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DEFINITION OF SYMBOLS

^I
	 Symbol	 Definition

A	 transition matrix of a linear system

AT	transpose of a matrix A

A	 transition matrix of a composed system

A 
transition matrix of a linear discrete time system, 	 the
elements of this matrix are evaluated at time t 

A
-^c

transition matrix of a composed discrete-time system

B controlled	 input matrix

B controlled	 input matrix for composed system

B 
controlled input matrix for discrete-time system

C output matrix

C composed output matrix

C l output matrix corresponding to state variable x

C2 output matrix cor:	 sponding to state variable z

C  output matrix for discrete:-time system

C  output matrix for composed discrete-time system

D matrix related to the dynamics of disturbance	 z

D
 the D matrix	 in the discrete time case
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Symbol	 Definition

F	 related to deterministic disturbances

G	 related to stochastic disturbances

G	 the G matrix for composed system

H	 transformation matrix between variables w and z

K(t)	 optimal gain matrix of Kalman filter

KK	optimal gain matrix of Kalman filter for discrete time

case

K 
	 upper part of Kk with n rows

Kz	 lower part of Kk with r rows

K(k)	 optimal gain matrix for a particular initial con3ition

Kx (k)	 upper part of K(t)

K  (k)	 Kk

K (k)	 = Kkz 

M	 a transformation matrix of Friedland's formula (Eq. (22))

T`1 1	a modification of M matrix

M(k)	 the M matrix for discrete-time case

P(W )	 power spectral densit; function

P(t)	 covariance matrix

v

A
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Symbol	 Definition

1 1 X (t) covariance matrix with respect to variable x

PXZ (t) covariance matrix of variable x and z

1) Z (t) covariance matrix with respect to variable z

1 )x (t) a	 special	 P X (t)	 corresponding	 to a certain	 initial	 values

1' 1 a special	 case of P(t)

P2 a general	 form of P(t)

Pk P(t)	 in discrete time case

PX (k) PX(t)	 in discrete time case

P ( 1 ) P	 (t)	 in discrete time case
xz xz

P Z (k) P,;t)	 in discrete time case

P X (k) PX(t)	 in discrete time ca-,e

P(k) P1	 in discrete time case

Q value of covariance function of s(t)

Qk Q in discrete time case

R value of covariance function of v(t)

R k	 R in discrete time case

S	 aerodynamic torque and solar pressure torque

vi
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Symbol	 Definition

s K	s in the discrete time case

T(k)	 a posteriori covariance matrix

Tx (k)	 the part of T(k) related to x

TXz (k)	 a posteriori covariance matrix of x and z

T z (k)	 the part of T(k) related to z

T(k)	 a special case of T(k)

Tx (k)	 the part of T(k) related to x

u	 control input

11 (k)	 a transformation matrix of Friedland's formula (Eq. (A-16))

Ux (k)	 upper n rows of U(k)

ll z (k)	 lower r rows of U(k)

u s	covariance function of s(t)

U
v	

covariance function of v(t)

sensor noise

V	 one of the transformation matrix of the formula eq. (22

V	 the first two rows of V
x

V z	the last three rows of V

i	 vii



Symbol Definition

V 1 modified V form

V2 another modified V form

v 
sensor noise	 in the discrete time case

V(k) transformation matrix for the a posteriori covariance matrix

V x (kl upper n rows of V

V z (k) lower r rows of V

W gravity gradient torque and earth magnetic torque

X state of a system

X time derivative of the state

X estimated state of the filter

X estimated state corresponding to PX(t)

Y. state of a discrete time system
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z 
	 z in the discrete time case

i^	 estimated value of zk

9	 pitch angle of Large Space Telesc

© time derivative of 6

w	 mechanical angular frequency
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TECHNICAL bIE:MOItANDL IM X-4i4i)43

