General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

BOEING

(NASA-CR-143892) SSME STRUCTURAL COMPUTER
PROGRAM DEVELOPMENT: BOPACE PROGRAMMER
MANUAL (Boeing Aerospace Co., Seattle,
Wash.) 91 p HC $4.75 CSCL 09B

G3/60

N75-27776

Unclas
29184

1o BVEVEINEE orenrer

D5-17266-4

SSME. STRUCTURAL COMPUTER
PROGRAM DEVELOPMENT

BOPACE PROGRAMMER MANUAL
CONTRACT NAS8-30615

APRIL 15, 1975
PREPARED BY
BOEING AEROSPACE COMPANY
RESEARCH AND ENGINEERING DIVISION

SEATTLE, WASHINGTON 98124

R. G. Vos - Technical Leader

- J. W. Straayer - Program Manager

'Prepafed For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

GEORGE C. MARSHALL SPACE FLIGHT CENTER
MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812 -

SECTION

o oY, o
——‘"

THE 'n””ﬂ COMPANY

TABLE OF CONTENTS

Table of Contents

List of Illustrations
Introduction

Main Program Flow Logic

Subroutine Definitions

Input/Output and Common Storage
Input/Output Files

Common Blocks

Core Reductions
Overlay

Dynamic Storage of Arrays

Linear Equation Solver
IntrodUctipn |
User Interface

Programming »

S &

PAGE

A

I-1

2-1

3-1

8-1
8-1
8-2

5-1
5-1
5-1

61
6-10
6-13

Figure No.

2.0-1
5.1-0
6.1-1
6.1-2
6.3-1
6.3-2
6.3-3
6.3-4
6.3-5
6.3-6

6.3-7

3.1-1

LIST OF ILLUSTRATIONS

Program Flow
BOPACE 2-D Overlay Diaaram
Two Bar Structure

Three Bar Structure

~Partitioned Matrix Tape Format

Decomposition Tape Format

Header and Trailer Records Format
Noda1rRecord

General Flow Generate/Merge Routfnes
Decomposition Flow

Partition Row/Column ID Bookkeeping
. Array :

BOPACE Isoparametric Ring Element

Page

2-2
5-2

6-2

6-18
6-20
6-21
6-22
6-37

6=39

3-3

THE '”f’”a COMPANY
1.0 INTRODUCTION

This document is the Programmer Manual for the 2-dimensional BOPACE (Boeing
Plastic Analysis Capability for Engines) program. It completes a series of
BOPACE 2-D documents, of which the previous volumes were Theoretical Manual,

User Manual, and Demonstration Analysis.

BOPACE is written in FORTRAN IV and has been extensively run on both the

IBM 360/370 and Univac 1108 computer systems. Two versions of the program
are available. The first is a 300-00F version developed for fast analysis

of small size problems within moderate core-storage limitations. The second
is the basic 1000-DOF version. In addition, a 1ow~coke modification of the
1000-DOF version has been developed (mainly for use within a 64K core restric-
tion on the Univac 1108) through the use of dynamic storage of arrays.
Recently a new plastic-creep algorithm has been developed for improving the
iterative speed and convergence of BOPACE (see Addendum to BOPACE Theoretical
Manual, document D5-17266-1, or the BOPACE 3-D document D180-18677~1). This
é]gorithm has been incorporated into the 300-DOF BOPACE version for further

use and evaluation.

14

Nen wran

e MVEVEINEG orany

2.0 MAIN PROGRAM FLOW LOGIC

This section summarizes the BOPACE flow logic, and discusses key instructions
and variables in the MAIN program. Subroutine descriptions and their vari-

able definitions are given in Section 3.

Figure 2.0-1 is the program flowchart, and it is suggested that this figure

and a listing of the MAIN program be used in following the discussion given

~ below.

Before step 1 of the flowchart is performed, several preliminary setup
instructions are executed. A value js set for NSTOR, defining the size of
the array STOR which is used as a core storage area for the system matrix
merging and decomposition. The vafious disk files UNITE1 to UNITS2 are
assigned unit numbers (these files are described in Section 4), and a date
statement is used to define the group of NMAX values which set various
maximum size capabilities of the program. A1l variables which occur in the
MAIN program are explicitly defined in type statements (integer; real, or

double precision) in order to give greater visibility to the programmer.

~Step 1 of the flowchart is the first step which is executed‘for:eachfnew

problem in the data detk.v Subroutine READRS is called to read Qarious user-
defined file numbers, including input and output restart (checkpoint) tape

numbers. READO is then called to read various codes and incremental-iterative

control constants.

2-1

Tren ~Eme oAby

1 CALL READRS FOR START-RESTART
CODE AND FILE UNIT NUMBERS

v

2 CALL READO FOR BASIC
CODES AND CONSTANTS

RESTART

PROBLEM
START-RESTART
CODE

4 CALL SRTAPE TO READ ELASTIC
STIFFNESS AND DECOMPOSITION
FROM INPUT RESTART TAPE

E S

5 CALL BIGS TO READ BASIC AND
INCREMENTAL VARIABLES FOR

NEW PROBLEM INPUT RESTART TAPE

6 CALL BIGS TO INITIALIZE VARIABLES

a) CALL INPUT SUBROUTINES TO INITIALIZE BASIC VARIABLES:;
READ1 FOR BASIC CONSTANTS AND DEFAULTS
READTM FOR MATERIAL PROPERTY DATA
READTP FOR PLASTICITY DATA
READTC FOR CREEP DATA
READC FOR SPECIAL COORDINATES
READM FOR MESH DATA
READ2 FOR DOF SPECIFICATIONS
READ3 FOR LOAD VECTORS

N INITIALIZE INCREMENTAL VARIABLES

-

7 MERGE AND DECOMPOSE ELASTIC STIFFNESS

9 CALL SRTAPE TO WRITE ELASTIC STIFFNESS
AND DECOMPOSITION ONTO OUTPUT RESTART

ouTPUT

TAPE
3

RESTART TAPE

REQUESTED?

10 CALL BIGS TO WRITE BASIC VARIABLES
ONTO OUTPUT RESTART TAPE

v

11 CALL READ4 TO READ INCREMENTAL
MECHANICAL LOAD DATA

-

Figure 2.0-1. Program Flow

2-2

12

INITIALIZE INCREMENTAL VARIABLES

7

13

CALL READS5 TO READ INCREMENTAL
THERMAL AND Z LOADS

v

14

COMPUTE THERMAL STRAINS

v

15

INITIALIZE ITERATIVE VARIABLES

y

16

OBTAIN SOLUTION FOR CORRECTIVE |

FORCES AND DISPLACEMENTS

v

17

CALL STRAIN TO COMPUTE TOTAL
INCREMEN TAL STRAINS

v

18

SUBTRACT THERMAL STRAINS
FROM TOTAL STRAINS TO GET
ELASTIC + PLASTIC + CREEP STRAINS

v

19

CALL ITER TO SEPARATE ELASTIC,
PLASTIC, AND CREEP STRAINS,
AND TO COMPUTE STRESSES

v

CALL FORCE TO COMPUTE FORCES
FROM STRESSES

FOR EACH ITERACTION
FOR EACH LOAD INCREMENT

v

21

CALL ERCOMP TO COMPUTE ERROR
NORM FOR CURRENT UNBALANCED

FORCES
v

MERGE AND DECOMPOSE STIFFNESS
MATRICES IF UPDATE IS REQUIRED

| l._________..-,._

23

COMPUTE END-OF-INCREMENT RESULTS

v

OUTPUT INCREMENTAL RESULTS

v

. CALL BIGS TO WRITE INCREMENTAL

VARIABLES ONTO RESTART TAPE F

OUTPUT RESTART TAPE 1S REQUESTED

Figure 2.0-1. Program Flow (Continued)

2-3

T™E ,”E’”E COMPANY

If the input restart tape number (variable UINRS) was not provided by the
user, it has a value of 0 at this point, and a cold start (i.e., a new prob-
lem not previously run) is indicated. In this case the subroutine BIGS is
called in step 6 to serve as a master calling routine for the other input
routines and to initialize variables. Since a new problem is being run, its
system stiffness matrix (initial elastic matrix) is merged and decomposed in

step 7 by the MERGE and DECOMP routines.

1f UINRS is nonzero, however, a preblem restart isyindicated. In this case
steps 4 and 5 are executed. Routine SRTAPE is called to read the initial
elastic stiffness matrix and its decomposition from the restart tape. The
variable DUM (the maximum number of active nodes in the solution wavefront,
which is stored in common block JLB) 15 then read. Routine BIGS is also
called to initialize the required basic and incremental variables by reading

them from the restart tape.

If the output restart tape number (variable VOUTRS) has been given a nonzero
value by the user, prob]ém data must be saved for a possiblekfuture restart}
Therefore, routines SRTAPE and BIGS are called td Write.the initial portion
of the restart tape. DUM = maximum wavefront nodes is also written on fhis

“tape.

. Next the value of . UNITP which is the unit number for storage of the total

(elastic + plastic) tangent stiffness matr1x decompos1t1on, is initialized to
that of the e1ast1c matrix decompos1t1on UNITEZ. A va]ue is also set for~
NN = number ar degrees of freedom (1nc1ud1ng constra1ned freedoms) in the

ktota] system. Routine READ4 is then ca11ed in step 1 for a]l 1oad 1ncrements

2.4

e BVEVEINES -crrarv
to be solved for in the current run. This data is read, checked and stored

for all load increments at this point, in order to ensure their correctness

for later use.

The load increment loop, which is the major outer loop of the MAIN program,

is now started. In step 12 various start-of-increment variables (generally
denoted by a final 0 in their names) are set to the values of the correspond-
ing end-of-increment variables (generally denoted by a final 1 in their
names). This is done by looping over the degrees of freedom (1 to NN) and
elements (1 to NEL). PO, P1 are the total applied nodal loads. The Pl vector
is computed, using the Toad factors PFACT and the load reference vectors PREF
corresponding to the two input loading distributions. PAR is the incremental
loading, equal to P1 - PO. Incremental displacements DO and internal (resist-
ing) forces DP, are initially set to zero, and the unbalanced (external -
internal) forces P are initially set to the incrementa1 loads PAR. T0, Tl are
the element temperatures, and 250, 251 are the element Z-loads (user pre-
scribed normal stress for a plane stress problem or prescribed normal stress
for a plane stress problem). DECO, DEC1 store the incremental creep strains,
and DEPQ, DEP] store the jncremehta] plastic strains. Because the material
theory éss&mes plastic and'creep strains to be incompressible (sum of the X,
Y, ahd Z strains is zero), the Z-direction strain can be cbmputed from the

X and Y strainsrand‘ft is therefore not stored. If no creep occurred during
the previous increment (this is determined by checking the sum of absolute
values of the DEC} coﬁponeﬁts)_thenkDECO is not set té DECT, because it
desired to’have‘DECO always store fhe values. from the mdst récent nonzero

creep increment. If no creep is to occur during the present increment (creep

2.5

e SVVEING cearv
time increment CTIME is zero) the DEC1 is set to zero for the increment.

