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CARBIDE COATED FIBERS I N  GWHITE-ALUMINUM  COMPOSITES 

Progress  Report  No. 1: September 1, 1973 - January 31, 1974 

By Richard J. Imprescia,  Leonard S. Levinson,  Robert D. Reiswig, 
Terry C. Wallace and J o e l  M. Williams 

Los Alamos Sc ien t i f i c   Labora to ry  

SUMMARY 

This   r epor t   desc r ibes   t he   f i r s t   phase   o f  a NASA-supported program a t  t h e  
Los Alamos Sc ien t i f i c   Labora to ry  (LASE) aimed a t  developing  carbon  f iber- 
aluminum matrix composites. Two o f   t h e   p r i n c i p a l   d i f f i c u l t i e s   i n   m a n u f a c t u r i n g  
such materials are t h e   d i f f i c u l t y   i n   w e t t i n g   c a r b o n   w i t h   l i q u i d  aluminum and 
the   deg rada t ion   t ha t   occu r s   i n   t he   f i be r s  a t  high  temperatures when aluminum 
carb ide  forms. LASL'S approach  to  overcoming  these  problems is  to   use   p ro tec-  
t ive-coupl ing   layers   o f   re f rac tory  metal ca rb ides   on   t he   g raph i t e   f i be r s   p r io r  
t o   t he i r   i nco rpora t ion   i n to   t he   compos i t e s .  Such l aye r s   shou ld   be   d i r ec t ly  
wet tab le  by l i q u i d  aluminum and  should act as d i f f u s i o n   b a r r i e r s   t o   p r e v e n t  
the  formation  of  aluminum carbide.  

Chemical  vapor  deposition  has  been  used  to  uniformly  deposit  thin,  smooth, 
continuous  coats  of Z r C  on the   carbon  f ibers   o f  tows derived  from  both  rayon 
and   po lyacry loni t r i le .  Wet chemical  coating of the   f ibers ,   fo l lowed by  high- 
temperature   t reatment ,   has   a lso  been  used,   and shows promise as a n   a l t e r n a t i v e  
coa t ing  method. 

Experiments  have  been  performed  to  demonstrate  the  ability of aluminum 
a l l o y s   t o  w e t  carbide  surfaces .   Ti tanium  carbide,   z i rconium  carbide  and  carbide 
coa ted   g raphi te   sur faces   have   been   successfu l ly   wet ted .   In i t ia l   a t tempts   to  
w e t  su r f aces  of ZrC-coated  carbon f ibe r s   a l so   appea r   success fu l .  

INTRODUCTION 

Because  of   their   potent ia l   for   extremely  high  s t rength- to-densi ty  and 
modulus-to-density r a t io s ,   cons ide rab le   i n t e re s t   has   been   gene ra t ed   i n .   ca rbon  
fiber-aluminum matrix composites. Two p r i n c i p a l   b a r r i e r s ,  however, t o   t h e  suc- 
c e s s f u l  development  of  carbon-aluminum  composites are t h e   d i f f i c u l t y   i n   w e t t i n g  
ca rbon   w i th   l i qu id  aluminum,l  and t h e   d e g r a d a t i o n   o f   t h e   f i b e r s   t h a t   r e s u l t s  
when aluminum carb ide  (Al4C3) forms.2  Although d i r e c t   w e t t i n g  of g r a p h i t e   f i -  
b e r s  by  aluminum a l l o y s  has been  accomplished by a l t e r i n g   t h e   s u r f a c e   o f   t h e  
f ibers   by  special   chemical   t reatment ,  l i t t l e  is known about   the  process   due  to  
i t s  p ropr i e t a ry   statu^.^ A p r o m i s i n g   a l t e r n a t i v e   t o   t h i s  method is  t o   u s e  pro- 
tect ive-coupl ing  layers   which are depos i t ed   on   g raph i t e   f i be r s   p r io r   t o   t he i r  
incorporat ion  into  the  composi tes .   Properly  chosen  and  appl ied,   such  layers  
should serve several purposes: (1) the i r   p re sence   shou ld   pe rmi t   d i r ec t  w e t -  
t i n g   b y   l i q u i d  aluminum, (2) they   should   p rovide   an   e f fec t ive   coupl ing   for  
t h e   t r a n s f e r   o f   s h e a r  stress from the  matrix t o   t h e   f i b e r s ,  and (3)  they 
shou ld   e l imina te ,   o r   g rea t ly   r educe ,   t he   r eac t ion  between  aluminum  and  carbon 
t o  form Al4C3. The formation of  A14C3 is undesirable   because of t h e  consumption 



of  carbon  from the   f ibers ,   wi th   the   concomi tan t   degrada t ion   of   the i r   p roper t ies ,  
and  because A14C3 tends  to   hydrolyze  in   the  presence  of  water t o  form  methane.4 
I f  a coat ing  can  be  found  which  does  not ,   i t se l f ,   degrade  the  graphi te   f ibers ,  
and i n  which t h e   d i f f u s i o n  rates of  carbon  and  aluminum are s u f f i c i e n t l y  low, 
i t  should   be   poss ib le   to   use  carbon-aluminum composites a t  h ighe r   s e rv i ce  tem-  
pe ra tu re s  and to  employ higher   fabr icat ion  temperatures ,   whi le   avoiding  the  for-  
mation  of A14C3. 
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Refractory metal carb ides  are promising  for   use as protect ive-coupl ing 
l a y e r s  on g raph i t e   f i be r s .   Recen t   s tud ie s   i nd ica t e   t ha t   t i t an ium  ca rb ide   (T ic )  
can  provide  an  effect ive  protect ive  barr ier   to   prevent   react ion  between g a p h i t e  
and a l ~ m i n u m , l * ~  and a l s o  promote  wetting  of  graphite by l i q u i d  aluminum. 8 

The work described  here  has  been  directed  toward  developing methods f o r  
producing   re f rac tory   carb ide ,   p ro tec t ive-coupl ing   coa ts   on   g raphi te   f ibers   tha t  
w i l l  pe rmi t   t he i r   i nco rpora t ion   i n to  a carbon-aluminum  composite  having  desir- 
able  mechanical  properties.   Specific  objectives  of  the  program are to: 

0 es t ab l i sh   t he   depos i t i on  parameters for   producing  thin,   uniform  coats  
of a t  least two re f r ac to ry   ca rb ides  on  carbon,  optimize  the  coat  thick- 
ness  and  determine  the  extent  of damage t o   t h e   f i b e r s ,   i f  any,  due t o  
the   coa t ing   process  

@demonst ra te   the   ab i l i ty   o f  aluminum t o  w e t  r e f r ac to ry   ca rb ide   su r f aces ,  
including  the  surfaces   of   carbide-coated  graphi te ,   and  evaluate   the  ef-  
fec t iveness   o f   carb ide   coa ts  on carbon as d i f f u s i o n   b a r r i e r s   t o   p r e v e n t  
the  formation  of Al4C3 

@develop a technique  for ,  and  perform  l iquid A 1  i n f i l t r a t i o n  on small 
samples  of  carbide-coated  yarn 

@ d e t e r m i n e   t e n s i l e   s t r e n g t h ,  elastic molulus  and mode of   f rac ture   o f  Al- 
in f i l t ra ted   carb ide-coa ted   yarns .  

