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ABSTRACT

The problem of potential subsonic flow around
complex configurations—is consideied. Thisvprobleﬁ requires
the sclution of an integral equation relating the values of
the potential on the surface of the body to the wvalues of the
normal derivative, which is known from the boundary conditions.
The surface of the body is divided into small (hyperboloidal
guadrilateral) surface elements, -8 , which are described in
terms of the Cartesian componénts of the four corner points.
The values of the potential (and its normal derivative) within
each element is assumed tc be constant and egual to its walue
at the centroid of the element. This yields a set of linear
Aalgebraic equations. The coefficients of the equation are given
by source and doublet  integrals over the surface elementg, z;é .
Closed form evaluations of the integrals are presented. The
results obtained ﬁith the above formulation are compared with

existing analytical and experimerntal results.
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SECTION I
FORMULATION OF THE PROBLEM

1.1 Intreduction

A general theory for compressible unateady potential aero-
dynamic flow around lifting bodies having arbitrary shapes
and motions is given in Refs., 1 and 2. Application to finite-
thickness steady and oscilllating wings in subsonic flow is
given in Refs. 3, 4, and 5. A general numerical formulation
for complex configurations in subsonic flow is nonsidered-in
Ref. 6. Applicationsof this formulation are considered here.
For simplicity, only the incompressible flow is considered
in.detail*, In this case, the problem is governed by the
Laplace equation with prescribed normal derivative on the
body (exterior Neumann problem for the Laplace eguation) with
an additional complication due to the presence of the wake
(of unknown geometry).

The problem of the evaluation of the steady, incompressible
potential aerodynamic flow aréund an aircraft of arbitrary

configuration can be analyzed by solving the integral equation

v (35 & - ra )] @

where & is a surface surrounding the aircraft and the wake2 !>

(Fig. 1). For the moment, it will be assumed that the wake
does not exist. The effect of the wake is considered in

Section III.

~ .

* gubsonic oscillatory flow is considered in Appendix A,




The value of %H; is obtained from the boundary condition

(tangency condition)

— . 2 = 2% 3=
or
L4 Vi.z
—— =l =—HW-L
on * (1.3)

The integral equation can be studied by dividing the surface

& into N small Zinite elements 6; (see Fig. 2) to vield

[ [RTLeemolL))de -
J |

Applying the mean value theorem one obtains

KRR

%

5-

,ﬁ:

- éi,ﬁ_z j/[;;?.i)c{@wﬂ-z fﬂ@/ﬂ vi+)d% (1.5)

-.

where % is a sultable mean value of ?’ inside the element 5} '

which will be approximated by the value of ¥ at the centroid

Pn@ of the element, 6% .

. (h) _
By satisfying Bg. (1.5) at the centroid, P ~, of the

element G}, , (h = 1, 2...N) yields

_Lg -%/;_5[’%}46& (h lzs N) (1.6)
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where x, is the distance of the centroid of the element G,
from the dummy point of integration in the element Ge -

Egquation (1.6} is eguivalent to*

[ Sna - Cra ) { %) = { lb;, 1 (1.7)

where
l S
Sy
and
ibh]]'—' [bha”ﬁu&'ﬁ] (1.9)
with
b, - ___\___ﬂ’_,:_ 3 {1.10)
Or

1.2 Surface Geometry

Let the geometry of the element‘ Gx be described by

5 ; F(€I> <) | (1.11)

- where_‘gf and *g*are the generalized curvilinear coordinate.

Then the two base vectors Eﬁ- are given by (Fig. 3)

2P |
-5
i 0% g
: The-unit;npxmal~to,ﬁhe_surface is given by - o
—-— - e ' B '
I{ _ Q, x E: : - (1.13)

AL ﬁ'f:a?{

-

" Tuae effect of the wake is not considered here - (see Section

:  ‘. Iii)a o




and is directed according to the right-hand rule (Fig.3.).