ATTITUDE ESTIMATION OF EARTII ORBITING SATELLITES

BY DECOMPOSED LINEAR RECURSIVE F'LTURS

INTRODUCTION

Tile problem of attitude determination (or estimation) of earth
orbiting satellites is considered in this report. The exactly true
attitude of these satellites is not available because of the environ-
mental disturbance torques (e.g. gravity gradient torque, earth magnetic
torque, aerodynamic torque, etc.) and some undesirable noises (e.g. rate
gyro noise, CMG tachometer noise, etc.). hence it becomes necessary to
estimate the attitude of 	 te'l:tes in some optimal way in order to ob-
tain all 	 (or approximate) attitude and to implement a controller
by state variable feedback design. It is well-known that Kalman estima-
tion. theory (1) is a useful tool used to estimate the state (or attitude)
of linear dynamic systems. But a Kalman filter is difficult to be imple-
mented for higher order systems. Furthermore, if it is implemented
digitally then the computational accuracy and speed will decrease rapidly
as the order of the system increases. There are several papers working
for the reduction of computation burden in the Kalman filter calculation-,,
for example, the works have been done by Johnson (2), Simon and Stubberucl
(3), Samant and Sorenson [4), Friedland (S), etc. The first three of
these papers are so-called reduced order Kalman filters in which the re-
quired computations are greatly reduced when only part of the states are
interesting and being estimated. Friedlaiid's work (5) discussed :1 cc:a-
plete state estimation problem. In his paper only the situation of con
stant bias (or disturbance) is considered. This paper will extend Fried-
land's work [51 to include the time-varying disturbance case. It will
be shown that the environmental disturbances and noises on the earth
orbiting satellites are really either time-varying or random. We will use
the Large Space Telescope (LST), which is an unmanned astronomical obser-
vatory facility with 3-meter diameter of the primary mirror, as an example.
It is developed by NASA under the direction of Marshall Space Flight Center
at Huntsville, Alabama. The description of LST system is shown in section
2. Special attention is given to model stochastic environmental distur-
bances and sensor noise as Gaussian stationary white noise processes. For
the reason of comparison, a Kalman filter for estimating states of the
LST system is included in section 3. The main result of this paper which
is called "Decomposed Linear Recursive Filter" (a useful extention of
Friedland's work [51) is derived in section 4.	 In this filter, the covari-
ance matrix has been transformed into smaller matrices in order to reduce
the computation burden. Discussions and conclusions arc in section S.
A Decomposed linear Recursive Filter for discrete-time systems has also
been develope'.	 Its derivation is slightly different from that of continuous-
time case and is included in the Appendix. References are in section 7.
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	 In order to explain dynamics of earth orbiting satellites and some

physical quantities in detail we use large Space Telescope as an example.
The mathematical model of 1.ST system described in this section is basically

according to Schiehlen (6). The LST is modelled as a rigid body having
reaction wheels as actuators and subjected to gravitational and magnetic

disturbance torques. These torques are persistent, deterministic distur-

bances and can be effectively described b7 linear differential equations

(see .Johnson 17)). In addition. the aerodynamic torque, the solar pres-
sure torque and the fine guidance sensor noise• are also considered which
can be modelled as white noise processes. Now for a single - axis analysis
I.ST system is described, according to (6), -s

x = Ax + Hu + Fw + Gs	 (1)

where x: 2xl state vector and x =^ ^ with 0 and 6 represent the pitch

angle and the time rate of pitch angle of LST.

u: a scalar control variable which is related to the driving motor

torque.

w: denotes the gravity gradient torque and earth magnetic torque.

s: denotes the stochastic (or random) aerodynamic and solar pres-

sur? torques.

and	

[': [ ( 

►

 ]A -
	 u	 0	 -	 1

o

	 101
F	 (	 1

The sensor output y corresponding to .he pitch motion 0 can be
represented by

y = 0 + v

or equivalently

y = Cx + v
	

(2)

where C = 11	 01 and v is the sensor noise.
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Furthermore, the dynamics of the disturhanre torques w can he modelled
by

w	 (3)

z	 Dz	 (4)

where z is a 3x1 vector and
1

0	 0	 0

D=	 ^,	 0	 2-10-3 	 1	 01

0 -2 . 10-3 0

And the white noise process s(t) of -o. (1) is characterized with

zero mean and spectral density 1 . 10- 12 arc sec 2/sec 3 . The white noise
process v(t) of Eq.(2) is characterized by zero mean and spectral density

8.394 . 10- 6 arc svc 2 -sec.	 (These data are obtained from Proise (3J).

For the following analysis we still need to specify the covariances
of those white noise processes s(t) and v(t). These covariances can he

der	 from their spectral densities. The covariance function and the
`e, , ., Ijectral density function form the Fourier transform relationship

for stationary random processes. (see Astrom 191). It is assumed that
white noise processes s(t) and v(t) are stationary. Denote the power spec-

tral density function of s(;) by

p(W) = 1.10-12

for all angular frequency w; then its covariance function

v s (z) 4- Cov Is(t), s(t+z)]

f

.., p (w) eiwz du

- (.,

= 27T•10 -12 d(z)

^ Q d(z)

where d( • ) is the Dirac delta function

v(t),  we have

v v (z)	 Cov (v(t), v(t+z)]

= 2n-8.394 . 10-6 6(z)

= R d(z)

(5)

Similarly, for the white noise

(6)

