


ABSTRACT

il A kinetic theory for fluid turbulence is developed from the Llouvllle

I equation and the associated BBCKYhierarchy. Real and imaginary parts of1
I"

t Fourier coefficients of fluid variables play the roles of "particles."

Closure is ach.4.eved by the assumption of negligible five-coefficient

! correlation functions. Probability distributions of Fourier coefficients,

t rather than moments, are the basic variables of the theory. Neglect of

[ the correlation functions does not necessarily imply a cumulant discard
!
I'

hypothesie or a quasi-normal assumption. However, a later additional

! approximation leads to a closed moment description similar to the so-called

eddy-dmnped Markovian approximation. A k_netic equation is derived for

which conservation laws and an H-theorem can be rigorously established. In
! :

the absence of viscosity and external driving forces, the H-theorem implies

relaxation to the absolute equlllbrium of Kralchnan. The equation can be :'.
!

1 cast in the Fokker-Planck form, and relaxation times estimated from its

t friction and diffusion coefficients. An undetermined parameter in the

! theory, about which significant assumptions have to be made, is the free ,
!

,_ decay time for triplet correlations. Some attention is given to the "

i_ inclusion of viscous damping and external driving forces, i

I

i

i
, 2
I.
r"
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7
I. INTRODUCTION

J

7 Two major and distinct areas of investigation In non-equillbrlum

; statistical mechanics over the last thirty years have been the BBCKY

kinetic theory of gases 1-7 and the statistical theory of fluid turbulence 8-11.
!

_ i It seems worthwhile to attempt to unify the two by considering the latter ,,

s: ., from the point of vlew of the former.

_ The purpose of this article is to present a frnework for a systematic:)"

_" equattonl2_+ kinetic theory of turbulence originating from the LlouvIlle for

i ' the Fourier coefficients of the fluid variables. The real and imaginary

_ parts of these Fourier coefficients play the rolep in a somewhat abstract

way, that particle coordinates (positions and momenta) play in the BBGKY

:_ theory. Early formulations in this direction are due to Edwards 13 and
i

_ i Herring 16'15, following general indications of Hopf. 16

•_: grenlT_,18., A related approach of some importance is due to Lund (see also

_ Moninl9 Chun820)_r and . Lundgren's basic variables are configuration-space

probabtlttiep instead of Fourier-space distributions. Some apparent success

} , using Lundgren'a formulation is due to Fox, 21'22'23 who has reproduced the

_ ' decay of an energy spectrum for grid turbulence. 24 The essential app_oxtmation

•f ,,: in Fox's theory has been the neglect of the three point spatial correlation

_ function, by analogy with the kinetic theory of plasmas. However, In the

: fluid context, the physical content of this approximation is quite obscure.

The approximation is Justified for the plasma ca_e 7 by argtunents based on/Y ,

:;_ _ thermal equilibrium theory which are lacking in the case of fluids.
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7 One argument for the use of Fourier coefficients as dynamical variablesI,
t is that, at least in the absence of viscosity, there is an absolute equili-

I brium distribution both in two and three dimensions (see Kraichnan 25,26

-_ end Leel2). It can be said that relaxation to this absolute equilibrium

can be considered to have been definitively established in two dimensions,

27,28
by the numerical investigations of Styler et al, as the state to

which the truncated inviscid Navier-Stokes system relaxes for arbitrary

initial conditions. This equilibrium theory can be used as a guide for

: suggesting approximations for the non-equillbrlum thebry, as in the case

of the BBCKYkinetic theory. No such equilibrium theory is available in

the configuration-space representation.

It is our goal to introduce only quantities that can be given a sharp

i definition in terms of Liouville's equation and probability distributions

(ensembles) which obey it. It is clear that at one level, everything about

the statistics of the system must be obtainable from Lio,_ Lle's equation.

It is also our intent only to make approximations which appear to be in
I

some well-defined sense experimentally testable; basically two will be

required.

The approach is illustrated by considering what is algebraically the

simplest case: two-dimensional, inviscid, incompressible Navier-Stokes

flow. The methods are not restricted to this case and can also be

i applied to three-dimensional flow, to magnetohydrodynamic turbulence, and

to cases when dissipation and external driving forces are present. Our

intent is to introduce the method as simply as possible; detailed compa- ._

risons with data will have to await numerical solution of the kinetic

equation to be derived, and ad_itional refinements and revisions by other

workers are to be expected.

= 1

r

4
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_' The basic relations of the problem are the incompressible Navier-Stokes

_! equations in two dimensions with zero viscosity:

_u

.. ,,, V(p/pM ), _t+u • Vu. = - ,

V, u = 0,

where u is the fluid velocity, p is the pressure, and PM is the (uniform)

density, u lies in a plane normal to the z-axis, and is a function of x and

y only. It is convenient to work in the vorticity representation, for which

A

-_: p = pb " Vxu .

