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NUMERICAL SIMULATION OF TURBULENT JET NOISE - PART 1 ,g<

^e

By

r

Ralph W. Metcalfe and Steven .A. Orszaca

Flow Research, Inc.

Kent, < Washington

a

Summary

This report describes the numerical simulation of. a low-Mach

number turbulent jet using spectral methods with	 (32) 3 = 32;768

Fourier modes.	 The purpose is to gain insiglit into the generation`'

of aerodynamic noise by an examination of certain `detailed flow

characteristics, such as quadrupole moments, which cannot yet be

measured in the -laboratory. 	 The mean flow quantities are set in
accordance with the experimental data of Liu &'Maestrellol

and the incompressible Navies-Stokes equations, are then solved'

numerically.	 Due to computer speed and memory constraints, iso-

lated downstream sections of-the jet are, modelled separately with

. the mean flow characteristics held constant. in time. 	 Tho flows -
F are allowed to evolve until the fLuctuati.ng velocity components' si

reach a- steady state.	 Cross section contour, plots
a

of the velocity components and the quadrupole moments at three t

different downstream positions are presented.
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1.	 Introduction

Noise production by aerodynamic jets is a basic .fluid

-mechanical problem; with important practical consequences in

the design of aircraft engines. 	 In this report, numerical

simulations of an idealized jet flour are discussed with the k

the goal of obtaining better understanding of the mechanism -"

j of noise production.

' Laboratory experiments, such as those reported by Liu &

' Maestrello , can provide relatively, complete information on,

i simple flow quantities, like the ,mean velocity field, but are

not yet capable of resolving the quadrupole moments of the

flow which govern noise production.	 On the other hand,
numerical simulation permits detailed examination of' -' the flow

J at any point in time, and the calculation of arbi't'rary flow

parameters, including quadrupole moments, at al.1 space points.

However, numerical simulations also have their drawbacks,

especially limited resolution which restricts the Reynolds t
j,

number of the flows that can be accurately simulated. 	 It

is preferable to view laboratory and computer experiments
c

as complementary, not mutually exclusive; in the present f

work, laboratory data are used to fix certain gross features

of the	 flow, which are then examined in more detail by,jet r^
numerical simulation.rA

In Sec. 2,' the `flow model and the equations of motion

are discussed.	 In Sec. 3, the numerical method is presented,

t while in Sec. 4 the numerical simulations performed to date

are reviewed.	 Finally, in Sec. 5, a discussion is given of
r( how the present` results will be used in the study of noise

` production.
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2.	 Flow Model

,

E As a first step in the numerical simulation of jets, one

^f can re tri.ct attention to low . mach numbers,, so that the tJaver-
Stokes- equations for incompressible flow govern the evolution

of the-- rotational components of the velocity. 	 At low Mach number,` x

the acoustic (compressive) part of the velocity couples weakly'

' he rotational components 2with t 	 SO it is possible to determine„

the weakly; excited acoustic 'field after having solved the dynamic

equations for the flt,id ` motion.	 The source terms in the wave

equation for the acoustic component are just the quadrupole

`R moments t

x.-	 J

f; where summation over repeated indices is implied Rand ' v	 is the
} three dimensional velocity field. 	 Li.ghthil i s theory implies

that the radiated sound field (perturbation density) is propor-
F

tional to

4^rc 2 yet	 c	
^Sx-yl'	 (2)

;t where	 c	 is the sound speed and	 n	 is calculated in the '' incom-

r' pressible limit	 (with an error of order Mach number .,c1u..lrc d) .

