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NUMERICAL SIMULATION OF TURBULENT JET NOISE - PART 1

By

Raiph.w. Metcalfe and StevennA; Orszaq

"Flow Research,. Inc.

Kent, Washinqton

. Summary
This. report descrlbes the numerical: qlmulatlon of a low—Mach
number turbulent Jet u31ng spcctral mcthods with '(32) -32,768
Fourler modes. The purpose lS “to gatn insight into thc qoncratlon
of aerodynamlc n01se by an examlnatlon of cortaln dctallod flow
‘characterlstlcs, such as quadrupole moments, wh1ch cannot yct bo
pmeasured 1n the laboratory The mean: flow quantltlos arc set Ln'
accordance with the experlmental data of ILiu & Maostrcllol _
and the 1ncomore551blc Navier-Stokes equatlone are then solvod

»numerlcally. ‘Due to computer specd and memory constralnts, lso-.”"'

r’;plated downstream sectlons ofmthe jet are: modnlled s;pdratcly WLthff7m;7‘

'pthe mean flow characterlstlcs hcld constant in tlmO. Tho flows

3reach a statlstlca-,yisteady statc.f Cross sectlon conLour ploLs B

‘:f'of the ve1001ty components and thc quadrupolc momcnts at thrcc‘-

Jdlfferent downstream,p091tlons are presonted

pd



1. Introduction

Noise production by aerodynamic jets is a basic fluid
v}mechanical problem with important practical consequences in
.the design of aircraft engines. 1In this report, numerical
simulations of an idealized jet flow are discussed with the
the goal of obtaining better understanding of the mechanism
 of noise production. | o ‘
~ Laboratory experiments, such as those reported by Liu &

Maestrellol, can provide relatively complete information on
simple flow quantities, like the mean velocity field;=but are .
not yet capable of resolving”the'quadrupole moments of the
flow which govern noise production. On the other hand, |
numerlcal 51mulatlon permits detalled examination or the flow
at any p01nt 1n time, and the calculation of arblcrary flow
parameters, including quadnupole moments, at aLl-space 901nts;
 However, numerical simulations also have their drawbacks,
especially limited resolution which restricts the Reynolds
,number of the flows that can be accurately sxmulated It
is preferable to v1ew ‘laboratory and computer experlments
~ as complementary, not mutually exclu51ve, in the present
work, laboratory data are used to fix certarn gross Features
of the jet flow, whlch are then examined in more detail by
numerical simulation. B o

In Sec. 2, the flow model and the equatlons of motlon

l5jare_discus:'sed. " In Sec. 3, the numerical method is presented,~v;s

while in Sec. 4 the numerical 51mu1at10ns performed to date
areyreviewed.d'Finaily, in Sec.,S, a dlscu551on is glven of
,;how;the present resﬁlt‘ w1ll be used in the study of n01se’
~‘production." S ' ‘



2. Flow Model :
' As a first step in the numer1cal 31mu1at10n of jets, one -
can restract attention to low Mach numbers, so that the Navier-

~Stokes equatlons for 1ncompress1ble flow govern the evolution

of the'rotatlonal comnonents of the Veloc1ty. At low Mach number;

" the aCOUSth (sompre551ve) partloﬁ the velocity couples weakly

with the rotatlonal componentszﬁ so it is possible to determine
the weakly excited acoustic field after having solved the dynamic

kequatlons for the flvid motion. The source terms in the wave
~equation for the acoustic component are just the quadrupole