The surface element ds is given by (Fig.3 )

A8 =[S0’ x Gag’| < |G| dglay 0

1.3 Expressions for bhk and Shk

Combining Eqs. (1.10), (1.13) and (Ll.14) yields
R N (R ANT 1.15
bhi = 57 [ ABRELARUET aas)
A A |

Similarly, combining Egs. (1.8), (1.13) and (1.14) yields

A - -
Ch‘ﬁ ﬁ{{ _Ot'.lx Q;. a('_l"‘)d"?ld"fl
S#
] a: A a:." g | .
S S o 1.ae)
where o |
"§T1=
Pé3|gqh

Caan




SECTION IXI

HYPERBOLOIDAL ELEMENT

2.1' introduction

Cpnsideq: the equations
1x' = Ko ‘x'“? Xs Do+ jx}ff?
. Lj‘

n

s hig e P, g,«ga;‘

LT
T

,}c.+ -S.f? - 377 N %3_f

or, in vector notations

(2.1)

.}-5 3_136 * %,"? + ﬁa-}? -+ 733‘?7 (2.2)

This represents a hyperboloid. ‘he lines /)= const and " =

const are clearly straight lines. Consider the hyperboloidal

element defined by the above equation with

- ¢ < |
-1 ¢ =
.The centroid of the element is P (~§ ") . The corner

p01nts of 'f.'.h.'LS element are -

 fP““z ﬁ¢*4§.+ :*-fy~ Jinwls n= *1)
B s bhee BoRo B (Feet 9er)
‘E;A: §?3 §14‘ﬁL?ﬁ5 o (ég:éf,i?A*')}

(5 f?f‘“')

| (2;_4';): PRRE
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-elements can be replaced by the hyperbololdal element {des- |

The inverse relation is

(2.5)
Note that the four boundaries of the element (-€=%i] , 9:%))

are straight lines given by

PR P+ (e -l

(12
~J
78

Pelf-Pae (Bom)y o

I~
=3
i~

-

= (F ? +{?rfﬂog.

- P ,,(117, P:)e -1 ¢4

H

[
wh
NTS

"'d'l
1
""'t}I

Ir

(2.6)

Next, assume that the surface of the aircraft is divided
into'curved quadrilateral elements With,four coruner  poirts

P, +,“§ . Then, as mentloned in Sectlon I, these

cribed above) which goes through-the‘four-corner_901nts p++,,,-

Pyt P +, § (seé’Figu 4)', It may be noted that the surface “

-,15 contlnLous 51nce adgacenL elements have in common thei3..,

'wstralght;llnerconnectlng-the two,qommon corne; POlntS.l‘Iﬁ'




:Whe:r:a .

may be noted also the Pc: is ‘the centroid of the hype:r:bolo:.dal

element G;E and henbe it will be indicated as

— =) | | |
p =P - ”  (2.6)

2,2 Geometry' of Hyperboloid 'Elemeﬁt

'l‘he geometrlc quant::.t:u_es :Lntroduced in Section I can be

written for the hyperboloid element described above. Lett:.ng

i ' 5’_-‘_-_';{:'___:) ?2'_:_-7 _ . S (2.7

Bgquation {(1.12) yields

—

CL,:

avil
:pl

(2.8-a)

i

r} .
s
-~

*‘35 919
|

(2.8-b)

It
O

+
w9l
i

_a_.z

0
~5

This yields

o CL:"Q?-"(PI"P 7) (PZxE§):

P:"‘Pz'_f‘ P;KPg§+%xPz :
{2.9)
gince FIFD; * —§3 =0, -
Note that, with ?ﬁesent notations |
'*aeaaﬁlﬁwg’*ﬁ?+ﬁ§+arfaw"'

CREPSPT 0 pany




is the vector connecting the centroid P (h) of the element by ,

to the one, 5'{k") , of the element Gz ..

-,

2.3 Expressions for bhk and Chk

Introducing the functions Ig and I (indefinite source and

doublet integrals) such that

"Jz_IS -1 |EfXEzL '
PF9n 2T  r (2'12)‘

and

,L)?_ID - .._.{ alxa—‘zoé—'

BTY) zi  p3 | o (2.13)

Eguations (1.15) and (1.16) may be rewritten as

by = s (4, 1)~ Ts(t,~1)= Is (=4, 4)+ Is (-1,-1)
wp = Is (1) = To(4,~1)=Is (=1, 1)+ Is (-1,~1) .