A

• _ b denotes a unit vector in the z-direction. All variables are represented

_.- as Fourier series in a large but finite box. Both u and p are eliminated
=

in favor of an equation involving p alone in the usual way (see Eq. (1)

below). A well-known alternative Interpretation of the equations, that

29
, they describe the electrostatic guiding-center plasma,, is possible, in

which p is the electrostatic charge density and u Is the E x B drift

" " velocity of a fluid element.

In Sec. II, a notation Is introduced which expresses neatly the

•. _ dynamics of the real and imaginary parts of the Fourier coefficients in

terms of a simple set of nonlinear coupled ordinary differential equations.

! A Liouville equation and BBOKYhierarchy can be derived in the phase

,: space defined by these coefficients (Sec. III). Though the moments of ....
:- l!

f i"

r
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i; # the probability distribution functions of the Fourier coefficients
• .r

_ have been more popular as a set of dynamical variables for dtatlstical

-_. theories of turbulence, our concern throughout will be with the dtstrt-

_ _ bution functions themselves.

i Closure of the hierarchy is achieved in Sec. IV by the hypothesis that
r,

_- L the five-coefficient correlation function is negligible. This closure is

t _: explicitly shown to include all cumulants in the moment hierarchy, and , _

n_t to be a variant of the cumulant-discard, or quasi-normal, hypothesis. ,;
* S

:2 L _ !

_" i_ The theory at this point owes a debt to the dlrect-interaction approximation

.::} _ of Kralchnan, 31-34 where the assumption Is made that the three-coefflclent

:._.. correlations are more basic to the dynamics than any higher grouping. But

._- we h_ve not Introduced the unit infinitesimal response matrix of Eratchnan,

and have limited our apparatus to quantities which can be defined in terms i

=i-_; '

. _.£ of the single-ttJne Liouville distribution. "The kinetic equation derived .

2: in See. V shares, however, the non-Harkovian property of the _irect-inter-
_), • ::

_y f action approximation: The time derivatives of the distributt£n functions

;_ _ depend not only upon their present values, but on their recent history

r_-_ ........ over a time of the order of a decay tithe for triplet correlations. A

:,2 i_ second hypothesis (for which experimental evidence for or against appears i

k to be lacking) will result in a Harkovtan kinetic equation: That the decay

r of three-coefficient correlations in the absence of their source terms

i: is rapid compared to the evolution of the one-coefficient distributions.

i Numerous features of this _larkovian kinetic equation (Set. VI) can be

t: : rigorously established, including that of a monotonic approach to the

i absolute equilibrium distribution of Eralchnan.(g-theorem), a result

i- believed to be the first of its kind. With no further approximation,

2

_": 2

i[
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If the ktnetlc equation can be shown to be of a standard-(nonlinear) .....

i:i Fokker-Planck type. The Fokker-Planck equation is of the kind derived

from the Lansevln equation for Brownish motlon, 35 with the difference

that the friction and diffusion coefficients are tlme-dependent Integrals

of the distributions of the other Fourier coefficients. At this level, a

closed description in terms of low-order moments is posslble, but the

Fokker-Planck equation provides information on moments of arbitrarily

high order. A relaxation time can be estimate# from the Fokker-Plsnck

equation, to be compared with the decay times for triplet correlations,

when the latter become available.

Only two significant hypotheses or approximations (beyond the standard

but significant one of the representation of the fluid variables as truncated

Fourier series) are employed, and both involve only well-defined quantities
i

for the system:

(1) Neglect of the quintuplet correlation and a subsequent assumption

• concerning the mode of relaxation of the triplet correlatlon; and (2) the

assumption that the decay of the triplet correlation is rapid compared to

the evoi. on of the slngle-coefflclent dlstlbutlons. A significant

fraction of the theory (speclflcally, everything up to Eq. (32)) can be

based on the first hypothesis alone, and we re-emphaslze that thi_ is not

quite a cumulant discard hypothesis. The second assumption is analogous

to the Bogolyubov 5 "functional assumption." Both are subject to some

degree of experimental verification or disproof.

Section VII discusses the problems associated with the inclusion of

viscosity and external driving forces. Section VIII sunn_ar* _s the results

and anticipates future inquiries.



: !i

_: If. BASIC DYNAMICALDESCRIPTION

{il For our purposes, it is useful to _ite the Fourier-transfo_ed.

I_ two-dlmenslonalt £nvlscld, Navler-Stokes equation in the "_ortlclty

representation:

• !- (k,t)
1 - _ M(_,_) p (r,t) p (]_,t) , (z)% i _t

;_: t_ where the coupling coefficients between the vartrus Fourier modes are given

_: I by

•_}_1: M(r,£) = M(p,r) - 2 ---2-_ (2)_, r p

:_ If the fluid velocity is u = u(x,t), the vorttcity vector is p(x,t) =
A

!'"-_-' !i Vmj = b.O(x,t), where b is a unit vector lying in the z-direction, say.

-_-- i_ p(x,t) iS written as a Fourier series

I x)
i I p(x,t)~ = T.k~p(k,t) exp (fl_. .
L I,

I.

