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NOTATION 

b	 wing span, m (ft) 

BLC	 boundary-layer control 

C	 wing chord (strearnwise), m (ft) 

h	 blowing nozzle slot height, cm (in.) 

L	 distance from main jet exit to trailing edge, rn (ft) 

PNL	 perceived noise level, PNdB ref. 2X 10 N/rn 2 (G.0002 microbar) 

q	 free-stream dynamic pressure, N/rn 2 (lb/ft') 

S/L	 sideline 

SPL	 sound pressure level, dB ref. 2X 10 N/m 2 (0.0002 microbar) 

t	 airfoil thickness, m (ft) 

T. E.	 trailing edge 

U/W	 underwing 

Vj1	 isentropic velocity of main jet, m/sec (ft/sec) 

V.	 free-stream velocity, rn/sec (ft/sec) 

Y	 spanwise station, m (ft) 

a	 model angle of attack, deg 

aileron deflection, positive with trailing edge down, deg 

control flap deflection, positive with trailing edge down, deg; see fig. 2(d). 

flap deflection, positive with trailing edge down, deg; see fig. 2(d). 

spanwise position, 2X.

111



ACOUSTIC CHARACTERISTICS OF A LARGE-SCALE WIND-TUNNEL MODEL 

OF A JET FLAP AIRCRAFT

Michael D. Falarski, Thomas N. Aiken, and Kiyoshi Aoyagi 

Ames Research Center
and

U. S. Army Air Mobility R&D Laboratory 

SUMMARY 

The expanding-duct jet flap (EJF) concept is being studied as a means to attain STOL perform-
ance in turbofan-powered aircraft. The concept is a derivative of the basic jet flap with flap trailing 
edge blowing. The EJF attempts to solve the problem of ducting the required volume of air into the 
wing by providing an expanding cavity between the upper and lower surfaces of the flap. The 
blowing system consists of the trailing-edge main jet and a BLC slot at the flap knee. A short chord, 
control flap is available at the main flap trailing edge. This report presents the results of an 
iiwestigatiun—o1—the---acoustic—c-haracteristics_oLihe_EJF concept on a large-scale aircraft model 
powered by JT15D engines. 

The noise of the EJF is generated by acoustic dipoles as shown by the sixth power dependence 
of the noise on jet velocity. These sources result from the interaction of -the flow turbulence with 
flap surfaces. They are probably some combination of flow interaction with the flap internal and 
external surfaces and the trailing edges. 

Increasing the trailing edge jet from 70 percent span to 100 percent span increased the noise 
2 dB for the equivalent nozzle area. Blowing at the knee of the flap rather than the trailing edge 
reduced the noise 5 to 10 dB by displacing the jet from the trailing edge and providing shielding 
from high-frequency noise. 

Deflecting the flap and varying the angle of attack modified the directivity of the underwing 
noise but did not affect the peak noise. A forward speed of 33.5 rn/sec (110 ft/sec) reduced the 
dipole noise less than 1 dB.

INTRODUCTION 

The expanding-duct jet flap (EJF) concept is being studied as a means to attain STOL perform-
ance in turbofan-powered aircraft. The concept is a derivative of a basic jet flap and has the 
principal jet located at the flap trailing edge. Integrating the jet flap into high wing-loading aircraft 
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has been difficult because of the problem of providing sufficient duct area needed for high thrust 
from the wing jet. The EJF attempts to solve this problem by fonning a cavity with the lower 
surface of the expanding flap, the wing rear span, and the upper surface of the flap system. The 
resulting cavity increases with flap deflection and is used to duct compressor air to the blowing 
system. The blowing system consists primarily of the main jet at the flap trailing edge and a BLC 
slot at the flap knee. In addition, a short chord control flap is available at the main flap trailing edge 
to provide additional deflection of the main jet. There is a BLC slot at the knee of the control flap. 

A large-scale model was built and tested in the Ames 40- by 80-Foot Wind Tunnel to deter-
mine the acoustic and aerodynamics characteristics of the expandable-duct jet flap concept. The 
flap system extended either full span or 70-percent span with a blown aileron. The compressed air 
for the blown nozzles was provided by the fan bypass air from two turbofan engines mounted in the 
fuselage. This report presents the results of the acoustic investigation. The aerodynamics character-
istics of the EJF are reported in reference 1. 

