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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

PRELIMINARY STUDY OF THE MINIMUM TEMPERATURES FOR VALID

TESTING IN A CRYOGENIC WIND TUNNEL

4	 By

Robert M. Hall
Langley Research Center

-Hampton, Virginia

SUMMARY

The minimum operating temperature which avoids real-gas effects, such as

condensation, has been determined for M	 0.85 flow over a 0.137-meter NACA
00

0012-64 airfoil mounted in the Langley 1/3-meter transonic cryogenic tunnel.

For temperatures within 5 K of reservoir saturation and total pressures from

1.2 to 4.5 atmospheres, the pressure distributions over the airfoil are not

altered by real-gas effects. This ability to test at total temperatures be-

low those which avoid saturation over the airfoil allows an increase in	 j

Reynolds number capability of at least l7 percent for a constant tunnel

total pressure. Similarly, 17 percent less total pressure is required to

obtain a given Reynolds number.
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INTRODUCTION' z
;x

Cryogenic Wind Tunnels

Cryogenic wind tunnels are a new development in the field of experimental

aerodynamics..	 Cryogenic tunnels will, indeed, form a new generation of wind
_x

tunnels capable of large Reynolds number increases over their conventional,

ambient temperature counterparts.	 As explained in reference 1, at a constant

Mach niunber the increase in Reynolds number at cryogenic temperatures is a re- r:
sult of the decrease in the viscous force term in the equation for Reynolds

number.	 The cryogenic test gas is nitrogen since the method developed for

cooling the tunnels consists of spraying liquid nitrogen directly into the

tunnel circuit and utilizing the latent heat of vaporization of the liquids

nitrogen and the sensible heat of the gaseous nitrogen to cool the tunnel

structure and test gas.
,r

Significantly, in a cryogenic wind tunnel the increase in Reynolds number

accelerates as the temperature drops as shown in figure 1. 	 Consequently, it is

beneficial to operate the tunnel at as low a temperature as possible. 	 However,

real-gas effects eventually place a lower limit on the operating temperature.

The real --gas effects can be separated into two types. 	 The first type of

effects occurs because low temperature gaseous nitrogen does not have an ideal

equation of state: 	 The molecules in the gaseous state are influenced by their

neighbors, which violates the assumptions of an ideal gas. 	 The second type of

, effects occurs when condensate is formed in the flow.	 Hence the stream evolves

into a, complex two-phase 'flow system with liquid droplets suspended in the gas.

1
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For condensation to occur in a tunnel, the flow must be saturated. When

a model is mounted in the tunnel, three stages of saturation can occur. The

first stage occurs when the region of high local Mach number- over the model is

saturated but the test section is not. The second stage occurs when both the

region of high,local Mach number over the model and the test section are sat-

urated. The third, and final, stage occurs when the tunnel reservoir condi-

tions are saturated. Under these conditions the injected liquid nitrogen dock

not evaporate and the tunnel begins to fill with liquid. nitrogen.

Previous Studies

Since the completion in 1973 of the Langley 1/3-meter transonic cryogenic

tunnel (previously designated the pilot cryogenic transonic pressure tunnel),

studies have been made at Langley to determine how cold the tunnel can be

operated before either condensation or other real-gas effects perturb the test

results. As reported by Ray in reference 1, tests using a 0.137-meter NACA

0012-64 airfoil found no effects of condensation for a pressure of 2.5

atmospheres with a temperature which produced free-stream saturation. However,

no conclusions could be made about the minimum temperature which could be

used without real-gas effects because no effects were observed.
r

Studying the real-gas behavior of gaseous nitrogen, Adcock in reference 2

has analytically examined the behavior of gaseous nitrogen at loci temperatures

by using the data and equation of state from reference -3 to compare low-
7

temperature nitrogen to an ideal gas. The results of Adcock's investigation

show that for pressures up to 5 atmospheres with temperatures down to those µ

which produce free-stream saturation, the various nondimensional ratios

used to describe isentropic expansions and normal-shock flow in cryogenic

2
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nitrogen differ from their ideal values by less than one half of one
t-

percent.

Presnt Studies
1

Because o f the potential increase in Reynolds number capability for opera-
s.

ting below local saturation conditions, an experimental program has been under-

taken to extend the scope of Ray's work with the NACA 0012-64 airfoil.	 Studies

s have been made at a constant. test-section Mach number of 0.85 with total

pressures from 1.2 to 5.0 atmospheres with temperatures within 2 K of reservoir

saturation.	 The temperature at which .condensation, or other real-gas effects,

perturbs the flow is determined at a constant Reynolds number by reducing

total temperature and pressure until the pressure distribution over the air-

foil deviates from the pressure distribution obtained with unsa t urated con-

ditions. 	 The results of these studies are presented herein.

