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ABSTRACT

A kinetic theory for fluid turbulence is developed from the Liouville
equation and the associated BBGKY hierarchy. Real and imaginary parts of
Fourier coefficients of fluid variables play the roles of "particles."
Closure is achieved by the assumption of negiigible five-coefficient
correlation functions.‘ Probability distributions pf Fourier coefficients,
rather than moments, are the basic variables of the theory. Neglect of
the correlation functions does not necessarily imply a cumulant discard
hypothesie or a quasi-normal assumption. However, a later additional
approximation leads to a closed moment description similar to the so~called
eddy-damped Markovian approximation. A kinetic'equation is derived for.
which conservation laws and an H-theorem can be rigorously established. In‘
the absence of visco;ity and external driving forces, the H-théorem implies
relaxation to the absolute equilibrium of Kraichnan. The equat;on can be
cast in the Fokker-Planck form, and relaxation times estimated from i;s
friction and diifusion coefficients. An undetermined parameter in the
theory, about which significant assumptions have to be‘made, is the free
decay time for triplet correlations. Some attention is given to the

inclusion of viscous damping and external driving forces.
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I. INTRODUCTION

Two major and distinct areas of investigation in non-equilibrium
statistical mechanics over the last thirty years have been the BBGKY
kinetic theory of gasesl-7 and the statistical theory of fluid turbulence® 13,
It seems worthwhile to attempt to unify the two by considering the latter
from the point of view of the former.

The purpose of this article is to present a framework for a systematic
kinetic theory of turbulence originating from the Liouville equationlz for
the Fourier coefficients of the fluid variables. The real and imaginary
parts of these Fourier coefficients play the role, in a somewhat abstract

way, that psrticle coordinates (positions and momenta) play in the BBGKY

theory. Early formulations in this direction are due to Edward813 and
14,15 16

Herring » following general indications of Hopf.
T o
A related approach of some importance is due to Lundgren17’18 (see also
19 '

Monin™" and Chungzo). Lundgren's basic variables are configuration-space

probabilities instead of Fourier-space distributions. Some apparent success

21,22,23 who has reproduced the

using Lundgren's formulation is due to Fox,
decay of an energy spectrum for grid turbulence.24 The essential approximation
in Fox's theory has been the neglect of the three point spatial correlation
function, by analogy with the kinetic theory of plasmas. However, in the

fluid context, the physical content of this approximation is quite obscure.

The approximation is justified for the plasma ca3e7 by arguments based on

thermal equilibrium theory which are lacking in the case of fluids.
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One argument for the use of Fourier coefficients as dynamical variables

is that, at lecast in the absence of viscosity, there is an absolute equili-
brium distribution both in two and three dimensions (see Kraichnan25’26
and Leelz). It can be said that relaxation to this absolute equilibrium
can be considered to have been definitively established in two dimensions,

by the numerical investigations of Seyler et a1,27’28

as the state to
which the truncated inviscid Navier-Stokes sypt;m relaxes for arbitrary
initial conditions. This equilibrium theory can be used as a guide for
suggesting approximations for the non-equilibrium theéry, as in the case
of the BBGKY kinetic theory. No such equilibrium theory is available in
the configuration-space representation.

It is our goal to introduce only quantities thét can be given a sharp
definition in terms of Liouville's equation and probability distributions
(ensembles) which obey it. It is clear that at one level, everything about
the statistics of the system must be obtainable }rom Lio: ‘'le's equation:
It is also our intent only to make approximations.which appear to be in
some well-defined sense experimentally testable; basically two will be
required.

The approach is illustrated by considering what is algebraically the
simplest case: two-dimensional, inviscid, ingompressible Navier-Stokes
flow. The metﬁods are not restricted to this case and can also be
applied to three-dimensional flow, to magnetohydrodyﬁamic turbulence, and
to cases when dissipation and external driving forces are present. Our
intent is to introduce the method as simply as possible; detailed compa-
risons with data will have to await numerical solution of the kinetic
equation to be derived, and additional refinements and revisions by other

wvorkers are to be expected,

P
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The basic relations of the problem are the incompressible Navier-Stokes

equations in two dimensions with zero viscosity:

where u is the fluid veloclty, p is the pressure, and Py is the (uniform)
density. u lies in a plane normal to the z-~axis, and is a function of x and

y only. It is convenient to work in the vorticity representation, for which

A

b denotes a unit vector in the z-direction. All variables are represented
as Fourier series in a large but finite box. Both u and p are eliminated
in favor of an equation iavolving p alone in the usval way (see Eq. (1) -
below). A well-known alternative interpretation of the equations, that

29 in

they describe the electrostatic guiding-center plasma, is possible,
which p is the electrostatic charge density and u is the Ex3B drift
velocity of a fluid element.

