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ABSTRACT

For various applications in fluid dynamics, one can assume
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1. INTRODUCTION

The Navier-Stokes equations in two space dimensions con-

twin four differential equations: the momenti,m equations, the

cr•ntinuity equation and the energy equation. For certain

app, ; cations, the energy equation can be substituted by the

as	 tion that the total temperature is constant, without

much loss of accuracy, see [6]. The resulting system for two

space dimensions is then in non-dimensionalized form:

u t + uu x + vuy + ppX= 
3PRe 

[4 (p%-X)X-2 (^,vy ) x+3 (ii (vx+uy) )yJ

vt + uvx + vvy + p-py=	 31Re[4 
(jivy ) y -2 (uu X ) y +3 (tj (vX +uy) ) I

(1.1) pt + pu x + up  + pvY + vp y = 0

1 = T + u 2 + v 2

p = RpT

C T3/2
_ 1

u	 T+C 2

(total temperature constant)

R, C 1 , C 2 and the Reynolds number Re are given constants.

In order to obtain good numer:Lcal solutions to the

initial--boundary-value problem for the system when the

Reynolds number is large, we must require that the inviscid

equations (Re -+ -) are well posed. In this paper an analysis

of the linearized version of the system is presented. The

3
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characteristic speeds are no longer the same as for the com-

plete inviscid Navier-Stokes equations, but the system is well

posed for the pure initial value problem. The analysis of the

mixed initial-boundary-value problem shows that great care must

be taken to obtain a well posed problem. If at a subsonic in-

flow boundary, v and one of the variables u and p are

specified, the equations are not well posed near the transonic

point; v and a combination of u, v, p corresponding to an

ingoing characteristic must in such a case be specified.

Several numcricdl experiments have been done for this sys-

tem by Rudy et al. [8]. One method used by `hem was the

Hopscotch scheme, see [31, [4). The application of this

scheme to the viscous terms is simplified if the function

values at the middle point in the approximation of uxx' vxx

are taken at time level n in both sweeps. It is shown in

section 4 that this simplification introduces a stability

limit on At. However, for high Reynolds numbers, it is more

dissipative than the original method.

2. THE PURE INITIAL-VALUE PROBLEM

In this section we will first show that the linearized

inviscid equations are strictly hyperbolic. After elimination

of the variables p and T, the linearized system can be

written in the form

wt + Awx + bwy = 0,

where

w = (U,V,P) T
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(I -2R) u	 -2ry 	c2

A	 0	 u	 0

	P 	 0	 u

	

v	 0	 0

B	 -2Rv	 (1-2R)v c2 /p

	

0	 p	 v

C2 = R (1-u2-v2)

u,v,p now considered to be known functions. To prove strict

hyperbolicity we must show Ulat the eigenvalues of Aw l + Aw2

are real and distinct for all real w l , w 2 with w1 + w2

An easy calculation shows that these eigenvalues are given py

x 1 = uw l + vw2

2.3 - (1-R)(ur,i^+vw 9 }r	 R (ub) 1 +vw 2 ) +c2(wl+w2)

All eigenvalues are obviously real, and since R # 0, c # 0,

they are also distinct for w 2 + w2 = 1.

The complete inviscid Navier-Stokes equations are

symmetric hyperbolic, i.e., the corresponding matrices A and

B can be symmetrized by the same similarity transformation,

see (9]. This is not the case for the system considered here.

With the notation, a + = Ru± 3R -u^j, the eigenvectors of A

arc the column vectors of
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	a + 	a-	 0

S =	 0	 0	 C2/R

	-p	 -p	 2vp

If A and B can be symmetrized by the same similarity

transformation, then we can diagonalize A by an orthogonal

transformation, and therefore B stays symmetric.

Therefore S -1 AC is diagonal, and

Rva 3	c2a_
RVE.+
	 - C 2	 2R

-1	 1	
Rva+	 c2a+

S BS=vI- a _Ru
	 -^	

-Rva-	
2R

	

+	 c

Ra t (a + -Ru)	 Rat ( a + • Ru)
- c2	 -- c2	 0

which is not symmetric. The eigenvectors in S can be

permuted, but that does not effect the symmetry of S-1BS.

Furthermore, each eigenvector can be scaled by different

factors. This corresponds to a similarity transformation

of S-1 BS by a diagonal matrix. It is easily shown that it

is impossible to syTnmetrize S -1 BS by such a transformation,

and therefore A and B cannot be symmetrized simultaneously.

2The variable c defined by c = RT would for the non-
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k	 dimensivnalized system correspond to the local speed of sound.