^<
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SYMBOLS

c	 airfoil chord, 0.137 meter

P - P.

C 
	 pressure coefficient,	

n

M	 Mach number

P	 pressure

q	 dynamic pressure

R	 Reynolds number based on a chord of 0.137 meter

T	 temperature

x	 linear dimension aloha airfoil chord line



APPARATUS

Tunnel

Y	 The Langley 1/3-meter transonic cryogenic tunnel was used for these tests.

A sketch of the tunnel is presented as figure 2. This continuous, flow, fan-

driven tunnel uses nitrogen as the test gas and is cooled by injecting liquid

nitrogen directly into the stream. Tnjection of liquid nitrogen provides a

total temperature range from slightly greater than 77 K to 350 K. Since the

tunnel may also be pressurized to 5 atmospheres, the combined low temperature

and high pressure can produce a Reynolds number of over 328 millionper meter

(100 million per foot). Some of the design features and operational character-

istics of the tunnel are given in reference 4.

Airfoil

A sketch of the 0.137 meter NACA 0012 -64 airfoil used for these tests is

presented as figure 3.• As shown in figure 3, there are twenty pressure

orifices over both the top and the bottom of the airfoil. The airfoil was

installed between flats in the octagonal test section with the leading edge

0.62 meter from the beginniag of the test section.

Data Acquisition and Error Discussion

The pressures over the airfoil were measured by using a single 1.7

atmospheres (25 psi) differential pressure transducer and a scanning valve	 z

system. After the transducer output for all of the airfoil orifices was

G	
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recorded, the tunnel parameters were recorded. The total time to acquire all

the information for complete pressure distribution was 50 seconds.

The accuracy of the pressure transducer was 0.5 percent of full scale or

0.0085 atmosphere. There was no sigrificant error introduced by either the

signal conditioning or the data acquisition systems. However, during the 50-

second acquisition period the tunnel conditions were observed to fluctuate by

the following amour±-- Mach number, ±0.003; total temperature, +0.5 K; and

k
total pressure, +0.02 atmosphere-.
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TESTS

Total temperatures at which condensation or other real-gas effects pertur°_-

the pressure distribution over the 0.137-meter NACA 0012 -64 airfoil at zero

"

	

	 incidence were determined for pressures from 1 to 5 atmospheres. The free-

stream Mach number was 0.85 and the maximum local Mach number over the airfoil

	

r_	
was 1.2. The three stages of saturation --local, free-stream, and reservoi.---

are shown as a function of total pressure in figure 4.

To experimentally determine the total temperature at which condensation

effects begin as a function of total pressure, paths at six different Reynolds

numbers were investigated. The Reynolds numbers used were chosen so that the

total pressures required spanned the pressure envelope of the tunnel. A

reference pressure distribution was taken above the upper saturation line,

ML=1.2, if it was possible to do so within the pressure envelope of the tunnel.

	

x	The six constant Reynolds number paths and the total conditions sampled are

shown in figure 5.



Computer plots of the pressure coefficients as a function of x/c were

made for each data point taken. A note of caution is appropriate when inter-

preting the pressure coefficients for this NACA 0.'12-64 airfoil. The airfoil

chord is 0.137 meter, and the tunnel test-section is 0.343 meter between flats.

Consequently, the chord to height ratio is 0.4, which is considerable larger

than normally used for airfoil testing. Therefore the pressure distributions

over the airfoil are not expected to be free of wall effects. However, since

wall effects would be expected to be independent of temperature for a given

Revnolds number, the possible effects are of no consequence for the purpose of

this study.

To determine if condensation or other real-gas effects perturb the flow

over the airfoil, pressure distributions at different total temperatures along

a constant Reynolds number line are compared graphically to the reference

pressure distribution. Even though the agreement between the reference distri-

bution and these distributions considered to be affected by condensation may

in many cases appear to be within experimental accuracy, there is alwa ys a

systematic positive shift in the pressure coefficient from the 20 percent chord 	 j

position of the airfoil back to the recompression shock.

Results

The results for the pressure distributions taken along each of the six

constant Reynolds number lines are summarized respectively in Tables x through

VI. Each table is divided into two sections The top section contains the

pressure distributions which are used as unaffected reference distributions

i
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while the bottom section contains the lower temperature pressure distributions.

