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ABSTRACT v I^

Thermal models of the Moon, which include cooling by

subsolidus creep and consideration of the creep behavior

of geologic material, provide catimaLGs Lf 1500 to 1600 O K	 -_

for the temperature, and 10 21 -10 22 cm2/sac for the viscosity

of the deep lunar interior.
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INTRODUCTION

There is oo question that the advection of temperature

by the subsolidus creep of geolnyic raterial is an a-priori

important mechanism of heat transport in the interiors of

all the terrestrial planets. To what extent heat transfer

by solid rotate convection dominates the thereto-mechanical

sta*e of a planet's interior depends on the rheological

behavior of the material as a function of its temperature,

pressure, stress, volatile content, etc., and, of course, on

the values of these properties within the body. Although

there are other uncertainties in the construction of thermal

models of a planet, and we do not mean to downplay these dif-

ficulties, our lack of knowledge of the appropriate stress-

rate of strain law to apply under conditions of very high

pressure, in particular, is a major source of uncertainty 'n

assessing the importance of solid state convection. In this

connection, the question of whether convection is confined to

the upper mantle of the Earth or extends throughout the entire

mantle is one of much current debate.

In the case of the Moon, our knowledge of the rheological

law governing subsolidus deformation is, at the moment, probably

on firmer ground than for any of the other terrestrial planets

save the up per mantle of the Earth. This is mainly because of

the small size of the Moon; the pressure at the center of the



3

Moon is about equal to that at a depth of 150 km in the Earth.

None of the major silicate phase transitions known to occur

ct depths of 400 and 650 km in the Earth can take place on

the Moon. Thus we may use our rapidly expanding understand-

ing o' the rheological behavior of geologic materials charac-

terisi.,c of the Earth's upper mantle, obtained from post-

glacial rebound studies and laboratory measurements of rock

and single mineral crystal deformation, to model the creep

behavior of the entire lunar interior. Of particular impor-

tance here, in view of the extensive depletion of volatiles

in lunar material, is the recent determination of the law

governing the low-stress, high-temperature creep in dry

olivine g .ngle crystals by Kohlstedt and Goetze (1974).

The possible role of solid state convection in regulating

the Moon's internal temperature has lopg been advocated by

Runcorn (1962, 1967) on the basis of the departure of the

lunar figure from hydrostatic equilibrium and by Tozer (1972)

en the basis of the creep behavior of rocks at elevated tem-

peratures. Linear stability analyses, including ef-ects of

variable viscosity, indicate that thermal conduction models

of the Moon would likely be unstable against subsolidus con-

vection (Schubert, Turcotte and Oxburgh 1969, Cassen and

Reynolds 1973, 1974). Estimates of the viscosity of lunar

material below several hundred kilometers depth (Meissner

1975) support '-he possibility of solid state convection

beneath a relatively rigid 1'.thosphere.
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A numerical, finite-difference calculation of the lunar

temperature including heat transport by solid state convec-

tive motions of finite amplitude (Turcotte, Hsui, Torrance

and Oxburgh 1972) shows the substantial cooling and homogen-

izing effect of subsolidus creep. Convection model temper-

atures are much lower, and when averaged over a spherical

surface, they are much more uniform with depth than temper-

atures computed on the basis of heat transfer by conduction

alone. Cassen and Young (1975) have quantitatively investi-

gated the role of finite-amplitude subsolidus convection in

cooling a.id eventually solidifying a Possibie molten or

partially molten lunar core. They found that solid state

creep is such an efficient heat transport mechanism that if
	 ,d

radioactive heat sources were completely removed from the
W.

lunar interior by differentiation, any molten core would

rapidly solidify on a geologic time scale. However, if radio-

actives were present in the Moor's interior, these heat sources

would supply the heat flux carried by subsolidus convection

and temperatures sufficiently high for a molten or partially

molten core would be maintained.

In this paper w%- numerically calculate lunar temperature

profiles and their dependences on viscosity of the lunar

interior for models which include finite-amplitude solid state

convective cooling. Since the Temperature 4n regions of sub-

solidus creep is relatively uniform with depth we can plGt

the deep lunar temperature as a function of viscosity; this

r
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temperature increases with increasing viscosity since the

more viscous '-he interior, the less vigorous the convection

end the less efficient the cooling by solid state creep.