Here we introduce notations Q and R for the use of future formula-

tion. Let us rewrite (1) - (4) as a composed system



i

I

I

1.e -I( x1
z	

A I 
`J	

Bu +G s	 (7)
q	 L

and[z]

x
y•C 	 +v	 (A)

where	
A	 FN	 B	 G

A =	 B =	 G	 (9)
0	 0	 u

C - (C	 01	 =	 11	 0	 0	 0	 01

Sinc^ it is without loss of geaerality to omit the control term
Bu in the consideration of estimation problems, let us consider the
following simplified Fystem

x	 x
A	 + G s	 (P)

z	 —	 z

and	 x
y	 C	 +v	 (11)

where F. [s(t) s 	 (T )l = Q d (t-T),

,. [v(t) v 	 (T)i = R d (t-T),

and s(t	 ,•( T ) are independent.

STATE ES'T'IMATION BY KALMAN FILTER

The Kalman filter is a well-known state estimator for linear
• a_.,ic systems. There are numerous refeienres about the derivation

-assions of Kalman filter (e.g. Sorenson (101). 	 In this section,
show the use of a Kalman filter for state esti!iation of LST sy-

When we apply Kalman filter to LST system described by Eqs. (10),
(11), we have

[ 1 ] =
	 x	 x

A
A	 + K (t) l y ( t ) - C- I 	 (12)

z	 ij

where z and z are the estimated states of x and z respecti — '_y and the
optimal gain K(t) is defined by

K(t) = P(t) CT R -I	 (131

aj•
i'i'
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i^
and P(t) is a Sx5 covariance matrix which satisfies the following Riccati
equation

1'= AP+ PA I +GQGT -  PCT R_ I C 	 (14)

From Eq. (12) we see that for the Sth order system (LST system),
Kalman filter is also a Sth order dynamic system. The dynamic behavior
of the covariance matrix. P(t) is governed by Eq. (14) which is nonlinear
matrix differential equation. Furthermore P(t) is a symmetric matrix
function.

This is an optimal filter (or estimator) in the sense of minimal
mean square error between the true state and the estimated state. Now
for the special structures of matrices A_, C_ and G of the LST system
(see Eq. (9)), the covariance matrix P(t) and the matrix equation (14)
can be partitioned as follows:

P(t) =	 1'x
T	 Pxz	

(15)

Pxz	 Pz

where Px is the 2x2 covariance matrix of estimation of x. Pz is the
..x3 covariance matrix of estimation of z. Pxz is the 2x3 cross-covariance
matrix for estimation of x and z. Them the matrix covariance equation
(14) takes the form of the following three equations

Px = A Px + FH 1) X, + Px AT + PX z(FH) T - Px CTR -1 C P x + G Q GT (16)

Pxz = A P;% z + FII I' z + PXz DT - Px CT R -1 C P Xz	 (17)

Pz = D Pz + P z DT - PXZ r CT R -I C Pxz	 (18)

Eqs. (16)-(18) are composed of fifteen nonlinear differential
equations. These equations are coupled to each ether and should be solved
simultaneously. Furthermore, Eq. (12) is composed of 5 differential
equations which are coupled to each other too. So to obtain the esti-
mated state R and z we have to solve the simultaneous 15 differential
equations (Eqs. (16)-(18)) and simultaneous 5 differential equations (12).
This is quite computationally time-consuming and has severe numerical
integration. errors. To solve these problems, we derive the Decomposed
Linear Recursive Filter in the next section.

DECOMPOSED LINEAR RECURSIVE FILTER

We would like to point out that the objective of Friedland's
research [5] is to estimate the state of the following types of systems

x = Ax + Bz + Gs

ii =o 	 (19)

y	 Cx + v

5



The second p:krt of this composed system (19), i = o, represents an un-

known constant quantity. In this section, the Decomposed Linear Recur-
sive Filter is derived which is an extension of the above work to include

the case z = Dz where D is not a zero matrix, i.e. z is a time-varying
quantity. Hence this result is applicable to the earth orbiting satel-
lites including; the LST system described by Eq. (10). The basic idea of

this filter is to use matrix transformation of the covariance matrix and
the particular system structure of earth orbiting satellites to simplify

the estimation procedure. It turns out that we need to solve only lower
order matrix equations and estimated states St and z can be obtained

separately. This will greatly increa^;e the computational speed and

accuracy of estimation of the attituide of satellites.

