
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

SS!E STRUC URA L COftPUTER
: BOP CE 0 M

Co . , e t
L OB U c

1 2 1

) ,
i

."n ""10"10 ;:'.,tn I·\nlr~ .1il'

TOilE BIIEING COMPANY

D5-17266-4

SSME STRUCTURAL Cor~PUTER

PROGRAM DEVELOPMENT

BOPACE PROGRAMMER MANUAL

CONTRACT NAS8-30615

APRIL 15, 1975

PREPARED BY

BOEING AEROSPACE COMPANY

RESEARCH AND ENGINEERING DIVISION

SEATTLE, WASHINGTON 98124

R. G. Vos - Technical Leader

J. W. Straayer - Program Manager

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GEORGE C.' MARSHALL SPACE FLIGHT CENTER

MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

,
\ TABLE OF CONTENTS

SECTION

Table of Contents

List of Illustrations

1.0 Introduction

2.0 Main Program Flow logic

3.0 Subroutine Definitions

J... ' ~ 4.0 Input/Output and Common Storage

4.1 Input/Output Files

4.2 Common Blocks

5.0 Core Reductions

5.1 Overlay

5.2 Dynamic Storage of Arrays

6.0 linear Equation Solver

6.1 Introduct;~n

6.2 User Interface

6.3 Programming

i1

PAGE

i i

iii

1-1

2-1

3-1

4-1

4-1

4-2

5-1

5-1

5-1

6-1

6-1

6-10

6-13

I ~".)'~)
'.,.

, '.
;

140; "'~.
"- .-'

Figure No.

2.0-1

5.1-0

6.1-1

6.1-2

6.3-1

6.3-2

6.3-3

6.3-4

0 6.3-5

6.3-6

6.3-7

3.1-1

v W.

LIST OF ILLUSTRATIONS

Program Flow

BOPACE 2-D Overlay Diagram

Two Bar Structure

Three Bar Structure

Partitioned Matrix Tape Format

DecompoSition Tape Format

Header and Trailer Records Format

Nodal Record

General Flow Generate/Merge Routines

Decomposition Flow

Partition Row/Column ID Bookkeeping
Array

BOPACE Isoparametric Ring Element

iii

. . ,
~-'--. -

E'f :; $! S ± ;;;?f- ... *

Page

2-2

5-2

6-2

6-7

6-16

6-18

6-20

6-21

6-22

6-37

6 .. 39

3-3

'.,
" ,

,
1
;'

t·
.¥l

fl
n
~.

1.0 INTRODUCTION

This document is the Programmer Manual for the 2-dimensional BOPACE (Boeing

Plastic Analysis Capability for Engines) program. It completes a series of

BOPACE 2-D documents, of which the previous volumes were Theoretical Manual,

User Manual, and Demonstration Analysis.

BOPACE ;s written in FORTRAN IV and has been extensively run on both the

IBM 360/370 and Univac 1108 computer systems. Two versions of the program

are available. The first is a 300-00F version developed for fast analysis

of small size problems within moderate core-storage limitations. The second

is the basic 1000-o0F version. In addition, a low-core modification of the

lOOO-DOF version has been developed (mainly for use within a 64K core restric

tion on the Univac 1108) through the use of dynami c storage of arrays.

Recently a new plastic-creep algorithm has been developed for improving the

iterative speed and convergence of BOPACE (see Addendum to BOPACE Theoretical

Manual, document 05-17266-1, or the BOPACE 3-D document 0180-18677-1). This

algorithm has been incorporated into the 300-DOF BOPACE version for further

use and evaluation.

1-1

--.-... ~}"------ .

-,---_ .. _--_ .
. _-.--,,:"

,C)

~

~

1
]j.

~'i
. ~

1 .,

•
\

. ,

c.r--..... -;:'~;;;..;;.--"---~==" "~--- "-,,-,"-" C" "--==:'"c ".- .:::::".,~::=..::=:::-~-=:.::~ • -;::::- ... :::::::::::":""""""'--l

1 ,j

I
', ~·l) THe: BOEING CO "NY

2.0 MAIN PROGRAM FLOW LOGIC

This section summarizes the BOPACE flow logic, and discusseS key instructions

and variables in the MAIN program. Subroutine descriptions and their vari

able definitions are given in Section 3.

Figure 2.0-1 is the program flowchart, and it is suggested that this fi9ure

and a listing of the MAIN program be used in following the discussion given

below.

Before step 1 of the flowchart is perfonned, several preliminary setup

instructions are executed. A value is set for NSTOR, defining the size of

the array STOR which is used as a core storage area for the system matrix

merging and decomposition. The various disk files UNITEl to UNITS2 are

assigned unit numbers (these files are described in Section 4), and a date

statement is used to define the group of NMAX values which set various

maximum size capabilities of the program. All variables which occur in the

MAIN program are explicitly defined in type statements (integer, real, or

double precision) in order to give greater visibility to the programmer.

Step 1 of the flowchart is the first step which is executed for each new
I

problem in the data deck. Subroutine READRS is called to read various user-

defined file numbers, including input and output restart (checkpoint) tape

numbers. READO is then called to read various codes and incremental-iterative

control constants.

2-1

. r"~-~----'~>w'--~===~ __ b_" __ """-'---

I '

1

1
j

Ie VARIA L S:

11

Fi " 2.Q. . P, '0 m Flow

2-2

',.~ ..

':;:1':~
, }. J, ~''':

12 ' INITIALIZE INCREMENTAL VARIABLES . • t
13

CALL READ5 TO READ INCREMENTAL
THERMAL AND l LOADS

t
14 COMPUTE THERMAL STRAINS

t
15 INITIALIZE ITERATIVE VARIABLES

------,--,
US OBTAIN SOLUTION FOR CORRECTIVE

FORCES AND DISPLACEMENTS

• 17
CALL ~"!"~AIN TO COMPUTE TOTAL
INCREMENTAL STRAINS

• SUBTRACT THERMAL STRAINS
18 FROM TOTAL STRAINS TO GET

ELASTIC + PLASTIC + CREEP STRAINS

t
CALL ITER TO SEPARATE ELASTIC,

18 PLASTIC, AND CREEP STRAINS,
AND TO COMPUTE STRESSES

t
20 CALL FORce TO COMPUTE FORCES

FROM STRESSES

+
21

CAL.L ERCOMP TO COMPUTE ERROR
NORM FOR CURRENT UNBALANCED
FORCES

+
22

MERGE AND DECOMPOSE STIFFNESS
MATRICES IF UPDATE IS REQUIRED

------.,

z
0

~ a:
UJ
!::
::t:

~
UJI

~I
I
I
I
I
I
I
I

I
I
I

. I

~ z
UJ
~
UJ
a:
~
Q
c(

9
::t:
(,J

~
II:

~

---------__ -.,_1
,

23 COMPUTE END-Of·INCREMENT RESULTS

• 24 OUTPUT INCREMENTAL RESULTS

• CALL BIGS TO WRITE INCREMENTAL
25 VARIABLES ONTO RESTART TAPE If ,------

OUTPUT RESTART TAPE IS REQUESTED

Figure 2.().1. Program Flow fContinulld)

2-3

I
~
1
~
1
i
.j

'·1
j
J

j
~ .. ,
j

1
~

.~

J

~ -~,.

f""--,",,--··="'''''~·· =.~==---?'---.-.-----.----~
~

I
!
f;
Ii

I

If the input restart tape number (var'iable UINRS) was not provided by the

user, it has a value of 0 at this point, and a cold start (i.e., a new prob

lem not previously run) is indicated. In this case the subroutine BIGS is

called in step 6 to serve as a master calling routine for the other input

routines and to initialize variables. Since a nevJ problem is being run, its

system stiffness matrix (initial elastic matrix) is merged and decomposed in

step 7 by the MERGE and DECOMP l~OU tines.

If UINRS is nonzero, however, a problem restart is indicated. In this case

steps 4 and 5 are executed. Routine SRTAPE is called to read the initial

elastic stiffness matrix and its decomposition from the restart tape. The

variable DUM (the maximum number of active nodes in the solution wavefront,

which is stored in common block JLB) is then read. Routine BIGS is also

called to initialize the required basic and incremental variables by reading

them from the restart tape.

If the output restart tape number (variable VOUTRS) has been given a nonzero

value by the user" problem data must be saved for a possible future restart.

Therefore, routines SRTAPE and BIGS are called to write the initial portion

of the restart tape. OUt·, = maxi,mum wavefront nodes is also written on this

tape.

Next the value of UNITP, which is the unit number for storage of the total

(elastic + plastic) tangent stiffness matrix decomposition, is initialized to

that of the elastic matrix decomposition, UNITE2. A value is also set for

NN ~ number of degrees of freedom (i nc 1 udi ng cons trai ned freedoms) in the

total system. Routine READ4 is then called;n 'step 11 for all load increments

2-4

,I)
~:.;:' .,'

" ~-

,
....

\'

-----,-~-----~~-l

(
THE BIIEIND CO NY

to be solved for in the current run. This data is read, checked and stored

for all load increments at this point, in order to ensure their correctness

for later use.

The load increment loop, which is the major outer loop of the MAIN program,

is now started. In step 12 various start-af-increment variables (generally

denoted by a final 0 in their names) are set to the values of the correspond-

ing end-of-increment variables (generally denoted by a fi na 1 1 in their

names) . This is done by looping over the degrees of freedom (1 to NN) and

elements (l to NEl). PO, Pl are the total applied nodal loads. The Pl vector

is computed. using the load factors PFACT and the load reference vectors PREF

corresponding to the two input loading distributions. PAR is the incremental

loading, equal to Pl - PO. Incremental displacements DQ and internal (resist-

('--~) ing) forces DP, are initially set to zero, and the unbalanced (external
" "f

internal) forces P are initially set to the incremental loads PAR. TO, Tl are

the element temperatures, and 250, 2Sl are the element Z-loads (user pre

scribed normal stress for a plane stress problem or prescribed normal stress

for a, plane stress problem). DE'CO, DECl store the incremental creep strains,

and DEPO, DEPl store the incremental plastic strains. Because the material

theory assumes plastic and creep strains to be incompressible (sum of the X,

V, and Z strains is zero), the Z-direction strain can be computed from the

X and V strains and it is therefore not stored. If no creep occurred during

the previous increment (this is determined by checking the sum of absolute

va 1 ues of the DECl components) then DECO is not set to DEC1, because it

desired to have DECO always store the values front the most recent nonzero

creep increment. If no creep is to occur during the present increment (creep

2-5

1

i

i ,
j
I
j

J

1

'. i . <,. ''',~, ... ",,~--,------,:~" "r'" --, .. . ~-rr-"_,, __ ,,_ ~u,~::.:~:-:.~=:.~-~=::~~.::.~,~'-:-·JT:::"_~·-'"

i
"

THK BIIEING CO"'~"'NY

time increment CTIME is zero) the DECl is set to zero for the increment.

Plastic strains are treated similarly. If an element underv/ent plastic

deformation during the previous increment (i .e .• the elastic-plastic condition

code YCODEl > 0, and OEPl has at least one nonzero component), the DEPO for

that element is set to OEP1, so that DEPO always stores the values from the

most recent nonzero plastic deformation increment. The condition code

YCODEO is set to YCODE1, and since it is not yet 'known whether an element

will be elastic or plastic during the present increment, its YCODEl code is

set to a neutral zero value. YIELDO, YIELDl define the yield surface size

(based on isotropic hardening as a function of plas~ic deformation and

temperature), and are equal to one half the algebraic difference between

uniaxial tensile and compressive yield stresses. TWORKO, TWORKl are the

cumulative plastic work densities. TBASEO, TBASEl and EBASEO, EBASEl are the

plastic hardening parameter values for isotropic and kinematic hardenin9,

respectively. CWORKO, CWORKl are the cumulative creep work densities.

CBASEO, CBASEl are the creep hardening parameter values. SIGMAO, SIGMAl are

the cumulative stresses, and ALPHAO, ALPHAl are the cumulative stress-center

values. Because increments in stress-center values are proportional to

increments in plastic strain, the Z values can again be computed from X and

Y values and are therefore not stored.

Routine READS is now called in step l3 to read end-of-increment values for

temperatures Tl and Z-loads ZSl. Incremental thermal strains nETEMP are then

computed in step 14 using the YVAl table interpolation routine, with the

thermal strain tables and temperatures. NUP = number of stiffness matri x

updates, and NIE = number of residual-force iterations performed using the

'·-"""'='=~~;;;;~.IIIIIR.'Ul3ii!lJt.III~'-;Sm'
~c~~~~=~=~~~====

i
!'

.
~
~j

1
i
I
1

"""'.:r'-... _ ~
-" ---~----.:~

,

i
i.

,

"

I

I
J

J. elastic stiffness matrix, are initialized to zero in step 15. The residua1

error nonns ERRO, ERRl for the previous, current iterations are also initial-

ized, and a new printer output page is readied.

The residual-force iteration loop, which is the major inner loop of the ~4'\IN

program, is now started. The first task of the iterative scheme is to obtain

a better estimate for the incremental displacements DQ in step 16. Usually

this is accomplished by the forward-back-substitution equation solvinq

routine SOLN. which computes displacernent corrections Q correspondinq to

current unbalanced forces P, using either the elastic (UNITE2) or plastic

(UNITP) decomposed stiffness matrix fi le. However, another method for

obtaining a better estimate for DQ may be employed, in c~rtain cases if

convergence is not occurring (i .e., error norm, ERRl > ERRO). In such a case

(]) the new displacement correction is not computed from the unbalanced forces;

rather the previous displacement correction Q is multiplied by some reduction

factor CUTF to obtain the new value for Q. In either case the new value of

Q is added to DQ, to obtain an improved DQ estimate.