Plastic strains are treated similarly. If an element underwent plastic
deformation during the previous iwtrement (i.e., the elastic-plastic condition
code YCODE1 > O, and DEP1 has at least one nonzero component), the DEPO for
that element is set to DEP1, so that DEPO always stores the values from the
most recent nonzero plastic deformation increment. The condition code

YCODEO is set to YCODE1l, and since it is not yet known whether an element
will be elastic or plastic during the present increment, its YCODE! code is
set to a neutral zero value. YIELDO, YIELD1 define the yield surface size
(based on isotropic hardening as a function of p]as;ic deformation and
temperature), and are equal to one half the algebraic difference between
uniaxial tensile and compressive yield stresses. TWORKO, TWORK] are the
cumulative plastic work densities. TBASEQ, TBASE1 and EBASEO, EBASE1 are the
plastic hardening parameter values for isotropic and kinematic hardening,
respectively. CWORKO, CWORK] are the cumulative creep work densities.
CBASEQ, CBASET are the creep hardening parameter values. SIGMAO, SIGMA1 are
the cumu]étive stresses, and ALPHAD, ALPHA! are the cumulative stress-center
values. Because increments in stress-center values are proportional to
increments in plastic strain, the Z values can again be computed from X and

Y values and are therefore not stored.

Routine READ5 is nbw called in step 13 to read end-of-increment values fork
temperatures T1 and Z-loads ZS7. Incrementai thermal strains DETEMP are then
compUted in step 14 using the YVAT table 1nferpo1ation routine, with the |
‘therma1 strain fab]es and temperatures. NUP = number of stiffness matrix

updates, and NIE = number of residual-force iterations performed using the

2-6

£y

D

THE ,”Elﬂa COMPANY

elastic stiffness matrix, are initialized to zero in step 15. The residual
error norms ERRO, ERR1 for the previous, current iterations are also initial-

jzed, and a new printer output page is readied.

The residual-force iteration loop, which is the major inner loop of the MAIN
program, is now started. The first task of the iterative scheme is to obtain
a better estimate for the incremental displacements DQ in step 16. Usually
this is accomplished by the forward-back-substitution equation solving
routine SOLN, which computes displacement corrections Q corresponding to
current unbalanced forces P, using @ither the elastic (UNITE2) or plastic
(UNITP) decomposed stiffness matrix file. However, another method for
obtaining a better estimate for DQ may be employed, in cerigin cases if
convergence is not occurring (i.e., error norm, ERR] > ERRO). In such a case '
the new displacement correction is not computed frbm the unbalanced forces;
rather the previous displacement correction Q is multiplied by some reduction
factor CUTF to obtain the new value for Q. In either case the new value of

Q is added to DQ, to obtain an improved DQ estimate.

Routein STRAIN is then called in step 17 to compute the incremental stréins
DE corresponding to displacements DQ. DE is the sum of the incrémenta]
thermal + elastic + p]aétic + creep strains. In step 18 the thermal strains
DETEMP are subtracted from DE, and the Z-component of DE is set using the

user prescribed increment of normal strain or’stress'(ZS1 - 750).

In step 19 the basic material-dependent routine, ITER, is called to separate

the total incremental strains DE into their elastic, plastic, and creep

pOrtidns. A number of different plasticity and creep parameters are used

RPN TS S RS X

e AVMVEING -croanv
and/or updated by ITER during each residual-force iteration. After the

elastic strains have been determined, ITER also calculates end-of-increment
stresses SIGMA1. Using these stresses, along with the start-of-increment
values SIGMAO, the FORCE routine is called in step 20 to obtain the corres-

ponding incremental nodal forces DP.

The residual (unbalanced) forces P are now computed, as the difference
between the incremental applied loads PAR and the internal resisting forces
DP. For degrees of freedom having prescribed displacements (determined by
the KFD array code), no displacement errors exist and thus the corresponding
components of P are set to zero. In step 21 the ERCOMP routine is called

to compute a residual error norm ERR1 correspondina to the residual forces

P. This norm is output onto the printer file.

1f the residual norm ERR1 is less than the user specified value ERRMAX

(and if a condition is satisfied which assures that enough iterations have
been performed to allow recognition of the onset of plasticity and creep),
then control is transferred outside the major iteration loop to step 23.

If on the other hand the specified convergence criteria have not been satis-

fied another iteration is performed using the current residual forces P.

1f the number of iterations performed equals the maximum user specified value-
NITER; then step 22, is performed to update the Jacobion (tangent stfffness)
matrix to improve convergence. Five options are aVai]able for updating the
Jacobfan, as dﬁstussed in detail in the BOPACE theoretical manua]. The option

to be used is user defined by the variable SCODE. KKODE is an integer code

o mtmr g 1an RIG. 4200

Rl
kst

THE ‘atl”ﬂ COMPANY

in common block GEN1, and specifies whether the elastic or the plastic
stiffness contributions are to be formed and merged info a system matrix by
routine MERGE. Routine MRTAPE adds the elastic and plastic merged matrices
together where necessary to obtain a total merged matrix. DECOMP performs

a Gauss decomposition of the merged Jacobian matrix. Control then returns to
the iteration loop, and another set of iterations is performed as before.
When variable NVP = number of Jacobian updates reaches the maximum user
specified value MAXUP (usually 3), control s transferred to step 23'regard~

less of the degree of convergence.

In step 23 the end-of-increment results are computed and prepared for output.
The vector PAR is set equal to any residuals P remainfnq from the present
increment, so that these residua]s’may be comhined with the next load incre-
ment in order to avoid cumulative loading errors. The cumulative internal
forces PP and displacements QQ are updated by addition of incremental values
DP and DQ, respective1y. ’The incremental strains DE are converted to elastic
values by subtracting out the plastic components DEP1 and creep components

DECY. The cumulative strains EET, EPT, ECT (elastic, plastic, creep respec-

~ tively) are updated by adding the appropriate incremental values DE, DEP],

DEC1. The cumu]atiVe thermal strain SUMTS_is updated by adding incremental

values DETEMP. The cumulative effective plastic strains SUMPS and creep

strains SUMCS are computed.

Step 24 then outputs the incremental results. Routine HEAD prints a heading
and basic incremental and iterative variab1es.: OUTPQ;pkints'cumUIative

intérna]lforces PP and displacements QQ. QUTE, OUTP and OUTC‘print elastic, -

THE 'ﬂ!’”g COMPANY

plastic and creep data, respectively. OUTS prints stress results, and QUTG

prints a summary including effective strain values.

If a restart tape is to be written, BIGS is called in step 25 to add the

data for the current increment to this tape.

This'compiefés the load increment loop in the MAIN'program, and control is
transferred back to step 12. When all load increments have been run for
the current problem, control is transferred to step 1 and a new problem

is started.

Rl

THE ’”E’”E COMPANY

3.0 SUBROUTINE DEFINITIONS

This section gives a list of BOPACE 2—Dksubroutines, given in the order in
which they appear in the program deck. (The linear equation solver sub-
routines are documented separately, and in considerable detail in Section 6.)
The documentation of BOPACE routines in this section lists in parentheses

the arguments passed to each routine in the calling sequence, and also lists
the variables which are passed by common blocks. The definition of each

argument and common variable is given by comment statements in each subroutine,

ITER - (PCODE,MAXYC,NEL,IMAT,PTYPE,KTYPE,NEMOD,EMODX,EMODY,NPRAT,PRATX,PRATY,
NITABX NKTABX ,NFTABX ,NTABY ,ITABX ,KTABX ,FTABX ,TABY, ISTAB ,KSTAB ,FSTAB ,EET,DE,
10, TT ,YCODEO,YCODET,YIELDQG, YIELD] ,TWORKO ,TWORK1 ,TBASEQ , TABASE1 ,EBASEQ,EBASET,

~SIGMAQ,SIGMAT ALPHAO ALPHA?Y ,DEPO,DEP1,CTYPE ,NCREEP ,CREEPX,CREEPY, CBASEX NCTABX,
‘ NCTABY,CTABX,CTABY,CTABfCTIME,CNORKO,CWORK1,CBASEO,CBASE],DECO,DEC])

ITER is the major e]ast1c -plastic- creep mater1a1 dependent routine. Tt takes

‘the given 1ncrementa1 strains DE, and separates them 1nto e]ast1c, plastic

DEP1, and creep DEC] port1ons It also computes end-of-increment stresses

SIGMA], and updates many of the 1ncrementa] parameters The ITER routine
descr1bed here is based on the new "strain- space" algorithm (see addendum

to the theoretical manual).

ITERQ - (DEP] ALPHAO, ALPHA] EPSXX EPSYY EPSZZ,EPSXY,BETXXO, BETYYO BETXYO,
1$1,151,1£0,60,61,DC1, CEP CR LAMDA)

THE ‘”EI” COMPANY

ITERO and ITER] (given below) are cal]e? from the elastic-plastic-creep
routine ITER, to compute an improved value of the plastic proportionality
constant LAMDA, by the "linear intersection method" as described in the
addendum to the BOPACE 2-D theoretical manual. These routines are in the
new BOPACE versjon only. ITERO is pa]ﬁed for plane stress problems, and
ITER] is caf1ed for plane strain problems, since the calculations involving
the Z (normaW)‘strain should be performed somewhat differently for the two
cases in order to obtain the best convergence characteristics. The program
would still operate'quite well if the call statements to these two routines

were eliminated from ITER, although the convergence would probably be solved

somewhat.

ITER] - (DEP],ALPHAO,ALPHA],EPSXX,EPSYY,EPSZZ;EPSXY,BETXXO,BETYYO,BETXYO,
T$1,181,1€E0,G0,G1,DCT,LAMDA)

ITER is called for plane strain problems, and operates similarly to ITERO.
ITER] is somewhat simpler however because the Z-strain is known and does not

“have to be computed as in ITERO.

'CREEP - (KSP,NEL,IMAT ,CTYPE,NCREEP ,CREEPX ,CREEPY ,CBASEX ,NCTABX ,NCTABY ,CTABX,,
CTABY ,CTAB ,CTIME,TO,T1,SIGMA) ,STGMAT ,DECO, DECT ,CHORKG , CHORKT ,CBASEO ,CBASE)

'CREEP! is & routine which was used in the initial BOPACE version to ‘i;,compute
incrementé],creep strains DECY. Its funCtidn isfnow performed by thie new

~ITER routine, which computes both plastic and creep strains.

-

THE 'a’l”a COMPANY

BIGS - (KODE,I],12,PCODE,NMAT,THICK,TEMPO,NTHERM,THERMX,THERMY,NEMOD,EMODX,

EMODY,NPRAT,PRATX,PRATY,PTYPE,KTYPE,NITABX,NKTABX,NFTABX,NTABY,ITABX,KTABX,
FTABX,TABY,ISTAB,KSTAB,FSTAB,COORDA,NOD,NEL,COORD,GCOS,IMAT,T,ELNO,NODE,NELE,
NODI,NELI,KFD,PREF,YCODE],YIELD1,TWORK],TBASE1,EBASE],T],ZS],SIGMA],ALPHA],
DEPO,DEP].EET;EPT,PT,PP,QQ,PAR,CTYPE,NCREEP,CREEPX,CREEPY,CBASEX,NCTABX,
NCTABY,CTABX,CTABY,CTAB,DECO,DEC1,CNORK],CBASE],ECT,SUMTS,SUMPS,SUMCS,NMAX1,
NMAXZ,NMAXB,NMAX4,NMAX5,NMAX6,NMAX7,NMAX8A,NMAXSB,NMAXBC,NMAX9,NMAX]0,NMAX11,
NMAX12 ,NMAX13)

BIGS performs three basic functions, depending on the value assigned to KODE.
If KODE = 1 it sets up variables for a problem cold start, by calling several
input routines and initializing values. If KODE = 2 it reads basic data from
thekrestart tape and then searches through the load increment data to find
and read data for the particular increment from the end of which a restart
is togbé made. If KODE = 3 it writes either basic data or data for a load
inéremeht'onto the restart tape. Because of the large number of arguments

passed and‘maximum 63 argument restriction on the UNIVAC 1108, the 1108

- BOPACE version has many of the arguments put into common blocks.