' moments |
Q) = s (1)
s T |

" ‘where summation over repeated indices is implied and v is the

three dimensional volocity field. Liqhthil!'s thoory implics
that thc radlated sound flcld (porturbdtlon donslty) is proporé
tional to , - ik
‘ O N =5 4 CRIN: . 20
4t S kv (2

where‘ c . is the sound spoéd and O is calculated'in*fhe‘incom—
pres51b1e limit (with an error of order Mach number aﬂUerd)
' The Nuv1er-St0kos cquatlong for nnrompros<1b]o f]ow are

v

' %E(x t) + V(x, t)-VV(X t)‘# SUp (k. E) WV (3)
. R : - . S

oV -v(x;t)'=‘0

,sswhgre p is the pressure and,‘\),Js tho kLnnmatlv VlSLUblty o
Y.Thc rcglon of importance for n01so productlon Jn a Jot Lchndsh‘l"
'fFrom ‘the nozzle downstrpam to at 1east 20 jet dxametgrs, whllo
s:Lng lateral flow lncludes the Jct toqothcr w1th thv surroundan

’lgpotentlal flow.u Oulte a few dlff1cu1t1es arlso in Lho attempt
ito 51mu1ate thls flow numcrlcally.f Among the most Jmportant aro

(O°H



1. Limited spatial resolution becausc of limited COmhuter
power. Even using a CDC 7600, it is hardly feasible to consider
calculations with more than about 10 degrees of freedom to re-
solve the velocity field. With a thrco dlmcnslonal flow field,
- this limit 1mplles that no moro than about 50 degroos,of freedom
can be used to resolve each flow dircction. This is not suffi-
cient to resolve twenty jeﬁ-diamcters downs tream.

2. Boundary conditions for a rcalistic flow ficld are dif-
ficult, though not impOssible, to Jmposo. Some of the problcms
'concern- a) the upstrcam boundary, whoere the Jnflow is nor known
in all detall' ‘b) the downstream boundary, where outflow bound-
~ary condltlons.may cause numerical instabilitios; and ¢) thoj
latcral boundarics, wherc fluid must be entrained into tho ﬂot,i
at the propcr ratc in order to malntaln the propor jot qroth.«

Because of thesc dlfflcu1t1os, Lhe problvm‘was futhor‘rof
strlcted as will now be described. As discussed above, labora-
tory experiments have determined the large-scale mean-flow '
characterlstids, so thatAthc goal of numerical experimentation
~on jet noise should be the resolution of thb‘quadrupoln—momont
~distribution. Since the quadrupolo source terms are dominated
e'by small-scale motions and since the small scales of turbulent

f,flows largely decouple from 1arge scales3_ it follows that the
 distribution may be studled bv 1solat1ng a local sectlon of

Hv[the Jet. Thls suggests sllc1ng the jet 1nto several sections

 in the axial dlrectlon,.and then,’wlthln each sectlon,'lmp051ng
rthe experlmentally determined mean-flow characterlstlws on  the

flow., The mean veloc1ty prollle w1th1n each section is held

fixed in tlme durlng the numer1ca1 calculatlons, and the turbulentj_"

”-fluctuatlons are allowed “to approach a statlstlcallj steady state,ﬁfv"

. After evolv1ng the flow in this waj,‘the quadrupole moments are

'hobtalned and can be used 1n the nghthlll 1ntegra1 fo determlne
the radlated sound fleld._. V : R




At the Qresent‘tjme; the flow is also simplified by neglect-
ing the entréiﬁment of fluid at the lateral boundaries. The flow
is assumed to take place in a rectanqular box with pariodic bound-
ary conditions applied in the downstream diroction (x,) and no=-
stress boundary conditions applied in the lateral di rections '(xz
and x3); :

The velocity field is cxpressed as
EYEE S h — > >
vix,t) = v(x) + v'(x,t)
- . » . s : .
where v 1s the mean velocity and v' 1s the fluctuating velocity.
The mean velocity Vv is heid constant in time and is of the form

V(x) =kd(r)x]‘

where 21 is a unit vector in the x,-dircction, r is the dis-
tance from the jet axis ( ih the center of the cbmputatjunal
domain), and Uf(r) is tho’oxperiﬁcntaily observbd profilo. At
the present level of approximation} there is no mgdn radial velo-
city since the dowﬁstream;Variation ofAmoan'voloéity is scli-con-
sistently neglected (conscrvation of mass V-Jr;for implics ‘that
Caxial variation of v induces mean radial velocity). The proce-
dure for handling the fluctuating velocity is discusscd in Sccts.
3 and 4. ' o S S :