The Navier-Stokes ccquat.ions for i nc ompres:, i ulc f low are L

s (x,t)	 +	 v( x,t)•Vv(x',t)	 -'-V1)(x,t)	 +	 0v(x,i)	 (3) x

V • V (x, t)	 0
3

where	 p	 is the pressure and	 v	 is the kinr-matir_ viscosity.
The region of importance for noise production in -1 jet extends
from the nozzle downstream to at least: 20 j ot diameters, while'
the lateral flow .includes the jet tociether with tir o surrounding
potential flow.	 Quite a few difficulties arise in the attempt

t	 « to simulate this flow numerically. 	 Among thcr most important arcs:
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• 1i 1.	 Limited spatial resolution because of limi ted computer

power.	 Even using a CDC 7600, it is hardly feasible- to consider
calculations with more than about 10' degrees of freedom to re-
solve the velocity field.	 With a three dimensional flow field,

p this limit implies that no morethan about- "50 degrees of freedom
r can be used to resolve each flow direction.	 'Phi's is not suffi-

cient to resolve twenty jet diameters downstream.

' 2.	 Boundary conditions for a realis tic flow field tare dif-

!	 `F ficult, though not impossible, to impose. 	 Some of tho problems
{^ concern:	 a)	 the u pstream boundary,1	 y,	 whc+r. c;	 the inflow is not known j

in all detail;,	 b)	 the downstream boundary, wliory outflow bound-

ary conditions may cause numerical	 nstabil.itios;;	 and	 c:)'.. the
lateral boundaries, where fluid must bo enf.r.ained into the -Jot

r ' at the proper rate in order, to maintain the ,proper 	 jot growth.
' Because of these difficulties	 t tic^	 prc>blc m was	 furth-ter.	 rc- -
r; stricted as will now be described.	 As discu`ssod abovo, labora-

tory experiments have determined Vie large-scale moan-flaw
characteristics, so that the goal of numerical experimentation

i on jet noise should be'tho resolution of t-hc? quadrupole-moment
distribution.	 Since the quadrupole source torms are -dominated

s by small-scale motions and since the small scales of turbulent .j

{ flows largely decouple from large scales3, it follows that the

distribution may be studied by isolating a local section of
r

the jet.	 This suggests slicing the jet into several section, R

in the axial direction, and then, within each section, imposing
z

I

the experimentally determined mean-flow characteristics on the

•	 s flow.	 The- mean velocity profile within each sectioi-i is held s	 a

fixed in time during the numerical calculations, and the turbulent`

•^ fluctuations are allowed to approach a statistically steady state, J

After evolving the flow in this way,' the quadrupole moments are. 1

obtained and can be used in the Licghthill integral to`determine,
r

t

the radiated sound field.

^	 ^

-1_._ . 	 _	 ,.._ mss, <..	 ... 	 .	 . <	 _..._.^ .y^s	 _	 ^.., ,	 ..	 _ r^	 .._, .,	 ._	 _.., .	 ..	 .	 .......... au...,^ •,x .._. ^	 _.t_	 ..u_,	 < —	 ....-	 -	 ._,.	 _. _ __	 ^il
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- At the present time, the flow is also simplified by neglect-
''	 S inch the entrainment of fluid at the lateral boundaries.	 The flow

is assumed to take p lace in a rectangular box wi th pori.odic bound-
ary conditions applied in the downstream direction 	 (x,)	 and no- .x

stress boundary conditions applied in the lateral di rocrt;ions 	 (x
2

i'
and	 x3)

The velocity fie ld is e xpressed as
r

F

where	 v - is the mean velocity- and	 v'	 is the fluctusttri ny voloci t-y.
The mean -velocity	 v	 is hold - constant in Lime and is of the form ;_	 4

v (x)	 =	 CJ(r)x
_

where	 R 1	 is a unit vector in the x l - direc:tion;	 r	 is tho cis- 3
t: tance from the jet axis	 ( in the canter of tho computational

domain) ,	 and	 U (r)	 is the experi_inent ally observoci 1)rofi lo.	 At
the present level of approximation, there is no moan i-adial ve7.o-

f; city since the downstream variation of 'mean velocity is self-con-
sistently neglected (conse, rvdtion of mass	 V-v = 0	 implirs that

r axial variation of	 v-	 induces mean radial. volocit:y) .	 Tlio proce-
dure for handling the fluctuating velocity is discussed in Sccts.