However, the eigenvalues of A are u, (1-R)utc 3 
//
1+Ru 2 /T. These

are not the same as the eigenvalues of the corresponding A

for the complete Navier-Stokes equations, since the latter

are u, u ! c. We note that these are obtained if terms of

order R and smaller are neglected. (R is 1/7 for air.)

Looking at the velocity component in the x-direction, a super-

sonic state is most naturally defined as a state for which all

the eigenvalues of A have the same sign. Therefore, we will

define a state as subs,-)nic if the condition

(2. la)	 ( 1 -R)IuI < /R2u2+c2

is fulfilled, and supersonic if the condition

(2.1b)	 ( 1 -R)JuI > R2u2+c2

is fulfilled. (2.1a) can also be written (1-2R)u 2 < c 2 , or

equivalently

(2.2)	 1RR u2 +V 2 < 1.

3. WELL POSEDNESS OF THE MIXED INITIAL-BOUNDARY VALUE PROBLEM

In this section we will investigate the effect of the

boundary conditions, and we assume the pzoblem to be defined
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on the domain 0 < x < -, - 00 < y < -, 0 < t . We begin with

a br'ef discussion of the one-dimensional case.

Assume that the system w t 4 Awx = 0 is transformed to

diagonal form

Q t + Ay x = 0, A = diag(X1,x2"3)

Then it is well known that the problem is well posed if the

boundary conditions can be written on the form

^I 
(O l t) = 

L^II (Olt) ,- q (t)

where m 	 contains those variables ^ W which correspond

to positive X i , and m II contains the remaining ones, see e.g.

[6). Using the same notation as in Section 2, we have in

our case a l = u, a 2 = u-a-, X3 = u - a+ , and

V

	

_	 - a oU - 2RvpV + c2R

a { pU + 2RVpV - c2 

1	 (2) +	 (3)U	 —2r-(al 	(^	 m	 )

	

W =	 V =	 (1)

?vp	 (1) _	 1	 1	 (2)	 1	 (3)
R	

`2	 2 (a+- Ru) la_ 
4	 + a+ m	 )
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For supersonic flow (defined by (2.1b)), all three variables

U, V, R must be specified if u > 0 (inflow), and no

boundary condition should be given if u < 0 (outflow). For

subsonic inflow, the boundary conditions must be such that

^(I), y (2) can be expressed in terms of ^ (3) anti an inhomo-

gencous term. If we want to specify two of the physical

variables, we see that V must be one of them. Either one

of U and R	 can then be chosen as the other specified

variable, since for both of the,n c (2) occurs with a nonzero

coefficient. For the same reason, either one of U and

P, can be specified for subsonic outflow.

The two-dimensional problem is much more difficult to

analyze. The energy method does not work, since the system

cannot be symmetrized, and therefore we must use the theory

by Kreiss [5). Since part of the calculations are technically

complicated, we give here a summary of the wellposedness

proofs; lh` details are given in the Appendix.

The wellposedness is determined by the behavior of the

solutions to the system

(3.2)	 Aw- ;- (s1+iwB) w = 0,

which is obtained by a Laplace transformation with respect

to t and a Fourier transformaticn with respect to y. The

solutions to (3.2) consist of components of the type eKlx^i

where K 	 is a solution of Det(C) = 0, C(K)=AK + sI+iwB

^.
(or of the type x l e 	 ^ 1 for multiple roots Ki).

.7_	 ...^ --...-- ,....
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With the notation a = s+iwv, the Kitt are defined by:

K 1 = - a/u

(3.3)	 vK2^3 + 2u((1-R)a-Rviw)K 2 3 + a2-2uRvial+c2w2=0,
r

where v = (1-2R)u 2 -c 2 . The corresponding vectors ^i are

given by

uiw	 K.2, 3 ( a +K2,3u)

^'1 =	 a	 y2,3 =	 iw(a+K2,3u)

2pR(u2iw+v(x)/c2	 L Awl-K2•'3)

Note that a - ±uw if and only if K 2 = +w and therefore

K 1 = K 2 . In this case howc ,er, ^2 is the nullvector, and we

have only two linearly independent vectors 0 1 , ^ 3 . If

K 2 = K 3, it is also clear that there

independent vectors ^1 , ^2.