Cub = Inlt, 1) = Ip(l-1) =Ip (~1s1)+ Ty (~1,~1) o
4 D ) 3}[ ) D( {) I:)( ) (2.15)

In Ref, 6, the expressions for Ig and I have been obtained as

(the proof is included here in Appendix B).

| ) BadGxd : o L
L (5 )= f’;—,ffanp S z) _ o (2.16)

CARETE

: Is (?,t?) ':—-'-i—. {-—i’:{cp{?.ﬁ At } |€HE¢\+ “3: a; \ +




2 4 Solutlon of Problem

The wake contrlbutlon.lsshown in detall in Section III.
Equatlon-l.7,canAnow be;solved.for fz, (see also Ref. 7 .
The linearized Bernoulli Theorem will further give the pres-

sure distribution:

1
\
™
L)
g

. Cp

2.5 ‘Wing and Body Geometry

This subsection presents the geometry of the wings and
wing~body combinations which were used for obtaining the =

results presented in Section IV.

2.5.1 Wing Geometry

‘First; the wing geometry is presented. The projection

of the wing on the Xy plane is given by

Xe = %ely) . (2.19)
R L Xﬁa = Reeld) o Lo e v
where L.E. and T.E. stand for leading edge and tralllng edge,
respectively,v,AtfanyApoint along the span,”b,,the_chard is -

-_‘giﬁeﬁ_by

@) = frs 53.)1-* .3  (2.20)

The planform descrlbéd in. Eq. (2. 19) can be transformea P

‘1nto a. rectangular one by the transformatlonq

- | o (2.18)

A A A Y A LT 1 WL TR e A e gnr e o

A 21 AL 129 LS i P i 1k M L
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| For all the caéesJCOnsidered, the wing is symmetric so that

| Z = i.h /2 o S (2_23)‘
Wharé h is the thickness of the wing.
| he wing o=

Combining Egs. (2.21) and (2.22), we can rewrite t

geometry as

¥ (R - Be) T *

o Eet b2 | S (223

1 with

Y S'Ts"‘_f' R Y 24)
~€T g | -
When the wing has an angle of attack,cx, the posmtxon of any

‘point on the surface is. changed to (see Flg. 5)

K 050‘ + ? Swzd
J
2=

ml(k:>d

sS4 - FEina
SRR AR .KS‘H"' (2 25)
For small o( and small thlcknoss ratlo ‘G . Eq' (2 25) ‘can be o

apprOX1mated as

(2.28)

O x
n N
LmpCAx -

—?_,_.M':A,j,,,‘ .
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The surface of the wing is divided into sméll quadrilateral
elements, The corneﬁ coordinates of the wing boxes are stored
and used as input for gene:ating the hyperboloidal suriacei
elements.

A further transformation_of the wing geometry is necessaxy.,
in order to obtain a more accurate evaluation of ¥ near the
leading edge and near the tip of the wing, where © varies .
more rapidly than in other areas. The transformation is given

by

7

V- (1= B (2.27)

ly

¥
3

and it changes the uniform mesh of size

|}

A% = ¢/NX
T AB = b/2NY

{where NX is the number of boxes in the f#dlrectlon and NY

(2.28)

1}

is the number of boxes ln.theﬂ ~direction along the semispan)
into a nonuniform one, as follows: | | | |
~ -along_theéf—direction, the boxss are layger near the
wing root and smaller near the tip;
_i#__along_the%:—directiqnf the boxesnare smaller near . -
the leading edge and.inc:eaSe in sizeias we apﬁroach

. the trailing edge. .

L 2.5, 2 Thlckness dlstrlbutlon

- For mcst cases con51dered hare the thlckness is taken to be

--h:"K’Cm«x' -i:;-‘ ? (I"?}("—-”(L)L e e (2028)




vhere C max iS the.maximum chord, T is the thickness ratio

z‘;._.h;ﬁ*_“_’.‘. , o
. Cmax . {(2.30)
wﬁere hn@g is ﬁhe maximum value‘of the thickness for a given section.
Aﬁother wing profile investigated is the circular bilconvex bne.
The planform is-déécrihed by Eg. (2.26) and the thiCkness distri-~

bution is given by

h‘ - 2{ [ cL+hmax ]._ (X,“‘ M)z __‘C’..-- '1“1;;mx
_ 4‘hmax 2 4.7}:-;_,._,\0.,{ (2.31)

As before, ¢ represents the chord and huay represents the maximum

thickness. The radius of the circular arc is

R___ ] cz""L hz;lfta'.(
4hmax | (2.32)

Once the wing profile is selected, a variety of wing planforms
(rectangular, swept, delta). can be easily generated by simply

changing the leading and trailing edge angles of the winq.