Routein STRAIN is then called in step 17 to compute the incremental strains

DE corresponding to displacements DQ. DE is the sum of the incremental

thermal + elastic + plastic + creep strains. In step 18 the thermal strains

DETEMP are subtracted from DE, and the Z-component of DE is set using the

user prescribed increment of normal strain or stress (ZSl - ZSO).

In step 19 the basic material-dependent routine, ITER, is caned to separate

the total incremental strains DE into their elastic, plastic, and creep

porti ons. A number of different pl asti ci ty and creep parameters are used

2-7

,~-

_ ~.~ .""~ _ [l

------~-- --~-.J

I" J
1;,' ,

l
I.

i

~~!
t , '
II , ,

rHO!. BII',NG C.OMPANV

and/or updated by ITER during each residual-force iteration. After the

elastic strains have been determined, ITER also calculates end-of-increment

stresses SIGMA1. Using these stresses, alonq with the start-of-increment

values SIGlvtAO. the FORCE routine is called in stel) 20 to obtain the corres-

ponding incremental nodal forces DP.

The res i dua 1 (unba 1 anced) forces Pare now computed, as the difference

between the incremental applied loads PAR and the internal resisting forces

DP. For degrees of freedom havinq prescribed displacements (determined by

the KFD array code). no displacement errors exist and thus the corresponding

components of P are set to zero. In step 21 the ERCOMP routine is called

to compute a residual error norm ERRl correspondin~ to the residual forces

P. This norm is output onto the printer file.

If the residual norm ERRl is less than the user specified value ERRMAX

(and if a condition is satisfied which assures that enough iterations have

been performed to allow recognition of the onset of plasticity and creep),

then control is transferred outside the major iteration loop to step 23.

If on the other hand the specified convergence criteria have not been satis

fied another iteration is performed using the current residual forces P.

If the number of iterations performed equals the maximum user specified value

NITER, then step 22~ is performed to update the Jacobion (tangent sti ffness)

matrix to improve convergence. Five options are available for updating the

Jacobian. as discussed in detail in the BOPACE theoretical manual. The option

to be used is user den :'led by the vari ab 1 e SCODE. KKODE is an integer code

2-B

1',\ hUll., .! 14" ·)f.{lG. 4/ J I

~
.<

" ~
~

)
'1 ,

1
J
]
1
j
1
1

~

~
l

! !
I ~

)

1
1 .
!

•

r'"
I

I· . '

: I

1
l o

in common block GEN1. and specifies whether the elastic or the plastic

stiffness contributions are to be formed and merged into a system matrix by

routine MERGE. Routine MRTAPE adds the elastic and plastic merged matrices

together where necessary to obtain a total merged matrix. DECOMP performs

a Gau.ss decomposition of the merged Jacobi an matri x. Control then returns to

the iteration loop, and another set of iterations ;s performed as before.

When variable NVP = number of Jacobian updates reaches the maximum user
.

specified value MAXUP (usually 1), control is transferred to step 23 re~lard-·

less of the degree of convergence.

In step 23 the end-of-increment results are computed and prepared for output.

The vector PAR is set equal to any residuals P remaining from the present

increment, so that these residuals may be combined with the next load incre-

ment in order to avoid cumUlative loading errors. The cumUlative internal

forces PP and displacements QQ are urdated by addition of incremental values

DP and DQ, respectively. The incremental strains DE are converted to elastic

values by subtracting out the plastic components DEPl and creep components

DEC1. The cumulative strains EET, EPT, ECT (elastic, plastic, creep respec

tively) are updated by adding the appropriate incremental values DE, DEP1,

DEC1. The cumulative thermal strain SUMTS ;s updated by adding incremental

values DETEMP. The cumulative effective plastic strains SUMPS and creep

strains SUMCS are computed.

Step 24 then outputs the incremental results.

and basic incremental and iterative variables.

Routine HEAD prints a headinq

OUTPQ prints cumUlative

internal forces PP and displacements QQ. OUTE, OUTP and OUTC print elastic,

~ ;

r

t.
II'

> ,
, -1
~L L , -.--~

t
J
\ t·

~I

plastic and creep data. respectively. OUTS prints stress results, and OUTG

prints a summary including effective strain values.

If a restart tape is to be written. BIGS is called in step 25 to add the

data for the current increment to thi s tape.

This completes the load increment loop in the MAIN program. and control is

transferred back to step 12. When all load increments have been run for

the current problem, control is transferred to step 1 and a new problem

is started.

I. }

'.
U(J: eO.)!) J. \40 or-<IG .. 11/11

- """ ... u.'IIO!!I: _. '.i •. ll •... i!l11 •••• I11I"lrl ... ~..J

',1 ,--~~- "- -- '-- -'----~, > > ,~ .. ~-'""7->----> ----,-~·--·-,~--~- .. --·c-----------·-· .

Ii r

1 '
t ;.

~=~';;;=l~----

....... - ,,)-

3.0 SUBROUTINE DEFINITIONS

This section gives a list of BOPACE 2-D subroutines, given in the order in

which they appear in the program deck. (The linear equation solver sub

routines are documented separately, and in considerable detail in Section 6.)

The documentation of BOPACE routines in this section lists in parentheses

the arguments passed to each routine in the calling sequence, and also lists

the variables which are passed by common blocks. The definition of each

argument and common variable is given by comment statements in each subroutine.

ITER - (PCODE ,MAXYC ,NEL ,IMAT ,PTYPE ,KTYPE ,NEMOD ,EMODX ,EMODY ,NPRAT ,PRATX ,PRATY ,

NITABX, NKTABX ,NFT ABX ,NTABY , ITABX, KTABX, FT ABX, TABY ,I STAB, KSTAB ,FSTAB, EET ,DE,

TO,T1 ,YCODEO,YCODE1,YIELDO,YIELDl ,TWORKO,TWORKl ,TBASEO,TABASEl ,EBASEO,EBASE1,

SIGMAO,SIGMA1,ALPHAO,ALPHAl ,DEPO,DEPl ,CTYPE,NCREEP,CREEPX,CREEPY,CBASEX,NCTABX,

NCTABY,CTABX,CTABY,CTAB,CTIME,CWORKO,CWORKl ,CBASEO,CBASE1,DECO,DEC1)

ITER is the major elastic-plastic-creep material-dependent routine. It takes

the given incremental st.rains DE, and separates. them into elastic, plastic

DEP1, and creep DEC1, portions. It also computes end-of-increment stresses

SIGMA1, and updates many of the ; ncrementa 1 parameters. The ITER routi ne

described here is based on the new "strain-space" algorithm (see addendum

to the theoreti caJ manual).

ITERO - (DEP1,ALPHAO,ALPHAl ,EPSXX,EPSYY,EPSZZ,EPSXY,BETXXO,BETYYO,BETXYO,

TS1,IS1,IEO,GO,Gl,DC1,CEP,CR,LAMDA)

3-1

J ,.-"W;; . 7" .. r . P. •• -·w - , - - '=~:=='.~~- -~-_--,."",~.,,---._ ... :~::~~-:~:-:~~,:::::.:::--=.::.-:-.-=:=:----- 'P"';_·'.F' __ '.' -~----"-',~::-~,':"'::"":-~:=:----~--'~--I:r~=:" ~

I
\

, ~
I,

i;

l~
II
Ii
If
f:
j:
~

l, ti
~ \, H

~
" "~

I

I

THII: 6.,IMD COM~"'NY

ITERO and ITER 1 (given below) are called from the elastic-plastic-creep

routine ITER, to compute an improved value of the plastic proportionality

constant lAMDA, by the "1inear intersection method" as described in the

addendum to the BOPACE 2-D theoretjcal manual. These routines are in the

new BOPACE version only. ITERO is ,cal1.led for plane stress problems, and

ITER1 is called for plane strain problems, since the calculations involving

the Z (normal) strain should be performed somewhat differently for the two

cases in order to obtain the best convergence charactp.ristics. The program

would still operate quite wen
l

if the call statements to these two routines

were eliminated from ITER, although the convergence would probably be solved

somewhat.

ITERl - (DEP1,AlPHAO,ALPHAl ,EPSXX,EPSYY,EPSZZ,EPSXY,BETXXO,BETYYO,BETXYO,

TS1 ,IS1 ,IEO,GO,Gl ,DCl ,lAMDA)

ITERl is called for plane strain problems, and operates similarly to ITERO.

ITERl is somewhat simpler however because the Z-strain is known and does not

have to be computed as in ITERO.

CREEP - (KSP ,NEl ,IMAT ,CTYPE,NCREEP ,CREEPX ,CREEPY ,CBASEX ,NCTABX ,NCTABY ,CTABX,

CTABY,CTAB,CTIME,TO,Tl,SIGMA),SIGMAl ,DECO,DEC1,CWORKO,CWORK1,CBASEO,CBASE1)

~

" CREEplis a routine which was used in the initial BOPACE versi~n to ~ompute

incremental creep strains DEC1. Its function is, now performed by thee neW

ITER routine, which computes both pla~tic and creep strains.

3-2

1)0· (1)0\,1 J 140 0 H[G~ 41 ',~ 1

,H h..i Y:.t 4 E,.

t)

t)

"-:

l

I
i
J
l
j
1
1
I

, ;
~ \ .1

I

~.

j ·r

,

~ "

" " .

~ I.
~ I ~"

, ~
f.

,

~
it

G
~
~
~

~. -.~
~ ,

'" "
f ;1

:1 . ~ ~-

" I P;i.

I
I,

l, ,\
'I

" !I
'1

~~ V

h
" " 11

jl
tl:
Ii 1
" ", jj

} ~ Ii
11
'I

It ~
~: ,
(1
~,
')
fl !

M I
ii ~
11 it

R J ,.
Ii
~ ti

,I·
f-' ;,.(

~ i
(;
i i

f:
f j~
l;! .. ·~.I

...,--

. It

.... J) (..

"

BIGS - (KODE ,11 ,12 ,PCODE ,NMAT ,THICK, TEMPO ,NTHERM ,THERMX, THERMY ,NEMOD ,EMODX,

EMODV,NPRAT,PRATX,PRATV,PTVPE,KTVPE,NITABX,NKTABX,NFTABX,NTABV,ITABX,KTABX,

FTABX,TABY,ISTAB,KSTAB,FSTAB,COORDA,NOD,NEL.,COORD,GCOS,IMAT,T,ELNO,NODE,NELE,

NODI,NELI,KFD,PREF,VCODEl ,YIELD1,TWORK1,TBASE1,EBASE1,Tl,ZS1,SIGMA1,ALPHA1,

DEPO,DEPl ,EET,EPT,Pl ,PP,QQ,PAR,CTVPE,NCREEP,CREEPX,CREEPV ,CBASEX,NCTABX,

NCTABV ,CTABX ,CTABV ,CTAB ,DECO ,DECl ,C\~ORKl ,CBASEl ,ECT ,SU~~TS ,SUMPS ,SUMCS ,NMAXl ,

NMAX2, NMAX3, NMAX4 ,NMAX5, NMAX6, NMAX 7, NMAX8A ,NMAX8B ,Nt~AX8C ,NMAX9 ,NMAXl 0 ,NMAX 11 ,

NMAX12,NMAX13)

BIGS performs three basic functions, depending on the value assigned to KODE.

If KODE = 1 it sets up variables for a problem cold start, by calling several

input routines and initializing values. If KODE = 2 it reads basic data from

the restart tape and then searches through the load increment data to find

and read data for the particular increment from the end of which a restart

is to be made. If KODE = 3 it writes either basic data or data for a load

increment onto the restart tape. Because of the large number of arguments

passed and maximum 63 argument restriction on the UNIVAC 1108, the 1108

BOPACE version has many of the arguments put into common blocks.

GET ~ The GET routine was used in a low-core version of the BOPACE 1000-OOF

program for the 1108, in order to keep core storaqe within the 64K word

requirement. It groups arrays with major storage requirements into 12 groups.

These groups are paired such that variables in one group are not needed by

the program while the paired group is being used. The 6 pairs are stored on

6 files (A,B,C,D,E,F), and the GET routine is called at various points in

the program to perform a "flip-flop" operation, i.e. bring one qroup into

3-3

h,_

I

]

i
!

'"

j .~
1- j

, --r..------....... -----------------_.-........;" -..,.."...,..-"'"'=·K:;:;;c, .. ;'.c,;;.;;--,;;...;' ' --.... ;' -""T"""=;;-,:;:;;-=. ~;;;:;;-:;;:;-=-......................... --_.--"""~;r:;:::llE.:_ '.~--'

...)

core while writing its paired group out onto a storage file. This procedure

is not especially efficient, although for large problems its relative cost

is not great. A better procedure is the type of approach used in BOPACE 3-D

in which data for each element is stored sequentially on a file. It is

expected that the BOPACE 2-D program logic will eventually be revised to

correspond to that of BOPACE 3-D. A more detailed description of the arrays

involved and the file pairing techniques is qiven in Section 5.2.

READRS - (UIN1,UIN2,UOUT,INCR,UINRS,UOUTRS)

READRS ;s the first input routine called for each problem. It reads data

file numbers and start-restart codes.

READO - (UI,UO,SCODE,MAXUP,MAXIT,MAXIE,MAXYC,MAXCUT,CUT,ERRMAX,AFACT)

READO reads the problem identification title, and various incremental and

iterative constants. For constants not read (left blank by the user) default

values are assigned.