~§g1_% TherGET routine was uséd'in'a Tow-core version of the BOPACE 1000-DOF

progkamffor the 1108, in order to keep core storage within the 64K word
requirement. It groups arrays with major storage requirements into 12 groups.

These groups are paired such that variables in one qroup are not needed by

~ the proqram while the paired group is be1ng used, The 6 pairs are stored on

6 files (A B,C,D,E,F), and the GET rout1ne is called at various points. in

thé'pkogram to perform a “f1ip-flop" operation, i.e. brina one group into

3-3

vu MUMDEINES orrany

core while writing its paired group out onto a storage file. This proéedure
is not especially efficient, although for large problems its relative cost
is not great. A better procedure is the type of approach used in BOPACE 3-D
in which data for each element is stored sequentially on a file. It is
expected that the BOPACE 2-D program logic will eventually be revised to
correspond to that of BOPACE 3-D. A more detailed description of the arrays

involved and the file pairing techniques is given in Section 5.2.

READRS - (UIN1,UIN2,UOUT,INCR,UINRS,UOUTRS)
READRS is the first input routine called for each problem. It reads data

file numbers and start-restart codes.

READO - (UI,UO,SCODE,MAXUP,MAXIT,MAXIE,MAXYC,MAXCUT,CUT,ERRMAX,AFACT)
READO reads the problem identification title, and various incremental and
jterative constants. For constants not read (left blank by the user) default

values are assigned.

READ] - (UI,UO,NMAX],PCDOE,NMAT,THiCK,TEMPO)

READ1 reads basic codes and constants.

READTM - (UI,UO,NMAX6,IMAT,PCODE,NTHERM,THERMX,THERMY,NEMOD,EMODX,EMODY,
NPRAT,PRATX,PRATY)
READTM reads tables of thermal strain, elastic modulus, and Poisson's ratio,

for each material as a function of temperature.

s
T

e MVMVEINEG corranv

i
READTP - (UI,UO,NMAX7 ,NMAX8BA ,NMAX8B ,NMAXSC,IMAT ,PTYPE ,KTYPE ,NITABX ,NKTABX,

NFTABX ,NTABY,ITABX,KTABX ,FTABX ,TABY ,ISTAB ,KSTAB ,FSTAB)

READTP reads the plastic hardening data, in the form of tables (ISTAB,

KSTAB and FSTAB) of yield surface size, and shape and factor for yield
surface translation, given as a function of temperature and hardening param-
eters. Although different abscissa (hardening parameter) values may be

input for a material for each of its temperature values, READTP interpolates
abscissas for all temperatures of the material to those of the first tempera-
ture giﬁen, in order to allow later use of an efficient table lookup pro-
cedure. Both the input and interpolated tables are output during the echo

check of the input data.

READTC - (UI,U0,NMAXS,NMAX10,NMAX11,IMAT,CTYPE ,NCREEP ,CREEPX ,CREEPY ,CBASEX,

NCTABX ,NCTABY ,CTABX,CTABY,CTAB)
READTC 1dgic is similar to that of READTP. It reads temperature value CTABY,

stress levels CTABX, and creep factors CTAB.

READC - (UI,UO,NMAX12,COORDA)

READC reads angles of user defined special coordinate systems in degrees,

-and stores their values “in radians-in COORDA.

READM - (UI,U0,NMAT ,NMAX2 ,NMAX3, NMAX4 ,NMAX5 ,NMAX12,THICK,NOD, NEL COORDA,

COORD ,GCOS , IMAT T,ELNO,NODE, NELE NODI,NELI)

READM reads the problem mesh data, including nodes and elements. Nodal and

element input data in READM and other routines are identified by an associated

~ node or'e1ement L.D. number. The internal program node and element numbers

3-5

THE ‘”EI”G COMPANY

are assigned sequentially in the order in which fhe node and-element
definition cards appear in the data deck. Correlation between I.D. and
internal numbers is established by the vectors NODE ,NELE,NODI, and NELI.
READZ - (UI,U0,NMAX4,NOD,NODI,NEL ,ELNO,KFD)

READ2 .reads the specified displacements and constraints, and places appro-
priate codes in the KFD vector. KFD(K) = +I for specified force, -1 for
specified displacement, and +J for constrained degree of freedom. Here K
denotes the degree of freedom, I is the node for freedom K is located, and
J is the node of the independent freedom to which a corresponding freedom

at node I is constrained to be equal.

READ3 - (UI,UO,NMAX4 ,NMAX13,NOD,NODI,KFD,PREF)
READ3 reads the two 1oad’refereqce curves and places their values in the

PREF array.

READ4 - (UI,UO,NMAX14,MAXIT,NINCR,NITER,PFACT,CTIME)

READ4 reads incremental data‘(NINCR = number of load ihé}emgnts, NITER -
maximum number of jterations per 1ntrehent; PFACT = factorstto be applied

to load reference vectors, and CTIME = creep time increment). These data

are read for all 1ncrementsiof‘a prob]em during a single call to READ4. They
~are checked and ‘stored to avoid problem termination due to ékrOrs after |

several increments have been already solved.

e BVMVEINES orrary

READS - (UI,UO,INCR,NMAXS,NEL,NELE,NELI,TIDENT,TO,T],ZSO,ZSl)

READ5 reads incremental temperaturei(therma1 load) and Z-direction (normal)
load data for each element. It is called at the beginning of each load
increment. T is the new end-of-increment temperature vector, and ZS1 is

~ the Z-load vector.

HEAD - (UO,NEL,INCR,Fl,F2,CTIME,TIDENT,YCODEO,YCODE],NITER,NI,MAXUP,NUP,
ERRMAX ,ERR)
HEAD writes a heading after each load increment is solved, giving values for

basic incremental variables.

OUTE - (UO,NEL,NELE ,DETEMP ,SUMTS ,DE ,EET)

i"jk OUTE writes the incremental and cumulative values for thermal and elastic
L o

strains, at the end of each 1oad increment.

QUTP - (UO,NEL,NELE,TNORKO,TWORK],DEP1,EPT)
QUTP writes the incremental and cumulative vé]ues for p]astic work density

and plastic strains, at the end of each load increment.

ouTC - (UO NEL ,NELE ,CWORKO,CWORK1 ,DECT ECT) ’
OUTC writes the 1ncrementa1 and cumulative values for creep work dens1ty and

creep strains, at,the end of each load increment where creep occurs.

OUTS - (UO,NEL ,NELE ,ALPHA1 ,SIGMA1) | |
QUTS wr1tes end- of 1ncrement va]ues for stress centers ALPHA1 and stresses

SIGMAT.

37

THE ”’l”ﬂ COMPANY

OUTG - (UO,NEL,NELE,YCODEO,YCODE1,TO,T1,YIELDY,DEPT,SUMPS,EPT,DECT,SUMCS,
ECT)
OUTG writes a summary of several incremental quantities, including effective

plastic and creep strain values.

ROTK - (IT,ELNO,GCOS,K)
ROTK rotates the elemental stiffness matrix K from the global coordinates

to user coordinates, using the direction cosines stored in GCOS.

ROTQ - (IT,ELNO,GCOS,KODE,Q)
ROTQ rotates the element displacements Q, either from nodal to global or

global to nodal, depending con the code KODE.

STRAIN - (NEL ,ELNO,COORD,GCOS ,Q,ET)
STRAIN computes element strains ET in the element coordinate system (X-axis

along nodes 1-2), from the nodal displacements Q.

FORCE - (NOD,NEL,T,ELNO,COORD,GCOS,SIGMAO,SIGMA],P)
FORCE computes incremental forces P in the nodal coordinate system, from
element incremental stresses (difference between end-of-increment SIGMAT and

startfof-incrément SIGMAO. stress values).

ERCOMP - (NEL,NN,KFD,ELNO,COORD,SIGMAO, SIGMA1,T,P,ERR,UO)
1 ERRCOMP computes a residual error norm. The norm is essent1a11y a ratwo of
' unba]anced forces P to total: 1ncrementa1 forces, and is computed us1ng the

stresses SIGMAO and SIGMAY.

3-8

THE '”E’”E COMPANY

YVAL - (NP,AX,AY,X)

YVAL is a linear interpolation function routine. Given NP = number of points
in turve, AX = vector pf abscissas, AY = vector of ordinates, and X = desired
abscissa:va]ue, YVAL is assigned the value of the interpolated ordinate
corresponding to X. If X is outside the range of values in‘AX, the closest
abscissa (first or 1ast‘va1ue of AX) is used instead. The values given in

AX should be unique and monatonically increasing.

DYVAL - (NP,AX,AY,X0,X1)
DYVAL is an incremental interpolation function routine, and provides an

incremental ordinate value equal to YVAL(NP,AX,AY,X1) minus YVAL(NP ,AX,AY ,X0).

VAL - (NTABX,NTABY,TAB)V(,TABY,TABLE,"X,Y)

ZVAL is a linear table interpolation function routine, which js a 2-
d1mens1ona1 version of YVAL. NTABX,NTABY are the number of po1nts in the
X,Y directions. TABX,TABY are the values in the X,Y directions. X,Y are
the coordinates of the desired point, and ZVAL is assigned the corresponding

interpolated TABLE (X,Y) value.

KEFORM - (T,E,NU,X21,X31,X32,Y21,Y31,Y32,K)

KEFORM forms the elastic st1ffness matrix for the constant- stra1n -triangle

element. It .is ca]]ed by routine GENER8

THE '”E’”B COMPANY

KPFORM - (II,PCODE,IM,T,E,NU,X21,X31,X32,¥21,¥31,Y32 K)
COMMON /GENPO/AFACT ,KTYPE
JGENP1/SIGMA1
/GENP2/ALPHAT
/GENP3/TBASEO
/GENPA/TBASET
/GENP5/EBASE T

/GENP6/T1
/GENP7/NITABX
/GENPS/NKTABX.
/GENPO/NFTABX
/GENP10/NTABY
/GENP11/1TABX
/GENP12/KTABX
/GENP13/ FTABX.
/GENP14/TABY
/GENP15/1STAB
/GENP16/KSTAB
/GENP17/FSTAB
/GENP18/DEP

KPFORM forms the plastic contribution to the stiffness matrix for the
constant-strain trianglegélement. It is called by routine GENER8. The
common variables are used in the elastic-plastic material theory. The

’p1asticitheory follows Section 2 of the theoretical manual,

THE '”El”c COMPANY

GENERS - (IT,NUM,NODES,K,NK)
COMMON/GEN1/ PCODE ,KKODE

/GEN2/YCODE

/GEN3/ IMAT

/GEN4/T

/GENS/ELNO

/GENG/COORD

JGEN7/6C0S

~ /GENS/NEMOD ,EMODX ,EMODY ,NPRAT ,PRATX ,PRATY
/GENP6/T1

GENER8 is the basic elemental stiffhess generator, which calls either

KEFORM or KPFORM to form the elastic or plastic stiffness matrix. GENER8 is
called by rout1ne GENR8 in the linear equation solver package. Thé stiffness
for plane stress or plane strain is formed depending on whether the value of
PCODE is O or 1, respectively. For p]éne strafn the value of E = elastic
modulus and NU = Poisson's ratio are adjusted so as to allow the same elastic

stiffness generation procedure for both plane stress and plane strain.