2.4.3 Body geometry

Fcr.the_wing—body»configuration, thé:wing,is attached to a
body'of revolution composed of a forebody of 1ength ﬁé and radius
p:%.‘-_é.(x.‘_x,;g;)?:;'- S
- — S ()
ajmi@séction;of;lenﬁthﬂLﬁ,_andgconstant;radius_r*:f/?;:~and-anﬂ}=ﬁ
. aftbody of length LA; and COnstaﬁt’radiuﬁ_t:j/Z.(Fi@;.6);__ihe
. st.cface of'fhé-bcayéisialso dividediingboxes;, Care;muSt,ba.;

~ taken inimatchiﬁg the,éobrdiﬁates of ﬁhe-wingvand”thevbody boxes at

' the wing root, in order to prevent discontinuities in surface.
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SECTION IiI

THE WAKE

3.1 Dynamics of the Wake

As mentioned in Section [, the surface 0 in Eq. 1.1,
surrounds the body and the wake. The effect of the wake,

disregarded in Section I, vields an additional term in Eq.

(1.4),.given byz’s
= | |
I,= %—;MALF A V?TM_ : (3.1)
with 7
AP = F - L (3.2)

This represents a distribution of doublets with intensity
AP. The geometry of the wake is not known. BAn iterative
procedure can be used to solve'the;problem: consider the
surface of the wake divided into small elements. Assume
initially that the wake is composed of straight vortex lines
(see next subsection): then Find the values of i and then
evaluate the velocity at the corner of the elements. Find
a new location for the corner of the element such that the
elemeﬁts approximate the stream surface emanating from the
trailing edge and repeat the procedure mentioned abové..
However, a simplified treatment of the wake isAconsidered

here,

3,2 Simplified Treatment of the Wake
The simplified treatment of the wake used here consists

of assuming that the wake is composed;of straight vortex- .
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lines emanating from the trailing edge and parallel to the
x;axis (direction of the flow), For this case, the surface
- of the wake is divided into infinitely long elements,-&i "
with two edges parallel to the x-axis. These elements are the
continuation of the elements of the wing having an edge in con-
tact with the trailing edge (Fig. 7).

‘Hence, by assuming that (in view of the xutta condition
that B(M{’)/b;wo at the trailing edge), the value of &C@.p.
can be approximated by the value at the centroid of the element

A
0, the contributionizw (see BEg. 3.1) is given by

S wie Dk (3.3)

with_'
Wi = Lw = % L n —’@(J‘)a’-ﬂt 3.4
R = AW S = Th ) 7, . . (3.4)

for the elements with an edge in contact with the trailing

edge, and

i = O | : (3.5)
for the others.

In order to evaluate the integral in BEqg. (3.4}, it is con-
venient to consider that the element 62 is the limit of the
parallelepipedal element obtained by~truncating_the element

(t  at the finite distance (Fig. § ). The limit is obtained

e i AR 8 B 7 Bt A8 b M o 15 S L 0 b i
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go to infinity; note that U = i since two edges are parallel

to the x-axis. Note that (see Fig. g)

z : : (3.7)

3.8
B - o (3.8)

It is convenient to separate the contribution £rom the

trailing edge (T<-1 ) and the edge that goes to infinity

(F= I

. -
S
.'Iw = 4 zﬁ[Jw(Ir*{ JW( 1:’[)] o1 (3.9)
where (note that %: E*(H—f)ﬁfﬁl R)

S= /ﬂ;h?d“-’(‘—%" E'l?‘b-'—z.): W[Eg‘-;‘ﬁﬁ) (3-10)

with
Bg = Pt 7 Ps (3.11)
while {note that E(E= 1) = ']5-'5”. 2,?(;)

Jw(m) Mm-‘((%xa. %xaz))
f‘-bw l‘{”]t()a,,xa,_) _le_

=M 'f:un"‘("(f;“"“)'(%xfd))
o gzt byt

= B "[(Pm-r”[Pd)x,LJ [-_[Pm-plm )KR{]
?{"""’__ [CP;»"")‘E i‘z/'(,g,) Pmrqu.;.zfm‘z] ‘