At first we investigate a particular solution for the matrix equa-

tions (16)-(18). Note that Eqs. (17) and (18) are homogeneous in Paz

and P z . Hence, if PxL (o) = o and Pz(o) = o then Pxz (t) = o for all

t > o, then Eq. (16) ')ecomes

PX=APX +P x A
T
 +GQGT -  P x CT R -1 CPX 	(20)

the notation P x is used to poin' out tr ►e F-)rms of Eqs. (16) and (20) are
different. So for this particular selection of initial values of covari-

ance matrix, let us denote the solution of Riccati equation (14 ) by

P 1 (t) =	 Px(t)	 0	 (21)
cl	 0

The relation between solutions of I,iccat ;, equations of the form

(14) corresponding to different initial co •.idit-.ons can be expres_ed

according to a result of Friedland [111.

Theorem ([111):	 If P 1 (t) is a solution to Riccati equation (14), any
other solution P 2 (t) of Eq. (14) correspond ng to a different initial
condition can be expressed as follows:

P I (t) = P i (t) + MIT	 (22)

where V is a 5x3 matrix satisfying '.' - (A - PI 
CT R -1 C) V	 (23)

and M is a 3x3 matrix sa*isfying	 M = -M V T C 1 R-1 C V M	 (24)

and initial condition of 11 2 (t) is

I)x (o)	 PXz (o)
P2(°) 	

T
hxz (°)	 Pz(o)

where Px (o) is the nonzero part of the initial condition for Pl(t).

In this theorem, we see that M is a symmetric matrix and V can he

(25)

6
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partitioned as follows

V

V =	 x	 (26)

V
z

where V  is 2x3 matrix and V  is 3x.i matrix. Then by using the definition

of A and P l , Figs. (23), (24) can be expressed by

V x = (A - F  CT R -I C) V  + FH V 	 (27)

Vz = D V 	 (28)

•	 M = -M V xT CT R I C V  M	 (29)

Now let P 2 (t) be partitioned according to (15), then

Px (t) = P x (t) + V  M V 

PXZ (t)	 Vx M Vi	 (30)

P Z M = V  M Vz7

So the initial conditions V x (o), V z (o), M(o) of Eqs. (27)-(29) must
satisfy

P (o) = P (o) + V (o) M V T (o)
x	 a	 x	 x

PXZ ( o ) = VX (o) M(o) VZ (o)

1) (o) = V z (o) M(o) Vi (o)

If PXz (o) is also assumed to be zero, then we have

Vx (o) = o

.	 Vz(o',	 I	 (31)

M^ ')) = Pz(o)

We want to show that the inverse of the square matrix V  exists.

From Eqs. (28) and (31) we have

V z (t) = eDt Vz (o) = eDt

which is nonsingular (see Brockett [12]). Hence its inverse Vz
-I 

exists.

Now for the purpose of simplification of equations used for estimation of

7



states of LST system, Ae introduce new variables V 1 and V2

V	 V V -1

V1 A V V Z
-1 

_	
x	

V Z
-1	 =	

x z	
(32)

V	 i

V2 =
n 

V  V  
-1
	

(33)

Here we have V. is also a SO matrix consisting of two parts--

the lower part is a constant identity matrix. Again we introduce new

variable M1

M1 = VZ M V z
-1	

(34)

Now we try to express P Z (t) in terms of these new matrices V l , V2

and M 1 . From Eq. (22), we have

P2 (t) = P 1 + V1 V  M ( V1 VZ).l.

(35)

= P l + 
V/ 1 

M l V 1T

And from Eq. (30) we have

l ,x(t) = l ,x(t) + Vx VZ-1 VZ M VZ I' (V	 TZ 't ) -1 V 

= Px (t) + V  V Z
-1 

V  
M VZT (VZ-1)T VxT

	

P x (t) + V 2 M1 VI)
	 (36)

Pxz (t) = Vx V Z -1 V Z 1^1 
V,

V2 M1
	

(37)

= 

PZ (t) = V L M V zT	 M 1	 (38)

So far we know that to obtain Px, 
Pxz 

and P  we need only to have

V29 M l and Px . Px can be obtained from F.q. (20). Now we will show that

V2 and NI 1 satisfies the following equations:

V2 = (A - Px CT R -1 C) V2 + FN - V 2 D	 (39)

,'	 8
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MI n D M I 	M1 V2T C1 R -1 C V, M1 + MI DT

Proof: Since V2 = VX VZ-1

1 
V2 = Vx VZ_ + V X ( V Z - )

= VV -I - V V -1 V V -1
X 2	 X Z	 Z Z

= ((A - T  CT R-I C) V  + FH VZJ 
VZ-1 - V  VZ -1 D V  VZ-1

• (A - Px CT R -I C) V2 + FH - V2 D

Similarly M 1 = V  M V ZT , so

M I =VZMVZT+VZMVZT+VZMVZT

• D VZ M VZ + VZ (-M VxT CT R -1 C V x M) 
VZT + V L M (D VZ)T

D M 1 - MI V2 f CT R -1 C V2 M1 + MI DT

Remark:	 In the above analysis, we see that to find covariance matrix 1)2(t)