3 and 4.
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3.	 Numerical Methods

I .I
The Navier.-Stokes equations	 (3),	 (4)	 can also be written in

{ rotation form, A

Dv(x^t)	 =	 V(X,t)x(R)(X,L)-V'rr(x,t)+k)v	 V(x,t)	 (5)

G where:'	 v (X, t)	 is	 the	 velocity	 v[,! ctor,	 lE' (x, t)	 _ V',.'v(X, t)	 is	 the
1
I

vorticity,	 11 (X,t)	 = P (X, t)	 -1'	 a./2I V (X,t) 12	 i s tho prossurc )le a d, {-
p (x, t)	 is the pr.ossure and	 v	 is t hr, U rioma tic viscosity. 	 The

rotation form (5) is advantageous	 when using pseudospectral

approximations since in this form the equations-semiconserve

' energy4.	 This pointwise energy conservation prevents aliasing

errors from inducing nonlinear instability, although it has

been shown 5 that the appearance ofnonlinear instability due
to aliasing errors can indicate insufficient resolution.

a Given they structure of the problem as descri.be(l in :SecL on
2,	 i	 is conveni.ont	 to use, the	 fc)a, l(.)wi n(	 T «uri c-!r st^ri rs r pro-son-
tat icon	 for the velocity	 field	 V (x, (-)	 _	 (V^ (x, L),	 V 2 (X ► t )

z.
It

K2	 K 3 W>of (x,t)	 _	 }	 Y	 u 	 L) cxp (2'r(i k lX /L 1 1
I k	 i -K	 k 2, 0	 i.	 01	 1	 3=

;. x/L 3 	rc	 lcos'nk;^	 3Cos	 irk 2x2/1.Z	
J 

R

c sinttk 2 x2/]a 2 cos-I)k	 'X	 /L 3 	(x	 =	 2	 (6)

'. cos	 'tik 2 xZ /[^ 2 s'it^ r^l: ,x 3 /L 3	it	 -	 3 Ij

j
f

where the summation indicos 	 k	 arc, integral and	 L.	 is	 L1)o
box size in th(2 1.-'1 direction.,	 Choosing the sumn!at"ioii cute CJ s
as	 Kl = 16,	 K Z = K 3 = 32,	 permits	 the r eprosont at icon of cxacl7

Y; velocity component by	 (32)	 = 32768	 Fourier niodes so licit the
entire	 vc^Tnci+^y -f;^ _c	 nvc^lve^s	 ^^bc^uL	 ].()'	 ndc^pc^ncicnt	 dccTrc'os

of

4
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of freedom.	 The boundary conditions arc periodic at 	 xl = 0,

}i and are stress-free at	 x 2 = 0,	 L2	and	 x 3 = 0,	 L3.

,Ivl	3v3
1 ^)x	 - ax	

_ v2 - 0	 on	 x, = 0,	 L2

2	

2

0	 U,^
tt

3	
JX3 -
	 v	 -	 otr	 x:3	 I,

a

v(x l + mL l ,x 2',x 3 ) 	 v(x 1 , : 2 , x 3 )	 ri,` intogrtil	 (7`)

Equations for the Fourier components u(t) are derived

r'` by Galerkin's procedure 	 After applying the incom-

pressibility condition	 (4)	 to eliminate the pressure, 	 t-hr cgLia-
tions	 for	 u (k)	 are	 found to be	 (:in	 L.hc: SpOc.ial	 r-.a e	 L	 - 1.tr ,
1,	 L2	 3 _	 n )

dfi	 (k,t)
( -a	 +	 >k	 a	 (k,t)	 - -k, (S	 -k k /k 2 )	 }	 i^, ( p , t-) U	 ( q , 0

=kli p-► q

r
}f

IlKi

{

,;
-where f

-4u1(;k l ,lk 2 1,	 -Ik 3 1,i.)	 ^x	 =	 I

uc• (k	 t)	 =I	 --sgn (k	 ) u	 (k	 k:.	 k,	 , t)	 cx =	 2	 (9)
4ix	 2	 2	 1	 2	 3 x