Signif icant   progress   has   been made toward  achieving  these  objectives.  Thin, 
smooth,  continuous  zirconium  carbide (ZrC) coats  have  been  deposited  uniformly 
on individual  f ibers  throughout  carbon tows using  chemical  vapor  deposition 
methods. Preliminary  experiments  have  also  been done using w e t  chemical  coat- 
ing   methods ,   and   the   in i t ia l   resu l t s  are encouraging.  Surfaces  of Tic, Z r C  
and  ZrC-coated graphi te   have  been  successful ly   wet ted  with A l  and Al a l l o y s ,  
and i n i t i a l   a t t e m p t s   t o   i n f i l t r a t e  ZrC-coated g r a p h i t e   f i b e r s   w i t h  A1 look 
promising. 

EXPERIMENTAL 

Materials 

Fibers.- The following  commerical  carbon  fibers were obtained from t h e i r  
respec t ive   manufac turers   for   use   in   coa t ing   exper iments :   Hi t ron   401 ,   Thorne l  
50 and  Thornel  75,  which are rayon-base  f ibers;  HTS, HMS and F o r t a f i l  6T, which 
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are PAN-base; and a monofilament f i b e r  which is derived  from  pitch. The report- 
ed  propert ies '  and SEM photomicrographs  of  typical  samples are given i n  
APPENDIX A. 

Coating Materials.- For  chemical  vapor  deposit ion  coating  experiments,  two 
materials were obtained:  reactor  grade  zirconium  tetrachloride  (ZrCl4)  and corn 
mercial grade ,   pur i f ied  titanium t e t r a c h l o r i d e  (TiC14).  For w e t  chemical  coat- 
ing,  an aqueous   so lu t ion   o f   t e t r ame thy lmnium titanate and  dextrose w a s  used. 
The p r e p a r a t i o n   o f   t h e   t i t a n a t e  is given i n  APPENDIX A. 

Aluminum Alloys.-  Four aluminum a l l o y s  were se l ec t ed   fo r   we t t ing   and  in- 
f i l t ra t ion  experiments .   Three  of   these were the   s t anda rd  commercial a l l o y s  
1100, 4047  and  6061;  and  one w a s  a LASL-produced Al-l3% S i   a l l o y .  The chemical 
compositions are given i n  APPENQIX A. 

Fiber  Coating  Experiments 

Two approaches were taken  for   the  product ion  of   refractory metal carb ide  
coa t ings  on carbon  f ibers .  The f i r s t  of   these w a s  chemical  vapor  deposition 
(CVD) us ing  a r e f r a c t o r y  metal h e l i d e  as the  metal-bearing component of t h e  
coating  gas.  The other  approach w a s  t o   d ip -coa t   t he   f i be r s   i n  a metal- 
bear ing  aqueous  solut ion,   dry it i n  a i r ,  then  convert   the   coat   to   carbide by 
hea t ing  a t  elevated  temperatures.  

Chemical  Vapor  Deposition.- Of the  two r e f r a c t o r y  metal h a l i d e s   s e l e c t e d  
f o r   t h i s  work,  ZrCl4 w a s  chosen f o r   t h e   i n i t i a l  CVD experiments. (TIC14 w i l l  
be  used  in  experiments later i n   t h e  program). The vapor   coat ing  apparatus ,   the  
processing  procedures  and  the  chemistry  of  the  deposit ion  process are discussed 
i n  APPENDIX B and in   Reference 8 .  

Basica l ly ,   there  are two chemical  reactions  involving  the  decomposition  of 
r e f r a c t o r y  metal salts which  can  lead  to  the  formation  of m e t a l  ca rb ide   coa ts  
on  carbon  substrates.   For ZrClq  and Tic14 t h e s e  are 

(1) (Zr,Ti)C14(g) + 2 H2 (g) + C(s) = (Zr,Ti)C(s) + 4 HCL(g) 

(2) (Zr,Ti)C14(g) + CH4(g) = (Zr,Ti)C(s) + 4 HCL(g). 

In   equa t ion  1, the  carbon  necessary  for   the  formation of t h e  metal ca rb ide  is 
provided by t h e   s u b s t r a t e  which is to  be  coated.  This  reaction may weaken t h e  
ca rbon   f i be r ,   t he   ex t en t   o f  weakening  depending  on  the  thickness  of  the  devel- 
oped coat,   and how local ized  the  carbon  removal  is. For   the   reac t ion  of equa- 
t i o n  2, the  carbon is supp l i ed   i n   t he   coa t ing   gas  as methane (CHq), and  there- 
fo re   deg rada t ion   o f   t he   f i be r  by  carbon  comsumption  should  be  avoided.  In 
a d d i t i o n   t o   t h e   c o a t i n g   g a s e s ,   a n   i n e r t   d i l u e n t   g a s  (Ar o r  He) is added,  and 
excess H2 and HCL may be  added. By vary ing   the   composi t ion   (par t ia l   p ressures)  
of   the   coa t ing ,   d i luent   and   o ther   gases ,   the   depos i t ion   k ine t ics   can   be   var ied .  
Of course,   deposi t ion  temperature   a lso  has  a marked inf luence  on t h e   k i n e t i c s .  
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The process   cond i t ions   fo r  24 CVD f ibe r   coa t ing   runs ,  and the   meta l lo-  
graphic   observa t ions   o f  the Z r C  coats  produced are summarized i n  Table I. All 
runs included  samples  of HIS and  Thornel 50 f i b e r  t ows   excep t   t he   f i r s t   r un  
(9-20, Table I) which was  made w i t h  F o r t a f i l  6T i n s t ead   o f  HMS. To avo id   t he  
r eac t ion   o f   f i be r   ca rbon   w i th  the coat ing  gas   (equat ion l), t h e   i n i t i a l   r u n s  
(9-20 through 10-11) were made wi th  a coat ing  gas   mixture   of  ZrClq  and CH , 
us ing  A r  as the   d i luen t .  None o f   t h e   r e s u l t i n g  Z r C  f iber -coa ts  w a s  satis 4 actory. 
Some f i b e r s  had coats  which were agglomerates   of   large,   nodular   crystals ,   and 
o t h e r s  had v i r t u a l l y  no coats.  .Typical  examples  of  these extremes are shown 
i n   F i g s .  1 and 2. The d is t r ibu t ion   of   coa t   th icknesses   th roughout   the  tows was 
a lso   very   poor ,  as shown i n  Fig. 3 .  The o u t e r   f i b e r s   c o u l d   b e  w e l l  coated,   but  
f requent ly   welded  together ,   whi le   the  inner   f ibers   could  have no coa t  a t  a l l .  

The v a r i a t i o n   i n  Z r C  coa t   th ickness  from o u t e r   t o   i n n e r   f i b e r s   o f  a carbon 
f i b e r  tow (Fig. 3 )  should  be  reduced  by  increasing  the H C 1  concen t r a t ion   i n   t he  
coating  gas.   This  modification  should  slow  the rate of   the   reac t ion  shown i n  
equation  2,   permit more o f   t he   un reac ted   coa t ing   gas   mix tu re   t o   pene t r a t e   t he  
in s ide   o f   t he  tow,  and decrease   the   coa t   th ickness   g rad ien t .  Two runs were 
made (10-16 and  10-17) wi th   increased  HC1,  bu t   t he   r e su l t i ng   coa t s ,   a l t hough  
improved, s t i l l  l acked   un i fo rmi ty   i n   t h i ckness  from t h e   o u t e r   t o   i n n e r   f i b e r s  
o f   t h e  tow. 