[: and p(k,t) = L-2 /dx p(x,t) exp(-tk • x), and the integral runs over a large
- 1 .....

{ square box of edge L. The vectors u, x, k, r, p all lie in the xy plane,
r _ ^

•:_: I: and are normal to b. The allowed values of the wave numbers k, p, r are

-_'- i 2_n/L,~ where ~n is a non-null vector (nx,ny) with integer components. The
wave numbers* magnitudes are bounded from below by virtue of the finite size

:',- _' of the box and from above by a large but finite maximum, which remains

_i'- i: somewhat arbitrary. Extensive numerical studies of the relaxation of Eqs. (I)

'7 '}:

8
i

' r • , • • • ,, , • . . -' . .......
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i were carried out by Styler e_ta_ll, 27 starting from highly non-thermal Inltlal

Ii condlt_ona.

i It is the statistical theory of Eqs. (I) which is of interest, but

i it is convenient to introduce a more compact notation (see, e.g.,

Kralchnan, 31 Betchov, 36 or Herrlng14). We order the wave numbers by

associating them in any convenient way with the integers and represent them
d

by Roman subscripts i, J, k, 1, .... There are to be __..oointegers per

wave number. By the variables Xi, Xj, Xk, ..., we shall mean the real

and imaginary parts of the various p(k,t) associated with the ordered wave

numbers.

The system of equations represented by gq. (1) can then be_rrltten in

the slmple-Iooklng form

d Xi

d-T" CljkxjJk

where the Cij k are a set of real constant coefficients which can be inferred

in terms of the M(r,p) from Eq. (1). All terms in Eq. (3) are now real.

The subscripts range from 1 to N, say, where N>>I. N is the number of

allowed wave numbers. (There are 2N total real and imaginary parts of

Fourier coefficients, but only half the _ariables are independent, since

p(k,t) _ p_(-k,t).) Only variables which can be prescribed: independently

initially are included In Eq. (3).

• For detailed numerical applications, the exa=t values of the Cij k co-

efficlents can be read off, but for the formal theory to be presented here,

only five properties of the Clj k are neededz

i
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t

:' (I) _11 Cij k - 0 unless i, J, k carrefipond to different wave

_ numbera (i.e., unless it J, k are all dlffeeent)!

" i 12) ctj k = clk 1

(3) I, J, and k all run from 1 to N;

!_ (4) CIj k + Cjk I + Ckl j = O;

i, - o
:; lil z IJlz Iklz •
l Property (4) expresses conservation of enstrophy (or mean-square charge

i density, for the plasma case). Property ($) expresses conservation of

[i energy. In property (5),1il 2 is a symbolic notation which means the square1

of the wave number associated with the subscript t. (The constants of the

motion guaranteed by properties (4) and (5) su_ive an essentially arbitrary

Fourier truncation.)
! t

Equations (3) may also be used to discuss the three-dimensional case,

" _ and much of the theory to be developed applies to the three-dimensional

:.,-. , case as well. The major difference is that in three dimensions, the

= analogue of property (4) does not apply. The consequences that result if
f,

property (4) does not hold will be noted later.

The initial-value problem involves specifying the'initial values of
t'

. the Xj and following their subsequent evolution according to Eqs. (3).

i. We turn now to the introduction of probabtltsttcally distributed initial

conditions.
• {

t
I

!
_" }:

..@
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_: III. LIOUVILLE'S EQUATION AND THE IIBGKY HIERARCtlY

,',t

':'- The varlouH Xt in Eq. (3) can be thought of a coordtnaten in a

"- i: man¥-dhnes_1oms1ptmse space. Eq. (3) apparently dons not define a

_, : ltamlltontan system. It 1o, however, a conservative system and possesses
: {

!_ two constants 25 of the motion as a consequence of properties (4) and (5)
" i,

l of Section II: The ene:'sy _ and enstrophy _; these are _J-- .t i
-4-:." l

_ 2 2
:.:.":i _-. = Et Xl/ll I (4)
,,g...

T ," 2

' = zI xi (s)

_ T

-:'- :_ Moreover, a Liouvtlle equation, or probability conservation law, exists and

, ,.,. , Soverns the evolution of any probability distribution law D = D(X1 X2 ... Xn,t)

"'" I defined over the phase space:

-¢

•..,... _t : _ \_-_- D " 0 ,. (6)
w

_. In Eq. (6), dXi/dt is given by Eq. (3). Using property (1),

-'_ _D

._. , _-_ + :_ Clj k Xj Xk_ D - 0 • (7)..

-i::

_ Conservation of the positive semi-definite character of D and conservation

,_ ....... of the normalization integral

: $ dXi ... dXN D = I

• to,

lI
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/'

1 follow Immediately f_om Eq. (7).

' A family _£. _edueed ....prohahlllty dlaLrlbutl_na flJk. " flJk. (ll'i. ..17 ..r

, X ... Xr,t) can be defined by Integratiflg D over all the phase spacef

I.

