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PREFACE 

This publication is part of an oxygen safety review in prog-
ress by the NASA Aerospace Safety Research and Data Institute 
(ASRDI). The objectives of the review include: 

1. Recommendations to improve NASA oxygen handling practices 
by comparing NASA and contractor oxygen systems includinq 
the design, inspection, operation, maintenance, and emer-
gency procedures. 

2. Assessment of the vulnerability to failure of oxygen 
equipment from a variety of sources so that hazards may 
be defined and remedial measures formulated. 

3. Contributions to safe oxygen handling techniques through 
research. 

4. Formulation of criteria and standards on all aspects of 
oxygen handling, storage, and disposal. 

The special publication summarizes the current state-of-the-
art in pressure measurement in the region of 50 to 150 K (the 
liquid state of oxygen). The report is not limited to oxygen-
proved systems alone as this would have severely limited the re-
port. The published literature available in the cryogenic region 
generally is quite restricted. The survey includes information 
on cleaning and materials compatibility, calibration methods and 
descriptions of representative transducers. A summary of rec-
ommendations is presented as well as an extensive bibliography 
arranged by transducer type. 

This work was initiated by Frank E. Belles, former Director 
of ASRDI.

Soloman Weiss, Acting Director 
Aerospace Safety Research and 
Data Institute 
National Aeronautics and 
Space Administration 
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FOREWORD 

It is hoped that this report will provide an up-to-date 
viewpoint of pressure transducers and their current uses with 
gaseous or liquid oxygen. Very little data are available in the 
literature on pressure transducers with respect to gaseous and 
liquid oxygen. Therefore, all transducer types such as strain 
gage, capacitance, potentiometric, piezoelectric, etc., are in-
cluded in this survey. 

Some of the topics covered include cryogenic pressure meas-
urement, material compatibility with gaseous and liquid oxygen, 
cleaning procedures, pressure tap connections, transducer types 
and description, and calibration techniques. 

Since much is known about a relatively few pressure trans-
ducer types (relating to gaseous and liquid oxygen service), rec-
ommendations by the authors were made when other information was 
unavailable. Where possible, range, performance, and endurance 
comparisons have been made between transducer types. 

We wish to thank Michael C. Jones of the NBS Cryogenics 
Division and ASRDI Project Manager Paul Ordin of the NASA-Lewis 
Research Center for their review and constructive comments during 
the course of thisproject. Harlan S. Harman, Chief of the Pres-
sure and Thrust Section at George C. Marshall Space Flight Center, 
also provided several unpublished NASA reports on pressure trans-
ducer performance and for these we wish to thank him. Finally, 
we are indebted to Shirley A. Alldredge and staff of the NBS 
Boulder Library for their help in acquiring the numerous refer-
ences, without which this report could not have been written. 

John M. Arvidson 

James A. Brennan 
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CONVERSION FACTORS 

There are a multiplicity of terms used in pressure measurement. The 

International System of Units (SI) recognizes the Pascal (Pa) (Newtons/ 

metre 2 ) as the accepted unit of pressure or stress. Accordingly, the 

following conversion factors are given to convert other commonly used 

terms to PascalEG561. Also, additional conversion factors are provided 

since no attempt was made to convert the units found in the literature to SI. 

To convert from	 To 

Density 

gram/centimeter 3	 kilogram/meter3 

ibm/inch3	 kilogram/meter3 

ibm/foot 3	 kilogram/meter3 

slug/foot 3	 kilogram/meter3

Multiply .By 

1.00* x 10 

2.7679905 x 

1.6018463 x 101 

5.15379 x 10  

Length 

angstrom meter 1.00* x 10-10 
foot meter 3.048* x 10- 1 
inch meter 2.54* x 10-2 
meter wavelengths Kr 86 1.65076373* x 10  
micron meter 1.00* x 10- 6 
mil meter 2.54* x 10 

yard meter 9.144* x 10_1 

Mass 

carat	 (metric) kilogram 2.00* x 10 

gram kilogram 1.00* x 10- 3 
kilogram mass kilogram 1.00* x 100 

lbm (pound mass, avoirdupois) kilogram 4.5359237* x 10_1 

ounce mass (avoirdupois) kilogram 2.8349523125* x 10- 2 
pound mass, ibm (avoirdupois) kilogram 4.5359237* x 10_1 
slug kilogram 1.45939029 x 101 

Pressure or Stress (Force/Area) 

atmosphere (technical = 1 kgf/cm) pascal	 (Pa) 9.806650* x 1O4 

bar pascal	 (Pa) 1'.00*	 x 
centimetre of mercury (0°C) pascal	 (Pa) 1.33322	 x 103 
centimetre of water	 (4°C) pascal	 (Pa) 9.80638	 x 101 

decibar pascal	 (Pa) 1.00* x 1O4 
dyne/centimetre 2 pascal	 (Pa) 1.00* x 10-1

Exact.
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To convert from

	

	 To 

Pressure or Stress (Force/Area

foot of water	 (39.2°F) pascal (Pa) 

gram-force/centimetre 2 pascal (Pa) 

inch of mercury	 (32°F) pascal (Pa) 

inch of mercury	 (60°F) pascal (Pa) 

inch of water	 (39.2°F) pascal (Pa) 

inch of water	 (60°F) pascal (Pa) 

kilogram-force/centimetre 2 pascal (Pa) 

kilogram-force/metre 2 pascal (Pa) 

kilogram-force/millimetre 2 pascal (Pa) 

kip/inch 2	 (ksi) pascal (Pa) 

millibar pascal (Pa) 

millimetre of mercury (0°C) pascal (Pa) 

poundal/foot2 pascal (Pa) 

pound-force/foot 2 pascal (Pa) 

pound-force/inch2	 (psi) pascal (Pa) 

psi pascal (Pa) 

torr	 (mm Hg,	 0°C) pascal (Pa) 

Newton/metre 2 pascal (Pa) 

Multiply By 

(continued)

	

2.98898	 x 10 

9.801650* x 101 

3.386389 x 1O3 

	

3.37685	 x 

	

2.49082	 x 102 

	

2.4884	 x 102 

9.806650* x 10 

9.806650* x 100 

9.806650* x 106 

6.894757 x 10  
1.00* x 102 

1.333224 x 102 

1.488164 x 100 

4.788026 x 101 

6.894757 x 

6.894757 x 10 

	

1.33322	 x 102 

1.00* 

Temperature 

Celsius (temperature) Kelvin 

Fahrenheit (temperature) Kelvin 

Rankine (temperature) Kelvin 

Fahrenheit (temperature) Celsius 

Kelvin (temperature) Celsius 

Viscosity 

lbm/foot second	 newton second/meter 2 

lbf second/foot 2	 newton second/meter2

K=C+273 .15 

K=(5/9) (F+459.67) 

K=(5/9)R 

C= (5/9) (F-32) 

C=K-273 .15 

1.4881639 x 100 

4.7880258 x 101 

SI Symbol 

G 

M 

k 

m 

n 

Multiplication Factors Prefix 

1 000 000 000 = 1o 9 giga 

1 000 000 = 106 mega 

1 000 = 1O 3 kilo 

0.001 = 10 milli 

0.000	 001 = 10_ 6 micro 

0.000 000 001 = nano

*	 Exact.
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1. INTRODUCTION 

Of all the measurements made on systems, one of the most common must 

surely be that of pressure measurement. Pressure measurements are made not 

only to determine the force per unit area in a system, but also to determine 

flow rate-.(-bead type meters), quantity (differential pressure liquid level 

gages), and temperature (vapor pressure or gas thermometers) . There are, 

understandably, a wide variety of pressure measuring devices in existence. 

The devices and methods described in this report were selected after an ex-

tensive review of the available literature. A comprehensive reference and 

bibliography list is provided at the end of this publication which was com-

piled from several sources including a search of the NBS Cryogenic Data 

Center and the NASA Scientific and Technical Information Facility. Very few 

references in the literature deal with the problem of pressure transducers 

and their performance in cryogenic environments, and in particular, when used 

with liquid oxygen (LOX). Therefore, an accurate evaluation is not available. 

This report, however, is not limited to those references which were only con-

cerned with oxygen (gaseous and liquid) . Where the information was not avail-

able, a quantitative discussion was made.  

As many considerations as possible (i.e., calibration, error, oscil-

lations, hysteresis, etc.) for pressure transduce 	 e al-	 genic tem-

peratures will be covered in this report and whereve	 the dis-

cussion will be quantitative. Problem areas connect'	 th a particular


pressure transducer and the considerations mentionE sill be discussed in 

the appropriate section (i.e., diaphragm, bellows, etc.) followed by des-

criptions, performance (mostly at ambient conditions), and other pertinent 

data. The above approach is felt to be the most practical since very few 

data are available in the literature on pressure transducers with respect to 

gaseous and liquid oxygen. Recommendations by the authors wi 	 e made when 

other information is unavailable.
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Instruments for making both static and dynamic pressure measurements 

are described. Even in nominally static pressure systems dynamic pressure 

fluctuations may be present, as in a flowing stream or a differential liquid 

level gage. Thermal oscillations in lines containing cryogenic fluids pre-

sent special problems which can be quite detrimental in obtaining a "true" 

pressure reading (see "Cryogenic Pressure Measurement"). Therefore, it is 

very important that the system characteristics be properly considered when 

choosing pressure measuring instrumentation. General information on elastic 

gages and manometers commonly used in pressure measurement are shown in 

[Gl]* 
table 1.1	 . Also, information on electrical transducers (quite often 

used in conjunction with a diaphragm, Bourdon tube, or bellows) used to 

measure pressure is shown in table 12[Gll] 

Some of the more commonly found pressure measuring devices used for 

measuring vacuum or low pressures are listed in Figure 1.1. The approxi-

mate pressure range, for a particular gage, is also indicated in the 

figure. Through common usage the term vacuum refers to any pressure below 

atmospheric. This pressure region has been divided into five generally 

accepted degrees 281: 

Low vacuum 760 torr to 25 torr (101.3 kPa to 3.33 kPa) 

Medium vacuum 25 torr to 1003 torr (3.33 kPa to 0.13 Pa) 

High vacuum torr to 10- 6 torr	 (0.13 Pa to 0.13 mPa) 

Very high vacuum 10_6 torr to io	 torr	 (0.13 mPa to 0.13	 p.Pa) 

Ultrahigh vacuum lO torr and beyond (0.13	 tPa and beyond)

Under normal conditions vacuum measuring devices are not actually exposed 

to oxygen (gas or liquid), therefore, they are not covered in this report. 

For additional information on vacuum measurement the reader is referred to 

a review paper by Santeler, et. al.291. 

* References throughout the text are prefixed by a symbol (e.g., G,C,B, 
etc.) to denote the category in which they are listed (see list of 
designations under .'References and Bibliography") . An "Author-Designation 
Cross Reference Index is also included with authors listed alphabetically. 
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Included in this report are some possible sources for error in making 

pressure measurements, which would include those at low temperature. Error 

analysis is only briefly touched upon in this publication since a complete 

treatment of the subject is beyond the scope of this report. However, the 

References and Bibliography section lists several good publications dealing 

with the subject. 

Figure 1.2 helps to compare the characteristics of some pressure 

transducer types
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Notes for Figure 1.2 

1. Composition independent? 

"Qualified Yes" for McLeod gage where gas must obey Boyle's law 

and for Knudsen gage which can be made nearly composition independent, 

but which is not always so constructed. 

"Qualified No" for hot-filament and alpha-source ionization gages. 

These gages are composition dependent, but the relative sensitivity 

to different gases is 'not a function of pressure and consequently can 

be expressed simply as a calibration factor or sensitivity ratio. 

"Definite No" for Pirani and thermocouple, viscometer molecular 

gage, Philips cold-cathode ionization gage. The composition dependence 

here is complex and cannot be expressed by a simple ratio valid for 

the entire pressure range. 

"2. 'Leaves gas uncontaminated? 

"Qualified , Yes" is assigned to those gages which involve mercury 

vapor, components heated to incandescence, or high-voltage electrical 

discharges. 

3.	 Uncontaminated by gas?	 - 

"Qualified Yes" is assigned for the following reasons: (1) Mercury 

manometer and McLeod gage: accuracy of indication will eventually 

suffer when the mercury and tubing walls become dirty. (2) Hot-

filament ionization and Philips cold-cathode ionization gages: 

appreciable gettering and sorption occur and are troublesome 'in the 

lowest part of the pressure range. (3) Alpha-source gages: excessive 

' condensation of moisture or other liquids can affect reading. 

"Qualified No" is assigned for the following reason (1) Pirani and 

thermocouple gages (particularly the latter) : low-pressure errors 

due to change of emissivity.
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4. Free from mercury attack? 

"Definite Yes" is assigned only to those gages where usual materials 

and construction are such as to resist attack even by liquid mercury. 

"Qualified Yes" indicates that gages probably are capable of resisting 

mercury vapor for extended periods of time, but not necessarily able 

to withstand action of mercury droplets. 

"Qualified No" indicates that precautions are desirable to keep 

mercury vapor and droplets from gage when operation covers more than 

a few tens of hours. 

5. Independent of gage temperature? 

"Definite Yes" signifies that gage indicates pressure rather than 

molecular density; indication is relatively unaffected by variations 

in gas temperature or ambient temperature. 

"Qualified Yes" is assigned for the following reasons: (1) Knudsen, 

Pirani, and thermocouple gages operate on the basis of heat transfer 

through the gas; hence ambient temperature affects indication some-

what. (2) Hot-filament, Philips cold-cathode, and alpha-source gages 

indicate molecular density rather than pressure. 

"Qualified No" signifies: (1) Sensitive diaphragm gages require 

careful thermostatting. (2) Viscometer molecular gage has somewhat 

severe temperature errors near mid-range. 

6. Usable at low temperature? 

As rough basis of comparison, "low temperature" here means below 

the freezing point of water. 

"Definite Yes" is assigned only when operating principle is indepen-

dent of temperature and when generation or conduction of heat is not 

essential to gage function. 

"Qualified Yes" signifies: (1) Mercury manometer and McLeod gage 

are limited only by low-temperature properties of fluid. (2) Knudsen, 

Pirani, and thermocouple gages depend on heat conduction--hence must 

be recalibrated for operating temperature. (3) Viscometer molecular 

gage has severe temperature dependence at mid-scale. (4) Hot-filament 

ionization gage contains an intense heat source. 

9



"Qualified No"--Diaphragm gage can be thermostatted to low tempera-

tures, but differential expansion effects are difficult to eliminate 

from element design. 

7. Usable at high temperature? 

High temperature here is taken roughly as above the boiling point of 

water. Essentially the same answers and reasons are assigned as for 

low-temperature operation. 

8. Continuous indicating? 

"Definite No"--McLeod, inherently. 

9. Remote indication easy? 

"Definite Yes" only with a gage whose output is already an electrical 

signal, including diaphragm, Pirani, thermocouple, and all ionization 

gages. 

"Definite No"--McLeod gage where remote manipulation and reading 

are relatively impractical. Viscometer molecular gage where indica-

tion is by mechanical pointer located inside evacuated enclosure. 

10. Accuracy 10 per cent or better? 

"Qualified Yes" for fractional accuracy of 10 to 15 per cent. 

"Qualified No" for fractional accuracy poorer than 25 per cent at 

some portion of range. 

11. Wide range without switching? 

"Definite Yes"--McLeod gage which is available in two-range and 

three-range models. Viscometer molecular gage uses two different 

operating principles for two ends of the scale which gives wide 

operating range. Logarithmic alpha-source gage has logarithmic 

scale which covers four decades. 

"Qualified Yes"-.-Useful range without switching two to three decades. 

"Qualified No"--Useful range without switching less than two complete 

decades. 

12. Useable in gaseous oxygen? 

"Qualified Yes"--Can be used if materials selected are compatible 

with oxygen.
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13. Usable in liquid oxygen? 

"Qualified Yes"--Through proper design the bellows and diaphragm 

pressure transducer can be used with liquid oxygen. 

11



2. CRYOGENIC PRESSURE MEASUREMENT 

Much is known about the cryogenic performance of a relatively few 

pressure transducer types; however, the information available is either 

in the form of manufacturing specifications or unpublished reports. 

Hayakawa 591 made a study of cryogenic pressure measurement technology 

and concluded that accuracies of 2 per cent full scale were unattainable. 

The transducer types studied in this report were strain gage (bonded and 

unbonded), piezoelectric, and potentiometric. Hayakawa states that in-

quiries "to approximately 50 manufacturers resulted in seven favorable 

responses from suppliers indicating the availability of transducers 

operable with cryogenic systems of liquid oxygen or liquid hydrogen". 

Transducers, at low temperature, usually experience a change in sensitivity, 

a zero shift, or erratic performance. 

For many years pressure measurement in cryogenic systems l5,G57,G58,C71 

has 'been made by simply running gage lines from the desired point of mea-

surement to a convenient location at ambient temperature and attaching a 

suitable pressure-measuring device. In many systems this straightforward 

method for pressure measurement (excluding vacuum) will work quite well 

without difficulty; however, there are disadvantages which can create 

serious problems in a system 571 . Three very important items to con-

sider for pressure measurement in a cryogenic medium are: (1) reduced 

frequency response (if long gage lines are used), (2) pressure oscilla-

tions, and (3) heat leak. 

• A lengthy run of gage line from cryogenic to ambient environments 

will, most likely, introduce all three conditions mentioned above. In 

addition, oscillations in a system can fatigue the piping and ' result in 

premature failure. Smelser t57 conunents about this problem by indicating: 

"Gauge lines that run from some relatively high-temperature locations into 

a cryogenic liquid can give rise to pulsations unless care is taken to 

fix the liquid-vapor interface in the line. This phenomenon is caused when 

liquid is suddenly forced into a gauge line to a point where the tempera-

ture is above the saturation temperature of the liquid. The resultant 
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pressure rise forces the liquid back in the line, causing a drop in 

pressure which again allows the liquid to move into the high-temperature 

region, starting a new cycle". This process can cause oscillations to 

occur which are quite large and prevent an accurate pressure measurement. 

"Damping can be introduced in the gauge line, but this, of course, further 

limits the frequency response of the system. Careful placement of the 

gauge line (by keeping it horizontal) at the point where it enters the 

cryogenic fluid can eliminate pulsations under quiescent conditions, but 

does not necessarily ensure their elimination if pressure surges occur, 

as might happen during filling or emptying a dewar"571. 

If a pressure transducer utilizes long runs of small diameter tubing 

(to minimize heat leak) the limiting factor in frequency response is due 

to this connecting piping. The solution to the problem is to locate pres-

sure transducers close to the point at which the measurement is desired 

and, if possible, in direct contact with that source. Some transducers, 

such as the diodes, may even be installed completely within a vessel or 

pipe having only the electrical leads exposed to ambient conditions. Some 

advantages for using this arrangement include greatly increased frequency 

response, minimal heat leak, elimination of pressure (thermal) oscillations, 

and possibility for remote monitoring. 