The tests were performed in cooperation with Lockheed-Georgia Company and the Flight 
Dynamics Laboratory of the Department of Air Force. 

MODEL AND APPARATUS 

Figure 1(a) shows the model installed in the wind tunnel; figure 1(b) is a photograph of the 
model installed in the static test facility. The wing chord plane was approximately 6.1 m (20 ft) 
above the ground or wind-tunnel floor.

Basic Model 

The geometric details of the model are given in figure 2 and table 1. The external dimensions 
of the model and a typical wing cross section are shown in figures 2(a) and 2(b), respectively. The 
wing planform is typical of those being proposed for STOL transports. Wing leading-edge stall was 
controlled with a full-span, leading-edge slat. The horizontal tail was not installed during the 
acoustic investigation.

Blowing System 

The model was equipped with a separate blowing system for each semispan wing. The blowing 
system is shown schematically in figure 2(c). The compressed air to the wing was the fan bypass air 
of two JTI 5D-1 turbofan engines. The hot primary air of the turbofan was ducted out the aft end 
of the fuselage. The JT15D inlet and exhaust pipes were acoustically treated with lined suppressors. 

Main jet— The blowing slot dimension for the main jet and the BLC jets are shown in figure 3. 
The main jet slot dimensions are controlled by the flap system lower surface trailing edge (see fig. 
2(d)). The dimensions did not change with changes in control flap deflection. The overall dimension 
did differ for 300 and 600 flap deflection. Where the outboard 30 percent of the flap system was 
used as a blown aileron, the main jet slot was blocked. 
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BLC jets— The flap BLC slot was located on the knee of the upper surface of the flap (fig. 
2(d)). The flap BLC slot was used as the blowing slot on the blown aileron. The aft BLC slot was 
located on the upper knee of the control flap (fig. 2(d)). The aft BLC slot was blocked on the 
blown aileron. The dimensions of the BLC slots are presented in figure 3. 

TESTS

Wind Tunnel 

Wind-tunnel tests were performed to document the pertinent acoustic characteristics at for-
ward speed and angle of attack. The microphone array for these measurements is shown in 
figure 4(a). Bruel and Kjaer (B&K) 1.27-cm (0.5 in.) condenser microphones equipped with aerody-
namically shaped nose cones were used to measure the acoustic pressure. The nose cones produce an 
omnidirectional response and reduced noise floor. The signal was recorded on an Ampex F1300A, 
14-channel tape recorder at 30 ips and 108 KHz center-band frequency. 

The acoustic characteristics of the model were investigated at flap deflections of 30° and 60° 
with a 100-percent span and 70-percent span main jet. Each configuration was tested over a range of 
forward speeds from V, = 0 to 43 rn/sec (0 to 140 ft/sec) and angle of attack from 0° to 20°. To 
determine the effect of jet velocity, Vii was varied from 140 to 210 rn/sec (450 to 750 ft/see). 

Model Static 

To determine the sideline acoustic characteristics and the wind-tunnel reverberation, the EJF 
model was installed in the static test facility as shown in figure 1(b). The underwing microphone 
array duplicated that utilized in the wind tunnel. The sideline was composed of five B&K 1.27-cm 
(1/2-in.) microphones mounted on 4.88 m (16 ft) stands (see fig. 4(b)). The microphones were 
equipped with porous, polyurethane-sponge wind screens. 

Tests were performed with the main fl ap set to 300 , the aileron set to 300 , and the control 
flap set to 0°. Noise measurements were documented with the main jet exhausting over 70 and 100 
percent of the wing span. A test was also conducted with the trailing-edge main jet sealed over the 
entire span and the main BLC slot increased to the combined area of the normal trailing edge and 
BLC jets. This configuration is referred to as the upper-surface jet flap (U. S.) as opposed to the 
trailing-edge jet flap (T. F.). The isentropic jet velocity was varied from 140 to 200 rn/sec (450 to 
700 ft/sec).