3-1

e BVMVEING orvrarv

4.0 INPUT/OUTPUT AND COMMON STORAGE
4.1 INPUT/QUTPUT FILES

The following is a definition of I/0 files used in the BOPACE 2-D program,

given by unit number (integer constant or variable).

5 - Input card file.
6 - Output printer file.

IN1 - UIN? is the user-defined unit number for the type 1 input data (see

user manual, Section 2.0).

IN2 - UIN2 is the user-defined unit number for the type II input data.

————rrs

UOUT - UOUT is the user-defined unit number for the major output data file.

UINRS - UINRS is the user-defined unit number for the input restart data
file.

" UOUTRS - UDUTRS is the user-defined unit number for the output restart
data file.

®YNITE] = 11 - File for storing the merged elastic stiffness matrix.

*UNITE2 12;5 File for storing the decomposed elastic stiffness matrix.

*Note: UNITE1,UNITE2,UNITP1,UNITP2 may also be used as temporary scratch files
- when adding elastic and plastic matrix contributions to form the total '
stiffness. - ' - ‘ Cle R

g

e BVMVEING -ourany

*UNITP1 = 13 - File for storing the merged total Jacobian matrix. It is

used only when the input variable SCODE is equal to 3, 4 or 5.

*UNITP2 = 14 - File for storing the decomposed total Jacobian matrix. It is

used only when the input variable SCODE is equal to 3, 4 or 5.

UNITS1 = 15 - Scratch file used for temporary storage by the Gauss merge and

decomposition routines.
UNITS2 = 16 - Same as UNITS1.

20-26 - These units provide storage for the "f1ip-flop" arrays handled by
routine GET (see Section 5.2). Six files are used for six paired array groups,

plus one file for temporary storage.
4.2 COMMON BLOCKS

The only common blocks used in thevcurrent’BOPACE 2-D program version occur
in the MAIN program,‘fn the]ineafxeqdation solver routines (seebﬁéctionVG),
and in routines KPFORM and GENER8. (In the UNIVAC 1108 version some of the
variables in routine BIGS have a]so’been p]aced'in common to reduce the

Tength of the argument list).

The common block JLB in the MAIN program provides for a storage aréa needed
in,so1vihg the linear eQuations; and for transfer of variables between the
MAIN program and the equation solver routines. |

“*Note: UNITEY,UNITE2,UNITP1,UNITP2 may also be used as temporary scratch files .

“when adding elastic and plastic matrix contributions to form the total
stiffness. o s : : ‘ ‘ :

THE '”””E COMPANY

Common blocks GEN],GENZ,GEN3,GEN4,GEN5,GEN6,GEN7,GEN8 contain basic codes,
element and nodal data, and elastic material properties, which are used in

the GENERS routines.

Common blocks GENPO,GENP1,GENPZ,GENP3,GENP4,GENP5,GENP6,GENP7,GENPS,GENPQ,
GENP]O,GENP]],GENP12,GENP]3,GENP14,GENP]5,GENP16,GENP17,GENP18, are
v.plasticity vafiab]es and data tables, which are used to form the p1a$£ic
stiffness matrices in routine KPFORM. kThé temperatures stored in GENP6

are also used in routine GENERS.

cna
-

i

g
N

THE ’”””E COMPANY

5.0 CORE REDUCTIONS

Reduction of the computer core storage requirements for BOPACE 2-D is
acqomp1ished by an overlay procedure. Additional reduction was achieved
fo; UNIVAC 1108 usage by the use of dynamic storage of arrays. These
procedures allowed the execution of both the 300:and 1000 DOF BOPACE 2-D
programs within 64K words of core. It is expected that an improved core
reduction procedure will eventually be 1mp1emented for BOPACE 2- D follow-
ing the Togic of the BOPACE 3-D program BOPACE 3-D has achieved a very
efficient core reduction through external storage of element and nodal
arrays, allowing problems of from 1500 to 3000 DOF to be run in‘64K to
128K core. |

‘5.1 OVERLAY

The BOPACE 2-D overlay structure is designed to keep in core at all times
the MAIN program, common blocks, FORTRAN 11brary routines, and severa]
subroutines wh1ch are called within the MAIN program inner loop For those

routines wh1ch are overlayed, two overlay levels (A and B) are defined.

The overlay is diagrammed in Figufe 5.1-0.

5.2 DYNAMIC STORAGE OF ARRAYS

- This~procedure involves grouping of the maﬁoﬁ program arrays into 12 groups,
j?’and pa1r1ng them onto 6 files (A,B,C,D,E ,F). The groups are tranéferred
 k1nto and out: of core by routine GET- (see Sect1on 3.0). For examp]e wh11e

: group A1 1s 1n core, group A2 1s stored on f11e A etc The follow1ng

*,5#1

MAIN
CREEP
DYVAL
ERCOMP
FORCE
GET
ITER
RDFWRD
READS
ROTQ
SOLN
STRAIN
SUBFR
TABVAL
YVAL

(COMMON BLOCKS)
(FORTRAN LIBRARY ROUTINES)

READRS

READ4
SRTAPE

* INCLUDES DROW AND DOTHER

BIGS

READTM
READTP
READ1

HEAD
QuTC
QUTE
ouUTG
|
ouTPQ
READC ouUTS
READM
READTC
READ?2
READ3

DECOMP

MERGE

SEARCH

I 1

DUMMY BLOCK
MERSOR DELETE
MRTAPE *DIAG
GENERS DIC
GENRS INTER
KEFORM SAVER
KPFORM
ROTK

Figure 5.1-0. BOPACE 2-D Overlay Disgram

(. .
R

v MVEING orrany

defines the array groupings, variable dimensions, and resulting group

storage lengths.
A1(7000)-P0(1000),P1(1000) ,DP(1000) ,DQ(1000) ,PP(1000),Q0Q(1000) ,PAR(1000)

A2(7200)-YCODEY(800) ,TWORK1(800),T0(800),T1(800),TBASEO(800) ,TBASE1(800),
ISTAB(900) ,KSTAB(600) ,FSTAB(900)

B1(7200)-SUMTS(800) ,SUMPS(800) ,SUMCS(800) ,EPT(2400) ,ECT(2400)

B2(7200)-IMAT(800) ,ALPHAT (2400) ,SIGMA1(3200) ,EBASE1(800)

!

C1(6600)-STOR(5000),250(800) ,2S1(800) -

C2(6700)-DETEMP(800),YCODEO(800) ,EBASEO(800) ,YIELD1(800) ,SIGMAO(3200),CTAB(300)

D1(5800)-GCOS(2000) ,COORD(1000) ,PREF(2000) ,NELE(800)

D2(5600)-YIELDO(800) ,ALPHAO(2400) ,DECO(2400)

E1(6600)-T(800) ,ELNO(2400) ,DECT (2400) ,KFD(1000)

E2(6400) -TWORKO(800) ,DEPO(2400) ,EET(3200)

F1(5700)-CHORKO(800) ,CHORK1 (800) ,CBASEO(800) ,CBASE1 (800) ,P(1000) ,(1000,

© NODE(500)

F2(5600)-DEP1(2400) ,DE (3200)

#i T i

Y
L
3

les)
i

6.0 LINEAR EQUATION SOLVER
6.1 INTRODUCTION

These routines are written in FORTRAN IV for use on IBM 360 and 370, and
UNIVAC 1108 computers.

6.1.1 PURPOSE

These routines are used to: 1) generate elemental matrices and merge them
into the gross matrix; 2) decompose the gross matrix; 3) forward and back
substitute to find the unknowns (s;e Section 5 of the theory document); and
4) two special routines, one to merge two gross matrices, and one to read
and/or write a checkpoint tape containing the gross matrix and the
decomposed matrix. The routines are separated into the above logical
sections in order to give the user complete flexibility in their use

based on the type of problem to be solved.

The linear equation solver routines have been written as an independent
package. As such, they can be used inkany program without recoding. The
user must supply routines to generate the elemental matrices (details

given in Section 6.2), which enhances their independence and use,

6.1.2 NOMENCLATURE

NF- - Number of freedoms per node

NN = Number of nodes in,prbb]em , |

F - Input - vector of combined known_forées'and &stlacements
OUtput - vector of known and‘ca]cuTéted (réactions) forces

- Vector of known and calculated displacements

6.1

i

6.1.2 (continued)

MBW

Maximum bandwidth

LDT

Load definitijon vector
6.1.3 METHOD
6.1.3.1 MATRIX PARTITIONING

Figure 6.1-1 shows a two bar, three node structure; each bar is capable

of carrying axial loads.

+ F TYP)

37293y

. 3> Fays8q(TYP)
A

i 2

FIGURE 6.1-1: TWO BAR STRUCTURE

Bar A, using nodes 1 and 2, has the elemental matrix given in Equation
(6.1-1). Note that bar A is parallel to the X axis and does not

have Y freedoms.

(Fyo) e «7 (s : |
0 ; X (6.1-1)
zexs oLk K] ey |
where K represents the stiffness terms (for this discussion theirVVa1ue

is immaterial).

-~ Bar B, us1ng nodes 2 and 3, has the elemental matr1x quen in Fquat1on

(6.1-2). Note that bar B has both X and Y freedoms

6-2

6.1.3.1 (continued)

[" R
F2X K K K) 62X

< F2Y > _ K K K K < GZY > (6_]-2)
F3X K K K K 63X
F3Y . K K K K 63Y

\ "/ 7 | — \ /

t

(Fix) [k kK 0 o0 o0 | £51%)

Foy K K K K K Sy

(Fpy 2 = |0 kK k Kk « { o $ (6.1-3)
Fay 0 K K K K Say

\Fay / [0 koKX K’_ 53y

The program requires that each node has the same number of freedoms in the

matrices. Therefore Equation (6.7-1) must be rewritten

(F”(\:‘: [k o0k o (‘a]x\
Fiy 0 0 0 © 5

<F1Y”>) K 0 K 0 <5”> | sl
"2X 2X ,
\'FZY)-“ _—o 0 o*o_ﬂ \a?»YJ

and the gross matrix becomes n

/‘le\ B K0 KO O o | [51y)
Fiy 000000 51y

3 T R P S S
oy | 00K KKK s, S
Fax 0.0 K KK X 53

\.,Fé”‘ j | 00 K K K K__J \' Sy)

6.1.3.1 {continued)

., The gross matrix of Equation (6.1-5) can be partitioned

g . '—T_ q - - ~ —— -,
§F1x k o][k o] [o o 56”‘?
'\F]Y | 0 0]]0 0] {0 O)6”5
- N r -1 r - :
Foy _ ’K 0 K K| [k §62X{ (6.1-6)
F (0 o] [k K]k K] s
g 3x 3x2
?FBY [0 0 [K K][K K : G3YS

The reason for the pfograms requirement that each node have the same number
of freedoms bééomés apparent when examining the partitions of Equation
(6.1-6). Note that each partition has the same matrix order (1n th1s

case a 2x2), a]so that the freedoms within the part1t1on are ordered
identically. Further, the location of each partition is known by

identifying the node number associated with its rows and the node number

associated with its columns.