The development  of t he   l a rge   nodu la r   c rys t a l s   (F ig .   1 )   i nd ica t e s   t ha t   t he  
coat ing  gas  was sa tu ra t ed   w i th  ZrCl4,  which  could  lead t o  a high  degree  of  gas 
phase  nucleat ion  of  ZrC .  Th i s   s a tu ra t ion  would cause a deplet ion  of   the Z r C 1 4  
i n   t he   coa t ing   gas ,   dec rease   t he  Z r C  nuc lea t ion  rate on t h e   f i b e r   s u b s t r a t e ,  
and  promote t h e  growth of l a rge   nodu la r   c rys t a l s .  Lowering the   concen t r a t ions  
of  ZrCl4  and CH4 should overcome the  tendency  toward  gas  phase  nucleation. A 
change in   t he   d i luen t   gas   f rom A r  t o  H e  should   increase   the   mobi l i ty   o f   the  
coat ing  gases  and l e a d   t o  a more uni form  d is t r ibu t ion   of   coa t   th icknesses  
throughout   the tow. Three runs were made (11-16, 11-7 and  11-8) w i th   t hese  
m o d i f i c a t i o n s   t o   t h e   c o a t i n g   g a s ,   b u t   o n l y   s l i g h t ,   i f   a n y ,  improvements i n   t h e  
coa ts   o r   the i r   th ickness   d i s t r ibu t ions   th rough  the  tows were observed. 

In   r ecogn iz ing   t he   poss ib i l i t y   t ha t  some CH4 may be  generated  by a r eac t ion  
between the  H2 i n   t h e   c o a t i n g   g a s  and the   g raph i t e   o f   t he   coa t ing   appa ra tus  
during  coat ing, the CH4 was completely  eliminated from run 11-9. This was done 
to   de t e rmine   t he   e f f ec t   o f  a very small, or   poss ib ly   zero ,   concent ra t ion   o f  
CH4 i n   t h e   c o a t i n g   g a s .  The r e su l t i ng   coa t s   p roduced   i n   t h i s   run  were a s ig-  
n i f i c a n t  improvement over   any  of   the  others  made up t o   t h i s  time. They were 
uniform,  and  although  the  coat  thickness  gradient  through  the tow was s t i l l  s ig-  
n i f i c a n t ,  a l l  o f   t h e   f i b e r s   i n   b o t h   t h e  HMS and the  Thornel 50 tows appeared 
t o  have  undergone a t  least some coat ing.  

To follow up the   encouraging   resu l t   o f   run  11-9, f i v e  more runs (12-4 
through 12-10) were made without  CH4 and  the  deposit ion  temperature w a s  va r i ed  
from  1573 K (13OOOC) t o  2073 K (1800°C).  For the  two higher   temperature   runs 
(12-4 and  12-5) the  Z r C  depos i t s  were so heavy t h a t  a continuous Z r C  c r u s t  form- 
ed  around  the  outer   f ibers   of   the  tow, lowering  the  coat ing rate on t h e   i n n e r  
f ibers .   This  is i l l u s t r a t e d   F i g .  4 which shows the  coated  Thornel   50  f ibers  
from Run 12-4. Not only was the  tow encapsulated by t h e  Z r C  c r u s t ,   b u t   t h e r e  
was considerable  consumption  of  carbon  from  the  outer  f ibers  during  formation  of 
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TABLJ I 

PROCESS CONDITIONS AND wzstr,.s FOR FIBER COATING R U H S ~  

Deposltion: Cas Flow Rate. STP ( fh io )  ZrC Coat 
Ruo Temperature Time ZrC14 Max Thick. Appurmce - No. K('C) -WE)- - C"4 - "2 - Ar " He - H C l  (urn) Outer  Fibers  Inner  Fiber. 

9-20 2073  (1800) 15 0.40 0.40 1.80 23 0 0 2 l g   x t a l r ;  welds uncoated 

9-21 1973  (1700) 15 0.40 0.40 1.80 23 1 0 1 Incomplete;  veld. unco8ted 

9-24 1873  (1600) 15 0.40 0.40 1.80 23 3 0 Trace Incomplete; nodule. uncoated 

9-25 1773  (1500) 15 0.40 0.40 1.80 23 0 0 0.5 Incomplete; nodde8 uaco8ted 

9-26 1673  (1400) 15 0.40 0.40 1.80 23 3 0 Tr8ce incomplete;  flaky uoco8ted 

9-27 1773  (1500) 10  1.31 2.0 4.0 23 9 0 Trace v. few nodule8 unco8tcd 

9-28 1873  (1600) 15  1.31 1.2 2.5 23  3 0 0.5 nearly  complete;  veld. few  nodule. 

10-1 1673  (1400) 15  1.31 1.2 2.5 23 3 0 Tr8ce loose ZrC p a r t i c l e s  uncoated 

10-3 1773  (1500) 15  1.31 1.2 2.5 23 J 0 0.5 Incomplete few nodule. 

10-9 

10-10 

10-11 

10-16 

10-17 

11-6 

11-7 

11-8 

11-9 

1873 (1600) 

1773  (1500) 

1673  (1400) 

1973  (1700) 

1973  (1700) 

1973  (1700) 

1973  (1700) 

1973  (1700) 

1973  (1700) 

5 1.31 
5 1.31 

5 1.31 

15  1.31 

30 1.31 

15 0.40 

1 5  0.40 
15 0.30 

15 0.53 

1.2 2.5 23 
1.2 2.5 23 

1.2 2.5  23 

1.2 2.5 23 

1 . 2  2.5  23 

0.30 8.0 23 

0.30 8.0 0 

0.20 8.0 0 

0 8.0 0 

I 0 

3 0 

3 0 

1 2.0 

3 2.0 

3 0 

23 0 
23 0 

23 0 

Trace 
Tr8C8 

None 

1 
2 

2 

1-2 

Trace 
2-4 

incomplete 
nodules 

hose ZrC p 8 r t l c l e r  

par t ia l - to-cmplete  

p8rtlal,-to-complete 

1s Xt.18; veld8 

incomplete 
nodules 

partial-to-complete 

uncoated 

uncorted 

uocoated 

few oodulea 
few nodule. 

lnconplete  

locomplete 
uncoated 
incomplete 

12-4 2073 (1800) 15 0.46 0 8.0 0 23 0 5-10 thick  crust;  veld8  unco8ted 

12-5 1873  (1600) 15  0.46 0 8.0 0 23 0 4 thick  cruat ;  veld.  uncoated 

12-6 1673  (1400) 15 0.46 0 8.0 0 23 0 51 uniform,  complete  8nd  smooth  throughout  tow 

12-7 1573 (1300) 15 0.46 0 8.0 0 23 0 5 0 . 5  uniform,  complete  8nd  smooth  throughout tow 

12-10 1573  (1300) 15 0.23 0 8.0 0 23 0 0.5 uniform. c m p l e t e  and r w t h  throughout tw 

12-20 1573 (1300) 1 5  0.46 0 8.0 0 23 0 5 0.5 uniform. co.plete  8od  .moth  throughout tou 
- 

All f iber   co8t ing  ru08 were u d e  u8iog Thornel 50 aod HMS fiber., except Run 9-20 for which Thornel 50 m d   F o r t 8 f i l  61 vera wed.  



Fig. 1. SEM photomicrograph of t h i c k  
Z r C  coat  on  outer  Thornel 50 
f i b e r  from run 9-20. 

Fig. 2. SEM photomicrograph  of  inner  Fig. 3.  Optical  photomicrograph  of 
HMS f i b e r  from run 9-28, outer   edge of pol ished 
showing i n i t i a t i o n  of Z r C  section  through  Thornel 50 
coa t .   f i be r s   coa ted   i n   run  9-21. 