DATA REDUCTION

Wind-Tunnel Reverberation 

The acoustic environment of the Ames 40- by 80-Foot Wind Tunnel has been shown to be 
semireverberant. Several techniques have been developed which allow the prediction of free-field 
noise levels from wind-tunnel acoustic measurements. These techniques and comparison with flight 
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data are reported in references 2 and 3. In all cases, the acoustic sources were broadband and not 
highly directional. 

The technique developed for large acoustic sources involves the comparison of wind-tunnel and 
static spectra for identical model configuration and microphone arrays, assuming that spectral 
differences are attributable to reverberation only. Typical corrections for several microphones are 
shown in figure 5. They are independent of jet velocity and, when applied to other configurations, 
produce the comparison with static results shown in figure 6. The agreement is within ± 1 dB above 
80 Hz. Below 80 Hz, the spectra are influenced by background noise and therefore are unreliable. 
For the OF model the reverberation corrections were derived from the difference between the 
frequency spectra of the static and wind tunnel tests for the 70 percent span T. E. configuration at 
a flap deflection of 30°. The final correction is an average of several jet velocities. 

Wind-Tunnel Background Noise 

The noise caused by operation of the wind tunnel and the flow of air over the microphone 
creates unwanted noise called the "background noise floor." To study the acoustics of a source in 
this environment, its SPL must be of sufficient magnitude to be distinguishable from the back-
ground. A comparison of the EJF model spectra with the wind-tunnel background spectra is 
presented in figure 7. Over the range of airspeeds and jet velocities investigated, the SPL of the EJF 
is at least 10 dB above the background at frequencies greater than 125 Hz. When interpreting data 
below this frequency, this background noise must be considered. 

JTI 5D-1 Compressor and Exhaust Noise 

The inlet and exhaust jet pipes of the JT1 5D-1 turbofan engines were provided with acoustic 
suppressors. The inlet suppressor was effective in suppressing the inlet fan tones and harmonics. The 
fan noise is also not present in the underwing noise which indicates that the aft fan noise was 
absorbed by the fuselage and wing ducting. The exhaust tail pipe suppressor was not sufficiently 
effective to prevent the primary core noise from dominating the spectra between 80 and 250 Hz. 
For high underwing and sideline angles, caution is necessary when interpreting data in this portion 
of the frequency spectrum. The PNL will also be influenced by this exhaust noise at large under-
wing and sideline angles.

Projection to 152.5 in (500 ft) 

The acoustic data for each microphone are projected to 152.5 in (500 ft) along a ray from the 
assumed acoustic center shown in figure 4. The extrapolation was accomplished using Society of 
Automotive Engineers (SAE) procedures outlined in reference 4. These procedures consist of correc-
tion to standard day, spherical divergence, and atmospheric absorption. No corrections were applied 
for extra ground attenuation or ground reflections. 
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RESULTS AND DISCUSSION

Acoustic Mechanism 

The sound pressure level of the expanding duct jet flap model varies with the sixth power of 
the isentropic jet velocity. As shown in figure 8, this is the case for all three configurations investi-
gated (70 percent T. E. jet, 100 percent T. E. jet, and 70 percent U. S. jet). The sixth-power 
dependency is characteristic of acoustic dipoles. These sources are created by flow turbulence 
interacting with a surface to produce compressible pressure fluctuations that propagate at the speed 
of sound away from the surface. Reference 5 describes three turbulent flow regimes that generate 
dipole noise: (1) fluctuating lift, (2) edge source, and (3) turbulent boundary layer. These mechan-
ism are a function of the characteristic length of the surface and the flow turbulence scale. A point 
source will exist when the flow turbulence scale is large with respect to the immersed body, causing 
the entire body force to be in phase with the fluctuating pressures. The edge dipole source is created 
by the sudden change in acoustic impedance at the trailing edge of a large surface. Direct radiation 
from the turbulent boundary layer occurs when the surface is very large in terms of wavelengths. 

