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ATGT

Thermal models of the Moon, which include cooling by
subsolidus creep and consideration of the creep behavior
of geologic material, provide estimaies ¢f 1500 to 1600 °k
for the temperature, and 1021.1022 cmz/zoc for the viscosity

of the deep lunar interior.



INTRODUCTION

There is o gquestion that the zdvection of temperature
by the subsolidus creep of geoloyic riaterial is an a-priori
important mechanism of heat transport in the interiors of
all the terrestrial planets. To what extent heat transfer
by solid state convaiction dominates the thermo-mechanical
state of a planet's interior depends on the rheological
behavior of the material as a function of its temperature,
pressure, stress, volatile content, etc., and, of course, on
the values of these properties within the body. Although
there are other uncertainties in the construction of thermal
models of a planet, and we do not mean to downplay these dif-
ficulties, our lack of knowledge of the appropriate stress-
rate of strain law to apply under conditions of very high
pressure, in particular, is a major source of uncertainty ’n
assessing the importance of solid state convection. 1In this
connection, the question of whether convection is confined to
the upper mantle of the Earth or extends throughout the entire
mantle is one of much current debate.

In the case of the Moon, our knowledge of the rheological
law governing s"bsolidus deformation is, at the moment, probably
on firmer ground than for any of the other terrestrial planets
save the upper mantle of the Earth. This is mainly because of

the small size of the Moon; the pressure at the center of the



Moon is about equal to that at a depth of 150 km in the Earth.
None of the major silicate phase transitions known to occur
&t depths of 400 and 650 km in the Earth can take pluce on
the Moon. . Thus we may use our rapidly expanding understand-
ing o” the rheological behavior of geclogic materials charac-
terisi .c of the Eaxrth's upper mantle, obtained from post-
glacial rebound studies and laboratory measurements of rock
and single mineral crystal deformation, to model the creep
behavior of the entire lunar interior. Of particular impor-
tance here, in view of the extensive depletion of volatiles
in lunar material, is the recent determination of the law
governing the low-stress, high-temperature creep in dry
olivine single crystals by Kohlstedt and Goetze (1974).

The possible role of solid state convection in regulating
the Moon's internal temperature has long been advocated by
Runcorn (1962, 1967) on the basis of the departure of the
lunar figure from hydrostatic equilibrium and by Tozer (1972)
on the basis of the creep behavior of rocks at elevated tem-
peratures. Linear stability analyses, including ef’ects of
variable viscosity, indicate that thermal conduction models
of the Moon would likely be unstable against subsolidus con-
vection (Schubert, Turcotte and Oxburgh 1969, Cassen and
Reynclds 1973, 1974). Estimates of the viscosity of lunar
material below several hundred kilometers deptn (Meissner
1975) support the possibility of solid state convection

beneath a relatively rigid lithosphere.



A numerical, finite-difference calculation of the lunar
temperature including heat transport by solid state convec-
tive motions of finite amplitude (Turcotte, Hsui, Torrance
and Oxburgh 1972) shows the substantial cooling and homogen-
izing effect of subsolidus creep. Convection model temper-
atures are much lower, and when averagnd over a spherical
surface, they are much more uniform with de»th than cemper-
atures computed on the basis of heat transfer by conduction
alone. Cassen and Young (1975) have quantitatively investi-
gated the role of finite-amplitude subsolidus convection in
cooling a)d eventually solidi®ying a possible molten or
partially molten lunar core. They found that solid state
creep is such an efficient heat transport mechanism that if
radiocactive heat sources were completely removed from the
lunar interior by differentiation, any molten core would
rapidly solidify on a geologic time scale. However, if radio-
actives were present in the Moor's interior, these heat sources
would supply the heat flux carried by subsolidus convectinn
and temperatures sufficiently high for a molten or partially
molten core would be maintained.

In this paper w. numerically calculate lunar temperature
profiles and their dependences on viscosity of the lunar
interior for models which include finite-amplitude solid state
convective cooling. Since the ;empefature in regions of sub-
solidus creep is relatively uniform with depth we can plot

the deep lunar temperature as a function of viscosity; this



temperature increases with increasing viscosity since the
more viscous “he interior, the less vigorous the convection
#nd the less efficient the cooling by solid state creep.