The free-stream Mach number, total temperature, total pressure, and chord

Reynolds number are presented in the leftmost columns. The next column lists

the reference distribution which has the closest Mach number and hence should

be used for the graphic comparison. The column labelled "Low T Effects" states

whether the lower temperature distributions show no effect, possible effect,

or definite effect when compared to its reference distribution. For each

Reynolds number line the following sequence of pressure distributions are com-

pared with the listed reference distribution and presented as comparison

figures: The lowest temperature distribution which showed no effect, the

highest temperature distribution which showed the first possible signs of low-

temperature effects, the highest temperature distribution which showed definite

effects, and the lowest temperature distribution taken. Individual plots of

all the pressure distributions are shown in figures given in the appendix and

are numbered'to correspond with the numbers given in the tables.

Not all of the orifice pressure values are shown in each of the pressure

distribution plots. At various times during the test program pressure leaks

occurred in the tubing from the airfoil to the pressure gauge. The values

for the leaking orifices have not been plotted.

I



DISCUSSION

For path 3 two reference distributions are presented. Although ; point 30

is listed as having a Mach number of 0.862 and point 29 as 0.858, one may ob-

serve in appendix figures A29 and A30 that the pressure distribution from point

29 actually corresponds to the higher Mach number. This error in Mach numbers

is a result of the uncertainty-in Mach number of +0.003.

The reftrence distribution for path 5 is taken at T t=106.3 K and pt=4.96

atmospheres. This temperature is just 1.7 K below the local saturation line

and since no effects are observed for the first four paths until 10 K below the

local saturation line, the Tt=106.3 K was assumed to be an unaffected distribu-

tion.

Path 5 does not display an increasing degradation in the pressure distri-

butions as the temperature is lowered. For example, in Table V point 63 shows 	 j
i
i

less effect than points 61 or 62 which are taken at higher temperatures.

Similarly, point 66 at a total temperature of 93.0 K showed only a slight de-

viation while point 65 at 93.6 K showed a larger deviation. Although all of

these irregularities could be due to the uncertainty in temperature of 0.5 K,

in this sequence of pressure distributions there are no large low-temperature

effects for tunnel operations within 2 K of saturated total conditions.

For path 6, point 68 with a total temperature of 101.1 K is used as a

reference distribution. Another reference distribution was taken at 102.5 K,

but a computer tape problem would not allow analysis of this point. Even

though Tt=101.1 K is 3 K above the corresponding temperature at which the lower

pressure paths experience effects, it was t:.ought that some substantiation was

necessary to show that Tt	.=101.1 K is an unaffected distribution

10
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Consequently, since paths 5 and 6 both have high Reynolds numbers of 41.8 and

43.9 million, good agreement between Tt=101.1 K and the reference of path 5,

point 54, should serve as verification that Tt=101.1 K is unaffected by conden-

sation. As figure 29 shows, good agreement does exist and T t=101.1 K is con-

sidered an unaffected pressure distribution.

A conservative experimental lower limit to tunnel operation can be given

in figure 30 by plotting the total conditions where the first `possible" pees--

sure distribution deviations occurred. This line is considered conservative

because at the first visual sign of deviation the pressure distribution is

labelled as possibly deviating when, in fact, the difference in pressure dis-

tribution may be insignificant to the aircraft designer. Additional work to

quantify the differences in pressure distribution should be done in order to

more systematically compare the reference distribution to the data condition_ in

question.

The implications of figure 30 are far-reaching. First of all, there

appears to be no serious condensation problems in testing far below locally

saturated conditions for the airfoil tested. In fact, there is no low tempera-

ture effect until the total conditions are at least 2 K below those which give

a saturated test section, or equivalently, within 5 K of reservoir saturation.

For this experiment the ability to run below the local saturation boundary

allowed an increase in Reynolds number of 17 percent for a constant total pres-

sure. This increase is present over the entire pressure range from 1.2 to 4.5

atmospheres. If, instead of holding total pressure constant, Reynolds number

is held constant, the ability to operate with saturated flow allows a reduction

in total pressure of more than 17 percent over the 'total pressure range.

IT
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SUMMARY OF RESULTS

The minimum operating temperature which avoids real-gas effects, such as

condensation, has been determined for Mp = 0.85 flow over a 0.137-meter NACA

0012 -64 airfoil mounted in the Langley 1/3-meter transonic cryogenic tunnel.