READ 1 - (UI,UO,NMAX1,PCDOE,NMAT,THICK,TEMPO)

READl reads basic codes and constants.

READTM - (UI .,UO ,NMAX6, IMAT ,PCODE ,NTHERM, THERMX ,THERMY ,NEMOD, EMODX, EMODY ,

NPRAT,PRATX,PRATY)

READTM reads tables of thermal strain, elastic modulus, and Poisson's ratio,

for each material as a function of temperature.

. 3-4

f}t,~ ~rj(lfl .J 1041. lJ II! (.. 41' 1

c:£;.::.::~~f'-=r~~'e!,-?"," ~

,.~

~-.-----------

f)

I)

~,.,; ,

~

,
~.~s. .. _....!

". ~ ~

,

l'
I

j\ J
i.

\
t. '.

. (Jl

READTP - (UI,UO,NMAX7,NMAX8A,NMAX8B,NMAX8C,IMAT,PTYPE,KTYPE,NITABX,NKTABX,

NFTABX,NTABY,ITABX,KTABX,FTABX,TABY,ISTAB,KSTAB,FSTAB)

READTP reads the plastic hardening data, in the form of tables (ISTAB,

KSTAB and FSTAB) of yield surface size, and shape and factor for yield

surface tran~lation, given as a function of temperature and hardening param

eters. Although different abscissa (hardening parameter) values may be

input for a material for each of its temperature values, READTP interpolates

abscissas for all temperatures of the material to those of the first tempera-

ture given, in order to allow later use of an efficient table lookup pro

cedure. Both the input and interpolated tables are output during the echo

check of the input data.

READTC - (UI,UO,NMAX9,NMAX10,NMAXll,IMAT,CTYPE,NCREEP,CREEPX,CREEPY,CBASEX,

NCTABX,NCTABY,CTABX,CTABY,CTAB)

READTC logic is similar to that of READTP. It reads temperature value CTABY,

stress levels CTABX, and creep factors CTAB.

READC - (U I ,UO, NMAX12 ,COORDA)

READC reads angles of user defined special coordinate systems in degrees,

and stores their values in radians in COORDA.

READM - (UI,UO,NMAT,NMAX2,NMAX3,NMAX4,NMAX5,NMAX12,THICK,NOD,NEL,COORDA,

COORD,GCOS;IMAT,T,ELNO,NODE,NELE,NODI,NELI)

READM reads the problem mesh data, including nodes and elements. Nodal and

element input data in REAOM and other routines are identified by an associated

node or element 1.0. number. The internal program node and element numbers

3-5

... .".., _ ... -_ . ..,
1

!
, .

are assigned sequentially in the order in which the node and element

definition cards appear in the data deck. Correlation between 1.0. and

internal numbers is established by the vectors NODE,NELE,NODI, and NELl.

READ2 - (UI,UO,NMAX4,NOD,NODI,NEL,ELNO,KFlJ)

READ2,reads the specified displacements and constraints, and places appro

priate codes in the KFD vector. KFD(K) = +1 for specified force, -I for

specified displacement, and +J for constrained degree of freedom. Here K

denotes the degree of freedom, I is the node for freedom K is located, and

J is the node of the independent freedom to which a corresponding freedom

at node I is constrained to be equal.

READ3 - (U1,UO,NMAX4,NMAX13,NOD,NODI,KFD,PREF)

READ3 reads the two load reference curves and places their values in the

PREF array.

READ4 - (UI ,UO,NMAX14,MAXIT ,N1NCR,NITER,PFACT ,CTIME)

READ4 reads incremental data (NINCR = number of load increments, NITER -

maximum number of iter-ations per increment, PFACT = factors to be applied

to load reference vectors, and CTIME = creep time increment). These data

are read for all increments of a problem dUring a single call to READ4. They
,

are checked and stored to avoid problem termination due to errors after

several increments have been already solved.

3-6

!-) I

)

. '''''' __ ' .i~ .~

I

~ ,

1
f
·1

i

f)··.
" ..

READ5 - (UI,UO,INCR,NMAX5,NEL,NELE,NELI,TIDENT,TO,Tl,ZSO,ZSl)

READ5 reads incremental temperature (thermal load) and Z-direction (normal)

load data for each element. It is called at the beginning of each load

increment. Tl is the new end-of-increment temperature vector, and ZSl is

the Z-load vector.

HEAD - (UO,NEL,INCR,Fl ,F2,CTIME,TIDENT,YCODEO,YCODEl ,NITER,NI,MAXUP,NUP,

ERRMAX,ERR)

HEAD writes a heading after each load increment is solved, giving values for

basic incremental variables.

OUTE - (UO,NEL,NELE,DETEMP,SUMTS,DE,EET)

OUTE writes the incremental and cumulative values for thermal and elastic

strains, at the end of each load increment.

OUTP- (UO,NEL,NELE,TWORKO,TWORKl ,DEPl ,EPT)

OUTP writes the incremental and cumulative values for plastic work density

and plastic strains, at the end of each load increment.

OUTC - (UO,NEL,NELE,CWORKO,CWORKl ,DECl ,ECT)

OUTC writes the incremental and cumulative values for creep work density and

creep strai ns ,at the end of each load increment where creep occurs.

OUTS - (UO ,NEL ,NELE ,ALPHA.l ,SIGMA 1)

OUTS wri tes end-of-i ncrement values for stress centers ALPHIn and stresses

SIGMA1.

3-7

t liP g

1
J

1

1
1

,
\

J ..

., J
j

•
~'.

I"
I

OUTG - (UO,NEL,NELE,YCODEO,YCODEl ,TO,Tl ,YIELD1,DEPl ,SUMPS,EPT,DECl ,SUMCS,

ECT)

OUTG writes a summary of several incremental quantities, including effective

plastic and creep strain values .

ROTK - (IT, ELNO ,GCOS , K)

ROTK rotates the elemental stiffness matrix K from the global coordinates

to user coordinates, using the direction cosines stored in GCOS.

ROTQ - (IT,ELNO,GCOS,KDDE,Q)

ROTQ rotates the element displacements Q, either from nodal to global or

global to nodal, depending on the code KODE.

STRAIN - (NEL,ELNO,COORD,GCOS,Q,ET)

STRAIN computes element strains ET in the element coordinate system (X-axis

along nodes 1-2), from the nodal displacements Q.

FORCE - (NOD,NEL,T,ELNO,COORD,GCOS,SIGMAO,SIGMA1,P)

FORCE computes incremental forces P in the nodal coordinate system, from

element incremental stresses (difference between end-of-increment SIGMAl and

start-of-increment SIGMAO stress values).

ERCOMP - (NEL ,NN,KFD,ELNO ,COORD ,SIGMAO ,SIGMA 1, T ,P ,ERR ,UO)

ERRCOMP computes a residual error norm. The nonn is essentially a ratio of

unba 1 anced forces P to total incremental forces, and is computed us ing the

stresses SIGMAO and SIGMA1.

3.-.8

,0' " .,'

\
! "

III""~ --... -~"~~~~.~" ... --.~ .. -:"-"-.'<-.. ".;--'- "~ ..• ~--=-r-~'.~-- -- ---~ .. ~~.~ -"W~--~---::-u--""'~-'-;.-~.-.".'-- - .--~-~-.~----.~'--- .. ~

~""_ 1: . __ .~".<~ •• ,_ • '

:'. I)

. 0

YVAL - (NP,AX,AY,X)

YVAL is a linear interpolation function routine. Given NP = number of points

in curve, AX = vector of abscissas, AY = vector of ordinates, and X = desired

abscissa value, YVAL is ~ssigned the value of the interpolated ordinate

corresponding to X. If X is outside the range of values in AX, the closest

abscissa (first or last value of AX) is used instead. The values given in

AX should be unique and monatonically increasing.

DYVAL - (NP,AX,AY,XO,Xl)

DYVAL is an incremental interpolation function routine, and provides an

incremental ordinate value equal to YVAL(NP,AX,AY,Xl) minus YVAL{NP,AX,AY,XO).

ZVAL - (NTABX,NTABY ,TABX,TABY ,TABLE,.X,y)

ZVAL is a linear table interpolation fUnction routine, which is a 2-

dimensional version of YVAL. NTABX,NTABV are the number of points in the

X,V directions. TABX,TABY are the values in the X,Y directions. X,Y are

the coordinates of the desired point, and ZVAL is assigned the corresponding

interpolated TABLE (X,V) value.

KEFORM - (T,E,NU,X2l,X3l,X32,Y2l,Y3l,V32,K)

KEFORM forms the elastic stiffness matrix for the constant-strain-tr'iangle

element. It is called by routine GENERa .

3-9

,..

,

I L I !

!
I ,
,
~

~
)1

II
Ii
11
i!
j!
If
j(

fl Ij

r II
Ii
~

'T:HIt 1II.',6D COM~"'N.V

KPFORM - (II,PCODE,IM,T,E,NU,X2l,X3l,X32,Y2l,Y3l,Y32,K)

COMMON/GENPO/AFACT,KTYPE

/GENP1/SIGMAl

/GENP2/ALPHAl

/GENP3/TBASEO
,

/GENP14/TBASEl

/GENP5/E.BASEl

/GENP6/Tl

/GENP7/NITABX

/GENP8/NKTABX

/GENP9/NFTABX

/GENP10/NTABY

/GENPll/ IT ABX

/GENP12/KTABX

/GENPl 3/FT~BX

/GENP14/TABY

/GENP15/ISTAB

/GENP16/KSTAB

/GENP17/FSTAB

/GENP18/DEPl

KPFORM fonns the plastic contribution to the stiffness matrix for the

constant-strain triangle element. It is called by routine GENER8. The

common variables are used in the elastic-plastic material theory. The

plastic theory follows Section 2 of the theoretical manual.

3-10

;[-)

[)

.. 2.9 Ib LUlL M i1UlIt.IIIIU . 1££2 £ LPn '-1I'IIl

:'''':!:::;'~t;'OW<''''---r---

cl

GENER8 - (IT.NUM.NODES.K,NK)

COMMON/GEN1/PCODE.KKODE

/GEN2/YCODE1

/GEN3/IMAT

/GEN4/T

/GEN5/ELNO

/GEN6!COORD

/GEN7/GCOS
I

/GEN8/NEMOD.EMODX,EMODY,NPRAT,PRATX,PRATY

/GENP6/Tl

GENER8 is the basic elemental stiffness generator, which calls either

KEFORM or KPFORM to form the elastic or plastic stiffness matrix. GENER8 is

called by routine GENR8 in the linear equation solver package. The stiffness

for plane stress or plane strain is formed depending on whether the value of

PCODE is 0 or 1. respectively. For plane strain the value of E = elastic

modulus and NU = Poissonls ratio are adjusted so as to allow the same elastic

stiffness generation procedure for both plane stress and plane strain.

3-11

'i
t

i

.. ~
r:
H
\f
~!

THE .II',MB Cot.\ .. ANV

4.0 INPUT/OUTPUT AND COMMON STORAGE

4.1 INPUT/OUTPUT FILES

The following is a definition of I/O files used in the BOPACE 2-D program.

given by unit number (integer constant or variable).

~ - Input card file.

~ - Output printer file.

UINl .. UINl is the user-defi ned unit number for the type I input data (see

user manual. Section 2.0).

UIN2 - UIN2 is the user-defined unit number for the type II input data.

UOUT - UOUT is the user-defined unit number for the major output data file.

UINRS - UINRS is the user-defined unit number for the input restart data

file.

UOUTRS - UOUTRS is the user-defined unit number for the output restart

data file.

*UNITEl = 11 - File for storing the merged elastic stiffness matrix.

*UNITE2 = 12 - File foY' storing the decomposed elastic stiffness matrix.

I)

1)

*Note: UNITEl .UNITE2 ,UNITP1.UNITP2 may al so be used as temporary scratch files.
when adding elastic and plastic matrix contributions to form the total
stiffness .

4-1

______ ~~ __________ --____ --____ --u-*----
. J

~."l ; £. 3M 'U:

r '--.~
~~;:;I~".' i

~,

~L.-,

~.~:.~
f' ..
t

,- '~',"""

*UNITPl = 13 - File for storing the merged total Jacobian matrix. It is

used only when the input variable SCODE is equal to 3, 4 or 5.

*UNITP2 = 14 - File for storing the decomposed total Jacobian matrix. It is

used only when the input variable SCODE is equal to 3, 4 or 5.

UNITS1 = 15 - Scratch file used for temporary storage by the Gauss merge and

decomposition routines.

UNITS2 = 16 - Same as UNITS1.

20-26 - These units provide storage for the If1ip-f1op" arrays handled by

routine GET (see Section 5.2). Six files are used for six paired array groups,

plus one file for temporary storage.

4.2 COMMON BLOCKS

The only common blocks used in the current BOPACE 2-D prpgram version occur

in the MAIN program, in the linear equation solver routines (see Section 6),

and in routines KPFORM and GENER8. (In the UNIVAC 1108 version some of the

variables in routine BIGS have also been placed in common to reduce the

length of the argument list).

The common block JLB in the MAIN program provides for a storage area needed

in solving the linear equations, and for transfer of variables between the

MAIN program and the equation solver routines.

*Note: UNITE1 ,UNITE2 ,UNITP1 ,UNITP2 may al so be used as temporar,Y scratch fi 1 es
when adding elastic and plastic matrix contributions to form the total
stiffness.

. ,
, .

, i

,
~I . ,
r:
~ ~I

"I

~l-.-
'.

,.

,.