Let M be the class of vector

(3.2) and with wEL 2 (0,-) for Re s >

posed if there is no nontrivial wF^M

are only two linearly

functions w satisfying

0. The problem is well

satisfying the homo-

geneous boundary conditions for any s with Re s > 0. 	 (if

there is such a nontrivial solution for a purely imaginary s = so.

then so is called a generalized eigenvalue.) We will now inves-

tigate this condition for the different cases.
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Supersonic Inflow

In this case there are three linearly independent solutions

belonging to L 2 (0, ,-), and we begin with

Case 1: K 1 # K 2 # K 3 # K1

The general solution is

w(x) = Ge r a s ^ 1 +r)e K 2 , ^ 2 + 
^eK3k ^3

where ^,n,C are scalars. The condition for having nontrivial

solutions satisfying w(0) = 0 is

Det ( ^ l' ^ 2' 4Y	 0'

A lengthy calculation (see the Appendix) shows that

(3.5)	 Det (V 1 41 ^ 2 ,V) 3 ) = v	 ( K 2 - K 3 ) c2 (u2 w 2
-a ` ) ^.

s

and it never vanishes because K 2 # K 3 , and moreover,

a = t uw only if K 1 == K 2 .

Case 2: K1 = K 2 # K 3

•	 The general solution is

W(X) = (T l +fx^l)eK1x+nW3eK3x 1

where

i

(3.6)	 C(K1)T1 = - A^^1
	 .

•
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The condition K 1 =K 2 implies a	 t uw and K 1=*_w.	 w(0) - 0

implies ^1 =- n, 3 . When substituting this into (3.6), we obtain

from the first and the last equation

(3.7a)	 n(K3!w)2

(3.7b)	 n(K3tw)2 = [-pi-2Rpu(ui+v)/c2)^,

whic:+ contradict each other if f,¢0,	 1100.

Case 3: Kl^K2=K3 .

The general. solution is

K X	
K7X

w (x! = Ky le 1 + ( ^ 2 +nx lP 2 ) e

where

(3.8)	 C(K2)V2= -An^2 .

In the same way as above, we obtain two equations

corresponding to (3.7)

(3.9a)	 iwupn=aC

(3.91.--)	 apn=-uiw^ .
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These lead to the case	 a 2=u 2w 2 , which corresponds to

K1==K 
2, Ind this is a contradiction.

Case 4: K1=K2=K3

In this case we must have a=*_uw, K=+w, and from (3.3)

we get vK=-u((1-R)a- Rvi4)). The imaginary part. of the

equation yields v=0 and the real part yields u=0.

This completes the proof of wellposedness for supersonic

inflo• -

Supersonic Outflow

This case is trivial, since all K's have positive real

part for Re s > 0, and no boundary conditions should be

given.

Subsonic Inflow

In this case there are only two linearly independent

solutions belonging to L 2 (0,-). The general solution is

K 1 x	 K 
2 x

(3.10)	 w = Fe	 ^1+rje	 ^ 2	 if K1#K2

and

+wx
('.11)	 w = (^ J

+cx^ l )e
	 if K1=K2
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i
	 where	 is defined by (3.6).

With the assumption that U and V are specif i ed, we get

immediately the condition for a nontriv -J ai solution

I

(3.12)	 (uw2+aK2) (u+K 2 11)	 0	 if Kl¢K2

Since by assumption a +K 2u#0, we obtain the equivalent con-

dition a=- uu) 2 /K 2 . With this a-value .inserted into (3.3), we

obtain an equation for K=K2/iw:

(3.13)	 (K.2+1) (vK 2 - 2RuvK+u 2 ) = 0

Since K=± i, a=±uw corresponds to K 1 = K 2 , the critical K-values

are

(3.14)	 K = u(Rv± R2v2-v)/v

The subsonic condition is cr uivalent to v < 0; therefore, both

K-values are real. The corresponding a-values

(3.15)	 a=aiw _	 y	 - iw

Rv* 3R`v2-v

are purely imaginary. This means that the only nontrivial

solution corresponds to s 0 = (a-v)iw. With a=aiw+d, 6>0, we

want to see if the corresponding K satisfies ReK<0. In that

case we have a generalized eigenvalue s=s 0 , and the problem is

1

:_	 1
	 i	 1
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not well posed in the s^nse of Kreiss t3j. In the Appendix

it is shown that Re K < 0 if

	

(3.16)	 (1-R) (u 2+v 2 ) > R.

Unfortunately, this condition can be fulfilled even if the

subsonic condition (2.1a) is satisfied, provided that 2R<l.

Therefore, we have proved that the problem is not well posed

for example with a transonic boundary, because there is

always some part near the transonic point where (3.16) is

fulfilled if v/0.