(which is governed by a nonlinear coupled matrix differential equation (14)
and should be solved simultaneously as shown in section 3), we need only

find out V 2 (t), M I (t) and Px (t). Now the important thing is that the

equations ((20), (39) and (40)) of V,, NI I and Px are not coupled in the

following sense. We can solve f  by using Lq. (20) without using any in-
formation about V2 and M I . Next we obtain V2 from Eq. (39) and information

PX . Finally using V2, TTx and Eq. (40) we obtain M 1 . As a matter of fact

these matrices can be solved separately. It is obvious that by using the
method of this analysis to find covariance matrix, we can save a lot of

computation time and increase greatly the numerical integration accuracy.

Next if we substitute the results Eqs. (36)-(38) into Eqs. (12)
and (13) we have

X = A z + FIl z + ( Px + V2 MI V 2T ) CT R - I (y - C z)	 (41)

i = D i + Ml V 2 T CT R-1 (y - C Si )	 (42)

Now we want to !;how that how z and i can be obtained separately

(40)

9
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Theorem: The solution x of l'q. (41) can be expressed by

R = x + V2 z	 (43)

where x is the solution of the following system

xAx+pxCrR- I (y - Cx)	 (44)

and V2 , z satisfies Eqs. (39) and (42).

Remark: x(t) can be obtained from Eq. (44) whenever we have P  and y(t).

It is in fact the estimate of state x(t) when there is no deterministic

external disturbance torques, i.e. z = o.

Proof: 'ro prove this theorem, we have to _heck that the expression (43)

satisfies Eq. (41) or equivalently the following formula should be equal
to zero

x - A Q - Fif z - ( Px + V 2 Ml V 2T ) C.T K -1 (y - C z)	 0	 (45)

In the following; we will substitute all x by x + V 2 z to the left

hand side of Eq. (45). First we give an expression for x,

X - x + -dt V, z

x +V` 2+V2 i

A x Px CT R -1 (y - C x) + [ (A - Px CT R -1 C) V ` + I'll- V2 D) z

+ V2 [U z + M 1 V2  CT R -1 (y - C (x + V 1 z)))

Now the left hand side of Eq. (45) becomes

A x+ Px CT IC I (y - C x) + l (A - Px CT R -I C) V 2 + I'll - V` D) z

+ V ` [ D z + M 1 V2  
CT R-1 (y - C (X + V 2 z ))) - A (x + V 2 z) - 1 = 11 z

(Px + 

V2 MI V2T ) CT R
-1 (y - C (x + V2 i))

(- P x CT R -1 C V2 - V
2 
D)z + V n z + M l VZ CT R-I (Y- C ( x+V 2 z)))

- V, A1 1 V2 
r 
CT R-1 (y - C (x + 1! 2 z)) + -P C

T
CT P. -1 C V2 i

= 0

4

I

4
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This completes the proof.

I	 Remark: Based on this theorem and the above analysis, we will summarize
the procedures in finding the estimated states i and 2 as follows:

(a) From Lq. (20) we have Px.

(b) Using 
T
x and Eqs. (39) and (40) we get V 2 and Ml.

(c) Again using P  and the system's output y(t) we get x(t) from

Fq (44). Note that in this step we don't use any information
about i of 2.

(d) Now we use the results of (a) - (C) to find i without using
any information about i. That is fror. Eigs. (42) and (43).

z = D i • M 1 V 2T C1 R..1 [y - C (x + V, i))	 (46)

(e) At last from Eq. (43) we I.,,ve

x = x + V 2 i

In this procedure we see that the estimation of states of LST
system has been decomposed_ into two parts; i and R. Estimation of z can
he obtained by using data x instead of R. Furthermore x and "z are ob-
tained from I :qs. (441 and (46) which are 2nd-order and 3rd-order systems
respectively. On the contrary, if the Kalman filter is used, we have
tc. build up a fifth order dynamic system (filter) to estimate the states
of the isr system. So by using the analysis and techniques of this sec-
tion, filters can he implemented to obtain estimated states i and i by
lower order systems. In addition, the simplicity in structure of this
Decomposed Linear Recursive Filter gives us considerable amount of re-
duction in computation burden and storage requirements.