THa •• ',ND COM,NY

Common blocks GEN1,GEN2,GEN3,GEN4,GEN5,GEN6,GEN7.GENB contain basic codes,

element and nodal data, and elastic material properties. which are used in

the GENER8 routines .

Common blocks GENPO.GENP1,GENP2.GENP3.GENP4,GENP5,GENP6.GENP7.GENPB.GENP9,

GENP10,GENPll,GENP12.GENP13.GENP14,GENP15,GENP16,GENPl7,GENP1B, are

plasticity variables and data tables. which are used to form the plastic

stiffness matrices in routine KPFORM. The temperatures stored in GENP6

are also used in routine GENERB.

[)

.r)

J. ",
~ .
I
I

(J

'\
fl

.. j
~. " .. ---....,.~, -. -'

5.0 CORE REDUCTIONS

Reduction of the computer core storage requirements for BOPACE 2-D is

accomplished by an overlay procedure. Additional reduction was achieved

for UNIVAC 1108 usage by the use of dynamic storage of arrays. These

procedures allowed the executi on of both the 300 and 1000 DOF BOPACE 2-D

programs within 64K words of core. It is expected that an improved core

reduction procedure will eventually be implemented for BOPACE 2-D, follm'l

ing the logic of the BOPACE 3-D program. BOPACE 3-D has achieved a very

efficient core reduction through ex~ernal storage of element and nodal

arrays ,. allowing problems of from 1500 to 3000 DOF to be run in 64K to

128K core.

5.1 OVERLAY

The BOPACE 2-D overlay structure is designed to keep in core at all times

the MAIN program, common blocks, FORTRAN library routines, and several

subroutines which are called within the MAIN program inner loop. For those

routines which are. overlayed, two overlay levels (A and B) are defined.

The overl ay is di agrammed in Fi gure 5.1-0.

5.2 DYNAMIC STORAGE OF ARRAYS

Thi.s procedure i nvo 1 ves groupi ng of the maj or program arrays into 12 groups,

and pairing them onto 6 files (A,B,C,D,E,F). The groups are transferred

into and out of core by routine GET (see Section 3.0). For example, while
. i

group Al is in core, group A2 is stored on fi le A,etc. The follow; n9

5-1

,-------, , - " ~

READ
REAOO
READ4
SRTA,e

READTM
READTP
READ

• INCLU S DROW AND DOTHER

BIGS

READC
R ADM

ADTC
AD2

READ3

HEAD
OUTC
OUTE
OUTG
ot.ITP
OUTPQ
OUTS DU

ME SO
MRTAI'E
GEH ..
GEN 8
KEFORM
KPFOR
ROTK

Figure 5. '-0. BOPACE 2-D Over"y O.".m

5-2

·01
OtC
INTER
SAVER

.1}

;
! '.

THill BIIEING COM~ANV

defines the array groupings, variable dimensions, and resulting group

storage 1 engths .

A 1 (7000) -PO (1000) ,Pl (1 000) ,0 P (1000) , DQ (1000) ,PP (1000) ,QQ (1 000.) , PAR (1 000)

A2(7200)-YCODEl (800),TWORKl (800),TO(800) ,Tl(800),TBASE 0(800) ,TBASE1(800) ,

ISTAB(900),KSTAB(600},FSTAB(900}

Bl(7200)-SUMTS(800),SUMPS(800},SUMCS(800),EPT(2400),ECT(2400)

B2(7200)-IMAT(800},ALPHAl (2400) ,SIGMA1(3200),EBASEl (800 }

Cl(6600)-STOR(5000),250(800),ZSl(800}

C2(6700)-DETEMP(800),YCODEO(800) ,EBASEO(800) ,YIELD1(80 0),SIGMAO(320~,CTAB(300)

D1(5800)-GCOS(2000) ,COORD(lOOO) ,PREF(2000) ,NELE(800)

D2(5600)-YIELDO(800) ,ALPHAO(2400) ,DECO(2400)

E1 (6600) -T(800) ,ELNO(2400) ,DECl (2400) ,KFD(1000)

E2(6400) -TWORKO(800) ,OEPO(2400} ,EET(3200)

Fl (5700) -CWORKO(800} ,CWORKl (800) ,CBASEO(800) ,CBASEl (800) ,P(1000) ,Q(1000) ,

NODE(500)

F2(5600)-DEPl (2400) ,DE(3200)
5-3

I ?

·"""I~-- . ..i1

(

,-_ ~.--- .. - - -.. ~. ==~ •• --

)1

6.0 LINEAR EQUATION SOLVER

6.' INTRODUCTION

These routines are written in FORTRAN IV for use on rBM 360 and 370, and

UNIVAC '108 computers.

6.1 .1 PURPOSE

These routines are used to: 1) generate elemental matrices and merge them

into the gross matrix; 2t decompose the gross matrix; 3) forward and back

substitute to find the unknowns (see Section 5 of the theory document); and

4} two special routines, one to merge two gross matrices, and one to read

and/or write a checkpoint tape containing the gross matrix and the

decomposed matrix. The routines are separated into the above logical

sections in order to give the user complete flexibility in their use

based on the type of problem to be solved.

The linear equation solver routines have been written as an independent

package. As such, they can be used in any program without recoding. The

user must supply routines to generate the elemental matrices (details

given in Section 6.2), which enhances their independence and use.

6.1.2 NOMENCLATURE

NF Number of freedoms per node

NN - Number of nodes in problem
i

F Input - vector of combined known forces and displacements

Output - vector of known and calculated (reactions) forces

D Vector of kno\'m and calculated displacements

6-1

J')

L)

~
\ . ,
I
I
l
I
I

I
\
I·
I-

l'" ,
l!
II
l
!
l
!
I

I
~ ~"
1.\ !

t;

~. .

6.1.2 (continued)

MBW - Maximum bandwidth

LDT - Load definition vector

6.1.3 METHOD

6.1.3.1 MATRIX PARTITIONING

Figure 6.1-1 shows a two bar, three node structure; each bar is capable

of carrying axial loads.

A

2

FIGURE 6.1-1: TWO BAR STRUCTURE

Bar A, using nodes 1 and 2, has the elemental matrix given in Equation

{6.l-1}. Note that bar A is parallel to the X axis and does not

have Y freedoms.

\ Fl X t
tF2X ~

where K represents the stiffness terms (for this discussion their value

is immaterial).

Bar B, using nodes 2 and 3, has the elemental mfltrix given ill Equation

(6.1-2). Note that bar B has both X and Y fY'eedorns.

6-2
..: -~

j

T
~I
I.
'. '''I

--;r- '.
)

6.1.3.1 (continued)

K K K K

K K K K

= (6.1-2)
K K K K

K K K K

Merging these two elemental matrices ~Iields the gross matrix

K K 0 0 0

KKK K K

= o KKK K

o KKK K

o KKK K

°lX

°2X

°2Y

°3X

°3Y

(6.1-3)

The program requires that each node has the same number of freedoms in the

matrices. Therefore Equation (6.1-1) must be rewritten

K 0 K 0 °lX

(6.1-4)
0 0 0 0 °lY =
K 0 K 0 °2X
0 0 0 0 °2Y

and the gross matrixbe~omes

F1X K 0 K 0 0 0 °1 X

FlY 0 0 0 0 0 0 °1 Y
F2X K 0 K K K K \~2X

=
F'2Y 0 0 k K K K °2Y

(6.1-5)

F3X 0 0 K K K K °3X
F
3y

0 0 K K K K °3Y

6-3
""'~~ . ~ . -".- .-~ ~ ~ .

•
.---=-~ .• nall J

- ~~ . ~.::/\ '_- - . ~ - -"' ~ ".- '.' - ~

. I.

r

i t,

-j

r·l ... __

\ . .I)

1)

CD

6.1.3.1 (continued)

The gross matrix of Equation (6.1-5) can be partitioned

I ,\F1X} [: :J [: :J [: :J ~ °1 xi
I FlY ~ on) ,

[: : J [: : J [: :J f2X} = ~ °2X I
F2y '{ °2Y ~

)F3X 1 [: :J [: :J [: :J tX(
I. F3y . 63y)

(6.1-6)

The reason for the programs requirement that each node have the same number

of freedoms becomes apparent when examining the partitions of Equation

(6.1-6). Note that each partition has the same matrix order (in thi~

case:a 2X2), also that the freedoms within the partition are ordered

identically. Further, the location of each partition is known by

identifying the node number associated with its rows and the node number

associated with its columns.

The program takes advantage of these conditions for several reasons. First,

by generating the full elemental matrices (as shown in Equations (6.l-2)

and (6.1-4)), and doing the partitioning on them. makes merging to form

the gross matrix a simple addition of partitions having identical row/column

node numbers. Second, the special equation generation process described

in S~ction 5 of the theory manual becomes a matter of how the elemental

matri ces are partitioned. (And the row/col umn node numbers assi gned.)

For example, assume that freedom Y, node 3 of bar B (see Figure 6.1-1) ;s

6-4

I ,
I '
I
I

I
!

6.1.3.1 (continued)

constrained to be equal to freedom Y of node 4 (not shown). Then re ... ,ritten

Equation (6.1-2) (with partitioning) yields

, F2X I [: :] [: :] [: :] ,o2X i
I F2y \ i. °2Y ,
. '

[: :] [: :J [: :] ,F3X ~ ~ °3X l.
(6.1-7) . / =

(F3Y) (°3Y~

,F 4X l [: ~] [: : J [: :] txl
(F4Y) °4Y \

Third, the program needs to retain only those partitions which have at least

one non-zero term. Further', due to synmetry of the stiffness matrix, it

retains only the upper triangular partitions (those whose row node numbers

are less than or equal to the column node numbers).

Fourth, and finally, the decomposition, and forward/backward SUbstitution

process becomes a matter of operating on the non-zero partitions. This

in turn simplified the inherent bookkeeping necessary during these steps.

It cuts dO'w'm the core requirements, particularly <1uring the decomposition

for the matrix, and 'also for the bookkeeping arrays.

The row/column node numbers are packed into Dne FORTRAN integer. This

partition 10 number has the form

10 = f * I + J (6.1-8)

where

·f)

[)

•
----& ow.'.1 ~ -~.;- I ~ I~ ";' _. _ "':"'_~-.:::--,

r·

il

; .') , II

~,c)
",1 '

6.1.3.1 (continued)

The use of this 10 number allows the merging routine to: 1) search

only a one dimensional vector of 10 numbers in order to merge the

partitions, and 2) to order the partitions on the merged matrix tape

(disk, drum, etc.) by low ID to high 10 numbers. This means that the

partitions are ordered on the tape low row node numbers to high row

node numbers. And within each group of row node numbered partitions,

the partitions are ordered low column node number to high column node

numbers. The value of a sorted merged matrix tape is used to great

advantage in calculating the maximum bandwidth (Subroutine DUMMY) and

the incore decomposition (Subroutine DIC).

6.1.3.2 NODE NUMBERING

These routines require that the node numbers are FORTRAN integers in the

range 1 to NN, where NN is the number of nodes in the problem. This

requirement allows the program to use the node number as a FORTRAN index

in locating necessary data in the vectors (F, 0, and l.OT).

For example, assume that it is necessary to obtain the value of the J th

freedom of the Ith node of vector V. Then the following FORTRAN code

can be used

DIMENSION V(NF~NN), W(l)
EQUIVALENCE (V(1, 1), W(l))

1 IJ = V(J,I)

2 lJ = W (N F* (I - 1) + J)

These routines use the second form (statement 2).

6-6

, II
\1 ~ ,

b:"",,: ~ ._;.... ~ -__ ~""". :-'='"" _""'_i1L_,_i!lIIit4l!!Mi1L~~""':i:t!iili£!_"""""' __ ""''''_&£'''''''''''''''='''_=======''';;-<~''''''''=~'.B.:;aI!O:l"""""",,m;;;;;. ' ,.;.~~~~ .. O:;;;;' .. ;..-;;.;,;;;;;;;,;,.;;;,"'; •• ;,"';;'l_:;~: ... ·,," ,~J

,:

6.1.3.3 LOAD DEFINITION VECTOR

The load definition vector contains one value for each fr~edom (NF*NN

values) in the problem. Its purpose is to describe the constraints of

the freedoms. It is a FORTRAN integer vector, setup with node numbering

and freedom storage as described in Section E.l .3.2. The valup.s assigned

for each freedom must be assigned according to the following rules.

(Let K equal the assigned value.)

l} +K, a positive value describes a freedom with a known force

and the displacement is to be calculated

2) -K, a negative value describes a freedom with a known displacement

and the reaction force is to be calculated.

3) The value K is a rode number, and in general is the node number

of the freedom, i.e., LDT(J,1) :: 2:1 where J = freedom and I = node

number. For the special equation generation case (Section 5 of

the theory document) the value of K at node I, freedom J, becomes

the connecting node to tie the freedoms together. To clarify,

consider the structure shown in Figure (6.1-2), consisting of

three bars, capable of carrying axial loads only, and five nodes.

F1GURE 6.1-2: THREE nAR STRUCTURE

6-7

~.-,.- .. ~-~ J ,,. . ~-~-"'---""'-"~-"'-""-~~""'''"'~~'

~~.,w._~2~.:.£-~t~_."..r-';-~~;'."I<~~~~::on..;;"· .• dtjf '"'-:.;.,-.. ~~~ -'····'··;r··¥diri!tftn:2"'···"'· .. ~~ ~,.~,;t '-,~-~~~~_.~~~"".;;.;,-t.>';.'. u.:.:.._..:. ,,,._.i.,. _ _ ,v.-___ •• _~ __ • __

".' "1fl2!!ir!'!!!"-~- -~

. -';

1 ,

.J
1
1

J)

a

.j'

~ , 1) !