“The pfbgram takes advantage of these conditions for several reasons. First,

by generating the full elemental matrices (as shown in Equations (6.1-2)

‘and (6.1-4)), and doing the partitioning on them, makes merging to form

the gross matrix a simple addition of partitions having identica1*roW/co]umn

node numbers.” Second, the spec1a] equation genprat1on process descr1bed

in Sectwon 5 of the theory manua1 becomes a matter of how the e1ementa1

matr1ces are part1t1oned (And the row/eo]umn node numbers ass1gned)

fkaor examp1e assume that freedom Y, node 3 of bar B (see F}gure 6.1f1) is

6-4

6.1.3.1 (continued)

constrained to be equal to freedom Y of node 4 (not shown). Then rewritten

Equation (6.1-2) (with partitioning) yields

SFZX? [«q [x o {o al ({ x|

?FZY S K k] |k o) [0 K] (dzv

(F3x2 k «] [x o] [o K] S 2]

IF3Y‘S " |lo o) [0 o Lo ol < (G3YS o 81D
SF4X? 0 o} [0 0] {o 0] Sax |

lmys L__K k| [k o] |o p; \ %vg

Third, the program needs to retain only those partitions which have at least
one non-zero term. Further, due to symmefry of the stiffness matrix, it
retains only the upper triangular partitions (those whose row node numbers

are less than or equal to the column node numbers).

Fourth, and finally, the decomposition, and forward/backward substitution
' brocess becdmes a matter of operating on the non-zefo partitions. This

in turn simplified the inherent bookkeeping necessary during these steps.
It‘quts dowin the core requirements, particularly during the decomposition

for the matrix, and also for the bookkeeping arrays.

.'The_row/column node numbers are paéked into one FORTRAN intéger.7 This

partition 1D nUmberkhas the form

ID=f*1+d (6.1-8)

“where - ID = ‘the ID number .

a factor (currently £ = 1007)

-ﬁ
=

“row node number -

—
{8

; %
LT e
" -/

6.1.3.1 (continued)

The use of -this ID number a]1oﬂs the merging routine to: 1) search
only a one dimensional vector of ID numbers in order to merge the
partitions, and 2) to order the pértitions on the merged matrix tape
(disk, drum, etc.) by low ID to high ID numbers. This means that the
partitions are ordered on the tape Tow row node numbers to high row
node numbers. And within each‘group of row node numbered partitions,
the partitions are ordered low column node number to high column node
numbers. The value of a sorted merged matrix tape is usedvto great
advéntage in calculating the maximum bandwidth {Subroutine DUMMY) and

the incore decomposition (Subroutine DIC).
6.1.3.2 NODE NUMBERING

These routines require that the node numbers are FORTRAN integers in the

range 1 to NN, where NN is the number of ‘nodes in the problem. This

| requirement allows the program to use the node number as a FORTRAN index

in locating necessary data in the vectors (F, D, and LDT).

For exémp]e, assume that it is necessary to obtain the value of the Jth

fréedom of the Ith‘node of vector V. Then the fq]]owing FORTRAN code 7

can be used -

- DIMENSION V(NF,NN), W(1)
EQUIVALENCE (V(1,1), W(1))

9w V(9,1
2 U = WNFX(1-1) + J).

These routines use the second form (statement 2).

6-6

6.1.3.3 LOAD DEFINITION VECTOR

The load definition vector contains one value for each freedom (NF*NN
values) in the problem. Its purpose is to describe the constraints of
the freedoms. It is a FORTRAN integer vector, setup with node numbering
and freedom storage as described in Section €.1.3.2. The values assigned
for each freedom must be assigned according to the following rules.

(Let K equal the assigned value.)

1) 4K, a positive value describes a freedom with a known force
and the displacement is to be calculated

2) -K, a negative value describes akfreedom with a known displacement
and the reaction force is to be calculated.

3) The value K is a rode number, and in general is the node number
of the freedom, i.e., LDT(J,I) = +I where J = freedom and I = node
numbe}. For the spécia] equation generation case (Section § of
the theory document) the value of K at node I, freedom J, becomes
the connecting node to tie the fréedoms together. To clarify,
consider the structure shown in Figure (6.1-2), consisting of

three bars, capable of carrying axial loads only, and five nodes.

FIGURE 6.1-2: THREE BAR STRUCTURE

: 6f7

6.1.3.3 (continued)

Bar A on nodes 1 and 2, bar B on nodes 3 and 4, and bar C on nodes 3 and
5. Further assume that the X freedom at nodes 2 and 3 is constrained to
displace equally, and the Y freedoms are to be allowed tou displace unequally.

The load definition vector (LDT) for this problem is given in Table 6.1-1.

NODE | FREEDOM | LDT NODE | FREEDOM | LDT

1 X 1 4 X -4
Y 1 Y -4
2 X 2 5 X -4
Y 2 Y 5
3 X 2
Y 3
TABLE 6.1-1

One essential point - the cross connection is on an identical freedom

basis, a freedom X to a freedom X, etc., but not a freedom Y to a freedom X.

Two powerful uses of thé load definition vecfor are available. First,

in the case of known displacements, the nodes do not need‘tq be attached,
(see nodes 4 and 5 above). Second, the known forces at the connected nodes
are additive (an input forcevat 2X and an input forcé at 3X are added in

the above example).

6.1.4 LIMITATIONS

The maximum core usage -occurs during the incore decomposition. The available

core is definedkby the usér in a hamed;common block. One value 1nythis

© common b]ockbis the length Of‘the common block. (Detai]s of this common

6-8

6.1.4 (continued)

block are given in Section 6.2.1).

Let MBW = maximum bandwidth
NF = number of freedoms per node
N = (MB)*(MB)) / (2)
L = (MBW) + (MBW)*(NF2) + (8)
c = ypequired core (words)
Then

C o= (MBH) + (N) + (20%(NF2)R(N) + (6)¥(NF2) + (L)

Currently the only available decomposition routine requires in-

core storage having the above storage requirement. An out-of-core or large

decomposition routine was planned but not implemented (to date).

One othar decomposition Timitation is the maximum size of L. This
maximum is hard coded in the program (see "MAXLT" in subroutine DECOMP) and is

set to 420 words.

6-9.

s
¢ i

6.2 USER INTERFACE
6.2.1 USAGE

While there are some twenty-four routines in the Linear Equation Solver

package, the full capability is available via five "main" entry routines.

1) MERGE - to generate and merge the elemental matrices to obtain
the gross matrix
2) DECOMP - to decompose the gross matrix
3) SOLN - to calculate the unknown forces and displacements
4) MRTAPE - to merge two gross matrices (from MERGE) using the
equation
[Kyl = A*[Ky] + BX[K,]
where
[KM] is the new merged matrix

[Ki] is the first input gross matrix
[K2] is the second input gross matrix
A 1s an user supplied scalar
B is anwuser supplied scalar

5) SRTAPE - to write or read a checkpoint tape

Details of the calling sequences is given in Section 6.2.2.

The gross matrix (of matrﬁces)vandkthefdecomposed matrix are stored on
an 170 unit (tape, disk,‘drum, etc.). ‘The user-is responsible for aésignment

of the FORTRAN logical units.

- 6-10

5.2.1 (continued)

The core storage used is a named common block. This allows the user
complete control of core storage requirements for his proaram. The format

of the common block is

COMMON/JLB/KT, LT, MBW, LA, A(LA)

where' KT and LT are the FORTRAN logical unit numkters of two I/0 units
to be used as scraich
MBW is the maximum bandwidth to be expected during decomposition.
This value is calculated by the Generate/Merge section or the
MRTAPE routine and posted here. B
LA is the length fn words (the dimension) of array A.

A is the scratch storage array of 1ength LA. |

The node numbers are requifed to be in the range 1 to NN as described in

Section 6.1.3.2.

Three arrays are used, they must be in user storage (nbt in common block
/ILB/). The first array is the Load Definition Vector described,in"
Section 6.1.3.3. The two'reﬁéfning vectoré are FORTRAN single precision
real (floating point) vectors setup with node numbering and freedom storage.

as described in Section 6.1.3.2. These two arrays are the Force vector (F)

'and~the Displacement vector (D). They are used only by the Forward/Backward

VSubstitution section (Subroutine SOLN).

The Force vector (F) has dual usage; on input to SOLN, it must contain the

;comb?ned known fofcesyand‘d15p1acements;k‘On'return from SOLN, it'inT

~ contain only forces (known forces and calculated reactions).

6-11

6.2.1 (continued)

The Displacement vector (D) is not used for input to SOLM; on return, it

will contain the displacements (known and ca]cu]ated).

In order to give the user complete freedom of type of structural elements

to be used, the Linear‘Equation‘So1ver routines require the user to supply
%: his own elemental matrix generation routines. Interface between the
Generation/Merge section and the user routines is via the user written

subroutine GENER8. Details are given in Section 6.2.3.
6.2.2 CALLING SEQUENCE

The calling sequence to the entry routines follows. Unless otherwise

{ B
| .
Tt

noted, all calling sequence arguments are fullword integer values or arrays.

CALL MERGE (IT,NN,NE,NF,LEN,LDT)

where
IT = FORTRAN logical unit number of the unit for the output qross
matrix. |
NN = number of nodes
NE = number of:structuhal elements
NF = number of freedoms per node
LEN = thé maximum number of nodes that can be generated for any one

structural element

'LDT = the Load Definition Vector

"5&]21

6.2.2 (continued)

CALL DECOMP (IT,JT,NF,LDT)

where
IT = FORTRAN 1ogica1 Unit fumber of the input gross matrix
~JT = FORTRAN logical unit number of the unit for the output
decomposed matrix
NF = number of freedoms per node
LoT =

the Load Definition Vector

CALL SOLN (JT,NF,NN,LDT,F,D)

where

JT = FORTRAN Togical unit‘number of the input decomposed matrik

NF = numbér of freedoms per node

NN = number of nodes

LDT = the Load Definition Vector

F = single precision real (floating point) array of the input |
combined known force and displacement vector, and the output
forces W ,

p o= single precision real (floating point) array of the output

displacement vector.

‘CALL MRTAPE (IT,JT,KT,A,B,NF)

where ’
T = 'FORTRANe]ogi¢a1 unft'number of the first 1ant gfoss matrix
JT = FORTRAN logical unit number of ihe sécond input grossbmatrﬁx
A .é' single'precisién real (floating point)_va]ue, scale factor for

-

“the first input matrix on unit 17

613

6.2.2 (continued)

B = single precision real (floating point) value, scale factor
for the second input matrix on unit JT
NF = number of freedoms per node

CALL SRTAPE (IT,JT,NF,IP,IS)
where
IT = FORTRAN Togical unit number of the 1nput gross matrix or the

input decomposed matrix

JT = FORTRAN Togical unit number of the unit for the checkpoint tape
NF = number of freedoms per node
IP = 1 process a gross matrix

= 2 process a decomposed matrix
IS = 1 write the checkpoint tape
= 2 read the checkpoint tape

SRTAPE must be called for each matrix to be read or written. It does not

position the checkpoint tapé other than the inherent positioning caused by

: theiread/Wkite operations. The user is required to position the tape as

necessary. The no positioning concept a11ows the user to use the tape

for checkpoint of his own dataf

6.2.3 _ USER ROUTINES‘ |

The user 1s required to supply his own elemental matrix qonprator rout1nes.

Interface is via a user supplied rout1ne with the spec1f1c name GENERS, ‘which

has the spec1f1c ca111ng sequence

6-14

6.2.3 (continued)

CALL GENER8 (I,N,NODES,S,NS)

where

1 = fullword integer value containing the element number
whose elemental matrix is to be supplied (I is in the range 1
to NE where NE is the number of elements)

N = fullword integer value to be returned containing the number
of nodes of the element

NODES = fullword integer array to be returned containing the N node
numbers of the element. (Use the first N terms of this array.)