I coordinates which are not of interest:

i
i ft = /D(dX 1 dX2 ... dXN) (8,L Jk...r llk...r

vhere the notation in the integral means to integrate D over all the phase

space variable_ except those associated with the indices tJk...r. The reduced

distribution functions defined by Eq. (8) differ from those used In the

conventional BBCKYtheory 1"7 mainly in that they are not symmetric under

tnterchanses of the different phase space coordinates. Thus fi(Xi,t) is not

, the same function of Xi that fj(Xj,t) is of Xj, if t and J are different, Most

i of the added complexity of the theory stems from this lack of synnnetry. Note

that the subscripts on the fiJk. are by definition always-different. There: .,r

! are never any repeated subscripts in the distributions.

i; The basic variables in most statistical theories of turbulence are
I.
i.
i moments, such as

!.

i <xl'_ f_f, dXt
!.

_ or

h> /x, h % dh .
I'

!' However, in these present calculations, the variables to be treated as bosic

_ are the distributions fi' flJ' flJk' etc.

t,
I"

t,
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,_ By integrating Eq. (7) , discarding _urface integrals at tnfxni_y in
t

phase apaeo, and uatnB Eq. (8), a BHGRYhternrehy of equ_tonn for the

._ ii reduced dlstrlbut:ions can be readily generated. For exon,plt_, the flr.t two

• i members are

-_ = -_£ _ Cij k fdXj dXk Xj Xk f iJk (9)
Jk

and

at _£ + C.p.) ft'_k

u -_'_i Clrs _Jkrs + c. p.
r.

_he notation "c. p." will always mean, add tc the immediately preceding term
• t

the sa_ term with the unsummed _dices cyclically permuted, e_d continue

doing this until t:he original ordering is reached. Thus

c_kxj_ _ +o.p. -

As in the case of the BBCKYhierarchy for interacting point: particles,

the higher members of the hierarchy become complicat:ed. So far, there

_ has been no incentive to define a notation complicated enough to write

down the general term. But its structure is obviotm. For s phase space
11

:iIL

.2

|i:
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coordinates, it will involve the Liouvllle equation for s coordindtes on

I the left aud a large number of similar integro-differenttal linear

!i operators on the right, which act on distributions of s+2 coordinates.

! interesting that reduced distribution functions containin8 i
One feature is

only odd numbers of the Xi's directly enter the hierarchy. Though the

distributions of even numbers of coordinates can be obtained from the

odd distributions by integration, they play no direct dynamical role. This f_

,ontrasts wtth the all-important role that the pair correlation function

plays in particle kinetic theozT, and with Lundgren*s configuration-space

description. 17

A cluster expansion can be used to replace the multibody distributions

fiJk' fiJkrs' "''' by appropriately expressed correlation functions TtJk,

QtJkrs' ""' as follows:

flJk " fl fJ fk + TiCk (12)

fiJkrs = ft fJ fk fr fs + fi fJ Tkrs +:ft fk Tjrs

+ fi fr Tjks + fi fs TjLr + fJ" fk Tirs

�fJfr Tiks + fJ fs Tikr + fk fr Tijs

�fkfs TiJr + fr fs TiJk + QiJkrs " (13)

The "quintuplet" correlation qiJkrs is the completely nonfactorable p_rt

_ of the ftJkrs' ar.d so forth.

We shall restrict attention to the case of vanishing first moments
I-

i: <Xt> -= f X, ft dXt = OD all t. (141 i

!'

14 il

i, i
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This corresponds to the conditions <p> = O, <u> - O, etc. in eonflgu-
,v

8
ration space. However, we do not impose all the conditions that have been

sometimes associated with more restrictive definitions of "homogeneous

turbulence." Also, it is _ot assumed that <X > - <Xi><X_> when I and

J are identified with different wave numbers, and we do not assume that

the initial values of the unlvarla_ distributions are Caussian.

From Eq. (14), It follows that an alternative way of _writing Eq. (9)

is

aa__E_el " -a- la clak fdXa d_ Xj _ Tijk . (15)

From Eq. (9) or Eq. (15), it is clear tha_ what is required for a

kinetic description, in the kinetic theory sense $'6'7 o£ the term, is an

approximate expression for the fij k or Tij k in terms of the fi's. It is

clear that some additional complexity (over and above that encountered in

hierarchy derivations of Boltzmann_s equation or the Fokker-Planck equatiou)

•: is to be expected, since the different fi's are distinct functions.

i- So far, everything that has been said is exact. Further progress
{
, depends upon developing satisfactory approximations with which to close

or truncate the hierarchy.

15
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IV. CLOSUREOF THE HIERARCHY

A hierarchy generated by taking moments of Eq. (1) or E-, (3) has

in the past been used as a starting point for statistical theories of

turbulence. 9'10 Closure schemes for this moment hierarchy, based on dis-

30 have largely fallen into disrepute 9,10,37card of higher cumulants,

This is in large part due to the negative spectral densities (<X_>, in our _

t
notation) which result. It is no__tttrue, as we shall later prove explicitly, i

that closure schemes for the Just-derived BBCKYhierarchy based on the

neglect of one of the higher-order correlation functions (such as Qijkrs ) !

are equivalent to the neglect of higher cumulants in the moment hierarchy. I!i

It will also be seen that neglect of the higher-order correlation functions

need not, in general, lead to negative values of any intrinsically non-

negative quantities such as _X_.