In addition, our knowledge of the laws governing deformation

of geologic materials likely to be representative of those

inside the Moon enables us to calculate viscosity-temperature

dependences. If we plot temperature against viscosity accord-

ing to L• ve Theological behavior of geologic material, we

find temperature to decrease with increasing viscosity. The

intersection of these two temperature vs. viscosity curves

determines the thermal state of the lunar interior consistent

with both solid state convection and the rheological behavior

of geologic material. we find that '-he deep lunar temper-

ature is between about 1500 and 1600 °K with an effective

viscosity between 10 21 Prd 10 22 cm2/sec.

The Apollo program of lunar exploration has provided us

with measurements of the seismic velocities i electrical
i

conductivity of the Moon's interior, and the heat flux at

two locations on the Moon's surface. These geophysical data

can be used to infer characteristics of the lunar temperature

profile. In the concluding section these data are uiecussed,

and their implications for the Moon's temperature are com-

pared with our thermal models.
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DESCRIPTION OF THE MODEL

Our model of the Moon's interior consist4, of a rigid

outer spherical shell, the lithosphere, surrounding a spher-

ical shell, the mantle, in which subsolidus convection can

occur. We allow for a small, central core following the

speculation of Nakamura et al. (1974). Radioactive heat

sources are assumed to be distributed uniformly throughout

the 'lithosphere and mantle with a concentration Q (er.ergy/

time/volume). An arbitrary concentration of heat sources

may exist very near the lunar surface as a result of previous

differentiation without affecting the interior thermal state. 	
I

A major assumption of our model is that sufficient heat

sources have been retained in the interior to drive a convec-

tive flow. The mantle is taken to be a Boussinesq fluid with

infinite Prandtl number, so twat we neglect inertial terms

in 'zhe equations of motion - a fully justifiable assumption

for the highly viscous materia l. of the lunar mantle.

The numerical calculations of subsolidus convection in

the mantle are carried out for a mantle of constant kinematic

viscosity v. However, as discussed in the introduction, we

investigate a range of values of viscosity and determine 'the'

interl-al lunar ter,*ierature and viscosity as that set of values

which simultaneSjuE.ly satisfy the convective thermal model cal-

cu'.ations and the likely rheological law for deformation of

r
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lunar material. The fact that the spherical;-averaged lunar

temperature is almost constant with depth allows the proce-

dure to be meaningful.

other physical properties pertinent to the thermal cal-

culations, suet, as density p, thermal conductivity k, ther-

mal expansivity a, and specific heat at constant pressure c 

are assumed to be constant and to have the same value.: for

both the lithosphere and mantle.

The boundary conditions for the calculations are:

^ ► 	 A constant temperature T = Ts at the lunar surface

^t
	 r = Rs (r is the radial location of a point in the Moon).

2) Continuity of temperature and heat flux at the mantle-

lithosphere boundary r = Ro.

3) An insultaing core-mantle boundary, i.e. no heat leaves

or enters the core at any place on the yore-mantle inter-

face r = Ri . With this boundary condition we need not

place any a-priori specification on the deep lunar tem-

perature. Further, if a small lunar metallic core did

exist it would contain only a relatively unimportant

quantity of K40 (Ganguly and Kennedy 1975) and supply

an essentially negligible fraction of the surface lunar

heat flux. Neither could the cooling and solidification

of such a small core provide a non-negligible portion

of the lunar heat flow for any substantial fraction of

geologic time.

f
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	 Free-rigid velocity boundary conditions for the ccn-

vetting mantle. The core-mantle boundary would likely

approximate a tree boundary (i.e. zero tangential

stress) if the core were liquid. The mantle-lithosphere

boundary is most certainly a rigid one (i.e. the vel-

ocity of the convecting mantle must be zero at this

interface) in light of both the apparent thickness of

the lithosphere, at least several hundred kilometers,

and the absence of any surface expression of hor^.zontal

displacements of parts of the lithosp`^ere.

The equations and boundary conditions of the model are

stunmarized in mathematical form as follows. Time t, distance

r, velocity u, pressure p, and temperature T are assumed dimen-
r.

	

	
sionless with respect to (Ro-Ri ) 2/x, (Ro-Ri ), x/(Ho-Ri ), pvx/

(Ro-Rd 2 , and Q(Ro-Ri ) 2/k, respectively, where x is the ther-

mal diffusivity k/(pcp ). The temperature is referenced to

the spherically symmetric conduction profile, i.e. in addi-

tion to being dimensionless, T is the difference between the

temperature and the value of the spherically symmetric con-

auction temperature at the mantle-lithosphere interface.