Pressure transducers such as those having a diaphragm, bellows, or 

capsule may be better suited for external applications using the force-

summing element (diaphragm, etc.) as the inter-face between the medium 

being measured and the electronics used in conjunction with that force-

summing element. Others, such as the piezoelectric, capacitive, diode, 

etc., may have the potential (depending on design) to be used better 

internally. In the "Recommendations" section this subject will be dis-

cussed in greater detail with respect to specific transducer types. 

Another very serious problem discussed by Smelser 571 deals with 

pressure transducer degradation as a function of thermal cycling (see 

calibration techniques). Figure 2.1 illustrates the effect that thermal 

cycling can have on the transducer calibration9GS7l. 
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Figure 2.1a shows the calibration of a bonded* strain gage in the 

if
	 received" condition [G571 . The pressure transducers were initially 

installed into the calibration system, cooled down to the desired tempera-

ture (298, 77, or 20 K) and then pressurized while the output was monitored. 

Figure 2.1a illustrates that for this particular type of pressure transducer 

a calibration change does not occur (for one-time tests) at low tempera-

tures; however, after the same strain gage pressure transducer has been 

thermal cycled from ambient down to test temperature fifty times prior to 

testing the effect is significant and shown in Figure 2.1b. Note that the 

zero-shift at 20 K not only changed appreciably, but that the calibration 

also changed. Another effect caused by thermal cycling not apparent from 

the figure was a very erratic zero-pressure output after rewarming to 

ambient temperature. Some transducers may be completely unacceptable for 

use at low temperature due to large errors resulting from hysteresis. 

Figure 2.2 gives a second example of both temperature compensated 

and uncompensated devices. The unbonded** strain gage pressure transducer 

with compensation responds in quite the same manner as that shown in 

Figure 2.1-for the bonded type. The unbonded strain gage transducer 

(Figure 2.2) experienced a zero-shift like that of the bonded strain gage 

in Figure 2.1a before thermal cycling. This minor effect, however, can 

also be compensated for electronically (see section on "Strain" gage 

pressure transducers). 

Finally as shown by the capacitive, uncompensated transducer in 

Figure 2.2, a severe calibration change occurs at low temperature. 

* Bonded strain gage elements are generally wire in a flat grid or a thin 
metal foil printed and etched to produce a grid-type pattern. These gages 
must be cemented to the surface of a material whose strain is to be mea-
sured. Effectively, the gage then becomes a part of that surface and con-
sequently undergoes essentially the same strain (see Figure 6.111). 

** Unbonded strain gages operate basically the same as bonded ones; how-
ever, the wires are not adhered to the material as in the bonded case. 
Instead, the wire itself provides the mechanical link between the sensing 
element (diaphragm, bellows, etc.) and ground (see Figure 6.112). 
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NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, 

has routinely tested a number of pressure transducers over the last few 

years. The types of transducers tested include variable reluctance, capaci-

tance, piezoelectric, potentiometric, strain gage, and linear variable 

differential transformer. Results of this on going program are only avail-

able in unpublished reports some of which have been made available for review. 

The test program at MSFC did not always include cryogenic testing but 

when it did only one thermal cycle to liquid nitrogen temperature was included. 

Therefore, the effect of cycling can not be determined. Dean et al., [G141 

have shown that in some cases after thermal cycling (approximately 50 cycles 

from ambient to -320°F to ambient) a more stabilized, reproducible output 

signal may be achieved. Therefore, when a transducer does perform satisfac-

torily after one thermal cycle its chance for long-term stability is greatly 

increased. 

Unfortunately, test runs conducted at MSFC illustrate the effect of 

only one complete thermal cycle. For example, several transducer tests 

were performed at 75°F, -120°F, -320°F, and 75°F and none were re-cycled 

to low temperature and tested again. The summarized results of these tests 

are shown in Figures 2.3 to 2.5. Two pressure transducers (A&B) of the same 

type (model, range, etc) and from the same manufacturer are compared in the 

figures. The plots shown in Figures 2.3 and 2.4 show the unpredictable behavior 

when a transducer is subjected to low temperature. Not only does transducer 

output change but as shown in Figure 2.5 the device's room temperature sensi-

tivity can be sharply altered after being exposed to cryogenic environments. 

Although no tests were conducted at MSFC using ambient or cold oxygen, 

the effect of thermal cycling on transducers is expected to be the same as 

experienced in liquid nitrogen. More research and testing is necessary for 

a better understanding of pressure transducer behavior under adverse environ-

mental conditions. The results shown in the figures clearly show that indivi-

dual transducers even from the same manufacturer can have quite different 

characteristics. This fact suggests that for reasonable accuracy each 
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transducer should be individually calibrated and the calibration should be 

done under the environmental conditions in which the transducer will be used. 

In response to the needs of the National Aeronautics and Space Admin-

istration (Marshall Space Flight Center, Huntsville, Alabama) the authors are 

currently developing a low temperature calibration facility for static pres-

sures to 10,000 psi with superimposed pressure fluctuations. It is hoped, 

this facility will allow testing and documentation of the performance of 

pressure transducers at cryogenic temperatures (See Recommendation Section). 
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3. MATERIAL COMPATIBILITY WITH GASEOUS AND LIQUID OXYGEN 

When selecting instruments for pressure measurements in oxygen 

systems, material compatibility is extremely important, especial-ly for 

high pressure measurements. A reaction can take place whenever there is 

a fuel, an oxidizer, and an ignition source present in a system. In a 

high pressure oxygen system, the oxygen is the oxidizer and the high 

pressure can be the source of ignition through rapid adiabatic compression. 

It is of paramount importance that the transducer or gage material not 

become the fuel in such a system. 

Hust and Clark 491 have reviewed the literature on liquid and 

gaseous oxygen compatibility and have recommended the following selection 

procedure: 

"1. Eliminate ignition -- select a material which is 

least likely to ignite under operational conditions. 

2. Prevent continued reaction -- select a material 

which tends to quench the reaction after ignition. 

3. Reduce the rate of reaction -- select materials 

which react as slowly as possible after ignition 

to permit the control of the reaction." 

Each system must be considered on the basis of its own unique re-

quirements and materials selected accordingly. If only slowly varying or 

static pressure measurements are required, a restriction can be included 

at the inlet of the pressure gage to reduce the possibility of rapid 

compression and/or impact. In such a system high ignition temperature 

is probably the best criterion to use in selecting between possible 

materials. 

If there is a possibility of impact occurring either by design or 

accident, then material selection must also take into account this addi-

tional source of ignition. Systems in which there is the possibility for 

impact include flowing streams that contain solid particles, quick opening 

valves, component failure, etc.
22



At low pressures and moderate temperatures the isentropic compression 

of oxygen can result in a temperature rise of over 8°R/psi. At low tem-

perature or higher pressures the temperature rise is smaller. 

There have been many tests made on the impact sensitivity df materials 

exposed to oxygen. Unfortunately, there is a lack of agreement about the 

information available from the tests. Generally speaking; the tests show 

that metals are more oxygen compatible than non-metals and that fluro-

carbon non-metals are generally better than the other non-metals. Of 

the metals, nickel alloys and copper alloys are probably slightly better 

than stainless steel, but all three metals are pretty good. 

It is possible to obtain pressure gages and electrical pressure 

transducers manufactured using what appears at this time to be the most 

compatible materials. It is necessary to specify them, however, to ensure 

obtaining the proper materials. Perhaps the potentially most dangerous 

application involves some differential pressure transducers. Some of 

these devices allow at least one of the pressurant fluids to come in 

contact with a variety of materials within the transducer. It is necessary 

that all components in such a situation be of compatible material. 

Hust and Clark EG501 have prepared an unpublished report to sponsor 

which contains oxygen compatibility data too numerous to include in their 

published report 491 . Information from the unpublished report can be 

made available by Hust and Clark upon request. 
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4. TRANSDUCER CLEANING PROCEDURES 

Even if compatible materials are used in transducers, it is necessary 

to have all elements in contact with liquid or gaseous oxygen free from 

contaminants. Probably the most common contaminant in a transducer is 

oil. Oil is sometimes used in manufacturing and sometimes in calibration 

work. Glycerol (glycerin) is also used in the testing and calibration of 

transducers. The physical properties of glycerol make its use as a pressure 

calibration fluid a distinct advantage. Before being placed in oxygen ser-

vice, the transducer should be thoroughly cleaned. Volume II of this ASRDI 

Oxygen Technology Survey [G51] covers cleaning requirements, procedures, and 

verification techniques. 

Four procedures are included in [G51] relative to cleaning pressure 

transducers. All four procedures are repeated here (tables 4.1 - 4.4) for 

completeness. However, anyone working with pressure transducers should 

become familiar with all the information in reference [G51]. 

TABLE 4.1 

CLEANING AND INSPECTION PROCEDURES FOR BALLISTIC.MISSILE 

SYSTEMS T.O. 42C-1-11 CHANGE 2, NOVEMBER 15, 1967 (REF. G52) 

Transducers, Pressure Gages, and Other Dead-End Cavity Parts 

Step Process Agent Time, Tempera- Remarks 
min ture 

OF 

1 Fill Trichloroethylerie 3/4 full and rotate -
component gently to 
circulate fluid. Re-
peat fill and rotate 
procedure two times. 

2 Rinse Petroleum ether 

3 Inspect 

4 Dry Oven, nitrogen gas, 180-200 
or vacuum 140
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TABLE 4.2 

CLEANING OF OXYGEN PRESSURE GAGE COMPONENTS, 
NAVAL -BOILER,-AND TURBINE LABORATORY, MARCH 26, 1965 (REF. G53) 

Step Process Agent Time, 
min

Tempera- 
ture 

°F

Remarks 

Disassemble Disconnect from piping 
system, remove back 
of gage,	 elongate coil 
of capillary tubing, 
and open capillary 
tubing filing off tip. 

2 Clean Freon PCA Forced by air pressure 
(5 psig) flow 150 ml of 
Freon PCA at approx-
imately 50 ml/min. 

Repeat with two addi-
tional 124 ml portions 
and reverse flush with 
100 ml of solvent. 

3 Rinse Freon PCA Introduce 50 ml of sol-
vent through connec-
tion end of gage, col-
lect effluent in white 
porcelain dish, and 
evaporate to dryness. 

4 Inspect Ultraviolet lighl White dish from step 3 
(3600-3900 A) checked for fluores-

cence.	 If fluores-
cence observed, con-
tinue flushing. 

5 Assemble

TABLE 4.3 

CLEANING AND TESTING OF OXYGEN AND NITROGEN GAS PIPING SYSTEMS 

MIL-STD-1330 (SHIPS), MAY 10, 1968 (REF. G54) 

Bourdon C Tube Pressure Gages 

Step Process Agent Time, Tempera- Remarks 
min ture, 

OF 

1 Disassemble 

2 Clean Trichlorotri- MIL-C-81302 type I 
fluoroethane ultra-clean at flow 

rate of 50 mu/mm. 

3 Check Ultraviolet Continue flushing if 
light	 (3600- fluorescence is 
3900A) evident. 

4 Dry Dry, oil-free 
nitrogen
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TABLE 4.4 

CLEANING METHODS AND PROCESSES, NASA FRC PROCESS 
SPECIFICATION 20-1, NOVEMBER 1, 1970 (REF. G55) 

Specific Cleaning Process for Pressure Transducers and Bourdon Tubes 

Step Process Agent Time, Tempera- Remarks 
inin ture, 

OF 

Preclean Trichioro- Hot solvent. 
ethylene 

2 Clean Trichloro-
ethylene 1 180±5 Soak in hot solvent. 

1 Ambient Place in ambient sol-
vent. Repeat cycle 
10 times. Ambient 
solvent not to ex-
ceed 85°F. 

3 Dry Oven 150 250±10 For Bourdon tubes. 
150 180±10 For pressure trans-

ducers.

The cleaning procedure in practice at NASA Lewis Research Center involves 

exposure of the pressure cavity to a cleaning solution to remove any hydro-

carbon, removal of the cleaning solution with a more volatile solvent and 

drying with inert nitrogen gas. 

A typical programmed cycle is as follows: 

1. Transducers evacuated for 5 minutes to about 50 microns. 

2. Trichloroethane (NA500) is sprayed into transducer. 

3. Trichloroethane is released and transducers evacuated for 5. minutes. 

4. Spray and evacuation is performed 5 times ending with a 6-minute 
evacuation to 50 microns. 

5. Trichlorotriflouroethane (FREON, NASA Spec. No. 237A) is sprayed into 
transducer, released and evacuated for 5 minutes to 50 microns. 

6. Rinse sequence (No. 5) repeated ,, 5 times ending with 6-minute evacuation. 

7. Evacuation broken with dry nitrogen gas. 

8. Transducers:capped and sealed in plastic bag. 
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5. PRESSURE TAP CONNECTIONS 

Making accurate pressure measurements depends not only on instrument 

selection, but also on properly designed tap geometry, interconnecting line 

size, and location. 

When making measurements where a liquid-gas interface will occur, as in 

a liquid oxygen differential pressure liquid-level gage, the location of the 

pressure tap line is very important. The problem of pulsations in pressure 

• tap lines where a vapor-liquid interface can occur has been discused in 

section 2. 

It is usually preferrable to connect the pressure-measuring instrument 

,as close to the system as possible. This reduces the problem of loss of 

response caused by damping in the pressure tap lines. Where maximum dynamic 

response is important, a diaphram transducer mounted directly at the point 

of measurement should be used whenever possible. Figure 5.1a shows a typical 

installation.	 - 

::::Zj-	 •	 Pressure 
•	 Transducer 

Figure 5.1 Transducer Locations 
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There are many applications where the instrument must be located some 

distance from the system; therefore, the interconnecting line becomes an 

important part of the measuring instrumentation. In dynamic systems where 

frequency response is important and the transducer cannot be mounted at the 

system, the interconnecting line should be large. ASME 2 ' recommends 1/2 in. 

pipe for these installations and 1/4 in. O.D. tubing where dynamic affects 

are not important. Figure 5.1b shows a typicai.installation. In either 

case the length of the line should be as short as possible. In most appli-

cations a compromise must be made on the line size, particularly when cryo-

genic oxygen is in the system in which the pressure is being measured. 

Large line sizes may introduce intolerably high heat leak into the system 

and may even change the local pressure being measured. The requirement to 

keep the instruments in a warm environment may require long pressure tap 

lines also. Hord [G481 has developed some simplified equations for pre-

dicting the response to step inputs in pneumatic systems. His analysis 

covers the three, flow regimes of free molecular, transition, and continuum. 

Hord defines the flow regimes as: 

Free molecular flow: (K > 0.5) 

Continuum (viscous) flow (K< 0.005). 

The mean free path (in cm) is given by - 

= 8.6 ([2/P) (T/M)1"2 

where it is in poise, P is in torr, and T is in Kelvins. A summary of the 

applications of Hord's equations is given in table 5.1 and the equations 

follow the table. These equations can be used to calculate the time 

required for 66-2/3% of a step change in pressure to be measured at the 

transducer.
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TABLE 5.1 

Summary of Formulas 

Application	 Equation 

Step size is limited by the computational. precision 
desire by the user where viscous flow occurs and not 
limited in the molecular flow range: Kn need not be. 
considered except to establish applicable flow range 
and thus the allowable step size. Best-estimates for 
all steps which submit to the assumptions of this 

analysis (Re < 2 x 10 3 .Ma < 0.33 for viscous flow).	 (1) 

Good estimates for very small steps (pressure ratio 
> 0.9) where viscous flow occurs. Step size is not 	 -

limited in the molecular flow range. Kn may be dis-
regarded after allowable step size is determined 

(Re < 2 x 10 3 .Ma < 0.33 for viscous ilow).	 (2) 

Best estimates for continuum flOw (C f >> C f ): step 

size is restricted by . Ma <0.33 and Re . < 2 x 10 .	 (3) 

Best estimates for free molecule flow-,(C f m •>> C 
step size is unlimited.	 (4) 

•	 L	 fv -	 ' TRF -'  
0.87Ca k2 kP0 + Cf 

S ln {
	

(1 -	 [k (P 0 + P i ) + Cf] 

	

k[(P + P .) + n(P •- P )] + C	 (1) 
0	 51	 0	 Si	 fmi 

TRF = 0.76C -(2 kP+ C ) ln(l - n)	 (2) 
a	 o	 fm 

IP l+fl +p 1 
(TRF)pf	 0•7Ca + 2v;0 ln L_° 	 P0	 0	 •	 (3) 

t fm

	

	 - Y 
VI __ ln(l-n)	 (4) 
fm
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Where:

Kn = Knudsen number (aX/D) 

X = Mean free path of gas 

= viscosity 

P = absolute pressure 

T = absolute temperature 

M = molecular weight 

D = Inside diameter of transmitting tube 

Re = Reynolds number 

Ma = Mach number (a gas velocity/acoustic velocity) 

C = Tube conductance in the viscous (Poiseuille) flow 
p  

regime	 [ a	
4 

(,t/128)	 CD L)	 (/t)] 

P = Arithmetic mean pressure in the transmitting tube 

h = Viscosity defined in terms of force [typical units 

are lbf.5/ft2] 

TRF = A time-response function which predicts the time 
required for a physical system to attain a fraction of 
the applied step input. 

L = Effective length of transmitting tubing 

Ca = Adiabatic acoustic velocity in gas in free space 

= Apparent volume of pressure-measuring system 
(a transducer volume + 0.5 tubing volume)

k	 .= Term in flow equation, treated as constant 

[ a (7/128) ( D 4 /2611) J 

= Absolute pressure of fluid at open end of tubing 

Cfm	 = Tube conductance in the free molecule flow regime 

a (D 3/6L) (2itRT'2] 

n	 = A fraction of the applied pressure step, commonly 
taken as 1-1/e=0.632 

= Absolute pressure of fluid at the sensor when time zero 

T fm	
= Time constant [the time constant is defined as the 

amplitude-invariant parameter of a physical system 
which predicts the time required for the system to 
attain (1-1/e) of an applied step perturbation; the 
time-dependent behavior of the system must be describable 
by a first order, linear, ordinary differential equation 
with constant coefficients] 
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Each installation will require a critical analysis and decisions made on the 

best overall combination taking into account the required frequency response, 

heat leak, instrument environmental requirements, etc. 

In a dynamic system the pressure tap hole must be made with a great 

deal of care. ASMEIG21 recommends that the diameter of the pressure tap hole 

be as small as practicable but not exceed 1/16 in. The length of the hole 

should be 2-1/2 times the tap hole diameter. The edge of the hole must be 

free of burrs and be square. Rayle 471 has experimentally determined the 

effect of hole size and configuration on pressure measurement errors. Figure 

5.2 shows the effect of hole diameter, and figure 5.3 shows the effect of 

several different possible hole configurations. The errors shown are percent 

of dynamic head. It can be readily seen from these figures that in high - 

velocity flow, poor pressure tap fabrication can lead to very large errors. 