For temperatures within 5 ':" of reservoir saturation and total pressures from

1.2 to 4.5 atmospheres, the pressure distributions over the airfoil are not

altered by real-gas effects. This ability to test at total temperatures be-

low those which avoid saturation over the airfoil allows an increase in

Reynolds number capability of' at least 17 percent for a constant tunnel total

pressure. Similarly, 17 percent less total pressure is required to obtain a
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TABLE I. - Path 1

Pressure Reference Low T Effects Comparison
Distribution Mp Tt K pt atm R Distribution Figure
No, , No.

1 0.847 116.2 2.11 15.5 x 10

2 .855 114.8 2.11 15.8 Unsaturated reference distributions

3 .858 114.3 2.09 15.8

4 .855 105.4 1.8 1 15.7 2 No -

5 .854 100.4 1.73 15.8 2 No -
`	 6 .857 95.0 1.58 15.7 2 No
`	 7 .855 91.2 1.49 15.6 2 No -
:	 8 .852 87.3 1.39 15.5 2 No -

E	

9'' .557 86.5 1.37 15.5 3
No

10 .858 85.2 1.34 15.6  3 No Fig. 6

11 .856 84.2 1.31 15.4 2 Possible Fig. 7

12 .857 83.7 1.30 15.4 2 Possible

13 .852 83.2 1.29 15.4 1 Possible -

14 .855 82.6 1.27 15.3 2 Definite Fig. 8

15

F

.854 81.3' 1.20' 14.8 2 Definite Fig. 9
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TABLE II. - Path 2

Pressure Reference Low T Effects Comparison
Distribution M

CO
T K p	 atm R Distribution Figure

-No. t' t' No.

16 .854 107.3 3.16 26.2 x 10 Unsaturated reference distribution

17 .858 101.8 2.91 26.1 16 No

18 .858 98.8 2.79 26.1 16 No -

19 .858 95.9 2.67 26.1 16 No -

20 .854 94.2 2.56 25.7 16 No -

21 .854 93.0 2.52 25.7 16 No -

22 .854 91.9 2.48 25.8 16 No -

23 .855 91.6 2.48 25.9 16 No -

24 .855 91.3 2.44 25.7 16 No -

25 .859 90.0 2.40 25.8 16 Possible Fig. 10

26 .854 89.8 2.4o 25.8 16 No Fig. 11

27 .855 88.6 2.32 25.5 16 Definite Fig. 12

28 .853 86.2 2.20 25.0 16 Definite Fig. _13

I
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TABLE III. - Path 3

Pressure Reference Low T	 Effects Comparison
Distribution M T K p atm R Distribution Figure
No. t'

t'
No.

29 .858 lo9.4 4.28 34.5 x to
Unsaturated reference distributions

30 .862 109.1 4.28 34.7

31 ` .856 106.5 4.11 34.4 30 No -

32 .858 102.2 3.84 34.2 29 No -

33 .861 100,.4 3.75 34.4 29 No -

34 .856 97.4 3.58 34.2 30 No -

35 .858 94.9 3. 41 33.9 30 No
-

36 .863 94.5 3. 41 34.2 29 No -

37, .854 93:7 3.36 34.0 30 No Fig. 14

38 .861 93.0 3.29 33.8 29 Possible Fig. 15	 I

39; .855 92.7 3.30 33.9 30 Possible -

_ 	40 .854 92 .2 3.22 33.3 30 Definite Fig. 16

41 , .856 92.0 3.22 33.5 30 Possible

42 .857 91.4 3.21 33.7 30 Definite -

43 .856 90. 3 3.13 33.4 30 Possible Fig. 17

i
i
i
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Pressure Reference Low T Effects Comparison
Distribution Moo T K p	 atm R Distribution Figure

r	 No.
t' t'

No .

44
r

.854 112.5 5.00 38.5 x 10 Unsaturated reference distribution

45 .854 105.5 4.•5o 38.2 44 N^ -
f 	

46 .856 103. 4 4.4o 38.5 44 No -

47 .858 101.5 4.20 37.8 44 No -

48 .857 99.6 4.10 38.0 44 No

''	 49 •853 97.1 3.91 37.6 44 No Fig. 18

50 .854 95.4 3.82 37.6 44 Possible Fig. 19

51 .857 93.9 3.71 37.5 44 Definite Fig. 20

52 .855 92.5 3.62 37.4 44 Definite -

53

t

k

.855 90.8 3.50 37.1 44 Definite Fig. 21

1



TABLE V. - Path 5

Pressure Reference Low T Effects Comparison
Distribution M T_	 K p	 atm R Distribution Figure

^	 No. t' t' No.