The equations governing the temperature and velocity

fields in the mantle are:

v • u = 0	 P	 (1)

at + u • CT = a 2 T + 1	 (2)
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0 = - Vq + V 2 u + Ra(1 + S3 ) rT	 (3)
r

where

4nd[GP ( R 0- R
1Ra	 (4)

3kvx 	 '

3	 3

S =	
Rl	 {( R

3 - 1 / \M-M ^ 1^	 53 
( R°-Ri )	 Ri	 c

G is the gravitational constant, M is the total mass of the

Moon and Mc is the mass of the central core. The Rayleigh

number Ra is the parameter measuring the vigor of the convec-

tion and S is the parameter characterizing the variation in

acceleration of gravity due to self-gravitation of the body.

The boundary conditions for equations (1)-(3) are

d 2	 dT	 dTCms

ur =	 2 (rur )	 d 

a

r	 dr	
0, on r =	 -1,	 (6)

dr

u = Of Ta = 0, on r

	

	 f	 (7)

_z{.+1 _

Tc ' s/(dT` ' s/dr) = 
(1-a 	

)o	 on r = g	 (8)Gm	 Ltn	 _2 t+ 1
^+(^,+1)a

where

4 = Rs/Ro, - = Ro/ ( Ro- Ri )	 (9)

and u  is the radial component of velocity. In writing

(6)-(9), we have considered the te:Ve rature as the sum of

two parts, Ta (r), the average value of T on a spherical
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surface and an angular dependent part

CD	 It

i' S P {m (cos3){Ttm (r)cosmcp+ T^m (r)sin=j	 (10)
L=1 m=0

where r, e, 4) are spherical coordinates and P tm (cosO) are the

associated Lengendre functions.

Equation (8) follows from the continuity of temperature

and heat flux at the mantle-lithosphere boundary and assumes

that the lithospheric temperature is given as the solution

of the rteady -.aLe heat conduction equation. Thus this

boundary condition is only an approximation for non -steady

conditions. Finally we note that the dimensionless steady-

state conduction temperature profile is

1
Ti , + (^- 1 ) 3 _ (P- 1 ) 3 

_ r2	 (11)6	 30 	
3r	 6

A complete solution of the problem requires specifica-

tion of the geometrical parameters a and d, the Rayleigh

number Ra and the self-graviation parameter S.
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VISCOSITY DEPENDENT

S UHSOLIDUS CONVECTIOI4 TEMPERATURES

The equations governing the temperature and velocity

field in the convecting mantle are solved numerically using

the method of Young (1974), wherein velocity and temperature

variablesare expanded in surface spherical harmonics P 'Cm (cose)

s i nmcp(cosmcp) with coefficients depending on r. We have investi-

gates: only the axisymmetric, m - 0, modes of convection in

the mantle.

Model Parameter Values

In the previous section we noted that the state of ther-

mal convection in the mantle depended only on the parameters

Ra, S, a and 9. To evaluate the latter two geometric quanti-

ties, we must choose values for the core radius R  and the

outer radius of the mantle R0 (Rs = 1740 km). The radius of

a possible metd)_li,, core in the Moon is necessarily small

because of the value of C/(MR?) (C is the moment of inertia

about the rotation axis), 0.395 f0.005 (Sjogren 1971, Williams

et al. 1974, Kaula et al. 1974), which is very close to the

value of 0.4 for a homogeneous Moon. 1rie radius of a pure

iron core is limited to 300-400 km; if the core contained a

lighter alloying element the radius could be somewhat larger.

We choose R ` = 300 km. The precise size of such a small
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lunar core would not be expected to significantly influence

the deep lunar temperature.

There is considerably more uncertainty in the ch,-) j e,-a of

the thickness of the rigid lithosphere (Rs-R0). This must

be at least a few hundred kilometers to support the mascons
r.

(Arkani-Hamed 1973) and could conceivably be as thick as 	 j

about 800 km (Nakamura et al. 1973). It is important to

note that tr" l ithosphere thickness m,,st be chosen consis-

tent with the assumed value of the concentration of heat pro-

dicing radioactives Q, i.e. the temperature at the base of

the lithosphere must not greatly exceed (or fall far below)

that temperature at which geologic material can undergo sig-

.:ant subsolidus creep on a geologic time scale. Although 	 '

the temperature at which creep becomes important cannot be

precisely defined, we will see in our discussion of heologi-

cal behavior that it is probably about 1000 *C.