Most closure schemes for the interacting-particle BBCKYhierarchy

rest on the identification of some small parameter which enters as a

I multiplicative factor in the hierarchy (e.g., the density for Boltzmann*s

equation or the coupling constant for the Fokker-Planck equation). This

small parameter then serves as the basis for a perturbation expansion. 7

One of the more stubborn impediments in turbulence theory has been the

lack of any such readily-identifiable small parameters. The only para-

meters which enter Eqs. (3), (7), (9), (I0), or (15) are the coupling co-

efficients Cljk, and they can be considered in no sense "small." In

partlcular, the usual Fokker-Planck arguments (in which weak coupllng is

argued to imply we_k correlations) would appear to be inappropriate.

16

I
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Nevertheless, there is a sense in which the correlations may still

be arsued to be small. One exact solution to Eq. (7) is the absolute

equilibrium 25'26 distribution of Kraichnan:

Deq.= cexp{-aE-I_} (16)

where c is a normaltzins constant, a and _ are constants which play the role

_ of inverse ten,,statures, and _ and _ are given by Eqs. (4) and (5).

Equation (16) implies Maxwell distributions for the individual Xits ,

_q" (xi) - c i exp - _ + e , (171

and implies also that all correlations vanish identically. Extensive

i numerical evidence accumulated by Seyler e_tt al_.27 shows that in fact a

, quite definite relaxation of the properttL's of the system to those pre-

i dtcted by Eqs. (16) and (17) takes place. This relaxation to equilibrium

seems to be beyond dispute.

I£ we are in some sense not too far from the absolute equilibrium,

predicted by Eqs. (16) and (17), then it is clear that the correlation

functions must be in some sense small, so that, for example, fifjfk>>Tijk,

fifjfkfr£s>>QiJkrs, and so forth. D_namtcal arguments to support this

conjecture are given later in this section.

The only assumption required for closure at a non-trivial level is

I that the quintuplet correlation qtJkrs is negligible compared to the product

fifj Tkr s. Ti,is is somewhat in the spirit of the "direct interaction" .....
_, 31-34

approximation, which assumes that correlations among three modes are

more Jmportant than among more elaborate groupings.

17
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. j

Dropping terms containing QiJkrs' expressing flJkrs in terms of

the flJk and the fi' using Eq. (14), and performing some tedious but

entirely stralghtforvard algebra on Eq. (7) reduces it Co the following

':: form
;i

1i + Cij k Xj Xk_+ c.p. fiJk !

" - Clrs _ fdX dXs Xr Xs fl fJ fkrs
! rs_Jk_or kJ

!.

+ ft fk firs + fJ fk firs + c. p.i

= (Vf) lj k (18)

i V denotes a llnear dlfferentlo-lntegral operator "containing the fl whose

accion on che fkrs is defined by the rlght-hand side of Eq. (18").

Equations (9) or (15) and (18) constitute the basic closed description

that results from the neglect of quintuplet correlations. It is not possible

to proceed farther analytically without more insight into the properties of

the linear operator V than is now available, unless we make plausible

simplifying assumptions about the cff_et of the linear operator V. This

is deferred to Section V. Numerical solucion to the coupled pair of

equations (9) and (18) may uot be significantly more difficult than the

Lolution of the Eulerian direct interaction equations, but this has not

yet been attempted. I

To close this section, two other remarks are in order concerning

Eqs. (9) and (18).

18
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First, it can be seen easily that the neglect of the quintuplet

correlation is in no sense a "_unulant dlscard "30 approximation. For,

applying SdXi Xi to Eq. (9) gives

d <X_>
dt z " E cljk <xi xj Xk, (19)

Jk

while applying SdXi dXj dXk Xi Xj Xk to Eq. (18) gives

!

t Instead of (20), we would have in t,_,-a cumulant dJscard approximation

It is clear that at the level of the moment hierarchy, the neglect of the

quintuplet correlations does not even provide closure. Any moment-develop-

ment equation will always involve higher moments because of the three-

coefficient Liouville operator on the left-hand side of Eq. (18).

Finally, the content of the relation (13) for fiJk can be translated

into an equation for Tij k using Eqs. (12) and (15). The result can be

written compactly as

_i , o, �HTij k - Slj k (22)

where Sij k is a source term involving only one-body distributions_

_o + e. p. fl fJ fk " (23)i. Sij k --- - Clj k Xj % _Xi
T

19 I
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The notation "c. p." has its usual meaning, and H is a linear operator.;' _

-¥

_, _ defined by the following relation:

- Ii "_Ijk_ Cilkh Xk_ +_"p" TiJk

' �/dXdX Xr Xs [fj fk _rs ] + c p.rs_jk cirs r_i _krs+ "
or kl:I

• -2 CIj k fj fk dXj d_ Xj _ _ Xi + c.p. (24)

&.