In addition, our knowledge of the laws governing deformation
of geologic materials likely to be representative of those
inside the Moon enables us tou calculate viscosity-temperature
dependences. If we plot temperature against viscosity accord-
ing to the rheological behavior of geologic material, we

find temperature to decrease with increasing viscosity. The
intersection of these two temperature vs. viscosity curves
determinec the thermal state of the lunar interior consistent
with both solid state convection and the rheological behavior
of geologic material. We find that “he deep lunar temper-
ature is between about 1500 and 1600 °K with an effective

22 cmz/loc.

viscosity between 1021 and 10
The Apollo proaram of lunar exploration hus provided us

with measurements of the seismic velocities = electrical

conductivity of the Moon's interior, and the heat flux at

two locations on the Moon's surface. These geophysical data

can be used to infer characteristics of the lunar temperature

profile. 1In the concluding section these data are discussed,

and their implications for the Moon's temparature are com-

pared with our thermal models.



DESCRINTION OF THE MODEL

Our model of the Moon's interior consist® of a ~igid
outer spherical shell, the lithosphere, surrounding a spher-
ical shell, the mantle, in which subsolidus convection can
occur. We allow for a small, central core following the
speculation of Nakamura et al. (1974). Radiocactive heat
sources are assumed to be distributed uniformly throughout
the lithosphere and mantle with a concentration Q (er.ergy/
time/volume). An arbitrary concentration of heat sources
may exist very near the lunar surface as a result of previous
differentiation without affecting the interior thermal state.
A major assumption of our model is that sufficient heat
sources have been retained in the interior to drivo’a convec-
tive flow. The mantle is taken to be a Boussinesq fluid with
infinite Prandtl number, so tuat we neglect inertial terms
in “he equations of motion - a fully justifiable assumption
for the highly viscous materia' of the lunar mantle.

The numerical calculations of subsolidus convection in
the mantle are carried out for a mantle of constant kinematic
viscosity v. However, as discussed in the introduction, we

investigate a range of values of viscosity and determine 'the’

internal lunar temwerature and viscosity as that set of values

which simultaneously satisfy the convective thermal model cal-

cu.ations and the likely rheological law for deformation of




lunar material. The fact that the spherica..  -averaged lunar

temperature is almost constant with depth allows the proce-

dure to be meaningful.

Other physical properties pertinent to the thermal cal-
culations, such as density p, thermal conductivity k, ther-
mal expansivity a, and specific heat at constant pressure cp
are assumed to be constant and to have the same values for
both the lithosphere and mantle.

The boundary conditions for the calculations are:

) A constant temperature T = Ty at the lunar surface
r = Ry (r is the radial location of a point in the Moon) .

2) Continuity of temperature and heat flux at the mantle-
lithosphere boundary r = R,-

3) An insultaing core-mantle boundary, i.e. no heat leaves
or enters the core at any place on the core-mantle inter-
face r = R;. With this boundary condition we need not
place any a-priori specification on the deep lunar tem-
perature. Further, if a small lunar metallic core did
exist it would contain only a relatively unimportant

quantity of K4°

(Ganguly and Kennedy 1975) and supply
an essentially negligible fraction of the surface lunar
heat flux. Neither could the cooling and solidification
of such a small core provide a non-negligible portion
of the lunar heat flow for any substantial fraction of

geologic time.



4) Free-rigid velocity boundary conditions for the ccn~-
vecting mantle. The core-mantle boundary would likely
approximate a free boundary (i.e. zero tangential
stress) if the core were liguid. The mantle-lithosphere
boundary is most certainly a rigid one (i.e. the vel-
ocity of the convecting mantle must be zero at this
interface) in light of both the apparent thickness of
the lithosphere, at least several hundred kilometers,
and the absence of any surface expression of horizontal
displacements of parta of the lithosp“ere.

The equations and boundary conditions of the model are
summarized in mathematical form as follows. Time t, distance
r, velocity u, pressure p, and temperature T are assumed dimen-
sionless with respect to (Ro-ni)z/n' (Rb-ai)' u/(no-ni), pvn/
(Ro-ni)z. and Q(Ro-Ri)z/k, respectively, where % is the ther-
mal diffusivity k/(pcp). The temperature is referenced to
the spherically symmetric conduction profile, i.e. in addi-
tion to being dimensionless, T is the difference between the
temperature and the value of the spherically symmetric con-
uuction temperature at the mantle-lithosphere interface.