\

'U!

ot P xT) Tk B
S : ['P;Jl'/'- % P,jl )

i
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;hm'-' -P—nii' E - (Fmdz)(agx)
[Pmd' : X T)J’

-
-

(3.12)

and similarly (note that 76 ('f:-:)=-F;,.+"(.f-’::=E~d)

o [ (Fx@)(Fam)
Jw {“:"\): tan [ l%“?{.ﬁ,’, x'ﬁ'.,_\ } 1
= fam” E(i RI)'(ER E';J
]‘gll%-,‘bx]’d‘ = -1
= 'ﬁw[ ~ (Px 7). ’TME)]
le‘Dl IE\JIK Eil
o [ P Pead (2 Bo) (Rt B (P T o
| Poal | Prd - 2 x By '

o TR GPE s | v R S T
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SECTION IV

RESULTS

4.1 Introduction

The formulation outlined in the previous section has been
translated into a computer program. In this section, the
numerical resulits obtained for wings and wing-body combination
in steady and oscillatory subsonic flow are presented and

compared with existing ones.

4,2 Wing Results

Pigures - o and 10 show the general distribution of the
potentialC# and of the lift coefficlent C; for a wing in sub-
sonic flow.

‘Figures 1lJa and 12 present a comparison with the experimental
and analytical results of Lessing, Troutman and Menees (Ref.

11). The results are for a wing of aspect ratio AR = 3. The
wing profile iz a biconvex circular arc, 5% thick, with sharp
leading and trailing edges. Figure lla shows the thickness
effect (the pressure distribution on the upper and lower surfaces
of the wing) for the wing at zero angle of attack and Mach
number M = ,24. Figure lg represents the lift distribution
for A = 5° and M= .24. The whole wing was divided into 196
elements, or NX = NY = 7 for the upper right hand side of the
_wing in the X and Y directions, respectively. A convergence
study for the prbblem given for Fig. 13§ is presented in Fig.
11b. The curves plotted in Fig. 11p are the distributions

of the velocity pqteﬁtial along J = 0 £¢r different numbers

~of elements. It is shown that the results .obtained by using.



~18-

100 elements on the whole wing, or NX = NY = 5 are accurate
enough for general analysis.

Figure 13 shows the lift distribution per unit angle of __?
attack,C&x : for‘a rectangular wing with AR = 1 and M = .2,

These results, obtained with NX = NY = 7 are compared to the _ i

ones of Cunningham and Kulakowski and Haskell (Refs. 12 and
13}.

Figure 14 shows the distribution of Cflu: for a tapered

g gt e

swept wing with aspect ratio AR = 3, taper ratio TR = .5,

Jﬂé = 45° and M = .8. The results obtained with NX = NY

ot P e e g 8

= 7 are compared with the ones of Cunningham ( Ref. 12) and |
Kolbe and Boltz ( Ref. 14). . :
Figure 15 shows the distribution of the section lift

coefficient per unit angle of attack, (., , for a rectangular

wing with aspect ratio AR = 4 and M = ,507. The results,
obtained with N = NY = 7 and then 10, are compared with the

ones by Yates (Ref. 16 ).

4.3 Wing-Body Results

Results for wing-body configurations in steady subsonic
flow are compared in Fig. 16a with the results presented by
Labrujere, Loeve and Sloofff7 The results were tbtained for
M = 0 and a rectangular mdpositioned wing with chord ¢ = 1,
span b = 6, thickhess ratioT = .9, andw = 6°. The bbdy is
at zero angle of attack and is composed of a forebody.with

length LA = 2 and

F= 0.8 = 025 (K= Xup) R PR
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a midsection of length L 1 and radius, r = .5, and an aft-

M
body of constant radius r = .5 and length L, = 3. No wake is

used on the body. The number of elements is 200 on the whole
configuration ( NX = 5, NY = 4 on the wing, NX = 2, NY¥ = 3 on

the forebody, NX = 5, NY = 3 on the midsection and NX = NY =

3 on the aftbody}. In Pig. 162, the distribution of the wing

section lift coefficient is presented. In Fig. l'gL the dis-

tribution of the difference of the velocity potentials on

the upper and lower surface cf the fuselage are shown. These

results are related to three circumferential stations as shown
in the figures. Results for subsonic oscillatoxry flow are

presented in Figs. 17 and 18 for the same wing considered

in Fig. 12, oscillating in bending mode

(5.2)