Rayle also determined that a burr on the edge of the hole can cause errors 

of 15 to 20 percent of the dynamic head. Rayle suggests that "sharp edge 

holes can best be produced by removing the burr in three or four steps, 

alternately working at the tap wall and the main bore wall, finishing with 

a final smoothing of the main bore."
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Figure 5. 2 Pressure taps and the 

effect of hole size.
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Figure 5. 3 Pressure taps and the 
effect of hole geometry. 
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6. TRANSDUCER TYPES AND DESCRIPTION 

6.1 MANOMETERS 

Manometers measure pressure by the balance of a column of liquid. Since 

the density and height of the liquid column can be determined very accurately, 

the manometer has become known as a primary standard pressure gage. This 

type of instrument can be used to measure gage (including vacuum), differential, 

atmospheric, or absolute pressure. 

The most commonly used liquids for manometers are mercury and water 

since they are readily available and their physical properties are known. 

Other liquids are also used such as carbon tetrachloride and tetrabromo-

ethane. They all have in common low vapor pressures, insolubility, and other 

favorable properties. 

The densities (at 20°C) for manometer fluids are listed below'321. 


Table 6.11 Manometer Fluid Densities

_3* 
g cm 

Water	 1.000 

Carbon tetrachloride	 1.594 

Tetrabromo-ethane	 2.953 

Mercury	 13.543 

Four popular manometer systems and governing equations are schematically 

shown in Figures 6.11 - 6.14. Others such as the ring-balance, liquid-sealed 

bell (absolute and differential type), and the double-bell differential 

manometer, etc., are not shown but are in limited use. 

* g cm-3 = 0.03613 lb in-3 .
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ZI 

Pa

Figure 6.11 U-tube. 

P + 9p 1 (Z 3 - Z 2 ) + 9p2 Z 2 = Pa + 9p
2 z1 

P = Pa + gp 2 (Z 1 - Z 2 ) - gp 1 (Z 3 - Z 2 )	 (U-Tube) 

or

where

P	 = fluid pressure in pipe, Pa 

P1 = density of the pipe fluid at the temperature of 

the manometer connection, Kg m- 3 

= density of the manometric liquid, Kg 

= atmospheric pressure, Pa 

g	 = acceleration of gravity, ms- 2 
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FLOW	 F; \..L-...__	 P 
I 

Figure 6.12 Differential. 

+ (Z 3 - Z 2 ) gp 1 + Z 2 gp3 

= P2 + (Z 3 - Z1 ) gp 2 + z 1 gp3 

or

P1 - P2 = (Z 1 - Z 2 ) gp 3 + (Z 3 - Z 1 ) gp 2 - (Z 3 - Z 2 ) gp1 

If (p 2 - p 1 ) (Z 3 - Z 1 ) is small compared with (P3'- p 1 ) (Z 2 - Z 1 ), then 

= P - P2	 g(Z1 - Z 2 ) ( p 3 - p 1 ) (Differential Manometer) 
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pa 

Figure 6.13 Cistern. 

P = P a + Z 1 gp - Z 3 gp 1	 (Cistern Manometer) 

Figure 6.14 Inclined. 

or for an inclined manometer 

P = P a + Z 1 9p 2	 Z 3 gp1 
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since

Z1 = L sin 0 

P = P 
a + 9p 2 L sin 0 - Z 3 gp ,	 (Inclined Manometer) 

To obtain reproducible results it is necessary that the manometer fluid 

be precision clean. If precautionary measures such as those described in 

references Ma8, Mall, ardMal3 are followed,, the initial calibration will 

remain essentially unchanged for months. The meniscus with its problem of 

adhesion to the manometer tube is accentuated as the ratio of liquid sur- 

face to volume increases[Ma9 , Mall]	 is therefore desirable to minimize


the total effect by using large-bore manometer tubes 21 . For example, 

the capillary error for a 4 mm tube using mercury is approximately 2 mm 

and is reduced by a factor of 'ten if the bore is increased from 4 to 12 mm. 

For tubes of approximately 1.27 cm or larger effects of capillarity are 

insignificant.Before making a reading from any liquid manometer, it is 

always advisable to tap the column first. This will allow the meniscus 

to reach a position of least distortion 'in the column. It is therefore 

quite often that vibration ,in a manometer system if helpful. 

Correction for deviation from standard temperature and gravity must 

be made in a system since' these quantities are directly proportional to the 

height of the fluid column. Also, if the uncertainty in pressure measure-

ment for a mercury manometer should be held to 0.01 percent, the mercury 

temperature must be known within ±0.60c[M31. 

Table 6.12 lists the boiling point (C) and vapor pressure (mm Hg @ 20C) 

for some fluids commonly found in liquid manometers. 
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Table 6.12 Boiling point and vapor pressure of some manometer fluids. 

Liquid Boiling point, Vapor pressure at 20°C, 
mmHg 

Carbon tetrachloride 76 91 

Ethyl alcohol 78 43.9 

n-Octane 126 10.5 

m-Xylene 138 6.4 

Fluid A 1.0 viscosity grade 152 2.6 

Mercury 357 0.0012
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MANOMETER SPECIFICATIONS 

Types of pressure measurement: 

Gage (including vacuum), absolute or differential 

Pressure ranges: 

10-500 in H 20 (differential manometer) 

5-50 in Hg (U-type absolute-pressure gage) 

0.5-50 in H20 (inclined-tube manometer) 

6-130 in of liquid (manometer well) 

Resolution: 

With optimum viewing conditions as to illumination and sharpness of the 

meniscus, sighting by eye is probably not better than 0.025 mm (0.001 in.). 

[Ma9, Ma13] 

Accuracy: 

"If the uncertainty in pressure measurement is to be held to 0.01 percent 

(0.1 millibar @ 1 atm) the mercury temperature must be known within 

±0.6 C1 and proportionately smaller for better accuracy." [Mal3] 

Temperature (range, compensation, and stability): 

Must be corrected for liquid used. See tables in reference Mal3. 

Calibration: 

A primary means for calibrating other devices. 

Vibration effects: 

Small vibrations have no effect. 

Materials: 

Tubes are most often glass, but some manometers use copper, brass, 

or stainless steel tubes. 

Oxygen usage: 

Manometers can be used with gaseous or liquid oxygen providing the 

fluid chosen is not reactive with the system being measured (e.g., an 

oil filled manometer would be totally unacceptable). Another suggestion 

may be to use an intermediate fluid which is inert to both the system 

and manometer liquid.	
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Advantages: 

1. May be used for highly accurate measurements, over a small pressure 

range or for less accurate measuremerLtS over a wide pressure range. 

2. Sensitivity may be changed easily by altering the amount of fluid, 

in-the.manoxneter.. 

3. Operation is not affected by vibration. 

4. Easy to calibrate.	 S	 '55 

5. Relatively inexpensive. 

6. Ease of fabrication. 

Disadvantages: 

1. Surface tension of manometer fluid creates a capillary effect and 

possible hysteresis. 

2. An accurate means for determining meniscus height must be used for 

improved accuracy. 	 S 

3. Manometer fluid must be chosen such that it does not react with the 

system being measured (for use with oxygen service, oil filled manometers 

are unacceptable).
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TWISTED TUBE 

6.2 BOURDON TUBE 

The Bourdon tube gage and manometer are the two most prevalent gage 

types in use today. The design and fabrication of such a device,, utilizing 

the Bourdon tube principle, involve a relatively small number of considerations, 

most of which are familiar to designers. The mathematical relationships be-

tween design considerations, however, can be extremely complex. Typical 

examples of basic Bourdon tube design are shown below in Figure 6.21. 

(L 
•	 _ 

TUBE CROSS-SECTION 

Fiud Pivot Paint	

I).) 

•	 P

Figure 6.21 Bourdon tube configurations. 
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The following equations are given to describe Bourdon tubes (helical, 

circular and C-type) and the effects of pressure, torque, elevation, and 

temperature. Since there are presently no reliable analytical mathematical 

models to describe Bourdon tubes, the following equations, which have been 

empirically derived, must be used. 

LU lvi U 'IVII 
pressure change (LP)

x—
SECTION A-A 

Figure 6.22 C-type bourdon tube geometry. 
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The deflection of a Bourdon tube is given by [Gl]

b	 c1 

a=Kf[() () (./)j 

where

Aa = Deflection of element tip, deg 

K	 = Empirical constant 

a	 = Total angle subtended by Bourdon tube before pressurization, deg. 

P	 = Pressure difference between inside and outside of tube, psi 

E	 = Modulus of elasticity 

x,y = Cross-sectional length and width of tube, in. 

t	 = Thickness of tube, in. 

r	 = Element radius of curvature (C-type elements r = const. 

Spiral type elements r = variable). 

By conducting tests on a number of Bourdon tubes it was found that 

Aa	
I 'a \b(xy 

= K	
(   

The constants K, a, b, and c are found by laboratory tests on elements. 

For a flat cross-sectional tube (as shown in Fig. 6.22) the following 

equation was determined. 	 - 

.20	 0.33	 3.00 
1a=0.O5()0	

()	 () 

The power rating of a Bourdon element (which is useful for mechanism 

design) is given by

WFD 

where	 F	 Force acting on element tip, parallel to direction of motion. 

D	 = Displacement of tip, parallel to motion, in. 

W	 = Power factor of element. 
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Ordinarily, Bourdon elements sense gage pressure and variation in 

atmospheric pressure is not a factor. However, when absolute pressure is 

desired, the error due to pressure change is 

P 
E j -	 lOó 

where

E	 = percent error 

= atmospheric pressure change (from reference pressure) 

P	 = maximum pressure span of device. 

If the pressure device is located above or below the point of measure-

ment, an elevation error must be taken into consideration. 

E =	 100 

where

E	 = percent error 

H	 = height between measuring element and point of measurement 

P	 = density of fluid in pipe 

= maximum pressure span of device. 

Also, ambient temperature change will cause an error which is 

E = 0.02T_-
m 

where

E	 = percent error 

AT = temperature change (from reference temperature) 

P	 = pressure applied to tube 

= maximum pressure span of device. 

In the above case, temperature compensation may be accomplished 

utilizing a bimetal strip.
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The material chosen to fabricate a Bourdon tube will relate to the 

instrument's sensitivity, range, accuracy and precision. Some of those 

used are [Gl]

Group I (strain-hardened alloys) 

1) cartridge brass (70 Cu - 30 Zn) 

2) Trumpet brass	 (80 Cu - 20 Zn) 

3) Phosphor bronze 

4) Silicon bronze 

5) Austenitic stainless steel 

(AISI Types 304 and 316)	 - 

Group II' (Precipitation-hardened alloys) 

1) Beryllium copper 

Group III (Heat-treated alloys-quenched and drawn) 

1) Low-alloy steels 

2) Martensitic stainless steel (AISI Type 403). 

The C-type Bourdon tube (shown in Figure 6.22) is oval and curved 

through anarc of approximately 200-300 degrees [03] . Fuséd quartz is also 

being used for helical Bourdon tubes. Fabricated from this material the, 

instrument has less hysteresis, creep, and'relaxation than ny other material 

known.	 -	 ..	 .. 

Bourdon gages are used in making pressure (including vacuum), compound, 

and differential-pressure measurements. If the case of the gage is pressuriz-

ed (for differential measurements) a clean transparent gas or fluid must be 

used to permit readability of the dial and prevent deterioration of gears 

and bearings. An alternate form of differential-pressure gage uses two 

Bourdon tubes arranged such that the motion of one subtracts from the other. 

The Bourdon tube is a special type of cantilever spring and the , path 

of the tip deflection is also similar. Mathematical models for cantilevered 

springs have also been used for Bourdon tubes with . good agreement. A, 

typical mechanical arrangement most commonly used for Bourdon tube devices 

is shown in Figure 6.21.
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Another more complicated and versatile system illustrated in Figure 

6.23, is used primarily in conjunction with a recorder and may be in the 

form of a spinal or helix. The optical transducer shown uses a helical 

Bourdon tube providing high sensitivity, resolution, and repeatability. In 

operation, the deflection of the pressurized (P) tube goes through an angle 

e and is followed by the photocell until the microammeter is nulled. In 

this zero position the digital counter reading is multiplied by a scale factor 

to determine the pressure. In some instances, for the gages mentioned, an 

absolute pressure measurement can be made by evacuation of the capsule 

external to the Bourdon tube. 

Another application of the Bourdon tube to detect pressure utilizes a 

potentiometric transducer. A device of this type is coupled to a Bourdon 

tube via mechanical linkage, and as the system is stressed, the tip deflects 

causing the potentiometer to change position. This produces a change in 

resistance which varies as a function of the applied pressure. The advantage 

of this arrangement allows for remote pressure monitoring. 

Bourdon gages can be used at high pressures (to approx. 100,000 psi) and 

with flammable gases or liquids. Therefore, gage safety should be considered 

in the event of rupture EBo4] 	 Gage types from several manufacturers range 

from those with no safety features to those with hinged blowout backs and 

specific mounting instructions.

46



P

Helical 
Bourdon 
Tube 

Photocell and 
Mirror	 ci	 Light Source

Null 
Meter 

'il-ill

	 elf"% :11 

Counter ( 

Figure 6.23 Optical pressure transducer utilizing a helical bourdon tube. 
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BOURDON TUBE SPECIFICATIONS 

Types of pressure measurement: 

Gage (including vacuum), absolute or differential. 

Pressure ranges:	 V V -

	 , 	 V 

C-Bourdon -- 12 to 100,000 psi 	 V 	

V 

Helical Bourdon -- 12 to 80,000 psi	 V 

Spiral Bourdon -- 12 to 10,000 psi 

The vacuum range 0-30 in. Hg is also available for the C-Bourdon type. 

Resolution:	 V 

Reading can usually be resolved to within one-quarter , of. oneS percent of 

full scale.	
V 

Accuracy:	 V 	 V 	

V V 

±1/2 to ±1 percent of full span.	
V 	

V 	

V 

Temperature (range, compensation, and stability): 	
VV 

Maximum operating temperature is 20VOOF .	 V 

Maximum uncompensated ambient temprature errors 'for ±25° 

change is ±1/4 percent of full span. 	
V 	

V V 

Calibration: 

Straightforward using a deadweight tester.'  

Vibration effects:	
- 

Insensitive. In fact, most vibrations are helpful in overcoming the 

friction in a Bourdon system. On the otherhand, if the vibrations are 

excessive, accelerated wear will take place. 

MateriaTh: 

Strain-hardened alloys include:	
V 

1) cartridge brass 

2) Trumpet brass 

3) Phosphor bronze 

4) Silicon bronze 

5) austenitic stainless steel (AISI Types 304 and 316) 

V 	
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Materials (continued): 

Precipitation hardened alloys include: 

1) Beryllium copper 

Heat-treated alloys - quenched and drawn include: 

1) Low-alloy steels 

2) Martensitic stainless steels (AISI Type 403). 

Oxygen usage: 

Gaseous 0 2-yes; liquid 02 -no (for the case where the liquid would 

come in direct contact with the gage). The Bourdon tube and-linkages-

should always be at room temperature. 

Installation requirements and limitations: 

Gages should be installed vertically in a position where the 

temperature is, as nearly as possible, 68°F. 

In case of gages with pipes filled with liquid, it is often more 

convenient to have the gage pipe connection installed at a definite 

level with respect to apparatus in test, in order to simplify or 

eliminate the correction for liquid in pipes for pressure measurement. 

Remarks:. 

This type of gage is generally not used for pressure monitoring 

remotely. Also, the gage is bulky which puts limitations on the 

installation.
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Advantages: 

1. Simple mechanism. 

2. Several pressure ranges available. 

3. Costly electronics are not required. 

4. Can be used to make or break electrical contacts, tip toggle switches, 

or drive self-synchronous meters for remote-reading indicators. 

5. Also used with strain, capacitance, magnetic, and other electrical 

systems. 

Disadvantages: 

1. Space limitations. 

2. Limited pressure range. 

3. Power or energy to operate related mechanism must be supplied by 

the tube. 

4. Friction (rolling or sliding friction results in a system lag). 

5. Slow response to pressure changes. 

6. Inherent hysteresis.
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6.3 DIAPHRAGM 

Diaphragm-type gages are most often used to measure low-pressure 

(including vacuum) from ranges of 0 to 0.2 in water and 0 to 30 psi. Dia-

phragm gages are used to measure low-pressure absolute, draft, liquid-level, 

and differential. Some applications require that the diaphragm element be 

able to withstand high pressures and remain within its elastic limit. Such 

a diaphragm mightbe fabricated from a full hard, cold-rolled nickel, 

chromium, or iron alloy, which can have an elastic limit above 80,000 psi and 

be used to 8000FE' 

The three most common types of diaphragms are shown in Figure 6.31. 

FLAT	 CORRUGATED	 CAPSULE 

P 

Figure 6.31 Basic diaphragm types. 
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Many gages use diaphragms in conjunction with other methods for mea-

suring pressure. That is, a diaphragm may be used as a force-summing device 

and coupled to a resistance strain gage, capacitive system, or LVDT (linear 

variable differential transformer). Devices such as these will be covered 

in other sections. Only diaphragm gages which are mechanically coupled to 

an indicator for pressure measurement will be covered. The pressure gage 

shown in Figure 6.32 is a typical example of how most diaphragms operate. 

/

//\ SCALE 

FIXED

POINT 

SEAL-.... I	 - 
SLACK DIAPHRAGM 

PRESSURE 
CONNECTIONS 

SPRING 

Figure 6.32 Slack diaphragm pressure gage. 
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A gage may use single or multiple diaphragms depending on the sensitivity 

required or gage type. 

Diaphragms are fabricated from an extensive list of materials which in-

dude trumpet brass, phosphor bronze, beryllium copper, stainless steels, and 

some plastics. The geometry is usually in the form of a thin disc or shell 

(two discs bonded peripherally by soldering, welding or brazing) 

Some important factors which determine the deflectional properties of 

a diaphragm are: (1) diameter of the disc or shell, (2) metal thickness, 

(3) number of shell corrugations and their shape, (4) applied pressure, and 

(5) modulus of elasticity. 

Diaphragms, if designed improperly, can be very non-linear with respect 

to the pressure-deflection relationship. Equations relating these parameters 

are given later and should be helpful. With proper material selection, it is 

possible to obtain good linearity over a wide range, a minimum of hysteresis, 

and no permanent zero shift. 

Pressure fluctuations wilr not have an adverse effect on the gage if 

consideration has been given in the design stage. A diaphragm must not have 

natural frequencies which may coincide with those of the system being mea-

sured. To avoid this, the following equation is used to calculate the 

natural frequency (N) of a circular diaphragmt71: 

Ip 
E	 l/2 

	

N=O.4745— 	 2 

	

r	 (I-o) 

where

t	 = Diaphragm thickness, cm 

r	 = Diaphragm radius, cm  

P	 = Material density, g cm -3 

E	 = Young's modulus, g crn2 

U	 = Poisson's ratio
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Example: 

For mild steel, E = 2.0 x 10 12, p = 7.8, and a = 0.28. For a diaphragm 

of 2.54 cm diameter and 0.0635 cm thicknes the natural frequency is 

N = 0.4745 0.0635	 r 2.0	 10 12 

	

(1.27)2 L7.8 (l_0.282)	

1/2 

N - 9.853 x 10 Hz 

with higher harmonics occurring at 2N, 4N, etc. 