The equations governing the temperature and velocity
fields in the mantle are:

Ve = 0 . (1)

%% + u'vr = VT + 1 ’ (2)



0 = -9 + Vz_q + Ra(l + 5-3-)5'1' ’ (3)
r

where

é
4maGp (R_~R,)
Ra = 5k\’%—i . ‘4)
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G is the gravitational constant, M is the total mass of the
Moon and HC is the mass of the central core. The Rayleigh
number Ra is the parameter measuring the vigor of the convec~
tion and 8§ is the parameter character izing the variation in
acceleration of gravity due to self-gravitation of the body.

The boundary conditions for equations (1)-(3) are

2 ar. ars'®
= s.!._ s sl o i oy

u_ - (ru)) G - 0O, onr=7F -1, (6)
u=0 T, =0 onr=F . (7)

_2441
c"/(d'rc"/dr) = —&a—j%;ll-, onr =8 . (8)

4+ (4+1)a
where

3 = R /R, T = R,/ (R -R,) 0 (9)

and u, is the radial component of velocity. 1In writing

(6)-(9), we have considered the temperature as the sum of

two parts, Ta(r). thzs average value of T on a spherical
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surface and an angular dependent part

L
T;‘ E "m‘“'e’{"'im"’“""’* Tzn(r)liﬂl'o} ' (10)
4=]1 m=0

where r, 9, @ are spherical coordinates and P‘m(COle) are the
associated Lengendre functions. |
Equation (8) follows from the continuity of temperature
and heat flux at the mantle-~lithosphere boundary and assumes
that the lithospheric temperature is given as the solution
of the rteady -ate heat conduction equation. Thus this
boundary condition is only an approximation for non-steady
conditions. Finally we note that the dimensionless steady-

state conduction temperature profile is

2 _
B, B0 GEu® 2 A
6 Y] ir 6

A complete solution of the problem requires specifica-
tion of the geometrical parameters & and P, the Rayleigh

number Ra and the self-graviation parameter S.
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The equations governing the temperature and velocity
field in the convecting mantle are solved numerically using
the method of Young (1974), wherein velocity and temperature
variables are expanded in surface spherical harmonics Pc-(OOIO)
(:::::) with coefficients depending on r. We have investi-
gated only the axisymmetric, m = 0, modes of convection in

the mantle.

Model Parameter Values

In the previous section we noted that the state of ther-
mal convection in the mantle depended only on the parameters
Ra, S, @ and . To evaluate the latter two geometric guanti-
ties, we must choose values for the core radius Ry and the
outer radius of the mantle RO(R. = 1740 km). The radius of
a possible metalli: core in the Moon is necessarily small
because of the value of C/(an) (C is the moment of inertia
about the rotation axis), 0.395%0.005 (Sjogren 1971, Williams
et al. 1974, Kaula et al. 1974), which is very close to the
value of 0.4 for a homogeneous Moon. The radius of a pure
iron core is limited to 300-400 km; if the core contained a
lighter alloying element the radius could be sumewhat larger.

We choose Ry = 300 xm. The precise size of such a small
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lunar core would not be expected to significantly influence
the deep lunar temperature.

There is consliderably more uncertainty in the cho.va of
the thickness of the rigid lithosphere (R.-Ro). This must
be at least a few hundred kilometers to support the mascons
(Arkani-Hamed 1973) and could conceivably be as thick as
about 800 km (Nakamura et al. 1972). It is important to
note that tra )ithosphere thickness must be chosen consis-
tent with the assumed value of the concentration of heat pro-
dicing radiocactives Q, i.e. the temperature at the base of
the lithosphere must not greatly exceed (or fall far below)
that temperature at which geologic material can undergo sig-
‘f£icant subsolidus creep on a geologic time scale. Although
the temperature at which creep becomes important cannot be
precisely defined, we will see in our discusrion of *heologi-
cal behavior that it is probably about 1000 °c.

