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BOPACE THEORETICAL MANUAL - ADDENDUM

2.6	 IMPROVED ALGORITHM FOR INELASTIC CALCULATIOP

Summary of Basic Concepts - The iterative residual-for

often employed with an incremental solution for inelas

and creep) problems, in order to avoid accumulated err

in the residual-force procedure involves the followinc

Equilibrium and Compatibility: Given the current

forces or stresses), the equilibrium and compatit

are applied in order to predict an improved conf i guration (of

displacements and strains).

F

I

J

2)	 eparation of Strains: Given the current strains, some algorithm

based on the inelastic material theory -is applied in order to

separate the strai ns into their elastic, plastic and creep portions,

and thus provide 0e resulting stresses.
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When this procedure has converged to the correct result, the following

conditions will be met.

1 )	 Forces in equilibrium

2) Displacements compatible

3) Plastic strain increment satisfies normality rule

4) Size of yield surface consistent with deformation history t

5) Translation of yield surface consistent with deformation history

The overall BOPACE solution technique based on the residual-force

procedure is surimarized in Section 4. The purpose of the present section

is to discuss the details of a new algorithm which has been developed

and incorporated into BOPACE, for improving the convergence and accuracy

Iof the inelastic stress-strain calculations. This algorithm defines the

implementation of stage 2 (sPoaration of sr..rains) in the residual-force

iterative procedure.

Ba ckgroun d - The theory already presented in Sections 2.1 through e

may be employed for both stages of the iterative procedure, and in fact

luations of the type 2.5-5 were used for all stress-strain calculations

ill the initial version of BOPACE. Convergence difficulties resulted

from the use of this approach in stage 2, however, when the incremental

inelastic strains were large relative to the cumulative elastic strains.

These difficulties were substantially eliminated by properly controlling

the direction defined for the incremental inelastic strains.	 (The

A-2
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reason for the difficulties and the method of control were presented in

Reference A -1). A.iother quite different approach is based on a "strain-

space" concept, and was presented by Barsourn in Reference A-2 with the

claim of a significant impro ement in efficiency. Thit approach has

therefore also been developer, and evdluaLed for BOPACE usdrje. Because

the method as presented in Reference A-2 assumes kinematic hardening

only, it was extended to incorporate the combined isotropic and kinematic

h. ► de p ing provided by BOPACE. In addition, some further techniques for

accelerating convergence were identified and incorporated into the

method. The resulting modified version of BOPACE has shown promising

results. For example, a small test problem involving 15 load increments

and solved using BOPACE solution option 5, required 25`. fewer iterations

and 50" fewer stiffness matrix updates than when run on the previous

version. Although `- l rther comparisons are needed to prove the effective-

ness of the new algorithm, it is expected to supersede the previous

BOPACE capjuility.

Basic Definitions and Comparison of Algorithms - The new inelastic

algorithm involves calculations in the "deviatoric strain space", rather

than the more conventional "deviatoric stress space" used ir, previous

SOLACE programs. For the sake of clarity, the previously used stress-

space algorithm wi,1 again be summarized here, and the elastic-plastic

quantities used in the new strain-space algorithm will be defined and

compared with p revious quantities.

A-3
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D) OUANI ITIES IN DEVIATORIC STRAIN SPACE

Figure 26. 1. Graphs -al Repres - ► cation of Elastic--Plastic Quantities

A-4
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As described in Section 2.3, the definition of a plasticity theory

requires assumptions for three basic constituents: a yield surface, a

flow ru'e, and a hardening assumption. BOPACE development is based on

the Mises yield surface, and this surface is represented by a hypercircle

in 9-dimensional deviatoric stress space, as shown in Figure 2.6-1a.

The surface is defined by th equation

F n s i s i - s o s o	 0	 (2.6-1)

w^,ere s is the deviatoric stress, s = s - a is the relative deviatoric

stress and defines the isotropic hardening, a is the surface translation

and defines the kinematic hardening, while s° is a reference value of s

and must be known as a function of plastic deformation (e.g. from a

uniaxial test). Point A in Figure 2.6-la is the origin of the ceviatoric

stress space, point B is the current center of the yield surface, and

point C represents the current state of deviatoric stress. A stress

point on the surface ^:^Nresponds to a plastic :t.te. According to the

Prandtl-Reuss flaw rule, the direction of tht 	 emental plastic strain,

At- p , is normal to the yield surface at the current deviatoric stress

I:ate, s. A solia circle ( I ) in Figure 2.6-1 denotes a point which

remains fixed throughout the increment, while an open circle ( 0 ) denotes

a point which moves during the increment. In order to ?c^ i eve greater

I	
accuracy and allow larger load increments, BOPACE evaluates moving points

such as B and C at the midpoint of the plastic increment. Additional

details of the BOPACE stress-space algorithm are discussed in Section 2.3.