A diaphragm gage may be fabricated using either a single disc or pair 

of discs peripherally joined to form a capsule. Multiple capsules may also 

be combined in a single gage for greater displacements. Factors governing 

the choice are gage sensitivity and total displacement needed (range). The 

following two formulae give the relationship between pressure and deflection 

of diaphragms (disc and corrugated capsule). For most materials the full-

scale deflection of a diaphragm must be less than one-third the diaphragm 

thickness to insure a non-linearity of less than 5 percent. 

The pressure-deflection equation for a flat diaphragm (with edges 

clamped)

16Et4	 + 0. 488	
d 31 

= 3r4(1-i2)	 IE 	 (	 ) 
j 

where

P	 = Pressure difference across diaphragm, psi 

E	 = Young's modulus, psi 

t	 = Diaphragm thickness, in 

= Poisson's ratio 

r	 = Active diaphragm radius, in 

d	 = Deflection at center of diaphragm, in 
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If one designs to maintain linearity at less than 5 percent the term 

is negligible compared with (	 ). The pressure deflection equation 

then reduces to

=	 l6Et'd 

3r4t(1-F12) 

or

d = 0.1875 Pr  (1-t2) 
Et  

The pressure-deflection relationship for a corrugated capsule diaphragm 

is given by the following equation 

d = KN(P-P 0 
)DXtY 

where

P	 = Applied pressure, psig 

P	 = Initial pressure, psig 

K	 = Capsule constant including Young's modulus of 

elasticity and corrugation design (see Table 6.31) 

t	 = Diaphragm shell thickness, in 

D	 = Active diameter of diaphragm shell, in 

d	 = Deflection at center of capsule, in 

N	 = Number of capsules 

x,y = exponent constants 

A formula which has been found satisfactory for a capsule of common 

design is

d = KN(P-P 0 )t"5D4 

It must be noted from the above equation that the diaphragm deflection 

is dependent on the diameter to the fourth power. Or, for the same pressure 
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change and doubling the diameter, an increased diaphragm deflection of 

sixteen times may be obtained. 

The values of E and K are listed below for some commonly used diaphragm 

materials.	 -. 

Table 6.31 E and K values for commonly used materials. 

Material E,psi Capsule 
Constant K 

Phosphor bronze 16 x 10 0.2,4 x 10- 6 

Beryllium copper 20 x 106 0.19.x 10- 6 

Type 316 stainless steel •28 x 106 0.14 x 106
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6.4 BELLOWS 

The bellows pressure gage, like the Bourdori tube and diaphragm, is a 

force-summing device and is quite often used in conjunction with other 

electrical principles (capacitive, strain gage, etc.) to measure pressures. 

The details of such electrical principles will be found in another section. 

The bellows is a one-piece longitudinally expansive and contractive 

device usually fabricated into the geometry shown in Figure 6.41 from thin-

walled seamless tubing. The process is carried out either mechanically 

or hydraulically with bellows sizes ranging from 0.80 cm to 30 cm in diameter 

and generally have several folds or convolutions. The figure also shows 

several common types of bellows and methods of attaching end fittings. 

mi

El 
COMMON TYPES OF BELLOWS AND 

FITTING ATTACHMENT METHODS 

Figure 6.41 Common types of bellows and fitting attachment methods. 
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Trumpet brass, stainless steels, phosphor bronze, and beryllium copper 

are among the most popular materials chosen for bellows fabrication. Material 

selection is generally based on the corrosiveness of the bellows environment 

and, secondly, the sensitivity required. 

Bellows gages are low pressure measuring devices such as the diaphragm 

gages. They can measure gage pressure (including vacuum), differential, 

absolute, and compound. The arrangement shown in Figure 6.42 illustrates 

how the bellows can be installed in a gage for differential pressure mea-

surement. P 2 may also be vented to the atmosphere for gage pressure mea-

surements.

INDICATOR	
SCALE 

0

0 

p tCONNECTING LINK 
2	

SEAL 

CASE-44	 --I-BELLOWS 

" SPRING 
P1 

Figure 6.42 Bellows gage for measuring differential pressure. 
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COMPENSATION 
BELLOWS

a
-LOW PRESSURE 

BELLOWS 

PULSATION 
DAMPENER 

As with other elastic member elements (Bourdon tube and diaphragm) 

the bellows follow Hook's law which states, within the elastic limit, that 

stress ­ is proportional to strain; or in other words, the displacement of 

the bellows is proportional to the applied pressure. A volumetric change 

can arise as the bellows temperature changes, and therefore, a second bellows 

is sometimes used to compensate for this effect (see Figure 6.43). 

LIQUID 
FILLED 

HIGH PRESSURE

BELLOWS—

DISPLACEMENT 

I ,-TORQUETUBE 

SPRING 

Figure 6.43 Temperature compensated differential pressure bellows gage. 
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Figure 6.43 not only shows how temperature compensation is made, 

but also how bellows can be used in pairs for differential.measurement. 

The one illustrated is designed for low-differential-pressure measurement 

of high static pressure. Both bellows, including the one for temperature 

compensation, are liquid filled. As- high pressure enters the: unit (P2), 

the bellows contract and the-liquid is transmitted to the low-pressure 

bellows via the connecting passage (with its rate controlled by a pulsation 

dampener). The resulting motion to an indicator is made through the use 

of a pressure-tight torque tube. A liquid with a low coefficient of thermal 

expansion such as a solution of ethylene glycol and water shouldbe used. 

Other features such as overrange and over-pressure protection may be in-

corporated into this design. 

The following table will be helpful in determining the characteristics 

of a single-ply brass bellows 1 . This table covers only a few of the 

many sizes available. Also, the maximum stroke stated should not be used 

in combination with the maximum pressure stated.
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The deflection equation for a spring-opposed bellows is given by 

e 
K +K b	 S 

where

d	 = Deflection of bellows, in. 

P	 = Applied pressure, psi. 

A	 = Effective area of bellows, 

K: = Force constant of bellows lb in. 	

-1 
K5 = Force constant of restraining spring lb in 

Solving the equation for P,

d(Kb + K) 
Ae 

Now, if the bellows assembly must operate an electric switch or some 

other mechanism, the equation must reflect this additional force required. 

The equation now becomes

F + d (K + K 

	

sb	 s 
A 

where

F	 = Force required to actuate the switch or mechanism, lb. 

= Deflection required to operate the switch or mechanism, in. 

* The effective area of bellows is calculated by 

3 - 4c (1 + log	 16c2
C + eC) + 2
	 (log 

C) 

A7tb2 1+	
2	

c-i 

	

(c 2_1)+ 16c 	 (log c)2 2	 e c -1 
where

c	 = A/B (see Table 6.41).
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Bellows, if properly designed for, can be cycled for long periods of 

time without failure. The graph given in Figure 6.44 will help the designer 

to attain maximum life from a set of bellows; as shown if displacement and 

pressure can be kept minimal, the expectant bellows life can be well over 

1.0 x 108 cycles. It is advantageous to restrict the bellows displacement 

is a linear function of pressure and is not for displacements greater than 

[G12] 10 percent
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Figure 6.44 Cyclic life of bellows. 
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Beryllium copper is an excellent material for the construction of 

its properties approach those of 

bhout damage to the material. After 

275°C produced an overall effect 

in a tensile strength of 150,000 

properties of beryllium copper 

are quite superior to those of 

bellows, since in the annealed condition 

copper. This allowed for fabrication wi 

forming, a heat-treatment for 3 hours at 

for every point on the bellows resulting 

to 180,000 psi. In general, the elastic 

bellows, fabricated in the above manner, 

other nonferrous materials. 

A bellows, especially one which is long in proportion to its diameter, 

becomes unstable and tends to buckle when pressure is applied internally 

and a load is applied to one end, since each convolution tries to increase 

in length. For applications where a long bellows is necessary, a better 

design is to apply the pressure externally so that each convolution tends 

to shorten and exert a pull upon adjacent convolutions, thus keeping the 

bellows straight.
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6.5 STRAIN 

Strain gages of two basic types, either bonded or unbonded, are used 

in devices to measure pressure. In both cases however, the principle is the 

same. As a wire is elastically stretched, its 'length and diameter are 

altered, resulting in a change in its electrical resistance. By using this 

basic principle and a force-summing device such as a diaphragm, bellows, or 

bourdon tube, the displacement of an elastically strained wire will be pro-

portional to the change in electrical resistance and, thereby, the pressure. 

Poisson's ratio is a characteristic of every metal and is given by 

= (dr/r)/(dL/L). The volume of a wire is given by the formula V = ' it rL 

where

r	 = Radius of wire. 

L	 = Length of segment. 

If we let dv = 0 and differentiate the volume equation, we find that Poisson's 

Ratio = -0.5. Actually, Poisson's Ratio for most metals is between -0.25 

and -0.30 indicating that dv is not equal to zero and that a decrease of 

density occurs with tensile stress. 

The gage factor (GF) relates the strain to which a wire has been 

subjected, to a change of resistance. 

GF - AR/R 
-	 __ 

where

AR = Change in gage resistance. 

R	 = Original gage resistance. 

AL = Change in gage length. 

L	 = Original gage length. 

Gage factors vary from one type of resistance wire to the next, but the 

factor of a given wire is the same whether the gage is used in tension or 

compression. For most commonly used strain gage materials, gage factors 

range from 2.0 to 5.0. High gage factor materials tend to be more sensitive 
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to temperature and less stable than low gage factor materials (see Table 

6.51) [G141 

Table 6.51 Gage factor and temperature coefficient for some 
strain gage materials. 

Strain wire 
Composition

Gage factor 
(iR/R)/(L/L)

Temperature 
coefficient of 

resistance 

80 Ni,	 20 Cr 2.0 high 

4 Ni,	 12 Mn, 84 Cu 0.47 very low 

45 Ni,	 55 Cu 2.0 negligible 

36 Ni,	 8 Cr,	 0.5 Mo 3.5 high 

Ni -12.1 unstable

The most popular strain wire used is 4 Ni, 12 Mn, 84 Cu, but its poor 

temperature coefficient limits its use. 

Figure 6.51 shows both types of strain gages, bonded and unbonded, and 

a simplified schematic of the bridge circuit used in both cases. One or 

more legs in the Wheatstone bridge circuit may be active depending on sen-

sitivity or compensation required.

METAL 

F	
F / MEMBER 

At
	

At 

fi 	 F /vtK
R

T 
LI N  

STRAIN	 STRAIN 
WIRE	 GAGE 

UNBONDED	 BONDED	 BRIDGE 
CIRCUIT 

eONL1R 
V 4 R 

N = NUMBER OF ACTIVE LEGS 

GF LR/R 

Figure 6.51 Bonded and unbonded strain gages and assocated circuitry. 
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The bonded strain gage is usually cemented to a metal beam, tube, 

diaphragm or other strain sensing element. The adhesion process must be 

done carefully and steps taken to insure that all parts of the thin film 
el 

gage are bonded to the sensing element. 

The active strain wire (approximately 1 to 1-1/2 mils) is doped to a 

sheet of ceramic, paper, or plastic for ease in handling and is removed once 

the wire is cemented to the sensing element. There are also strain gages 

which have been embedded in thin films of plastic and are epoxied to the 

sensing element as a unit. Many different types of strain gages are avail-

able with resistance values ranging from 60 to 5,000 ohms and effective gage 

lengths from 1/16 to 6 in. The basic standard gage is approximately 120 ohms 

and passes 25 ma of current in a 6-volt bridge circuit. 

To select the proper gage for a specific application, several factors 


must first be considered. The following is a list of these considerations: 

1) Gage factor, maximum. 

2) Resistance per unit length, maximum. 

3) Temperature coefficient of resistance, minimum. 

4) Coefficient of linear expansion, minimum*. 

5) Melting point, maximum. 

6) Thermoelectric tendency at connection, minimum. 

7) Optimum flexibility, ease of soldering, and negligible 

hysteresis for complete cycle. 

As stated above, it is very important to bond the strain gage to the 

sensing member permanently. For use in long-duration applications to 300°F, 

a phenolic resin bonded and baked in place is recommended. Commercial strain 

gages are generally guaranteed to within ± 1 percent of the stated gage-factor 

value and have a resistance tolerance of ± 0.25 percent of the nominal value. 

* For cryogenic applications it is advisable to select a gage with an 
expansivity close to that of the sensing element to maintain the bond 
during cooling.
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Unbonded strain gages operate basically the same as bonded ones; how-

ever, the wires do not adhere to any sensing element as such. The resistance 

wire itself provides the mechanical link between the sensing element and 

ground. Then, as the diaphragm (or whatever sensing element used) is de-

flected, the strain wires are stretched. The general arrangement for an 

unbonded strain sensing system incorporates a stationary frame that supports 

a moveable armature. Between the moveable armature and frame are wraps of 

tensioned strain gage wire which change resistance as the armature is 

displaced (see Figure 6.52). 

4 

DI SPLACEME 

Figure 6.52 Typical unbonded strain gage installation. 
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When all four arms of the Wheatstone bridge circuit are active, special 

mounting for inactive gages is not necessary. The advantages of using four 

active strain gages in the bridge circuit are increased output, high sensi-

tivity and reading accuracy. It is extremely important, however, to com-

pensate the circuit for temperature changes since small changes produce 

spurious readings if all four arms of the bridge are not effected alike. 

Figure 6.53 illustrates the total circuitry including elements necessary for 

calibration and temperature compensation. 

Input Rheostat

R 

R1 

Zero Adjustment 
Potentiometer	

Pad der

R
	

R 

r

L_ 
I	 4	 To Indicator 

Transducer	 Or Recorder 

Power 
Supply 

Figure 6.53 Electrical circuitry necessary for bonded or unbonded 
strain gage pressure transducer. 
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A voltage may be held constant across the input to the pressure transducer 

with the addition of a positive resistor (r)*. This will cause the calibra-

tion factor (F) to remain constant by decreasing input current for an in-

creased operating temperature. "The voltage on the transducer at 

T = 0 is VR/(R + r0 ) and at temperature T is VR/(R + r). 

The ratio by which it changes if (R + r0 )/(R + r). 

This fraction must correct for the variation of F, or 

F0 (l + CT) (R + r)/[R + r0 (1 + aT) = Const. 

or

(1 + cT)/(R + r 0	 0 + r aT) = Constant = 

(1 + cT)/ 1( R + r 0	 0	 0 )[1 x r aT/(r + r)]}. 

For this fraction to be constant, 

C = (ra)/(R + r), or r = (cR)/(a-c) 

where

F	 = Calibration factor (iV/V/psig or g) 

r	 = r 
0 
(l+aT) 

a	 = Temperature difference from reference 

c	 = Temperature coefficient of the calibration factor F, 

so that F = F 0 (1 + cT) 

V g = Actual voltage on transducer 

R	 = Bridge resistance 

Note that the compensating resistor must be at the same temperature 

[G15] as the transducer and preferably should be inside it 

The compensating resistor should also remain, with minimal heat loss, 

thermally stable and at equilibrium with the transducer. 

* "The series input resistance may be split into two equal portions, one 
on each side of the bridge. With this arrangement, temperature errors 
are reduced in the calibrating resistor method of circuit standardiza-

tion" [G15]
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Resistor R c shown in Figure 6.53 is for the purpose of calibration (G101 

The behavior of an unbonded, temperature compensated, strain gage 

pressure transducer is shown in Figure 2.2 ("Cryogenic Pressure Masure- 

ment") (G19,G57]• For direct comparison, an uncompensated capacitance 

pressure transducer is shown on the same plot. In each case the capacitive 

pressure transducer was rezeroed prior to testing at another temperature 

and the result was a severe change in sensitivity, indicating the need for 

compensation. The zero-shift exhibited by the compensated strain gage 

pressure transducer can be simply taken care of by the addition of a resistor 

into the zero adjustment circuit (see Ref. GlO,G15). 

Table 6.52 will also be helpful in making the decision as to which 

method of strain measurement should be used (Bourdon, bellows, etc.). 

71



4) 
bfj 
Cd 

s-I 
+0 cc 
ba 

$4 

4) 
U 

5.' 
4-' 

4) 
s-I 

4) 

'44 

0 

co 

U 
4-, 

$4 
4) 

4-, 
U 
5.4 

0 

In 

Cd 

'-0 

4) 
0 

0

0 
0 0 0 
C) 
0

0- 0 
In 0 

— U cd — —
0 
0 

0 
4-0

0 
+0 L 

Z 0 0
0 0 

44
N 

4) 
$4 0 0 1ti 

In N 
N — 0-'-' —4 

$40 0 + + 
Q 41 0 0 -'-' 
p1 4-' 4-' 

In 0 00 bO+0 
cd sO In cn0"'

U -

tx —4 —4 

-H -H -H -H -H 

0

00 
+00 

0 2o 
0 0 0 

go .20 LflQ 00 
4-0In

2o 00 
0 

Id
Cd

00 -0 0
'.1

InC ('.1 - I 
In  In -4 In 

I	 I

0	 4 I	 I .-4 I	 I I	 I 0 0, 00 0 0 00 I 

p. Cd	 bf 4) 4) 4) 4) 
0 'C) 

0 0 0 0-

0 $4 

+0

4)
ba
cd

4) 

4)

' ' 
a)

'C) - 

cd .,., 
'C)  U 

bO
ED 

.1.0 cd Cd 

,
0 0 r-4 bo

(d 0 4) -i-I

V. 
0 
"4 

4-0 

cd 
5-4 

4) 

0 

U 

5-4 

0 

U 

I3 

5-I 
0 

44 

4) 
-4 

I 

72 



Advantages: 

1. High accuracy. 

2. Minimal change due to temperature differences. System may also 

be temperature compensated. 

3. Can measure both static and dynamic pressures. For static measure-

ments a stable high gain direct coupled amplifier is needed. 

4. May be energized by ac or dc. 

5. Low sensitivity to shock and vibration.	 - 

6. Continuous and practically infinite resolution.	 - 

7. Gage and circuitry may be of relatively simple design. 

8. Frequency response good (however, piezoelectric or capacitance gages 

are better). 

Disadvantages: 

1. Under severe conditions calibration does not remain stable...- 

2. Responds to large vibrations. 

3. Low output (higher output may be attained with silicon strain gages, 

but with some loss of thermal and stability characteristics). 