6 



Fig. 4. Optical  photomicrograph  of 
Thornel 50 f i b e r s  C V P  
coated  with Z r C  i n  Run 12-4. 

t h e  ZrC.  The o the r   t h ree   runs  were q u i t e  
successfu l .  The coa ts   on   bo th   the   Thorne l  
50 and t h e  HMS tows were complete,  uniform 
and  smooth.  For the three runs ,   the   coa t  
th icknesses   var ied  from. < 0.5 pm t o  1 m 
(Table  1).  Typical  examples  of  these  coats 
are shown i n  the  photomicrographs  of  Figs. 
5 and 6.  The coa t s  were so smooth,  uniform 
and  contlnuous  that  en i n i t i a l  examination 
w i t h   t h e  SEM it appeared as though t h e  f i-  
b e r s  were not  coated a t   a l l  (Fig. 5a). Only 
af ter   performing  e lemental   scans  for   .z i rcon-  
ium (Fig.  5b)  using SEM x-ray  image a n a l y s i s  
were t h e   c o a t s   d e f i n i t e l y   i d e n t i f i e d .   O p t i -  
cal microscopy  fur ther   es tabl ished  the  uni-  
formity  of  coating  throughout  the tows. Al- 
though a few  of t he   f i be r s   appea red   t o   be  
welded  together a t  points  of  contact  (Fig.  6), 
all of the   f ibers   th roughout  a given tow 
were uniformly  coated  with  essent ia l ly   the 
same thickness   of  ZrC;  

To eva lua te   the   reproduc2bi l i ty  of 
these   success fu l   coa t ing   cond i t ions ,  and t o  
prepare  a supply  of   coated  f ibers   for   in-  

f i l t r a t ion   expe r imen t s ,  several similar coat ing  runs are being made. One has 
been  completed  (run 12-20) using  the  condi t ions  of   run 12-7, and  has  given a 
s imi la r   p roduct .   Fol lowing   these   runs ,   e f for t s  w i l l  be   d i r ec t ed  toward  produc- 
ing Tic coa t s  on f i b e r s .  

Wet Chemical Coating.- A n  a l t e r n a t i v e   t o   t h e  CVD coa t ing  method is a w e t  
chemical method. The p r i n c i p l e  is quite  simple.  Quaternary ammonium metalates 
are water so lub le  and w i l l  decompose a t  red  heat   to   produce metal oxides. When 
heated a t  e levated  temperature   these  oxides  w i l l  convert  to ca rb ides   i f   c a rbon  
is present .  The carbon  source  can  be  the  f iber   but  is best   provided by dextrose 
which is a l s o  water soluble.  The chemical  equations are roughly: 

R4NOH + 2M(ORIm = (R4N) + (M20nH)-, 

M 0 + ZC = MC + C02,  2 m  

where R i s a n o r g a n i c   r a d i c a l  and M is a metal. Such meta la tes  are i l l -de f ined ,  
however,  and t h e  amount of  dextrose  needed  to  supply a l l  the  carbon  must  be de- 
termined  experimentally.  Excess  carbon w i l l  r e s u l t   i n  a c a r b i d e   d i s p e r s e d   i n  a 
carbon  matr ix   while  too l i t t l e  carbon w i l l  cause   the  metal to   conve r t   f i be r  car- 
bon to   carbide.  The excess carbon  could  possibly  be  eliminated by  sub.sequent 
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(a)  (b 1 
Fig. 5. SEM photomicrographs  of HMS f i b e r  CVD-coated wi th  Z r C  i n  Run 12-10. 

(a) Specimen  image,  and (b) Z r  x-ray image. 

(a>  (b) 

Fig. 6. O p t i c a l  photomicrographs  of HMS f i b e r s  CVD-coated wi th  Z r C  i n   ( a )  Run 
12-7, and  (b) 12-6. 
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convers ion   to   carb ide  by CVD techniques  using  the  corresponding metal ha l ide .  

This  technique  should  provide  uniform  fiber  coatings  and  uniform  coating 
thicknesses   throughout   the tow. The w e t t i n g   a b i l i t y   o f   t h e   s o l u t i o n  w i l l  no t  
on ly   a l low  coverage   o f   the   ou ter   f ibers   bu t  w i l l  a lso  permi t  r ap id   pene t r a t ion  
of t h e  tow. Because  the  system is  u n r e a c t i v e   i n   t h e   i n i t i a l   c o a t i n g   s t e p ,   t h e  
concentrat ion  of  metal i n   t h e   s o l u t i o n  w i l l  be  uniform a t  a l l  p o i n t s   i n   t h e  tow. 

Marginal  success  has  been  achieved by  hand d ipp ing   ca rbon   f i be r s   i n  a T i -  
bear ing   aqueous   so lu t ion   to  form Tic coats.  Lengths  of  Thornel 75 f i b e r  tow 
150 mm long were dipped a t  room tempera ture   in  a solut ion  prepared by  mixing 
0.1 liter of T i  s t o c k   s o l u t i o n  (see APPENDIX A) wi th  0.011 kg  dextrose.  For a 
s ing le   d ipp ing ,   t he  sample w a s  d r i e d   i n  a i r  a t  383 K (110OC) f o r  1 hour,  then 
h e a t e d   i n   a r g o n   t o  a coking  temperature of  1173 K (900OC) t o  decompose t h e  
metalate. For  multiple  dipping,  the  sample w a s  handled i n   e i t h e r  of two ways: 
(1) dr i ed   a f t e r   each   d ip ,   t hen   f i na l ly  coked a t  1173 K (900°C), o r   (2 )   d r i ed  
and  coked af ter   each  dip.   Fol lowing  the  f inal   coking,  a l l  f iber   samples  were 
heated  to   1973 K (170OOC) i n  helium.  Figure 7 shows the  specimen image  and t h e  
T i  x-ray  image  determined by SEM on a sample which w a s  dipped  and  dried  three 
times before   the   f ina l   coking .   F igure  8 shows similar views  of  another  sample 
which w a s  dipped  three times, b u t  was coked a f t e r  each  dip-dry  cycle.  Although 
the  T i  obviously i s  unevenly  dis t r ibuted  on  the  f iber   surfaces   of   both  samples ,  
t hese   p re l imina ry   r e su l t s  are encouraging. It may be   poss ib le   to   p roduce  a 
more un i fo rm  d i s t r ibu t ion  of t h e   c o a t  by properly  wiping  the tows a f te r  dipping. 
So far,   the  dipped  samples  have  not  been wiped. 

Work on w e t  chemical  methods w i l l  continue.  But  because  of  the  outstanding 
successes  with CVD, t h e  w e t  chemical method w i l l  no t   be  emphasized. 

Wetting  Experiments 

To demons t r a t e   t he   ab i l i t y   o f  aluminum t o  w e t  r e f r a c t o r y  metal carbides,  
several   wet t ing  experiments  were performed  with a v a r i e t y  of   carbide  surfaces .  
These  included  bulk Z r C  and Tic, ZrC-coated p y r o l y t i c   g r a p h i t e  (PyG), and ZrC- 
c o a t e d   a r t i f i c i a l   g r a p h i t e   ( g r a d e  AUC). The Z r C  and Tic were hot-pressed  pro- 
ducts  and  the  ZrC-coats  on  both  graphites were depos i ted   us ing   the   condi t ions  
of   the CVD r u n s   l i s t e d   i n   T a b l e  I. 