The steady state (dimensional) temperature at the base

of the lithosphere, averaged ever the spherical surface, is

Q(Rs-Ro ) + QRiT +	 1 - 1 `'
s	 bk	 3k CR	 R 	 (12)

e	 c

where Ts is the surface temperature, T = Ts at r = Rs . Using

R  = 300 km, Rs = 1740 km, k = 4x10 5 erg/(cm sec °K) and Ts =

0 °C in expression (12), we can determine those values of Q

and R  that give reasonable temperatt , res (^-1000 'O C) at the

base of the lithosphere. We have considered two models. In



Ra =	 4x1027	 or
V(cm2/sec)

6.3x10 25

v(cm2/sec)
(13)
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the first, the lithosphere thickness is 300 km, Ro = 1440 km,

a	 1.208, B = 1.263, and S - 0.0258. This lithosphere thick-

ness, together with a value of Q - Q® = 2.6x10 -7 erg/(cm3 sec)

gives an average temperature of 1026.3 °C at the base of the

lithosphere (Q® is the terrestrial value of Q, obtained by

assuming that the Earth's surface heat f-Dw originates from

radioactive sources uniformly distributed throughout the

Earth's mantle). The second model has a lithosphere thick-

n:-..ss of 800 k.,n, Ro - 940 km, a - 1.851, B = 1.459, S = 0.1460,

Q = Qe/2 and an average lithosphere base temperature of 1150 °C.

Only the Rayleigh number remains to be discussed. With

Q giv?., as either Qq or ^ Q® and ( Ro-Ri ) having the corre,i-

pending values of 1140 km and 640 km, we can write R., as

for the thin and thick lithosphere models, respectively. In

arriving at these Ra-v relations we have additionally assumed

u	 3x10 5 °K 1 , p = 3.34 g/cm3 , k = 4x10 5 erg cm-1 sec-1 oK 1

and x = 10-2 cm2/sec.

For a thin or thick lithosphere model, we make a series

of tt.ermal convection calculations for Rayleigh numbers rang-

ing from the critical value Racrit to as much as 500 Racrit'

A ,:cording to linear stability theory the m^:.tle is static for

Ra <Racrit and the temperature is the steady state conduction

temperature ; at Ra>Racrit convection occurs. With increasing

lr
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Ra or decreasing viscosity v, convection becomes more vigor-

ous and efficient at cooling the mantle, and the deep lunar

temperature decreases. Thus for the thin or thick lithosphere

model we know the deep temperature of the Moon as afunction of

viscosity. To decide which temperature and viscosity char-

acterize the real Mc;n we incorporate rheologicai information.

Linear Stability Calculations

The value of the critical Rayleigh number and the state

of convection in the mantle at the onset of instability can

be determined independently of the numerical finite-amplitude

convection calculations. This is important because the separ-

ate stability computation provides both a check on the finite-

amplitude method a,-.d a set of temperature and velocity vari-

ables with which to start the finite-amplitude computations.

The equations and boundary conditions for the linearized stabil-

ity problem are (see Chandrasekhar 1961)

cs
((^-1) — - 1 1 (rur ) tG

,
= (d 2 + 2 d -	 tG+1 1 T Ic, s	 (14)

r3	 /	 3	 dr2	 r dr	 r2 / tM	 ;

(
!12't+2d-+1 ) 2 (ru ) c ' s = Ra(l S

3
 )t,(,t+l)T'c's,	 (15)

dr2	 r dr	 r2	 r ltm	 r	 ',m

(ru ) c ' s = d2 (ru ) c ' s = d _T Ic ' s = 0, on r = B-1
r 'tm	 dr2	 r ltm	 dr Lm

(16)

J
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(ru r ) c,s = d r (rur )Cms = 0	 on r = 6	 (17)

^c s	
_2t+1	 dT^.c " _2L+1

Ttm ' (t+(t+1)a	 ) =	 dr --(1-a	 ) B, on r - 6	 (18)

where T' is the temperature perturbation (the amount by which

the temperature exceeds the conduction temperature profile) and

the (Cms ) notation has been introduced in expression (10).

The linearized stability problem is actually independent

of m. Since t;.e system (14)-(18) is homogeneous it possesses

a nontrivial solution only for certain values of Ra, i.e.

Racrit' which for a given set of values of a, T and S, depend

Fig. 1,	 only on t. Figure 1 shows t;-ese values of Racrit as functions
Cap. on
p. 35.	 of t for the thin and thick lithosphere models and the fi.!e-

rigid velocity boundary conditions. The critical Rayleigh

nuribers for the thin lithosphere model with free-free velo^ity

boundary conditions are also shown for purposes of comparison.