54'- .861 lo6 .3 4.96 41.8 x to Reference distribution

t	
55 .856 104.4 4.83 41.7 54 No -

56 .859 102 .3 4.71 42.0 54 No -

57_ .855 100.5 4.56 41.7 54 No -

58 .853 98.5 4.41 41.5 54 No

59 .858 96.7 4.28 41.5 54 No -

60 .856 96.2 4.28 41.7 51, No

61' .856 95.6 4.21, 41.4 54 Possible Fig. 22

62 .855 95.5 4.20 41.4 54 Possible -

k	 63' .856 95.2 4.14 41.1 54 No Fig. 23

64 .857 93.8 4.08 41.3 54 Possible -

65 .857 93.6 4.o8 41. 4 54 Definite Fig. 24

66 .856 93`.0 4.00 41. 0 54 Possible Fig. 25

j'

i
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TABLE VI. - Path 6

Pressure Reference Low T Effects Comparison
Distribution M. T K p	 atm R Distribution Figure
No. t' t'

No.

6T* .858 102.5 4.99

68 x 106
Reference distributions

.858 101.1 4.,83 43.9

69 .858 100.1 4.79 44.0 68 No -

7Q ..8:56_ 98.9 4.71 44.1 68 No -

71 .857 98.1 4.63 43.9 68 No -

72 .856 97.2 4.56 43.8 68 No Fig. 26

73 .857 96.2 4.48 43.8 68 Possible Fig. 27

-	 74 .857 95.6 4.39 43.3 68 Possible -

75
i

.856 93.5 4.29 43.7 68 Definite Fig. 28

*	 Data__acquisition problem prevented analysis of this point.
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low	 9.144 m
LN2 injection	 Plenum and test section

b
0.762--m

Drive
t	 motor 1....219 m

W. Fan section	 Screen section	 1.102 m

—	 -
Flow

k	 - Sliding joint
t

\-Nacelle section

Tunnel anchor

Figure_ Z.,- . Schematic of Langley 113-meter transonic
cryogenic tunnel.
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Airfoil coordinates
x y

00
0.175 t 0.249
.348 0.335
.699 ± 0.447

1.046 ± 0.523

Bottom surface orifice line 1.270
1.372
2;062

x.0.582
t 0,668

1.270 cm

1.270 c -H
cm 2.743

4.115
5.486

0.726
0.800
0.823

1.270 6.858 0,800
cm 8.230 ± 0.729

9.601 ± 0.615
E

10.973 ± 0.455
12.344 ± 0.257
13.030

±
0.140

13.716 ± 0.015

Orifice locations
Orifice

Orifice station X
numbel , X, cm c

1 0 0
2 0.698 0.0509
3 1.372 .1000
4 2.062 .1504
5 2.743 .2000
6 1429 2500
7 4.115 3000
8 4.901 .3500
9 5.48 .4000

10 6.172 .4500
11 6.858 5000
12 7.544 .5500
13 8,230 .6000
14 8,915 .6500
15 9.601 .7000
16 10.287 7500
17 10.973 .8000
18 11.659 .8500
19 12.344 .9000
20 13.030 .9500

II I

y 1, 2 3 4 5 6	 7 8 9 10 11 12 13 14 15 16 17 18 19 20I 	 (r

X
c 13.716 cm

Figure 3.- Two dimensional NACA 0012-64 airfoil.
Lower surface orifices are located at
same x/c location as those on upper
s, u rfa ce.
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100	 _

Total	 M 1.2
r_^x . __.»

temperature,	 Free-stream asturat ion
T K	 M = 0.85	

_.... 
TV	 90

4	 Reservoir saturation
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80
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Total pressure, pt , atm

Figu re 4. - The three stages of saturation as a
function of total pressu re.
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110'
	.^	 Local saturation	 38P34r _Path	 _-1

Q
Irp Path 2r^26

Total	 100	 OM = 1.2	 Path 3 O

temperature, Path 6
Tt. K	 .. _^	

d' M _ 0,85

Path ^4	 Path 5
_.M =0'	

__
	 - _- -	 _..

Reservoir satu ration

	

80	 Free-stream saturation

	

70	 --, 	_	
2	

.3-	
4	

5.

Total 
.
pressure, pt,-atm
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