2 24qj3 2 4
Z= .|8043 %—f\ + 70255 %‘-— 13688 \-5—\«:—,25327 }-}fi
with k =c/2Us = .47, and M = .24 (NX = NY = 7). Figure
17 presents a comparison with the results of Lessing, et al.,

while in Pig. 18, the results are compared with the ones by

Lessing, et al., and Albano and Rodden (Ref. 15).
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SECTION V

CONCLUDING REMARKS

A finite-element method for linearized steady and oscilla-
tory subsonic potential aerodynamics around complex configurations
has been presented. Numerical results have been obtained for
wing-body configurations in steady flows and for finite thickness
wings in oscillatory flows. However, the formulation iS general
can be applied to more complex confiqurations, although, in this
case, the accuracy of the method remains to be assessed. For
instance, in the case of wing-tall interaction, the roll-up of
the wake might play an important role., A rolled~ﬁp wake geometry
.15 being considered for 1lifting surfaces.

The method is very flexible and simple to use; the use of
quadrilateral hyperboloidal elements. (which can be used to yield
any arbitrary closed surface), defined in terms of their corner
points, is one of the original features of the method. Another
original feature of the method is the simplicity of the expressions
for the coefficients, dﬁe to the vector formulation of the problem.
The method is also accurate and fast, despite the fact that no
effort has been made yet to minimize the computation time: as an
example, the computer time for the results for subsonic wing-
body configurations (Fig. é ), with 200 surface eiements is
775 seconds on the IBM BGQ/ 50 of Boston University's computing
center. The.resﬁlts bbtained are in excellent agreement With

existing ones.
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APPENDIX A

SUBSONIC OSCILIATORY FLOW

Al Integral Equation

In this Appendix, it is shown how the results obtained
in the main bhody of this report can be extended to subsonic

oscillatory f£low. Introducing the variables

: T ; pe

Pl
and the complex potential gb such that

A ' i (T+MX)
P (2, 4,2) - Z{of[x"‘ ¢ (vyz)e ™ ] (2. 2)

x:-ﬁ% Y-‘:_i Zl:i— T:F‘z___gf Q:__;@_ (a.1)

the integfal equation for the subsonic oscillatory flow is

given by

3¢’ AR 2R
217??5 ﬁﬁ e _ . 3/\/ (—_.__ /dZ o3

where 2. surrounds body and wake.

A.2 Boundary Condition

e

The boundary condition is given by

. .28 _u 28 .
oS VP - 2% (a,4)
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where Cf’ and qﬁ are such that
$=Ynr g = YUL(X+ ) . (2.6)

Next, assume that the motion of the surface consists of small
harmonic oscillations around a rest configuration, that is
inT

S =5(yz)+8(xr2)e a7
hlien, setting

=glxv2)+plxvz) e %)

one obtains

~J ~t 1 1T
74 S,,'V);-fnga ZVE'S Zve¢+xvz’5'qrzfé)e +

XYe o
~ [ 2RT =T
(Z,ZS ”?é)e _;-75, NS e .
] 95 -@_é: (M2 T
+ -— oo )

¢ ME[ 5 9?5 £%+§%)€’£’+ )
[ax 5x 17X 3X "X 3

. 23 24 E’ZRT] S0
Y3
{n.9)
Assuming
), = O(i) (a.10)
% - Ole) | - (A11)




-AG-

with
Vs = ofl) (A.12)
xv2
and
~t 2 .
S = O?) {A.13)
£ - o) | (A.14)
25 _ O
EYa (EJ (A.15)
it is easy to see that
~
¢ = Olg?) (B.17)
28T g
 Neglecting the terms which contain € {of order £ ) and
separating the steady from the oscillatory terms, one obtains
s ® .wz +/é— X /Sa a)( 2X (A.lB)
1 a8
Ve + lﬂ.s + = rd
Vs Z? a5 mf-" 7’“—

{n.19)
ﬁ aX 2x = N &

A
Introducing 535 such that

~n A MY
P =P e

Equation (a.19) reduces to

(A.20)
VS . Vg'g‘ e l-fZ/'?X?L ,'ﬂ_l"l__a_s_o ¢2\ efﬂMXf‘ 175.,‘(7
PONCI IX
08 .1 88 M Tas (PP oM
+7/% Bk T P[ax ax )