~~
~
~ ',I

l ,
~
~
I.
i'

!
~
~

I
I
~

l
!
t
!

1 i

I
~
'1 n

(J)

6.1.3.3 (continued)

Bar A on nodes 1 and 2, bar B on nodes 3 and 4, and bar C on 'nodes 3 and

5. Further assume that the X freedom at nodes 2 and 3 is constrained to

displace equally, and the Y freedoms are to be allowed to displace unequally.

The load definition vector (LOT) for this problem is given in Table 6.1-1.

NODE FREEDOM LOT NODE FREEDOM LOT

1 X 1 4 X -4
Y 1 Y -4

2 X 2 5 X -4
Y 2 Y 5

3 X 2

Y 3

TABLE 6.1-1

One essential point - the cross connection is on an identical freedom

basis, a freedom X to a freedom X, etc., but not a freedom Y to a freedom X.

Two powerful uses of the load definition vector are available. First,

in the case of known displacements, the nodes do not need to be attached,

(see nodes 4 and 5 above). Second, the known forces at the connected nodes

are additive (an input force at 2X and an input force at 3X are added in

the abov~ example).

6.1.4 LIMITATIONS

The maximum core usage occurs during the incore decomposition. The available

core is defined by the user in a named common block. One value in this

common block is the 1 ength of the common block. (Deta i1 s of thi s common

6-8

\ r w l'
~ - _'~~r".'-_C_~~~-"~~.~'H~'=-'r~~====-~--~--,~··".~ .~-,

6.1.4 (continued)

block are given in Section 6.2.1).

Let MBW = maximum bandwidth

NF = number of freedoms per node

N = ((MBW)*(MBW+l)) / (2)

L = (MOW) + (MBW)*(NF2) + (4)

C = required core (words)

Then

C = (MBW) + (N) + (2)*(NF2)*(N) + (6)*(NF2) + (L)

Currently the only available decomposition routine requires in-

core storage having the above storage requirement. An out-of-core or large

decomposition routine was planned but not implemented (to date),

One other decomposition limitation is the maximum size of L. This

maximum is hard coded in the program (see 1I~1AXLr' in subroutineDECOMP) and is

set to 420 words.

6-9

[)

J)" .. :,' , ..

1
j

, " ,

.J
1

t\

f
f ,
~

"

~.t- -

~f.'"~-"'~'

r·
f

1
r
t-

I
r ,.

"

L 'I

Ji

I. 1,

6.2 USER INTERFACE

6.2.1 USAGE

While there are some twenty-four routines in the Linear Equation Solver

package, the full capability is available via five "main" entry routines.

1)

2)

3)

4)

5)

Detail s

~1ERGE - to generate and merge the elemental matrices to obtain

the gross matrix

DECOMP - to decompose the gross matrix

SOLN - to calculate the unknown forces and displacements

MRTAPE - to merge bJO gross matri ces (from r~ERGE) us i n9 the

equation

where

[K~l] is the new merged matrix

[K1J is the first input gross matrix

[K2] is the second input gross matrix

A is an user supplied scalar

B is an user supplied scalar

SRTAPE - to write or read a checkpoint tape

of the calling sequences is given in Section 6.2.2.

The gross matrix (or matrices) and the decomposed matrix are stored on

an I/O unit (tape, disk, drum, etc.). The user is responsible for assignment

of the FORTRAN logical units.

6-10

\1
~ ~

l~, '

-~~l~·~~~,~~,~~~.=~~~_~=~,~",,~~&#'*M5'Nirth;\'*M#¥Vaa&k •. ;.,ct4~-"'$*, .. ;.~~~dW+*Mffl{"'H'i'f·';N';rir"iHtt~Lt_";'M~~~~~

,:

~ i
~

~ ,

~ I '
h

"

~-:
I

~. ~)

.j
!

q I
~ !

~ --I
11

\
I

~ I

~
" ~, .. j
iii'"
t, I
Ij " i

t: 1

~i
\

Ii
I

I

6.2.1 (continued)

The core storage used is a named common block. This allows the user

complete control of core storage requirements for his proaram. The format

of the common block is

COMMON/JLB/KT, LT, ~1BH, LA, A(LA)

where KT and LT are the FORTRAN logical unit numters of two I/O units

to be used as scratch

MBW is the maximum bandwidth to be expected during decomposition.

This value is calculated by the Generate/Merge se~t;on or the

MRTAPE routine and posted here.

LA is the length in words (the dimension) of array A.

A is the scratch storage array of length LA.

The node numbers are required to be in the range 1 to NN as described in

Section 6.1.3.2.

Three arrays are used, they must be in user storage (not in common block

/JLB/). The first array is the Load Definition Vector described in

Section 6.1.3.3. The t\':o remaining vectors are FORTRAN single precision

real (floating point) vectors setup \'iith node numbering and freedom storage

as described in Section 6.1.3.2. These two arrays are the Force vector (F)

and the Displacement vector (0). They are used only by the Forward/Backward

Substitution section (Subroutine SOLN).

The Force vector (F), has dual usage; on input to SOLN, it must contain the

combined known forces and displacements. On return from SOLNa it will

contai,n only forces (kno~m forces and calculated reactions).

6-11

I }

j~
tittI

I
:'1'
j

F

. .~

;"j
; 1

: I
I j
" .~

j
;;

,

't
t"

11
I ! 1

, 1

- !

I _. i

6.2.1 (continued)

The Displacement vector (0) is not used for input to SOLN; on return, it

will contain the displacements (known and calculated).

In order to give the user complete freedom of type of structural elements

to be used, the Linear Equation Solver routines require the user to supply

his own elemental matrix generation routines. Interface between the

Generation/Merge section and thr user routines is via the user written

subroutine GENER8. Details are given in Section 6.2.3.

6.2.2 CALLING SEQUENCE

The calling sequence to the entry routines follo\<Is. Unless othen<lise

noted, all calling sequence arguments are fulh/ord integer values or arrays.

CALL MERGE (IT,NN,NE,NF,LEN,LOT)

where

IT = FORTRAN lQgicalunit number of thE' unit for the output gross

matrix.

NN = number of nodes

ME = number of structural elements

NF = number of freedoms per node

LEN = the maximum number of nodes that can be generated for anyone

structura1 element

LOT = the Load Definition Vector

6-12

I
<' ..., '. II

I

r-'-" . , "
t

I ,
t _.

6.2.2 (continued)

CALL OECOt1P (IT ,JT ,NF ,LOT)

where

IT = FORTRAN logical uflit ';Imber of the input gross matrix

JT = FORTRAN logical unit number of the unit for the output

decomposed matrix

NF = number of freedoms per node

LOT = the Load Definition Vector

CALL SOLN (JT,NF,NN,LDT,F,O)

where

JT = FORTRAN logical unit number of the input decomposed matrix

NF = number of freedoms per node

NN = number of nodes

LDT = the Load Definition Vector

F = single precision real (floating point) array of the input

combined known force and displacement vector, and the output

forces

D = single precision real (floating point) array of the output

displacement vector.

CALL MRTAPE (IT,JT,KT,A,B,NF)

where

IT = FORTRAN logical unit number of the first input gross matrix

1 ')

JT = FORTRAN logical unit number of the second input gross mat'rix

A = single precision real (floating point) value, scale factor for •

the fi rs t input matri x on unit IT

6-13

I
~

,

I , '
, !

~ ,

I
I
I

J

I
I '
I
~
i

'I'

" :::1-" ..

6.2.2 (continued)

B = single precision real (floating point) value, scale factor

for the second input rnatrix on unit IJT

NF = number of freedoms per node

CALL SRTAPE (IT,JT,NF,IP,IS)

where

IT = FORTRAN logical unit number of the input gross matrix or the

input decomposed matrix

JT = FORTRAN logical unit number of the unit for the checkpoint tape

NF = number of freedoms per node

IP = process a gross matrix

= 2 process a decomposed matrix

IS = 1 write the checkpoint tape

= 2 read the checkpoint tape

SRTAPE must be called for each matrix to be read or written. It does not

position the checkpoint tape other than the inherent positioning caused by

the read/write operations. The user is required to position the tape as

necessary. The no positioning concept allows the user to use the tape

for checkpoint of his own data.

6.2.3 USER ROUTINES

The user is required to supply his own elemental matrix genArator routines.

Interface is via a user supplied routine with the specific name GENERB, which

has the specific calling sequence.

6-14

\.
I
!

,J
"1

!~ . ~ .~

--:~'~OO";,_c~~~[=~.--:~~~"~"~",~~,_.-~",,,,,",,,,'- ? "'%_~:~'~-'~:-=-'~'~_~.Ji,,,=,,,? .. ?,,,? "?~""~~~~",~:=~:'""=--c",,,">u''''~~;m~:-,<~_,,,I=--~'=,.J

!'

L f
, !

6.2.3 (continued)

CALL GENER8 (I,N,NODES,S,NS)

where

I = fullword integer value containing the element numher

whose elemental matrix is to be supplied (I is in the range 1

to Nt where NE is the number of elements)

N = fullword integt:r value to be returned containing the number

of nodes of the element

NODES = fullword integer array to be returned containing the N node

numbers of the element. (Use the first N terms of this array.)

S = double precision real (floatin~ point) array to be returned

containing the elemental matrix.

NS = dimensions of array S.

Array S is dimensioned

DOUBLE PRECISION S(NS,NS)

The elemental matrix must be a full symmetric matrix (do not return a symmetric

half) . The nodes and freedoms are to be ordered such that tre elemental

matrix partitions can be formed directly from the elemental matrix, with no

sorting or inserting of rows and columns to meet the modal partition order.

The node ordering of the matrix in array S must match the node ordering

in array NODES.

Subroutine GENER8 is called once fo~ each elemrnt in the problem.

content, logic, and programming is left to the user.

6-15

Its

,
~ ..
i

" J ,

i 1'.

)
~1

i
1

,j

•

I

,I

II
~"
r:' •

i

I
l

I
~/ U ,i--- n

~ ~
)) ~ ij ~ -

[" ~I . Ii

I il ,

~. !
J ~

~

~
~

j
II
Ii j. [j ,

II
~

I .1
I' ,
V
" f'
!I
n
~I
~i]j

(])
I .;[

! 'f !:
{'I

f II r:t t:
l:,
t.!
~, 'l

6.3 PROGRAMMING

6.3.1 TAPE FORMATS

Two tape formats are used. The first format is used for the matrix partitions

including all scratch tapes and the final gross matrix tape. The second

format is for the decomposed matrix tape.

Figure 6.3-1 is the tape format for matrix partitions

10 WORD

PARTITION

ID HaRD

PARTITION
i

ID WORD

PARTITION

ID WORD

PARTITION

-

CI
0::

WO
Zu
Ow

0::

CI
w 0::

0 Z u 0 w
0::

CI
0:: W 0 Z u 0 w
0::

CI
wO:: zR
otu

0::

1 ST PARTITIOfJ AND
ITS 10 WORD

2ND PARTITION AND
ITS ID HORD

LAST PARTITION AND
ITS ID WORK

DU~lMY PARTITION
HITH ID = 0

FIGURE 6.3-1: PARTITIOrlED W\TR1X TAPE FORr4AT

6-16

-i
1
~

l

,

~
!"!

~'.
1 ,
1, "

I

!
1

~,
rl
'I

I

, I
":,/ I
~- -'1

!
, "

J

t

I
I

6.3.1 (continued)

Let NF be the number of freedoms per node. Then each record consists of

the partition's IO (row/column packed node numbers) FORTRAN integer value

(one full word) followed by the NF2 double precision values of the elements

of the partition. The elements of the partitions are written by rows,

the NF elements of row one, followed by the NF elements of row two, etc.

The physically last record on the tape must be a dummy partition with an

10 number of zero.

Figure 6.3-2 sho\,/s the general tape format, and the format of one general

data record. Each record on the tape, including the header and trailer

records, has a FORTRAN fullword integer as its first word. This integer (NNW)

is the number of words in the record.

The header and trailer records are each ten FORTRAN integer fullwords with

the format shown in Figure 6.3-3.

Each data record contains one or more nodal records, each nodal record

having the format shown in Figure 6.3-4.

Each nodal record contains all the data necessary from the decomposition step

in order to perform the forward/backward substitution step. Each contains

the data for one decomposition row. The partitions are single preci~ion real

(floating point) values, all other values ane FORTRAN fullword integers.

The nodes array contains the column node numbers of the partitions, with the

first node also being the node number of the decomposition row.

i
i.

I)
I
I

~
I
1\ "

I
I
I ' I,· .~;
I !

I
I
I

I i
r·

k I
I

~ ..

~J :

!
I I

!
I !
i ,
, ,
i

I I' ' .. 1._ .. _
I
I
I ". ~l) ,

f I. , I i ... ··· :

I' •
I·
I

(' I)

HEADER
RECORD

DATA
RECORD

/---,
DATA
RECORD

............ _-"

DATA
RECORD

TRAILER
RECORD

END OF
FILE

TAPE FORMAT

/'
/

/
/

/

" \
\
\
\
\
\
\
\
\

NODE
RECORD

NODE
RECORD

NODE
RECORD

DATA RECORD

FIGURE 6.3-2: DEcm,1POS ITION TAPE FORMAT

6-18

-----. ---_ ..