In Sec. II, a notation is introduced which expresses neatly the
dynamics of the real and imaginary parts of the Fourier coefficients in
terms of a simple set of nonlinear coupled ordinary differential equations,

A Liouville equation and BBGKY hierarchy can be derived in the phase

space defined by these coefficients (Sec. III). Though the moments of
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the probability distribution functions of the Fourier coefficients
have been more popular as a set of dynamical variables for statistical
theories of turbulence, our concern throughout will be with the distri-
bution functions themselves.

Closure of the hierarchy is achieved in Sec. IV by the hypothesis that
the five-coefficient correlation function is negligible. This closure is
explicitly shown to include all cumulants in the moment hierarchy, and

n.t to be a variant of the cumulant-discard, or quasi-normal, hypothesis.3°

The theory at this point owes a debt to the direct-interaction approximation ‘

31-34 where the assumption is made that the three-coefficient

of Kraichnan,
correlaticns are more basic to the dynamics than any higher grouping. But
we have not introduced the unit infinitesimal response matrix of Kraichnan,
and have limited our apparatus to quantities which can be defined in terms
of the single-time Liouville distribution. .The.kinetic equation derived

in Sec. V shares, however, the non-Markovian préperty of the jirect—inter-
action approximation: The time derivatives of the distribution functions
depend not only upon their present values, but on their recent history

over a time of the order of a decay time for triplet correlations. A
second hypothesis (for which experimental evidence for or against appears
to be lacking) will result in a Markovian kinetic equation: That the decay
of three-coefficient correlations in the absence of their source terms

is rapid compared to the evolution of the one-coefficient distributions.
Numerous features of this Markovian kinetic equation (Sec. VI) can be
rigorously established, including that of a monotonic approach to the

absolute equilibrium distribution of Kraichnan: (i-theorem), a result

believed to be the first of its kind. With no further approximation,
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the kinetic equation can be shown to be of a standard- (nonlinear)
Fokker-Planck type. Tie Fokker-Planck equation 1s of the kind derived
from the Langevin equation for Brownian motion,35 with the difference
that the friction and diffusion coefficients are time-dependent integrals
of the distributions of the other Fourier coefficients. At this level, a
closed description in terms of low-order moments is possible, but the
Fokker-Planck equation provides information on moments of arbitrarily
high order. A relaxation time can be estimated from the Fokker-Planck
equation, to be compared with the decay times for triplet correlationms,
when the latter become available.

Only two significant hypotheses or approximations (beyond the standard
but significant one of the fepresentation of the fluid variables as truncated
Fourier series) are employed, and botl involve only well-defined quantities
for the system:

(1) Neglect of the quintuplet correlation and a subsequent assumption
concerning the mode of relaxation of the triplet correlation; and (2) tﬁe
assumption that the decay of the triplet correlation is rapid compared to
the evoi. -on of the single-coefficient dist ibutions. A significant
fraction of the theory (specifically, everything up to Eq. (32)) can be
based on the first hypothesis alone, and we re-emphasize that thiu is not
quite a cumulant discard hypothesis. The second assumption is analogous
to the Bogolyubov5 "functional assumption." Both are subject to some
degree of experimental verification or disproof.

Section VII discusses the problems associated with the inclusion of
viscosity and external driving forces. Section VIII summar’ 28 the results

and anticipates future inquiries.
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1I. BASIC DYNAMICAL DESCRIPTION

For our purposes, it is useful to write the Fourler-transformed,

two-dimensional, inviscid, Navier-Stokes equation in the vorticity

representation:
-—-—ap ki 2 Mr,p) p (r,t) p (p,t) (1)
= T, p (r,t) p 't)
ot prk P L P

where the coupling coefficients between the vari.us Fourier modes are given

by

bexn |, ~
A

M(r,p) = M(p,r) = 3 ;—2--;-

If the fluid velocity is u = 9(§,t), the vorticity vector is p(§,t) =
-~ ~
ng = bp(g,t), where b is a unit vector lying in the 2-direction, say.

p(x,t) is written as a Fourier series

plx,t) = Ty plk,t) exp (ik * x)

and p(},t) = l.'-2 fdf p(g,t) exp(-ig . f), and the integral runs over a large
syuare box of edge L. The vectors u, X, 5, r, P all lie in the xy plane,
and are normal to ;. The allowed values of the wave numbers k, Py T are
ZﬂB/L. where n is a non-null vector (nx,ny) with integer components. The
wave numbers' magnitudes are bounded from below by virtue of the finite size
of thc box and from above by a large but finite maximum, which remains

somewhat arbitrary. Extensive numerical studies of the relaxation of Eqe. (1)
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were carried out by Seyler gg‘g;.27 starting from highly non-thermal initial
conditions,

It 1s the statistical theory of Eqs. (1) which is of interest, but
it is convenient to introduce a more compact notation (sce, e.g.,
Kraichnan,31 Betchov,36 or Herringla). We order the wave numbers by
associating them in any convenient way with the integers and represent them
by Roman subscripts i, j, k, 1, ... . There are to be tvo integers per
wave number. By the variabiles xi, xj, xk, +esy we shall mean the real
and imaginary parts of the various p(§,t) asgsociated with the ordered wave
numbers.