DISCUSSIONS AND CONCLUSION

(a) Discussions

1. High order estimators usually are too complex for practical
mechanization and are very parameter sensitive. Now it' we use Decomposed
Linear Recursive Filter to estimate the attitude of LST system, we need
only to build up 2nd-order and 3rd-order dynamic systems (instead of a
5th order Kalman filter) as an estimator.

2. If the estimators or filters are implemented digitally, he
computations required by it high-order filtering algorithm may become
excessive (in memory capacity, accuracy and computational speed).

3. The characteristic of this uLw filter is that the low order
covariance matrix Eq. (20) is independent of matrices V and M of Eq. 122).
Similarly, the 2nd-order system X can be obtained from Eq. (44) independent
of the valkx c of 2. This property is a kind of decomposition of a set of
equations and greatly simplifies the estimator design.

(b) Conclusion

In this paper, a Decomposed Linear Recursive Filter has been
derived for the estimation of attitude of earth orbiting satellites in
which the disturbances and )ices are either time-varying or random. Sim-
plicity, accuracy and speed are the advantages of this filter. This filter
can be easily implemented by the on-board digital computer and give an
accurate estimation of attitude of satellites. Furthermore, this is the
necessary information for state variable feedback controller design.

The analysis of section 4 can be generalized to linear time-varying
systems such as

x = A(t) x + B(t) z + s

z = D(t) z

y = C I x + C l z + V

where A, B, D, C I and C2 can be matrices with time-varying elements, and

y may also include the disturbance z explicitly. The proof of this fur-
ther extention is exactly the same as that of section 4.

12



APPENDIX

Discrete-Time Version of Decomposed Linear Recursive Filter

Most of the practical implementations of filters are by digital

means. Here we derive the analog counterpar t, of Decomposed Linear Recur-

sive Filter for discrete-time systems.

Consider

x
 Ak-1 xk-1	 +	 BkA z k-1	 sk-1

(A-1)

z  = Dk-1 z k-1 (A-2)

where

x 
	 is the value of n-dimension state at time tk,

z 
	 is the value of r-dimension deterministic environmental di-<-

turbances at	 time tk,

Ak-1' Bk-1'
Dk-1 are time-varying matrices with dimensions n x n.

n x	 r,	 r x r respectively and assume that D is nonsingular for

all time t	 .
k

3k-1 is n-dimension white noise sequences with

E [sk
 s i T I
	 =	 Qk	

dk.l

where
5 k 

is the Kronecker delta function.

and the measurement equation is expressed by

i

(A-3)yk = C  x  + V 

where

yk is the value of m-dimension output at time tk,

C is a m x n tine varying matrix,

v  is m-dimension white noise sequences with

E [vk v
i
T I = R  6 k

13



II

Combine (A-1) and (A-2), we have

Xk
xk - 1

q
1--^c -

+G	 s k -1
(A-4)

`k z 

and

k
yk + V (A-S)

-k

where

Ak-1	 Bk-I 1

Aic -ic k- 1
l)	 O k- I

Kalman filter formulation for system 	 (A-4), (A-S) is

X

xk- 1 +	 Kk 	I yk 	- Ck
- 1

X k - 1 (A - 6)

` k zk-1 zk-1

where zk and
k 

are the estimated values of
x 
	 and zk,

K 
	 = Pk 4" '^ 

I ,k 4T + 
k k 1

-1
(A - 7)

Pk	is the a priori covariance matrix satisfying; the following

difference equation

pk+l
 Kk 4 1 "k-

	T + G Qk+l GT (A-8)

Let l'	 (k)	 P	 (k)

P
k

x	 xz
( A - 9)

l^xz^ (k)	 (k)
L	

z

where
PX (k) is n x n covariance matrix of estimate of x at time tk,

P L (k) is r x r covariance matrix of estimate of z at time tk,

P
XZ 

(k) is n x r covariance matrix of estimates of x and z.

According to the suhmatrices of Eq. (A-9) and using; (A-1), (A-2) and (A-3),

we have Eq. (A-8) being expressed by the following three equations

14



I

Px(k+l)	 [ A k (1 - K ID C k ) - Bk Kz Ck ) ( Px(k) AkT + p (k) BkTI

+ B  I Pxt 'r (k) AkT + P Z (k) B kT 1 + Qk+I	 (A-10)

PxZ (k+l)	 Ak (1 - Kk Ck ) - Bk Kk Ck [ 1 0	 (k) Dk + Bk 1' Z (k) 1) T (A-11 I
xz

i	 Py(k+1) - - Dk Kk Ck PXZ (k) DkT + D  P Z (k) DkT 	 (A-12)

wherex
Kk -Z
	

K  is a (n + r) x m matrix and Kk , Kkz are n x m
K 

and r x m respectively.