Although continuous curves connect values of Racrit at differ-

ent t values, the Rayleigh numbers only have meaning at the

integer values of L.

For a particular lithosphere thickness model convection

in the mantle sets in when Ra exceeds the minimum of the values

of Racrit 
shown in Figure 1; the meridional pattern of the con-

vection, at the onset of convection, is determined by that value

of t associated with the minimum Racrit' The minimum values

of Racrit 
for the thin and thick lithosphere models are

A

Is

` k
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7078.55 and 3177.43, respectively, both associated with the

t = 2 mode of convection. The viscosities associated with

the onset of convection are 5.66x10 23 cm2/sec and 2x10 22 cm2/sec,

respectively. In the following, Racrit will be understood to

be the minimum value of the critical Rayleigh numbers.

Lunar Tom-erature Profiles for Assumed

Values of Viscosity

The numerical convection calculations were started using

velocity and temperature values from the linearized stability

computations for the t = 3 mode of convection as inputs to the

finite-amulitude convection program. An t = 3, rather than an

It as 2, starting mode was used since the equations of motion do

not generate odd t modes from a starting convection pattern in

which such modes are completely absent. The convection compu-

tations included all modes with f = 1, 2, 3,....., 16. Compu-

tational times were generally about a thermal diffusion time

based on the thickness of the mantle, i.e. (Ro-Ri ) 2/x. In

every case the time of a computation was sufficiently long to

establish either a steady-state or, as was more often the

situation, a quasi-steady state (see discussion below) in the

average temperature.

Steady-state convection was only achieved within the

limitations of the computational time) at low values of the

Rayleigh number. Among the results reported here, only the

cases Ra = 10 Racrit 
for the thin lithosphere model and
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Ra = 2.5 
Rac'rIt for the thick lithosphere model reached steady-

sate. In all other cases, i.e. those at higher Rayleigh

number, the convection was oscillatory. However, the temper--

atur averaged over a spherical surface, Ta (r), was remarkably

steady compared to the velocity field and the angular dependent

components of the temperature 1_3.eld. Fluctuations in Ta(r)

were never larger than a few percent; the average temperature

profile Ta (r) appears to be a quasi-steady feature of the non-

steady convection we find occurring in the internally heated

mantle at high Rayleigh numbers!

Generally speaking, there is no single mode which domin-

ates the convection; the first several modes contribute about

equally and the contributions of the modes with higher values

of t eventually become unimportant for {, sufficiently large.

Just how large t needs to be to adequately characterize the

convection, i.e. how many modes need be retained in the cal-

culation, is a function of the Rayleigh number. — Thehigher Ra,
1,

the larger the number of modes required to represent the con-

vection. The sixteen modes we have retained are quite suffi-
i
cient except perhaps for the largest Rayleigh number, 500 times

Racrit' investigated in the thin lithosphere model.

Fig. 2,	 Figure 2 shows the average (over a spherical surface)
Cap. on
p. 35.	 lunar temperature as a function of depth in the thin lithosphere

model for Rayleigh numbers of 10, 50, 100 and 500 times the

critical value, or for viscosities of 10 -1 , 2x10-2 , 10-1,

2x10
-3
 times the value 5.7x10 23 cm2/sec (solid lines). Average

4
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temperature profiles of the thick lithosphere model For Ra

:equal to 1, 2.5, 10 and 50 times Racrit' or for v equal to 1,

0.4, 0.1 and 0.02 times 2x10 22 cm2/sec are also shown in the

figure (dashed lines). With increasing RayleicjA number or

decreasing viscosity, there is a decrease in mantle temper-

ature as subsolidus creep becomes a more officient cooling

mechanism. The mantle temperature is rather uniform, especially

so at the lower v-.icosity values. The average temperature pro-

file in the rigid lithosphere it fixed at the solution to the
steady-state thermal conduction equation. Although temper-

atures in the outer part of the thick lithosphere model Moon

are smaller than those in the outer part of the thin lithosphere

model Moon, the deep temperatures (depth >1000 km) in both

models are comparable.