4 sgn (k 3 u 3 (k l , 1k 2 I , (k.3 ( , t.)	 3 1

`1'he system	 (8)	 can be solved nume^.rically by using	 f•,ast FourjLor_
4i transforms to evaluate the convolu ion sums, leap-frog time

xi differencing on the nonlinear ternis, and Crank-Nicolson 	 (im-

plicit) time differenc-ing on the viscous terms.	 This methodf
3of solution requires the use of 18 Fourier transforms on 	 (32)

f
points per time step4

i

v.
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s1 With the representation of the velocity field requiring

'i about	 105	 computer storage loo?.:tions, the :current code requires-

the buffering of data between small core memory, large core mem-

ory and disks.	 Small core memory on the CDC 7600 has 65K words
.4 and large ,core has 250K words._ The code has been sped up by

x about a factor, of 2 over the original Fortran version by pro- s

' gramming many of the critical internal looks in assembly language,

and now requires about 6 seconds of computer. time ,,»r time step. >>

The runs discussed 1Gter required from 300 9-o about 1000 time r

steps to achieve a statistically steady state.

e2r

4

e

i
'	 3

s

^r

pp s
d;
c

Y^
x

<	
I

t^

c

':

^^

I

r
=4E,

14

1

I>
_. 8

O 9

r 3,



4	 iF

4.	 Description of the Simulations

j	 The initial mean velocity profile in the numerical experi-

ments was chosen to correspond to' the experimentally measured

mean velocity profile of an axisymmetric subsonic colt? jet 1,6.

' The experimental apparatus consisted of a long pipe with a".nozzle

diameter of	 d	 = .0025	 meters. ! The mean ;exit ve 1 .>c.i ty was

213m/sec corresponding to a Mach number of 0.62. 	 The cylin-

drical coordinate system,(Xl,r) is used, where „l is th- distance

- (expressed in units of the iet diameter) along they ict axis from
the virtual origin of the jet and	 r ` corresponds to t'he radial
distance from tho let axis.	 The jet spreads c«wr: Z ream, its

s boundary making an angle of	 O e = ll°	 wi_Lli the	 X 1 	axis.	 In

this flow # the virtual origin of the jet corresponds to a dis-
tance	 X0 = -2.57	 upstream of the mouth of the nozzle, located

at	 X1 = X0 . 1Y

The mean velocity profiles have been characterized in two i
self-similar regions: 	 a mixing region, just downstream of the

of	 -.:.

jet nozzle,	 corresponding to 	 0 < D -`- 5, -anu a cuU , - Lurbuic-n:_.

region for	 D > 5,	 where	 D'= X1 - X	 In particular, for
0 < D < 5,

U(Xl,r)	 1,	 r <	 .5 -	 .102(1+D)
W;

_	 -	 (1`0)
+.102)2),rUc(X1)	 exp(-61,53(ii2.5-.102(J+D) #	 3

where	 Uc (X1)	 is the mean centerline' jet velocity, and

r-.5'
l+D	 (11)

and for	 D 5 5?

t; (Xl	r)
+.69) 2 )	 (12)_	 = exp (-1 .44 (l13

i Uc (X1 )f



;

t

q
II

where

u3 = 10.3 {X }-	 .69	 (13) a

1
x

Superimposed on the given mean velocity field is a turbulent
' I fluctuating component	 v' (x, t) .	 _ To -ensure that	 v" (x,'t)	 satis-

fies the incc.mpressibility constraint	 (4), we expr.:,ss	 v" (x,t)
a in the form

t V" ( X ,t)	 _ Vyn" (x)	 (14)

where the vector potential	 A" (x)	 is of the ,form_

k
1/zA" (x)	 _	 [I (r) ]	 B (x)

Here,	 B(x)	 is chosen as a realization of a homogcnoc:us , iso-
u tropic random: field with specified isotropic energy spoctrui ienergy

E (k) , owhile	 I,(r) ,	 the intensity function, 	 is chosen in accord-
ance with the experimental data on the root-mean-square turbulent

intensity 1 .	 E(k) is of the form

is
E (k)` = Ak 4exp (-Bk ,) .	 (16)

r

F I(r)	 has been approximated at various downstream positions 	 D,
e.g.	 at	 D = 4