I n i t i a l   a t t e m p t s   t o  w e t  t h e  ZrC-coated PyG were unsuccessful  because of 
the  formation  of A1203 fi lms. The procedure was as follows. A shor t   l eng th   o f  
grade 1100 A l  w i r e  o r  4047 Al-Si  a l l o y  wire w a s  l a i d   a c r d s s  a ZrC-coated f a c e  
of a pol ished PyG block  approximately 10  x 10  x 10 mm. The block w a s  then 
p l aced   i n  a furnace,   heated  to 623 K (350'12) f o r  30 min, then   to   823  K (550OC) 
f o r  30 min,  and f i n a l l y   t o  973 K (7OOOC) fo r   15  min. The furnace  environment 
w a s  e i t h e r  vacuum (1 x Pa) o r  a h i g h   p u r i t y   i n e r t   g a s  (Ar o r  He). In a l l  
cases, a su r face   coa t ing ,  which  undoubtedly was Al2O3, formed  on t h e  wire, en- 
capsu la t ing   t he  Al, prevent ing i t  from  flowing  onto  the  surface  of  the  coated 
block.  Apparently,   this is not  an uncommon problem. I n  a p r i v a t e  communica- 
t i o n ,  C. R. Manning, North  Carolina State  Univers i ty ,   po in ted   ou t   tha t  it is 
v e r y   d i f f i c u l t   t o  overcome the  formation  of A1203 and t h a t   t h e   s o l u t i o n s  are 
no t   c l ea r .  From h i s  work6 he   found  tha t   ge t te r ing   the   sys tem  wi th  active 
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(a)  (b) 
Fig. 7. SEM photomicrographs of Thornel 75 f i b e r  wet-chemical-dipped t h r e e  

times wi th  T i  so lu t ion ;  no coking  heat-treatment  between  dips. 
(a)  Specimen  image,  and  (b) T i  x-ray  image. 

(a)  (b ) 

Fig. 8. SEN photomicrographs  of  Thornel 75  f i b e r  wet-chemical-dipped t h r e e  
times with T i  solut ion;   1173 K (900OC) coking  heat-treatment  between 
dips.  (a) Specimen  image,  and  (b) T i  x-ray  image. 
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Fig. 9. O p t i c a l  photomicrograph show- 
ing   wet t ing   o f  Tic (bottom) 
by 1100 Al (top).  

Fig. 10. Optical  photomicrograph 
showing wet t ing  of  Z r C  coa t  
(middle) on AUC g raph i t e  
(bottom) by 1100 Al (top) . 

metals sometimes  gave s a t i s f a c t o r y   r e s u l t s .  

Another  problem as soc ia t ed   w i th   t he   we t t ing  of t h e s e   p a r t i c u l a r  PyG blocks 
was tha t   t hey  were c o a t e d   i n   t h e  earlier CVD runs  (Table  I), and  the  poor  qual- 
i t y  of t h e i r   c o a t s  may have  inf luenced  the  wet t ing  behavior .   Therefore ,   several  
runs were made with  bulk Z r C  and Tic subs t r a t e s .   In   one  of  these, a f r e s h l y  
exposed  surface on a chip  of Tic was plunged  into a bath  of 1100 Al a t  approxi- 
mately 1053 K (78OOC) f o r  a few seconds i n  an  inert-atmosphere. The exce l l en t  
wetting  between  the Tic and  the aluminum a t  t h i s   i n t e r f a c e  i s  shown i n  Fig. 9. 
In   t he   o the r   runs ,   t he  samples  were prepared as follows. S m a l l  blocks  of  al loy 
were placed on the   su r f aces   o f  small d iscs   o f  Tic o r  Z r C .  These were then 
p l aced   i n  a g r a p h i t e   c r u c i b l e  and hea ted   rap id ly   to  1053 K (78OOC) i n  a vacuum 
furnace a t  1 x Pa. P r io r   t o   hea t ing ,   t he   sys t em w a s  ge t t e r ed   w i th   ho t  
(117.3 K) uranium  chips   in  a g e t t e r i n g   f u r n a c e   t h a t  w a s  p l aced   i n  series wi th  
sample  furnace.  Several  wetting  experiments were made with  this   arrangement  
using  the 1100 and 4047 A l  a l loys ,   and   the  LASL Al-Si  a l l o y   w i t h  Z r C  and T I C  
subs t r a t e s .  Partial  wetting  occurred in most  of these  experiments ,   but   the  
problem  with  the  formation  of Al2O3 p e r s i s t e d .  To ach ieve   s ign i f i can t   we t t ing  
of the   carb ide   sur faces ,  it w a s  necessary   to   p lace  a small weight  on  top  of  the 
a l l o y   p r i o r   t o   h e a t i n g ,  so t h a t   t h e  A1203 f i l m  would rupture  when t h e   a l l o y  
became molten,   permitt ing it to   f low  onto   the   sur face .   Severa l   successfu l   runs  
were made with  this   technique,   and an  example is given  in   Fig.  10, which  shows 
the   we t t ing  of a small d isc   o f  ZrC-coated AUC g raph i t e   w i th  1100 Al a l loy .  
(The Z r C  coa t  w a s  q u i t e   t h i c k ,  -25pn, and w a s  deposited  under  conditions simi- 
la r  to   t hose  of run 12-4, except   that  a small amount of CH4, O.lR/min, w a s  
added  and the   depos i t i on  time.was increased  a lmost   an  order  of magnitude.) 
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Vent 

Sample 

Fig. 11. Schematic  of f i x t u r e   f o r   w e t t i n g   r e f r a c t o r y  metal 
sur faces   wi th   f resh   mol ten  aluminum a l loys .  

I n  a fu r the r   a t t empt   t o  overcome the  A1203 formation  problem  and t o  expose 
ca rb ide   su r f aces   t o   f r e sh ,   mo l t en  A 1  a l l o y s ,   t h e   f i x t u r e  shown i n  Fig. 11 w a s  
constructed.  It w a s  made from graphi te   and is used as follows. With t h e  sam- 
sample  and  a l loy  located as shown, t h e   f i x t u r e  is p laced   i n to  a v e r t i c a l l y  
or iented,   quar tz   tube,  vacuum furnace. The furnace i s  hea ted   rap id ly   to  a 
temperature  above  the  melting  point of t h e   a l l o y ,  a t  a pressure  of 1 x Pa. 
The plunger is then pushed in to   t he   ex t rude r   caus ing  a stream of   f resh,   molten 
metal to   be   d i r ec t ed   on to   t he   ca rb ide   su r f ace .   In   t he   i n i t i a l   expe r imen t s ,  
t h i s   s y s t e m  was used   fo r   t he   we t t ing   o f  ZrC-coated PyG blocks. The wet t ing,  
so f a r ,  seems t o   b e  good. The metal appears   to   f low  eas i ly   on   the   carb ide  
s u r f a c e s ,   i n   c o n t r a s t   t o  some of   the earlier experiments  where  the metal became 
encapsulated i n  a f i lm  of  M203 and   e s sen t i a l ly   r e t a ined  i ts  or iginal   shape.  
Because  of the   na ture   o f  PyG, however, i t  h a s   b e e n   d i f f i c u l t  to. examine  micro- 
s cop ica l ly   t he   me ta l / ca rb ide   i n t e r f ace .  The bonding  between the   c - face   l ayer  
p l a n e s   i n   g r a p h i t e  is so  weak tha t   dur ing   prepara t ion   of   the   meta l lographic  
samples   the   sur face   l ayers   t end   to  cleave away the   carb ide   coa t   which   c l ings  
to   t he   a l loy .   F igu re   12  shows the  SEM specimen  image  (Fig.  12a),  and  the Z r  
(Fig.  12b)  and  Al-Si  (Fig.  12c)  x-ray  images  of  an area t h a t   p u l l e d  away from 
a block  of  ZrC-coated PyG. The block w a s  c o a t e d   i n   r u n  12-6 (Tab le   I )  and w a s  
wet ted  with  the LASL A1-Si a l l o y  a t  903 K (63OOC) by the  above  procedure. The 
presence  of  both Z r  and  Al-Si a t  the   i n t e r f ace   i nd ica t e s   t ha t   we t t ing  w a s  suc- 
cess fu l .  The dark area in   t he   cen te r   o f   F ig .   12a  shows  up i n   b o t h  x-ray  scans 
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Fig. 12. SEM photomicrographs  showing (a) specimen  image, (b) Z r  x-ray  image, 
and  (c)  Al-Si  x-ray  image of an area on  ZrC-coated PyG which was 
wet ted   wi th  "13% S i   a l l o y   a n d   t h e n   t o r n  from t h e  PyG s u b s t r a t e .  
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as a shadow, and   ev ident ly   represents  a th in   l aye r   o f  PyG which was t o r n  away 
from the   sur face   o f   the   b lock .   This   p rovides   fur ther   suppor t   tha t   wet t ing  
took  place. 