+ Eéi ?Ué_] = 0

2X 2X

(A.21)
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Finally, neglecting terms of order &2 in Eg. (A.18) and terms

3 .
of order € in Eg. (A.19), one obtains

] 85
szﬁﬁ .—._ﬁ_._«

a2 © 2x ®.22)
~ —‘I}-MX
n g .25 ),
xvzs xr’e ( /g /6 7x )& @ .23)

In particular for
~ Lol
R LT

(wvhere the upper{lower] sign holds on the upper [lower] surface),

one obtains

S = «E [#-= ("f}] . 24)
~J _ ] s '
S -wg ity (n»25)
LI /A/ + / |
A .26
ﬂaég/ // (a.26)
and -
" Cy ot p . MX
04 = gé.V;ﬁ__Jr;\é ka+§§)&ﬁ .
N ] 7S/ | A .27)
where
p |
K= ;%@ > _“Z",—— ly . 28)

Equation (A.27) gives the value of 2¢/5N to be used in Eq.
(A.3).

A3 Pressure Coefficient

The pressure coefficient is giwven by the linearized Bernoulli

theorem as
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For oscillatory flow, setting

~§3
4]

4 - 7. il i2(T+ Mx)
~ T
G % °
one obtains o

ta.29)

(A.30)

a.31)
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APPIENDIX B
~Bxlo~Introdusiion
In this Appendix,

it will be shown by diffentiation that

the results obtained for the doublet and source inteqrals

are
valid for any hyperboloidal element,
~B:& Doublet fitegrals
The doublet integral is:
1, = Zf,,,;’ g @) (x&,
~ BTC g axa) 2.
From Eq, {l.12), it is apparent that
[3 —
2-_-&—- = Gz
27
2&. - D
o B
2%, = (O ' :
?‘rl . ] (B'z)
We can proceed to differentiate Bq. (B.l) with respect to 4L
w2, 2 g o@x&)-Gxm) 1
EAR

VER(Term) ), [ern)frm) j
&'l ' 53)
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Then, by using the relation

‘ (3;4)

CFE(E E.g'd;)+[(f'x&.)-(ﬁ xa;)];\fxa,l"\'gxa,. 2

(see Appendix B in Ref. 6) we obtain
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(@ xa) (3x&)(F-P)-(5xa)gxa)(a )(F 2.x %)

If Egs. (8.1), (B.3),

obtain
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{(B.6)

(B.4), (B.5), and (B.6) are combined, we




n 2L o 2 g (fx

=_1 (3 -a)%-2)-(§-7)@ a) (f-&xa,)
rfléxa.ll[% Ta)-(8-7) J
:_?I‘E-T;'a‘-’(.a-z : (8.8)

This proves Eq. (2.13)

B.3 ' Source Integral

Now, we will prove by differentialtion that the result ob-
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tained for the source integral is valid for any gquadrilateral

planar element.In this case, since the normal

— Ex
Ja,x a:\ (B.9)

is independent of ? and . the source integral given by

by Eq. (2.17) reduces to

E O Le L {_‘fx@,-ﬁ—’a/&«(f@-llﬂ

(%] i
'g & Ekﬁ;-ﬁrd!j a"‘(la’"]il*@'alg‘ Rl (B.10)
E where I; is the doublet integral. Note that
”' &,
oF = °
i: é%(%xa,_ﬁ,): _5;‘ ES 5.1-—}’-": = O (B.11)
y and
P el =
s?rv&~(laql\%'+ g au)
:“l*_[%ilal\‘raﬁ'a.: AR (B.12)
&+ - &, 77 r%Tf%r .
Then 5 |
’ 5?“:-3“?\‘[%”" = b-(lallgl+ g "”')]
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Since
5f (17 =R =0
and

o | (B.15)

3 . | (B.16)

Now, combining Egs. (B.10), (B8.13), (B.1l4), and (B.1l6), vields

A a‘I$:M+(—.a,xr)£&

P v F '”
¥ IE. X a-—z\ f a-s (%'T"‘)—g— a' xhz;
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This proves Bg. (l.15).