G




3. Numerlcal Mcthods

The Navxor-Stokes equations (3), (4) can also be written in

rotation form,

s 2
9Y(§E51 s-G(Q,t)xm(i,L)—&n(é,t)+vv2$(£,t) (5)
where G(ﬁ,t) is the velocity vector, m(x t) = Gw&(i,t) is the
vorticity, n(x t) = p(x,t) + J/2|v »,L)| is the pressure head,

L . . - .
n(x,t) 1is the pressure and v is the kinematic viscosity. The

rotation form (5) is advantageous'when,uSing pseudospectral
approximations since in this form the equations semiconserve
energy4. This pointwise energy conservation prevents aliasing
errors from inducing nonllnear 1nstab111ty, althouqh it has
been shown5 that the appearance of nonllnear instability due
to aliasing errors can indicate lnsufflclent resolution.

- Given the structure of the problem as described in Section

2, it 18 convenicnt to use thoe following Fouriar series Jopro 30n-

tation for the velocity ficld v(x,t) = (v](§;t), v, (%, ),
> L . Kz.‘ KIB U o
vu(x,t) =   ) s o) um(k'tlexp[2ﬂ1le1/Lll
“K. k. =0 k._=0 ‘ ‘
[key 17Ky k=0 g
cos Hk,x’/L,COSﬂk;X,/L ; w o= 1
: . /1 sl = . .
X sin nk2x2,12co nh,x 3/L ‘ vu’ »2 ; ’ (9)
cos nk /L $lhﬂk“\ 3/Tsg o= 3

where thc summaLLon indicos ”ki aro 1ntoq1al and_'Li‘ s Lhn

box sizc in the i n'dlrcctlon. ChOOSan fhc summattnn mutofisl

as Kl = 16' K2  __» S

'¢voloc1ty componcntwby, (32) = 32768  Fourier modos SO that the:

i
?R

= 32, ‘oorm1ts the rvprosontab}un of uach'

. s
; = p _ : 2
_pnilrc VO] 1Ly~1‘ J lnvo]voq about' lO'y»lndecndont‘dhmrcos -




,of so;utlon requlres fho usc of ]8 lourlur Lransforms On (32)

'”pOlnts per tlmo etep -

of freedom. The boundary conditions are periodic aL xl =0,

- and are stress-free at X, = 0, L2 and x3.~ 0, L3:
AV, ,av3 :
e = e— =V, = 0 on X, =0, L
1)X2 3. 2 2 » 2 2
IV, v, S :
1 2 :
RoT T Ry = Vo= 0 on x, =0, I
Xy T 0xy T3 , T
i RV = . o ear: N
v(xl +me1’X2’X3?;" y(x],hz,x3) m‘1nLoqru1 (7)

EQuations for the Fourier éomponents G(i) are derived
by Galerkin's prOcedure4. After applying the incom-

- pressibility condition (4) to eliminate the pressure, the equa-

tions for u(k) are found to be (in the spociai case Ty = 21,
fL2y= L3 = ) :
ot ff t) : o : S
o ’ .1‘2 ~ - el _“ _») s 2 e ) i . 3 _
”~_5E—"_;+ vk u”(k,t) = ~,?(6 oy kuky/k ));z »uﬁ(P,t)uy(qtu)
S , i S pagek | _ :
S el )
"!qil(Kj’.
where 'é ;
i : , > =
‘ 7“74 l(k1’|k I lk-},l ) ', A= l
A e ' E ] 1 » : ; . ‘ ‘ - ‘- ‘ . SR
_F“(k’t)‘_ fkvzjsgn(kz)uz(kl,lkzl,IK3I,L)._,q‘~‘2 S 9)
T ! v -
v \ v',:a-—sgn(k ll (k] ’» |k I lv]‘.il s 1) : “(x‘ : “ 3