The EJF acoustic generation is a composite of the three dipole sources. The edge dipole noise 
of the EJF model was estimated by use of the empirical technique developed in reference 5. This 
result is shown in figure 9 compared with the other acoustic sources that contribute to the overall 
EJFnoiseThe-frequeney-spectr-a-from_1-2.5.to 250 Hz is dominated by extraneous noise from the 
background and jet pipes as described previously. The estimated edge noise indic—ates -th—e—ed—ge 
sources are responsible for the noise in the midfrequency region of the spectra. A combination of all 
three types of dipole sources probably accounts for the noise in the spectra from 2500 Hz to 20 
KHz. This noise cannot be predicted without a more complete investigation of internal duct flow. 

Trailing Edge Jet Spanwise Extent 

Increasing the main T. E. jet from 70 percent bto 100 percent  increased the PNL by 2PNdB, 
both under the wing and at the sideline (see fig. 10(ã) and l 1(a)) without significantly altering the 
acoustic directivity. Examination of the 1/3 octave band frequency spectra shown in figures 10(b) 
and 1 1(b)-(c) indicates the result was produced by an increase in midrange SPL (500 to 2500 Hz). 

Upper-Surface Blowing 

Blowing at the knee of the upper flap rather than the trailing edge reduced the sound pressure 
level from 5 to 10 dB, both under the wing and at the sideline (see figs. 12 and 13). This reduction 
was over the complete region of the spectra dominated by dipole noise, indicating that the change 
in jet location influenced several noise mechanisms. The edge noise was reduced because the jet was 
displaced from the flap trailing edge, thereby reducing the velocity at the trailing edge. Estimates 
from reference 5 indicate that the flow decay could account for a 3-4 dB reduction in the overall 
level for a jet with no turning. For the T. E. jet, the flap edge is in the potential core regime of the 
flow where the SPL varies with (L/h) O.9 Blowing on the upper surface moves the flap edge into 
characteristic decay regime where the dipole noise shows a -0.94 power dependence on L/h. At 
underwing-angles less than 96 0 , the reduction with upper surface blowing is from 3 to 5 dB greater 
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than can be expected from dipole noise reduction (see fig. 12(a)). This larger reduction may be 
produced by flap noise shielding. This same phenomenon creates the lower sound levels in the 
over-the-wing, externally blown jet flap (OTW) concept that is also being studied as a potential 
STOL transport (ref. 6). As with the OTW model, there is less reduction to the sideline and in the 
aft underwing quadrant (see figs 12(c) and 13(a)-(c)). 

Main and Control Flap Deflection 

Deflecting either the main flap (5 f) or the control flap (&) shifted the PNL directivity forward 
(figs. 14(a)-(b) and 15(a)-(b)). The peak PNL was not affected by the deflection. As expected, the 
directivity of the edge dipole was responsible for the PNL effect, as shown by the frequency spectra 
in figures 14(c)-(d) and 15(c)-(e) as the variation in SPL at high frequencies. 

Acoustics at Forward Speed 

Airspeed (V) had only a small effect on the acoustics of the EJF. It lowered the PNL under 
the wing by less than 1 PNdB with no effect on directivity (figs. 16(a), (b)). The reduction with 
airspeed was over the entire spectra dominated by dipole noise sources (figs. 16(c) and (d)). 

Varying the wing angle of attack produced a shift in the edge noise directivity (fig. 17), 
apparent in both the PNL directivity and frequency spectra. 

CONCLUDING REMARKS 

The expanding-duct jet flap model noise shows a sixth-power dependency on jet velocity, 
which is characteristic of the dipole acoustic generation mechanism. Dipole noise was created in the 
wing and flap ducting by direct radiation from the turbulent boundary layer and by fluctuating lift 
generation on internal obstructions. Dipole noise was also created at the flap trailing edge by the 
rapid acoustic impedance variation that occurs at the edge. 

The noise increased by 2 dB when the spanwise extent of the trailing edge blowing was 
increased from 70-percent b to 100-percent b. 

Blowing on the upper surface of the flap knee rather than at the trailing edge reduced the noise 
by 5 to 10 dB. The edge noise was lower because it was in the characteristic decay regime of the 
flow rather than the potential core as is the case with the trailing-edge configuration. The high-
frequency noise under the wing was also lower as a result of flap and wing acoustic shielding. 