The steady state (dimensional) temperature at the base

of the lithosphere, averaged cver the spherical surface, is

+ Q(R R —ii(——-- ——) ' (12)

where T. is the surface temperature, T = T' at r = R.. Using
Ry = 300 km, R, = 1740 km, k = 4x10° erg/(em sec °K) and T,
0 °c in expression (12), we can determine those values of Q
and R, that give reasonable temperatvres (~1000 oc) at the

base of the lithosphere. We have considered two models. In
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the first, the lithosphere thickness is 300 km, R, = 1440 %km,

a=1,208, § = 1,263, and § = 0,0258. This lithosphere thick-

7 erg/(em’ sec)

ness, together with a value uf Q = Qp = 2.6x10"

gives an average temperature of 1026.5 °c at Lhe base of the

lithosphere (Qg is the terrestrial value of Q, obtained by

assuming that the Earth's surface heat {.o>w originates from

radioactive sources uniformly distribuved throughout the

Earth's mantle). The second model has a lithosphere thick-

noss of 800 km, R, = 940 km, @ =1.851, P =1.459, 8 = 0.1460,

Q = Qgp/2 and an average lithosphere base temperature of 1150 °c.
Only the Rayleigh number remains to be discussed. With

Q givz.: as either Qg or b Qg and (no-ni) having the correx-

ponding values of 1140 km and 640 km, we can write R. a3

27 25

4x10
V(cmz/IOC)

6.3x10
v(cmz/sac)

Ra =

or (13)
for the thin and thick lithosphere models, respectively. 1In
arriving at these Ra-V relations we have additionally assumed
a = 3x10°° °k”}, p = 3.34 g/em>, k = 4x10° erg cm™t gec”t °x”}
and % = 10”2 cm?/sec.

For a thin ur thick lithosphere model, we make a series
of thermal convection calculations for Rayleigh numbers rang-

ing from the critical value Ra to as much as 500 Ra

crit erit”’
Azcording to linear stability theory the m2:htle is static for
Ra(Racrit and the temperature is the steady state conduction

temperature ; at Ra)Racrit convection occurs. With increasing
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Ra or decreasing viscosity V, convection becomes more vigor-
ous and efficient at cooling the mantle, and the deep lunar
temperature decreases. Thus for the thin or thick lithosphere .
model we know the deep temperature of the Moon as a function of
viscosity. To decide which temperature and viscosity char-

acterize the real Mcon we incorporate rheological information.

Linear Stability Calculations

The value of the critical Rayleigh number and the state
of convection in the mantle at the onset of instability can
be determined independently of the numerical finite-amplitude
convection calculations. This is important because the separ-
ate stability computation provides both a check on the finite-
amplitude method arnd a set of temperature and velocity vari-
ables with which to start the finite-amplitude computations.

The equations and boundary conditions for the linearized stabil-

ity problem are (see Chandrasekhar 1961)
rs ) 3 ar?2 f dr 2 im d

(%"‘%%’E _&til) (ru,) '-'v' - (1%)&(4,4-1)-1-”". (15)

2
= dg(ro )50’ =gt Tim "= 0 onr=F1 , (6
dr
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(rur):é' = %;(rur)fé' =0 onr=2§p ., a7n

2041 ar,S'%  _n

T, (4T ) = —-(1-a  )B, enr=F , (8

where T’ is the temperature perturbation (the amount by which
the temperature exceeds the conduction temperature profile) and
the (:;') notation has besen introduced in expression (10).

The linearized stability problem is actually independent
of m. Since tl.e system (14)-(18) is homogeneous it possesses
a nontrivial solution only for certain values of Ra, i.e.

Ra e’ which for a given set of values of G, P and S, depend

cri
only on 4. Figure 1 shows tiese values of Ra_ i+ 28 functions
of L for the thin and thick lithosphere models and the fiue-
rigid velocity boundary conditions. The critical Rayleigh
numbers for the thin lithosphere model with free-free velozity
boundary conditions are al 3o slhiown for purposes of comparison.
Although continuous curves conrect values of R’crit at differ-
ent 4 values, the Rayleigh numbers only have meaning at the
integer values of L.

For a particular lithusphere thickness model convection
in the mantle sets in when Ra exceeds the minimum of the values

of Racri shown in Figure l; the meridional pattern of the con-

t
vection, at the onset of convection, is determined by that value

of L associated with the minimum Ra The minimum values

crit”

of Ra for the thin and thick lithosphere models are

crit
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7078.55 and 3177.43, respectively, both associated with the
L = 2 mode of convection. The viscosities associated with

023

the onset of convection are 5.66xl cnz/loc and 23:1022 cnalloc.

respectively. In the following, R'crit will be understood to

be the minimum va)ue of the critical Rayleigh numbers.