S = double precision real (floating point) array to be returhed
containing the elemental matrix.

NS = dimensions of array S.

Array S is dimensioned

DOUBLE PRECISION S(NS,NS)

The elemental matrix must be a full symmetric matrix (do not return a symmetric
han); The nodes and freedoms are to he ordered such that the elemental
matrix partitions can be formed directly from the elemental matrix, with no

sorting or inserting of rows and columns to meet the modal partition order.

- The node ordering of the matrix in array S musf match the node ordering

“in array NODES.

Subroutine GEMERS is ca1]cd once for,eachke1emont in the problem. Its

content, logic, and programming is left to the user.

6-15

6.3 PROGRAMMING
6.3.1 TAPE FORMATS

Two tape formats are used. The first format is used for the matrix partitions
inc]udihg all scratch tapes and the final gross matrix tape. The second

format is for the decomposed matrix tape.

Figure 6.3-1 is the tape format for matrix partitions

ID WORD i
| = 1ST PARTITION AND
PARTITION Sla ITS ID WORD
Y
1D WORD i
Q.
w|&S 2ND PARTITION AND
PARTITION S|g ITS 1D WORD
‘ ' !
1D WORD g
| =R
| WS LAST PARTITION AND
PARTITION <l ITS 1D WORK
1D_WORD
| =
: ' 2|8 DUMMY PARTITION
PARTITION S| WITH ID = 0

FIGURE 6,3-1: PARTITIONED MATRIX TAPE FORMAT

6-16

6.3.1 (continued)

Let NF be the number of freedoms per node. Then each record consists of
the partition's ID (row/column packed node numbers) FORTRAN integer value
(one full word) followed by the NF double precision values of the elements
of the partition. The elements of the partitions are written by rows,

the NF elements of row one, fo]]oWed by the NF elements of row two, etc.
The physically last record on the tape must be a dummy partition with an

ID number of zero.

Figure 6.3-2 shows the general tape format, and the format of one general

data record. Each record on the tape, including the header and trailer

records, has a FORTRAN fullword integer as its first word. This integer (NNW)

is the number of words in the record.

The header and trailer records are each ten FORTRAN integer fullwords with

the format shown in Figure 6.3-3.

Each data record contains one .or more nodal records, each nodal record

having the format shown in Figure 6.3-4.

’Each nodal record containsréi1 the data necessary from the decomposition step
in order to perform fhe forward/backward substitution step. Each céﬁtains
the data fdr one decomprition row. The partit{onE are single precisioh real
(floating point)‘Va1ues, all other values ane FORTﬁAN fullword integers.

: The nodes array contains the column node numbers of the partitions,'with the

'first node also being the hodernumber of the decomposition row.

617

R Y

e

HEADER
RECORD

DATA
RECORD

DATA
RECORD

TRAILER
RECORD

END OF

FILE

TAPE FORMAT

~ FIGURE 6.3-2:

DATA RECORD -

DECOMPOSITION TAPE FORMAT

6-18

NNW |
|
NODE
RECORD
(o)
NODE =
RECORD wl S
g;_‘n:
2|
=| &
=
=
[an]
NODE
RECORD
‘, R

6.3.1 (continued)

As many nodal records are placed in each data record as possible without
exceeding the maximum length of a data record. Each nodal record is

completely contained in its data record.

Y
|

! NNW = 10
‘ 1ST HORD = 0
. oL MAXIMUM(LENGTH OF ANY ONE DATA
2 D = RECORD (SEE MAXLT IN SUBROUTINE
g 3 2ND WORD = L DECOMP)
o 3RD WORD = MBW | MBW = MAXIMUM BANDWIDTH
[~ o :
<C —
- ,
4TH THROUGH 10TH
WORDS ARE UNUSED
| I

HEADER RECORD
th T

,4 CONNW = 10

1ST WORD = 0

2ND THROUGH 10TH
WORD ARE UNUSED

TAPE RECORD
10 WORDS

END OF FILE

TRAILER RECORD

(A*D‘ - . FIGURE 6.3-3: HEADER AND TRAILER RECORDS FORMAT

6-20

) W
| NN
NP
i NW = NUMBER OF WORDS IN NODAL
A~ RECORD
alg _
== NP = NF2 = NUMBER OF WORDS
= IN ONE PARTITION
Y NODES = ARRAY NODE NUMBERS
4 g‘ LNW = LOCATION OF THE FIRST WORD
o 2 ONE (N¥) OF THE NODAL RECORD IN
E DATA RECORD.
3 = PARTITION THE DATA RECORD
(o' =
- x
S o _
(=] = w
= = . o
= gl = PARTITION
— a :
— =
= L
<
.
=
= Z Z
2
= ONE
= PARTITION
Q.
=
Y
Rz LNW

 FIGURE 6.3-4: NODAL RECORD

6-21

6.3.2 GENERATE AND MERGE ROUTINES

The general flow of the GENERATE and MERGE routines are shown in Figure

6.3.5.
MERGE B
et

I l ? '

GENERS MERSOR DUMMY
GENER8 | |
) ']a (USER - SEARCH
b SUPPLIED)

FIGURE 6.3-5: GENERAL FLOW GEMERATE/MERGE ROUTINES

MERGE is the "main" entry subroutine called by the user. Its main function
is to compute storage assignments for the arrays needed in the other routines.
These storage assignments are in the common block /JLB/ and are passed

via the calling sequence arguments.

GENR8 controls the generation of the elemental matrices. It partitions
the;e]émental matrices, writting random ordered,‘unmerged partitions on a

tape for 1ater merging.'

6.3.2 (continued)

MERSOR merges the partitions generated by GENR8 and writes the sorted

merged gross matrix on the gross matrix tape.

DUMMY computes the maximum bandwidth using the merged gross matrix tape

from MERSOR.

SEARCH is a working routine used to locate a node number in an array of
node numbers; it is also used by the decomposition step and the special

routine MRTAPE.

6-23

6.3.2 (continued)

Subroutine MERGE

Calling sequence - see Section 6.2.2.

MERGE

'

COMPUTE
STORAGE
ASSIGNMENTS
FOR GENRS8

COMPUTE
STORAGE
ASSIGNMENTS
FOR MERSOR

COMPUTE -
STORAGE
ASSIGNMENTS
FOR DUMMY

CALL

DUMMY

'

‘< RETURN)

6-24

6.3.2 (continued)

Subroutine GENRS

Calling Sequence

CALL GENRS(ITAPE,NE,NF,NSN,LDT,S,B,C,LTT,NODES,LDD)

when

ITAPE = FORTRAN‘logical unit number of the unit for the generated
partitions

NE = number of structural elements

NF = number of freedoms per node

NSN = dimension of array S

= LEN*NF where LEN = maximum number of nodes in any one element

(see calling sequence for MERGE, Section 6.2.2)

LDT = Load Definition vector

S = generated matrix (see calling sequence to GENER8, Section 6.2.3)

B = array for one partition |

C = array for onz partition

LTT = afray for Load Definition vector for one element

NODES = array of elemental nodes

LDD = = bookkeeping array

Array Dimensions ,
~ DOUBLE PRECISION S(NSN,NSN), B(NF,NF), C(NF,NF)
INTEGER NﬂDES(LEN),,LDT(NN*NF), LTT(NSN), LDD(NF,NF)

'whére NN = number of nodés in problem

6-25

L

GENR8S

CALL
GENERS
GET ONE

ELEMENTAL

MATRIX

FOR PURPOSES OF THE
MATRIX GENERATION
THE NEGATIVE LDT -
VALUES (KNOWN DIS-
PLACEMENTS) MUST

BE IGNORED

SELECT LDT
VALUES FOR
ELEMENT PUT
- — — o IN LTT. SET
NEGATIVE LDT
VALUES TO -
NODE NUMBERS

MOVE ONE UPPER
TRIANGULAR
PARTITION FROM
S INTO B

IS THE
PARTITION
ALL ZERO ?

IS THE
PARTITION
A DLAGONAL
_ PARTITION
?

* RETAIN THE UPPER

TRIANGULAR TERMS
ZERO THE REMAINDER

THE . PROGRAM: USES
THE TERM “RELAX
FREEDOMS" FOR THE
SPECTAL EQUATION
GENERATION PROCESS

DOES
THE PARTITION
HAVE RELAX .
FREEDOMS
? g

6-26

SET 1D NUMBER,
FOR PARTITION
AND WRITE 1D
AND PARTITION
ON 1TAPE

SET LDD ARRAY FOR THE
PARTITION, EACH TERM
TO BE THE PARTITION ID
NUMBER OF THE CORRE-
SPONDING TERM OF THE

PARTITION

SEARCH LDD FOR
A NON-ZERO 1D
NUMBER

NON-ZERQ

NO

[D FOUND
?

SELECT ALL TERMS IN B
THAT HAVE SAME ID INTO
C, SET CORRESPONDING
LDD TERMS TO ZERD

UNPACK 1D, GET
ROW AND COLUMN
NODE. NUMBERS

UPPER.
TRIANGULAR

YES
PARTITION

INTERCHANGE ROW AND-
COLUMN NODE NUMBERS
SET 1D NUMBER FOR
PARTITION, ‘WRITE 1D
NUMBER AND TRANSPOSED
PARTITION ON ITAPE

SET ID NUMBER
AND WRTTE 1D
AND PARTITION
ON ITAPE

6-27

j—

HAVE ALL

PARTITIONS

 BEEN PROCESSED
?

HAVE ALL

ELEMENTS

BEEN PROCESSED
Roc

WRITE DUMMY
PARTITION WITH
ID NUMBER OF - .
ZERO ON ITAPE

B

REWIND
ITAPE

~ RETURN

6-28

6.3.2 (continued)

Subroutine MERSOR

Calling sequence

CALL MERSOR (NTAPE,KTAPE,LTAPE,NARG,MAX,DATA,TEMP,NDATA,LIST)

where

NTAPE = FORTRAN logical unit number of the input partitions to be merged
E and the bufput merged sorted partitions
l KTAPE = FORTRAN logical unit numbers of a unit to be used as scratch

LTAPE = FORTRAN logical unit number of a unit to be used as scratch

NARG = number of words in one partition

MAX = number of partitions that can be kept incofe

DATA - = arréy for incore partition storage

TEMP = array for one partition

NDATA = array for incore partition ID numbers

LIST = sorting array for ID numbers

Array Dimensions
DOUBLE PRECISION DATA(NARG,MAX), TEMP{NARG)
 INTEGER NDATA(MAX), LIST{MAX)

629

.

0

NREC IS THE COUNTER
OF THE NUMBER CF
INCORE- PARTITIONS,
MAXIMUM 1S MAX

— — —— — = NREC = 0

MERSOR

INITIALIZE
CONTROL
PARAMETERS

READ A PARTITION
AND 1D FROM NTAPE
INTO- TEMP

LAST
(DuMMY)
PARTITION
READ

SEARCH NDATA FOR
1D MATCHING THE
INPUT 1D NUMBER

- 6-30

YES

SET CONTROL WORD
INDICATING THAT
ALL - INPUT ‘PARTI-
TIONS HAVE BEEN

READ
:4

© MERGE
PARTITION ~

HREC = NREC +

STORE INPUT PARTITION
IN DATA (-, ,NREC), AN
10 IN NDATA(NREC) -

UPDATE LIST SO

THAT L1ST INDICATES
SORT ORDER. OF 1D
NUMBERS

ALL INPUT™
PARTITIONS

READ
?

