown on figures 5 and 0

:.re summaries of the Cessna 210 _^counter experience in terms of maximum roll rate, 1 P I max-
and maximum change in roll angle, I OW' lmax• Also shown for c lmparison are upper bounds o',

these two parameters measured when the Cessna ' 10 was flown into wakes from the DC-9 and
CV-990 aircraft, as reported in reference I. In terms of IpImax ,ajd IA0Imax rlie data indicate
that the Cessna 2 10 was upset by the wake of' the AWJSRA at least as severely as by the DC-9 at
comparable separation distances. When separation is !xpressed in terms of time, the severity of' the
encounter approaches that due to the wake of the CV-990.

The maximum responses in normal acceleration, resulting front the wake encounters, are sum-
marized in figure 7 as a function of separation distance and vortex age. A ± 1.0 g envelope about
trim would generally describe the flight experience, with no definite trend noted toward a reduction
in t ansient load factors with increasing separation.

PILOT EVALUA LION

An :assessment of' the hazard associated with encountering a wake vortex produced by STOL
aircraft is presented front the pilot's viewpoint for consideration with the measured responses of
the probe aircraft. This information is particularly pertinent because the pilot was best able to
evaluate each upset relative to how closely the airplane was centered in the wake. The following
paraphrases the pilots' comments:

Within I mile behind ghe AWJSRA deliberate vortex penetration with the Cessna 210 produced
large hank angles (0 > 45°) and abrupt "g - changes even when recovery control was applied prompt-
ly. Penetrations beyond 2 miles were almost all easily controlled in bank but both g loads and
excursions in yaw were still large. Encounters at 2 miles and beyond were less certain since the
diatomaceous earth in the vortex lied dissipated and there was no way of knowing that the central
part of the vortex had been penetrated.

Observations of the AWJSRA vortex showed Viat it expanded rapidly from the wing tip when
the flaps were down, possibly because of all 	 with the disturbed flow from the augmentor
Ilap segments. When the visibl y vortex diameter was small in relation to the Cessna 210, the en-
counters produced large roll motions as well is g loads, but when the diameter was large and less
well defined yawing motions appeared dominant.

l
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The decay in vortex strength was apparent during the flight. Since the AWJSRA was flying at

about 85 knots, a range of 1.5 n.mi. represented a I-min separation and Ity 3 n.rni., or 2 min, coo-
trol was easily maintained during chance encounters.

There were enough encounters durinv • hc !light N compare subjectively the response of the
Cessna 210 in the vortex of the AWJSRA and the DC- 9 which had been observed in a previous test.
There was no significant difference within the limited scope of these experiences and the AWJSRA
wake vortex has the iame effect on a Cessna 210 as a DC-9 wake at the same time spacing, assuming
the generating airplanes are in a flaps down configuration.

CONCLUDING REMARKS

Within separation distances of I n.mi., the moments imposed by the vortex wake of the
Augmentor Wing Jet STOL Research Aircraft were significantly greater than the lateral control power
and about equivalent to the rudder control power of the Cessna 210. At separations greater than
1 n.mi., it was difficult to find the wake because of dispeis:on of the diatom iceous earth used to
mark it. Consequently, fewer assured encounters were obtained at those separations, and those that
were obtained were greatly reduced in severity. It is therefore not certain whether this i-eduction
was caused by dissipation of the wake or failure to penetrate the core.

An evaluation by the pilots of the Cessn a 210 ranked the upset magnitude induced by the
AWJSRA wake as comparable with that of a DC-9 aircraft in the landing configuration for compar-
able vortex age.
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TABLL 1.— TEST CONDITIONS

AWISRA Cessna 210
Nominal Nominal

Airspeed Flap Nozzle Airspeed Flap altitude separation

Configuration (knots,	 deflection deflection (knots, detection Im (f1))

nc
n.mi

IASI (deg) (degI IASI Ideg) 1 n.mi. l
I

Cruise 130 5.6 6 110-130 0 2750(9000, 5,3,1

Take-off 85 30 6 75- 100 10,20 275019000) 5,3,1

' finding 65 65 6 60-90 10,20 27500000) 5,3,1

Landing 65 65 70 80- 95 10,20 275019000) 3,1



r	 ,^

TABLE 2.- CEFSNA 210 CHARACTERISTICS

INERTIAS

l xx = 1780 kg-m 2 ( 1313 slug ft2)

lyy = 2650 kg -m 2 ( 1955 slug I*12)

lz l = 4430 kg - m 2 (3268 slug 112)

AERODYNAMIC DERIVATIVES

Derivative flaps up 10° Flap 20° Flab
l(leg) l(leg) (degI

CQp -0.00156 -0.00159 -0.00163

CQba 0.00163 6.00163 0.00163

CQbr
0.00020 0.00020 0.00020

CQp -0.0085.5 -0.00855 -0.00855

CQ r 0.00341 0.00341 0.00341

Clio 0.00158 0.00149 0.00140

crib
-0.000359 -0.000409 -0.000460

Cn6
-0.00140 -0.00132 -0.00123

r

Cnp -0.00140 -0.00140 -0.00140

Cnr -0.00205 -0.00205 -0.00205

Cl-max
1.65 1.78 2.11
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