Which of the above profiles (if any) represents the state

of the lunar interior depends on rheological considerations to

be discussed in the following sections.
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Theoretical models of creep (Weertinan 1970) at subsolidus

temperatures and at pressures comparable to those in the

Earth's upper mantle and throughout the Moon lead to a rheo--

logical or constitutive equation of the form

t = (T ) exp[- ( E * +pV* )/ (RT) ]Tn
	

(19)

where E is the rate of strain, T is the absolute temperature,

p is the pressure, T is the shear stress and R is the gas con-

stant. The parameter n depends on the microscopic mechanism

of deformation, diffusion creep (n = 1) or the motion of dis-

locations (n > 1), as does the constant B. The activation
*

energy E and activation volume V are determined by the dif-

fusion of the slowest, and thus rate-controlling, atomic species.

Diffusion creep (Nabarro 1948, Herring 1950) probably applies

at low values of stress T while the mechanism of dislocation

mo!-Ion assumes importance at higher values of stress (Weertman

1970). The value of stress above and below which the d.`Lffer-

ent deformation mechanisms become dominant is uncertain and

may not even be capable of precise definition; one may specu-

late that it is 141 bar (see discussion below).

Creep and relaxation experiments (Carter and Ave Lallemand

1970, Post 1973) on olivine vield results in agreement with the

above expression, although the 1/T factor in front of the
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exponential is usually not resolved and the range of applied

pressure is too li-iited to allow a determination of the pressure

dependence. Such measurements and optical or electron trans-

mission microscopy studies of both mantle derived and laboratory

deformed of	 I.:rystals (Raleigh 1968, Phakey et al. 1972,

Goetze and Kc-latedt 1973) have led to the recognition of the

importance of dislocation motion as a mechanism for mantle

deformation. Recent analysis by Post and Griggs (1973) of

Fennoscandian uplift data suggest a non-Newtonian Theology for

the Earth's mantle with n a 3.

The kinematic viscosity v is T;(2PE). Using (19) we find

T 
T 
1-n	 E +pV

V - 2PB	 exp( RT )

Except for the Newtonian case (n = 1), the viscosity is stress-

dependent.

We consider two sets of values for the Theological parame-

ters, a Newtonian one (n = 1) and a non-Newtonian one with n = 3.

For the non-Newtonian case, the values of E and B are based on

the high-temperature, low-stress (50-1500 bars) creep data of

Kohlstedt and Go r;tze (1974) for dry olivine single crystals.

It is important to use values of E and B appropriate to dry

olivine since the presence of water can drastically alter the

rheological Para.peters of a mineral (Grigga 1974) and the Moon

is severely depleted in volatiles (Gast 1972, Kaula 1972). The
w

appropriate values of E and B for the non-Newtonian case are

(20)

1
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125 kcal/mole and 6.5x10-13 cm  sec s °K qm
-3
 respectively. The

value of v probably lies between 10 and 40 cm3/mole, with the

smaller values more likely to be preferable. This uncertainty

is not a serious matter since at the pressures in the lunar

interior, E* is an order of magnitude larger than pV* . We

assume V = 11 cm /mole and p = 35 kbar, the pressure at a

depth of half the lunar radius.

Fig. 3,	 The bottom solid curve in Figure 3 shows the v-T relation
Cap. on
p. 35-36.	 for the non-Newtonian case just discussed and an assumed stress

T = 1 bar. The stress level in the interior of the Moon is

unknown. Presumably the shear stresses in a convecting lunar

mantle would be much less than the stress differences in the

lithosphere associated with the mascons. Such stress differ-

ences are about 50-100 bars (Kaula 1.972, Arkani-Named 1973).

Since v- T-2 , T = 10 bars would result in lunar mantle viscosi-

ties much lower than that of the Earth's mantle for which

v ;ks 1022 cm.2/sec (Cathles 1971). The upper dashed curve of

Figure 3 shows the non-Newtonian effective viscosity for

T = 0.1 bar. At such :small T. the relevant deformation mechan-

ism is probably diffusion creep, in which case the viscosity

would be much lower for a given T and the middle solid curve

frr the diffusion creep or Newtonian viscosity (see below)

would be oertinent.

There are no laboratory data demonstrating the Newtonian

creep of geologic material. We base our Newtonian viscosity

I	 Now



i

• •22

curve on the equation proposed by Turcotte and Oxburgh (1972)

for the viscosity of the Earth's upper mantle (with p = 35 kbar)

V	 T xp( 5.60Tx 104)-3

1.21x10	
\\

where T is in °K and v has units cm 2/sec. It can be seen from

Figure 3 that this Newtonian viscosity is very similar in its

magnitude and temperature dependence to the effective viscos-

ity of dry olivine undergoing non-Newtonian creep at T = 1 bar.

We expect either of these v-T curves to be reasonable

representations of the temperature-dependent effective viscos-

ity of the lunar interior.