The system of equations represented by Eq. (1) can then be written in
the simple-looking form

d X

1
ac jzk Cig Xy % » @)

where the Cijk are a set of real constant coefficients which can be inferred
in terms of the M(E’B) from Eq. (1). All terms in Eq. (3) are now real.
The subscripts range from 1 to N, say, where N>>1. N is the number of
allowed wave numbers. (There are 2N total real and imaginary parts of
Fourier coefficients, but only half the variables are independent, since
p(k,t) s p*(-g,t).) Only variables which can be prescribed: independently
initially are included in Eq. (3).

For detailed numerical applications, the exazt velues of the cijk co-
efficients can be read off, but for the formal theory to be presented here,

only five properties of the Cijk are needed:




‘ll_:'

b Il' ,l._;:_

mpgw el b

S e

e

B st e e

s

PR
™

S e Toemitrrme cew o mmgens e em e s emesn

-

(1) 1 Cijk = 0 unless 1, §, k correspond to different wave
numbers (i.e., unless 1, }, k are all different)}

() Ciyp = Cypy

(3) 1, 3j, and k all run from 1 to N;

(4) cijk + cjki + ckij = 0;

c c c
(5) “iik + ki | ki

1812 2 e
Property (4) expresses conservation of enstrophy (or mean-square charge

= 0.

density, for the plasma case). Property (5) expresses conservation of
energy. In property (5),[1[2 is a symbolic notation which means the square
of the wave number associated with the subscript 1. (The constants of the

motion guaranteed by properties (4) and (5) survive an essentially arbitrary
Fourier truncation.) ,
Equations (3) may also be used to discuss the three-dimensional case,
and much of the theory to be developed applies to the three~-dimensional
case as well. The major difference is that in three dimensions, the
aualogue of property (4) does not apply. The consequences that result if
property (4) does not hold will be noted later.
The initial-value problem involves specifying the initial values of
the Xj and following their subsequent evolution according to Eqs. (3).
We turn now to the introduction of probabilistically distributed initial

conditions.

10
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; { III. LIOUVILLE'S EQUATION AND THE BBGKY HIERARCHY

ERt

'._'E' i

EE‘ ; The various X, in Eq. (3) can be thought of a coordinates in a |
'E; ; many~dimensional phase spacc. Eq. (3) apparently does not define a -
?_ T Hamiltonian system. It is, however, a conservative system and possesses

;é i tvo conatantazs of the motion as a consequence of properiies (4) and (5)

4 ’

v ! .
D % of Section II: The ene.gy £ and enstrophy Q; these are i
T

o & = 1, x4 (4)

S H b
I 9 =z % (5)

O i1 ‘
1; ; Moreover, a Liouville equation, or probability conservation law, exists and f
:i_ § governs the evolution of any probability distribution law D = D(X. X, ... X ,t)

= 1
f; E defined over the phase space:

. :
= ! dx |
z D ) ( 1 ) |
2 -+ L 7= \s—= Dp) = 0. ‘ 6) i
P t 4 90X, \dt |
r |
'% % In Eq. (6), dxi/dt is given by Eq. (3). Using property (1),

L

B aD Z 9

T e + c X av— D = 0. (7)

i o * S G j"kax1
";? ; Conservation of the positive semi-definite character of D and conservation 1
Ff§—~%»~ of the normalization integral

A
i

&

if i J dxi cee de D = 1

1

o0

- H

Ei :
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follow immediately from Eq, (7),
A family of reduced probability distributiona fijk...r - fijk...r (xi.
xj. de voe xr.t) can be defined by iIntegrating D over all the phase space

coordinates which are not of interest:

£y fn(dxl ax, ... dx")uk...r (8)

where the notation in the integral means to intcgrate D over all the phase
space variables except those associated with the indices 1jk...r. The reduced
distribution functions defined by Eq. (8) differ from those used in the
conventional BBGKY theory1-7 mainly in that they are not symmetric under
interchanges of the different phase space coordinates. Thus fi(xi’t) is not

i
of the added complexity of the theory stems from this lack of symmetry. Note

the same function of X, that fj(xj,t) is of xj, if 1 and J are different., Most

that the subscripts on the fijk r 2re by definition always different. There
are never any repeated subscripts in the distributions.
The basic variables in most statistical theories of turbulence are