Deflecting the flap shifted the edge noise directivity but did not effect the peak PNL. This was 
also true for angle-of-attack variations.



Forward speed had little significant effect on the noise. The FNL was reduced less than 
1 PNdB with no effect on its directivity. 

Ames Research Center 
National Aeronautics and Space- Administration 

Moffett Field, Calif. 94035, March 11, 1975 
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TABLE 1.— MODEL REFERENCE DIMENSIONS 

Wing: 

Area, m 2 (ft') ............. 21.37 (230.0) 
Aspect ratio	 .............. 8.00 
Taper ratio	 .............. 0.30 
Span, m (ft)	 .............. 13.080 (42. 895) 
Root chord, m (ft)	 ............ 2.5 10 (8.250) 
Tip chord, m (ft) ............. 0.750 (2.475) 
Mean aerodynamic chord, m (ft) ...... 1.790 (5.881) 
Sweep at 1/4 chord, deg 	 ......... 27.5 
Airfoil section	 .	 .	 .	 .	 .	 .	 .	 . . NACA	 65A - 4 XX 

root t/c=	 0.125 
tip t/c	 =	 0.105 

Incidence, twist 	 ............ 0 

Vertical Tail 

Area, m 2	 (ft') ............. 6.32 (68.0) 
Aspect ratio	 .............. 1.20 
Taper ratio	 .............. 0.74 
Span, m (ft) .............. 2.760 (9.04) 
Root chord, m (ft)	 ........... 2.630 (8.65) 
Tip chord, m (ft)	 ............ 1.950 (6.40) 
Mean aerodynamic chord, m (ft) ...... 2.310 (7.58) 
Sweep at 1/4 chord, deg	 ......... 38.5 
Airfoil section	 ....	 ...	 ... NACA	 0012 
Volume coefficient	 ........... 0.114 

Horizontal Tail 

Area, m 2 (ft') .............. 6.72 (72.3) 
Aspect ratio	 ............. 4.00 
Taper ratio	 ............. 0.49 
Span, m (ft)	 ............. 2.590 (8.50) 
Root chord, m (ft) 	 ........... 1.740 (5.71) 
Tip chord, m (ft) 	 ........... 0.850 (2.80) 
Mean aerodynamic chord, m (ft) ...... 1.350 (4.42) 
Sweep at 1/4 chord, deg	 .......... 25 
Airfoil section (inverted) ..... NACA	 64-012 
Volume coefficient	 ............ 1.038
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(a) Installation in wind tunnel. 

(b) Installation in static test facility. 

Figure 1.— EJF model test installations.
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Figure 2.— Geometric details of the model. 
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(b) Sideline microphone array.

Figure 4.— Geometric details of microphone array. 
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Figure 5.— Typical wind-tunnel reverberation corrections. 
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= 00, ö = 300, a = 00, U/W angle = 96°. 
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(b) Frequency = 1250 Hz. 

Figure 8.— Concluded.
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Figure 9.— EJF acoustic sources; 6f	 = 300 , 6c = 0, I/jr = 213 rn/sec (700 ft/sec), V = a = 0, 
jet percent b = 70, U/W angll= 750 . 
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(b) Frequency spectra, U/W angle= 750• 

Figure 10.— Effect of main jet spanwise extent on EJF underwing noise; 8f= 5a = 30', 5c = 0, 
Vj = 186 rn/sec (610 ft/sec), a = q = 0.
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(b) Frequency spectra, S/L angle = 900. 

Figure 11.— Effect of main jet spanwise extent on EJF sideline noise; i 	 300 , iS = 00 , 8 = 30°, 

Vj1 = 186 rn/sec (610 ft/sec), c = q = 0.
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(c) Frequency spectra, S/L angle = 1500 . 

Figure 11.— Concluded. 
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(a) U/W angle = 42°. 

Figure 12.— Effect of main jet location on underwing frequency spectra; 5f 300,	 = 00, 

= 30°, Vj1 = 213 rn/sec (700 ft/sec), jet percent b = 70.
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(b) U/W angle= 75°. 
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(c) U/W angle = 133°. 

