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INTRODUCTION 

This report is the second of a pair of reports dealing 

with the formulative aspects of a capability for finite element 

thin shell instability analysis. The first report (Ref. 1) 

was devoted to development of the linear stiffness relation- 

ships for a doubly-curved triangular thin shell finite element. 

The present report describes the extension of these relation- 

ships to account for geometrically nonlinear phenomena, which 

encompass the instability effects of interest to this study, 

and the procedures used in calculation of a variety of non- 

linear solutions and instability load intensities. 

A large share of the literature on finite element analy- 

sis of the past decade has been devoted to the area of non- 

linear analysis. Due to this rapid and continuing rate of 

progress a number of state-of-the-art surveys have appeared. 

Martin (Ref. 2) examined this topic in 1969. Subsequently, 

Oden (Ref. 3) gave an assessment that covered a wider range 

of nonlinearities. Stricklin and co-workers have presented 

a number of reviews, one of the more recent being Ref. 4. 

Gallagher (Ref. 5) also has reviewed the aspects of solution 

procedures of geometrically nonlinear analysis. Because of 

this extensive available literature the present report does 

not attempt a review of the same material, although in the 

body of the report justification is generally given for the 

choice of particular procedures in preference to available 

alternatives. 

In addressing problems of geometrically nonlinear analy- 

sis a decision must be made relative to the coordinate system 
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to which all basic relationships are to be referenced. The 

Lagrangian, or fixed frame of reference is adopted in this 

report in preference to the Eulerian, or moving, coordinate 

system. The largest share of work in geometrically nonlinear 

finite element analysis has adopted the former, although it 

should be added that selection is most likely one of taste 

since insufficient evidence has been accumulated of the rela- 

tive efficiency of these alternatives in the total analysis 

scheme. Progress in the Eulerian approach is described by 

Yamada (Ref. 6). 

The present work is also restricted to small strain 

states, so as to preserve the applicability of the linear 

stress-strain law. 

The theoretical basis of the developments described here- 

in is the principle of stationary potential energy. This 

means that the fundamental relationships consist solely of 

the stress-strain law and the appropriate strain-displacement 

relationships. The transformation from continuum form to 

algebraic relationships is effected on the basis of element 

assumed displacement fields. This approach, of necessity, 

follows from the adoption of the same approach in the formula- 

tion of the linear stiffness relationships in Ref. 1. It is 

pertinent to note that alternative variational principles 

are not well developed in the area of geometrically nonlinear 

analysis, nor is it apparent that they would possess special 

advantages in finite element analyses of the subject class 

of problem. 
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The finite element formulation described in this report 

is not in strict adherence to the principle of stationary 

potential energy because of deficiencies in the satisfaction 

of conditions on interelement displacement continuity and on 

zero strain under rigid body motion. It is noted that their 

severity is reduced to acceptable proportions by means of 

interelement constraint conditions, and by the choice of 

the element displacement fields, and also that no new con- 

siderations in these respects are introduced by the extension 

to geometrically nonlinear analysis. 

The report is organized as follows. First, reviews are 

given of the types of geometrically nonlinear behavior likely 

to be sustained by thin shell structures and of the essential 

features of the linear stiffness formulation of the shell 

element treated herein. The latter enables one to read this 

report without recourse to Ref. 1. The formulation of both 

the element and global representations for the geometrically 

nonlinear finite element analysis of thin shells is then 

established without reference to a specific type of element, 

after which details are given of the formulation of the sub- 

ject triangular shell element. The nonlinear formulation is 

presented in both a rigorous, or "consistent" manner, in 

which the displacement field employed is that which was used 

in constructing the linear stiffness terms, and in an approxi- 

mate manner in which a simple linear displacement field is 

described over a quadrilateral region consisting of four tri- 

angles. 
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Two approaches to the solution of the global nonlinear 

algebraic equations, the Newton-Raphson and incremental 

methods, are discussed in some detail. The approach adopted, 

known as the modified incremental method, is one which com- 

bines one cycle of each of the above approaches within each 

load step. It is, of course, desirable to maintain control 

of the error produced in each step. For this purpose the 

same section of the report introduces a rational approach to 

error control, based on treatment of the analysis as an initial 

value problem. 

The two types of instability phenomena, limit points and 

bifurcational buckling, are studied in separate sections of 

the report. The limit point scheme is based on a superposition 

procedure applied within an increment of displacement, wherein 

all behavior is linearized. Bifurcation loads are determined 

through a Lagrangian interpolation scheme applied to the load 

versus tangent stiffness determinant solution points. A 

distinction is made between calculations for linear and non- 

linear states preceding bifurcation. 

The report concludes with a description of four numerical 

examples. The postbuckling response of a uniformly compressed 

flat plate with initial imperfections is studied for a variety 

of gridworks, solution algorithms, and support conditions. 

Analyses of a cylindrical shell segment under uniform radial 

load, a spherical cap ander concentrated load at the crown and 

a clamped square plate under pressure are also described. Compari- 

sons are made in all cases with the results of available alterna- 

tive numerical or analytical solutions. 
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2. GEOMETRICALLY NONLINEAR BEHAVIOR OF SHELLS 

An understanding of the types of geometrically nonlinear 

response likely to be sustained by thin shell structures is 

essential to the construction of basic formulations and 

algorithms which allow such response to be predicted analyt- 

ically through the finite element method. 

The behavior of all structures at low load levels can 

be classified in one of three ways (Fig. 1). 

i> Linear load-deflection relationship 

ii) Nonlinear weakening 

iii) Nonlinear stiffening 

Common examples of weakening structures are shallow trusses, 

arches, or shells subjected to inwardly directed loads. The 

same structures are stiffening if the loads are directed out- 

wards. Examples of both types of structures are shown in 

Fig. 1. 

The work described in this report is mainly concerned 

with nonlinear weakening situations and to describe in more 

detail the behavior to be anticipated, Fig. 2 has been drawn. 

The solid line (OB) applies to "perfect" structures and, for 

instability problems, represents the case in which the struc- 

ture first displaces along the OA portion of the path (the 

fundamental path) and bifurcates (or branches) at the point A. 

Thus, uniqueness in the definition of the path is lacking at 

the point A. It should also be noted, in passing, that the 

assumption is often made in analytical approaches that the 

fundamental path is linear in the range OA. 
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The post-buckling path may rise (path AC, Fig. 2a), or 

it may descend (path AD, Fig. 2b). The slope of the post- 

buckling path of the perfect structure gives an indication 

of the behavior to be expected of real structures, which in- 

evitably possess fabricational imperfections. For structures 

with fabricational imperfections the load-displacement be- 

havior in the presence of destabilizing phenomena follows 

the paths indicated by dotted lines. In such cases there is 

no bifurcation phenomenon. Structures with a rising post- 

buckling path as in Fig. 2a will have strength exceeding the 

bifurcation load. Imperfect structures with a descending 

post-buckling path in the perfect state (Fig. 2b) will not 

achieve strengths as high as the bifurcation load unless the 

load-displacement path again rises at larger displacements. 

Such structures, unde'r the appropriate load condition, are 

therefore imperfection sensitive and the maximum load at- 

tained (Point E) is termed the limit point. The instability 

phenomenon which occurs at this point is known as snap- 

through, in identification with the physical circumstance 

of structures in this mode of load-displacement response. 