moments, such as
2, -
b = [xde ax

However, in these present calculations, the variables to be treated as basic

are the distributiuns fi’ fij' fijk’ etc,

12
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By integrating Eq. (7), discarding surface integrals at infainity in
phase space, and using £q. (8), a BBGRY hicrarehy of equationa for the
reduced distributions can be readily generated. For exanple, the firat two

members are

i 9
¥ };ﬁ: Cugnc [ 9%y e ¥y X Fap )
and
o

_ 1k 9 .
it \Cue Xy R YO P Fiax

2 7 f : |

" - axi & Cyg ax, 4 ' {4krs +c. p. (10)
rs

The notation "¢. p." will always mean, add tc the immediately preceding term

the saps. term with the unsummed indices cyclically permuted, ead continue

doing this until the original ordering is reached. Thus

3

9 9 ]
Coyn ¥ ¥ mx] * Coa N X, 3, oy X Xy o - (11)
As in the case of the BBGKY hierarchy for interacting point particles,
the higher members of the hierarchy become complicated. So far, there

has been no incentive to define a notation complicated enough to write

down the general term. But its structure is obvious, For s phase space

13
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coordinates, it will involve the Liouville equation for. s coordindtes on
the left and a large number of similar integro-differential linecar
operators on the right, which act on distributions of §+2 coordinates,
One interesting feature is that reduced distribution functions containing
only odd numbers of the Xi's directly enter the hierarchy. Though the
distributions of even numbers of coordinates can be obtained from the
odd distributions by integration, they play no direct dynamical role. This
(ontrasts with the all-important role that the pair correlation function
plays in particle kinetic theory, and with Lundgren's configuration-space
description.17

A cluster expansion can be used to replace the multibody distributions
fijk’ fijkrs’ «+es by appropriately expressed correlation functions Tijk’

Qijkrs’ +esy 88 follows:

f = £, £

13k fi j + T

k 1k

f:ljkrs - fi fj fk fr fs + fi fj Tkrs +Tfi fk Tjrs

R Tt T HEE T

R T Tyt E T

et Toge T T Togne t Qypers

The "quintuplet" correlation Qijkrs is the completely nonfactorable part
of the fijkrs’ ard so forth.

We shall restrict attention to the case of vanishing first moments
x> =[x, ¢ dx = 0, an1 1.

14

(12)

(13)

(14)
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This corresponds to the conditions <p> = 0, <u> = 0, etc. in configu-
ration space.8 However, we do not impose all the conditions that have been

sometimes associated with more restrictive definitions of "homogeneous

turbulence.”" Also, it is not assumed that <xi X§> = <xi><x§> when 1 and

§ are identified with different wave numbers, and we do not assume that
the initial values of the univariave distributions are Gaussian.

From Eq. (14), it follows that an alternative way of writing Eq. 9)

is
9 f
i 9
= T & Cyik / dXy dX Xy X Tygpe (5)

From Eq. (9) or Eq. (15), it is clear that what is required for a

3,6,7 of the term, is an

kinetic description, in the kinetic theory sense
approximate expression for the'fijk or Tijk in terms of the fi's. It is
clear that some additional complexity (over and above that encountered in
hierarchy derivations of Boltzmann's equation or the Fokker-Planck equatiou)
is to be expected, since the different fi's are distinct functions.

So far, everything that has been said is exact. Further progress

depends upon developing satisfactory approximations with which to close

or truncate the hierarchy.

15
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IV. CLOSURE OF THE HIERARCHY

A hierarchy generated by taking moments of Eq. (1) or E~. (3) has

in the past been used as a starting point for statistical theories of

9,10 Closure schemes for this moment hierarchy, based on dis-

9,10,37

turbulence.
card of higher cumulants,ao have largely fallen into disrepute,
This is in large part due to the negative spectral densities (<x§>, in our
notation) which result., It is not true, as we shall later prove explicitly,
that closure schemes for the just-derived BBGKY hierarchy based on the
neglect of one of the higher-order correlation functions (such as Qiji;s)
are equivalent to the neglect of higher cumnlapts in the moment hierarchy.
It will also be seen that neglect of the higher-order correlation functions
need not, in general, lead to negative values of any intrinsically non-
negative quantities such as <xi>.

Most closure schemes for the interacting-particle BBGKY hierarchy
rest on the identification of some small parameter which enters as a
multiplicative factor in the hierarchy (e.g., the density for Boltzmann's
equation or the coupling constant for the Fokker-Planck equation). This
small parameter then serves as the basis for a perturbation expansion.7
One of the more stubborn impediments in turbulence theory has bteen the
lack of any such readily-identifiable small parameters. The only para-
meters which enter Eqs. (3), (7), (9), (10), or (15) are the coupling co-
efficients cijk’ and they can be considered in no sense "small." In
particular, the usual Fokker-Planck arguments (in which weak coupling is

argued to imply weak correlations) would appear to be inappropriate.