‘,Tho systom (8) can be. solvod numorlvally by using fast P0urror 3

transforms to ¢ valuatc the convoluLlon sums; lcap froq lee‘f

‘v'djfferenclnq on the nonllnoar tcrms, and Lrank Nlcolson (1m~,

’pllClt) tlme dlfferenclng on the qucous fprmq. Thlq meihod :




With the representaﬁi@n of the velocity field requiring
about 10§‘<copppter stofage locgtions, the current code requires
the bgfferiﬂg"ofrdata between small core memory, large core mem-
ory and disks. Small core memory on the CDC 7600 has 65K words
and large core has 250K words. The code has been sped up by
_about a factor of 2 over the original Fortran version by pro-
gramming many of the critical internal loops in asscmbly language,
and now requires abouvt 6 seconds of computew time jer time stepQ
The runs discussed leter required from 300 <o abour 1000 time
steps to'achiévc a‘statisticanyusteady state.




4. Descrlptlon of the SlmulatlonS':w
| [The initial mean veloc1ty profgle ‘in the numerical experi-

ments was chosen to correspond to the experimentally measured

mean velocity profile of an axisymmetric subsonic cold jet L 6

The experimental apperatus consisted of a long pipe with a nozzle

diameter of dj = .0625 vmeters | The mean axit velocity. was

213m/sec corresponding to a Mach number of 0.62. The cylin-
drical coordinate systemy(yl,r) is used, where Xl is the distance
(expressed in units of the jet diamcter) along the jet axis from
the virtual origin of the jet and r corresponds to the radial
distance from the jet axis. The jot sprcads dowrsiream, its
‘boundary making an angle of 0, = 11° with the X, axis. 1In

1
this flow, the virtual origin of the jet corresponds to a dis-

0

at X1 = XO.

The mean velocity profiles have been characterized in two

tance X, = -2.57 upstream of thc mouth of the nozzle, located

self-similar regiqns: a mixing region, just downstream of the

jet nozzle, corresponding to 0 < D - 5, anu a fuld; Lurbulent

:regiOn for D > 5, where D = ilk— §0. In particular, for
0<D<5, RIS |
U(X,,r) §1, r<.5-.102(14D) il
B G i 5 (10)
U, (%) exp(-61.53(j1,+.102) ), r>.5=.102(1+D)
WHere ﬁc(il)' is the mean chter]jné jet velocity} and
= Em5
2 1 D (11)
, and for D > 5,
g EELn g SRS
;5~—--—-= Cxp( ] 44(u +. 69) ) R (12)
U xy) : o



where

uy = 10.3(==}- .69 (13)
Sﬁ?erimposed on the given mean velocity field is a turbulent

fluctuatinq component v (§ t). To .ensure that v (§ t)  satis-

fies the 1nccmpre531b111ty constralnt (4), we expr.oss 3'(§,t)

in the form

D (x,t) = VxRt (D) E (14)

Loy

X3y = [1(r)Y/2

B(x)

Here, fﬁ(ﬁ) Iis’qhgsen as a realization of 2. homogcnet.us, i1so-
tropic randoﬁffiéld with‘épecified isotropic energy spectrum
E(k), éwhile: I(r), the iﬁtensity function, is chosen in accord-
ance with the 9xper1mental data on the root-mean-squarc turbulent
“intensity 1. F(k) is of the form

E(k) = Ak exp(-BKk?). R (16)
I(r) has been approximated at various downstream positions D,
e.g. at D = 4

/' .16-. ]lexp( =55 ) 0<s 1

R(s) = [I(r)] ~(17)