A non-bifurcating load-displacement behavior of the limit 

point (or snap-through) type may also occur for a structure 

devoid of imperfections. It should be cautioned that the 

realm of possibilities of structural instability phenomena 

isnot exhausted by the circumstances defined in Fig. 2. 

Nevertheless, many common structures behave in this manner; 

some familiar examples are portrayed in Fig. 3. 



3. REVIEW OF BASIC ELEMENT REPRESENTATION 

A brief review is given in this section of the features 

of the triangular thin shell element formulation for linear 

analysis. The review serves to define basic data and 

theoretical considerations needed for the extension of this 

formulation to accommodate geometrically nonlinear behavior. 

The three principal aspects of the linear formulation are 

(a) the mode of geometric description, (b) the adopted strain- 

displacement equations, and (c) the selection of displacement 

functions. Also special considerations arise in the treatment 

of displacement incompatibilities along the element juncture 

lines. Each of these items is discussed in the following. 

The basic geometry of the triangular shell element is 

shown in Fig. 4. Points are located on the shell surface in I 
the orthogonal curvilinear system a-B. The user provides 

nodal values for the three curvatures as'well as the shell 

thickness t. These variables are interpolated linearly over 

the area of the element. 

The strain-displacement equations given by Koiter (Ref. 

7) are used in constructing the element potential energy for 

linear analysts. Koiter's relationships are described as 

"consistent", i.e., terms of the order of the ratio of the 

membrane strain to the radius of curvature are retained or 

discarded in a consistent manner. Also, these relationships 

evidence no strain under rigid body motion. 

In discretizing the potential energy expression formed 

with use of the strain-displacement equations, the same dis- 

placement functions are chosen for u, v and w. Each is in 



the form of a complete cubic polynomial, of 10 terms, for 

which the corresponding displacement fields are 

U’ LNJM, v = LN~ iv), w = LN,{w3 

where LNJ = LN~ Na 1 Nf$ N2 l **- NB3 N4-I 

(1) 

(2) 

and {VI and (~1 are similarly defined. The subscript 4 refers 

to the centroidal node point. Details of these functions and 

the reasons for their choice are discussed in Ref. 1. As 

previously noted, neither of the two factors prominent in 

the choice of displacement fields for thin shell elements, 

the condition of zero strain energy under rigid body motion 

of the element nor that of continuity of angular displacement 

across element boundaries, are satisfied by the chosen func- 

tions, Eq- (11. The use of cubic functions for in-surface 

displacement components (u and v) represents a move in the 

direction of the implicit satisfaction of the former condi- 

tion. 

The failure to meet conditions on the interelement con- 

tinuity of angular displacement has more serious consequences 

on solution accuracy and for this reason special steps are 

taken to "restore" this continuity. The approach taken, 

and indeed the use of a cubic polynomial in representation 

of the flat triangular element, was introduced by Anderheggen 

(Ref. 34) and Harvey and Kelsey (Ref. 8). If A and B are 

neighboring elements and the subscript n denotes the normal 
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direction, the relative angular displacement of adjacent 

edges at their midpoint i can be set to zero to ensure inter- 

element continuity. 

(5) 
i 

= (g)A- (?x)B 3 0 
i i 

(3) 

Now, the differentiation of the displacement field w yields 

the angular displacement in terms of the joint displacements, 

so that a constraint equation of the following form can be 

written 

ICA-BITIA1 = 0 (4) 

The above process is applied to each of the m element 

boundaries and for a system with n degrees-of-freedom the 

following m by n set of equations is obtained 

[C] {Al = 0 (5) 

Eq. (5) is supplemental to the basic force-displacement 

relationships of the stiffness analysis. The manner in which 

such constraint equations are used to modify the basic force- 

displacement relationships is taken up at the close of the 

next section. 

4. FORMULATION OF NONLINEAR PROBLEM 

The derivation given in this section is based on the 

principle of stationary potential energy. The potential 

energy (lip) of a shell element can be written in the follow- 

ing general form 

II P = ; IA LEA [D]{s3 dA + V (61 
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where A is the surface area of the shell 

LEA is the row vector of relevant strain components 

(id = ‘EJT) 

[D] is the matrix of constants in the relationships 

between the strains and the corresponding stresses, 

in the form {a] = [D] (~1. 

V is the potential of the applied loads. 

For simplicity, a more explicit statement of the potential 

of the applied loads is deferred until Eq. (6) has been dis- 

cretized and developed in greater detail. 

The present work is concerned with .geometric nonlinear- 

ities, whose representation is embodied in the strain- 

displacement equations. Such equations can be expressed in 

the following general form 

{El = {EL) + {EN) (7) 

where {cL) gives the linear portion of the strain-displacement 

equations in terms of displacements and irNI gives the non- 

linear portion. The present work adopts a Lagrangian frame 

of reference for the construction of these relationships, 

i.e., all quantities are referenced to the axes of the un- 

deformed state. Thus, for the illustrative example of an 

axial member (Fig. 5) 

and 

EN 

The present work also assumes that the direct and shear 
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strains are small, so that the first term in the expression 

for EN is discarded, as are similar terms in the expressions 

for {E~} for shell behavior. 

By substitution of Eq. (7) into Eq. (6) there is 

obtained 

II 
P = + $A [EL, [D]IEL] + $j [D] fENI 

+ LE~J [D]{E~] + ‘~3 [D]EsNl]dA + V (74 - _ .Y. 

This expression will next be discretized with use of the 

same displacement fields chosen for the linear formulation, 

Eqs. (1). For conciseness the three components u, v and w 

are grouped under the'symbol d and Eq. (1) can be restated 

as 

A= [NIIA] (81 

where (A] is a 30x1 vector which lists the joint displace- 

ments in the order defined below Eq. (1). The 3x30 matrix 

[N] is similarly arrayed. By performance of the operations 

dictated by the strain-displacement relationships the dis- 

cretized form of the strains is given by 

{EL3 = [BLJ{A] (gal 

The terms of [BL] are constants and functions of the surface 

coordinates and the terms of [BN] are functions of the dis- 

placements IA} as well as of constants and the surface co- 

ordinates. 
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After substitution of Eqs. (9a) and (9b) into Eq. 

(7a) and performance of the indicated integration the finite 

element (discretized) potential energy cp is obtained. In 

indicial notation 

'k Gi !!j + 7; 1 A. A. ik + & k2 ijk”’ -3 ijka t?i !j !k !fi 

+v UW 

in which ko. , kl , and k2 are second, third and fourth 
lj ijk ijka 

order tensors and are fixed values for a given element, and 

V is the potential of any applied loads on the surface of 

the element. The subscript tilde (-) denotes that these are 

element quantities. Alternatively, in matrix notation 

]+1 ' zl 4b2 (A21 I (A) + V 

The matrices [ko], [kl(A)] and [k2(A2)] are the linear and 

first-order and second order geometric element stiffness 

matrices, respectively. The symbols (A) and (A') are inserted 

adjacent to kl and k2 to emphasize that terms of these matrices 

are, respectively, linear and quadratic functions of the dis- 

placements {A). Elsewhere in this report, with certain excep- 

tions, these matrices will simply be denoted as [kl] and [k2]. 