16-. 11F-.xp (-5s 2 )	 0<s=. 1
1/2 	•R(s)	 _ [ I (r) ]	 (17) g	 !r 4 .159	 exp (-1. 5 (`s-1)') 	 s 5 1

where	 s = 2r/d0`.	 Also, we Lse

185 -	 055exp(-8s 2 )	 0 <s< 55 s 3! }"
ti

R(s)	 _	 for	 D=8	 (18)
183ex	 -. 7	 2 ).	 ((s-.65)	 s>.65

rl s, .225 -	 .045exp(-1.6s 2 )	 0<s.4 {:y
R(S)2	 for D=12 (19) g

+ . 221	 exp (,-. 5 (s-. 4)) 	 s:• . 4

±.. I0	 -.
F

L("d — _:
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Three principal runs are reported corresponding to loca-

tions	 D	 4,	 8,	 and	 12	 jet diameters downstream of the jet

E	 i-
r

exit.	 Each computational slab exterids over about 	 2-3	 jet
diameters in the downstream direction (the variation being due r

to the need for increased size of the computational box further

} downstream).	 The initial mean flow profiles are shown in figs.
1,	 2. r

Finally, it is important to discuss the Reynolds numbers

'E{ of the simulations.	 In all three simulations :	v _ .0'06rn2/s
( so that the Reynolds number based on jet diamoter and centerline

velocity is about	 R	 22,000.	 On the other..hand, the laboratory

jet is ` run in air with, the much lower viscosity 	 v = l'. 5 x1'0	 mZ/s
giving 'a Reynolds number roughly 40 timeslarger. 	 The important
question concerns how these two flows, numerical and laboratory,

R
can possibly relate to each other considering the huge discrop-

If ancy in Reynolds number. 	 However, this discreTxancy in Reynolds
numbers appears to be important only at the ve=ry smallest scalds

L	 r and not at those scales of motion responsible for sound genera-

`	 { tion.	 In fact, this is consistent with I,ighthi ll ",s theory 7
which shows that neither. energy-containing noa- energy-dissipating

j eddies dominate the noise generation !process; rather, noise gone- g#

ration is dominated by an intermediate range of eddies; whose size

- is roughly eight times smaller than the energy-containing eddies.

It has been shown elsewlzere.8	 that such intermediate
d

scales of motion are already approximately Reynolds number inde-

r pendent at the Reynolds numbers of thc numer.c:al -simulations. 4
The principal source of Reynolds number depcndence of laboratory

jet flows is not the intrinsic viscous effect on the fluid motion,

but rather is due to the` viscous effect on the boundary layers
at the jet exit which governs the flow through its' 	 and

k boundary conditions.;	 In. the numerical simulafî ons ,	 the viscous
effect on ups i;ream boundary and initial conditions- is , !avoided by

r use of 'mean` profil es correspondi ng to Re noldG^numbcrs o_f~order_

800,0 00 not 2 0 1 000.	 In this way it is expected that the n:umeri-

11
,+'
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5.	 Discussion

The results of the simulations discussed in Sec. 4 are being
used together with Lighthill's integral to determine the radiated

lsound field o f the jet.	 For this purpose,	 Aghthil.l.'s integral

is broken up --1- nto contributions from the several downstream slabs
i

whose contributions are then superposed.	 The re'sul.ts of thi8 cal-

culation will be reported later.

It is important to emphasize that noise generation is possi-
ble despite the periodic boundary conditions that arc cip l.iod to

'° ) the computational domain, bocause the contributions from heigh-

' i boring slabs are distinct and do not cancel.
'.. There are at least three areas where the present computations

are being extended and improved.	 They a.re:
{ =1)	 Inclusion of.a nonlinear eady viscosity to model thu

effects of unresolved turbulence.	 '„'lzese calculations with a sub- s

t grid scale eddy viscosity are being compared with those with the

molecular viscosity discussed here, in order to:better gauge the f

Reynolds number effects on the simulations.