0
a:::
0

V')
u
l.LJ

0 a::: a:::
0 l.LJ
3: 0-

3:
c(

z: I-
Z UJ

z:
0

... . . ~ .. ~~I~~·~~_.~'=A=~' .. '* __ m;.:. ~,_~~~, ,~

~- ··~···I ~
~' "

f

I
I

6.3.1 (continued)

As many nodal records are placed in each data record as possible without

exceeding the maximum length of a data record. Each nodal record is 1

i
completely contained in its data record. t.

.......

" ... ,
f

•

,
t.!
I

I
j
t

.1 ,
) .

/I ,~
t(}
fry
l~
H
I!

Ii rj
i '[r 1
H
; i

!

~ !
t
'<

tI)

~~=J--~-"-- ...
. . ~ ~." _~L ...• ~ .. ~ .•• ~~~"._~ •.• ~~_ .• _ .. ",;.

CI
0::
o
U
LU
0::

LU
0..

~

Vl
CI
0::
o :::
o

Vl
CI
0::
o :::
o

NNW = 10

1 ST WORD = 0

2ND WORD = L

3RD WORD = MBW

4TH THROUGH 10TH
WORDS ARE UNUSED

-""---
HEADER RECORD

NNW = 10

1 ST ~IORD = 0

2ND THROUGH 10TH
WORD ARE UNUSED

END OF FILE

TRAILER RECORD

.-..... -"/'~~------""" """"i!!!!.,

L = MAXIMUM LENGTH OF ANY ONE DATA
RECORD (SEE MAXLT IN SUBROUTINE
DECOMP)

r~BW ::: MAXIMUM BANDWIDTH

II ,~
!I
11

FIGURE 6.3-3: HEADER AND TRAILER RECORDS FORMAT

6-20

J ~ r"-""'-
I

~

~
~. en -UJ en

J Cl Cl ;1 0 e:::
I z 0

3:

I z -z

I
I

/ I .:..-- 1 Cl

I e:::
0

~ u
i UJ

j
e::: en
-J Cl

! ct e:::

I D 0
",..- 0 3:

z :3: I en
i

UJ z z
Z 0<

!
0

I-
I
~ l-e:::

c:(
0..

Z
Z

en
Cl
e:::
0
3:

0.. z

-
en
Cl
e:::
0
3:

0..
Z

en
Cl
e:::
~
0..
Z

--

-

NW

NN

NP

NODES

ONE
PARTITION

ONE
PARTITION

ONE
PARTITION

LNW

-

N

: :;;;;; ;;;;1***;':-:::-..,

NW = NUMBER OF l~ORDS IN NODAL
RECORD

NN = NUMBER OF NODES
NP = NF2 = Nur·1BER OF WORDS

IN ONE PARTITION
ODES = ARRAY NODE NUMBERS

lNW = LOCATION OF THE FIRST WORD
(NW) OF THE NODAL RECORD IN
THE DATA RECORD.

J)

• FIGURE 6.3~4: NODAL RECORD

6-21

," "

'..< ~ J -.c.I..:'_'7>-_- :.~_::: .'""2_--'
f • , "'_ ,,~- '"' A.

;

L
[
t
f , ,

j
.'

6.3.2 GENERATE AND MERGE ROUTINES

The general flow of the GENERATE and MERGE routi nes are shown in Fi gure

6.3.5.

t~ERGE

~ , ,

GENER8 MERSOR DUMMY

GENER8
(USER SEARCH
SUPPLIED)

FIGURE 6.3-5: GENERAL FLO\J GENERATE/MERGE ROUTINES

--------MERGE is the "main 'i entry subroutine called by the user. Its main function

is to compute storage assignments for the arrays needed in the other routines.

These storage assignments are in the cortmon block /JLB/ and are passed

via the calling sequence argumeDts.

GENR8 controls the generation of the elemental matrices. It partitions

the elemental matrices, writting random ordered, unmerged partitions on a

tape for 1 a ter rnergi ng.

6-22

~ :

6.3.2 (continued)

MERSOR merges the partitions generated by GENR8 and writes the sorted

merged gross matrix on the gross matrix tape.

DUMMY computes the maximum bandwidth using the merged gross matrix tape

from MERSOR.

SEARCH is a working routine used to locate a node number in an array of

node numbers; it is also used by the decomposition step and the special

rout; ne MRTAPE.

I

I;

L
.\ '

,. ,

I
.. I ..,.. .

.>

~ ".~ . ..,.. ~ ... -... :~~.

r
I •. ,.

6.3.2 (continued)

Subroutine MERGE

Calling sequence - see Section 6.2.2.

MERGE

COMPUTE
STORAGE
ASS I GNjl1ENTS
FOR GENR8

COt~PUTE
STORAGE
ASSIGNMENTS
FOR MERSOR

COMPUTE
STORAGE
ASSIGNMENTS
FOR DW~MY

6-24

~
1

I

I

'.-. -t-; ---.' ----....:....-.-....... ", '. " " ,,', " .. ".-.]~.-.- ... -J
.. _".2' .. ___ .~ '-.. -"'~ .. ' L.:' ... ~~.L:...,..b:: • ..:...-.~~.J..._=;;,:-"~ :...::::..:.:~~.:.':~.::.:~b.:.aI:~~~~~,::.::.:.:.:...:,.~L2t::tL~!--'':U;~"-':ll:i~ii::.·~--<1:;;'~~~'..:l(,,":.t~_"., __ .. <!!. _~.7.~-; ;,:.;wi·."tit>~.'!..~~ .. :::'"~.:~~=.l.,i--=-.~,~-...:t...,ki: ', ... ~~ . ~ _ .. :~._>_-_;:-.

t
I
I

i
t
r
L
I~ "
r
1 I
j. ',;"" f

I ' ,
I

f
!

I
I
! !
! ~ ~

jL-'-1

I I
r-:" 'I
" I , , I

I f
t ~

I
j
j

I

I'
I
!

i
r

I
I
.1
n
f
~

~ i
Ii V
it
Ii

11
i
~j

- ff
r:
H
! ,

I
I
!
l

1 ; ,

i

i i

I
1
r

6.3.2 (continued)

Subroutine GENR8

Calling Sequence

when

CALL GENR8(ITAPE,NE,NF,NSN,LOT,S,B,C,LTT,NOOES,LDO)

ITAPE = FORTRAN logical unit number of the unit for the generated

partitions

NE = number of structural elements

NF = number of freedoms per node

NSN = dimension of array S

= LEN*NF where LEN = maximum number of nodes in anyone element

(see calling sequence for MERGE, Section 6.2.2)

LOT = Load Definition vector

S = generated matrix (see calling sequence to GENER8, Section 6.2.3)

B = array for one partition

C = array for on~ partition

LTT = array for Load Definition vector for one element

NODES = array of elemental nodes

LDD = bookkeeping array

Array Dimensions

DOUBLE PRECISION S,NSN,NSN), B(NF,NF), C(NF,NF)

INTEGER N0DES(LEN), LDT(NN*NF), LTT(NSN), LDD(NF,NF)

where NN = number of nodes in problem

6-25

)

j

L) U
I- ,~

l
j
I
1
1

,
,~!

I

\"
I

.t' "

I

FOR PURPOSES OF THE
MATRIX GENERATION
TliE NEGATIVE LOT
VALUES (KNOWN DIS
PLACEMENTS) MUST
BE IGNORED

TliE PROGRAM USES
TIlE TERM "RELAX
FHEEDOMS" FOR THE
SPEC I AL EQUATION
GENERATION PROCESS

'---

GENRB

SELECT LOT
VALUES FOR
ELEMENT PUT
IN LTT. SET
NEGATIVE LOT
VALUES TO
NODE NUMBERS

MOVE ONE UPPER
TRIANGULAR

PARTITION FROM
S INTO B

6-26

YES

YES

NO

RETAIN THE UPPER
TRIANGULAR TERMS

ZERO TltE REMAINDER

SET 10 NUMBER.
FOR PART IT ION
AND WRITE ID
AND PART IT ION
ON !TAPE

T
I

I
I
I
I

~ ,., " I

I
I

I
. -'I

I
.!
l

SET LDD ARRAY fOR THE
PAHTlTION. EACH TERM
TO BE THE PART IT ION 10
NUMBER OF THE COPRE
SPONDING TERM OF THE
PARTITION

SEARCH LDD FOR
A NON-ZERO 10
NUI1BER

SELECT ALL TERMS IN B
THAT HAvE SAME 10 INTO
C. SET CORRESPONDING
LDD TERMS TO ZERO

UNPACK 10. GET
ROW AND COLUf1l
NODE NUMBERS

NO

SET 10 NUMBER
YES AND WRITE 10

AND PARTlTlON
ON nAPE

INTERCHANGE ROW AND
COLUMN NODE NUMBERS
SET !D NUMBER FOR
PARTITION. WRITE 10
NUMBER AND TRANSPOSED
PARTITION ON !TAPE

6-27

',,--.

t)

,.. ij ,

,
I.. I t'''''' ,

, I
:i_-J
: I
E: .. ~

~
I'

, ~ . ' , '
~ ~
t !
, H
i H , .

i
·1 !!
~
!1
,I
11
H

~ . ~
~
jI
(I
H p
Ii
~ tl
ii
.i

I
f.j
\)

i J\ \ 1

(-j)

1 ,

; 'j

NO

i~
i
j ,

.] r,
.'~

• 'j

YES
J
j

WRITE DUMMY : 1 PARTITION WITH ,

j 10 NUMBER OF
ZERO ON ITAPE

,
l
j

REWIND
HAPE

RETURN

6-28

'~""""" ,,- -----
.• e" .. ";;"",~",,,"~~:,~_ '~"~"J) __ ~~";~:"'&j,{.M'''''''''''''';~;_~.i'''''~;i;;".",.", .. ~'';'''''''''''hC'''lGu;;;~~i .• ~"'\;~\~";:'L:".";~ .. ",L; , ..at

; 7""-"~[:::'=-::"-- --:=:.:=-==::~=:~~.---- .. _~_m. __ ."""",:==~ --':::"~ . ..:..::::"-~ ___ '::-'--'~~-?' ~-~-- "'-'- e_ --;:--.:---":"-:::':':' ::_;::-_:':_-:::;;-;;;;-;;';;;'_;;';-;;;;"-;;;;" ;,;,0" ;;';;;'11,""'(": •. ' iiiiO_ "'oiIii_~' · ... -I ___ iiiii-iiiiiiii·-....... '\~

"~ \~

, ,
:f

I

: l
i

" i
\ ". I I

: I :,
if

" J " ,.

. I

~ ..

i ; ,

6.3.2 (continued)

Subroutine MERSOR

Calling sequence

CALL MERSOR (NT APE, KTAPE ,L TAPE, NARG,MAX ,OATA, TEMP , NOATA ,U ST)

where

NTAPE = FORTRAN logical unit number of the input partitions to be merged

and the output merged sorted partitions

KlAPE = FORTRAN logical unit numbers of a unit to be used as scratch

lTAPE = FORTRAN 1 ogi ca 1 unit number of a unit to be used as scratch

NARG = number of words in one partition

MAX = number of partitions that can be kept incore

DATA = array for incore partition storage

TEMP = array for one partition

NDATA = array for incore partition 10 numbers

LIST = sorting array for 10 numbers

Array Dimensions

DOUBLE PRECISION DATA(NARG,~1AX), TEMP(NARG)

INTEGER NDATA(MAX}, LIST (MAX)

)
i ,

)

... _._"_P'_-"_~:::::!:~~:,:,' '''_"::.::.:::'" .. ~.",,~~~, --", .. ~-.,~,.- . "'-'''-~'''~-'~===~',:, .. '" .. ~ .~~~~. =--~--~ .. '~-.~.-~~~._~_r_~~~~l'r-Y.~=~~

NREC [S THE COUNTER
OF THE NUMBER OF
INCORE PART[TIONS,
MAXIMUM IS MAX

r----

INIT [ALI ZE
CO~TROL

PARMIETERS

READ A PARTITION
AND 10 FllCM NT APE
INTO fEMP

SEARCH NOAlA rOR
[0 ~IATCIIING TilE
INPUT 10 NUMBER

MERGE
PARTlTION

6-30

SET CONTROL WORD
INDICATING THAT
ALL INPUT PARTI
TIONS HAVE BEEN
READ ..

~l ;~

"

ii
i

STORE INPUT PARTITION
IN DATA (', .IIREC). AN
[0 [N tIDATA(NREC)

UPDATE L I Sf SO
TUM LIST INDICArES
SORT ORDER OF ID
NliMBERS

WRITE ID AND PARTITION
THAT ARE INCORE ON
OUTPUT TAPE SORTED ON
10 LOW TO HIGH

YES

4

YES
SET CONTROL SO
OUTPUT TAPE
WIll Of. NTAPE

WRITE DUMMY
PARTITION ON
OUTPUT TAPE
WITH 10 = 0

1)

' .. iZlIifOFii= y <.:5?' -

I

I , "'. -;-- -~~"--1f .w ... 4 ,..- ...
I'. , .

;'
~. - ~~ -,-.•. ~

, .~

1', I ",:::;,::-:·=::'c::~"'~·:~1!!!!.'!'~:~:'~!'~.J:!"~!c:X'~~:!~~·=~=::':.::':~~:::::':Cl'::;;"""::='-~-==.""""-"~~".,..~.-.<>t'~ .. ~-,.j,,~ ~===~=,,,,~..=<=.,.,", ... • '" ~I

~: f --. ~ I
l ~

f ' <-.,.,......_

'-' i
h !

f
f
t\

~
I~
f:,
r~,

~'

f:

~,

I:; -,

~.

t
l'

f
~'
~

t
k
~, ,;
~:
p

~, '
r
!l
~.