7 \..139 cxp(—l (s l)) S?l
where' s}= 2r/d0. Also,,we use ‘ '
[ .185 - .055exp(-8s%) oO<s<.55 A
~Ris) =« , S for D=8  (18)
S .183exp(-.7(s-.65) ") 5>.65 T ARG .
[ .225 - .045exp(~165>) 0<s-.4 i E
R(s) = S B 50 EE for D=12  (19)
LR +2215exp(-.5(s=.47) ~ s».4 . ,

l9




Threc pr1nc1pal runs are reportod correspondlng to loca-
tions D = 4, 8, and 12 jet dlamLters downstream of the jet
exit. Each computational slab extends over about 2-3 ]O
diameters in the downstream dlrectlon (the varlatlon bolnq due
to the need for increased size of the compuLatlonal box furthor
downstream) . ‘The initial mean flow profiles are shown in Tigs.
g v | B s

‘Finally, it is important to discuss thc Rcynolds numbcr

!

of the simulations. In all three 51mulat10ns, v = .006m /s

so that the Reynolds number based on jeL diameter and centerline
vnloulty is about R ~-22 000. On the othcr;hand the 1aboratory
jet is run in air with the much lower viscosiby v ="l 5x10 =5 m /s
giving'avReyholds‘numbor‘roughly 40 times larger. Tho 1mportant
question concerns how these two flows, numerloal and laboratory,

can p0551b1y relatc to each other considering the hugc dis s Crop-

ancy in Reynolds number.s However, this dlscropancy 1n Roynolds ;
. numbers appears to be 1mportant only at the very smallost scales

- and not at those scales of motion responsible for ‘sound gonera—

tion. In fact, this is con51stent with quhthlll S theory7

which shows that neither energy- containing nox enerqy dlSSlpaflnq

~ eddies dominate thc'noise generation‘prbccss, rather, n01se gene-

‘ratlon is domlnated by an 1ntermed1ate range of Cddlcb whose size

is roughly eight tlmes sma]ler than the energy- cantaLnlng delCS.

It has been shown olsewhere 8 that such intermediate
»scales of motion are already approximately Reynolds number: 1nde—~'

~fpendent at the Reynolds numbers of the numcrlcal srmulat:ons,

f but rather is due to thc v1scous effect on tho boundary laygrs

at the jet exit which gOVans “the flow throuqh 1ts initial - and

boundary condltlons In the numerlcal s1mu]at10ns, the VlSCOUS'”

m;effect on upalream boundary and 1n1t1a1 conditions is. avoldcd by T

dduse of mean proflles correspond;ng Lo Reynoldq numbcrs. of order
b7§00,000 not 20,000., In thlS way 1t 1s cxuected that tho numerl—

11




cal 51mu1atlons avoid most of the pltfalls of Reynolds number
effects and thereby give results useful for the study of noise
productlon. ; 1

Some results of the numerlcal 51mulat10ns are proscntod in
‘Plgs.'3 34. Here the threce componean of voloc1ty are contourcd.
‘within several slices of the computatlonal domain at several
fevolutlon times (measured in scconds) and atlthc three downstream
locatlons D =4, 8, 1l2. These flgurcq show the chdractcrxstnc
jet shape as well as 1ndlcat1ng the naturce of the mntLOn" re-
“solved by the 51mulatlons.,‘ ; o
' The gquadrupole momcnt dlstrlbutnon 'QR%,t) for the three .
simulations is contou;gd in Flgs. 3"-58,waqain’for several timué,
locatlons, and sllces.i It is qtrlkinq how the quadrupole moment
distribution is so much morc localized and spotty than tho velo=
city field itself, consistent with our chatmentrof a slab Qt

the jet 1solated from 1Ls surroundlngw.




5. Discussion

' The results of the simulations discussed in Scc. 4 are being

used together with nghthlll S 1ntegral to determine the radiated

sound fleld of the jet.: For thls purpose, Lighthill's integral
is bro&en up into contrlbutlons from the scoveral downstrcam slabs
whose contributions are then superposed. The results of this cal-
culation will be reported later. \ |

It is 1mportant to omphas:zc that noisac qcneratlon is possi-
ble desplte the porlodlc boundary condltlons that arc app]lod to
the. computatlonal domaln, baecause. the contributions from nchh-
boring slabs are dlStlnCt and do. not cancel. :

There are at least three areas whexre  the presont computatlons
are bclng extended and 1mprOVGd o They-are:

‘1) Inclusion of a nonllnear eddy v1scos1ty to modcl the

.effects of unresolved: turbulence. E"hcsc calvu]atlons wrth a. sub-

grld scale eddy viscosity are being compared with thosc with thc
molecular v150051ty discussed here, in order to better gauge the‘
Reynolds number effects on the 31mu]atlons.' :

2) Inc1u51on of compr0351b111ty, sO that n01s productlon"

‘b at hlgher Mach numbers can be studled.