4. Bonded type limited to low range. 

5. Installation of bonded or wrapped-type pickups is a critical 

operation.
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6.6 CAPACITANCE 

Capacitive pressure transducers Ecal	 161 are widely used in many 

systems to monitor static or dynamic pressure fluctuations. Two basic types 

of capacitive transducers are available for pressure applications: the 

parallel-plate type (most popular) and the concentric overlapping cylinder 

type as shown in Figures 6.61 
[G101 and 6.62. Most often a diaphragm element 

is used in conjunction with the capacitor (parallel-plate or concentric 

cylinder type) to provide the displacement necessary for a capacitance 

change. Devices such as these can operate at high frequencies (approx. 

5 x lO Hz) and are very responsive to rapid pressure fluctuations. Some 

of the advantages for using capacitive pressure transducers (not considering 

expense for electronics) are that fabrication can be easy, cost is low, and 

they are relatively maintenance-free. The more costly items necessary are 

the electronics; and, depending on the requirements with respect to sensiti-

vity and resolution, this type of pressure monitoring system may be prohi-

bitive for certain applications. The more practical application for such a 

system would be to incorporate several capaäitive transducers into the total 

system and monitor with one set of electronics. 

Capacitance transducers can detect displacements as small as 

2.5 x 10 6 cm and produce a measurable electrical signal a3J 

DEFLECTED
STATIC PLATE 

 
DIAPHRAGM INSULATING

MATERIAL 
DIAPHRAGM 
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Figure 6.61 Parallel-plate capacitive pressure transducer. 
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Figure 6.62 Concentric overlapping cylinder capacitive pressure transducer. 

A parallel-plate capacitor is limited since the output versus plate 

separation is a hyperbolic function. However, the non-linearity in this 

type of device can be minimized by insuring that the displacement is small 

compared to the plate separation. Also, by inserting a dielectric of approp-

riate thickness, an almost linear relationship may be reached (see Figure 

6.63).
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Figure 6.63 Transducer output vs displacement for dielectrics of 
various thickness.
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The addition of a dielectric also increases the sensitivity by a factor 

equivalent to the change in dielectric constant for the material chosen (for 

mica the factor is 7). 

The equation which describes the electrical capacitance of two parallel 

plates is given

C = 0.0885 

where

= Dielectric constant of the media between the plates 

A	 = Area of one plate, cm  

L	 = Plate separation, cm. 

From the above equation the change in capacitance is related to plate 

separation by

AC = 0.0885 CA (-AL) 
L2 

where

L	 = Average between initial and final plate separation, cm. 

When designing a parallel-plate pressure transducer, several important 

requirements must be met. First, the plates must be machined flat and as 

defect-free as possible. The plates must be housed with their faces parallel, 

and to avoid an extremely non-linear output, they must maintain this parallel-

ism throughout displacement. Another factor requires that the material and 

geometry choice maintain the initial plate separation during temperature 

changes should any occur. Some capacitive pressure transducers are extremely 

sensitive to temperature varia tion a5]. 

Many capacitive pressure transducers can withstand 300 percent over-

loads and temperatures to 400°C with approximately one percent or less 

change in calibration.
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If a diaphragm is used, as with most capacitive transducers, it must 

not have a natural frequency or an appreciable harmonic in the range of 

pressure oscillations likely to be encountered (see "Diaphragms" for the 

natural frequency equation). 

A second type of capacitive pressure transducer uses two cohceñtric, 

overlapping, cylinders. This device is basically the same as the parallel-

plate type with one important exception: the output of the transducer is a 

linear function of its displacement. 

For concentric, overlapping cylinders the equation which describes the 

electrical capacitance (C) is given by [Call] 

_O.242cL 

log10(D) 

where

c	 = Dielectric constant of the media between the cylinders 

L	 = Length of cylinder overlap, cm 

D	 = Inner diameter of the outer cylinder 

d	 = Outer diameter of the inner cylinder. 

If the cylinder overlap is not large, end effects will not produce a non-

linearity. The change in capacitance (AC) of concentric cylinders is related 

to displacement (AL) by	 - 

- O.242c AL 

iog10 ()	 -	 -.	 - 

The advantage of this system is - that a proportional relationship exist 

between capacitance and displacement, and the calibration is independent of 

L. This allows for easier calibration since the exact reproduction of L is 

not necessary each time.	 -	 - 
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Calibration techniques for both types of capacitance pressure transducers 

are essentially the same. A calibrated variable air condenser is placed 

in parallel with the measuring capacitor, and a pressure is applied to the 

system. While held at pressure, the variable condenser is adjusted to "null" 

the output, and the capacitance reading is noted. This "null" calibration 

technique is good because it is independent of the circuit characteristics. 

A simplified block-diagram of the circuitry necessary for parallel-plate or 

concentric cylinder type transducers is shown in Figure 6.64. 
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I__I GENERATOR 
DC OUTPUT	 INPUT 

AUDIO 

OSCILLATOR

PRESSURE


TRANSDUCER 

Figure 6.64 Electrical circuitry for capacitance pressure transducers. 
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All other design considerations outlined for the parallel-plate 

capacitor are also applicable for a concentric cylinder device. 

During operation with either type of capacitance transducer it is 

imperative that misalignment (plate or cylinder cocking) does not occur 

since when this happens all linearity is destroyed. 

Advantages: 

1. Lightness and stiffness of the moving parts give rise to a short 

natural period and, therefore, very responsive to high frequencies. 

2. The elastic member can be chosen for consistancy and freedom 

from hysteresis. 

3. Sensitivity can be varied over a wide range. 

4. Ease of fabrication. 

5. Pickup can be made small (particularly the parallel-plate type). 

6. Transducer may be mounted directly adjacent to stream. 

7. Linear output (for concentric, overlapping cylinder design). 

8. Ability to measure a static quantity (i.e., when pressure is increased 

and held constant, the capacitor will produce a steady signal). 

9. Adaptable to widely different forms of construction. 

10. Relatively insensitive to shock and vibration. 

11. Mechanical linkage not always required between pressure diaphragm 

and electrically sensitive element. 

12. High frequency response. 

13. High-temperature resistance (not to imply temperature insensitive). 

14. Excellent resolution. 

Disadvantages: 

1. Temperature sensitive (excessive drift for nonequilibrium temperature 

conditions). 

2. Comparative complexity of associated electronic equipment. 

3. Relationship between displacement and output is hyperbolic (for 

parallel-plate transducers). 

4. High overall cost. 

5. Shielded cable must be used.
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6.7 PIEZOELECTRIC 

When certain crystals are elastically deformed along specific planes of 

stress, an electrical potential is produced in the crystal. This phenomenon 

is known as the piezoelectric effect, and several crystals exhibit this 

behavior. A piezoelectric pressure transducer incorporates a crystal in 

such a way that as the pressure is applied, an electrical output is produced 

which is proportional to the applied stress (see Figure 6.71). 

Piezoelectric crystals may be used without additional excitation; how-

ever, the output signal is very small and necessitates amplification. Most 

often piezoelectric crystals are used in conjunction with external excitation 

and are sometimes stacked in parallel for increased output (see Figure 6.74). 

FORCE SUMMING 

Figure 6.71 Schematic of piezoelectric pressure transducer and related 
circuitry.
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Measurement of pressure can be accomplished by using a piezoelectric 

crystal operating at a fixed frequency which varies with the media being 

measured. 

Output is dependent on the Q factor for a given crystal and is defined 

as the ratio of average stored energy in the crystal to the energy dissipated 

per cycle 1 . This factor varies with the type of crystal chosen and load-

ing conditions. It is therefore necessary to employ a crystal that has ,a 

minimum loss due to internal friction to achieve high sensitivity. 

It can be shown that changes in the crystal Q produced by lo,adirig are 

inversely proportional to pressure for crystals vibrating in extension, and 

flexure, and inversely proportional to the square root of pressure for shear 

mode elements 1 . Experiments have shown quartz to be a suitable high 

frequency crystal vibrating in the thickness shear mode. Crystals such as 

these, when properly etched, polished, and mounted (by pressure clamping) 

can exhibit Q factors of 500,000 or more in vacuum. 

Not all crystals, however, are piezoelectric. There are two main 

groups of piezoelectric crystals: (1) those such as quartz which occur 

naturally and (2) synthetically produced crystals (such as Rochelle salts). 

Some of the more commonly used crystals include quartz, tourmaline, 

ammonium dihydrogen phosphate (ADP), barium titanate, Rochelle salts, 

sucrose, and tartaric acid	
.P3J	 The advantages vary from crystal to 

crystal, and one is chosen on the basis of a particular application. Tourma-

line is the least active chemically, while tartaric acid is the most active 

electrically. The crystals which occur in nature, such as quartz, have the 

advantage of very low electrical leakage which, when used with an electrometer 

or very high impedance input, permits the measurement of slowly fluctuating 

pressures. They are, therefore, capable of withstanding higher temperatures, 

operating at low frequencies, and sustaining shock. Synthetic crystals 

exhibit a much higher output for an applied stress. However, they are usually 

unable to withstand high mechanical strain without fracture. Also, the 

synthetic crystals have an accelerated rate of deterioration over, the natural 

ones.	 81



The piezoelectric device is generally used as a dynamic pressure sensor 

due to the device's high electric impedance at low frequecies. Figure 6.72 

for illustration purposes, is an exaggerated example of how piezoelectric 


	

crystals respond to a step pressure	 1. 
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Figure 6.72 The response characteristics of a piezoelectric 
pressure transducer. 
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The horizontal differences depicted by A and A' are primarily due to the 

finite response of the transducer, and vertical discrepancies B and B' are 

caused by electrical leakage in the crystal. 

The major advantage of a piezoelectric pressure transducer is that 

the signal response to a pressure variation is linear, and frequency responses 

up to 
10  Hz or more are obtainable. Reproducibility of results is obtained 

by careful control of operating temperature. The transducer is light in 

weight, compact and rugged. 

A comparison of sensivities for three crystals is shown in Figure 6.73' 
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Figure 6.73 Piezoelectric crystal sensitivity. 
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Quite often in the design of piezoelectric transducers, quartz or 

other natural crystals are chosen over the high-output synthetic ones, and 

the output is increased by "stacking". Stacking, as shown in F-igure 6.74, 

is an effective way to increase high-frequency response and sensitivity. The 

output of this type of transducer is significantly greater than that of a 

single element, but the signal generated is still low, and consideration 

must be given to electric and magnetic shielding and short cable lengths. 

CeI DI,.4 

V  C3UJ 

Figure 6.74 Piezoelectric crystals stacked in parallel. 
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Piezoelectric crystals are very sensitive to vibration (or frequency 

changes) and temperature changes. Therefore, it is imperative that stability 

in all circuit components be maintained which will affect the oscillatory 

frequency of the sensing crystal. Temperature differences will produce the 

most serious frequency change, affecting both the crystal (since it necessar-

ily has a temperature coefficient of frequency) and related circuit components. 

If the temperature coefficient is known for the crystal and a- stability of one 

part per million can be maintained in the oscillator circuit, the pressure 

may be determined to an accuracy of 0.7 millibars with a crystal that 

changes frequency 1,400 parts per million per atmosphere. 

The block diagram in Figure 6.75 illustrates a typical complex circuitry 

necessary for piezoelectric pressure transducers. 

Decrement I	 I Changing 	 _____ 

I	 ___ 

Cathode	
- F Voltage	 I Voltage 

Follower
Ratio	

I0mP0.0t0r Amplifier	 Diode 
I	 I

 
Selector I	 Diode 

Pulsed	 I	 Pressure I	
J	

Marker I	 I	 Time 
14	 1 Sensing I	 I	 Marker 

Oscillator	 Crystal I	 Amplifier	 I Amplifier 

Loran	 Pulse 
Indicator	 Generator 

Figure 6.75 Block diagram for piezoelectric pressure transducers. 
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PIEZOELECTRIC SPECIFICATIONS 

Types of pressure measurement (including base limitation for differential): 

Ballistic pressure transient, air blasts, underwater blasts, rocket 

blasts, shock tube measurements, internal-combustion engines, 

and many others. 

Pressure ranges: 

Dependent on elastic limit of crystal chosen; typically, piezoelectric 

crystals range from 10- 6 psi to 10,000 psi. Frequency response: 

up to 1.0 x 10  Hz. 

Accuracy: 

Assuming the temperature coefficient of the crystal is known and a 

stability of one part per million can be maintained in the oscillator 

circuit, it should be possible to determine pressure to an accuracy 

of 0.7 millibars with a crystal that changes frequency 1,400 parts 

per million per atmosphere. 

Temperature (range, compensation, and stability): 

Temperature stability is good when device has been compensated. 

Calibration: 

No static calibration possible. Dynamic calibration tricky. 

Vibration effects: 

Appreciable (unless compensated): also highly sensitive to electrical 

noise. 

Materials: 

Crystal materials include: quartz, tourmaline, ammonium dihydrogen 

phosphate (ADP), barium titanate, Rochelle salts, sucrose, tartaric 

acid, and others. 

Oxygen usage: 

When pressure transients are to be measured, piezoelectric pressure 

transducers are probably the choice of any type for use with gaseous or 

liquid O2 When used with cold gaseous or liquid 02 proper crystal 

selection is important, since synthetic types are usually unable to 

withstand high mechanical strain without fracture. 
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Installation requirements and limitations: 

Crystal mounting becomes critical where vibration in the holder 

may affect the oscillating frequency. 

Remarks: 

Unique in ultra-high frequency range. Poor in very low frequency 

range. 

Advantages: 

1. Highly linear response. 

2. Calibration remains constant. 

3. High frequency response. 

4. High output (1.0 to 30 mV/g). 

5. Negligible phase shift. 

6. Small size. 

7. Rugged construction. 

Disadvantages: 

1. Piezoelectric crystals used in parallel (as shown in Figure 

6.74) require an extremely high-gain amplifier. 

2. Responds to severe vibration. 

3. Extreme care must be taken to minimize leakage in the input 

circuit of the high-gain amplifier. 

4. Unsuitable for static pressure measurements. 

5. Unsuitable for measurements of extremely low pressures. 

6. Very sensitive to temperature changes. 

7. Very sensitive to cross-accelerations.. 

8. Long cables generate spurious response or noise. 

9. After extreme shock does not return readily to original 

calibrated zero.
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6.8 POTENTIOMETRIC 

Potentiometric pressure transducers employ electro-mechanical devices 

which use a force-summing element (e.g., Bourdon tube, belloJs,or diaphragm) 

to drive a variable resistor. In the , low pressure ranges ,a capsule, multi-

capsule, or bellows may be used, and for high pressures (to approximately 

100,000 psi) a Bourdon tube is necessary. In all cases the electro-mechanical 

element is a variable resistor in which the motion of the movable contact or 

slider is powered by a diaphragm capsule, bellows, or Bourdon tube. The 

output voltage from the variable resistor is altered by displacement of the 

force-summing element due to a mechanical coupling between the resistor and 

force-summing element. A properly designed potentiometric pressure transducer 

will incorporate a diaphragm, bellows, or Bourdon tube having deflectional 

properties which are proportional to the applied pressure (see appropriate 

section Bellows, Diaphragm, etc 

Schematic diagrams are shown in Figures 6.81-6.83 for' both low and high 

pressure range transducers with each having comparable circuit diagrams. 

Resistor elements for a potentiometric pressure transducer can be 

of the finite or continuous resolution type. The former is a wire-wound 

element with the output voltage changing in discrete steps proportional to 

the wire and core diameter, while the continuous resolution device is fabri-

cated from conductive plastic with the output voltage changing in a 

continually smooth fashion. 

For the circuitry necessary to operate a potentiometer (shown in 

Figure 6.82), it.is imperative that 'the applied potential be maintained 

constant for stability. A single pointer-type instrument is used, and a 

two-position switch is connected in order to makeit possible at any time 

to check the applied potential. By operating the checking switch, the 

potential across the entire length of the siadewire may be measured and 

adjusted by means of the variable resistance R. The applied potential is 
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Figure 6.81 Potentiometric 
pressure transducer using 
a capsule element. 
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adjusted until the indicating instrument shows a full-scale deflection; 

then, with the switch in the test position, the deflection of the instrument 

indicates the position of the sliding contact. The above circuit requires 

a calibration to correlate contact movement and position with applied 

pressure1. 

Recently, the "error band" concept (DEB -- dynamic error band, SEB --

static error band, etc.) has been used by designers for specifying or describ-

ing pressure transducer performance. A static error band (SEB), for example, 

would include prime errors of linearity, hysteresis, resolution, repeatability 

and fraction with respect to how much each contributes to the total error 

(for a complete discussion of this concept see Reference P02). The graph 

in Figure 6.84 shows relatively how much error is introduced for a given 

pressure range.

5 
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Total Error 

r Friction 

Linearity, Resolution 
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150	 300	 450	 600 
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Figure 6.84 Error contribution in a pressure transducer. 
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It is obvious that the major contributing error at very low pressure ranges 

is friction and at very high ranges, hysteresis[P05]Therefore, for low 

pressure ranges it is advantageous to provide larger effective cross-

sectional area sensors and with high pressure sensors less deflection must 

be considered (force-summing element displacement must be multiplied to 

restore desired wiper displacement). Intermediate pressure ranges involve 

the optimization of all parameters to minimize total transducer error 03l. 

Potentiometric transducers are often called upon to measure corrosive 

or electrically conductive media. This presents no problem when the fluid 

enters the device at P 1 (see Figure 6.85). However, if such a liquid or 

fluid (oxygen is possible) is also introduced atP 2 , a modification of the 

transducer is necessary to insure against-unwanted reactions. The figure 

illustrates one possible solution which isolates all electrical components from 

the fluid being measured by installing a slack diaphragm as shown. 

The electro-mechanical compartment is then filled with a neutral 

fluid, thereby isolating those elements from the measuring stream. 

Neutral

Figure 6.85 Pressure transducer component isolation for use with 
reactive liquids or gases. 
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POTENTIOMETRIC SPECIFICATIONS 

Types of pressure measurement (including base limitation for differential): 

Gage, vacuum, differential, and absolute. Base pressure is limited 

by the type of force-summing elemëntchosën(Bourdon tube, bellows, 

etc.). 

Pressure ranges: - 

Dependentonforce-sunmting element chosen (see proper section 

for description). 

Resolution: 

0.2 percent of full scale. 

Accuracy: 

±0.25 percent terminal end-point accuracy. 

Temperature (range, compensation, and stability): 

High and low (cryogenic) temperature transducers available. 

Some devices are temperature-compensated bymechanical methods 

(see "Force-Summing Devices) and others use electrical compeflsa-

tion. 

Stability is good if input potential is maintained constant. 

Calibration: 

Transducer output and input is measured at incremental values of 

increasing and decreasing pressure from 0-100 percent of-full range. 

Vibration effects; 

Very insensitive. 

Materials: 

Electrical wiring, resistors, and force-summing device (see section 

on Bourdon tube, bellows, or diaphragm). 