It is also noted that other reports of this research (Refs. 9 

and 10) have designated these matrices as [nl] and [n,]. To 

avoid confusion with the designation of shape functions given 

in this and the companion report, however, these matrices are 

designated as [kl] and [k2] herein. 
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For simplicity consideration is given only to concentrated 

applied loads Pi acting at the degrees-of-freedom Ai. Also, 

for the conditions of the present work it is assumed that a 

fixed distribution of normalized loads Pi prevails at all in- 

tensities of load n so that the loads are alternatively writ- 

ten as Pi = n Pi. The potential of the applied loads is there- 

fore V = X Pi Ai, where the summation convention of indicial 

notation prevails. The potential energy of the complete struc- 

ture is evaluated by summing the contributions of all elements 

and of V. In indicial notation 

II = 
P 

+ K. A.A.A A 
ij 

A.A. + ; Kl 
1J ijk 

A.A.A + & K2 
=Jk ijk% 1Jkt 

- n PiAi 

II(A) 

Alternatively, in matrix notation 

n: = ; LAJ [K,]{A) + +@- CKl 
P (A)]iA) + 9' [K2(A2 

- nLAAEF3 
7 

(llbl 

The matrices [K,], [Kl(A)] and [K2(A*)] are the global linear 

and first and second order geometric stiffness matrices and 

again the dependence of the latter two on {A) has been 

emphasized. 

By taking the first variation of II with respect to each P 
degree-of-freedom (Ai) in turn, and setting each to zero in 

accordance with the stationary property of potential energy, 

and noting that the first three terms on the right side are 

quadratic, cubic, and quartic functions, respectively, of the 

degrees of freedom, one obtains the nonlinear algebraic equa- 

tions of equilibrium. In indicial notation 
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K A.+ 
0.. J t K1 lK 

13 ijkAjAk + 3 2ijkaAjAkAfi - q Pi = o - Wal 

or, in matrix notation 

[Ko3(A3 + ; &]fA} + : [K2]iA3 - n {P} = o (12b) 

It is to be observed that special care must be taken in the 

construction of the [Kl] and [K2] matrices so that the simple 

mode of differentiation indicated above (e.g. kA3(~ LAJ[Kl]Id3) 

= s [K1] (A)) holds true. This point is elaborated upon in 

the next section. 

No explicit consideration has been given in the foregoing 

to the constraint conditions (Eq. (5)) which are necessary for 

the restoration of interelement displacement continuity. The 

next section will show that these constraints do not influence 

the nonlinear matrices [Kl] and [K2]. Thus, only [Ko] is in- 

fluenced and it is assumed that the full linear portion of the 

equilibrium equations are in fact of the form 

KO 
CT [ I c 0 

5. FORMULATION OF ELEMENT NONLINEAR MATRICES 

a. Consistent-Triangle 

This section is devoted to a detailed description of the 

formulation of the nonlinear matrices [K1] and [K2], which 

were introduced in the previous section, for the specific 

case of the subject triangular thin shell element. A cor- 

I 
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respondingly detailed description of the formulation of the 

linear stiffness matrix [ko] is given in Ref. 1. The present 

formulation adheres to the notion of "consistency", wherein 

the displacement functions employed in the construction of 

[kl] and [k2] are identically those employed for [ko]. This 

results in a high cost of formulation for [kl] and [k2], so 

in the latter portion of this section a more economical, in- 

consistent, formulation is described. 

To establish the desired formulations, it is appropriate 

to compare terms in Eqs. (7a) and (lob). On this basis it is 

found that (the tilde underline is neglected, since this 

clearly refers to the individual element) 

;LAJ[kl]IA3 = 1 (& [D]{eL, + LEbJ[D]{EN})dA (13) 
A 

and 

lLAJ [k2]{A3 i-2- = IA LEE [D]EcN1dA (14) 

In order to proceed further the specific form of the 

relevant strain-displacement equations is needed. As noted 

in Section 2 the adopted linear components of these relation- 

ships are those due to Koiter (Ref. 7). The corresponding 

nonlinear terms have been derived by Mushtari (Ref. 11). The 

strain components of thin shell behavior are the direct 

strains of membrane action Ed “2 and I$ and for flexure they 

are the curvatures kl, k2 and -c. Mushtari has pointed out 

that the neglect of nonlinear terms in the curvature expres- 

sions is justified in problems of "medium" bending, i.e., 
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where the normal displacements are of the same order of magni- 

tude.as the thickness of the shell but much smaller than the 

other dimensions. Adopting this assumption, only the membrane 

strain-displacement equations are influenced. Hence 

El = 
1 au 
ixaa+ 

i av aB 2 
E2 = --+ 

B af3 %TziT- $+ (15) 

The nonlinear terms are underlined for clarity. A and B are 

the metric coefficients of the shell surface and Rl, R2 and T 

are the radii of curvature of the undeformed shell in the 

a and B directions. 

In view of Eqs. (15)) we have 

L 
El = 

1 au v aA w --+- 
A aa AB w - El 

L 1 av --+ aB 
E2 = 

B a8 im- 

(16) 

N 
E2 = 

($L = 1 av 1 au --- 
xaa+BaB 

p& aB 2w --- 
IBaa T 
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By substitution of the shape functions (Eq. (1)) into 

the above, expressions of the following form are obtained 

(consistent with the symbolism of Eqs. (9a) and (9b)) 

L L L 
El - LBUV BWJ "v 

(1 
-- 
W 

Nl 
E1 = 2- ~0 

(17) 

(181 

L N and Similar expressions for Ed, Ed, 4 L and I$~ . 

When expressions (17) and (18) are substituted in Eq. (13) 

terms of the following form are encountered. 

The summation of these terms can be designated in indicial 

form as kl A.A.A 
1 J k' 

The calculation of kl , once and for 
ijk ijk 

all, would seem to be an attractive approach. Unfortunately, 

excessive computer storage required for the tensor prohibits 

this. Because of this the structure of Eq. (19) is reduced 

to quadratic form so that the kernel [kl] is a function of 

the displacements. This is done in the following manner. 

L NL 
[Ek(Ey) 

TN TN TL 
"i EjEk = 

TL 
Ek + Ek (Ef) Ej + Er (EF) Ei + Er(Ei) Ei 
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Typically, by invoking the nomenclature pf Eqs. (17) and 

(18), the.first term on the right side of Eq. (20) can be 

written as 

r , 
0' 0 

i 

;lgN- Bx 

I wj Wk 

(211 

which is the desired quadratic form. This procedure of trans- 

forming the product of three strain quantities into quadratic 

form with a nonlinear kernel is applied in the same manner 

to develop all terms of [kl]. A listing of all of the result- 

ing terms can be found in Ref. 12. Cl early, the integration 

of these terms cannot be performed explicitly, so that a 

numerical integration, must be adopted. A 4 x 4 Gaussian 

scheme is employed, as in the case of [ko] in Ref. 1. 

The number of matrix operations required can be reduced 

considerably in two ways. First, by taking advantage of sym- 

metry, and secondly by noting that many of the matrices 

present can be obtained by transposing others. 