.3) Inclu31on of- reallstlc jet geometry, 1nclud1nq je

growth, entralnment, and»lnflow-outflow boundary condltlons,'

Because of llmlted spatial?resolUtion on‘avajlable computers,

these flow 81mulat10ns in reallstlc jet ‘geometries arc limited

’presently to about the first five ]Ct dlamoters downstrcam.

The latter 1mprovement w1ll pcrmlt thc propcr 51mulatlon of

”Vjets in the presence of a pressure gradlont by allow1ng for )c

expan51on downstroam.

Another problem of 1ntorestlls the stud/ of the prcsont samsf,
,ulatlons for evxdence of cohercnt 1drgc scalo flow structurcu,.as';

,;observed recently by Crow & Champaqno, Laufer,'and othors., Whllo,

thcse large—scale flow structures probably do not- domlnate n01s

y_productlon, they may q1Ve a componcnt ‘of the no:se that is con-?[:
',trolldble. In thlS way, 1t may be p0551blo to achlcvc the d051qn’

’of mlnlmum n01se f]ows at a quen flow ratv;and Mach numbor.w-n»

13
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FIG. 6 - Same as Fig. 3 except the contours are for v3
in the plane x,=3L. Here t=0, %=d, v ==6.(1),

. Yma"t2), av6(@).
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3 except the contours are for v
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FIG. 9 - Same as Fig. 3 except the contours are for v, *,
in the plane xzs%-l.. Here t=.020, X=4, Vmin"7'u)'
Vmax's‘ (1), Av=1.(1).
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pt the contours are for v /k:

Here t=.,020, ‘i-q,'vmm--s.un,

FIG. 10 - Same as Fig. 3 exce

in the plane xz-%L.
Vhnax=2+6(1), av=8, (0)
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FIG. 12 - Same as Fig. 3 except the contours are for v
in the plane x,=3L. Here £=.031, X=4, v =-1.3(2),
vhax-l.B(Z). Av=1,(1l).



FIG. 13 - same as.Fig. 3 except the contours are for vz”‘.
in the plane xzsé-x.. Here t=,031, X=4, vmin"9° (1),
Vm‘x-9. (1), av=1.(1).
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FIG. 14 -~ Same as Fig. 3 except the contours are for v

3

1
in the plane X =L,

Vmax=8- (1), 4v=1.(1).
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FIG. 16 - Same as Fig., 3 eéxcept the contours are for v, ¥

in the plane xz-%L. Here t=,051, X=4, Vain="1.3(2),
vm-1.7(2) ’ Av-lo (1) .
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FIG. 17 - same as Fig. 3 exce

in the plane

Vmax-9.(1), Av=1.(1l).
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in the plane xznéL. Here t=,051, X=4, vmin--9.(1),
vh‘xnl.l(z), Av=1,(1).
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FIG. 19 - Same as Fig. 3 except the contours are for vy £
in the plane xl-%l.. Here t=0, X=8, vmin--l.(Z),
Vmax=1:1(2), av=1.(1).
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FIG. 20 - Same as Fig. 3 except the contours are for #

in the plane XZ-%L. Here t=0, X=8, vmin.'1°(2)'
x-r.7(2), Av=1.(1).
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FIG. 21 - same as Fig. ) except the contours are for *