Because  of t h e  problems  associated  with  the  examination  of  Al-wetted car- 
bide-coated PyG, most f u t u r e  work i n   t h i s  area w i l l  be  done  with  carbide-coated 
polycrystal l ine  graphi tes .   These  samples  w i l l  be   used   pr imar i ly   to   eva lua te  
the   e f fec t iveness   o f   carb ide   coa ts  as d i f f u s i o n   b a r r i e r s   t o   p r e v e n t   t h e  forma- 
t ion   o f  Al C 4 3' 

Inf i l t ra t ion   Exper iments  

In i t i a l   expe r imen t s  on t h e   i n f i l t r a t i o n  of  ZrC-coated  carbon f i b e r s   w i t h  
Al a l l o y s  are being done  on small samples  of tow approximately 30 mm long. 
F igure   13  shows a sketch  of   the  graphi te   f ixture   used  for   the  experiments .  
The i n f i l t r a t i o n   p r o c e d u r e  is as follows: 

1. 

2. 

3. 

4. 

5. 

.6 

7. 

A b l o c k   o f   i n f i l t r a n t   a l l o y  is machined t o   f i t   c l o s e l y   i n t o   t h e  mold. 

Carbide-coated  f ibers are i n s e r t e d   i n t o   t h e   c e n t r a l   h o l e   o f   t h e  pene- 
t r a t o r  and t h e   f i x t u r e  is assembled. 

The f i x t u r e  is p laced   i n  a vertical quartz  tube  which is surrounded by 
a removable  furnace. 

The assembly is h e a t e d   i n  vacuum or   an   iner t   a tmosphere   to  a tempera- 
t u r e  above the   mel t ing   po in t   o f   the  metal. 

The pene t r a to r  is f o r c e d   i n t o   t h e   l i q u i d  metal w i t h   t h e  push-rod. 

Af te r  a s h o r t  time the  furnace is removed  from the   quar tz   tube   and   the  
f i x t u r e  is allowed  to  cool.  
The f i x t u r e  is disassembled  and  the sample i s  removed from t h e  pene- 
t r a t o r  . 

On i n se r t ion   o f   t he   pene t r a to r   i n to   t he  melt, most of  the  surface  oxide  which 
forms  should  be  pushed away from t h e   t i p   o f   t h e   p e n e t r a t o r ,   e x p o s i n g   t h e   f i b e r s  
to   f resh   mol ten  metal. I n i t i a l l y ,  melt t h a t  is displaced by the   pene t r a to r  
w i l l  flow  out  of  the  overflow  holes.  After  the  overflow  holes are closed  off  
by the   pene t r a to r   t he  metal w i l l  flow up t h e   c e n t r a l   h o l e   i n   t h e   p e n e t r a t o r ,  
th rough  the   f ibers ,  up the   s ides   o f   the  push-rod  and  overflow a t  the   t op  of t h e  
mold. 

Several inf i l t ra t ions   have   been  made  on samples  of  Thornel 50 which were 
coated  with Z r C  i n  CVD run 12-4. This material had t h e   t h i c k   c r u s t y  Z r C  coat ,  
discussed  above,  which  essentially  encapsulated  the tow (Fig. 4 ) ,  and w a s  se- 
lected  mainly  to  do the  prel iminary work i n   e s t a b l i s h i n g   t h e   i n f i l t r a t i o n   t e c h -  
nique,   and  to   avoid  deplet ing  the  supply  of   wel l -coated  f ibers .   In   the  f i rs t  
few i n f i l t r a t i o n s  severe tempera ture   g rad ien ts   ex is ted  and t h e   a l l o y  would no t  
w e t  t he  tow. With proper   insulat ion  of   the  furnace  system  this  w a s  co r rec t ed  
and two s u c c e s s f u l   i n f i l t r a t i o n s  were made. Figure  14 shows one  of  these  where 
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Pe - Carbide- coated carbon fibers 

holes 

Mold plug' 

Fig. 13. Infiltration fixture. Approximately to scale. 
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t h e   c r u s t y  Z r C  su r face  of t h e  
Thornel 50 tow w a s  wetted  by  the 
LASL Al-Si a l loy .  This i n f i l -  
r a t i o n  was done a t  973 K 7OOOC) 
and a pressure  of  1 x Pa. 
Future  experiments w i l l  be  done 
u s i n g   f i b e r  tows having  uniform, 

t 

, '  'J' , smooth carb ide   coa ts .  

CONCLUSIONS 

1. Chemical  vapor  deposition  has 
been  used  successfully  to  produce 
Z r C  coa ts  on carbon  f ibers   der ived  
from both PAN and  rayon. The coa t s  
were t h i n  1.0 U m  ) , continuous 
and  of  uniform  thickness  throughout 
the   f ibers   o f   each   type  of tow. 

2. Wet chemical  methods  for ap- 
plying  coats,   which  subsequently 
can  be  converted  to metal carbides ,  

Fig.  14.  Wetting  of ZrC-coated a l s o  show promise f o r   c o a t i n g  car- 
Thornel 50 f i b e r  tow wi th  bon f i b e r s .  
A1-13% S i  a l l oy .  

3. I n i t i a l  attempts t o  w e t  CVD- 
Qi 

were successful .  
coa ted   f ibers   wi th  A 1  and Al a l l o y s  

\ y  4. Surfaces  of bu lk  Tic and Z r C ,  and of ZrC-coated polycrys ta l l ine   and  

34 
1 zt pyroly t ic   g raphi tes  were successfu l ly   wet ted   wi th  Al and A 1  a l loys .  
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APPENDIX A 

Materials 

Fib er s 

The f i r s t   s t e p   i n   t h i s  program was  t o   o b t a i n  a number of  commercial  carbon 
f i b e r  tows,  derived  either  from  rayon, PAN o r   p i t c h ,  from different  manufactur- 
ers. Several  were procured  and  they are l i s t e d   i n   T a b l e  A I  t oge the r   w i th   t he i r  
r epor t ed   p rope r t i e s  .7 Optical  and  scanning  electron  microscopy (SEM) have  been 
performed  on  these  f ibers.  SEM photographs  of  typical  samples are given i n  
Figs. A 1  and A2. 

The three  rayon-derived  f ibers  are similar. Thei r   c ross   sec t ions  are cren- 
u l a t e d   i n   o u t l i n e ,  and many appea r   t o   have   cy l ind r i ca l   ho le s  whose axes are 
o r i e n t e d   p a r a l l e l   t o   t h e   f i b e r  axes. S l i g h t   o p t i c a l   a n i s o t r o p y   e f f e c t s  are 
v i s i b l e   a c r o s s   t h e   f i b e r   c r o s s   s e c t i o n s ,   b u t   t h e  main e f f e c t s  are around  the 
h o l e s   i n   t h e   f i b e r s  and  around  the  outer  edges  of  the  f ibers,   where  polar  iza- 
t i on   c ros ses  are sometimes v i s i b l e .  The Thornel 50 f i b e r s  have  fewer   holes   in  
c r o s s   s e c t i o n  and  appear  denser  than  the  other two. The Hi t ron  401 has a lower 
degree  of  optical   anisotropy  than  the  Thornels,   which are o p t i c a l l y   n e a r l y  
equivalent .  