It remains to treat the case with double roots K1-K2,

when the solution h--:s the form (3.11). A straightforward

calc lation (see the Appendix) shows that the condition for

a nontrivial solution leads to the trivial case u=v=0.

Another natural choice of boundary conditions would be

the specificiation of V and R. A^;tiuming K l -^K 2' the condition

for a nontrivial solution is

	

(3.17)	 c2a(w2-K2)-2Riw(u2iw+v(.c) (a+uK 2 ) = 0

Solving this equation for w 2-K2 and inserting that into
(3.3) gives (since a+uK2#0)

i
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(3.18)	 (1-2R)uaK2=2Ru2w2-a2 .

With the expression for r 2 defined by this equation inserted

into (3.17), we obtain

(3.19)	 (a2-u2w2)[c2a2-4R2u2viw(1-2R)a-4R2u2w2(c2-(1-2R)u2))=0.

a=±uw corresponds to K 1=K 2 , so the critical a-values are

given by the zeros of the second factor:

(3.20)	 a=2Ruw(Ruv(1-2R)i± /-vc -(1-2R) 2R u^^)%c^

From (3.18) it is easily seen that ReK 2 > 0 if Ht-W>0

and	 I^ <2Ru 2a	 w	 But tais inequality follows immediately

from (3.19), where the magnitu , '.e of the constant term in the

second factor equals c 2 1r.1 2 . He;ce, the critical_ a-values

(giving Rer 2 <0) must Le imaginary, and this is the case when

1R 2 + (1+ u 2 (12	 ) v2R) 2R2R u 	 > 1.
c

A perturbation calculation shows that there is a generalized

eigenvalue in a neighborhood of the transonic point. The

above analysis show:, that we must resort to the specification

of the characteristic variables ^ (1) and ^ (2) (see the

definition (3.1).) Following the same lines as above, we

N
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arrive for K1^K2 at the final equation (stated in terms of

a this time) for a nontrivial solution:

(3.21)	 (CL 2 -u'^-) 2 ) (2Rviw(u-a + ) a +a-va+w 2 ) = 0

a 2 =±uw is ruled out by the assumption K 1#K 2 , and the remaining

critical a-value is, therefore,

va+
(3.22)	 a = - 2Rv(u-a+) iw	 aiw .

A perturbation calculation shows that the condition Re ►:<0 for

a=aiw+6,6>0, is equivalent to the supersonic condition.

The multiple root case leads to no new restriction on

u, v, and, therefore, we have a well posed problem.

Subsonic Outflow

For this case only one variable should be specified and
K3x

the solution to (3.2) always has tt,e form %i = E,e	 ^3. Since

a+K 3u#0, the only possibility for a nontrivial solution with

U specified is K 3 = 0. This corresponds to the a-value

a = (R .^^ c 2 +R2v 2 )iw=aiw. Substituting a=aiw+d into (3.3), we

obtain after dropping second order terms in 6 and K
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K _	 + R2 v 2 +c 2
	6 u 0 .

^^^	 u
± R 2v +c - R(Rv_± R^v`^)

Since R2  is always less than (1-R) 3R ly^ 2+c2 if 21Z < 1, we

see that K>0 if 6>0, and wellposedness is proved.

For R specified, the condition for a nontrivial solution

is K 3 = ±w. It is enough to investigate the case t:3=-w,w>0.

From (3.3) we obtain the corresponding a-values (-x1=uw,a2=

((1-2R)u+2Rvi)m which both have negative real parts. This

proves the wellposedness.

Let us finally mention that for a subsonic outflow

boundary it is often difficult to specify accurate values for

the variable u or p. In that case one could think of using

numerical boundary conditions that approximate the condition

awr /axr=0, r>0, i.e., vanishing derivatives of some order is

assumed for all the variables. However, it is easily proved

that this leads to a non wellposed problem for all r	 0.

Since the derivative boundary condition applies also to the in-

going characteristic variable, it is sufficient to study the

scalar equation ^ t+a^x=0, a>0. After transformation the

general solution is ^=exp(-s/X)a), and the condition for a non-

trivial solution becomes
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(-s/X) r = 0.

Therefore, s = 0 is a generalized eigenvalue.