r
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	 For the new strain-space algorithm, the three basic constituents of the

plasticity theory remain unchanged, and direct use is made of the stress-

space theory and nomenclature. However, we now work with a yield surface

and associated quantities in strain-space. Thus we compute the deviatoric

elastic strain, e e , in terms of the deviatoric stress, s, by

	

ei - s i /G
	

(2.6-2)

where G = [/(l+v) is a tensorial shear modulus. Similarly we define a

11 strain center", K, in terms of the stress c°nter, «, by

	

S i Mai/G
	

(2.6-3)

Then the relative deviatoric strain, e, is defined by

	

e i = ee - ^i = (s i - a i )/G =	 s i /G	 (2.6-4)

The geometrical interpretation of the new algorithm involving these

oUantities is provided by a sketch in 9-dimensional deviatoric strain-

space, shown in Figure ?.6-lb. There point O is the origin, defining

initial undeformed (zero strain) state. Subsequent deformation is

caused by a series of load increments, resulting in elastic and plastic

strains. A superscript 0 is used to denote the value of a quantity at

the beginning of the load increment. Thus, point A defines the cumulative

plastic strain, E
PO

, -.:hich exists at the beginnin g of the current increment.

•	 A-6
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(Because of the plastic incompressibility assumption, the plastic

strains themselves are deviatoric strains). All other points in Figure

c".6-lb refer to locations at some time during the current increment. 	 In

particular, we will be mainly concerned with the location of these

points at a defined reference time. This reference time may be taken at

the end of the increment, following the approach of Barsoum [14], or

greater accuracy may be obtained at the expense of some additional

variable storage by taking the reference time at the midpoint of the

plastic increment, as is done in the new BOPACE algorithm. Point D

defines the total cumulative deviatoric strain, e, during the increment.

The circle is associated with the Mises yield surface, but is a hyper-

circle in the deviatoric strain space. A strain point within the

surface corresponds to an elastic state, while a strain point ou tside

the surface corresponds to a plastic state. The size of this circle is

defined by its radius e i (e i = s i /G), whereas the Mises stress-space

surface has radius s. The center of the circle is at point B (B i =

CPO + B i = cpo + u i /G), whereas the center of the Mises stress-space

surface has components Y i . During plastic deformation, the strain-space

surface may undergo both expansion (due to isotropic hardening), and
I

translation (due to kinematic hardening). The cumulative deviatoric

Plastic strain, ee , is defined by the vector AC (ee - s i /G). From these

comparisons it should be apparent that the basic quantities in Figures

2.6-1d and b, respectively, can be made to coincide, if points A

are superimposed and all dimensions in 2.6-1b are divided by the

factor G. The incremental plastic strain, ee p , is defined by the

A-1
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vector CC. It is normal to the circle because of the Prandtl-Reuss

flow rule, and is therefore colinear with the radius a to point C.

The vector BD = e + „EP is denoted by P. The symbols e', e e , Atp

and E' are consistent with their usage in Reference A-2.

Computation Procedure - We now define the new strain-space algorithm

for implementing stage 2 rf the residual-force iterative procedure.

The problem which must be solved can be stated in terms of the various

strain vectors. At the beginning of the increment, we have known

values for 
cpD 

(which remains constant during the increment), and for

8 1 ee , and e. These have been determined such that they are all

consistent, i.e., such that the appropriate vect -s meet at single

points A, B and C. The current estimate for the value of e' at the

reference time is also known from stage 1 of the iterative procedure.

We must then determine values for Ej,, e e , a and Au p at the reference

time, consistent with the convergence requirements. Stated somewhat

differently, we are given the locations of points A and D at the reference

time, and the locations of points B and C at the beginnin g of the increment.

We must then compute the locations of B and C at the reference time,

consistent with the convergence requirements.

The basic steps of the stage 2 algorithm are summarized by the following.

1) Given values at beginning of increment f,)r:

a^	 = stress center

A-8
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s0	= relative deviatoric stress

ee0	
elastic strains

2) Given Ar	 total (elastic + plastic) strain increment from stage 1.