The PAN f ibe r s   ob ta ined  from Hercules are cons ide rab ly   d i f f e ren t  from 
those  of  Great Lakes  Carbon  Corporation. The Hercules   f ibers  are rounded i n  
cross   sect ion,   whereas   the Great Lakes F o r t a f i l   f i b e r s  are "dogbone-" o r  
"dumbbell-shaped"  (Fig. Ma.). In   t he   Hercu le s   f i be r s ,   s l i gh t   op t i ca l   an i so -  
t r o p y   e f f e c t s  are v i s i b l e   o n  small areas i n   t h e   i n t e r i o r   o f   t h e   c r o s s   s e c t i o n s  
and,   possibly,  a t  the  edges  of some of t h e   f i b e r s .  The dogbone-shaped F o r t a f i l  

Fiber 

Hitron 401 
Thornel 50 

Thornel 75 
HTS 

SfS 
Fortafll 6T 

%Ionofilanentc 

Manufacturer 

HITCO 
Union Carbide 

Union Carbide 
Hercules 
Hercules 

Great Lakes 

Great Lakes 

TABLE AT 

PROPERTIES~ OF COXMERCIAL CARBON FIBERS 

Precursor 
Rayon 
Rayon 
Rayon 

PAN 
PAN 

PAN 
Pitch 

Fil. 
Diarn. 

6.2 
6.5 
.5.6 
7.8 
7.5 

12.7/5.0b 

38 

Density 
lo3 kg/m3 

1.67 
1.67 
1.82 

1.78 
1.96 
1.90 
1.65 

Tensile 
Modulus 
(1010 Pal 

28 
39 
54 

26 
38 
41 
4 

Tensile 
Strength 
( lo lo  Pa) 
205 
215 
260 

275 
200 
290 

69 

Ply1 
Yarn 

1 
2 
2 

1 
1 

1 

- 
Pill 
A 
3.200 

720 

720 
10,000 
13,000 
38,000 - 

%.,ken froin Reference 7. unless otherwise Indicated. 

b M a x i m ~  lengtnlmaxlmum vidth of the "dogbone"  cross-section, reported by the manufacturer. 

'Properties reported by  the  manufacturer. 
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a 

b 

Fig. Al Scanning  e lectron  photomicrographs  of   carbon  f ibers   der ived  f rom 
rayon  precursors.  (A) Hit ron  401, (b)  Thornel 50. 
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Fig. u. Scanning  electron  photomicrographs  of  carbon  f ibers  derived  from 
PAN precursors .   (a )   For ta f i l  6T, (b) Hercules HMS. 
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f ibers   have   very   s l igh t ly   c renula ted   edges ,   and  show op t i ca l   an i so t ropy ,   bo th  
i n   t h e   i n t e r i o r  and a t  the  edges of t h e   f i b e r s .  

The pitch-base  monofilament  f iber is m6ch l a rge r   t han  the o the r s ,  is 
rounded i n   c r o s s   s e c t i o n  and  has a very smooth su r face   exh ib i t i ng  few  irregu- 
larities. 

Coating Materials 

Two coat ing materials were chosen f o r  CVD experiments ,   reactor   grade 
ZrCl4  and  commercial  grade  purified TiC14. Wet chemical  coating  experiments 
were done with  an  aqueous  solut ion  of  tetramethylammonium t i t a n a t e   a n d  dex- 
t rose.  The t i t a n a t e  was prepared  by  mixing  0.0623 kg t e t r a i s o p r o p y l   t i t a n a t e  
wi th  0.0997 kg of a methanol   solut ion  containing 20 w t  % tetramethylammonium 
hydroxide  and 0.1 liter of water. The a lcohol  is d i s t i l l e d   o f f  and  the  solu-  
t i o n  is d i lu t ed   w i th  water t o  0.1 liter, producing a s t o c k   s o l u t i o n   o f  0.105 
kg T i  pe r  liter. 

Aluminum Alloys 

Three  standard  commercial aluminum al loys  and  one LASL-produced A l - S i  
a l l o y  were se l ec t ed   fo r   u se   i n   t he   we t t ing   and   i n f i l t r a t ion   expe r imen t s .  
These are l i s t e d   i n   T a b l e  A I 1  together  with  their   chemical  compositions.  

TABLE A I 1  

COMPOSITION OF ALUMINUM ALLOYS 

Element (Wt %)a 
Alloy Fe S i  CU Zn  Mg Mn C r  T i  0 the r  A l  

1100 "1.0 " 0.2 0.1 -- 0.05 -- " 0.15 max rem 

4047 0.8 11-13 0.3 0.2 0.1 0.15 -- " 0.15 max r e m  

6061 0.7 0.6 0.25 0.25 1.0 0.15 0.25 0.05 0.15 max rem 

LASL Al-Si  0.35  13.4 0.40 0.01 2.45 0.40 -- " 0.18 max rem 

" - "- - - 
b 

" 

a Peecentages  for   the  s tandard  grades are nominal  handbook  values.  For  the 
LASL a l loy   t he   va lues  are the   r e su l t s   o f   quan t i t a t ive   ana lyses  on f i v e  re- 
pl icate   samples .  

Combined  Fe and  Si. 
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APPENDIX B 

VAPOR COATING EQUIPMENT AND PROCEDURES 

Furnace Assembly 

Coating  operations are performed i n   a n  assembly  consis t ing  of   an  outer  
"be l l - j a r "   she l l   and   an   i nduc t ive ly   hea t ed   i nne r   g raph i t e   coa t ing   c ruc ib l e .  
Figures B 1  and B2 are photographs  of   the  bel l - jar   and  the  coat ing  crucible ,  
respec t ive ly .  The o u t e r   s h e l l   c o n s i s t s  of three  double-walled  water-cooled 
sec t ions .  On assembly,  these  sections are bol ted  together   and  sealed by 0- 
r r lngs.   Sight   ports   (shut terable   quartz  windows) are located  90  deg  apar t  
on the  O.D. of   the two upper  sections.  One p o r t ,   l o c a t e d   i n  the cen te r  
s ec t ion  is used as a window f o r   o p t i c a l  measurement  of  the  temperature. A 
blow-out port   prevents   excessive  bui ldup  of   pressure  within  the chamber 
y e t  permi ts  evacuation  prior  to  each  coating  run.  Cooling water in t e r locks  
prevent power i n p u t   t o   t h e   i n d u c t i o n   c o i l   u n l e s s  minimum water flow re- 
quirements are m e t .  

Coating i s  ca r r i ed   ou t   w i th in   t he   i nduc t ive ly   hea t ed   g raph i t e   c ruc ib l e  
posit ioned  near  the  center  of  the  shell .   Dimensions  of  the  crucible are 
305 mm O.D., 38 m w a l l  thickness,   and 445 mm length.  A temperature  sight-  
ho le  6 mm I .D .  by 16 mm deep was d r i l l e d   i n t o   t h e  O.D. 89 mm below  the  top 
plane. The gas   in le t   and   ou t le t   connec t ions  are graphite  tubes  threaded on 
t h e i r  O.D.'s fo r   gas   sea l ing  and s t ruc tu ra l   suppor t .  The c ruc ib l e  is insu- 
l a t e d  by wrapping f i r s t   w i t h   t h r e e   l a y e r s   o f  6 mm th ick   carbon  fe l t ;   then  
wi th   f i ve   l aye r s  of 3 mm Fiber f rax  ceramic f iber   paper  and f i n a l l y   w i t h  2 mm 
th i ck  mica  sheet. The wrapped c ruc ib l e  is supported  on a Carbocell   block 
wi th in  a 356 mm I .D .  water cooled  induct ion  coi l .  