(21)
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LUNAR TEMPERATURE: SIMULTANEOUS

CONSIDERATION OF CONVECTION CALCULATIONS

•	 AND CREEP BEHAVIOR

The temperature profiles of Figure 2 show that the spher-

ically-averaged temperature of the lunar mantle is nearly con-

stant, especially at the higher Rayleigh numl)ers or lower vis-

cosities. Thus we can associate a single temperature, e.g.

the mean temperature of the lower 3/4 of the lunar mantle (by

radius), with convection at a particular Rayleigh nt ,mber or

mantle viscosity. We show these convection temperatures as

functions of viscosity by the shaded bands on Figure 3, the

upper band for the thin lithosphere mode] and the lower one

for the thick lithosphere model. The thickness of the bands

represents our estimate of the uncertainty in the convection

temperature for a given viscosity. The uncertainty estimate
includes the fact that th.ire are temperature variations in the

mantle, especially near the mantle-lithosphere interface.

Perhaps more importantiv, the uncertainty takes into account

the fluctuations of a few percent in the numerical calculations

of the average temperature (rc,call the quasi-steady nature of

the average convection temperatures at the higher Rayleigh
0

numbers).

Since the temperature and viscosity in the lunar mantle

must self-adjust to satisfy the constraints of the deformation
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law and the convection calculations, the intersections of the

shaded regions with either of the solid curves in Figure 3

simultaneously determine the mantle temperatures and viscos-

ities of thin and thick lithosphere models. For either model,

the average mantle temperature is between about 1550 °K and

1620 °K and the average mantle viscosity lies between 1021

cm2/sec and 5x1021 cm2/sec. Considering the uncertainties in

the creep behavior of the material and the approximate nature

of the convection calcu'ations, conservative estimates of the

temperature and viscosity cf the lunar mantle are 1500-1600 °K

21	 22	 2and 10 -10	 cm /sec, respectively.

It is noteworthy that the thermal and viscous states of

the mantle of both the thin and thick lithosphere models are

essentially the same. Thus our computation of the deep lunar

temperature is quite insensitive to the assumed lithosphere

thickness, provided the radiogenic heat source concentration.

is 'consistent' (from the steady state point of view) with this

thi-.'mess. Of course, this conclusion cannot be carried to

the extreme wherein the depletion of radioactives from the

interior of the Moon is so large as to preclude convection

from occurring at all.

There is essentially no difference in the thermal and

mechanical states of the very deep interiors of the thin

and thick lithosphere model Moons (as can be seen in Figures 2

and 3)., The thin lithosphere model has a much more uniform

4

r
fir
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average temperature throughout the interior, which extends to

within about 500 km of the surface. The thick lithosphere

model has, of course, much Ic-aer temperatures in the outer

1000 km of the Moon with the temperature rising essentially

along a conduction profile and levelling out at the uniform

mantle temperature at a depth of about 1000 km.

If the thickness of the Moon's lithosphere is 300 km or

less, then geologic time is sufficient for the establishment

of a steady conduction temperature in the rigid lithosphere;

for the mantle, we have noted that quasi-steady average tem-

peratures are established in a region of convection on a time

scale of only 0.1 the conduction time for the region. If

F•1

	

	 the lithosphere is indeed as thick as 800 km then it is possible

that a steady thermal state has not been established in either

the lithosphere or mantle.
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CONCLUSIONS: COMPARISON OF 'THERMAL 14ODELS

WITH INFERENCES FROM GEOPHYSICAL DATA

Lunar Heat F'ux Measurements

In situ lunar surface hest flow determinations are 0.74

µcal/cm2 sec at the Apollo 15 site, and 0.67 ucal/cm 2 sec for

one probe location and 0.60 Ncal,'cm 2 sec for a second probe

location at the Apollo 17 site (Langseth et al. 1973). If

these lunar heat flux values are representative of the global

average, and if the lunar and terrestrial heat flows measure

the total amount of internal radioactive heat generation in

the respective bodies, then the average lunar concentration

of radiogenic sources is about 2.5 times as large as the

terrestrial ore. Clearly there has been an upward concentra-

tion of radioactivity on the Moon associated with the differ-

entiation of at least the outer several hundred kilometers of

the body. Thus we ^_annot infer the value of the deep radio-

genic source conncentration from the surface heat flux measure-

ments. Remote and terrestrial-based observations of the lunar

microwave emission spectrum give hope of eventually providing

a global average lunar surface heat flux (Keihm and Langseth

1975).