The same approach as that delineated above is used in 

calculating [k2]. In this case products of four strains are 

converted to a. quadratic form. The basic components of the 

[k2] matrix have the following structure 
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In indicial notation this would be k2 A.A.A A The equa- 
ijka 1J kR' 

tion corresponding to Eq. (20) for four strains is 

EiEiEjEj ‘~ ii j Ej + Ever (Er), N N N N ’ (ENEN(EN)T EN + ENEN 
3 i j (Ed) 

T N 

+ ENEN(EN)T N 
T N 

jj i Ei + EKES (Er) Ei + .r,~ (Er) j T EN) 

(23) 

The first term on the right side is rewritten as 

(24) 

which again is the desired form. By substituting terms of 

this sort for each product of two nonlinear strains in the 

energy relationship (Eq. (14)), the [k2] matrix is obtained. 

Details of the resulting matrix are presented in Ref. 12. 

It is recalled (see Ref. 1 and Sect. 4 of this report) 

that the linear stiffness matrix that is relevant to the 

present study contains three rows and columns that correspond 

to constraint equations to enforce interelement continuity. 
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The coefficients in these equations are constants that depend 

only on the element shape. Since the inplane displacements 

are considered to be negligible, the change in element shape 

is discounted. Consequently the constraint equations need no 

modification during a nonlinear analysis. 

b. Inconsistent - Quadrilateral 

Considerable savings in data preparation and computer 

execution times can be realized by the use of quadrilateral 

elements as compared to triangular elements. In the present 

work four triangles are combined to form a quadrilateral 

(Fig. 6). Constant curvature is assumed for the new element. 

Internal degrees of freedom are eliminated from the linear 

stiffness matrix by the use of static condensation. For non- 

linear analysis the geometric stiffness matrices are computed 

directly for a quadrilateral without consideration of the 

component triangles as delineated in this section. 

The finite element method, when based in variational 

principles, requires interelement continuity of derivatives 

up to one order lower than appears in the associated function- 

al, or energy. For the case of plate bending or shell struc- 

tures continuity of slopes is required of the displacement 

fields. This conclusion is valid for linear terms. With 

reference to the strain displacement relationships the high- 

est derivative to appear in the nonlinear terms is the first. 

Thus, only continuity of the displacements themselves is 

demanded by the variational principle. This opens up the 

possibility of using a simplified field for the nonlinear 

terms as compared to the complex field used for linear terms. 
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This is the approach adopted herein for the quadrilateral 

element. 

The approach introduced by Mallet and Marcal (Ref. 14) 

is modified to accommodate the curvature of an element. The 

strain displacement relationships of Eq. (15) are simplified 

to read 

av w 1 (2q2 
cz=Z+i5+2 at3 

4 =au+av+w 
aB aa T + & (%I 

These can be written concisely as (Ref. 13) (with I$ = c3) 

E. = 
1 LA Li Id) + i L’J [HiI Id’ 

where 
au au av av aw aw LdJ=)-- --I aa ag Z Fj3 w aa af3 

~2J=~oo1 ;,““J 

,,=L"llO + 02 

D-$1 = (ro000010 
LJ 

[HZ1 = ~000001~ 

W-1 

(15b) 

H3(Ljl = 0, except for H3(6,7) = H3(7,6) = 1 
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By introducing Eq. (15a) into the energy expressions, 

Eqs. (13) and (14)) “core” forms of the first-and second- 

order geometric stiffness matrices can be established. 

These are denoted by [ill and [i,] and are given by 

[‘,I = I ’ Cij (ILi) L’J [Hj 1 + LdJ {Li} [Hj ] 
A 

+ [HiI Id}LLJ)dA Wal 

([HiI 1’) LdJLHj 1 + : L’J CHj 1 Ed) [Hi])dA (2Sb) 

where C. . 
13 

is the material compliance and t is the thickness 

of the shell. These matrices, which are independent of the 

displacement field postulated for the element, are detailed 

in Ref. 12. 

In the present development a bilinear assumption is made 

for each of the three components of displacement, i.e. 

u = al + a2a + a3f3 + a4aB 

v=a 5 + a6a + a76 + aga6 (261 

w=a 9 + a10 a + allB + a12af3 

By appropriate differentiation, vector Cd3 can be expressed 

in terms of the coefficients {a). Thus 

IdI = [Gl {aI (271 

It is also necessary to express the generalized coefficients 

Cal in terms of the nodal displacements {A). This is done 

by evaluating the polynomials of Eq. (26) at the node points. 
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(a1 = [J] {A] (281 

The ingredients for forming the geometric stiffness 

matrices with respect to the nodal displacements are now 

ready. Thus 

Bll = [JIT IA WIT [iI1 [GldA [Jl 

= [JIT &I [Jl Wa) 
and 

B21 = [JlT[~21 [Jl (29b) 

The necessary integration operations for [cl] and [i,] can be 

performed explicitly. This has been done in the present case, 

with results given in detail in Ref. 12. Because of this 

ability for calculation of explicit terms the calculation of 

the inconsistent matrices for the quadrilateral is far more 

rapid than the consistent formulation calculation for the 

triangle. 

6. SOLUTION OF NONLINEAR EQUATIONS 

a. Newton-Raphson Method 

As noted in the Introduction, algorithms for the solution 

of the nonlinear algebraic equations representing geometrical- 

ly nonlinear behavior (e.g., Eq. (12b)) have attracted a 

great deal of attention from researchers. No one algorithm 

has gained universal preference over the others, mainly be- 

cause each method is effective for particular situations but 

inefficient or invalid for different situations. The approach 

adopted in the present work is therefore a combination of two 
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basic schemes, the Newton-Raphson and incremental methods 

respectively, and each of these is outlined in the present 

section. Another view of pertinent algorithms is that the 

analysis can be treated as an initial value problem. This 

view gives a different perspective on the methods adopted 

and also is a basis of a procedure for rational selection 

of load increment selection. Hence, the initial value analy- 

sis concept is also discussed herein. A concluding portion 

of the section ties together the overall strategy for solu- 

tion of the pertinent nonlinear equations. 

To describe the Newton-Raphson approach it is convenient 

to rearrange Eq. (12b) as follows 

IfI = [ko]tA)'+ ; [kll(A] + ; [k2](b] - n {P] = 0 (30) 

where If] is an imbalance of load. A nonlinear analysis must 

proceed on the basis of an estimate of {A] and improve on the 

estimate in succeeding iterations. By expanding in a Taylor 

series about an approximate {fi}, after i iterations 

{f 3 = (fi) + 
a{fi3 

i+l [ aA --] {dA] + higher-order terms in {dA](31) 

where (dA) = (Ai+l) - {A,] is the change of displacements. 

With neglect of higher-order terms and with (fi+lI set equal 

to zero, we have 

or using the nomenclature of equation 30 

{A i+l ] = {Ai] - [Ko+Kl'K2]-lIfi} 

UW 

(32bl 
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The iteration continues until (Ai+ is arbitrarily close 

tO {Ai}. 

It is apparent that the "inversion" of a large matrix 

is called for at each iteration. To circumvent this problem 

the matrix of stiffness coefficients can be held fixed for 

several iterations so that modifications only to the residual 

load vector Ef3 are required. This approach is usually 

called the modified Newton-Raphson method. Its relationship 

to the standard Newton-Raphson method for a one-degree-of- 

freedom problem is shown graphically in Figure 7. 