" _ (H TIj k involves all the various triplet correlations, and not Just TIj k Itself.)

If we llke, we can choose to regard Eqs. (15) and (22) as the basic dynamlcal

equations. Again, the only approximations involved in them are the neglect
._-

of the quintuplet correlation functions. If we make the conventional andT'

reasonable assumption of initially-vanishing correlation functions, it will

.,_ be seen that SIj k acts as a source term whlch generates triplet correlations

:_!_" and involves only the fi" Note also that if fi Is a Haxwellian, as in
'j.

? Eq. (17), Silk N 0. Thus for situations close to absolute equilibrium, the

::_ trlplet-correlatlon-generatlng term In Eq. (22) Is small even though the

; Ctj k are not small. This provides a dynamical argument for the weakness

of the correlations that is independent of the weakness of the Interaction

coefficients.

; It will be noted that the general structure of Eq. (22) is reminiscent of

:-.:7 I
c i the Dupree form of the equation for the pair correlation encountered when

deriving the Balescu-Lenard equation.

I.°

• ;A
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V. APPROXIMATE SOLUTION FOR Tijk; THE KINETIC EQUATION FOR TURBULENCE

We c on4ecture that the effect of the last two collections of terms in

Eq. (24) is a large number of essentially random impulses which tend to

!

, destroy correlations TiJk, and compete against the source Sij k which

attempts to build them up. The nature of the decay of correlations pro-

duced by the last two brackets of terms in Eq. (24) is undoubtedly very

complicated, but it may not be too poorly xepresented by a simple exponential

i
decay. That is, we conjecture that Eq. (22) can be represented by the

i approximate form

ln Eq. (25), L3(i,J,k) is the Liouville operator for three coefficients,

and is defined by

L3(i,J,k) - Cij k Xj Xk_ + e...p; .

Vii k is an inverse decay time for three-body correlations. For many pur-

poses it is not necessary to assume a specific form for it. Roughly speaking,

vii k plays the role that the Landau damping decrement plays in the derivation

of the Balescu-Lenard equation.

The formal solution of Eq. (25) for Tij k is, assumin8 zero initial

correlations,

I

I.

! 21 I

1975019224-TSB08



I

,! ,
t_

; !i Tij k = dT exp -(t - T)L3(i,J,k) exp -(t - T) Vlj k SZj k. (26)

_: I: The correctness of the solutlon (26) can be readily established by
dlfferentlat_r ....

The exponential operator exp(-(t - _) L3(l,J,k)) is a familiar operator $'6'7

in BBCKYkinetic theory, and Is a member o_ the class often called "streaming

operators." Their effect on an arbitrary given function is to treat the

• function as an Initial value for Liouvillets equation and convert it into
P

that solution of Llouville's equation which reduces to the given function

initially. 14ore specifically, for any arbitrary function g(Xi, Xj, Xk),

exp[-T L3(i,J,k)] g(Xi, Xj, Xk)

E

- g (Xt(-"c), Xj(-'r), Xk(-'r)). . (27)

- In Eq. (27), Xt(T), Xj (T), _(T) are the solutions of the ordinary differential

equations "

d Xi(_)
d'r = C:ILjk Xj ('r) Xk(T )

d Xj('r)
: d'r " C:lkIXk('r)Xt_"O

d Xk('r)

.. dT - Ckl j XI(T) Xj(T) (2S)

,_ which satisfy X£(O) = Ii, Xj(0) = Xj, Xk(O) - Xk. The XI(T) are Lagranglan
,7

coordinates which are assoclaeed vlth the Eulerlan coordinates Xi by the

E.
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differential equations (28) and their accompanying initial-data (Xx(O) - g X, --

etc.). The expltcit aolutlona to Eqg. (28) a_enot dif£ieult tO extract.
i

but their expllclt values are not required for present purposes.
4

_th these notations and a slight change in the variable of temporal

integration, Eq. (26) becomes 1
i

t t-_ -_

Tij k - fodTexp_-TVljk}Sijk (Xi(t_). Xj(.T).,(.T).,) (29) ...... 1

Equation (29) is our approximate solution for TXjk. Its substitution in

Eq. (15) gives:

t

fi _t(Xi't) " _ _jk Cijk/dXj dXk Xj _ _0 dT exp(-_ _ijk )

[ ]" x Cij k Xj(tT) _(tT) _Xi(tT ) + c., p.

fi (Xi(fT) '$) fJ (Xj (t'r) ,e) £k (_(,t't) ,#) (30)

Equation (30) is our basic kinetic equation for turbul_Jce. It can be

further s_plified, and a number of its properties can be proved. This

is done in Sec. VI. (A formally exact restatement of Eq. (30), which

does not assume the exponential relaxation times Vijk, is obtained by

simply replacing exp(-T vij k) by the exponential of the operator whose

eigenvalue _iJk is conjectured to be; this formal generalization is at

present of no computational value.)
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Vl. PROPERTIES OF THE KINETIC EQUATIONFOR TURBULENCE

6

Three conservation laws can be proved directly from Eq. (30) without

further manipulations.