" f

~ r:
tl
~

~
I

W
N

LET K 8~ A COUNTER
TO PICK UP INCORE
ID'S A.~D PARTITlDN
LOW ID TO HIGH

l~ " ~~~Fs~~i~~I~~E
'10

K
• THE KTH I~CORE 10

.RI iE 7HE 10 AND
PAR7ITlO~ fROM
THE INPIIT SCRATCH
TAPE eN THE OL'TPUT
TAPE

~f_~_, ___ ~ __ ~ ______ ~ __ ~_

'Dr < lOKi

<lEAO A.~ 10 A.~O
PARTITION FROM
iNPUT SCRATCH
TAPE

MERGE T~E KTH PARTITION
ANO'THE PARTITION FROM
THE ,SPlIT SCRATCH TAPE.
A.~O ~RITE IO(AND RESULT
ON THE OUTPIIT TAPE

YES

Copy RE!'AINING
PARTITiONS FROM
INPUT ~CRATCH
TAPE TO OUTPUT
TAPE INCLUDING
OUi+lY PARTITION

WRITE THE <lEHAINING INCORE
10' S ASD PARTI710SS ON THE
OUTP~T TAPE SeinED LOW 10
TO HIGH. ALSO WRITE THE
Dr;~y PARTITION WITH 10 • 0

WRITE THE K TH ID
AND PART! nON ON
THE OUTPUT TAPE

SWITCH CONT.OLS SO
ThAT THE OUTPUT
SCRATCH TAPE BECOMES
THE NEXT INPUT
SCRATCH TAPE, ETC.

~

,I

~

I
;j

~

l
i
.~

dill

,J

-~--'--~~~-~~--~'-"------'---'~~~r~~

6.3.2 (continued)

Subrout i ne DUMMY

where

CALL DUMMY (ITAPE,MBW,NFN,TEMP,MA)

ITAPE = FORTRAN logical unit number of the unit containing the merged

ordered matri x

MBW = maximum bandwidth

NFN = number of words in one partition

TEMP = array for input partition

MA = array of active node numbers

Array Di mens ions

DOUBLE PRECISION TEMP(NFN)

INTEGER MS(NN)

where NN = number of nodes in problem

)

r)

:0

;:4
~ ~

,
~.

']

I - -,~

I
I
I
I

I

}\

KA = CURRENT ACTIVE
ROW NODE NUMBER

NA = NUMBER OF NODES
IN ARRAY MA

1---

UNPACK THE 10
NUMBER GETTING
THE ROW NODE
NUMBER

IN lTlALl ZE
MBW = 0
KA = ROW NODE
NA = 1
MA(l) = KA

READ NEXT 10
AND PARTITION
FROM !TAPE

UNPACK ROW
NODE NUMBER
FROM 10

6-34

~---------------_______ u ____ oq~_ ..

YES NO

i

J
~
'1
1
j
i
1

I
4

-=c-r-
',. h ~.1",,~,_ '._"--".' _~i,,~.f. -""-.. ",:~~..f"'lli~:_ .&,~'':'i. ~;:.;.,,,:_: ,. A, '" ,£'<f!::!_ ~ _, _"","<:;'","'"._.C"",,_.~~""'''''',,"''''',,''''''''''''''''-'_I!wIi.<-'''''''''''_ ·"<""'","O."'.""""".~","'''~~'''O.".,,,,;,cO''''''."'''''''J'.~. __ ,-.2.'"~" ";,-"'<~"",,,,_,_ ,"i.,.""~,~,-=,j£"",,,,;,£,.~.,,,,\ ,,'

, I

q

"~

1
' ~ , l ~;

k
t H
t ; ~

~

I
' :~

'i'l

l \
~·t
r~.; 11

t! I ,
, : !

1
~ 1
.
! t

I
:' I

~
n

..

. ~ -", -

SEARCH IS USED TO
ADD TIlE COLUMN NODE
NUMBER TO ARRAY MA ----AND INCREMENT NA IF
THE COLUMN NODE NUMBER
IS NOT ALREADV IN MA

SEARCH IS USED TO
LOCATE KA IN THE
ARRAY MA. THE ,...---
LOCATION IS RETURNED
AS A 'SUBSCRIPT OF MA

SEARCH IS USED TO
ADD THE NEW KA TO
ARRAV MA AND INCREMENT --
NA IF THE NEW KA IS
NOT ALREADY IN MA

6-35

UNPAC K COLUf"N
NODE NUMBER
FROM 10

DELETE KA FROM
MA AND CINCH
UP MA

NA = NA -1
SET KA =
NEW ROW
NODE NUM3ER

))

•
• • - r - -- ~

•• 111111 r'=j~~'~;~~~=;;~.~;~:~:-.:~:~-~,' ~";y!- - ~~'~~ .~ ~ __ -L_

j

'1 •••

"'~
I

i
1 ,
j

J
-1

l

.~
'1

~
• ';

1
l

1
" ,

j'

6.3.2 (continued)

Subroutine SEARCH

Calling Sequence

CALL SEARCH (N,K,MA,NA)
- .

where

N is th~ node number to be located or added to array MA.

K is the location (subscript) of node N in array MA.

MA is an array of nodes.

NA is the number of nodes in array MA.

Array Dimensions

INTEGER MA (NN)

where NN is the number of nodes in the problem

I = 1+1

YES NA = NA + 1
~------4 I = NA

MA(I) = N

K = I

RETURN

YES

J
~
1
1

,.. ~{-"-"i"'"' "-" '''1.0.-_-..:...;;-.;,.;..;..;,;.;" -:;;.;;-..:,;-_~.;" <," •• ".-~~--'"' •• "

~
i
(i
I

6.3.3 DECOMPOSITION ROUTINES

The general flow of the Decomposition routine is shown on Figure 6.3-6.

.. OECOf1P

DIC SEARCH

! I I I

l ~
SAVER BLOCK OPEN DELETE INTER DRaW DOTHER DlAG
CLOSE IBLOCK

FIGURE 6.3-6: DECOMPOSITION FLOW

DECOMP is the IIMAINII entry subroutine called by the user. Its main

functions are to 1) compute storage assignments for the arrays needed

in the routines; and 2) to test the storage requirements against the

amounts of storage available, and halt the run when insufficient storage

is available. Storage assignments are in common block /J~B/ and are

passed via the calling sequence arguments.

DIC is the incore decomposition routine performing the actual decomposition.

SAVER/OPEN/CLOSE is one routine with three entry points. OPEN initializes

the decomposition tape and writes the header record. SAVER moves the

nodal record data into the data records and writes the data records on

the decomposition tape when they are f~ll. CLOSE writes the trailer

record on the decomposition tape.

6-37

J)

~_ -- r -.. -. L II •• 1

~ ~"""""-_~,~_"",,,_ ~~";,;. _ ... _.-:";;~..-...~~~f.!.;;ll~' ~""""~"'.;;.'-#' · ... 4"..:...,~.c,,"c:,""'ij\~fwcn6zi.§~*df%;"fiiiteidf,k. h'N=i)l·',"",,~·,,··~IW;";~.....:.t:~'::".~~.~.....,i,.._.,~,,_.,w.

... - "
1 .. ~ _~.<-.::_" ~. '-0_:_

;0;; .. ~ "u _. ~

,- - ".. +- ,...

~---- -- -=~-,~,~,...,.,...~- .-,-
."''''.~.~~~ .. "" .. ;-... ~~,..-,,- ,,~~,.. ~ ~ -

j •..

1

J
j

1

I
I
I

1

\ , "

" i ,-

~-

,
~. ,

f
I
• I:
t

,,>

; [, ,)
, ,

:,l -,,'
, '

",I'·'" ()

6.3.3 (continued)

BLOCK/IBLOCK is one routine with two entry points. Both operate on the

partition storage usage bookkeeping array. IBLOCK initializes the array.

BLOCK determines the next available partition storage block to be used.

DELETE operates on the partition storage bo"kkeeping array, releas'~g

partition storage blocks for later use.

INTER operates on the partition storage bookkeeping array and the active

node array, i ntercha ngi ng the items in these arrays so that the node of the

row being decomposed is the last node in the active node bookkeeping array.

DIAGdoes the internal decomposition of the diagonal partition of the row

being decompos~d.

DROW does the decomposition of the off-diagonal partitions in the row

being decomposed.

DOTHER does the decomposition of the row into the partitions not in the

row.

STORAGE AND BOOKKEEPING CONCEPTS

The key'concept used dudfi£' decomposition is that the only partitions

required incore are those that are active in the decomposition for the

row being decomposed. The number of partitions requiring storage is

NBLKS = (t) (MBW)(MBW+l) (6.3-1)

where MBW is the maximum bandwidth.

6-38

,. 'I

I

6.3.3 (continued)

Three bookkeeping arrays are needed, an active node array, a partition

row/column 10 versus partition storage block number array, and a partition

storage use array. In practice the storage for the last two bookkeeping

arrays are combined by' packing the values.

The partition storage blocks are a double dimensioned array, the first

dimension for the terms in the partition, the second the partition storage

block number (in the range 1 to NBLKS). There is a one to one correspondence

between the partition storage block second index and the storage use

bookkeeping array. The storage use array is simply a flag indicating

whether or not its corresponding partition storage block is used by an

active partition.

The active node bookkeeping array is used in conjunction with the

partition row/column 10 bookkeeping array to locate a specific partition

in the partition storage blocks. This is done by thinking of the

partition row/column 10 bookkeeping array as an upper triantular matrix as

shown in Figure 6.3-7.

1 2 MBW-l MBW

MBW+l 2*MBW

NBLKS
FIGURE 6.3-7: PARTITION ROW/COLUMN 10 BOOKKEEPING ARRAY

6-39

.1)

."')
'"""",

j
j
1
l

1

If

f

~"'. t
~ :1
~i

" 'j
/'
H
"

" Ll
)1

Ii
~ i
I'
It
,I

!l '. l: r:
i'

Ii
H
Ii
11
" L
\I

L
l1
"

[I
I[
11

.. .. - '

6.3.3 (continued)

~~----_c-~_~'~-_.,~ __ ~~_ .. 'l"t-::~~_,,,

i

There is a one to one correspondence between the active nodes bookkeeping

array and the rows and colwnns in this upper triangular matrix. To

locate a specific partition, say partition (I,J) (row node I, column node

J). First, locate the nodes I and J in the active node bookkeeping array

(the node numbers are stored in the array), let i and j be their location

(subscript) respectively. Second, if j is less than i (j < i), interchange

j and i. Finally, the location {second index of the partition storage

blocks} of the partition is stored in the partition row/column 10

bookkeeping array at location k of that bookkeeping array,

where

+ 1} - MBW + j (6.3-2)

6-40

~

~ I

I
I

I
I
I
I
I

COMPUTE STORAGE
ASSIGNMENTS
FOR INCORE
DECOMPOS IT ION

COMPUTE:
LT = LENGTII OF UEcor·1POSITION

SAVE TAPE DATA RECORD
NBLKS = NUI·mER OF PARTITION

STORAGE BLOCKS REQUIRED

YES

YES

CQt1PUTE AMOUNT OF
CORE STORAGE REQUIRED
FOR INCORE DECOt·1POSITION

YES

OUT OF CORE
DEcmlPOSITION .
NOT AVAILABLE
PRINT ERROR
CO~IMENT 5051

NO

PRINT ERROR
COMMENT 5021

STOP 21

PRINT ERROR
COMMENT 5022·

STOP 22

j ""'-'.

'-~

P.

I)
~ , .

(J)

'~"~]~T~'~

"

READ A
PARTITION
FRDI1 GROSS
HERGE TAPE

MERGE (ADD)
PARTITION TO
EXISTING
PAIITITIOII

6-42

>----1 REWIND GROSS
MAtRIX TAPE

NO

STORr"
PARTITION

-----""" ... , _,i ... l_"".! ... ~I ' ... ' _____ ~ _________ ~_ ,

... ~ __ _,;;..:n.""w,~~~~~~ .. ~.,,:~......,,~.::.:;,..;...;.~: __ ..;_~;~M,~~~t..~.:.._·_· .:..;..;.~_., . .,.;,.~~ .. ~;.......~~:.,_~~: .. ~~ ~ .,,_~~""-~""" .• _.

t·~

I
f·

r
I

,
i
i .,

CALL ITER
INTERCHAtlGE ROW
NODE SO IT IS
LAST IN BOOK
KEEPING ARRAYS

NO

CALL DIAG
DECOMPOSE
DIAGONAL
PAfH ! nOll

CALL DROW
DECOMPOSE A
PARTITION IN
ROW BEING
DECOMPOSED

YES

PREPARE TO
DECOMPOSE A
PAIR OF PARTITIONS
INTO OFF-ROW
PARTITIONS

6 .. 43

YES

r)

NO

r 1·'- c_···_··_·
,,". ;·r--·'-···

!
I

\'" ~
,.'. :~ ,;', i

~ Ii
~

I h

I

-.1 j

NO

DETERMINE
NODE tlUMBER
Of NEXT ROW
TO BE PROCESSED

6-44

NO

NO

YES

YES

3

4

IN ITI ALIZE
PARTITION
STORAGE TO
ZERO

2

OPEN

INITIALIZE
SAVER
DATA

WRITE
DECOMPOSITION
TAPE HEADER
RECORD

C RETURN

6-45

CLOSE

~/RITE FI NAL
DATA RECORD
ON DECor~
POSITION TAPE

WRITE
DECOMPOS ITION
TAPE TRAILER
RECORD

RETURN

J)

NO

.J>

1

II
1
f

i

1

r}

Ii

SAVER

COUNT THE
NUMBER OF
PARTITIONS
TO BE SAVED

YES

PUT COi~STANTS
INTO NODE
RECORD

PUT DIAGONAL
PARTITION AND
NODE INTO
NODE RECORD

PUT OFF DIAGONAL
PARTITIONS
AND NODES
INTO RECORD

RETURN

6-46

NO
WRITE DATA
RECORD ON
DECO~1POSITION
TAP~

"' . '-T~

, 'j

j
,

j
1
1

, i
~".J

I
i
I

. j
1
i

... ~
1
~ ,

i' "1

,. ~

.:....- , ,
j

~ i :'

"' .~
t. I jl

", l
, I i

~' I
' !