Figure 12.— Concluded. 
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(a) S/L angle = 500. 
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(b) S/L angle = 900 . 

Figure 13.— Effect of main jet location on sideline frequency spectra; 5f = 30, 5 = 00, 6a = 300 . 

Vj1 = 213 m/sec (700 ft/sec), jet percent b =70, a = q = 0.
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(c) S/L angle = 1300.

Figure 13.— Concluded. 
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(a) PNL directivity, V = 38 rn/sec (109 ft/sec). 

Figure 14.— Variation in underwing acoustic characteristics with main flap deflection; 5C   0, 
= 30°, Vj1 = 204 rn/sec (670 ft/sec), ci = 00, jet percent b = 70. 
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(b) PNL directivity, V. = 23.5 rn/sec (77 ft/sec). 
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(c) Frequency spectra, U/W angle = 750, V = 33 rn/sec (109 ft/sec).

Figure 14.— Continued.
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(d) Frequency spectra, U/W angle 142°, V = 33 rn/sec (109 ft/see).

Figure 14.— Concluded. 
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(a) PNL directivity, V	 19 rn/sec (62 ft/see). 

Figure 15.— Variation in underwing acoustic characteristics with control flap deflection; 5 f = 600 . 
'5a =30°, Vi 201 rn/sec (660 ft/see), a = 0°, percent b = 70. 
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(b) PNL directivity, V = 33.5 rn/sec (106 ft/see). 
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(c) Frequency spectra, U/W angle = 540, v = 33.5 rn/sec (106 ft/see). 

Figure 15.— Continued.
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(d) Frequency spectra, U/W angle = 115°, V = 33.5 rn/sec (106 ft/sec). 
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One-third octave band frequency, Hz 

(e) Frequency spectra, U/W angle = 1420 , V = 33.5 rn/sec (106 ft/sec).

Figure 15.— Concluded. 

28



I 7Q0

300 

P70°

0 
30° 

mps (fps) 
o	 0 
o	 27.8(91) 

VC0	 33.5(110) 
Idd-

90° 

(a) FNL directivity, 8/'	 = 300, V 1 204 rn/sec (670 ft/sec), jet percent b = 70. 
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V CD	 43(142) 

90° 

(b)PNL directivity, 8f 6a = 60°, Vj1 = 189 rn/sec (620 ft/sec), jet percent b = 100.

Figure 16.— Variation of underwing acoustic characteristics with forward speed; 6 C = 0°, a = 0.
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(c) Frequency spectra, U/W angle = 142°, 6f= c = 30°, Vj1 =204 rn/sec (670 ft/sec), jet percent 

b = 70. 

Figure 16.— Concluded. 
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VaD	 20

90 

(a) PNL directivity,	 60°,	 00, a = 30°,	 204 rn/sec (670 ft/sec), V = 32.5 rn/sec

(107 ft/sec), jet percent b 70. 

Figure 17.— Variation of underwing acoustic characteristics with angle of attack. 
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V GD	 20 

(b) PNL directivity, jf= 60, 5C = 300 , ôa = 300 , Vj1 = 204 rn/sec (670 ft/sec), V = 32.5 rn/sec
(107 ft/sec),jet percent b 70.  

a, deg 
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o	 8 

VOD	 20 

90° 

(c) PNL directivity, bf & = 300 , 5C = 00 , Vj1 = 183 rn/sec (600 ft/sec), V = 28.5 rn/sec

(93.5 ft/sec), jet percent b = 100. 

Figure 17.— Continued.
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(d) Frequency spectra, U/W angle = 1150, Sf = 600, 5C = 0 o's = 30 0 , Vj1 = 204 rn/sec
(670 ft/sec), V, = 32.5 rn/sec (107 ft/sec), jet percent b = 70. 
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(e) Frequency spectra, U/W angle = 750,	 60°, & = 50°, 6a = 300 , Vj1 = 204 rn/sec
(670 ft/sec), V, = 32.5 rn/sec (107 ft/sec), jet percent b = 70. 

Figure 17.— Concluded. 
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