2)	 Inclusion of compressibility, so that noise.production

at higher_Mach numbers can be studied. 	 - 4

3)	 Inclusion of realistic jet_ geometry, including jet

' growth, entrainment, and inflow-outflow boundary conditions.
Because of limited ` spatiaS_resolution on available computers, x
these flow simulations: in realistic jet geometries arc limited ?=

presently to about= the first five jet diameters downstream.

The latter improvement will permit the proper simulation of
r jets in the presence of a pressure gradient by allowing for et

expansion downstream.

Another problem of interest' iis the study of the present sim-
i

'	 i:
u 1 ations for evidence of coherent large; scale flow structures, as
observed recently by Crow & Champagne, haufer, and others.	 While

these large-scale 'flow, structures probably do not dominate noise

production, they may, give a component of the noise that is con-

trollable.'	 In this way, it may be possible to achieve the design

fs Of minimum noise flows at a given flow rate , and Mach number.

lj

}.' 4
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FIG. 8 - Same as Fig. 3 except the contours are for vl

in the plane x 2=2L. Isere t = .020, X=4, 
vmin=- 1.2(2),

v max =1.7(2), tv=1.(1).
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FIG. 9 - Same as Fig. 3 except the contours are for v-

in the plane x 2=2L. Here t=.020, &4, 
vmin -7•(1)'

vmax= 8. (1) , Ov=1 . (1) .
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FIG. 10 - Same as Fig. 3 except the contours are for v
3 Iki

—in the plane x 
2 

= 
2
1 
L. Here t = .020, X=4, v min=- 6.4(l),

v max= 5. 6 (1) , 6v= 8. (o) .
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FIG. 11 - Same as Fig. 3 except the contours are for vl^z

in the pl4ne x 1=^L. Here t=.031, X=4, vmin--1.1(2),

v
max

= 1.4(2), Av=1.(1).
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FIG. 12 - Same as Fig. 3 except the contours are for vl'

in the plane x 2 =1L. Here t=.031, X=4, vmin 1.3(2),

A max = i.8(2), Av=1•(1)•
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FIG. 13 - Same as.Fig. 3 except the contours are for v2xI

in the plane x 2=2L. Here t = .031, : = 4, vmin=-

vmax=9. (1) , '^v= 1. (1) .
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FIG. 14 - Same as Fig. 3 except the contours are for v3 /x

in the plane x-) = L. here t= .031, n=4, vmin -

max = 8.(l), av=1.(1).
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FIG. 15 - Same as Fig. 3 except the contours are for v
in the plane x 1	 1, = ^L. Here t=.051,	 v min=- 1.4(2),
v 
max= 1. 4 (2) , IW= 1. (1)
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FIG. 16 - Sane as Fig. 3 except the contours are for 
v1in the plane x2=L• Here t = .051, X= 4, vmin=-1.3(2),

vmax=l.7(2), ,v=1.(1)
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FIG. 17 - Same as Fig. 3 except the contours are for v2 A-i
in the plane x 2 =2L. 	 Here t= .051, X=4, 'Min=- 1.2(2),
vm:ix=9. (1) , '^v=1. (1) .
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FIG. 18 - Same as Fig. 3 except the contours are for v 3 4'
in the plane x 2=2L. Isere t= .051, X=4, vmin 9'(1),
max

v	 =1.1(2), Av=1.(1).
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FIG. 19 - Same as Fig. 3 except the contours are for v /Y-1
1in the plane x 1 = 7 L. Here t=O, X = 3, v min=- 1.(2),

v 
Flax 

=1. 1 (2) , Lv=l. (1) .
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FIG. 30 - Same as Fig. 3 except the contours are for Al

1L.v l io tbe plane x 2
= 	Berc t=Oo ^{= 8 " vmio=-l^(2),

v max = 	 Av=l.(l).
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FIG. 21 - Same as Fig. 3 except the contours are for
v 2 in the plane x 2 = L• Ilene t = 0, X=8, v

* max = 1.2 (2) , Gv= 1. (1) .	
min=-1.2(2),
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FIG. 23 - Same as Fig. 3 except the contours are for ^^^

l'	 v in tbe ^la^^ ^ =^^	 l{e^e t=0 ^=^^ n_^io =-^ l (l)3	 2 7 ^	 ~	 ^	 ^	 ^

v_/"ax =5.4(l) , Av=9. (0).
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FIG. 23 - Same as Fig.

v in the plane X =1 L1	 1 7
v max= 1.3 . (2), Av=l.(I).