Lunar Temnarature Profiles for Assumed
valu £ cosit

The numerical convection calculations were started using
velocity and temperature values from the linearized stability
computations for the L = 3 mode of convection as inputs to the
finjite-arolitude convection program. An 4 = 3, rather than an
L = 2, starting mode was used since the equations of motion do
not generate odd { modes from a starting convection pattern in
which such modes are completely absent. The convection compu-
tations included all modes with L =1, 2, 3,....., 16. Compu-
tational times were generally about a thermal diffusion time
based on the thickness of the mantle, i.e. (Rb-ni)z/u. In
every case the time of a computation was sufficiently long to
establish either a steady-state or, as was more often the
situation, a quasi-steady state (see discussion below) in the
average temperature.

Steady-state convection was only achieved \within the
limitations of the computational time) at low values of the
Rayleigh number. Among the results reported here, only the

cases Ra = 10 Ra for the thin lithosphere model and

crit
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Ra = 2.5 Ra for the thick lithosphere model reached steady-

crat
state. 1In all other cases, i.e. those at higher Rayleigh
number, the convection was oscillato;y. However, the temper-
atur. averaged over a spherical surface, T.(r). was remarkably
steady compared to the velocity field »nd the angular dependent
components of the temperature field. Fluctuations in T.(r)

were never Jarger t“han a few percent; the average temperature
profile T.(r) appears to be a quasi-steady feature of the non-
steady convection we find occurring in the internally heated
mantle at high Rayleigh numbers!

Generally speaking, there is no single mode which domin-
ates the convection; the first several modes contribute about
equally and the contributions of the modes with higher values
nf L eventually become unimportant for L sufficiently large.
Just how large { needs to be to adequately characterize the

convection, i.e. how many modes need be retained in the cal-

i
'y .

culation, is a function of the Rayleigh numbor.;;Thd;p%qher Ra,
the larger the number of modes required to represent the con-
chtion. The sixteen modes we have retained are quite suffi-
cient except perhaps for the largest Rayleigh number, 500 times
Ra_ i¢v investigated in the thin lithosphere model. ‘

Figure 2 shows the average (over a spherical surface)
lunar temperature as a function of depth in the thin lithosphere
model for Rayleigh numbers of 10, 50, 100 and 500 times the
critical value, or for viscosities of 10™Y, 2x10™2, 1072,

2%10"> times the value 5.7x102> cmz/sec (solid lines). Average



temperature profiles of the thick lithosphere model for Ra

aqual to 1, 2.5, 10 and 50 times Ra
22

crit’ °F for V equal to 1,

0.4, 0.1 and 0.02 times 2x10 cmz/lec are also shown in the
figure (dashed lines). With increasing Rayleigh number or
decreasing viscosity, there is a decrease in mantle temper-
ature as subsolidus creep becomes a more efficient cooling
mechanism. The mantle temgerature is rather uniform, especially
so at the lower v/.:;cosity values. The average temperature pro-
file in the rigid lithosphere ir fixed at the solution to the
steady-state thermal conduction equation. .lthough temper-
atures in the outer part of the thick lithosphere model Moon
are smaller than those in the outer part of the thin lithosphere
model Moon, the deep temperatures (depth 1000 km) in both
models are comparaole.

which of the above profiles (if any) represents the state

of the lunar interior depends on rheological considerations to

be discussed in the following sections.



UBSOLIDUS CRE F_GEOLOGIC MATERIAL

Theoretical models of creep (Weertman 1970) at subsolidus
temperatures and at pressures comparable to those in the
Earth's upper mantle and throughout the Moon lead to a rheo-
logical or constitutive equation of the form

¢ = Bexpl-(e"+pv")/ (r1) 17" (19)

where ; is the rate of strain, T is the absolute temperature,
p is the pressure, T is the shear stress and R is tha gas con-
stant. The parameter n depends on the microscopic mechanism
of deformation, diffusion creep (n = 1) or the motion of dis-
locations (n > 1), as does the constant B. The activation
energy B* and activation volume V* are determined by the dif-
fusion of the slowcat; and thus rate-controlling, atomic species.
Diffusion creep (Nabarro 1948, Herring 1950) probably applies
at low values of stress T while the mechanism of dislocation
motion assumes importance at higher values of stress (Weertman
1970). The value of stress above and below which the differ-
ent deformation mechanisms become dominant is uncertain and
may not even be capable of precise definition; one may specu-
late that it is €1 bar (see discussion below).