’

v, in the plane x2=%L. llere t=0, iﬁs,

Ymin="1.2(2),
Vmax=1:2(2), av=1,.(1).
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FIG. 22 - Same as Fig. 3 except the contours are for ¥,

v,y in the plane xzséL. Here t=0, X=8, v ==-8.1(1),

min
vmax'5'4(1)' aAv=9,(0).
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FIG. 23 - Same as Fig. 3 except the contours are for ™2

Vi in the plane xlzéL. liere t=,020, X=8, v in--l.(Z),

m
Vinax=1+3.(2), av=1.(1).
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FIG. 24 - Same as Fig. 3 except the contours are for”¥,
vy in the plane xz-%-L. Here t=.020, X=8, vmins-l.l(Z),
Vinax=1+92(2), av=1.(1).
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FIG. 25 - Same as Fig. 3 except the contours are for

vy in the plane

)

.020, 2-88' vmin'-lol (2) ’

Here t=

=%L -

s
Vnax=1-(2), av=1.(1).
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FIG. 26 - Same as Fig. 3 except the contours are for
v,y in the plane x2=%L. liere t=.020, X=8, vmin=-7.2(l).
vmax-7.2(1), Av=9,(0).
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FIG. 27 - Same as Fig. 3 except the contours are for %o
vy in the plane xla%L. Here t=0, 5&512, vmin='1‘(2) ’
vmax-1.2(2), Av=1.(1).
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FIG. 28 - Same as Fig. 3 except the contours are forx'
vy in the plane x2=%L. Here t=0, X=12, vmina-l.(Z).

Vinax=1+92(2), &v=1.(1).
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FIG. 29 - Same as Fig. 3 except the contours are for e 7
v, in the plane x,=5L. Here t=0, %=12, v , =-1.2(2),
vmax-l.B(Z), Av=1.(1).
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FIG. 30 - Same as Fig. 3 except the contours are for “k
1 = .

vy in the plane x2=-2-L. Here t=0, X=12, v_ . =-9.(1),

vmu-G.B(l), Av=9,(0). ;
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FIG. 31 - same as Fig. 3 except the contours are X
’ —
for vy in the plane xl==£24}. . Here t=,032, X=12,
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FIG. 32 - Same as Fig. 3 except the contours are for'r'

Vi in the plane xzcéL. Here t-.032,.2512, vmin--l.l(z).
vmax'z'(Z)' Av=1.(1).
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FIG. 33 =. Same as Fig, 3 exc
V, in the plane xz-%L.
Vmax=2-. (1), dv=1,(1).

ePt the contours are for >,

Here t=,032, X=12, Yain®™1i202),
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FIG. 34 - ‘Same as Fig. 3 exce

Here t=,032, X=12,

vV, in the plane xz-%L.

Vmax=9- (1), av=1.(1).
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FIG. 35 --Contour plot of the quadrupole moments in %,
the plane xl=%L at X=4 diameters downstream from the jet
exit. Here t=0, the contour minimum is Qmin=-1.4(5),
the contour maximum is Qmax-4.(4) and the contour inter-
val is 4AQ=1.(4).
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FIG. 36 - Same as Fig. 35 except the contours are made™
in the plane xz-%-l. at X=4, Here t=0, an--Z.G(S),
Qn‘x-I.Z(S), AQ=2,(4).
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FIG. 37 - Same as Fig. 35 except the contours are made #4,
in the plane x3-%L at X=4. Here t=0, Qmin"3°9(5)'
Qmax-]..S(S), AQ=3.(4).
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FIG. 38 '~ same as Fig. 35 except the contours are made‘“z
in the plane xI-%-L at X=4, Here t=.020, Qmin--2.4(5),
Qmax'3°6(5)' 40=4, (1),
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FIG. 39 - Same as Fig. 35 except the contours are made %
1 = i =

in the plane x,=35L at X 4, Here t=.020, Qmin 4.9(5),

Quax=2+6(5), AQ=7.(4). '
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FIG. 40 - Same as Fig. 35 except the contours are made
1 -~

in the plane x3=zL at X=4, Here t=,020, Qmin=-4.5(5),

Qmax-3.5(5) , 8Q=5,(4).
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FIG. 41 - Same as Fig. 35 except the contours are made %,
-1 X= = = -

in the plane xl'EL at X=4. Here t=,031, Qnin $.(5).,

x=3.(5), 4Q=5.(4).
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FIG. 42 - same as Fig. 35 except the contours are made %/
1

in the plane xz--z-L at X=4. Here t=.031, Quin=-1.5(6),

Onax=6+(5), 2Q=1.(5).