YES SET CONTROL SO
= OUTPUT TAPE
WILL BE NTAPE

]

SCRATCH

TAPE ...

BEEN USED
7

; WRITE DUMMY
WRITE 1D AND PARTITION PARTITION ON
THAT ‘ARE INCORE ON QUTPUT TAPE
QUTPUT TAPE SORTED ON : WITH ID = O
1D LOW TO HIGH

J

- 6-31

2€-9

LET K BE A COUNTER
TO PICK-UP INCORE -
10'S AND PARTITION
LOW 1D TO HIGH

IDT « 1D OF PARTITION
FROM SCRATCH TAPE

10, = THE K'0 INCORE ID-

K1
X > NREC YES

COPY REMAINING
PART1TIONS FROM
INPUT SCRATCH

TAPE TO QUTPUT
TAPE INCLUDING
DUMMY PARTITION

40

READ AN ID AND
PARTITION FROM
INPUT SCRATCH
TAPE

ouMMY

PARTITION

FOUND
?

WRITE THE REMAINING INCORE
ID'S AND PARTITIONS ON THE
OUTPUT TAPE SCRTED LOW ID

TO HIGH. ALSO WRITE THE

DUMMY PARTITION WITH ID = 0

|

WRITE THE ID AND
PARTITION FROM
THE INPUT SCRATCH

- TAPE CN THE QUTPUT
TAPE

- oN

MERGE THE K'" PARTITION
AND 'THE PARTITION FROM
THE INPUT SCRATCH TAPE,
AND WRITE 15, AND RESULT

WRITE THE K'Y 1p
AND PARTITION ON
THE OUTPUT TAPE

THE OUTPUT TAPE

S
OUTPUT TAPE
ALSO ATAPE

SWITCH CONTROLS SO
THAT THE QUTPUT
SCRATCH TAPE BECOMES
THE NEXT INPUT
SCRATCH TAPE, ETC.

6.3.2 (continued)

Subroutine DUMMY

CALL DUMMY (ITAPE,MBW,NFN,TEMP ,MA)

where ‘
ITAPE = FORTRAN logical unit number of the unit containing the merged
ordered matrix ‘
MBW = maximum bandwidth
NFN = number of words in one partition
TEMP = array for input partition
MA = array of active node numbers

Array Dimensions
DOUBLE PRECISION TEMP(NFN)
INTEGER MS(NN)

where NN = number of nodes in problem

6-33

e

DUMMY

READ FIRST 1D
AND PARTITION

FROM ITAPE

UNPACK THE 1D
NUMBER GETTING
THE ROW NODE
NUMBER

NA

(1]

CURRENT ACTIVE
ROW NODE NUMBER
NUMBER OF NOQDES
IN ARRAY MA

fo o e

INITIALIZE
MBW = 0
KA =

NA =}
MA(1) = KA

ROW NODE

)

READ NEXT 1D
AND PARTITION
FROM I1TAPE

UNPACK ROW
NODE NUMBER
FROM 1D

6-34

‘ RETURN ’

UNPACK COLUMN
NODE NUMBER
FROM 1D

SEARCH 1S USED TO

ADD THE COLUMN NODE
NUMBER O ARRAY MA
AND INCREMENT NA IF
THE COLUMN NODE NUMBER
1S NOT ALREADY IN MA

s s o

SEARCH 15 USED T0
LOCATE KA IN THE
ARRAY MA. THE
LOCATION IS RETURNED
AS A SUBSCRIPT OF MA

SEARCH IS USED TO

ADD THE -NEW. KA TO
ARRAY MA AND - INCREMENT
NA IF THE NEW KA IS
NOT ALREADY -IN MA

- 6-35

CALL
SEARCH

NA > MBH
7

NO

YES

MBW = NA

CALL
SEARCH

DELETE KA FROM
MA AND CINCH
Up MA

NA = NA -)
SET KA =
NEW ROW
NODE NUM3ER

- CALL
SEARCH

| SRR

]

6.3.2 (continued)

Subroutine SEARCH

Calling Sequence

CALL SEARCH (N,K,MA,NA)

where
N is the node number tokbe;10cated or added to array MA.
K is the location (subscript) of node N in array MA.
MA is an array of nodes.

NA is the number of nodes in array MA.

Array Dimensions
INTEGER MA (NN)

where NN is the number of nodes in the problem

SEARCH

'

I=1

6-36

6.3.3 DECOMPOSITION ROUTINES

The general flow of the Decomposition routine is shown on Figure 6.3-6.

DECOMP

|

DIC SEARCH

l | i | | 1

N N AT B I

SAVER BLOCK
OPEN BLock DELETE INTER DROW DOTHER DIAG
CLOSE '

FIGURE 6.3-6: DECOMPOSITION FLOW
DECOMP is the "MAIN" entry subroutine called by the user. Its main
functions are to 1) compute storage assignments for the arrays needed
in the routines; and 2) to test the storage requirements against the
amounts of storage available, and halt the run when insufficient storage
is available. Storage assignments are in common block /JLB/ and are

passed via the calling sequence arguments.
DIC is the incore decomposition routine performing the actual decomposition.

SAVER/OPEN/CLOSE 1is one routiné witﬁ three entry points. OPEN initializes

the deCOmposition’tape and writes the header record. SAVER moves the -

nodal record data into the data records and writes the data records on oy
the decomposition tape when they are full. CLOSE writes the,trai1er *ﬂi%
record on the decomposition tape.

6-37

e

6.3.3 (continued)

BLOCK/IBLOCK is one routine with two entry points. Both operate on the
partition storage usage bookkeeping array. IBLOCK initializes the array.

BLOCK determines the next available partition storage block to be used.

DELETE operates on the partition storage bonkkeeping array, releasing

partition storage blocks for later use.

INTER operates on the partition storage bookkeeping array and the active
node array, interchanging the items in these arrays so that the node of the

row being decomposed is the Tast node in the active node bookkeeping array.

DIAG does the internal decomposition of the diagonal partition of the row

being decomposed.

DROW does the decomposition of the off-diagonal partitions in the row

being decomposed.

DOTHER does the decomposition of the row into the partitions not in the

row.

STORAGE AND BOOKKEEPING CONCEPTS

The key concept used durisg decomposition is that the on1y5partitions
required incore are those that are active in the decomposition for the

row'being decomposed. The number of partitiohs requiring storage is

NBLKS = (%o (MBH) (MBW+T) | (6.3-1)

wherekMBw,is the maximum bandwidth.

- 6-38

6.3.3 (continued)

Three bookkeeping arrays are needed, an active node array, a partition
row/column ID versus partition storage block number array, and a partition
storage use array. In practice the storage for the last two bookkeeping

arrays are combined by'packing the values.

The partition storage blocks are a double dimensioned array, the first
dimension for the terms in the partition, the second the partition storage
biock number (in the range T‘to NBLKS). There is a one to one correspondence
between the partition storage block second index and the étorage use
bookkeeping array. The storage use array is simply a flag indicating

whether or not'its corresponding partition storage block is used by an

active partition.

The active node bookkeeping array is used in conjunction with the
partition row/column ID bookkeeping array to locate a specific partition
in the partition storage blocks. This is done by thinking of the
partition row/column Ib4bookkeeping array as an upper triantular matrix as

shown in Figure 6.3-7.

1 2
MBM+1

MBW-1 MBW
2*MBW -

L

NBLKS | NBLKS.
=2 -1

A\
“\Jf
‘m\qf‘

: NBLKS
FIGURE 6.3-7: PARTITION ROW/COLUMN 1D BOOKKEEPING ARRAY
6-39

6.3.3 (continued)

There is a one to one correspondence between the active nodes bookkeeping
array and the rows and columns in this upper tfiangu]ar matrix. To

locate a specific partition, say partition (I,J) (row node I, column node
J). First, locate the nodes I and J in the active node bookkeeping array
(the node numbers are stored in the array), let i and j be their location
(subscript) respectively. Second, if j is less than i (j < 1), interchange
j and i. Finally, the location (second index of the partition storage
blocks) of the partition is stored in the partition row/column 1D

bookkeeping array at location k of that bookkeeping array,
where

ko= () * (i) * (2408 - 1 + 1) - MBH +] (6.3-2)

6-40

DECOMP

COMPUTE :

LT = LENGTH OF DECOMPOSITION
SAVE TAPE DATA RECORD

NBLKS = NUMBER OF PARTITION
STORAGE BLOCKS REQUIRED

YES

PRINT: ERROR
COMMENT 5021

COMPUTE AMOUNT OF
CORE STORAGE REQUIRED
FOR 1NCORE DECOMPOSITION

COMPUTE STORAGE
ASSIGNMENTS

FOR INCORE
DECOMPOSITION

CALL
DIC

‘ RETURN ’;

INCO
DECOMPOSITION ™
BE USED

OUT OF CORE
DECOMPOSITION -
NOT AVATLABLE
PRINT ERROR -
COMMENT 5051

~STOP 51

6-41

STOP 21

PRINT ERROR
COMMENT 5022

?
STOP 22

DIC

CASE OPEN
INITIALIZE
SAVE TAPE,
WRITE READER
RECORD

CALL 1BLOCK
INITIALIZE

BOOKKEEP 114G
ARRAYS

READ A
PARTITION
FROM GROSS
MERGE ‘TAPE

FIRST
PARTITION
IF NEXT
ROW
?

REWIND GROSS
MATRIX TAPE

PARTITION
STORAGE ALREADY
ASSIGNED

?‘v

MERGE(ADD)
PARTITION TO
EXISTING
PARTITION -

NO

CALL 8LOCK
GET STORAGE
ASSIGNMENT
FOR PARTITION

" STORE

6-42

PARTITION

CALL ITER
INTERCHANGE ROMW
NODE SO IT IS
LAST IN BOOK~
KEEPING ARRAYS

OF PARTITION
CONSTRAINED
?

CALL DIAG
DECOMPOSE
DIAGONAL
PARTITION

"

CALL DROW
DECOMPOSE A
PARTITION IN
ROW BEING
DECOMPOSED

AL
OFF \o
BTAGONALS TN ROWS—

PROCESSED
?
£ B .
1 .

PREPARE TO
DECOMPOSE A

PAIR OF PARTITIONS
INTO OFF-ROW
PARTITIONS

6-43

OFF-ROW
PARTITION NO
STORAGE
ASSIGHED
?

YES

CALL DOTHER
DECOMPOSE THE
PAIR INTO THE
OFF-ROW

PARTITION

LL
POSSIBLE
ROW PAIRS
PROCESSED

?

CALL BLOCK
GET STORAGE
ASSIGHMENT

INITIALLZE
PARTITION

STORAGE TO
ZERO

CALL SAVER

SAVE
DECOMPOSED
ROW

CALL. DELETE
TO FREE STORAGL
FOR ROW JUST
PROCESSED

ALL
ROWS
PROCESSED

DETERMINE

NONE HUMBER

OF NEXT .ROW

T0 BE PROCESSED

6-80

CALL CLOSE
COMPLETE
DECOMPOSITION
SAVE TAPE

RETURN -

OPEN

|

INITIALIZE
SAVER
DATA

WRITE
DECOMPOSITION
TAPE HEADER

RECORD.