, "

,
"

SET ALL
VALUES IN
BOO KKE EP I NG
ARRAY TO ZERO

/

"
RETURN

PRINT ERROR
COMMENT 5023

STOP 23

/
./"

//

" " " " "-

NO

6-47

BLOCK

SEARCH ARRAY
FRGt" I TO END
OF ARRAY FOR
A FREE PARTITION

NO

SEARCH ARRAY
FROH START TO
1 FOR FREE
PARTITION

YES

FLAG PARTITION
AS USED. SET
I TO PARTITION
LOCATION IN ARRAY

RETURN

1

YES

l) " ,

,~
1

,..j

1
'1

l
1

1
~

DELETE

RELEASE PARTITION
STORAGE, FOR REUSE,
OF NODE \mOSE ROW
HAS JUST COt-1PLETED
DECO~1POSITION

! "1\ " ,
DELETE NODE
FROM ACTIVE
NODE ARRAY

C RETURN)

6-48

"'''';;'='=I''''=---------~·~~~~'~-~'''~-.... mm.'

, ,m~ mm m mm ~l, m~'~'_·."m~._'~."".,<" ""'~''''', .. ~

,

,
i , , . '.

K
~ .. j

,

f \

L .. ~

INTER

SEARCH FOR
NOOE (NN) OF ROW
BEING DECOMPOSED
IN ACTIVE NODE
ARRAY

NO PRINT ERROR
~~---~ COMMENT 5024

YES

INTERCHANGE NODES
IN ACTIVE NODE
ARRAY SUCH THAT
NODE NN IS LAST

INTERCHANGE CONTENTS
OF ROWS AND COLUMNS
OF PARTITIOH RO\JJ/COLUr,1N
BOOKKEEPING ARRAY TO
~~ATCH ACTIVE NODE
ARRAY WITH NODE NN LAST

RETURN

STOP 24

J)

])

~. Ii
i'
~ \ t

j

~
i

li ,j

II
rl
i
!
i

I
tl

II
[i
11

!!
B

II
,

1) 11

,
I

I n
ji
Jl
~i
[

I
h
Ii
l'
~1
" t

INCREMENT
ROW
COUNTER
FOR NEXT ROW

INITIALIZE
DIAGOIJALS
INCREASE
TO ZERO

START
INTERVAL
DECOMPOSITION
WITH FIRST ROW

NO

PUT INVERSE
OF DIAGONAL
TER~' IN
DIAGOUALS INVERSE

NO

DISTRIBUTE
DECOMPOSITION
OF ROW FORWARD
TO REMAINING ROWS

YES

RETURN

j ,.

,.

I. .•. '1

,
'.{. ...

/.

_______ -..... -__.-=--.... ·_"""-==-.·--C7_''.;.-='_=,--.------,---,.,. ... ~_-~=.-,_".,.--"7 .. -------~-"..---~;-- :~-- _ .• -:-:_:;._:-;;::_,_-"~;.C-:-- _*- -·c;:;,;·--=-X"""""""',;,,;.;.;,;,;. "'"'-I""'~1IiiII:III:: - --,

DROW

DECOMPOSE ROWS OF OFF
DIAGONAL PARTITIONS, IN
ROW BEl NG DECm·1POSED
FORWARD TO RH1AINING
ROWS IN THE PARTITION

RETURN

I -~
;

1

" 1
i
j

[A] = [C]T[B][D]
WHERE
[C] AND [0] ARE OFF DIAGONAL
PARTITIONS IN THE ROH BE! NG
DECOMPOSED
[B] IS THE INVERSE OF THE ~
DIAGONAL OF THE DIAGONAL
PARTITION IN THE ROW BE1NG
DECOMPOSED
[A] IS THE RECEIVING PARTITION
[S] IS A SCRATCH PARTITION

6-52

...•.. _------------------

i
!
l

,. 1
'i

. -I
, J

1
i
1

1 ,

COMPUTE
[S] = [C]T[B]

COMPUTE
[A] = [S] [0]

RETURN

, " :

r·-~·--··~-- --

/

6.3.4 FORWARO/BACKHARD SUBSTITUTION ROUTINES

The general flow of the Forward/Backward Substitution routines is shown

in Figure 6.3-8

Figure 6.3-8

ROFRWO
ROBACK
RFOPEN

Substitution Flow

SOLN ;s the "MAIN" entry subroutine called by the user.& Its main functions

are to 1) set prescribed equal known (input) displacements, and add known

(input) forces on computed equal displacement nodes, 2) to compute storage

assignments for the arrays needed in the process, and 3) after substitution

is completed, set computed equal displacements. Storage assignments are

in common block/JLB/ ' and are passed via the calling sequence arguements.

SUBFR is the forwa~d/backward substitution routine performing the actual

substitution ROFW~D/ROBACK/FROPEN is one routine \,/ith three entry points.

All three read the decomposition save tape. FROPEN reads the header record,

returning the maximum bandwidth and length of a data record to S'OLN for use

in computing storage assignments ROFWRO and ROBACK each read a node record.

ROFWRO reads the tape for forward substitution and ROBACK reads the tape

backwards for hacksubstitution.

6-53

,
J
1
.~

1
1

'""":". n J-- ---,",-""" -- !M~illiil!JII!iIiI".lJnsrm iiil&NilllUiRa; Il

' .. ~ .~~~.c, .. ;"""""=";""C""",;;.""",,,,,,,;, .. ,,j"",~"";'"""';";;'~"'";"'';h';;:,,,,,"~~'-;' ·,,"··furri;e;i";;'~"";"';;""'""""""~"'~r.~·,...c.r_"'~.~ ._~.~_r~ ___ =,""" ~~~=;=,-~ .. J~, , ,.~

~,
i\ '.
!:

I , .

~l,)

., "". __ 0"', .~~ ~ •• .,._;'_' __ '-~ ___ ~ ____ -..~ __ ~~.,..~ ___ ~=]~=.:~~)

USING TltE LOAO OEFINITION
VECTOR (LDT) PROCESS
TltE It/PUT VECTOR r--____ _
COMfilNED KNOWN FORCES
ANIl DISPLACEMENTS

----'-----.
ZERO~ OUTPUT

DISPLACEMENTS

COMPUTE STORAGE
REQUIREMENTS

6-54

ADD
FORCES

AT THE 2
NODES

NO

SET THE
DISPLACEMENT

EQUAL

•

l

~
U Ii ,j
Ii
I;
1

I

I
i

I'

~ ..

i

'./

, .

~:==:':.:.::-~~:.':~'.~.:~::' :::-:':.'::~.~:::.:'-:::~: --=:;-'--~' ~ ~- .. - - --.--~ .. _·_~_·_-·_·_·-_--_··-_·-_·-_·-_·_··"il~··· .~
..'----.----- - --.-. "l

COMPUTE
STORAGE

ASS I GNt~ENTS

NO

SET COMPUTED
EQUAL

DISPLJ\CEtlENTS

RETURN

6-55

NO

YES

NO

PRINT
ERROR
COMMENT
5031

STOP 31

,I)

..'i
l

i
-i
1
I

f

'1

, ,

(

==TA . -,---
< _~-A~ ____ ~. ~ ___ ~~ ___ ~ __ _

" ------------------.--------..... -----... , __ 1\111 ... :.. !;\!! .. ;g~

I

PROCESS O!Ar.ONAL
ELFrlEtlTS

O!STR!RIJTF. _
FOIlIlAllD FOR
OFF DIAGONAL
ELH1[tITS

DISTRIBUTE
DIAGOIIAL
PARTITION

DISTRIIlUTE OFF
DIAGONAL PARTITIONS

6-56

STORE FINAL
COMPUTED
FORCE (REACTION)
OR DISPLACEMENT

HS

READ /tEADER
RECORD FROM
DECOMPOSITION
$.t'V~ TAPL. _

READ A
DATA
RECORD

SETUP TO PROCESS
NODAL RECORDS
FORWARD FROM
DATA RECORDS

NO

MOV[NODAL
DATA TO
SUBFR STORAGE

SETUP TO
PROCESS
NEXT NODAL
RECORD

6-57

YES

SETUP TO PROCESS
NODAL RECorWS
BACKWARD FRf.JM
DATA RECORDS

SET
TER~iINATE
DATA

)

YES

I)

i,
~ ...

}

6.3.5 SPECIAL ROUTINES

INITIALIZE
CONTROL
FLAG~.

FINISH
MAXIMUM
BANDWIDTH
CALCULATION

YES

YES

YES

YES

NO

6-58

READ A
PARTITION
FROM FIRST
TAPE

READ A
PARTITION FROM
SECOND TAPE

SET FLAGS
AND PARTITION
10 TO BYPASS
PROCESSING OF
FIRST TAPE

SET FLAGS
AND PARTITION
:0 TO BYPASS
PROCESSING
SECOND TAPE

WRITE
OUMMY
TERMINAL
RECOIlD

r .,
..
1

j
~
'.]
1
~
l

l
j
j

j
j
~

J

" .. ,~

,.
J
,i
'/

~
I

~ I ,

I
:\ I
it· I
'.

1

,. "-
1
.'! 1st < 2nd
!

~

~
~. I

I
I
I WRITE 15T I PARTITION
I ON OUTPUT
I TAPE

I
.1

SET CONTROL !
I f_AG5 TO NOT

I
READ FROM
2ND TAPE

*- '.1

I
!
!
!
I

SCALE
PARTITIONS
AND ADD
TOGETHER

il'U" RESULT I PARTITION ON
TII£ OUTPUT
TAPE t

SET CONTROL
FLAGS TO
REM [lOTH
INPUT TAPES

GET ROW AND
COLlIHN NODE"
NUHIlERS OF
PARTITION JUST
PROCESSED

UPOATE
ACTIVF. NODF.
ARRAY

6-59

1st> 2nd

l ,
WRITE 2ND ~ PART ITI ON Ol~

I TIlE OUTPUT
TAPE

i

SlT CONTIWL

J
~

FLAGS TO NOT ,
READ Fl!or~

1
I

1ST TAP~ I

1 l)
~--l

!

j
~
J ,
j

1
.~

1
~

I

CfT t~AX 1~'lJM
YES IlI\tHlW I OTlI,

>---'-=--~ TllfN Oft m:
OlD HOH NODI'

IF r~.·

. :1'1' . "

n

I

\
. ~ t, I

i
j

II
~ ,. I I
I
!

~ ,.'

..

I
'1

1

I
I

'~,,: -
.c-

......... ~
""--'''''''' ~,~~'--~ . ,-.,

SET CONTROLS TO
READ CIIECKPOINT
TAPE

READ A
MATRIX
PARTITION

WRITE
THE
PARTIl ION

<-~"-~ '" .. -,,-

READ

GROSS
MATRIX

'YES

~ . 'A,,-"4i-

PRINT
ERROR
COMMENT
5041

PRINT
ERROR
COMMENT
5042

6-60

..

WRITE

SET CONTROLS
TO WRITE
CIiECKPOltlT
TAPE

PRINT
ERROR
COMMENT
5043

OECOMPOS IT! ON
MATRIX

VFS

READ A
RECORD

WRITE
TltE
RECORD

. .. L~ ~-~~

1
i!

I
j
I ,
i
l
J
1
1

i

1
1
!
j

1 •
,I

!l
!l
'J
11
i1

H
J1

t
I'

I ,.

	0013A01
	0013A02
	0013A03
	0013A04
	0013A05
	0013A06
	0013A07
	0013A08
	0013A09
	0013A10
	0013A11
	0013A12
	0013A13
	0013B01
	0013B02
	0013B03
	0013B04
	0013B05
	0013B06
	0013B07
	0013B08
	0013B09
	0013B10
	0013B11
	0013B12
	0013B13
	0013B14
	0013C01
	0013C02
	0013C03
	0013C04
	0013C05
	0013C06
	0013C07
	0013C08
	0013C09
	0013C10
	0013C11
	0013C12
	0013C13
	0013C14
	0013D01
	0013D02
	0013D03
	0013D04
	0013D05
	0013D06
	0013D07
	0013D08
	0013D09
	0013D10
	0013D11
	0013D12
	0013D13
	0013D14
	0013E01
	0013E02
	0013E03
	0013E04
	0013E05
	0013E06
	0013E07
	0013E08
	0013E09
	0013E10
	0013E11
	0013E12
	0013E13
	0013E14
	0013F01
	0013F02
	0013F03
	0013F04
	0013F05
	0013F06
	0013F07
	0013F08
	0013F09
	0013F10
	0013F11
	0013F12
	0013F13
	0013F14
	0013G01
	0013G02
	0013G03
	0013G04
	0013G05
	0013G06
	0013G07
	0013G08
	0013G09