16

._“._._A___AA. b L

T T




A LA .

Nevertheless, there is a sense in which the correlations may still
be argued to be small, One exact solution to Eq. (7) is the absolute

25,26

equilibrium distribution of Kraichnan:

Deq. ™ cexp { -u £-80} (16)
where ¢ is a normalizing constant, o and B are constants which play the role
of inverse temperatures, and € and  are given by Eqs. (4) and (5).

Equation (16) impiies Maxwell distributions for the individual xi's,
eq. a - - &
£29° (x) = ‘c; exp|-( ozt e)xi& , an

and implies also that all correlations vanish identically. Extensive
aumerical evidence accumulated by Seyler gg.g;?7 shows that in fact a
quite definite relaxation of the propertics of the sttem to those pre~
dicted by Eqs. (16) and (17) takes place. This relaxation to equilibrium
seems to be beyond dispute. |

1f we are in some sense not too far from the absolute equilibrium,
predicted by Eqs. (16) and (17), then it is clear that the correlation
functions must be in some sense smail, so that, for example, fifjfk>>Tijk’
fifjfkfrfs>>qijkrs’ and so forth. Dynamical arguments to support this
conjecture are given later in this section.

The only assumption required for closure at a non-trivial level is
that the quintuplet correlation Qijkrs 18 negligible compared to the product
fifj Tyre® Ti.ds is somewhat in the spirit of the "direct interaction”
approximation,al-aa which assumes that correlations among three modes are

more important than among more elaborate groupings.
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Dropping terms containing Qijkrs’ expressing fijkra in terms of
the fijk and the fi' using Eq. (14), and performing some tedious but

entirely straightforward algebra on Eq. (7) reduces it to the following

form

9 )
l'a—t +cijk Xj Xk-aTi'l-c. p., fijk

9
= - z c:lts ﬁ; _[ dxr dxs xr xs [ f:l. fj fkrs
rs¥jk or kj

+f, £, fjrs + fj S S ] +c. p.
(Vf)1jk _ ". . (18)

V denotes a linear differentio-integral operétor"containing the fi whose
action on the f,__ is defined by the right-hand side of Eq. (18).

Equations (9) or (15) and (18) constitute the basic closed description
that results from the neglect of quintuplet correlations. It is not bossiﬁle
to proceed farther analytically without more insight 1Qto the properties of
the linear operator V than is now availabie, unless we make plausible
simplifying assumptions about the uffwct of the linear operator V. This
is deferred to Section V. Numerical solucion to the coupled pair of
equations (9) and (18) may uot be significantly more difficult than the
solution of the Eulerian direct interaction equations, but this has not

yet been attempted.

.To close this section, two other remarks are in order concerning

Eqs. (9) and (18).

18
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First, it can be seen easily that the neglect of the quintuplet
correlation is in no sense a "ecumulant discard"so approximation. For,

applying faxi Xi to Eq. (9) gives

2
<Y.>
d i
S " zjk cijk <X, x.1 x> (19)

while applying Jaxi dxj ka X, Xj X, to Eq. (18) gives

4 - 2
Fr3 <X, xj xk> cijk <xj xi> +c.p. . (20)

Instead of (20), we would have in che cumulant discard approximation

%E' <xi xj xk? - cijk <x§> <x§? +CePs o (21)

It is clear that at the level of the moment hierarchy, the neglect of the
quintuplet correlations does not even provide closure. Any moment-develbp-
ment equation will elways involve higher moments because of the three-
coefficient Liouville operator on the left-hand side of Eq. (18).

Finally, the content of the relation (13) for fijk can be translated
into an equation for Tijk using Eqs. (12) and (15). The result can be

written compactly as

9
‘-5? + u\ Ty = Sigx (22)

vhere sijk 18 a source term involving only one-body distributions:

Syqk = -‘c“k X, xksﬁ-i- +c.p.‘ £, 6, €, (23)

19
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The notation "c. p." has its usual meaning, and H is a linear operator

defined by the following relation:

. .
H Tijk s lcijk Xj xkﬁ; + c. p. I T:ljk

of

4
+ ors cirs erxr dxs Xr Xs 53; [fj Tkrs + fk Tjrs] + c. p.
or kj
9 Tigx I
-2 1€y £y f ax, X, X, X =3 X, + c. p. (24)

(H Tijk involves all the various triplet correlations, and not just T itself.)