27

Seismic: Ubtervations

Lunar seismic data from distant meteroia impacts, high

frequency te'.eseismic everits and deep moonquakes have led

Nakamura et al. (1974) to conclude that there exists a zone

of high shear wave attenuation below a depth of about 800 km

(sea also Nakamura et al. 1973) and that there may exist a

zone of radius 170 to 360 km at the center of the Moon char-

a-tarized by a greatly reduced P-wave velocity. They specu-

late that partial melting may occur in the region of shear

wave attenuation and that a small molten core of iron sul-

phide may exist. In addition, the P and S wave velocities

at depths of several hundred kilometers are consistent with

a mineral assemblage of olivine and pyroxene (see also Duba

and Ringwood 1973) which is richer in the former mineral.

The deep lunar temperature we calculate here, 1500-1600 °K,

is sufficiently high that it may correspond, or approach veiny

closely, to lunar solidus temperatures at depths greater than

about 800 km. Our estimate of the deep temperature is about

300 °K lower than the melting point of iron at pressures
a

above about 40 kbars (Higgins and Kennedy 1971). Therefore

it is co:sistent only with a solid pure iron core or a molten

Fe cure with a light alloying element which depresses the

melting point.

i
>
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Electrical Conductivity Determinations

Electrical conductivity profiles of the Moon, inferred

from simultaneous surface and orbiter magnetic measurements,

together with laboratory data on the electrical zonductivity

of olivines and pyraxenes as functions of temperature and

oxygen fugacity, provide estimates of the deep lunar temper-

ature. Duba and Ringwood (1973) have used data on the elec-

trical conductivity of these minerals at oxygen fugacities

supposedly characteristic of the lunar interior and electri-

cal conductivity models of Sonett et al. (1971) to infer deep

lunar temperatures in the range 1550-1750 °K. These temper-

atures are in excellent agreemen-  with the temperatures

1500-1600 °K of the solid state. convection thermal models

of this paper.

An important aspect of the lunar electrical conductivity

models (Sonett et al. 19/2) is that below about 200 km depth

the conductivity rises only very slowly with depth, indica-

tive of a nearly uniform temperature as world result from

heat transport by subsolidus creep (Turcotte et al. 1972,

Xuckes 1972). This characteristic of the lunar electrical

conductivity provides support for the thin lithosphere model

of this paper (thickness <300 km), wherein much of the Moon's

interior is at a nearly uniform temperature maintained by

slid sta:.e convective cooling.

f	 _J
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FIGURE CAPTIONS

Figure 1. Critical Rayleigh numbers 
Racrit for the onset of

convection (according to linearized stability theory)

in internally heated models of the lunar mantle as a

function of the spatial pattern at the onset of convec-

tion, given by the degree t of the associated Legendre

function Pt (cos0) (0 is the colatitude). Only the

values of Racrit at integer values of f are significant.

F 4 gure 2. Models of the average (over a spherical surface)

1	 temperature of the Moon as a function of depth, based

on numerical, finite-amplitude calculal-ions of convec-

tion in a lunar mantle with constant viscosity and a

..

	

	
uniform concentration of radioactive heat sources. The

solid curves refer to a Moon model with a 300 km thick

rigid lithosphere and a terrestrial concentration of

heat sources; the model associated with the dashed curves

has an 800 km thick lithosphere and 50•% of the terrestrial

heat source concentration. The numbers associated with

each temperature profile are the Rayleigh number jn

terms of Racrit 
for each model) and the mantle viscosity,

respectively.

Figure 3. Viscosity-temperature relations based on the creep

behavior of geologic material and the numerical calcu-

lations of convection in the Moon's interior. The bottom
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solid line gives the effective viscosity of dry Jlivine

undergoing non- Newtonian deformation at a shear stress

of 1 bar; the upper dashed line is a similar viscosity

curve for a shear stress of 0.1 bar. The middle solid

line is a viscosity associated with Newtonian or diffu-

sion creep. The upper shaded band gives the average

mantle convection temperature for the model with a

300 km thick lithosphere; the lower band provides she

same temperatures for the 800 km thick lithosphere model.

The widths of the bands approximate the uncertainties

in the calculated mantle temperatures. The intersec-

tions o! the bands with either of the solid curves yield

estimates of the deep lunar temperature and associated

viscosity.
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Figure 1
SOLID STATE CONVECTION MODELS OF THE

LUNAR INTERNAL TEMPERATURE
Schubert, Young and Cassen
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