3 except the contours are for
'fore t=.020, K=8, v mill=-l.(2),
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FIG. 24 - Same as Fig. 3 except the contours are forte,

v l in the plane x 2 =7L. Isere t=.020, X=8, vrain=- 1. (2) ,
vmax=1.9(2), Gv=l.(1).
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FIG. 25 - Same as Fig. 3 except the contours are for
v2 in the plane x 2 =3L. Here t=.020, X=B, 

vmin=- 1.1(2),

v max = 1.(2), Lv=1.(1).
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FIG. 26 - Same as Fig. 3 except the contours are for

v 3 in the plane x 2= 2L. Here t=.020, X=8, vmijl=-7.2(1),

* Max -7.2(1), Av=9.(0).
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FIG. 27 - Saiue as Fig.
v l in the plane x1 =1

vmax=1.2 (2) , Lv=1. (1) .

3 except the contours are for ,k z
Here t=0, X=12, v=-1. (2) ,min

N
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FIG. 28 - Same as Fig. 3 except the contours are fora

i
v 1 in the plane x 2=^L. Here t = 0, X=12, vmin=-1.(2),

vmax=1.9(2), Lv=1.(1).
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FIG. 29 - Same as Fig. 3 except the contours arc for ^y

v 2 in the plane x 2=2L. Here t=0, X=12, vmin=-1.2(2),

vmax=1.3(2), Gv=l.(1).
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FIG. 30 - Sane as Fig. 3 except the contours are for 'k
v 3 in the plane x 2=12L. Isere t=0, X=121 vmin =-9.(1),	 •

vmax=6.3 (1) , Av=9. (0) .
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FIG. 31 - Same as Fig. 3 except the contours are 	 ••.
for v 1 in the plane :: =?'J... Mere =.032	 21 2	 X=12,

vmin -^1 . 1 (2) , vmax = 1.6 (2) , f► v-1. (1) .
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FIG. 32 - Same as Fig. 3 except the contours are for'KI
v 1 in the plane x 2 =2L . Here t=.032, X = 12, v min
vmax=2. (2) , Lv=1. ( 1 ) .

46



Id

Q^ a0 --O n^

4L

•

O

....	 .::: . ..	 .,::::::.......

•	 .. `.J a	
.a. ^,^/^^

o C----^
FIG. 33 - Same as Fig

Io ... A5;o

 3 except the contoursv i	 are for ,k? n the plane x2=L, ticre t= .032, X= 12, v
vmax=9. (1) , av= 1. (1) ,	 min	 1.2 (2)
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FIG. 34 -'Same as Fig. 3 except the contours are for.,

	

v 3 in the plane x 2 =2L, Isere t = .032, X=12, Amin=-1	
/

. (2) ,
vmax=9. (1) , Lv= 1. (1) .
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FIG. 35 - Contour plot of the quadrupole moments in

the plane x l=.-L at X= 4 diameters downstream from the jet

exit. here t=0, the contour minimum is Qmin=-1.4(5),

the contour maximum is Qmax=4.(4) and the contour inter-

val is 0Q=1.(4).
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FIG. 36 - Same as Fig. 35 except the contours are made,%f

in the plane x 2=2L at X=4. Here t=0, Qmin=-2.4(5),

Qmax=1.2(5), GQ=2.(4).
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FIG. 37 - Same as Fig. 35 except the contours are rad, /x,

in the plane x 3= jL at X= 4. Here t=0, Qmin -3.9(5),

Qnax=1.5(5), GQ=3.(4).
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FIG. 38-- Same as Fig. 35 except t 	 41P	 he contours are macein the plane x 1 =lL at hz=4, Here t= .020, Q	 =_2.4(5),
Qmax - 3•b(5), aQ:4.( 4).	min
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FIG. 39 - Same as Fig. 35 except the contours are made'x

in the plane x 2L at X=4. Fiere t=.020, Qmin -4.9(5),

Q max=5.6 (5) , AQ=7. (4) .
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in the plane x 3=4L at X=4. Here t=.020, Qmin -4.5(5),