ijk
If we like, we can choose to regard Eqs. (15) and (22) as the basic dynamical
equations. Again, the only approximations involved in them are the neglect
of the quintuplet correlation functions. If we make the conventional and
reasonable assumption of initially-vanishing correlation functions, it will
be seen that sijk acts as a source term which generates triplet correlations
and involves only the fi‘ Note also that if fi is a Maxwellian, as in
Eq. (17), sijk 2 0. Thus for situations close to absolute equilibrium, the
triplet-correlation-generating term in Eq. (22) 1is small even though the
cijk are not small. This provides a dynamical argumeni for the weakness
of the correlations that is independent of the weakness of the interaction
coefficients.
It will be noted that the general structure of Eq. (22) is reminiscent of
the Dupree form of the equation for the pair correlation encountered when

deriving the Balescu-Lenard equation.7
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V. APPROXIMATE SOLUTION FOR Tijk; THE KINETIC EQUATION FOR TURBULENCE

We conjecture that the effect of the last two collections of terms in
Eq. (24) is a large number of essentially random impulses which tend to
destroy correlations Tijk’ and compete against the source sijk which
attempts to build them up. The nature of the decay of correlations pro-
duced by the last two brackets of terms in Eq. (24) is undoubtedly very
complicated, but it may not be too poorly represented by a simple exponential
decay. That is, we conjecture that Eq. (22) can be represented by the

approximate form

9
L0 F vyt Ty = Sy

In Eq. (25), Ls(i,j,k) is the Liouville operator for three coefficients,

and is defined by

- 9 .
L(1,3,0) = Cy X, "kﬁ; +cops .

vijk is an inverse decay time for three-body correlations. For many pur-
poses it is not necessary to assume a specific form for it. Roughly speaking,
vijk plays the role that the Landau damping decrement plays in the derivation
of the Balescu-Lenard equation.

The formal solution of Eq. (25) for Tijk is, assuming zero initial

correlations,

2

(25)




e T N

! i
TR

22

- t
; b T:ljk - fd'r exp ‘-(t - T)Lz(i.j,k) l exp l -(t - T) vijk‘ Sijk' (26)
% 3 0
z 4
: The correctness of the solution (26) can be readily established by
g
5 differentiationm:—-
. The exponential operator exp{-(t - T) L3(1,j,k)} is a familiar operator5’6’7
in BBGKY kinetic theory, and is a member of the class often called "streaming ‘
. operators." Their effect on an arbitrary given function is to treat the
N function as an initial value for Liouville's equation and convert it into
- that solution of Liouville's equation which reduce_s to the given function
i initially. More specifically, for any arbitrary function g(xi, Xj, xk),
| .
2.
l exp["T L3(i9j ’k)] g(xi’ xjs xk)
d = X, (-1), X, (-t -1)). - 2
8 (X (=1, X, (-0), X (=1)) (27)
_ : In Eq. (27), Xi('r), Xj (), xk(r) are the solutions of the ordinary differential
equations
d xi(‘t)
v " Cagx X (W X
, d X, (1) ,
,‘-. o dt - cjki xk(‘r) xi\T)
__ d X, (0
:‘ = " ckij xi(T) Xj(‘l') (28)
::' which satisfy X, (0) = X,, Xj(O) =Xy, X.(0) = X,. The X,(t) are Lagrangian
' coordinates which are associated with the Eulerian coordinates xt by the
}




differantial equations (28) and their accompanying initial -data (xi(O) - xi.
etc.). The explicit solutions to Eqs. (28) are met difficult to extract,
but their explicit values are not reduited for prescnﬁ p;rposea.

With these notations and a slight change in the variable of temporal

integration, Eq. (26) becomes

t
¢t
Ty - f 4t exp {=T vy} Sy B, XG0, X1, ) (29)
0

Equation (29) is our approximate solution for Tijk’ Its subsfitution in

Eq. (15) gives:

2 £, (X,,t) t
g X 3
- o> % cijkfdxj ax X, X f at exp(=T vy,
0

x [cijk Xj(f‘l') xk(r'r) a—)&%ﬁ + c.. 'p.]

et t-v .
(X, (+7),8) £, (X, (+1),8) (30)

v

Equation (30) is our basic kinetic equation for turbulence. It can be
further simplified, and a number of its properties can be proved. This
is done in Sec. VI. (A formally exact restatement of Eq. (30), which
does not assume the exponential relaxation times vijk’ is obtained by
simply replacing exp(-t vijk) by the exponential of the operator whose
eigenvalue vijk is conjectured to be; this formal generalization is at

present of no computational value.)

23
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VI. PROPERTIES OF THE KINETIC EQUATION FOR TURBULENCE

Three conservation laws can be proved directly from Eq. (30) without
further manipulations.