It is obvious from Figure 7 that the convergence charac- 

teristics of the modified approach are inferior to the standard 

method but, because each iteration is cheaper in computational 

effort, the overall cost could well be less. Two factors 

have a bearing on this outcome. First is the number of equa- 

tions in the system. For a large order system the expense of 

repeated 'inversion' becomes very high. On the other hand, 

because of the increased number of iterations for the modified 

approach, the geometric stiffness matrices have to be evaluated 

a greater number of times. For simple (usually inconsistent) 

formulations these element form times are insignificant, but 

for complex derivations the times can compound to be greater 

than the time needed for solving the linear equations at each 

iteration. It would therefore seem that the standard Newton- 

Raphson method should be used for an idealization using com- 

plex elements where there is a corresponding reduction in the 

number of freedoms. The modified approach would be more com- 

petitive for large problems using simple elements. 
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The main disadvantage of the Newton-Raphson method is 

that it cannot be used in problems for which the solution is 

path dependent such as plasticity. In that particular in- 

stance, elastic unloading could occur during the iterative 

process which was not experienced by the actual structure. 

Thus, this method is not suitable for a general purpose 

program that accommodates geometric and material nonlineari- 

ties. Another shortcoming of the method in the form described 

above is that it does not converge at points of instability. 

This is so because the tangential stiffness matrix is singular 

at such points. Thurston (Ref. 15) resolves this difficulty 

by use of higher order terms in the Taylor series expansion 

upon which the method is based (Eq. 31). A more popular ap- 

proach in finite element analysis has been to prescribe dis- 

placement increments, rather than load increments, at or near 

critical points. A form of this approach has been adopted in 

the present work and is described in Section 7. 

Although in theory it is possible to solve the nonlinear 

system at any load level without previous information, care 

should be taken in selecting a starting point for the itera- 

t ive process. Divergence is possible if the starting point 

is not sufficiently close to the solution. To overcome this 

problem it is recommended that solutions be achieved at lower 

load levels so that a reliable starting value can be safely 

extrapolated. 

b. Incremental Method 

In this method a solution (A + dA) is sought for Eq. (12b) 
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close to a known solution {A). Using a Taylor series expan- 

sion for [Kl] and [K2] we get 

[Kl(A+dA)]{A+dA) = [[Kl(A)] + ix [Kl(A)]IdA) + . ..]CA+dA] 

= [[KIUll~A} + 2 [Kl(A)](dA) + . . . . (33) 

and 

[K,(A+dA)']IA+dA} = [K,(A')]~A] + 3 [K,(A)']IdA} + 0.. (34) 

Neglecting terms of higher order than those shown explicitly 

on the right hand side, substituting these expressions into 

Eq. (lzb), and collecting terms 

[[Ko]+[K.J+[K2]]~dA] = (n+dn)W3 - [K,](A) 

4 [Kl]IA) - jj [K~ICAI = drl{FI + IfI (35) 

By assuming that equilibrium is satisfied exactly at a load 

level denoted by n this equation can be simplified by sub- 

stituting if3 = 0 

[[K,] + [Kl] + [K2]]IdA] = dn IF] 

or 

[KTl {dA] = dn (F3 (36) 

This is the basic equation of the incremental method. 

Thus at each load level one 'inversion' of the stiffness 

matrix is required, but the displacements are directly avail- 

able without any iteration. This approach is ideally suited 

for tracing the load-deflection behavior of a structure, 
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especially in the presence of material nonlinearities where 

small load increments are required to follow the spread of 

plastic zones. 

The main inaccuracy inherent in the incremental method 

is the gradual divergence from the true solution caused by the 

piecewise linearizations of a curve. This is shown graphical- 

ly in Figure 8. This error can be reduced, but not eliminated 

completely, by using smaller load steps. Another effective 

device for keeping the divergence to a minimum is to add the 

out of balance force vector [ff of the previous load level 

to the right hand side at the present load level. When this 

operation is performed on Eq. (36) one arrives back at Eq. 

(35). The algorithm indicated by Eq. (35) is zalled the 

modified incremental method. 

Under close scrutiny it is apparent that Eq. (35) and 

Eq. (32b) of the Newton-Raphson method are almost identical. 

The only difference being that in the incremental method 

{dA) is solved directly without iteration. For this reason 

the modified incremental approach can be thought of as one 

cycle of the Newton-Raphson procedure. 

C. Initial Value Approach for Error Estimate 

The geometrically nonlinear problem can be formulated 

as an initial value problem. When this is done it is pos- 

sible to identify a variety of established solution tech- 

niques which can be applied to the conditions under study. 

Although these alternatives are not adopted herein it is 

useful to examine the basic statement of the initial value 

format. This format sheds some light on the methods outlined 
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above. Also, it furnishes the basis for a rational scheme 

of increment step selection. 

Eq. (36) can be written in the limit, as dn goes to 

zero, as 

[[K,] + [K1l + [K2]] {A) = fp) (37) 

where the dot indicates differentiation with respect to the 

load level n. The simplest method of solving this equation 

is Euler's one step method. This yields Eq. (36) of the in- 

cremental method, as is to be expected since Euler's formula 

and Eq. (36) are both derived by expanding about a known solu- 

tion point by a Taylor series expansion, quadratic and higher 

terms being discarded. 

An algorithm can be derived from Eq. (37) which possesses 

an accurate estimate of the discretization error. Conversely, 

with a pre-defined level of acceptable discretization error 

this algorithm permits the selection of the load increment 

such that this level will not be exceeded. Thus, the in- 

cremental analysis proceeds with variable steps throughout 

the load-displacement history. 

The algorithm in question is based on a method of solu- 

tion of first-order differential equations attributed to 

Bulirsh and Stoer (Refs. 16,17). Two separate estimates of 

displacements are given at every other load increment. 

These values are averaged before the algorithm is repeated 

with a new starting point. The basic steps in the method 

are listed below and shown in Figure 9. 

l-i 
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(11 CAi+l} = CAi} + drl [KT(Ai)]-1 UP} 

(21 fAf+,3 = CAi} + 2drl [KT(Ai+l)]-1 (P} 

(3) ‘A~+23 = IAi+l} + dn [KT(Ai+2)]-1 IP} 
(38) 

To estimate the discretization error of the above 

procedure, a simple cubic function is used as a test case. 

Consider the differential equation 

Y.I = a + 2bx + 3cx 2 

which has the obvious solution 

Y = ax + bx 2 + cx 3 

when y(0) = 0 

Applying steps (1) thru (4) when the step size is h, 

Yl 
= ah 

A 
y2 = 2ah + 4bh2 + 6ch3 

B 
y2 = ah + (ah + 4bh2 + 12ch3) 

y2 = 2ah + 4bh2 + 9ch3 

6 A = y; - y2 = 6ch3 

But Y (2h) exact = 2ah + 4bh2 + 8ch3 

The error, 8 = ch3 = O(h3) 

or expressed in terms of the difference, 6 between the two 

estimates of y2, 
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Extending this finding to the multidegree of freedom system, 

The error is defined as 

AA 
E = i Max 

i+2 
A;z2 ; 

.-Ai+2 . 
" 

, 
(39) 

where j denotes the freedom number. 