Creep and relaxation experiments (Carter and Avé Lallemand
1970, Post 1973) on olivine vield results in agreement with the

above expression, although the 1/T factor in front of the
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exponential is usually not resolved and the range of applied
pressure is too limnited to allow a determination of the pressure
dependence. Such measurements and optical or electron trans-
mission microscopy studies of both mantle derived and laboratory
deformed ol. ' * arystals (Raleigh 1968, Phakey et al. 1972,
Goetze and Ko:.lstedt 1973) have led to the recognition of the
importance of dislocation motion as a mechanism for mantle
deformation. Recent analysis by Post and Griggs (1973) of
Fennoscandian uplift data suggest a non-Newtonian rheology for
the Earth's mantle with n ~ 3.

The kinematic viscosity v is 7/(20¢). Using (19) we find
_T _,l-n_ _ E +pV"
v = ghorl Neyp (EARV) . (20

Except for the Newtonian case (n = 1), the visccsity is stress-
dependent.

We consider two sets of va.ues for the rheological parame-
ters, a Newtonian one (n = 1) and a non-Newtonian one with n = 3,
For the non-Newtonian case, the values of B‘ and B are based on
the high-temperature, low-stress (50-1500 bars) creep data of
Kohlstedt and Go~.tze (1974) for dry olivine single crystals.

It is important to use values of B* and B appropriate to dry
olivine since the presence of water can drastically alter the
rheological parameters of a mineral (Griggs 1974) and the Moon
is severely depleted in volatiles (Gast 1972, Kaula 1972). The

appropriate values of E and B for the non-Newtonian case are
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125 kcal/mole and 6.5x10™ 13 cm® sec® °k qn'% respectively. The

value of V' probably lies between 10 and 40 cma/nolo, with the
smaller values more likely to be preferable. This uncertainty
is not a serious matter since at the pressures in the lunar
interior, B‘ is an order of magnitude larger than pV.. We
assume v =11 cm?/molo and p = 35 kbar, the pressure at a
depth of half the lunar radius.

The bottom solid curve in Figure 3 shows the V-T relation
for the non-Newtonian case just discussed and an assumed stress
T = 1 bar. The stress level in the interior of the Moon is
unknown. Presumably the shear stresses in a convecting lunar
mantle would be much less than the stress d! fferences in the
lithosphere associated with the mascons. Such stress differ-
ences are about 50-100 bars (Kaula 1972, Arkani-Hamed 1973).

Since —

» T = 10 bars would result in lunar mantle viscosi-
ties much lower than that of the Earth's mantle for which

v ~ 1022 cmz/sec (Cathles 1971). The upper dashed curve of
Figure 3 shows the non-Newtcnian effective viscosity for

T = 0.1 bar. At such amall 7, the relevant deformation mechan-
ism is probably diffusion creep, in which case the viscosity
would be much lower for a given T and the middle solid curve
fcr the diffusion crieep or Newtonian viscosity (see below)
would be pertinent.

There are no laboratory data demonstrating the Newtonian

creep of geoclogic material. We base our Newtonian viscosity



curve on the equation proposed by Turcotte and Oxburgh (1972)
for the viscosity of the Earth's upper mantle (with p = 35 kbar)