FIG. 43 - Same as Fig. 35 except the contours are made X%,
in the plane x,=iL at ¥=4. Here t=.03l, Quin=-1.2(6),
Qmax'8° (5), 4Q=1.(s).
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FIG. 44 - Same as Fig. 35 except the contours are made
in the plane x1=%L at X=4,

Quax=8- (5), 8Q=1.(5).

Here t=,051, Quin=-1.3(6),

x
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FIG. 45 - Same as Fig. 35 except the contours are made %,
l b = ' T2 -

in the plane x,=3L at X=4. llexe t=,051, Quin=-1.2(6),

me-l.ﬂﬁ) ¢« 8Q=1.(5).
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FIG. 46 - Same as Fig. 35 except the contours are made .
1 -' = 2 -

in the plane x3-zL at X=4, Here t=,051, Quu'.n 1.2(6),

Qpax=3-3(6), 8Q=3.(5).
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FIG. 47 - Same as Fig. 35 except the contours are made %

in the plane xl-%L at X=8,
ax-ﬂ.(l). 4Q=1.(4).

Here t=0, Qmin.-l's(S)'
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FIG. 48 - Same as Fig. 35 except the contours are made *y

1
in the plane xZ'EL at X=8. Here t=0, Quin=—3.6(5),

Qm‘xtl.S(S), 4Q=3.(4).
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FIG. 49 - Same as Fig. 35 except the contours are made e

in the plane x3-%L at X=8. Here t=0, Qmin"3'9(5)'
Qnax=1:5(5), 40=3.(4).
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FIG. 50 - Same as Fig. 35 excep.: the contours are made?»
1 = = = -

in the plane xl'il‘ at X=8. liere t=.020, Quin==6-(5),

Qnax=2:5(5), 40=5.(4).
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FIG. 51 - Same as Fig. 35 except the contours are made %

in the plane xzuéL at X=8. Here t=.020, Q_. =-9.(5),

min
Qmax'5°‘(5" 4Q=9.(4).
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Pt the contours are made

FIG. 52 - same as Fig. 35 exce
in the plane x3-%L at X=8,

Qm‘x-4.9(5), 4Q=7.(4).
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FIG. 53 - Same as Fig. 35 except the contours are made*.
in the plane xln%L at X=12., liere t=0, Qminz-]_,“s) .
Quax=8:(4), 80Q=1.(4).
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FIG. 54 - Same as Fig. 35 except the contours are made
in the plane xzséL at X=12. Here t=0, Q

Qpax=1-6(5), 4Q=4.(4).
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FIG. 55 - Same as Fig. 35 except the contours are made *
l —= = = -

in the plane x3=ZL at X=12. Here t=0, Quin=-7-8(5),

Qay=1-8(5), 80=6.(4).
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FIG. 56 - Same as Fig. 35 except the contours are made G
i 1 T= = -

in the plane xl’EL at X=12. Here t=.032, Qming $.6(5),
me-4.9(5) , 00=7.(4).



FIG. 57 - Same as Fig. 35 except the contours are made %

in the plane xZS%L at X=12, Hlere t=,032, Qmint-l.(G),

Qnax=7-(5), 4Q=1.(5).
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FIG. 58 - Same as Fig. 35 except the contours are made 4,
in the plane x;,-%-l. at X=12. Here t=,032, Qmin--B. (5),
Qnax=4-8(5), 4Q=8.(4).
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