The fact that the local discretization error E is 0(dn3) com- 

bined with Eq. (39) can be used to either increase or decrease 

the load step size. Assuming that the predefined error toler- 

ance is denoted by TOL, then if 

E > TOL 

The step size is halved, and the procedure initiated from 

{Ai) again. If 

8~ < TOL 

the step size is doubled. 

A simple geometrically nonlinear problem has been solved 

by the procedure indicated. The test case (Fig. 10) is a shal- 

low truss for which there is an analytical solution as well as 

other numerical solutions (Ref. 18). For comparison purposes 

the results from the modified incremental scheme are also dis- 

played in Figure 10. The number of times the stiffness matrix 

had to be inverted is approximately the same for both methods, 

and thus the cost of the solutions are comparable. The value 

of TOL was set at 0.1 for this example. The points A-D illus- 

trate how this tolerance was applied. When the load level 

reached point A the two subsequent increments produced the 

values indicated by points B and C. Since these failed to 

meet the error tolerance they were discarded, the increment 

- 
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size was halved, and the satisfactory point D was obtained 

in the succeeding calculation. Although the present approach 

does not stay as close to the correct solution as the incre- 

mental method for most of the path, neither does it drift as 

far away at certain points. 

d. Overall Strategy 

In the present study the approach used for nonlinear 

analysis is the Newton-Raphson method. This method accommo- 

dates the modified incremental approach simply by prescribing 

a very large convergence tolerance factor. By this artifice 

only one iteration is performed at each load level. It is 

noted in Section 6b above that the modified incremental method 

is equivalent to one iteration of the Newton-Raphson method. 

Although no results for shell problems can be quoted for 

the initial value approach mentioned in the last section it 

is felt that this method holds great promise. This is particul- 

arly true for problems for which there are sudden changes in 

stiffness of the structure (e.g. an imperfect cylinder). It 

is hoped that this approach can be included in the same com- 

puter program as the Newton-Raphson method. This would facil- 

itate the choosing of an overall strategy by the user. 

7. CALCULATION OF LIMIT POINT 

As indicated previously, the determinant of the tangent 

stiffness matrix is zero at the limit point and consequently 
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the system of incremental equations does not possess an 

unique solution. This can be overcome by constraining the 

system in some way, such as through enforcement of a pre- 

scribed value of a particular displacement. This approach 

has been adopted in a variety of different forms by many in- 

vestigators in geometrically nonlinear finite element analy- 

sis, e.g., Refs. 19-23. The approach adopted here represents 

an extension of a scheme described by Zienkiewicz (Ref. 23). 

First, a representative degree-of-freedom (A,) is identi- 

fied. The central displacement of a plate or shell is an ap- 

propriate choice, the selection being input directly by the 

user. A change (6Ar) in the magnitude of this displacement 

component is likewise specified. The value of the correspond- 

ing change in load intensity (Sn) is sought, this being equal 

to the difference in intensities between the (i)th and (i+l)th 

load intensities, i.e., bn = vi+1 - ni. The total incremental 

loading is given by 6~ IFI. Three loading and support condi- 

tions are analyzed: (see Fig. 12) 

(1) No loading except for the force Pi') necessary to produce 

the prescribed value 6A,. 'rl is calculated in the manner 

of a support reaction in this analysis. The calculated 

displacements are designated as (This vector in- 

cludes the specified value 6Ar). 

(2) Application of the normalized load vector Cp3 with the 

ith degree-of-freedom held fixed (Ai = 0). Calculate the 

support reaction Pr (21 in this analysis and the displace- 

ments (A'}. 
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(3) The out of balance load vector (f), calculated on the 

basis of the displacements at the last load level (rli) 

is applied with the degree-of-freedom Ai held fixed. 
(3) Calculate the support reaction P, in this analysis 

and the displacements {A33. 

In combining these cases it is useful to consider two 

separate conditions. The first combination considers cases 

(1) and (2) and excludes the effect of out of balance forces 

(Case 3). For this circumstance the resulting displacement 

state is given by the displacements {A11 less the normalized 

displacements 
r 

{A21 times the force P!‘), i.e. 

iA11 - 
pw 
-$ {A’) 

r 

This gives the displacement state corresponding to zero reac- 

tive force at Ar for simple incrementation (no out of balance 

force correction). 

The second combined condition takes into account the in- 

fluence of the out of balance force correction. By reasoning 

similar to that given above for the first combined condition, 

the resulting displacements are 

For the modified incremental approach the out of balance 

loads have to be added over and above the loads of case (2). 

It is important to keep these load vectors separate during the 
(11 solution stage because at that point the reactions P, , Pi2) 
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and Pi3), and hence the factors of the above combinations, 

are still unknown. 

Unfortunately, the combination of cases (1) and (3) 

gives no control over the displacement at the degree of free- 

dom, Ar but in fact defines the value of the load there. In 

consequence, (11 at the limit point, where Pr becomes zero 

(this is instantaneously the snapping through circumstance 

and the specified value 6Ar is accomplished with theoretical- 

ly no required force Pr (I)), the displacements become infinite. 

The problem is circumvented by neglecting the out of balance 

loads in the proximity of the limit point. The criterion 

used in deciding when to neglect the out of balance loads is 

the following 
p(3) > p(l) r -r 

Thus, in summary, the following combinations of cases are 

used. 

For Pi3) c P(l) r 

pw p(l) 

(1 + .-+)) iA'3 - + {A') + (A33 = ISA) 
'r 'r 

(40) 

where ItSA 1 is the increment of the total displacement state 

due to 611,' and for Pi3) > Pi') - 

CA13 - 
p(l) 
.-&- {A') = ~cSA) (41) 

r 
The change in load intensity can be determined after 

calculation of the increment of displacements as 
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p(l) 
6, = & 

r 
(42) 

or, since 

(43) 

It should be noted that after the limit point the ratio 

P!l)/PZ2) becomes negative, thereby reducing the load level 

until a minimum is reached at a snapback load, after which 

it increases again. 

To apply the prescribed displacements to the linear in- 

cremental equations the following approach (Ref. 24) is 

adopted. 

11 The origin of the displacement to be prescribed is 

changed. Thus, (6Ar + Ar) replaces A,. By substitution 

in the equilibrium equations 

[$,{A) = {PI - [KT]tr) (44) 

where {h) consists of zeros everywhere except for freedom 

r which contains 6Ar. The modification to the load vector 

{PI need only be carried out at freedoms coupled to the 

constrained freedom. 

2) Ar is set to zero. This is accomplished by uncoupling 

the rth equation from the rest, by multiplying the diagonal 
20 term by a large number, say 10 . 

Finally, after solution of the equations the reaction 

at freedom r is 

Pr = -102' Ar KT 
r 
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This procedure is obviously valid if there is more than 

one prescribed displacement. 

8. CALCULATION OF BIFURCATION STATE 

a. Linear 

The method of calculating the intensity of load (nc) for 

bifurcation and the associated mode shape is based on the 

condition of zero value of the determinant of the tangent 

stiffness at this point. This condition holds because of 

the lack of uniqueness of the load displacement path at the 

bifurcation point, resulting in the singularity of [K,]. The 

rank of the singularity depends on the number of paths present 

at the bifurcation point. In this development attention is 

restricted to cases where only two such paths are present. 

For these cases the singularity is of rank one. 