Oxygen usage: 

Yes, with properly designed transduder (see paragraph describing 

the "isolated" transducer). Corrosion resistant; explosion-proof, and 

cryogenic potentiometric pressure transducers are currently available. 
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Installation requirements and limitations: 

Generally, the transducers arelarge; however, miniaturization has 

been accomplished with some sacrifice In performance. - Also, for 

less' demanding installations (where space is not a' problem) ervô-

power is used to reduce friction. 

Advantages: 

1. Inexpensive 

2. High output 

3. AC or DC excitation 

4. No amplification or impedance matching (sometimes) 

5. Very wide range of function (characteristic) 

6. Can be ruggedly constructed  

7. Vibration and temperature insensitive 

Disadvantages: 

1. Resolution is finite (wirewound type). 

2. High mechanical friction (a very important factor for low 

pressure transducers). 

3. Limited life (wire wear) .  

4. Transducer becomes noisy with wear  

5. Large displacements required 

6. Generally low frequency response 	 - 
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MAGNETIC PRESSURE TRANSDUCERS 

Magnetic pressure transducers comprise two groups: (1) those which 

operate through a change in inductance and (2) those which utilize the 

change in reluctance of a part of a magnetic circuit. There is no clear 

line of distinction between the different types. 

The magnetic type pressure transducers must always be supplied with 

energy, the variable-inductance types being activated by electromotive forces 

and the variable-reluctance units by magnetomotive forces. The circuitry 

for either the inductance or reluctance pressure-measuring devices is usually 

of low impedance and capable of carrying relatively large currents, many-of 

which need no amplification. 

Magnetic pressure transducers are coupled with either a Bourdon 

tube, bellows, diaphragm, or U-tube. The displacement of the element is 

converted to an electrical signal (output) which is proportional to the applied 

pressure. The following two sections describe the basic operation of vari-

able-inductance and variable-reluctance pressure transducers. 
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6.9 INDUCTANCE 

One of the simplest forms of magnetic transducers is the variable-

inductance unit. It consists of a coil of many turns of wire wound on a tube 

of insulating material with a movable core of magnetic material (see Figure 

6.91).

VARIABLE- INDUCTANCE	 INDUCTANCE-RATIO 

Figure 6.91 Inductance technique commonly used in pressure 
transducers. 

As the coil is energized and the core enters the solenoid cell, the inductance 

of the coil increases in proportion to the amount of metal within the coil. 

The inductance-ratio element is also shown in Figure 6.91 and its 

principle of operation is similar to the variable-inductance unit. In this 

case, however, the windings are center-tapped creating two inductors and 

upon displacement of the core an increased inductance in one coil takes place 

while inductance of the second coil decreases. This arrangement provides 

for increased sensitivity and linearity of response over that of the 

variable-inductance unit and can also be used to detect positive and/or 

negative displacements. Compensation for temperature, lead resistance, 

and other factors can be easily incorporated into the system. 
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The mutual-inductance unit for displacement measurements is shown 

in Figure 6.92 and is sometimes called a linear, variable, differential, 

transformer (LVDT).

FORCE SUMMING 

LINKAGE  

ii 	AC OUTPUT - REF.
Sec. I 

AC EXCITATION	 PRIMA]	

CjSec.2 

CORE MASS 

BASIC FORMULA: C=(N°'ø/dt)Sec./ -(N°'0/d/)Sec.2 

C	 OUTPUT VOLTAGE 

N	 NUMBEROFTURNS 

dØ/dl RATE OF CHANGE IN WEBERS 

Figure 6.92 Inductance-ratio circuitry. 

In this device the effective impedance of a coil is altered by changing the 

mutual inductance between it and another circuit. As shown, the device has 

one primary and two secondary windings with the core mass centered on the 

primary winding. When ac current is supplied to the primary winding (with 

the armature centered), the magnetic flux generated by this coil is distri-

buted by the armature so that equal voltage is induced in each of the 

secondary coils. Then, upon displacement of the armature, either positive 

or negative, the resultant will be a voltage rise in one secondary and a 

decrease in the other. Figure 6.93 illustrates this principle for a typical 

LVDT.
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Figure 6.93 Output vs armature displacement for LVDT 
pressure transducers. 

The electronic circuits used in combination with variable-inductance 

transducers can be one of three types: (1) simple series circuits, (2) 

series-opposition circuits, or (3) bridge-type circuits and any one of 

these may also include amplification. A commonly used circuit for variable-

inductance systems is shown in Figure 6.94. 

Figure 6.94 Inductance pressure transducer circuitry. 
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Advantages: 

1. Responsive to static or dynamic conditions. 

2. Construction can be extremely simple. 

3. Continuous resolution. 

4. Low hysteresis.	 - 

5. signal-to-noise ratio is high. 

6. High output. 

7. No frictional load on system. 

8. Exerts little or no reaction forces on the measuring device. 

9. Results in linear electrical response when actuated by linear 

mechanical motion. 

10. Operates from 60 Hz current and does not require special power supplies. 

11. voltage required is only 3 volts per unit for most applications. 

12. Small, rugged, and dependable. 

13. Can operate underwater. 

Disadvantages: 

1. Not particularly sensitive. 

2. Requires shielded cable. 

3. Must be excited with ac only. 

4. Sensitive to vibration. 

5. Frequency response is limited to the force summing device 

(diaphragm, bellows, etc.) used. 

6. The units are large and have a low frequency response. 

7. Instrumentation must be selected to operate on ac signals, or 

rectifier must be used for dc output. 
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6.10 RELUCTANCE 

The reluctance type pressure transducer thus consists of a device for 

converting pressure into the proper type of displacement, i.e., a diaphragm 

for the single-active-arm bridge circuit or a torsion tube for the others, 

a suitable magnetic core to complete the magnetic circuit, and the required 

number of inductive coils. Additional electronics (for the electromagnetic 

type) include a carrier oscillator supply, a demodulator, and a recording 

device. The later is usually a galvanometer type oscillograph, although 

the transducer can be used quite readily to drive an oscilloscope or magnetic 

tape recorder. 

Variable-reluctance pressure transducers are distinguished primarily 

by how the exciting energy enters the system. The energy is introduced as a 

magnetomotive force which may be produced by an electromagnet assembly or 

permanent magnet. 

Electromagnetic induction is the means by which the variable-reluctance 

system operates. This can be accomplished by two or more methods. First, 

a magnetic field is created, either electrically or with a permanent magnet, 

and a moveable iron core is placed near this field. Then, as the iron core 

is displaced, a resultant change in flux occurs which can be proportional to 

the rate of pressure change. The second method also uses a magnetic field 

with a conductor in it; however, it remains stationary and the field strength 

changes producing current flow. In either case it is the interaction of a 

magnetic field and an electric conductor which produces a current; a change 

of armature position or flux is always involved. The following schematic 

in Figure 6.101 is a simplified illustration of the variable-reluctance 

[Gl] principle 

This type of pressure transducer does not measure pressure, but instead 

the rate of change of pressure and hence presents a number of difficulties. 

The major problem is not being able to perform a static calibration or 

measurement with this system. This problem also exists for piezoelectric 
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Figure 6.101 Basic principle of reluctance technique. 

transducers, but the reluctance type does not possess the redeeming features 

of extremely high frequency response which is characteristic of the crystal. 

Hence, it is limited to a small number of specialized uses. 

Figure 6.102shows three arrangements for variable-reluctance bridge 

transducers. The first utilizes a flat diaphragm in conjunction with three 

fixed inductance arms and one active. Next, a rotating armature is used 

(actuated by a torque-tube) with two active and two fixed inductances. In 

this case sensitivity and frequency-response is enhanced over the first 

example. The last variable-reluctance pressure transducer maximizes sensiti-

vity and frequency-response by incorporating four active inductance arms 

into the. circuit. 

The odtput.:of the two- or four-active arm bridge transducers is suffi-

ciently high that amplification is generally not necessary. Frequency re-

sponse of the transducer is limited either by the mechanical characteristics 

of the armature or the carrier frequency, which in turn depends on the power 

absorbed and heat generated by the magnetic circuit. A typical carrier 
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Figure 6.102 Circuitry for reluctance pressure transducers. 
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frequency for the rotating-armature type pickup is 3 x 1O 3 Hz, which limits 

the frequency response of these types to the order of 1 x lO Hz 6 . The 

following block diagram shown in Figure 6.103 is typical of a variable-

reluctance pressure transducer measuring system. 

Transducer 

Inductance
	

Oscillator 

Bridge
	

Power Supply 

Demodulator 

Recording 

Instrument 

Figure 6.103 Block diagram of variable-reluctance pressure 
transducer circuit. 
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Advantages: 

1. Responsive to static or dynamic conditions. 

2. Continuous resolution. 

3. High output (Z 40 mV/V). The high output (up to 10 ma for a 0-ohm 

load) is sufficient to actuate a high-frequency galvanometer or may 

be used to operate a recording galvanometer, a millivolt recorder 

or indicator, or a milliaxneter. 

4. signal-to-noise ratio is high. 

5. One type gives rate of pressure change directly. 

6. No mechanical linkages necessary between diaphragm and electrically 

sensitive element. 

7. This type of pressure transducer may be used with telemetering systems 

of the frequency-modulated or pulse modulated types and with servo 

systems. 

Disadvantages: 

1. System does not function well in close proximity to magnetic objects, 

or fields. 

2. Large size and low-frequency response. 

3. Reactive and resistive balancing required. 

4. Must be excited by ac only. 

5. Frequency response limited to force-summing device chosen 

(diaphragm, bellows,. etc.). 

6. For some types a complicated high-gain amplifier is required to 

integrate accurately the rate of pressure-change response into 

pressure-time response over the required frequency range. 

7. Other types which require ac impedance electrical circuits do not 

give accurate reproduction of high-frequency components unless a 

very high-frequency current is used. 

8. Static calibration not possible. 

9. Cannot measure low-frequency variations. 
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OTHER PRESSURE TRANSDUCER TYPES 

• The following section introduces in limited detail some other pressure 

transducers. These units are found in specialized applications, or their:. 

operational principle may be used in a custom fabrication. A brief descrip-

tion of the unit, its method of operation, a schematic drawing and related 

circuitry will be given for each type of transducer, followed by references 

and bibliography.
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6.11 MICROMANOMETERS 

Micromanometers are defined as "...instrumentation used to measure pres-

sure, either absolute or differential, in the range-from about 0.001- to. 50mm 

of Hg (0.13 to 6650 Nm 2 ) tM1S] . Some of the types of devices classified as 

micromanometers include U-tube; diaphragm-capacitance; elastic element 

(optical); inductance; resistance wire; gas column; vacuum tube; piston_ 

gages; and centrifugal transducers. 

Since micromanometers are similar in operational principle to those 

described in this report, the discussion here will be limited to types and 

general description. NBS Monograph 114 is given as an excellent reference 

(MiS) on micromanometers. It furnishes detailed information on types, 

methods of measurement, pressure oscillations, and calibration techniques. 

As with other transducers, the unit of pressure commonly used for 

micromanometers is either millimeter of mercury (mmHg), millimeter of water 

(mmH2O), or inches of water (in. H 20). The unit quite often used for 

vacuum or low pressure measurements is the torr (see Preface). 

Brombacher [M15] indicates "A gas pressure in the micromanometer range. 

maybe measured in four fundamental ways. These are: (a) by means of a 

balancing liquid or gas column; (b) by the strain produced in an.elastic 

element; (c) by a balancing gravitational force; and (d)by a balancing 

centrifugal force. Other methods of measuring pressure in the micromanometer 

range, such as thermal conductivity, viscosity, radiation, and ionization, 

are more applicable to the higher vacuum ranges." 

Generally all pressure transducers in the micromanometer range which 

use the four primary methods for sensing pressure involve the amplification 

or conversion of the primary signal. 

Often in a system, particularly containing reactive gases, the pressure 

gradually decreases on standing. A great advantage of the micromanometér 

is that continuous monitoring of the pressure in a reservoir is possible 

and any changes can be immediately detected. 
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According to Brombacher, "the principal laboratory applications for 

micromanometers have been in investigating gas reactions, in making chemical 

analyses, in measuring low vapor pressures, atmospheric pressure fluctuations, 

low gas velocity by impact pressures, and low differential pressures at high 

pressures. Their principal industrial application appears to be in petroleum 

refining."
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6.12 VIBRATING WIRE 

The vibrating wire (or ribbon generally of tungsten) is usually very 

fine, stretched in a magnetic field, and set into oscillation. Figure 6.121 

illustrates the device and circuitry necessary.

POLE PIECES 

INSULATION

'—FORCE SUMMING

(Pre-loaded) 

VIBRATING WIRE 
IN-PHASE 
FEEDBACK 

BASIC EQUATION: F=	
6L2 

FREQUENCY 
I TENSION 
e LINEAL DENSITY 
L LENGTH 

Figure 6.121 Vibrating wire pressure transducer. 

The wire is pre-loaded and an electrical signal is generated and amplified. 

Part of the amplified signal is fed back, in phase, to the oscillating wire 

and the mode of vibration is maintained. Vibrational frequency of the wire 

is determined by the length and wire tension. 

When a force-summing device, in conjunction with the vibrating wire 

principle, creates the necessary displacement the pre-loaded wire is 

stretched and the frequency of oscillation increases. This resultant change 

in frequency is inversely proportional to a positive displacement°'. 
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Instrument sensitivity is strongly dependent on the thermal history - 

of the vibrating element chosen, as shown in Figure 6•.122[Vl] 	 Aribbon 

of tungsten approximately 0.00051 x 0.0051 x 1.448 cm was used for all four 

test runs (a-d).

I0_I

---He 

i0 N2 

Cr 1010 
CL

a	 b1	 ci	 d 

	

4	 Ic 

	

10_B I 	 I	 I	 _j 
0	 80	 160	 240


TIME,s 

Figure 6.122 Sensitivity dependence on the thermal history of 
the vibrating wire element. 

Test runs a-d were performed with the same ribbon after-receiving 

various heat treatments and as shown the sensitivity and limiting value of 

decay time is different in each case. The differences between these runs 
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may suggest that the metallurgical state of the material has changed due 

to the heat treatment. 

The over-all conclusion is that the vibrating wire (or ribbon) gauge 

is not significantly more sensitive than other gages of the same principle, 

but that it is rugged, easy to use, consistant with high vacuum, and pre-

sumably could be arranged to yield a continuous reading of pressure. 

VIBRATING WIRE SPECIFICATIONS 

Types of pressure measurement: 

Gage (including vacuum), differential, or absolute. 

Resolution: 

Gage not significantly more sensitive than other gages of same 

principle, but is rugged, easy to use, and consistant with ultra-high 

vacuum. It can also be arranged to yield a continuous reading 

of pressure. 

Vibratin effects: 

Very sensitive 

Materials: 

Wire generally used is tungsten. 

Oxygen usage: 

It is conceivable that vibrating wire pressure transducers can be 

used in gaseous or liquid 02 environments. This is possible since 

only the force-summing element is exposed to the system being mea-

sured while the remaining parts are isolated. 

Remarks: 

As shown the sensitivity is questionable and transducer is very 

sensitive to shock and vibration. 
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Advantages: 

1. High output. 

2. Accuracy of receiving instrument may be high. 

3. Carrier oscillator in FM/FM telemetering eliminated. 

4. Output is frequency modulated. 

5. Transmission of output frequency may be made over long 

distances with no loss in accuracy. 

6. Rugged. 

7. Easy to use. 

8. Consistent with ultra-high vacuum. 

9. Can be arranged to yield a continuous reading of pressure. 

Disadvantages: 

1. Largely non-linear. 

2. Hysteresis errors high. 

3. Stability is questionable. 

4. Very sensitive to temperature change. 

5. Shock sensitive. 

6. Vibration sensitive.
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6.13 OPTICAL 

Optical pressure devices may employ either the "lever arm" or "fringe 

pattern" principle of operation. The former may incorporate a mirror acting 

as the diaphragm, or pressure sensing element, in conjunction with an indicent 

light beam 0 . Some distance from the mirror (which will determine the 

sensitivity) the light falls on a scale, and as pressure is applied to the 

system the light is deflected through an angle e. It is this deflected 

angle which is then proportional to the applied pressure. 

The "fringe pattern" method (an optical interferometric technique) is 

used for detecting rapidly varying pressures. In Figure 6.131 is shown 

the basic element which has been developed for pressure measurements°2. 

It consists of two basic parts, a diaphragm unit, having an optically flat 

face when unstressed, and an adjacent stator unit. The stator is generally 

made from fused quartz. The interior face of the stator is polished and 

slightly concave, having a large radius of curvature. The adjacent diaphragm 

is then polished optically flat and made totally reflecting. 

When both thestator and diaphragm are then assembled it is evident 

from this construction that conditions are suitable for the formation of 

interference fringes when monochromatic light falls on the unit from the 

stator side. The resulting fringes are circular, however, only a narrow 

diametral strip of the fringe pattern is considered (by placing a mask 

containing a slit over the pattern). 

The above technique can be monitored visually (after calibration) 

or a photographic method 02 , using a high-speed 35 mm camera, may 

permanently record the pressure changes on film to be analyzed later. 
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Figure 6.131 Schematic of a basic optical pressure sensing device. 
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OPTICAL SPECIFICATIONS 

Types of pressure measurement (including base limitation for differential): 

Gage (including vacuum). 

Pressure ranges: 

Approximately 0 to 5,000 psi. 

Temperature (range, compensation, and stability): 

Choice of materials will determine the thermal stability of the 

device. Fused quartz as the stator unit and proper mounting (to 

minimize the effect of thermal differences) will resultin a tem-

perature insensitive device. If the above is not followed the 

temperature coefficient of Young's modulus may affect the cali-

bration by about 0.01 percent per degree centigrade. Also, a zero 

shift of approximately 0.025 percent of full scale per degree 

centigrade will be observed. 

Calibration:	
0	 - 

Straightforward. See "Calibration Techniques" (deadweight testers). 

Vibration effects: 

Very sensitive. 

Materials. 

The optical element may be quartz, glass, or other refractive material 

and for the choice of diaphragm material see the section on "Diaphragms." 

Oxygen usage: 

The optical pressure transducer should operate with gaseous 02 at	 - 

ambient temperature and not present any problem, but steps should 

be taken to prevent condensation on optical surfaces when cold 

gaseous or liquid °2 
are used. 

Installation requirements and limitations: 

The system is bulky which may severely limit installation. 
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Advantages: 

1. Linear response. 

2. Flat response from zero to very high frequencies (using a high-

speed photographic technique ref. 0p2). 

3. Rugged. 

4. Accuracy and pressure range can be high. 

5. Using the photographic technique (ref. 0p2) a continuous record 

for long time intervals may be made. 

Disadvantages: 

1. Very bulky. 

2. Remote monitoring not possible. 

3. Best for low and moderate frequency levels. 

4. Installation can be difficult.
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6.14 DIODE 

It is well known that the tunneling current in Esahi diodes is sensi- 

tive to hydrostatic pressure changes i2,Di3], and pressure gauges making 

[Di4] 
use of this principle have been reported 	 . The negative resistance 

region associated with the tunneling diode is undesirable for pressure 

transducer application. However, this can be formerly eliminated after the 

diode and its associated circuitry have satisfied the strict stability con-

ditions of the amplifier mode of operation 12]. 