(1) Conservation of probability follows from the obvious conclusion

that

= _ { a functi°n °f Xi } = O._t Sfl dXi SdXl _ which as Xi *

I' (2) Conservition of enstrophy is proved by considering the expression, -
• t ' •

- _ C /dX dXj d_ Xi _ dT exp(-TlJk" Ijk i Xj Xk _Jk)

_xi(+_ ) +, c.p. .

x (,'r),_)fk (Xk(+_)'_')" (_Z)

Permuting the dmmy indices i, J, k in Eq. (31) and adding the three equl-

valent expressions together, then dividing by 3, gives the same expression

as £q. (31) with the first Cij k o_ the rlght-hand sxde replaced by

--_ (Cij k + Cjk i + Ckij) , which by property (4) of Section II, is zero for
J_

_ all i. J, k,

_i (3) Conserva, tlon o_f_ is proved in the same way as conservation

iI:': _of enstrophy,ck__with _ (Cij k + Cjk i + Cki j) being replaced by 3_. I!1i12 +

.... ijlz + iklZ/'

24
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A fourth obvious property Is|

(4) Solutlonbya Mnxwelllnn. Sines the rlght-hand side of Eq. (30)

vanishes Identleally when fl is given by Eq. (17), It is cXear that the

absolute equillbrlum fl is a tlme-lndependent solution of gq. (30).

The kinetic equation (30) a8 It stdnde is not Harkovlan. The time

darlvatlve of the fl depends not only upon fl at the present instant, but
-I

on Its integral over a time of the order of the vlj k, the decay time for

freely decaying trlplet correlations. A Markovlan limit can be obtained

i by making the following assumption, which is the analogue of the

Bogolyubov 5 "adiabatic hypothesis." We may assume that the free decay of
&

triplet correlations is su£fi_iently rapid that neither the ft nor the

three-body orbit variables of Eqs. (28) change appreciably in a time of i

':. the order of v;_ k. This hypothesis either is or is not true, but experi-

mental or numerical data that would shed light on it would appear to be

+i scarce. If we make it, we may freeze the _'-dependent values of the vari-

:i ables in the tntegrand of Eq. (30) at their _ values, and perform
,!

the T-integrations to get:

' _"_ " _ Jk _OlJk % XJ Xk CiJk Xk _-_i

, * caklXkXl * Ckljxl h

x fi (Xt't) fJ (Xj,t) fk(Xk,t) • (32)

From the Markovian form (32), it is immediately possible to prove

the positive semi-definiteness of ft and that all ft approach a Maxwellian
i
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e

J aa L _ m (B-theorem). It can also be sho_ thnt a moment closure ham

t
now been achieved.

(5) Po, itiveTdefin_teness of fi' suppose that ft (XltO) is every-

whore > O, all i, and first becomes negative for some Xi - Xio at t • t o

as a consequence of Eq. (32). We will show that a contradiction is
f

implied. For at t s to t the stated conditions imply:

(i) fx (X,o, to) - 0
I,

r _ fi (Xio' to)

,. (ti) _ to < 0

fi (Xio' to) . 0
i (iii) _ Xi °

_2,f_ (Xio ' to )(iv) > o .
_Xlo

EvaluattnS the right-hand side of Eq. (32) under these conditions gives

fi (Xio' to)
L el •

_t o

c2" /d _2_i t°)
Jk _ViJk Xj d_ X_ _' a X2iolxi°''' f j (Xj, t o ) fk (Xk' to) '

I vhich Is manifestly positive, contradicting (ll). Thus no Intrlnslcally

_,i positive moment, such as <X2>, can ever become nesatlve as a consequence
I
f;

I of_q. 432).
1:

_ 2O

f_
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(6) _-theo_em. The Ir_everH_b_!_ey can be demonstrated by eon,ldering

a 811Rht genernllzation of Boltzmnnn'e H function.

d fl

f d , XjXk" " iJk_ Xi dXj d_ gl _ _ _lJk s.

[ ' I_ Ctjkh Xk_ p" fI fJ fk

= _} _ __11 /dXi dXj d,{ ClJk XJ " _ fliJk VIJk fl _ XI

+ c" P'] [ cijk x_ " _ fl 1fl _ + c.p. fi fj fk "<0 ,

"since the two { }'s are identical and the rest of the integrand is > O. The

• equality sign holds If and only If the ( } = O, or

I }ctjk xj xk_ + c.p. ft fa fk " o ,
e

which Is satisfied by Eq. (17). Since Y'I fdXl fl £n fl is bounded from

below, this completes the proof of the H-theorem. All initial distributions

must approach Eq. (17).