It should be noted that past reports of this research 

(Refs. 9 and 10) have emphasized approaches to calculation of 

bifurcation which depend on the condition stated above. The 

following description differs from these principally in the 

computational mechanics. 

The problem of linear stability, characterized by a 

linear pre-buckling state, is examined first. The condition 

cited above can be written for the general nonlinear represen- 

tation as 
-2 
8 
r\ lKT i .I 

where I I denotes 

I = 1 [Kol + &I + [K21 1 = 0 (46) 

the determinant of the indicated matrix. 

to the linear buckling problem the matrix 

[K2] is neglected. This matrix is in fact zero in the absence 

,a To transform this 
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of coupling between inplane and out-of-plane displacements 

on the fundamental path, as in the case of flat plates. 

Secondly, the [Kl] geometric stiffness matrix is assumed to 

vary linearly with the load level n. This assumption is 

justified if the distribution of internal forces in the 

structure does not change along the fundamental path. 

The problem therefore becomes one of finding the critical 

load level (nc) such that 

ILK01 + nc [K,(h)1 I = 0 (47) 

where ib) are the displacements corresponding to a normalized 

load vector (II = 1). 

The determinant expressed in Eq. (47) is first established 

at two points, n = 0 and n = 1. These two points furnish suf- 

ficient information for starting a Lagrangian interpolative 

scheme which subsequently progresses in an iterative fashion. 

An analytical expression of polynomial form is sought for n 

in terms of already-calculated values of load intensity (rlj) 

and the determinants (Det.j) expressed by Eq. (47) at these 

intensities. This form is obtained by Lagrangian interpola- 

tion and writing the result as an equation which gives the 

intensity (rli+l ) for a zero value of the corresponding 

determinant one has 

i (kfj I 
Qj ( n Det. k 

ni+l = j=l k=l Det.k-Det.j) (48) 

The process is shown schematically in Fig. 12. Each iteration 

I 
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consists of the following steps 

11 Scale element geometric stiffnesses [Kl] by ni+l and 

add into total stiffness matrix which is initialized 

to [Kg]. 

2) Decompose total stiffness matrix into upper triangular 

form by Gaussian Elimination procedure. 

31 Evaluate determinant by multiplying the diagonal terms.' 

41 Perform Lagrangian interpolation to obtain a better 

estimate of the load required to yield zero determinant. 

The iteration procedure continues until two successive values 

of rl are within a predefined tolerance. 

After convergence of the above procedure, the eigen- 

vector can be calculated with very little extra computational 

effort. The problem formulation is now that of finding a 

displacement vector {A) that satisfies the following relation- 

ship. 

W. + nc Kl(z)]iA) = 0 (49) 

The decomposition of these equations into upper triangular 

form has already been performed during the last iteration of 

the eigenvalue procedure. To insure a nontrivial solution 

for {A>, before proceeding with the backsubstitution, the 

right hand side is initialized to zero except for the last 

entry which is given a value of unity, as is the last diagonal 

term of the decomposed matrix. By this artifice the last 

displacement in the structure is forced to take a value of 

unity, and thus the eigenvector is normalized with respect 

to this displacement. Note that this method will yield a 
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nontrivial eigenvector flat plates and beams, only if the 

last freedom in the structure is a bending displacement. 

The user must ensure this by the way he numbers the nodal 

points in the idealization. 

The choice of the last equation for discarding is 

rather arbitrary. In the present case the choice is dic- 

tated by computational simplicity. Wilkinson (Ref. 25) has 

shown that for some matrices inaccurate results are obtained 

unless one particular equation is discarded. Because of 

this he suggests a symmetric strategy: inverse iteration. 

In this method an approximate eigenvector (Ai} yields an 

improved approximation {Ai+ ) by the following procedure. 

lKO ‘+ ‘c ‘,“)I “i+l) = {Ai] 

As already noted, the matrix on the left hand side of Eq. 

(SO) has been triangularized during the last iteration of 

the eigenvalue procedure. Thus, successive resolutions of 

the equations indicated by Eq. (50) are called for with the 

right hand side consisting of the displacement vector from 

the last iteration. This procedure is computationally quite 

inexpensive because the elimination procedure has to be per- 

formed only on the right hand side. This algorithm has been 

found (Ref. 26) to converge in a few cycles in most cases. 

In the present study the eigenvector obtained by dis- 

carding the last equation has proven to be highly accurate. 

If the accuracy of this solution proves to be suspect for a 0 

class of problems not yet solved the inverse iteration scheme 
i/ 
$ 

described above can be incorporated with a minimal effort. 
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b. Nonlinear 

The approach of the last section, wherein the determin- 

ant of the tangent stiffness matrix [KT] is equated to zero, 

is again used as the basis for predicting nonlinear buckling. 

In the presence of nonlinearities in behavior along the 

fundamental path the simplifying assumptions exploited to 

simplify the problem to a linear one are no longer valid. 

In other words, [K2] is retained, and [Kl) is not assumed 

to be linearly dependent on n. Consequently, the nonlinear 

buckling problem is far more complex to solve than its 

linear counterpart. 

In the present study, the load-deflection curve of the 

structure is followed up to bifurcation. An incremental 

procedure is used for this, so that the determinant of the 

tangent stiffness matrix can be monitored during the analy- 

sis. Constant load increments are used throughout, so that 

Lagrangian interpolation with equal intervals is used to 

predict where the determinant goes to zero. A comparison 

of linear and nonlinear buckling with respect to the deter- 

minant-load level plot, is shown in Figure 12. When the 

load level has reached a point such that buckling will occur 

.: during the next load increment a linear buckling analysis is 
$ 3 ! 
1 

performed. The last tangent stiffness matrix calculated 
'% '. SL takes the place of the linear stiffness matrix in Equation 
,,: ! 

(49) l 
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9. NUMERICAL ANALYSES 

Numerical solutions to four nonlinear problems are 

described in this section. These have been chosen because 

of the availability of comparison solutions. 

The first problem is the case of a constant thickness 

(t) isotropic square plate subjected to uniform uniaxial 

compression (see inset, Fig. 13). The boundary conditions 

of the finite element analyses consist of simple support 

with respect to flexure (i.e., zero normal displacement 

and normal bending moment along the edges) and complete 

freedom for the edges to displace in the plane of the plate. 

Initial imperfections are present as represented by a nor- 

mal displacement of the middle surface, distributed in 

double sinusoidal form, with a central amplitude O.lt. Be- 

cause of the symmetry of load, geometry and structural response 

the analyses are performed for only a quadrant of the plate. 

The solutions of the problem are presented in Fig. 13 

in the form of a plot of the ratio of total applied load (P) 

and the critical load for linear stability (Per) versus the 

ratio of the central deflection (w) and the plate thickness. 

It is seen that the range of solutions extends to P/PC, = 2. 

A..classical solution for this problem due to Coan (Ref. 

27) is presented alongtwith the finite element solutions, that 

are in each case based upon load increments of Pcr/lO. It 

is appropriate to first consider the results obtained by use 

of.a full Newton-Raphson iterative scheme, in which itera- 

tions in each load increment are continued until convergence 
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is achieved. These are given for idealizations consisting 

of two elements (the 1 x 1 grid in the quadrant, consisting 

of 2 triangles) and 8 elements (the 2 x 2 grid). It is seen 

that these converge to a solution to the right of the clas- 

sical solution, i.e., a.solution that is less stiff than the 

classical solution. The modified incremental approach (the 

tangent stiffness procedure combined with a one-step Newton- 

Raphson correction) is applied to the 8-element representation. 