Coating  System 

A gas  flow  diagram  of  the  coating  system is shown i n  Fig. B 3 .  Argon is 
supplied  from a l iqu id   a rgon  dewar with a capaci ty   of  7190 liters. The CH4 
and H2 gases are suppl ied  f rom  bat ter ies   of  steel gas  cylinders.  The.H2 is 
routed  through  drying  tubes  before  entering  the  gas  manifold.  

A v a p o r i z e r   o r  powder f eede r   supp l i e s   r e f r ac to ry  metal sa l t  t o   t h e   i n l e t  
s ide  of   the   gas   manifold  where it is mixed with  preheated  manifold  gases  and 
ca r r i ed   t h rough   e l ec t r i ca l ly   hea t ed   l i nes   i n to   t he   coa t ing   c ruc ib l e .   T i t an -  
ium tetrachloride  (TiC14),   which i s  a l i q u i d  a t  room temperature, is first 
conver ted   to  a gas by the  vaporizer   before   mixing  with  the  manifold  gases ,  
whereas  the  zirconium  tetrachloride  (ZrClq) is fed  by the  powder feeder   d i rec t -  
l y  in to   t he   gases  as a f l u i d i z e d  powder,  which i s  flash-vaporized upon enter- 
ing   t he   c ruc ib l e .  

The exhaust gas   t r ap   pos i t i oned   ou t s ide   t he   fu rnace   she l l  is used  both 
as an  ambient  condenser  and a p a r t i c u l a t e   f i l t e r .  To f a c i l i t a t e   t h e  removal 
of p a r t i c u l a t e  material from the ex i t ing   gas  stream, the   inner   core  w a s  
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Fig. B1. Coating  furnace  bell-jar.  
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Fig. B2. Coating  crucible  with  induction  coil .  
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Fig. B3. Gas flow diagram of coating system. 
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1oosely.wrapped w i t h  f i b e r   g l a s s   b a t t i n g .   A f t e r   t h e   t r a p ,   t h e   g a s  stream is 
r o u t e d   t o  a scrubber  where d i s s o l u t i o n  of the  gaseous HC1 takes place.  Water 
from the   s c rubbe r  is dumped and the  gaseous component i s  vented  through a 
s tack.  

All stainless steel gas   manifold  l ines   leading  to   and  f rom  the  coat ing 
c r u c i b l e  were e l e c t r i c a l l y   h e a t e d   t o   p r e v e n t   b l o c k a g e  by  condensation of salts 
during  passage  of   the  coat ing  gas  stream. 

Power is supp l i ed   t o   t he   i nduc t ion  work c o i l   b y  a 100 kW, 10 kHz motor- 
generator  set. 

The coat ing  temperature  i s  measured  by  s ight ing  through  the  shut terable  
quar tz  window in to   the   s igh t   ho le   wi th   an   op t ica l   pyrometer .  The pyrometer 
w a s  c a l i b r a t e d   a g a i n s t  a U. S. Bureau  of  Standards  tungsten  ribbon  secondary 
s tandard.  

F ix tur   ing  

Figure B4 shows a t y p i c a l   f i x t u r e   u s e d   f o r   c o a t i n g   f i b e r s .  It c o n s i s t s  
of a g r a p h i t e   p l a t e  220  mm diam  and 10  m th ick ,   w i th  a 135 mm s q u a r e   h o l e   i n  
i ts  center .   Adjacent   to  two oppos i t e   s ides   o f   t h i s   squa re  are rows of thread- 
ed holes  which are used  with  graphi te  screws and  washers t o  clamp the  ends  of 

Fig. B4. Fibe r   coa t ing   f i x tu re .  
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yarn  tows,  which are loosely  suspended  across   the  square  hole .  New f i x t u r e s  
are thoroughly  coated  before  using them in   f i be r - coa t ing   runs .   In   p rac t i ce  
t h e   f i x t u r e  is loca ted   near   the   cen ter   o f   the   coa t ing   c ruc ib le ,  whose cylin- 
d r i c a l  axis co inc ides   wi th   tha t   o f   the   f ix ture .  

Operational  Procedure 

Star t  Up.- Furnace  assembly  proceeds in   t he   fo l lowing   o rde r :   ( a )   t he  
sample f i x t u r e  is placed on g raph i t e  spacer r i n g s   i n   t h e   c o a t i n g   c r u c i b l e   n e a r  
its cen te r ;  (b) a p e r f o r a t e d   b a f f l e  is  posi t ioned  above  the sample f i x t u r e   t o  
d i sperse   the   coa t ing   gases   un i formly   over   the   f ibers ;   (c )   the   c ruc ib le  is 
pressure-sealed by  means  of a threaded  c losure  plate;   (d)   the  top  surface of 
t he   c ruc ib l e  i s  insu la t ed   u s ing  a number  of l aye r s   o f   ca rbon   f e l t ;   ( e )  a 
s t a i n l e s s  steel gas  connection is made on t h e  end  of t he   c ruc ib l e   i n l e t   p ipe ;  
and ( f )   t h e   t o p   s h e l l  is lowered i n   p o s i t i o n   o v e r   t h e   c r u c i b l e  and sealed.  

The coating  gas  system is  made ready as follows: 

1. Prior   to   each  run  the  furnace  assembly is evacuated  then  back-fil led 
wi th  A r  t o  a p res su re  2.0 t o  2.7 kPa above  atmospheric. 

2. The coa t ing   gas   mani fo ld   l ines  are opened  and  manifold A r  i s  in t ro -  
duced t o  purge  the  gas  manifold  system. 

3. The s h e l l  A r  p ressure  is adjusted  and  regulated  to   maintain  an  over-  
p re s su re   nea r ly  6.7 kPa above  that  of  the  gas  manifold  pressure. 

4 .  Induction power is turned on  and t h e   c r u c i b l e  is heated a t  a rate 
s u f f i c i e n t   t o   r e a c h  a s tab i l ized   coa t ing   tempera ture   in   approximate ly  
1.5 h. E l e c t r i c a l  power to   t he   accesso ry  equipment  (vaporizer  fur- 
nace  and  gas  manifold  heating  tapes) is turned on a t  such time t h a t  
t h e i r  nominal  operation  temperatures are s t ab i l i zed   du r ing   c ruc ib l e '  
h e a t  up. 

Coating.- The coat ing  process  is i n i t i a t e d  and  maintained  throughout  the 
coat ing  per iod as follows: 

3. The c ruc ib l e  wall temperature is regula ted  by ad jus t ing   the   induct ion  
power output. 

4 .  A check  of a l l  systems is r o u t i n e l y  made and  recorded. 
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Normal Shut-down.- After coa t ing   for   the   p rescr ibed   per iod   of  time, t h e  
following  precedure is used   to   t e rmina te   the   p rocess :  

1. The vapor izer  valve is closed. 

2. The (X4, H2 and s h e l l  Ar supply valves are closed. 

3. The induct ion  power is l e f t  on f o r  a per iod   of   f ive   minutes   a f te r  
t h e  above  valving  and  then  turned  off.  This  procedure  allows  the 
gas manifold A r  p r e s s u r e   t o  become p o s i t i v e   w i t h   r e s p e c t   t o   t h e  
s h e l l   p r e s s u r e   b e f o r e  cool-down. 

4. A cool-down pe r iod   o f   15   t o  20 hours is required  before  disassembly. 
It is noted that the  manifold A r  flow  has  been  maintained  from  be- 
g inning   to  end. 
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