At the level of Eq. (32), in contrast to Eq. (30), a closure in terms

of moments ha_._sbeen achieved. Applylng fdX I (X2/2) to Eq. (32) ylelds,

after some manipulations,
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@
and we have

already proved that <X_> can never go negative, though _ slmilar

proof can be glveu directly from Eq. (33). A somewhat similar set of

equations is due to Lelth 38 and Orszag. 39 Except for the sllghtly different

form and interpretation of the _lJk' the content of Eq. (33) is that of

the eddy-damped Harkovian model. 3g'39 Relaxation to equilibrlum for

Eqs. (33) is guaranteed by our H-theorem.

Equation (32) can be given a som_hat more slmple looking form in

terms of moments:

fi _ _.__2

_--_ = -_'ii (Xi X! fi ) �_X2(qi fi ) (34)

where

Jk 91Jk CklJ "

and

Jk Vijk

Both hi and qi are independent of all the phase space coordinates and depend

only upon the time Equation (34) has the classical farm of the Fokker-Planck

equation derived from the Langevin equation 35 for the case of one-dimensional
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a

Brownlan motion with (time-varying) friction and diffusion coefficients,

"_I and ql"

A relaxation .tim___efor the i th mode can be estimated by O_1 = ._1

where

Jk ViJk CjkI Cklj "
0,.-W

O

Using thermal equilibrium estimates for the expectation values of the moments,

this is approximately

Jk VlJk ..

Xf typical <X_> are Just <_>, this gives a relaxation t_ne of

4

v ";_ (37)

o

2
where C2 iS a "typical" CiJk, and v is a "typical" _tJk" ."

The condition for validity og the Markovtan assumption is that this

relaxation time be long compared to the triplet decay time, or

V >> _1
C2 <X2> _2 v

or

_2 >> C2 <X2> N2 . (38)

t
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The estlmate for V2 (which undoubtedly depends upon the Cijk, the <X_>,

and N) which would validate or Invalldate the Inequality (38) iS _,

lackins.
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VII. VISCOSITY AND EXTERNAL FORCES

Viscous damping is relatively straightforward. One adds a term

-v i Xi to the right-hand side of Eq. (3), where v i =[il 2 v, and v is

the kinematic viscosity. The system is of course no longer conservative,

and approach to a Maxwellian (17) is no longer expected. The new terms

are reflected in newviscous damping terms in Eqs. (9), (10), (15), and .

(18). In particular, the operator H in Eq. (24) has added to it a term

{v i Xi %/_X i + c. p.} Tij k on the right-hand side, and each of Eqs. (28)

has a damping term like -_l Xi(T) on the right-hand side. The three-body

orbits defined by Eqs. (28) are no longer conservative. Again, further

progress requires conjectures about relaxations of triplet correlations

in order to write down an explicit expression for a kinetic equation such t

_as Eq. (32). If we again assume that these triplet correlations* free
1

relaxation rate is faster than any other characteristic time in the system, i

the net effect of the addition of viscosity is to add a term _(_i Xi fl)/_ Xi !

to the right-hand side of Eq. (32). The relaxation process then becomes i

e complicated competltlonbetween the non-dlsslpatlve "collision term" in

Eq. (J2) with the additlorml viscous term whlch leads to the decay of the

energy and the concentration of the distributions at lower values of Xi.

Numerical investigation would he required.

External forces are more difficult to add. The inclusion of a driving

force Fi(t) on the rlght-hand side of Eq. (3) will, if random, affect the

evolution of D in a non-Markovlan way. Simpllfylng assumptions which would

permit the addition of an external random force while still obtaining a

closed-form kinetic equation (Markovian or otherwise) are under Jnvestigetion,

but no results have as yet been achieved.
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VIII, DISCUSSION

The main point of the article is considered to be an indication

that it is possible to derive a systematic kinetic theory of fluid

turbulence from the Liouville equation for the Fourier coefficients of

the fluid variables, a line of inquiry begun by Edwards. 13 A kinetic

equation has been derived and is shown to possess a number of the

requirements that any reasonable k_netic equation must have: Conservation

laws, positive-definite spectral densities, and an H-theorem. Some

_ value of the kinetic equation obtained may derive from its use in a

-1

phenomenolog_cal description with vii k relaxation times obtained by

. fitting decay data.
i

The major lack in the theory is any reliable information about the

relaxation _redtcted by the complicated linear Operator H (Eq. (24)).

--1

There are enough relaxation times ¢iJk at our disposal, in the ;absence of

quantitative estimates o£ their values, to match virtually any relaxation

process with the numerical solutions of Eq. (33). Other quantitative.
.

theories of relaxing two-dimensional turbulence have shown 40 a gross

insens__tivity to the details of the dynamical description, and it may be

that a similar insensitivity exists here.

Comparisons with data and with other analytical theories of decaying

turbulence await numerical investigation of Eqs. (31), (32), and (33).

We have devoted little attention to the inclusion of viscosity or stirring

, forces, though some calculations of viscous, forced equilibrium solutions

i to the Liouville equation have been reported by Thompson.

_i 32
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