It is interesting to note that for the chosen load increment 

the difference between the full Newton-Raphson and the less 

expensive modified incremental results is negligible. 

The discrepancy between the classical solution and the 

above finite element solutions is due in part to the constraint 

of the former to linear inplane displacement of the loaded 

edges. This gives a stiffening effect. It is not customary 

in finite element analysis to enforce such an idealized state 

upon the edge conditions and in the above-described finite 

element solutions the inplane edge displacements were not con- 

strained to give a linear variation. When this constraint is 

enforced for a 2-element (1 x 1 mesh) finite element solution, 

stiffer results than Coan's are obtained (see values denoted 

by x in Fig. 13), as expected. 

The second nonlinear analysis problem is shown in Figure 

14. A cylindrical segment is fixed along all sides and is 

subjected to pressure loading. The solutions to be discussed 

involve the calculation of the central deflection (wc) as a 

function of the applied pressure. Brebbia and Connor (Ref. 28) 
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first solved this problem with use of rectangular shell elements 

based on assumed displacements, i.e., a stiffness formulation. 

Lien (Ref. 29) also employed rectangular shell elements. Prato 

(Ref. 30) applied a mixed, Reissner-type shell element to this 

problem. Dhatt (Ref. 31) utilized a discrete-Kirchoff approach. 

Finally, it should be noted that Connor and Morin (Ref. 32) have 

reported numerical results for this problem. 

Results from the present formulation, for a 3 x 3 (18-element) 

gridwork, are shown in Fig. 14. Advantage is taken of symmetry, 

with a 3 x 3 (18-element) gridwork in a quadrant of the shell. 

None of the alternative numerical solutions from Refs. 28-32 

gives tabulated data and it is felt that the graphical represen- 

tations in these references, except for Ref. 31, cannot be 

transcribed with the accuracy associated with plotted comparisons. 

The basic difference in these results, up to a pressure of 

approximately 0.150 is accounted for by the difference in linear 

solutions, the Ref. 31 results being based on a different varia- 

tional principle with g-term expansions for u, v, and w and 

independent quadratic expansions for the middle surface slopes. 

These same considerations may have influence on the nonlinear 

solutions. Although, as noted above, Ref. 32 does not give data 

that is accurate enough for plotted comparisons, it appears to 

the authors to have a solution that corresponds more closely to 

the present work. 

The third nonlinear analysis problem pertains to the 
i'; 

spherical cap shown in Fig. 15, which is subjected to a concen- 

trated load P at the crown. The support conditions involve the 

restraining of displacements normal to the edge and normal to 
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the shell itself. Thus translations along the edge of the 

shell is permitted. This type of support condition is some- 

times described as 'hinged'. 

This structure exhibits a snap-through behavior under the 

indicated load with eventual recovery of stiffness at higher 

displacements. A classical (series) solution for the problem 

has been obtained by Leicester (Ref. 33) and an alternative 

finite element solution by Dhatt (Ref. 31) who, as was noted 

previously adopts a discrete-Kirchoff approach. 

Again, a 3 x 3 grid (18-elements) is employed within a 

quadrant of the structure. Results are shown in Fig. 15 for 

the central deflection as a function of the applied load. The 

agreement among the three solutions is remarkably good through 

two limit points, up to where a stiffening behavior is again 

experienced. As is usual with the incremental approach the 

displacements tend to lag behind the true solution for increas- 

ing loads. Despite this, the value of the snap-through load 

is predicted very accurately by the present method. 

To verify the accuracy of the quadrilateral element 

formulation the problem of a square clamped plate under pressure 

loading is considered. A 4 x 4 idealization is used for one 

quarter of the plate as shown in Fig. 16. The analysis proceeds 

to a load level that produces considerable nonlinear behavior. 

The modified incremental approach is used to solve the nonlinear 

equations. The results are displayed in Fig. 16 along with the 

classical solution of Levy (Ref. 35), and other finite element 

solutions. Again the present results lag slightly behind the 

true solution. 
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10. CONCLUDING REMARKS 

This report has presented the formulation, for geometrical- 

ly nonlinear analysis, of a curved triangular thin shell finite 

element together with computational approaches which enable 

the use of the element formulation in a variety of thin shell 

instability calculations. The linear aspects of the element 

formulation are described in a separate report (Ref. 1). The 

types of instability calculations which were effected included 

bifurcation and limit point analyses. 

The basis of the finite element formulation was a cubic 

polynomial field within the element. Although this is close 

to the simplest formulation that can be attempted for triangular 

elements which evidence bending, it is not efficient when used 

without modification due to the discontinuity of normal slope 

across element interfaces. The requirement of slope continuity 

is therefore written as a constraint condition and is appended 

to the global equations by means of the Lagrange multiplier 

technique. Numerical analyses presented in this report and in 

Ref. 1 show that efficient solutions are obtained in this manner 

for an extensive range of comparison problems. Displacement 

fields which were simpler than those used in the linear formula- 

tion were used in the development of terms for geometrically 

nonlinear behavior. This approach, known as an "inconsistent" 

formulation, did not significantly prejudice the accuracy of 

the problems solved numerically. 

The cornerstone of all of the types of nonlinear analyses 

presented herein was the modified incremental method, which 

combines a conventional incremental, or tangent, step with a 
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one-cycle Newton-Raphson calculation. Numerical comparisons 

showed that the adopted approach strikes a balance between ac- 

curacy and computational efficiency for the problems solved. 

An alternative approach was presented for the solution of the 

nonlinear algebraic equations, based upon treatment of these 

equations as an initial value problem. This approach was 

demonstrated for a simple test problem but was not applied to 

the large-scale numerical analyses. It features the rational 

selection of step size and the attainment of solution accuracy 

within prescribed limits and therefore appears worthy of further 

study and improvement. 
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Def lecf ion 

Figure 1. Forms of Nonlinear Force-Displacement Response 
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Figure 2. Critical Load Phenomena 
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Figure 3. Examples of Structures Sustaining Various Forms of 
Instability and Nonlinear Force-Displacement 
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Figure 4. Triangular Thin Shell Element 



55 

Figure 5. Axial Member-Geometrically Nonlinear Behavior 

0 Retained nodal point 
X Eliminated nodal point 

Figure 6. Quadrilateral for Inconsistent Formulation 
of Nonlinear Matrices 
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0. Newfods mefhod 

b. Modified Newton 

Figure 7. Newton-Raphson Iteration 



57 

Deflection 

Figure 8. Incremental Analysis 
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Figure 9. Error Estimation by Use of the 
Bulirsch and Stoer Method 
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Figure 10. Solution Comparisons-Shallow Truss Problem 
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Load level 7 
b. Nonlinear buckling unu~ysis 

Figure 12. Calculation of Bifurcation Load 
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Figure 15. Spherical Cap Under Concentrated Load at Crown 
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Figure 16. Clamped Square Plate Under Pressure Load 
NASA-Langley, 1975 CR-2483 
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