Qmax=3.5(5), LQ=5.(4).
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FIG. 41 - Same as Fig. 35 except the contours are made YL

in the plane x 1 =1L at X= 4. Isere t=.031, Qmir -5 ' (5) ,
Qmax=3. (5) , LQ = 5. (4) .
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FIG. 42 - Same as Fig. 35 except the contours are made x^
in the plane x 2 =2L at X=4, here t = .031, Q	 =-1.5(6),min
Qmax=6. (5) , AQ= 1. (5) .
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FIG. 44 - Same as Fig. 35 except the contours are made^2
in the plane x 1 =2L at X=4. Here t=.051, Amin=-1.3(6),
Qmax=B.(5), 6Q=1.(5).
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FIG. 45 - Same as Fig. 35 except the contours are made',
in the plane x 2 =2L at X=4. tte:'e t=.051, Qmin -1.2(6),

Qmax=1.4(6), GQ=1.(5).
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FIG. 46 - Same as Fig. 35 except the contours are made '^'•

in the plane x 3=4L at X= 4. Here t=.051, Qmin -1'2(6)'

Qmax-3.3(6), 6Q=3.(5).
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FIG. 47 - Same as Fig. 35 except the contours are made ^z

in the plane x 1 =2L at X=8• Here t=0, Quin=-

Qmax= 8 . (4) , ^Q=1 . (4) .
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FIG. 48 - Same as Fig. 35 except the contours are made
in the plane X 2 = 2L at 7=8. 1:ere t = 0, Qmin=-3.6(5),
Qmax=1.5(5), AQ=3.(4).
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FIG. 49 - Same as Fig. 35 except the contours are made	 1%0

in the plane x 3= I L at R= 8. Here t=O, Qmin=- 3.9(5),4 
Qmax= 1.5(5), AQ=3.(4).

0



N^

64

0/^

L^ "^

x

A

0

4:.

o ^Q

U

FIG. 50 - Same as Fig. 35 except; the contours are made',

in the plane x 1 2
=1 L at	 Here t=.020, Qmin 6.(5),

Qmax=2. 5 (5), LQ=5. (4)
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in the plane x 2 = 1L at 7=8. Here t = .020, Qmin=-9.(5),

Qmax=S.4(5), LQ=9.(4).
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FIG. 52 - Same as Fig. 35 except tine contours are made
in the plane x 3 =4L at h=8. Here t=.020, Q min=-5.G(5),
Amax-4 ' 9 (5) , GQ=7. (4) .
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FIG. 53 - Same as Fig. 35 except the contours are made4z.

in the plane x l =2L at X= 12. here t=0, Qmin=-1.4(5),

Qmax=8.(4), tQ=1.(4).
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=1.6(5), AQ=4.(4).
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FIG. 55 - Same as Fig. 35 except the contours are made "-I

in the plaice x 3=4L at X= 12. Here t=0, Qmin=-7.8(5),

Qriax= 1. 8 (5) , AQ= 6. (4) .
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FIG. 56 - Same as Fig. 35 except the contours are made

in the plane x 1 =2L at ^=12. Here t=.032, Qmin=-5.6(5),

Qmax-4.9(5), AQ=7.(4).
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FIG. 57 - Same as Fig. 35 except the contours are made

in the plane x2 
=1 L at 5^=12. Here t=.032, Q 

min=- 1.(6),

Qmax=7. (5) , AQ=l. (5) .
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FIG. 58 - Same as Fig. 35 except the contours are made 	 .X

L at X=12. Here t=.032, Qin the plane X 3= 2 	 min=-	 t

Qmax=4.8(5), AQ=8.(4).
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