Tunneling junction diodes, designed specifically for use as miniature 

pressure gages, have been fabricated from arsenic-doped germanium. These 

diodes have resistivities of - 0.001 ohm-cm and were tested under hydro-

static pressures of up to 10,000 	 This type of diode pressure 


transducer is more desirable than the usual type since a negative region 

appears only at low temperatures. It also has the advantage that the 

strict stability requirements of the amplifier mode need not be met; further-

more, bulky low inductance mounting is not needed. With the above type 

(arsenic-doped) tunneling diode pressure transducer it is possible to 

fabricate the sensing element as small as 0.0076 cm in diameter. 

Figures 6.141, 6.142, and 6.143 are typical of the circuitry and pressure 

vs frequency for a tunneling junction diode pressure .transducer21. 

Change in sensitivity when operating diode pressure transducers still re-

mains a problem as Figure 6.202 illustrates. It shows the sensitivity to 

changes in temperature of an arsenic-doped germanium diode pressure trans-

ducer. The problem is characteristic of all semiconducting devices and 

must be corrected before the diode principle can be used for pressure 

transducers.
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DIODE SPECIFICATIONS 

Types of pressure measurement (including base limitation for differential): 

Gage 

Pressure ranges: 

- 3.0 to 10,000 psi 

Resolution: 

Sensitivity greatest at lower pressures, - 4.4 my psi at 1,000 

psi. and - 1.7 I.LV psi 	 at 10,000 psi. 

Temperature (range, compensation, and stability): 

Temperature sensitive (characteristic of all semiconductors). 

Materials: 

Arsenic-doped germanium, GaSb, InSb 

Advantages: 

(1) Can be extremely small (approximately 0.0076 cm in diameter). 

(2) Inherent temperature sensitivity (characteristic of all semi-

conductors). 

Disadvantages: 

(1) Some types require extremely stable amplifier modes. This 

factor could be costly. 

(2) The problem of sensitivity change caused by temperature 

differences is characteristic of all diode devices. 
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6 .15 ELECTROKINETIC 

The electrokinetic or streaming potential phenomenon is used as the 

basis for converting sonic to electrical energy. Williams	 states that 

"...it was contemplated that the transducer would consist of a porous solid 

containing a fluid which, by oscillatory movement through the solid under 

sonic impulse, would generate an alternating current having the same frequency 

as the sonic impulse." Figure 6.151 illustrates a simplified version of the 

electrokinetic pressure transducer. 

Leads, one on each side of the porous disc, are connected to a high-gain 

amplifier and then to an oscilloscope. "A small tuning fork having a fre-

quency of about 300 Hz, held close to the diaphragm, yield a barely discernible 

signal on the oscilloscope at full gain of the amplifier..." [the amplifier 

used had a maximum gain of approximately 2000]". "When the handle of the fork 

was held against the diaphragm, a fairly large signal was observed on the oscil-

loscope. This signal, as well as that transmitted to the device through air, 

had the frequency of the vibrating fork and exhibited a sinusoidal wave 

form. [El]

This type of pressure transducer, originally designed by an oil company, 

was used to measure the pressure fluctuations in a pipeline. 

IF
	 POROUS DISK 

.—POLAR FLUID 

0­­ _

DIAPHRAGM STATIC 

DIAPHRAGM DEFLECTED 

Figure 6.151 Electrokinetic pressure transducer. 
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ELECTROKINETIC SPECIFICATIONS 

Types of pressure measuremènt (includingbase limitation for differential): 

Dynamic gage (including vacuum) 

Pressure ranges: 

Limited only by diaphragm design (see "Diaphragm" section). 

Temperature (range, compensation, and stability): 

Operation not effected by small temperature changes and is stable. 

••' 
Calibration:	 - 

Dynamic calibration must be made. 

Vibration effects:	 ••-.	 - 

Very sensitive to vibration. Depending on if themode of-vibration-

is-in or out-of phase with the stream-being-measured will-determine 

whether the effect is additive or substractive. 

Materials: 

Stainless steel, glass, and lucite, polar fluid (often a volatile 

poisonous cyanide compound), fritted glass, and platinum leads. 

Oxygen usage: 

The electrokinetic pressure transducer may be suitable for use 

with ambient or cool oxygen. Oxygen near the liquid temperature 

will freeze the polar fluid and make its use impractical. 

Installation requirements and limitations: 

Unit is bulky.



Advantages: 

1. High damping exhibited and no ringing frequency. 

2. Frequency response high. 

3. High output (- 350 my 

4. self-generating 

5. Transducer is quite rugged. 

Disadvantages: 

1. Static pressure measurement not. possible. 

2. Accuracy of calibration limited because unit cannot be calibrated 

statically. 

3. Zero-restoration poor. 

4. Diaphragm distortion occurs with electrical bias. 

5. Generally, the polar fluid used is a volatile, poisonous cyanide 

compound.	 .



6.16 MAGNETOSTRICTIVE 

The magnetic properties of a ferromagnetic material change whén 

stress is applied to the material. This phenomenon is known ap magnetostric-

tion. It can be used to convert mechanical effects into magnetic effects and 

vice versa. Figure 6.161 gives an example of how the basic principle of 

magnetostriction is used in a pressure measuring device. 

Smith and LuxfordEMfl state that "...the magnetostriction effect varies 

greatly with the composition and heat treatment of the magnetic material. 

It is large in some nickel-iron alloys, some cobalt-iron alloys, and 

especially in pure nickel in the annealed condition". For pure nickel the 

magnetic properties change appreciably upon an application of moderate 

mechanical stress. 

When the magnetostrictive pressure transducer is used in conjunction 

with a milliamxneter, the device can only measure slowly varying pressures. 

To increase the frequency response, an indicating instrument capable of 

following a rapidly varying system must be used - e.g., a cathode ray 

oscillograph. 

Hysteresis effects are common to all magnetic materials in varying 

degrees. Generally speaking, hysteresis is a minimum when the metal is in 

fully annealed gas-free condition, produced by vacuum annealing or annealing 

in hydrogen[M1i. Hysteresis is undesirable in any measuring device and 

some method of minimizing its effects is essential to success. 

Smith and Luxford go on to say 	 .the method used is to bring the metal 

to a standard magnetic condition by saturating it, that is, by the applica-

tion of a magnetic field sufficiently strong to orient substantially all , the 

magnetic elements in one direction. By use of an alternating magnetizing 

field, the metal may be brought to this standard condition as often as 

may be desired". 

The heating effect of eddy currents induced in the metal by the alternat-

ing field must be minimized by the use of thin material, for example, thin 

walled tube, wire, or stampings.
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MACN

REAR SUPPORT 

The use of a pair of similar measuring elements in a symmetrical 

electrical circuit is desirable, since both elements change equally when 

conditions change and thereby a compensation is made. 

f A (' r 

• I	 OUTPUT 
SUMMING 
MEMBER

[Gb] 
Figure 6.161 Magnetostrictive pressure transducer 

Advantages: 

1. Compact 

2. Very reliable 

3. Operation simple 

Disadvantages: 

1.	 Hysteresis. May be reduced by applying a strong alternating 

field continuously to annul the effects of previously applied 

stresses.
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6.17 OHMSTRICTIVE 

The ohmstrictive pressure transducer utilizes a pressure-sensitive 

powder (such as carbon or other conductor) or liquid between a force-summing 

element and a fixed plate. A simplified schematic of transducer design and 

electrical diagram is given in Figure 6.171. 

As pressure is applied to the conductive force-summing element the 

resistance of the pressure-sensitive material changes. The operation of this 

type of device is similar to that'of a carbon microphone. 

In spite of its simplicity the operational principle has not been 

exploited sufficiently to allow a detailed discussion of its capabilities 

CONDUCTIVE	 INSULATING 
FORCE SUM	

CASE 

CARBON OR OTHER	 LI 
CONDUCTOR—'

ELECTRICAL 
EQUIVALENT 

	

CONDUCTIVE PLATE	 .	 . 

Figure 6.171 Ohmstrictive pressure transducer. 
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Advantages:	
•V V 

1. Can be used statically or dynaniical-iy. 

2. Rugged: 

3. Inexpensive.	 V 	

VV 

4. High reliability.	 V 	

V 

5. High output.	 V V
	 V 

6. Will operate at high frequencies.. 
V 

7. Easy to manufacture an& may be made small.. 	
V V 

Disadvantages: 
V V

	 ' 	

V 	
V 	

V V

' 

1. Without compensation may be, thermally unstable. 

2. Some inherent electrical noise. 

3. Questionable repeatability. 

4. Vibration sensitive.
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6.18 FORCE-BALANCE 

Although other basic principles may be used with this device, most 

-	 applications employ either a capacitive or linear variable differential 

transformer element to sense the applied pressure. Figure 6.181 illustrates 

the electrical arrangement of the self-restoring force balance transducer. 

The output of the sensing element is fed to an amplifier, which in 

turn feeds back a restoring force equal to the applied pressure. The 

sensing mechanism is then returned to its original position (by a servo) 

before the force was applied. 

FORCE SUMMING QUENCH 
FREQUENCY 

MECHANICAL LINK—. iIIIIIII !("  OSCILLATOR 

AMPLIFIER 

RESTORING COIL 

BASIC FORMULA: / 

I = OUTPUT CURRENT ThRU RESTORING COIL 
a ACCELERATION 

UNIT OF TORQUE FORCE 

b2 = DIMENSIONAL CONSTANT 

B = MAGNETIC FLUX DENSITY 

M = UNBALANCE MOMENT 

Figure 6.181 Force-balance pressure transducer. 
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Advantages: 

1. Measurements may be made statically or dynamically. 

2. Accuracy good. 

3. Stable. 

4. Excellent resolution. 

5. Output high. 

Disadvantages: 

1. Expensive. 

2. Frequency response low. 

3. Installation limited by its large size and weight. 

4. Very sensitive to acceleration or shock. 

5. Electrically complex.
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6.19 OSCILLATING 

"The frequency of a transistor oscillator is varied as a function of 

inductance or capacitance change in the force-suxnxning member and.associated 

transduction eiement" 1 . The stability of the oscillator circuit in 

this type of pressure transducer is of prime consideration. Also, the tem-

perature range of operation is currently restricted to the operating range 

of silicon transistors. Figure 6.191 illustrates the basic principle for 

oscillating transducers.

/--CAPACITOR 

VARIABLE COIL

FM OUTPUT 

COUPLING

	

	 OSCILLATOR 

FORCE SUMMING 

PRESSURE PORT 

BASIC FORMULA: 1f z f-f0 

Of FREQUENCY DEVIATIONS 

f	 OPERATING FREQUENCY 

fo	 RESONANT FREQUENCY (No Force) 

Figure 6.191 Oscillating pressure transducer. 
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Advantages: 

1. Small. 

2. Dynamic or static measurements. 

3. May be used for telemetering purposes. 

4. High output. 

5. Output may be shown as actual decimal unit counts representing 

applied pressure. 

Disadvantages: 

1. Temperature range limited. 

2. Accuracy low. 

3. High cost. 

4. Special electronics required to provide analog information. 

5. Low thermal stability. 

6. Poor thermal zero shift.
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6.20 PHOTOELECTRIC 

The basic principle for photoelectric pressure transducers is illustrated 

[Gb] in Figure 6.201

,- PORT 
CASE-N,,,,// ,/-FORCE SUMMING 

I I'	 ,-LIGHT MODULATION 

LIGHT SOURCE — ..	 ELEMENT 

LRL( I jjt= 
WINDOW

	

	 II	

• 
I	

}OUTPUT 

BIAS 

BASIC FORMULA: i/ 	 K(#a/ft candle) -1c0 

COLLECTOR CURRENT 

K MODULATION CONSTANT 

DARK CURRENT 

Figure 6.201 Photoelectric pressure transducer. 

A force-summing device such as the diaphragm, bellows, or Bourdon tube 

is used to modulate the light intensity incident upon a photosensitive 

element. This affects the photoemissive property of the element, and as a 

result the rate of change will be linear with displacement and also pressure. 

An important consideration to obtain transducer stability is by maintaining 

a light source which does not vary in intensity. 
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Advantages: 

1. High output. 

2. Construction can be simple. 

3. Static and dynamic measurements may be made. 

Disadvantages: 

1. Large displacements are required. 

2. Low frequency response. 

3. Long-term stability can be poor. 

4. Limited temperature range.
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7. LOW-TEMPERATURE CALIBRATION METHODS 

Pressure transducer calibration at cryogenic temperatures present 

special problems some of which depend on transducer typeliC2iC5C61. 

Transducers such as strain gage, potentiometric, capacitance, inductance, 

reluctance, and piezoelectrics may be fabricated as sealed units for total 

immersion into the cryogenic medium for a more direct measurement of 

pressure. In this case, only the electrical leads are taken from the 

transducer to ambient conditions and therefore, heat leak is significantly 

reduced. 'All types mentioned above have their own operational characteristics 

when operated at low-temperature. 

Other pressure transducer types (e.g., manometer, transport property, 

electrokinetic, etc.)' may be difficult to calibrate or totally unsuitable for 

use at low temperature. 

McLellan [C71 indicates a method for calibrating pressure transducers 

down to 7,K with static pressures up to 2,000 psi. A schematic drawing' of 

the system is shown in Figure 7.1. Unfortunately, no test data were given 

in the report; however, ,,five transducers were said to have been calibrated 

successfully at 7 K withut any problem. 	 -. 
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B. CALIBRATION TECHNIQUES (OTHER) 

8.1 DEADWEIGHT TESTERS 

The deadweight tester, as the manometer, is also considered aprimary 

standard for pressure measurement and is used for the calibration of less 

accurate gages or transducers. Depending on calibration pressure range, 

there are two basic types of deadweight testers. The first, schematically 

shown in Figure 8.11, is a low-range (0.3-1.5 to 1.5-500 psi) device which 

can measure gage or absolute pressure (by evacuation of the bell jar). 

LEVCLLII'1J 

Figure 8.11 Low-pressure deadweight tester. 
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Where low pressures are used no special method is necessary to control 

the clearance between the piston and cylinder (with high-pressure deadweight 

testers this becomes an important factor). 

The low-range device (shown in Figure 8.11) uses air as the working 

fluid. A source of clean, filtered, compressed air must be provided. The 

use of air is desirable, as it minimizes the head and buoyancy errors which 

require calculation of corrections if a liquid were used. 

The high-pressure deadweight tester is shown in Figure 8.12 and differs 

from the low-pressure device in that a method for controlling the clearance 

between the cylinder and piston is used. Deadweight testers for use over 

10,000 psi employ some special method to control the clearance between the 

piston and cylinder, to improve accuracy and prevent excessive leakage. 

GAGE UNDER	 WEIGHT 
[-  TEST	 WEIGHTS iY HANDLER _______________ 

CYLINDER- 1	 OIL

RESERVOIR

PISTON 
PUMP 

PISTON	 1-CHECK 
VALVE 

HIGH-PRESSURE DEADWEIGHT TESTER 

Figure 8.12 High-pressure Deadweight Tester. 
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A high pressure oil chamber surrounds the cylinder and the oil pressure 

within is controlled by a secondary source of fluid pressure. When very - 

;high pressures are measured, fluid is pumped to the exterior chamber to 

compress it slightly and counteract the natural tendency of the cylinder to 

enlarge under the internal pressure being measured. 

The piston in a deadweight tester is accurately machined and has a 

definite area such as 1/8, 1/6, 1/40, or 1/80 in 2 . A platform is attached 

to the top of the piston and serves to hold the weights. The total pressure 

in the system (when balanced) i the combination of the weights, piston, and 

platform assembly divided by the cross-sectional area of the piston. To 

calibrate a gage, using the deadweight tester, the appropriate amount of 

weight is placed on the platform assembly and the-system pressure is in-

creased until it offsets the platform assembly weight. When this occurs, 

the platform, piston, and weights begin to "float". Friction in the system 

is minimized by slowly rotating the weight handler during calibration. 

The deadweight tester may be operated using water instead of oil for 

the calibration of oxygen gages. However, the minimum pressures which may 

be measured are higher due to the poor lubricating quality of water. When 

water must be used, a small amount of soap added will improve the lubrica-

tion of the piston and cylinder assembly. 

Oxygen and other gages which must be kept free from oil may be checked 

on a normal deadweight tester using oil if a water filled "U" tube (or other 

sealing device) is inserted between the gage and tester. 

Cross [C171 indicates that error in measurement results from failure 

to account for the parameters or from the uncertainty of the measured values 

of them. It is obvious that error results from the uncertainty of the mass 

of the loading weights and the measurement of the effective area of-the 

piston and cylinder. Other sources of error may not be so. easily recognized. 

Such sources include the air buoyancy on the weights, the fluid buoyancy on 

the piston, the value of local gravity, the force on the piston due to the 
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surface tension of the fluid, the thermal expansion and elastic deformation 

of the piston and cylinder, and the fluid heads involved. These effects can 

be evaluated and corrections applied to reduce the magnitude of overall error 

of measurement. 

"Air buoyancy corrections amount to about 0.015 percent of the load. 

The corrections for the buoyancy of the pressure fluid on the piston have 

been found to range from zero to nearly 0.5 psi, and could be larger. The 

values of local gravity differ by over 0.3 percent at different places in the 

United States. The pressure correction due to surface tension is usually 

negligible, but may amount to more than 0.003 psi. Thermal expansion of 

the effective piston area is usually about 0.003 percent per °C and elastic. 

distortion may amount to 0.05 percent at 10,000 psi. Fluid head amounts to.. 

,,[G2,C17] about 0.03 psi per inch for lubricating oils 

For a deadweight gage tester connected to a tight system, with the 

piston falling slowly because of the leakage of liquid past it, the effective 

area is the average of the cross-section of the piston and the area of the 

bore. This effective area is somewhat changed by temperature and the . 

applied internal pressure (an important factor for high pressure measure-

ment). The following table will help to illustrate temperature effect. 

Material
	

Effective area increase 
PPM/°F 

Carbon steel (piston and cyl.) 	 13 
Stainless steel (piston and cyl.) 	 18 
Carbon steel (piston) and brass (cyl.)	 17 

The distortion of piston and cylinder under pressure is greatly 

dependent on design and may either increase or decrease the effective 

area by as much as a part in ten thousand at 10,000 	 Wear and 

aging over a period of years will also change the dimensions of the piston 

and cylinder which generally results in irregular errors. 
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It usually happens that the point of measurement is at a different 

elevation than the lower end of the piston. Correction should, therefore, 

be made for the pressure difference due to the fluid head between these 

two points. The height is taken as positive when the gage is above the 

piston. When oil is used in the gage tester, the correction will be approxi-

mately 0.03 psi for each inch difference in level. 