3) Compute values a' -eference time, based on estimated incremental

deformation, for:

Aa = kinematic hardening increment

As = isotropic hardening increment

4) Compute: Ei = 
.i0 

+ AE i = initial elastic strain + total strain

increment

e i - corresponding deviatoric value

51 Compute: 
:1= 

(«0 + Aai)/G

e  = (s i + Asi)/G

	

6)	 Compute E i	 ei - Pi

	

1)	 Compute x = (JE'J - Jed) /JE'J - plastic proportionality constant

	

8)	 Compute ALP = AEi = incremental olastic strain at reference time.

Adjust Ac p 4- Acpt imes (ratio of total to reference time incre-

ment), to obtain total plastic strain increment. Compute

AF.e = Aci - Acp -i ncremental elastic strain.

	

ON	 Compute end of increment values for:

E  
= fe0 + AE e = cumulative elastic strain

o f = Dij r = cumulative stress

10) Use a to compute residual forces and error norm, and return to

stage 1 if convergence has not been achieved.

A-9
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The strain-space algorithm presented above corresponds to that given by

Barsoun [A-2] except that here a c:omhined isotropic and kinematic hardeninq

is provided and a reference (midpoint) time calculation of the incremental

variables is used to improve accuracy. As noted by Bdrsoum, greater

consistency and better convergence are obtained by utilizing an algorithm

in strain space rather than in stress space. This is because the stress-
.

:,pace calculation fixes the At p vector along the direction of the current

s vector, rather than simultaneously fixing the directions of s and

y e p consistent with the given total strain increment Ac. The stress-

space iteration can cause large oscillations in the location of point C,

resulting in divergence if At p is large relative to the cumulative

elastic strair+.

Although a strain — pace algorithm eliminates most of the inconsistencies

and tendencies toward divergence, it should be noted that an incon-

sistency still exists in the plastic hardening quantities. This is

because Act and os are based on the estimated incremen. of plastic defor-

mation, which will not in general be consistent with the actual deformia-

tion. Thus if another iteration were performed using the same value for

the total strain increment AE:, different results would be obtained due

to change in B and e.

A-10
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1	 Thi,, diffic ojlty is eliminated in the present approach by properly

modifying the calculation of k in step 1. For this calculation, we

u: a the parameters c and r associated with kinematic and isotropic

hardening, respectively,	 the ^xpressions

eai - S c AFp

As i	 S	 1

We then see that

E i s ei	 ^j	 e j - (P I + Aji i )

ei - f3o - ^a /G	 e - BG - 2 c 	 /G	 (2.6-6)
1	 1	 i	 3	 ^

Replacing 6Ep in this equation by AE!, we may solve for Ei:

E i	 ( e i - 6^)/(1 + 2 X c /G)	 (2.6-7a)

1
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In a similar manner we may obtain

The plastic proportionality constant, as already defined, is

(2.6{7c)

It is apparent from Equations 2.6-7 that the expression for A is non-

linearly dependent upon a itself, and this is the reason why a con-

sistent a is not solved for directly. An accurate value fer a, however,

can easily be obtained by a 'linear intersection method." In this

method we take the approximate value of 	 from step 7, and substitute

into the Equations 2.6-7 to obtain a new computed value a c0 . We then

assume a value of a + AX, where AX is a small change (perhaps .01,.), and

again substitute into Equations 2.6-7 to compute another value Icl'
The two pair; of assumed and computed , values are plotted in Figu•e

2.6-2. The correct value for a lies on the 45-degree line (since there

the assumed and computed values would be equal), at the intersection of

this line with the line connecting the two plotted points. This cor-

rected value of a is obtained by the following adjustment of a. from step
i

7.

i

i
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1

a + a + 4x ( A 	 ^co) / ( Acl - Aco -AX)	 (2.6-8)

The incorporation of this adjustment into the strain-space algorithm

provides consistent values for all quantities in stage 2 of the iterativ-,

process, ann results in improved convergence.

0

Figure 2.6-2. Linear-Intersection Calculation fo r ),

y	 A-13



,... BOE/A/G co..e-AWY

Extensions and Refinements ;:o the_ Basic__Alc^orithm - The strain-space

alqorithm as presented here is employed in BOPACE for plastic analysis.

In addition, the ROPACE alUorithm treats creep strains in a manner

similar to that for the p lastic strains. For cases where the material

is elastic at the beginnin q of an increment and then reaches the Plastic

yield point at some intermediate t_: ie durinq the increment, rIreater

accuracy is obtained b y dividing the calculations into two parts. 	 In

such cases the initial creep is taken in the direction of the initial

!	 deviatoric stress, and creep which occurs after the yield point is taken

in the same d i rection as the plastic strain increment. Other refinements,

such as temperature dependent elastic-plastic-creep and generalized load

reversal, are treated as discussed in Section 2.
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