RETURN

6-45

CLOSE

DATA
REMAINING
IN DATA
RECORD
?

Tves

WRITE FINAL
DATA RECORD
ON DECOM~
POSITION. TAPE

WRITE
DECOMPOSITION
TAPE TRAILER
RECORD

RETURN

SAVER

|

COUNT THE
NUMBER OF
PARTITIONS
TO BE SAVED

"WRITE DATA

RECORD ON
DECOMPOSITION
TAPE

PUT CONSTANTS
INTO NODE
RECORD

l

PUT DIAGONAL
PARTITION AND
NODE INTO
NODE RECORD

|

PUT OFF DIAGONAL
PARTITIONS

AND NODES

INTO RECORD

!
RETURN

6-46

IBLOCK

|

SET ALL
VALUES IN
BOOKKEEPING
ARRAY TO ZERO

PRINT ERROR

BLOCK

|

SEARCH ARRAY

FROM 1 TO END
| OF ARRAY FOR

7~ A FREE PARTITION

FREE
PARTITION

FOUND
?

N SEARCH ARRAY
| FROM START TO
: I FOR FREE
PARTITION

FREE

NO PARTITION

COMMENT 5023

\FOUND
?
YES

YES

\

FLAG PARTLTION
AS USED, SET

I TO PARTITION
LOCATION IN ARRAY

6-47

DELETE

|

RELEASE PARTITION
STORAGE, FOR REUSE,
OF NODE WHOSE ROW
HAS JUST COMPLETED
DECOMPOSITION

|

DELETE NODE
FROM ACTIVE
NODE ARRAY

\
‘ RETURN }

6-48

INTER

|

SEARCH FOR

NODE (NN) OF ROW
BEING DECOMPOSED
IN ACTIVE NODE
ARRAY

NO

INTERCHANGE NODES
IN ACTIVE NODE
ARRAY SUCH THAT
NODE NN IS LAST

|

PRINT ERROR
COMMENT 5024

INTERCHANGE CONTENTS
OF ROWS AND COLUMNS

OF PARTITION ROW/COLUMN
BOOKKEEPING ARRAY TO
MATCH ACTIVE NODE

ARRAY WITH NODE NN LAST

f
RETURN

6-49

Y

(sTOP 24 ’

DIAG

i

INITIALIZE
DIAGONALS
INCREASE
TO ZERO

START
INTERVAL .
DECOMPOSITION
WITH FIRST ROW

PUT INVERSE

OF DIAGONAL

TERM IN

DIAGONALS INVERSE

LAST
ROW OF
PARTITION.,

YES

DISTRIBUTE
DECOMPOSITION

OF ROW FORWARD

TO REMAINING ROWS

INCREMENT
ROW

COUNTER

FOR NEXT ROW

6-50

; RETURN

DROW

Y

DECOMPOSE ROWS OF OFF
DIAGONAL PARTITIONS, IN
ROW BEING DECOMPOSED
FORWARD TO REMAINING
ROWS IN THE PARTITION

RETURN

=51

[A] = [c1'[B1[D]

WHERE

[C] AND [D] ARE OFF DIAGONAL
PARTITIONS IN THE ROW BEING
DECOMPQSED

[B] 1S THE INVERSE OF THE +
DIAGONAL OF THE DIAGONAL
PARTITION IN THE ROW BEING
DECOMPOSED

[A] 1S THE RECEIVING PARTITION
[s] IS A SCRATCH PARTITION

6-52

DOTHER

Y

COMPUTE -
[s1 = [c1'[B]

|

COMPUTE
[A] = [s] [D]

RETURN

6.3.4 FORWARD/BACKWARD SUBSTITUTION ROUTINES

The general flow of the Forward/Backward Substitution routines is shown

in Figure 6.3-8

SOLN

SUBFR.

|

RDFRWD
RDBACK
RFOPEN

Figure 6.3-8 Substitution Flow

SOLN is the "MAIN" entry subroutine ca11ed by the user., Its main functions
are to 1) set prescribed equal known (input) displacements, and add known
(input) forces on computed equal displacement nodes, é) to compute storage
assignments for the arrays needed in the process, and 3) after substitution
is completed, set computed equal displacements, Storage assignments are

~,

in common block/JLB/' ‘and are passed via the calling sequence arguements.

SUBFR is the forwa%d/backﬁérd substitution rdutiﬁe performing the actual
substitution RDFWRD/RDBACK/FROPEN is one routine w1th three entry points.
Al],three read the decomposition save tape. FROPEN reads the header record,
returning the maximum bandwidth and length of a data record to SOLN for use
in comput1nq storage assignments RDFWRD and RDBACK each read a node record.
ROFWRD ‘reads the tape for forward subst1tut1on and RDBACK reads the tape .

'backwards for,hacksubst1tut10n.

6-53

e R e e e e ———

USING THE LOAD DEFINITION
VECTOR (LDT) PROCESS

THE INPUT VECTOR

COMBINED KNOWN FORCES

AND DISPLACEMENTS

SOLN

VALUE EQUAL
TO NODE
NUMBER

YES

PROCESSED
?

CALL FROPEN
OBTAIN INPUT
RECORD MAXIMUM
LENGTH AND

HAXTMUM
BANDWIDTH

ADD SET THE
FORCES DISPLACEMENT
AT: THE 2 EQUAL
NODES
‘)
ZERO
OUTPUT
DISPLACEMENTS|
NODES NO

COMPUTE

STORAGE

.REQUIREMENTS

6-54

PRINT
REQUIRED < ERROR
STORAGE COMMENT
AVATLABLE 503
?
COMPUTE (stor 3)
STORAGE
ASSIGNMENTS
CALL
SUBFR

SET COMPUTED
EQUAL.
DISPLACEMENTS

ALL NOOES NO

PROCESSED

RETURN

6-55

SUBFR

CALL RDFWRD
GET A NODAL
RECORD

TRATLER
RECORD

FOUND

PROCESS DIAGONAL
ELEMENTS

DISTRIBUTE |
FORWARD FOR
OFF DIAGONAL
ELEMENTS

CALL \
ROBACK
GET A

NODAL
RECORD

RETURN

DISTRIBUTE
DIAGONAL
PARTITION

DISTRIBUTE QFF
DIAGONAL PARTITIONS

STORE. FINAL
COMPUTED

FORCE (REACTION)
OR DISPLACEMENT

6-56

FROPEN

READ HEADER
RECORD FROM
DECOMPOSITION
SAVE TAPE_ . _

)

(reren)

RDFWRD

SETUP TO PROCESS
NODAL RECORDS
FORWARD FROM
DATA RECORDS

RDBACK

NEXT
NODAL RECORD
IN DATA RECORD

IN CORE

BACKSPACE
TWICE

READ A
DATA
RECORD

LAST
RECORD

SETUP T0O PROCESS
NODAL RECORDS
BACKWARD FROM
DATA RECORDS

]

SET
TERNMINATE

FOUND
?

NO

DATA

VES

MOVE HODAL
DATA TO
SUBFR STORAGE

SETUP TO
PROCESS
NEXT NODAL
RECORD

‘ RETURN)

6-57

e

6.3.5

S

SPECIAL ROUTINES

MRTAPE

]

INITIALIZE
CONTROL
FLAGS

oK
T0 READ
FIRST TAPE

YES

READ A
PARTITION
FROM FIRST
TAPE

]

K

TO READ

SECOND TAPE
?

READ A
PARTITION FROM
SECOND TAPE

]

LAST
PARTITION FOUND
ON FIRST

YES

SET FLAGS

AND PARTITION
1D TO BYPASS
PROCESSING OF

- TAPE FIRST TAPE
1
SET FLAGS
LAST
AND PARTITION
PARTITLON FOUND 10 TO BYPASS

TAPE

PROCESSING
SECOND TAPE

)

2

FINISHED NO

PROCESSING BOTH
> TAPES
?

YES

FINISH
MAX TMUM

9

~ BANDWIDTH
CALCULATION

6-58

WRITE
NUMMY
TERMINAL
RECORD

! RETURN }

15t < 2"

SCALE 15T
PARTITION

WRITE 1ST
PARTITION
ON QUTPUT
TAPE

. SET CONTROL
F-AGS TO NOT
READ- FROM
2MD_TAPE

PARTITION 1D
ZND PARTITION
1D
?

EQUAL

%

Ist >

znd

SCALE
PARTITIONS
AND ADD
TOGETHER

WRITE RESULT
PARTITION ON
THE OUTPUT
TAPE z

SET CONTROL
FLAGS TO
READ BOTH
INPUT TAPES

SCALE 2ND
PARTITION

WRITE 2ZND
PARTITION ON
THE OUTPUT
TAPE

SET CONTROL
FLAGS TO NOT
READ FROM
1ST TAPE

GET ROW AND
COLUMN NODE
NUMBERS OF
PARTITION JUST
PROCESSED

STARTING

A NFW ROW
?

o

GET MAXTMUM
BANDWINTH,

THEN DELETE
OLD ROV HODE

I

UPDATE
ACTIVE NODE
ARRAY

Y

6-59

SRTAPE

READ 4,/””’:11\\\\\\‘~\\ WRITE

YPE
- OF OPERATION

SET CONTROLS TO ToWRITE
READ CHECKPOINT CHECKPOINT
TAPE PRINT TAPE

ERROR T
COMMENT

5041

< ST0P 4} ’

TLLEGAL

HECKPOIN
TAPE UNIT
NUMBER NOT
ZQ?O

o

PRINT
ERROR
COMMENT
- " 5043
‘ STOP 43)
GROSS MATRIX DECOMPOSITION
MATRIX ‘\\\‘\\\\\TYPE MATRIX
READ A ILLEGAL
READ A
MATRIX RECORD
PARTITION PRINT
ERROR
COMMENT
5042

ouTeuY

OUTPUT
UNIT NUMBER : UNTT NUMBER
Nor?zsno <: <Top 42 :) oY 7ER0
YES
WRITE ; o ¥sé1£
RECORD

THE
PARTITION

/’//;;;ILFR

RECORD

LAST

(DUiMMY)
PARTITION
FOUND

FOUND
?

6-60

	0013A01
	0013A02
	0013A03
	0013A04
	0013A05
	0013A06
	0013A07
	0013A08
	0013A09
	0013A10
	0013A11
	0013A12
	0013A13
	0013B01
	0013B02
	0013B03
	0013B04
	0013B05
	0013B06
	0013B07
	0013B08
	0013B09
	0013B10
	0013B11
	0013B12
	0013B13
	0013B14
	0013C01
	0013C02
	0013C03
	0013C04
	0013C05
	0013C06
	0013C07
	0013C08
	0013C09
	0013C10
	0013C11
	0013C12
	0013C13
	0013C14
	0013D01
	0013D02
	0013D03
	0013D04
	0013D05
	0013D06
	0013D07
	0013D08
	0013D09
	0013D10
	0013D11
	0013D12
	0013D13
	0013D14
	0013E01
	0013E02
	0013E03
	0013E04
	0013E05
	0013E06
	0013E07
	0013E08
	0013E09
	0013E10
	0013E11
	0013E12
	0013E13
	0013E14
	0013F01
	0013F02
	0013F03
	0013F04
	0013F05
	0013F06
	0013F07
	0013F08
	0013F09
	0013F10
	0013F11
	0013F12
	0013F13
	0013F14
	0013G01
	0013G02
	0013G03
	0013G04
	0013G05
	0013G06
	0013G07
	0013G08
	0013G09