"When the submerged part of the piston is of uniform cross-section, 

no buoyancy correction need be applied. In some designs the piston is en-

larged to provide a stop for its upward motion or to give increased strength. 

If these enlargements are submerged in liquid, a buoyancy correction is 

necessary. The buoyancy correction factor b is equal to the difference 

between the actual submerged length of the piston and the length of a piston 

of uniform cross-section and of equal submerged volume. With some designs it 

is not possible to observe the piston level and therefore not possible to 

determine the submerged volume. In such a case, it is necessary to determine 

the buoyancy correction by test. It will usually not exceed a few tenths 

of a psi1[G21Cl7] 

Where accuracy of 0.25 percent is adequate, only the head error need 

normally be considered. But if maximum accuracy is required, all correction 

factors must be taken into consideration. The following working equations 

and Table 8.11 will be helpful for this purpose and include the correction 

for gravity, mass, effective area, head, and buoyancy. For more informa-

tion on the equations given to compute the absolute or gage pressure in a 

system see reference C17. 

P=p +H +P 
p	 fp	 a 

Pg = P, + Hf - Ha 

Hf = P f hf k 

Ha = - a ha k
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+A
C [l+a(tS -tm)] 

a = a  + a 

b - 31.t - 1 
Y 

Mfa = (AYf a - Vf a Pfa 

Ae = A0 [l . + a(t - t 5)] (1 + bp) [1 +d(P	 P)1 

fp 

Mm I	 pa)k+ Mfa ( -	 L .---\k 
PM	 0	 fa/	 A0 

pp = 11 + a(t - t5)] (1 + bp p ) [1 + d(p- P) 
where

Ac Cylinder area. 

Ae Effective area of piston. 

A 	
Piston area. 

A0 Effective area of the piston at atmospheric pressure and 

temperature t5. 

C	 Circumference of the piston at the surface of the pressure fluid. 

Ha Pressure difference in the atmosphere between the reference 

level of the piston gage and the reference level of the system 

to be measured. 

Hf Pressure head of the column of pressure transmitting fluid 

between the reference level of the piston gage and the ref-

erence level of the system to be measured. 

Mfa Mass of the pressure fluid at atmospheric pressure contri-

buting to the load on the piston. 

Mm Mass of the loading weights, including the piston assembly. 
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P	 Absolute (total) pressure. 

a Atmospheric pressure at the reference level of the piston gage. 

Vfa Volume of the submerged part of the piston above the cylinder. 

Vfp Volume of the part of the piston below the cylinder. 

Y	 Young's modulus. 

a	 Fraátional change in effective area with unit change in 

temperature. 

b	 Fractional change in effective area with unit change in 

pressure. 

d	 Fractional change in area with unit change in jacket pressure. 

Local acceleration due to gravity. 

ha Height of the air column measured from the reference level 

of the piston gage to the reference level of the system. Mea-

surements up from the piston gage reference level are positive. 

hf Height of the column of pressure fluid measured from the ref-

erence level of the piston gage to the reference level of the 

system. Measurements up from the piston gage reference level 

are positive. 

.h Height of the reference level of the piston gage with respect 

to the bottom of the piston. Measurements up from the bottom 

of the piston are positive. 

k	 Proportionality factor relating force, mass and gravity. 

p  Gage pressure. 

p	 Jacket pressure. 

p	 Pressure measured by piston gage at the reference level of 

the piston gage. 

Pz Jacket pressure required to reduce the piston-cylinder 

clearance to zero. 

t	 Temperature of the piston gage. 

t 	 Temperature at which piston and cylinder are measured. 

t	 Reference temperature (usually the nominal room temperature). 
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'fa Length of the submerged part of the piston above the cylinder. 

Yfp Length of the part of the piston below the cylinder. 

ac Temperature coefficient of linear expansion of the cylinder. 

a 	
Temperature coefficient of linear expansion of the piston. 

Y	 Surface tension of the pressure fluid. 

t	 Poisson's ratio for the piston. 

Pa Mean density of the air displaced by the load. 

fa Density of the pressure fluid at atmospheric pressure. 

Pfp Density of the pressure fluid at pressure P. 

Pm Density of the weights.
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TABLE 8.11 

GRAVITY VS LATITUDE 

(Based on Standard Gravity & Interntional Gravity Formula) 

gs = 980.665 cm/sec2 

z(p = 978.0490 (1 +	 .0052884 sin 2(p -	 .0000059 sin 	 2p) 

gp cm/sec2 

0 978.0490 
5 978.0881 

10 978.2043 
15 978.3941 
20 978.6517 
21 978.7107 
22 978.7721 
23 978.8356 
24 978.9015 
25 978.9693 
26 979.0394 
27 979.1113 
28 979.1850 
29 979.2606 
30 979.3378 
31 979.4165 
32 979.4968 
33 979.5785 
34 979.6614 
35 979.7455 
36 979.8308 
37 979.9170 
38 980.0041 
39 980.0919 
40 980.1805 
41 980.2696 
42 980.3592 
43 980.4489 
44 980.5391 
45 980.6294 

45 0 23.670' 980.66500 
46 980.7197 
47 980.8097 
48 980.8998 
49 980.9894 
50 981.0787 
55 981.5146 
60 981.9239 
65 982.2941 
70 982.6139 
75 982.8733 
80 983.0646 
85 983.1818 
90 983.2213
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Tolerances on the weights and effective diameter must be maintained to 

minimize error in the total tester. The following two tables set the toler- 

ances to insure a total error of 0.10 percent or less for the system2. 

Table 8.12 Effective diameter. 

Area, in Effective diameter, in Tolerance, in 

1/8 0.398942 ±	 0.000100 

1/16 0.282095 ± 0.000070 

1/40 0.178412 ±	 0.000040 

1/80 0.126157 ± 0.000031 

Table 8.13 weight tolerance. 

Weight, oz 5 10 20 40 100 

Tolerance, oz ±	 0.0025 ± 0.005 ± 0.010 ±	 0.020 ± 0.050 

Pressure value in psi when used with an area of: 

1/8 in 2.5 5 10 20 50 

1/16 5.0 10 20 40 100 

1/40 12.5 25 50 100 250 

1/80 25.0 50 100 200 500

In Figure 8.13 is a simplified block diagram which typifies the components 

necessary for a low-pressure deadweight calibration system. 
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Gage or Transducer
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0.2- 500 psi

Gage or Absolute Atm. -0 psi 

To Pressure 
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Vent
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Vacuum Gage 

(Thermocouple Type) 

I	 *	 I 

Calibration	 Calibration 
Pressure	 Vacuum	 - - 
Source	 Source 

Reference 
Vacuum Shut-Off Valve 

Source ® Pressure Regulator 

*

	

Clean, Dry Air or 
Dry Nitrogen

Figure 8.13 Typical deadweight tester system. 
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Each of the following sections, on the dynamic calibration of pressure 

transducers, 8.2 to 8.7, are covered briefly in this report due to the lack 

of information in the literature with respect to oxygen service. Their basic 

principle, nevertheless, for pressure transducer calibration may be ideally 

suited for a given low-temperature system. References furnished in section 9 

on calibration methods 	 81 will be very helpful for anyone wishing to 

pursue the subject further.
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8.2 SHOCK TUBE 

"A Shock tube, in its simplest form, consists of two sections of tubing 

separated by a thin diaphragm. When these two sections are pressurized to 

different pressure levels and the diaphragn is suddenly ruptured, the higher 

pressure gas will immediately begin to flow into and compress the gas at 

lower pressure" 9 . Figure 8.21 illustrates a typical shock tube arrange-

ment for calibrating pressure transducers. 

The shock wave, as it continues to move downstream through the tube, 

is well-formed after a distance of approximately 10 to 15 tube diameters, 

after which, the wave continues to progress at a constant velocity. Behind 

the shock wave the pressure suddenly rises resulting in a positive pressure 

step. The shock tube's rise time between pressure levels is typically on 

the order of 10 9 s. The shock tube is commonly referred to as a step-function 

generator and should be able to change the pressure from one level to another 

in short enough time to shock excite high-frequency pressure transducers. 

High mach numbers may be obtained by using properly selected gases in the 

shock tube chambers. Also, by heating the compression chamber and cooling 

the expansion chamber an increased mach number may be realized. 

"When a shock tube is utilized for pressure transducer calibration, 

several parameters must be measured before the amplitude of the pressure 

step can be ascertained. These parameters include the shock wave velocity, 

V, and theinitia1 absolute pressure, P 1 , and temperature, T1 , of the gas 

in the low pressure section" [C91
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Figure 8.21 Shock tube calibration system. 
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8.3 SIREN 

The siren technique for calibrating low and medium pressure trans-

ducers utilizes a siren-tuned-cavity oscillator for generating periodic (but 

not necessarily sinusoidal) pressure wavesEC]. Figure 8.31 shows the 

basic components of the system. The essential elements of the siren-tuned-

cavity generator are a cylindrical chamber with an axial orifice in one end 

and a revolving disc having a number of equally spaced holes arranged around 

its periphery. The wheel is positioned as shown in Figure 8.31 and rotated 

to interrupt the flow of air from an axial hole in the tuned-cavity. As a 

result, periodic pressure waves are generated with a waveform which is typical 

to that shown in Figure 8.31. 

Two adjustments are necessary in order to operate the generator effecti-

vely. For each rotational speed of the siren (perforated disc) and the number 

of holes in that disc a pressure wave frequency will be produced. When the 

length of the cylinder is adjusted such that it acts as a half-wave resonator 

the pressure wave is reinforced and the amplitude at the transducer is deter-

mined. 

"For purposes of calibration, the value of pressure at the cavity-

transducer interface is measured with a previously calibrated transducer, or 

it is computed using methods described by Oberst 	 When measured 

pressures are used as a standard, the calibrated gage must be an instrument 

with a uniform frequency response up to frequencies several times higher 

than the 'test frequency" [ClO] 

Using this device peak pressures of up to 30 psi are possible with 

pulsation rates of from 50 to 1000 Hz. 
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Figure 8.31 Siren-tuned-cavity generator. 
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8.4 ROTATING-VALVE GENERATORS 

A forcing function with precisely controlled repetitive pressure pulses 

is sometimes necessary for the calibration of certain pressure transducers. 

A schematic representation of the mechanical device which generates such a 

pressure pulse is shown in Figure 8.41. Also, in the same figure, a typical 

wave form is shown with the average time between pulses on the order of 10-1 

seconds. The device generates pulses at relatively low frequencies and levels 

of pressure may be precisely preset by means of pressure gages. By adjusting 
CO 

the speed of the driving motor, and consequently that of the rotation valve, 

a desired pulse repetition rate may be obtained. At higher repetition rates 

pressure steps may become distorted due a resonant effect created by the 

inertia of the gas column in the system. Therefore, this device is limited 

to operational frequencies below which the resonant effect is observed. 

Schweppe[ClOI says that "Normally, the square pressure pulses generated 

by the rotating-valve device are not truly shock waves. Unlike the short-

term, high intensity pulses generated by the acoustical-shock generator, the 

pulses from the rotating-valve generator are of longer duration (say, about 

100 msec as compared to 250 tsec) and lesser intensity (say, about 10 to 15 

psi per step as compared to 200 psi). 

"A major disadvantage of the rotating-valve generator is the presence 

of the relatively long tube between the transducer under test and the rotat-

ing-valve mechanism. In effect, it introduces a half-wave resonator into the 

calibration system which limits the effectiveness of the generator at high 

frequencies". 

Another version of the rotating-valve generator produces a step-function 

pressure wave form as shown in Figure 8.42. This may be accomplished by 

proper design of the rotating valve such that several ports (both inlet and 

outlet) provide various individual inlet pressures with each having a unique 

axial orientation (each corresponding to a step in pressure) [ClO] 
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Figure 8.41 Rotating-valve pulse-function generator. 
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8.5 LOW-FREQUENCY PNEUMATIC SINUSOIDAL GENERATOR 

The pneumatic sinusoidal generator schematically shown in Figure 

8.51 and was primarily designed for low-frequency, low-amplitude calibra-

tion. The obvious way to produce a sinusoidal pressure variation is by using 

a piston-in-cylinder device. A piston-in-cylinder generator when operated 

at high frequency and high amplitude produce pressure waves which are 

characterized by nonlinear effects [ClO] 

The motion of the piston is sinusoidal with a frequency of w (where 

w = 2itf) and the gas in the tube is assumed to behave ideally (where 

P = pRT). 

Nominally, the output of a low-frequency pneumatic sinusoidal generator 

is in the range from 5 to 25 psi, but different ranges may be obtained by 

adjusting the operating stroke of the piston. 

X X0 Cos wt
II

Gas (or Liquid)	 I	 I d 

x=o 
NOTE:	 >> ' ,t ; P	 pRT 

Firure 8.51 Low-frequency pneumatic sinusoid generator 
(piston-in-cylinder model). 
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8.6 ELECTROMAGNETIC METHODS 

Electromagnetic methods for pressure transducer calibration may be 

used on devices which have diaphragms of magnetic material. The simplified 

schematic shown i n Figure -8.61 iTIustrates the way in which a direct-excita-

tion technique displaces the diaphragm (using a solenoid). Diaphragm assembly 

damping can be sensed and measured accurately to determine decay-rates and 

from these decay-rate measurements, the logarithmic decrement can be 	 -. 

computed directly. 

Schweppe	 indicates that "By exposing the pressure-sensitive 

diaphragm to the atmosphere, the oscillatory motion of the transducer po-

duces a corresponding pressure variation on the sensing element. The ab-

solute movement of the diaphragm can be sensed and measured optically (at 

low frequencies) or by a capacitance pickup (shown in Figure 8.61). The 

frequency range over which this method has been used is reported to be 3,000 

Hz under normal conditions and, with special equipment, 8,000 Hz6. 

Pressure levels are low (usually no more than 50 to 60 psi). 

Diaphragm 
(Magnetic material) 

.1upuciiun..e 

pickup 

'- Pressure transducer 
housing 

Figure 8.61 Arrangement for caliration using the 
electromagnetic technique. 
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8.7 HYDRAULIC SINUSOIDAL 

The hydraulic sinusoidal generator is similar to the low-frequency 

pneumatic sinusoidal generator discussed in section 8.5; the only difference 

being a liquid is used as the active medium instead of gas	 The 

apparatus used is basically the same as the pneumatic sinusoidal generator 

shown in Figure 8.51. Principally, the differences between gas-and-liquid-

piston-in-cylinder devices are associated with the incompressibility of liquids. 

155



9. RECOMMENDATIONS 

Data in the literature covering pressure transducer behavior at cryo-

genic temperatures are extremely limited, and in many cases not well docu-

mented. Therefore, an accurate evaluation is not possible. 

Many pressure measurements are currently being made in low temperature 

systems; however, these are generally performed with the transducer at room 

temperature and connected to the system via piping. Using this method for 

pressure measurement, as one might expect, can greatly affect the accuracy 

and frequency response of the device, particularly if long lines with small 

diameters are used. In addition, where several transducers-at various locations 

in a system are necessary the total heat leak due to the instrumentation lines 

may be large. For problems of this type refer to the sections on "Cryogenic 

Pressure Measurement and Pressure Tap Connections'. 

Transducers, at low temperature, usually experience one or more of the 

following; a change in sensitivity, a zero shift, an erratic performance 

(including non-linear behavior), or a complete failure. Smelser 57 per-

formed tests on capacitance, potentiometric, and strain gage (both bonded and 

unbonded) pressure transducers at ambient conditions (298 K), at IN  (77 K), 

and at LH 2 (20 K). It was his conclusion that "...judging among the samples 

included in this series of tests, it appears that the unbonded strain gage 

will give the most satisfactory results at cryogenic temperatures. With the 

unbonded strain gage, measurements with an accuracy comparable to that ob-

tainable at room temperature appear possible, if the instrument is used over 

a reasonable temperature span, and if the calibration is checked each time the 

instrument is cooled down. However,, in a situation where large transient tem-

perature excursions are experienced, as in the cooldown of a transfer line, 

their use would be questionable because of the possibility of large transient 

errors. 

"The potentiometer type also appears to be quite useful. The best of the 

two tested showed more thermal cycling effects than the unbonded strain gage, 
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but no tendency to produce transient errors during rapid cooling was observed. 

A calibration check each time the instrument is cooled down would assure the 

best results". 

Hayakawa 359 in a similar study found no transducer capable of perfor-

mance predictable within 2 percent. Therefore, it is highly recommended that 

additional work be done on evaluating other transducer types, other methods 

of construction as well as retesting of transducers tested in the earlier 

programs. Once a firm, well documented, state of the art base has been estab-

lished experimentally then any additional work necessary would be more clear. 

Without a firm base there is a high probability of wasted effort in future 

work in this area. 

A cryogenic calibration system with varied capabilities is essential for 

the successful completion of such a program described above. In response to 

a request from the National Aeronautics and Space Administration (Marshall 

Space Flight Center, Huntsville, Alabama) a pressure transducer calibration 

facility has been constructed to statically and dynamically calibrate pressure 

transducers at cryogenic temperatures. Static calibrations will be made at 

pressures up to 10,000 psi. In addition, a dynamic calibration can be per-

formed by superimposing cyclic fluctuations (from 0-10 psi and 1-100 Hz) 

upon any pre-selected base pressure to 10,000 psi. The versatility of such a 

system will lend itself to document more fully the performance of pressure 

transducers at low temperature. 

The following is a brief description of the facility and Figure 9.1 shows 

the basic principle of operation. The temperature range for calibrating 

pressure transducers will be from 298 to 77 K initially but can be extended 

to 4 K if necessary. Electromagnets were designed to fit within the upper 

chamber of the apparatus and the volumetric change in each cell is created 

by the displacement of a bellows (see Figure 9.2). The two pressure cells, 

each having nominally the same dimensions, are joined with an intermediate 
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volume and have in common a single actuating mechanism. The two pressure 

cells, one at ambient temperature and the other submersed in the cryogen, 

allow for the simultaneous calibration of a pair of similar pressure trans-

ducers (actually, provisions have been made to connect three pressure trans-

ducers at each cell making six the total number which can be tested simul-

taneously). 

The static calibration will be made using pressure balances (similar to 

a dead-weight tester) capable of measuring up to 10,000 psi. As shown in 

Figure 9.1 two balances will be used; one for low pressure calibration from 

0-500 psi and the other for pressures to 10,000 psi. For the 0-10,000 psi 

balance the sensitivity is better than 0.05 percent of the reading and 

accuracy is approximately one psi over the entire range. The 0-500 psi 

pressure balance has comparable sensitivity (0.05 percent of the reading) 

and an accuracy of 0.1 psi for lower pressures. 

The system will monitor pressure transducer performance by the accumula-

tion of output on magnetic tape for complete analysis on the computer. In 

addition, a small on-line computer will be connected to the system for real-

time reduction of data and to provide an immediate indication of transducer 

performance.
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