Ve T qp(8:605x10% (32)
1.21x10
where T is in °K and v has units cmz/lcc. It can be seen from
Figure 3 that this Newtonian viscosity is very similar in its
magnitude and temperature dependence to the effective viscos-
ity of dry olivine undergoing non-Newtonian creep at T = 1 bar.
We expect either of these V-T curves to be reasonable
representations of the temperature-dependent effective viscos-

ity of the lunar interior.
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The temperature profiles of Figure 2 show that the spher-
ically-averaged temperature of the lunar mantle is nearly con-
stant, especially at the higher Rayleigh numbers or lower vis-
cosities. Thus we can associate a single temperature, e.g.
the mean temperature of the lower 3/4 of the lunar mantle (by
radius), with convection at a particular Rayleigh number or
mantle viscosity. We show these convection temperatures as
functions of viscosity by the shaded bands on Figure 3, the
upper band for the thin lithosphere model and the lower one
for the thick lithosphere model. The thickness of the bands
represents our estimate of the uncertainty in the convection
temperature for a given viscosity. The uncertainty estimate
includes the fact that thare are temperature variations in the
mantle, especially near the mantle-lithosphere interface.
Perhaps more importantlv, the uncertainty takes into account
the fluctuations of a few percent in the numerical calculaticns
of the average temperature (reocall the quasi-steady nature of
the average convection temperatures at the higher Rayleigh
numbers) .

Since the temperature and viscosity in the lunar mantle

must self-adjust to satisfy the constraints of the deformation
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law and the convection calculations, the intersections of the
shaded regions with either of the solid curves in Figure 3
simultaneously determine the mantle temperatures and viscos-
ities of thin and thick lithosphere models. For either model,
the average mantle temperature is between about 1550 °K and
1620 °K and the average mantle viscosity lies between 1021
cmz/acc and 5x10’1 cuz/loc. Considering the uncertainties in
the creep behavior of the material and the approximate nature
of the convection calcu’ations, conservative estimates of the
temperature and viscosity of the lunar mantle are 1500-1600 °K
and 1021-1022 cmz/loc. respectively.

It is noteworthy that the thermal and viscous states of
the mantle of both the thin and thick lithosphere models are
essentially the same. Thus our computation of the deep lunar
temperature is quite insensitive to the assumed lithosphere
thickness, provided the radiogenic heat source concentration
is tonsistent' (from the steady state point of view) with this
thi~kness. Of course, this conclusion cannot be carried to
the extreme wherein the depletion of radicactives from the
interior of the Moon is so large as to preclude convection
from occurring at all.

There is essentially no difference in the thermal and
mechanical states of the very deep interiors of the thin
and thick lithosphere model Moons (as can be seen in Figures 2
and 3). The thin lithosphere model has a much more uniform
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average temperature throughout the interior, which extends to
within about 500 km of the surface. The thick lithosphere
model has, »f course, much lcwer temperatures in the outer
1000 km of the Moon with the temperature rising essentially
along a conduction profile and levelling out at the uniform
mantle temperature at a depth of about 1000 km.

If the thickness of the Moon's lithosphere is 300 km or
less, then geologic time is sufficient for the establishment
of a steady conduction temperature in the rigid lithosphere;
for the mantle, we have noted that quasi-steady average tem-
peratures are established in a region of convection on a time
scale of only 0.1 the conduction time for the region. 1If
the lithosphere is indeed as thick as 800 km then it is possible
that a steady thermal state has not been established in either

the lithosphere or mantle.
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In situ lunar surface heat flow determinations are 0.74
ucal/cm2 sec at the Apollo 15 site, and 0.67 ucal/cll2 sec for

one probe location and 0.60 ucal/cmz

sec for a second probe
location at the Apollo 17 site (Langseth et al. 1973). 1If
these lunar heat flux values are representative of the global
average, and if the lunsr and terrestrial heat flows measure
the total amount of internal radioactive heat generation in
the respective bodies, then the average lunar concentration
of radiogenic sources is about 2.5 times as large as the
terrestrial one. Clearly there has been an upward concentra-
tion of radioactivity on the Moon associated with the differ-
entiation of at least the outer several hundred kilometers of
the body. Thus we cannot infer the value of the deep radio-
genic source concentrition from the surface heat flux measure-
ments. Remote and terrestrial-based observations of the lunar
microwave emission spectrum give hope of eventually providing
a global average lunar surface heat flux (Keihm and Langseth
1975).
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Seismic OUbgervations

Lunar seismic dzta from distant meteroid impacts, high
frequency te’eseismic events and deep moonquakes have led
Nakamura et al. (1974) to conclude that there exists a zone
of high shear wave attenuation below a depth of about 800 km
(sea also Nakamura et al. 1973) and that there may exist a
zone of radius 170 to 360 km at the center of the Moon char-
artarized by a greatly reduced P-wave velocity. They specu-
late that partial melting may occur in the region of shear
wave attenuation and that a small molten core of iron sul-
phide may exist. 1In addition, the P and § wave velocities
at depths of several hundred kilometers are consistent with
a mineral assemblage of olivine and pyroxenc¢ (see also Duba
and Ringwood 1973) which is richer in the former mineral.