(1) Conservation of probability foilows from the obvious conclusion

that

i

which + 0 as Xi + 4

= 0,

3 3 a function of X
3t ff1 dxi = .I'ch:l ax

(2) cConservation of enstrophy is proved by considering the expression

x2

d
-3-—2 £ -—dx1 -

ijk

N |
- E.c:ijk[dx d%, ax, X, X, X fd‘t exp(‘l'\)jjk)
0

l Cigr X3 X (+1) ax O RAIRE }
e-v t-v et

Permuting the dummy indices 1, j, k in Eq. (31) and adding the three equi-
valent expressions togethex, then dividing by 3, gives the same expression
as Eq. (31) with the first cijk o the right~hand side replaced by

3 (cijk j ki + ckij)’ which by property (4) of Section 11, is zero for
all 1, §, k,

(3) Conservation of energy is proved in the same way as conservation

of enstrophy, with = 3 (Cijk

ik + ki

2 2
F Y

c
1/ “i4k
=
J Ckij) being replaced by 3< '1'2 +

24




A fourth obvious property iss

(4) Solution by a Maxwellian. Since the right-hand side of Eq. (30)
vanishes identieally when f1 is given by Eq. (17), it 1s clear that the
absolute equilibrium fi 18 a time-independent solutfon of Eq. (30).

The kinetic equation (30) as it stands is not Markovian. The time
derivative of the f1 depends not only upon fi at the present instant, but
on its integral over a time of the order of the v;}k’ the decay time for
freely decaying triplet correlations. A Markovian limit can be obtained
by making the following assumption, which is the analogue of the
Bogolyubovs "adiabatic hypothesis." We may assume that the free decay of
triplet correlations is suffi@iently rapid that neither the fi nor the
three-body orbit variables of Eqs. (28) change appreciably in a time of
the order of v;}k. This hypothesis either is or is not true, but experi-
mental or numerical data that would shed light on it would appear to be
scarce. If we make it, we may freeze the T-dependent values of the vari-
ables in the integrand of Eq. (30) at their ;E;;:;t values, and perform

the T-integrations to get:

9 f c
1 _ 9 14k Y 8
3t 3, jzk Y15k fdxj e Xy K § Cagie %3 e 3x)
+C X, oo+ X, X, w0
ki Xk 13X, Criy %4 1 3%
x f:l (xi,t) fj (Xj.t:) fk(xk,:) . (32)

From the Markovian form (32), it is immediately possible to prove

the positive semi-definiteness of fi and that all f1 approach a Maxwellian
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a8 £ * ® (H-theorem). Tt can alao be shown that a moment closure han

now been achieved.

(5) Poaitive-defintgggggg,g£,£1. Suppose that f, (X,,0) is every-
where > 0, all 1, and first becomes negative for some x1 - xio at t = to
as a consequence of Eq. (32). We will show that a contradiction is

implicd. TFor at t = to’ the stated conditions imply:

(1) fi (xio, to) « 0

d fi (xio’ to)

(14) T, <0
(114) 2 £ ;x;f’ £ - 0
p 1)
3 ¢ (X, 0 )
(iv) l __do’ o .

2
9 xio
Evaluating the right-hand side of Eq. (32) under these conditioms gives

9 fi (xio’ to)
ot

[+
2 2
c o f, (X t)
1ik 2 2 i *"10’ "o
jzk _.1_\’“k f"xj ax, X X " Xi £, (Ko £ £ (K, £) ,
0o

which is manifestly positive, contradicting (ii). Thus no intrinsically

positive moment, such as <x2>, can ever become negative as a consequence

of Eq. (32).
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(6) MH-theorem. The irreversibility ean be demonstrated by conaidering

a glight generalization of Beltzmann's H function,

n.in.

df
1
2 aX, £, tn £, = ?/znfi-‘r ax,

-y ax, dx, clxkf 201 S Xy X

13k 1 "1 ik

{ 15k j"kax -l-c.p.‘ £, £, £

3£,
1 v _ 1 :ljk X, X
- -3 X fdx dx dxkl ax

3 {5k Vagk

X, ° £,
uk s <

Al

‘since the two { }'s are identical and the rest of the integrand is > 0. The

‘equality sign holds if and only if the { } =0, or

l cijk Xj Xk 5%; + c. p.] fi fj fk = 0,
which is satisfied by Eq. (17). Since 21 fdxi fi n fi is bounded from
below, this completes the proof of the H-theorem. All initial distributions
must approach Eq. (17).
At the level of Eq. (32), in contrast to Eq. (30), a closure in terms
of moments has been achieved. Applying fdxi (Xi/Z) to Eq. (32) yields,

after some manipulations,
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<X,> Cc
4 1. T ik lc <x2> <x2> + €, <x2> <X%>
at 2 T Vi | e N L T ]
2 2
+ Ckij <xp> <xj> , (33)

and we have already proved that <xi> can never go negative, though » similar
proof can be giveu directly from Eq. (33). A somewhat similar set of
equations is due to Leith38 and Orszag.39 Except for the slightly different
form and interpretation of the vijk’ the content of Eq. (33) is that of

the eddy-damped Markovian vuodel.”’39

Relaxation to equilibrium for
Eqs. (33) is guaranteed by our H-theorem.
Equation (32) can be given a somewhat more simple looking form in

terms of moments:

£y 3 a2
e = - X, Ay X, £) +-a-;2 (q; £)) (34)
i
where
c )
= ik 2 2, .2
)\1 = Z v cjki <xk> <x§> + ckij <xi>‘<xj> (35)
ik 13k
and
cz
q, ® 3 ;—1-13 <x§> <x§> >0 . (36)
: Jx ik

Both A 1 and q 4 are independent of all the phase space coordinates and depend
only upon the time Equation (34) has the classical form of the Fokker-Planck

equation derived from the Langevin equation35 for the case of one-dimensional
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Brownian motion with (time-varying) friction and diffusion coefficients,

-Ai and q,.

h

A relaxation time for the 1t mode can be estimated by B;l - -A;l

where )

¢
- 1k 2 2 2
Ay f? Vegi X | Cr1 X+ gy X9

Using thermal equilibrium estimates for the expectation values of the moments,

: o
this is approximately 1

2
c
A B - Yy, Ak 52 <x§> . !
sk Vigx 3

If typical <xi> are just <x2>, this gives a relaxation time of ‘ . :

-1 -~ "1 ~ V
81 -X

B e——— B §

. 37
1 c? <x®>2 y? o .

2 ” " 2 " "
where C” is a "typical cijk’ and v 18 a "typical vijk'

The condition for validity of the Markovian assumption is that this

relaxation time be long compared to the triplet decay time, or 1

orx

vz >> 2 <x2> N2 . (38)
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The estimate for vz (which undoubtedly depends upon the cijk’ the <xi>,
and N) which would validate or invalidate the inequality (38) is

lacking.
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Vii. VISCOSITY AND EXTERNAL FORCFS

Viscous damping is relatively st:aightforwérd. One adds a term

-Vy X

4 to the right-hand side of Eq. (3), where v, = |i|2 v, and v is

the kinematic viscosity. The system is of course no longer conservative,
and approach to a Maxwellian (17) is no longer expected. The new terms
are reflected in new viscous damping terms in Egqs. (9), (10), (15), and
(18). 1In particular, the operator H in Eq. (24) has added to it a term
{vi Xi a/axi + c. p.} Tijk on the right-hand side, and each of Eqs. (28)
has a damping term like -v, Xi(r) on the right-hand side. The three-body
orbits defined by Eqs. (28) are no longer ccnservative. Again, further
progress requires conjectures about relaxations of triplet correlations
in order to write down an explicit expression for a kinetic equation such
-as Eq. (32). If we again assume that these triplet correlations' free

relaxation rate is faster than any other characteristic time in the system,

the net effect of the addition of viscosity is to add a term 8(\)i Xi fi)la Xi

to the right-hand side of Eq. (32). The reiaxation process then becomes
a complicated competition between the non-dissipative fcollision term" in
Eq. (32) with the additional viscous term which leads to the decay of the
energy and the concentration of the distributions at lower values of Xi.
Numerical investigation would be required.

External forces are more difficult to add. The inclusion of a driving
force Fi(t) on the right-hand side of Eq. (3) will, if random, affect the

evolution of D in a non-Markovian way. Simplifying assumptions which would

permit the addition of an external random force while still obtaining a

closed-form kinetic equation (Markovian or otherwise) are under investigetion,

but no results have as yet been achieved.

31

TSI P

.

e kg o ER Y




e 4 - -

VIII. DISCUSSION

The main point of the article is considered to be an indication
that it is possible to derive a systema;ic kinetic theory of fluid
turbulence from the Liouville equation for the Fourier coefficients of
the fluid variables, a line of inquiry begun by Edwards.13 A kinetic
equation has been derived and is shown to possess a number of the
requirements that any reasonable kinetic equation must have: Conservation
laws, positive-definite spectral demsities, and an H-theorcm. Some
value of the kinetic equation obtained may derive from its use in a
phenomenological description with V;;k relaxation times obtained by
fitting decay data.

The major lack in the theory is any reliagle information about the’
relaxation gredicted by the complicated-linéar operator H (Eq. (24)). |
There are enough relaxation times v;;k at our disposal, in thé'ebsence of
quantitative estimates of their values, to match virtually any relaxation
process with the numerical solutions of Eq. (33). Other quantitative
theories of relaxing two-dimensional turbulence have spownao a gross
insensitivity to the details of the dynamical description, and it may be
that a similar insensitivity exists here.

Comparisons with data and with other analytical theories of decaying
turbulence await numerical investigation of Eqs. (31), (32), and (33).

We have devoted little attention to the inclusion of viscosity or stirring
forces, though some calculations of viscous, forced equilibrium solutions

to the Liouville equation have been reported by 'l‘h(m\psqn.a1
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