If P Z (o) - o, 1 1 xz (o) - o, then we have the solution of (A-8) denoted by

P (k)	 0
Pk -	 x	 (A-13)

0	 0^

for ;ill k > o and 11 (k) satisfies

Px (k+l) _ [ A  - ( Ak Kk + B Kk ) C 1 	 Px(k) AkT + Qk+I	 (A-14)

By Kalman filtering; theory (see Sorenson 1101), a priori covariance
matrix 1' x can be related with a posteriori covariance matrix T x by

Px (k+l) = Ak Tx (k) A kT + Qk+I	
(A-15)

Note: By definition, a priori covariance matrix 1' x (k) is defined by the

covariance matrix of the estimate of x(t k ) given the observations

Yip Y 2 0 " '' yk-1 j
 but not yk . A posteriori covariance matrix Tx(k)

is the covariance matrix of estimating x(t k ) given the observation

I
y l' y2' '' '' yk 

^ ' i.e. including the current output yk.

Theorem (Friedland [111) If P(k) is a solution of equation (A-8), then
any other solution P(k) of Eq. (A-8) corresponding to different initial
conditions can be expressed by

P(k) = P(k) + U(k) M(k) 11T(k)
	

(A- 16)

Where
U(k) is a (n + r) x r matrix and M(k) is a r x r matrix satisfying;

U(k+l) = A
-
^. [ I - 1''(k) 4 (4 p(k) ^ + Rk)-1

	
1 U(k) (A-I')

15



M(k+l) n M(k)-M(k) UT (k) 4T 	P(k) 4T  R k - ^k 11(k) h,(k) 11L(k) 4T1 -1

•	 4 U(k) M(k) (A-18)

In	 terms of this transformation, 	 (A-16) can he rewritten as

P(k+1)	 P(k+l)+ U(k+l)	 M(k+l) UT (k+l) (A-19)

=	 P(k • 1)+ Ak	 I	 I	 -	 K(k) C k	 J	 U(k)	 M(k+l)	 U, F (k)	 11 - K(k)	 I TC k'

(A-20)

where
^ IK(k)	 -	 P(k) [	 Ck	 P(k)	 qk, +	 R (A-21)

Similarly, we have

P(k•1) _ ; k T(k) Ah ^ + G l)k+I CT 	(A-22)

P(k-1) _ ^k T(k)	
r + G Qk+l GT	 (A-23)

Hence (A-20) can be expressed as

T(k) = T(k) + V(k) M(k+l) V T (k)	 (A-24)

where

V(k) = I I - K(k) C	 J U(k)	 (A-25)

and by (A-17) we have

U(k+l) _ !4
 

V(k)	 (A-26)

Using; (A-13), Equation (A-21) turns out to h,

Fx (k) C T I C
k 

P 
x	 k	 k
(k) C T + R ) -I
	 K x (k)

K(k) -
	 k	 -'	 (A-27)

0	 U

Let U(k) and V(k) he also ) partitioned as follows

ll	 (k)	 1'	 (11
U(k)	 x	 V(k)	 -	 x	 (A-28)

11 ,( k )	 VZ(k)

where Ux is n x r, U, is r x r, Vx is n x r and V
z 

is r x r.

Then, using (A-27), V(k) and U(k+l) of (A-25), (A-26) become

f Vx (k) _ [ I - Kx (k) Ck J llx(k)
(A - 29)

V Z (k) = I1Z(k)
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and

Ux(k+1)	 A  Vx(k) • B  Vz(k)

U z (k+l) = U k Vz(k)

Finally, Eq. (A-19) becomes

P x (k) = Px (k) + U x (k) M(k) U , (k)

Pxz (k)	 Ux (k) M(k) UzT(k)

1) z (k) - U z (k) M(k) UzT(k)

and Eq. (A-24) becomes

Tx (k) = Tx (k) + Vx (k) M(k+l) VXT(.

Txz (k) = V x (k) M(k + l) VzT(k)

T z (k) - V z (k) M(k+l) "zT(k)

It can he si:own that	 of (A-7) can be expressed by

K  = T(k) 
4T Rk-1

or	 _
Kx(k)	 Tx 

Ck7 
Rk-1

-I	
(A-34)

K z (k) 	 xzT Ck7 Rk

Substituting Tx and T%zT according; o (A-32), we have

Kx(k) _ (Tx(k) + V  M(k+l) Vx T) Ck T Rk-1	 (A-35)

Kz( k. _ Vz(k) M(k+l) VxT(k) C k T Rk -
 
I	

(A-36)