The deep lunar temperature we calculate here, 1500-1600 °¥,
is sufficiently high that it may corr2spond, or approach very
closely, to lunar solidus temperatures at depths greater than
about 800 km. Our estimate of the deep temperature is about
300 °K lower than the melting point of iron at pressures
above about 40 kbars (Higgins and Kennedy 1971). Therefore
it is coasistent only with a solid pure iron core or a molten
Fe cure with a light alloying element which depresses the

melting point.



Electrical Conductivity Determinations

Electrical conductivity profiles of the Moon, inferred
from simultaneous surface and orbiter magnetic measurements,
together with laboratory data on the electrical conductivity
of olivines and pyroxenes as functions of temperature and
oxygen fugacity, provide estimates of the deep lunar temper-
ature. Duba and Ringwood (1973) have used data on the elec-
trical conductivity of these minerals at oxygen fugacities
supposedly characteristic of the lunar interior and electri-
cal conductivity models of Sonett et al. (1971) to infer deep
lunar temperatures in the range 1550-1750 °K. These temper-
atures are in excellent agreemen: with the temperatures
1500-1600 °K of the solid state convection thermal models
of this paper.

An important aspect of the lunar electrical conAuctivity
models (Sonett et al. 1%72) is that below about 200 km depth
the conductivity rises cnly very slowly with depth, indica-
tive of a nearly uniform temperature as would result from
heat transport by subsolidus creep (Turcotte et al. 1972,
Kuckes 1972). This characteristic of the lunar electrical
conductivity provides support for the thin lithosphere model
of this paper (thickness <300 km), wherein much of the Moon's
interior is at a nearly uniform temperature maintained by

snlid state convective cooling.
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FI ON

Figure 1. Critical Rayleigh numbers Ra for the onset of

crit
convection (according to linearized stability theory)
in internally heated models of the lunar mantle as a
function of the spatial pattern at the onset of convec-

: tion, given by the degree { of the associated Legendre
function PL(co-O) (6 is the colatitude). Only the

values of Ra at integer values of { are significant.

crit
Figure 2. Models of the average (over a spherical surface)
temperature of the Moon as a function of depth, based
on numerical, finite-amplitude calculations of convec-
tion in a lunar mantle with constant viscosity and a
uniform concentration of radioactive heat sources. The
solid curves refer to a Moon model with a 300 km thick
rigid lithosphere and a terrestrial concentration of
heat sources; the model associated with the dashed curves
has an 800 km thick lithosphere and 50% of the terrestrial
heat source concentration. The numbers associated with
each temperature profile are the Rayleigh number (in

terms of Ra for each model) and the mantle viscosity,

crit
respectively.

Figure 3. Viscosity-temperature relations based on the creep
behavior of geologic material and the numerical calcu-

lations of convection in the Moon's interior. The bottom
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solid line gives the effective viscosity of dry olivine
undergoing non-Newtonian deformation at a shear stress
of 1 bar; the upper dashed line is a similar viscosity
curve for a shesar stress of 0.1 bar. The middle solid
line is a viscosity associated with Newtonian or diffu-
sion creep. The upper shaded band gives the average
mantle convection trmperature for the model with a

300 km thick lithosphere; the lower band provides the
same temperatures for the 800 km thick lithosphere model.
The widths of the bands approximate the uncertainties

in the calculated mantle temperatures. The intersec-
tions of the bands with either of the solid curves yield
estimates Of the deep lunar temperature and associated

viscosity.






Figure 1
SOLID STATE CONVECTION MODELS OF THE
LUNAR INTERNAL TEMPERATURE
Schubert, Young and Cassen
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Figure 2
SOLID STATE CONVECTION MODELS OF THE
LUNAR INTERNAL TEMPERATURE
Schubert, Young and Cassen
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Figure 3
SOLID STATE CONVECTION MODELS OF THE
LUNAR INTERNAL TEMPERATURE
Schubert, Young and Cassen
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