Now from (A-6),

R k +l = Ak Rk + Rk i k + Kx (k + 1) IYk+I - Ck+l Ak Rk - Ck+l B  ^ k j	 (A - 37)

and

3k +I = D  2 k + K z ( k+l ) I yk+l - Ck+I A  R  - Ck+I B  2k 1	 (A-38)

Theorem: The solution R  of Eq. (A-7") can he expressed as

Rk = x  + V x (k) V z -1 (k) 3k	 (A-39)

(A-33)
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where x  is the solution of the following equation

xk+1	 •,k xk + Kx (k+ l) [ yk+1 - Ck+1 Ak xk i	 (A-40)

a nd

Kx(k) - 
i%(k) CkT [ Ck 

Px(k) Ck
T + R  I-1

and V x , V y and 
`k 

satisfying (A-29) and (A-39) respectively.

Proof: We first show that VZ
-I 

exists. Since

V Z (k+l) = D k V,(k)

V  (o) a I

so

Vy(k+l) = Dk D
k - 1	

Igo

is not singular since D
i
 are assumed to be nonsingular as in (A-2). So

V z -I exists.

Next we will Drove that both sides of Eq. (A-37) are equal b y substituting;

the ex pression (A-3.) into Eq. (A-37).
Left hand side of Fq. (A-37) becomes

xk+l = x k+I + Vx (k+l) `' Z -I (k+l) zk+I

A  x  + K x (k+l) Iyk+I - Ck+I A  x k ] + V x (k+l) VZ-I(k+l)

II ►k 2  + K Z (k+l) ( yk+I - Ck+I A  R  - Ck+I Bk z k ) ]

= A  X  + Kx (k+l) [y k+1 - C k+I A  x k I + Vx (k+l) V Z
-1
 (k+l)

[Dk z
k + K Z ( k+ 1) ( yk+1 - Ck

• I 
Ak xk - Ck+I (Ak 

^k 
VZ

-I +

B k ) 2  I	 (A-41)

Right hand side of Eq. (A-37) becomes

A k x k + Bk Zk + K(k + 1)x [ y	 - Ck+I	
Ak z kk +l - C k+I
	
Bk zk
	

]

= Ak xk + Ak Vx ( k ) V Z -1 ( k ) Zk + Bk zk + Kx ( k+l ) [ yk+I -Ck+l Akxk-Ck+IBkzkl

r
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i

i

A k x k + Ak Vx V Z 1 ik + Bk i k + Kx (k+) ) l yk+1 - C
k+l 

Ak xk - Ck+1 ( Ak xVV Z 1 .

(A-42)B k ) z k I

By (A - 33) and (A - 32) we have

Kx (k+l)	 I Tx Rk 1) + V x (k + l) M(k + 2) V x T (k +
11 I Ck^l 

R

= Tx (k+1) C k T I R,	 + V x (k+l) M(k+2) Vx^(k+l) 
Ck4l 

Itk+i

= Kx (k+l) + V x (k+l) V
z
-1 (k+l) K z (k+l)	 (A-43)

Comparison of expressions (A-41) and (A-42), and using the relation (A-43),
it turns out we need only to prove that

Ak Vx (k) V z -1 (k) + Bk - Kx(k+l) Ck
+l 

(A k 
V 
	 V_ - '(k)V -1 (k) + Bk ) = Vx(k+l)

V z -1
(^:+1) 1)k - Vx(k+l) Vz

- 1 (k+l) K-(k+l) Ck+1(AkVx(k) Vz-1(k) + Bk

(A-44)

Proof: Left-hand s i , i(! of (A-44)

Mk Vx
	

`	 k	 X	
k+1	

k 
x	 z(k) V - 1 (k) + B - K(k+l) C
	

(A 
V(k) V - ] (k) 

+ Bk)

- V x (k+1) V z
-i

(k+l) K
`
(k+l) Ck+l 

( Ak Vx Vz-1 + Bk)

( 1 - Kx (k+l) Ck+l ) (Ak V  V z -1 * Bk ) - V x (k + 1) Vz-l(k+l) Kz(k+1)

1
Ck+l (Ak V  Vz- + Bk)

( 1 - K x (k+l) C k+l ) ( Ak Vx + Bk V z ) 
V,-1 - V

x
(k+l) Vz-1(k+l)

K z (k+l) Ck+l ( Ak V  V L -1 + Bk)

n V
x	 Z-
(k+l) V 	 Z-x(k) - V V - 	

.,xkk+1z
k C 	(A V V -1 + B 

k)

V x (k+l) V ,	 (k+l) D  - V x (k+l) V z -1 K  Ck+l (Ak V x (k) V z -1 (k) + Bk)

right hand side of Eq. (A-44).

This completes the proof.
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