4. THE HOPSCOTCH METHOD

Using the notation uj = u t jAx,nOt), the 1lopscotch method

(see ( 3) , [ 4) ) is defined by

(4.1)	 u^+1 = u^ + Lui	 j+n even

(4.2)	 u^+1 = U  + Lui +1 , j+n odd

where L is a difference operator. Assuming j+n even and

combining equation (4.1) with

n	 n-1	 nj	 ju = u	 + Luj

we obtain immediately the two equations

(4.3)	 uj+l = 2u  - uj-1

j+n even

(4.4)	 uj+1 _ uj-1 + 2Lu^

Similar'd.y for j+n odd, we combine equation (4.2) with

un a U.	 + Lun-1
1	 3

r
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to obtain

un+1 = U.	 + L(un+1 + un-1) .
J	 J	 J	 7

If L is defined by Lu
n = A ^t (u n _u

n ) , the extra-)	 2Ax	 j rl j-1

pk, lation formula (4.3) is valid with u^ replaced by Lug, and

we get

(4. 5)	 u^+1	 u^-1 + 2Lu^, j+n odd.

Therefore, the hopscot.:h scheme for the model equation ut=Aux

is equivalent to the Leap-frog scheme at every point, provided

that the first time level for the latter one is generated by

(4.1) and (4.2). The stability condition is the CFL-condition

(4.6)	
ex p (A) < 1

where p(A)	 is the spectral radius of	 A.	 For the equation

xx u t=Au	 and with	 L	 defined by Lun = A At 2 (un+1 tun+un J	 (Ax)	 j +1 	 ]- 1

then, as pointed out in (3), the scheme is equivalent to the

DuFort-Frankel scheme

(4.7)	 un+l = un-1 + 2At A(un _un+l-un-1+un )
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with u^ defined by (4.1), (4.2). Accordingly it is uncon-

ditionally stable. In order to avoid the solving of a system

of equations to obtain u n+1 at each time step, Auk +1 can be

replaced by Au k . If only the stealy state solution is wanted,

the inconsistency with the time dependent problem thereby

introduced if of no importance. However, we will shoe that a

stability .limit is imposed on At by this modification.

For the scalar equation u t=oux^ , the modified method is

defined by

(4.8)	 un+1_uj+X(un -2u^+u^_1),	 j+n even

(4.9)	 un+l_un+A(un+l_2un+un+1 	 j+n odd,i	 i+1	 j-1

where X = Ato2	 Proceeding along the same lines as above,
(Ax)

we derive the extrapolation formula corresponding to (4.3):

(4.10)	 2(1-X)un = un +l + (1-2X)u n-1 , j+n even.

P

Using this we then obtain an equation containing function

vdlues uj ±l , ui
-1 only:

(4.11)	 uj+1=2X(1-X)(uJ+1+uj-1)+(1-X)2ui-1 , j+n even.

A trivial calculation shows that the von Neumann condition for

(4.11) is
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(4.12)	 X < 1,

and the unconditional stability is lost. with u 	 , un-
7`- 1 	i

given, the equation (4.10) defines un assuming X	 1.

We also want to investigate the dissipative properties

for small X-values, which correspond to large Reynolds

numbers in (1.1). The eigenvalues of the amplification matrix

for the original Hopscotch method are denoted by r., and for

the modified version by Z. 7'liey satisfy the equations

(1+2X)z 2 - 4Xaz - 1+2X = 0

z 2 -4;x(1-X)az-(1-2X) 2 = 01

where a = cos(wAx). The solutions to these equations are,

after expanding the square roots anu dropping 0(X 3 ) terms,

z=2Xa ( 1 -X ) . (1-2X+2X 2 (1+C, 2 ) )

z=2Xa(1-2X)+2X 2a+ (1-2X+2X 2 (1+a 2 )-2X 2 ) .

It is clear that if ail, a/-1, then IzI < jz^. Accordingly,

the di6sipation is larger for the modified scheme, except

for the lowest and the lighest frequency, where both schemes

have no damping at all.
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There is also another way to look at this difference.

From (4.8) and (4.9) we can for even j+n derive an equation

on the form

un+l`un-1+2J1(un .un+1_un-1+un )+2^(2un+1_un).

	

J	 J	 ]+'	 j	 J	 J'1	 )	 J

The last term represents the deviation from the original

Hopscotch scheme, and it i s an approximation to 2XAtut.

Accordingly, the equation

_ Q

	

u t	 1-a uxx

is approximated by the modified scheme, and the dissipation

coefficient is obviously larger for a < 1.

5. NUMERICAL EXPERIMENTS

The systen- (1.1) has been solved by Rudy et al. [8)

using several numerical methods. For the high Reynolds

numbers used there, we consider the system as a singular

perturbation of the inviscid hyperbolic system. The choice

of boundary conditions should therefore be made based on

the analysis in section 3.

When the experiments in [8) were made,only the one-

dimensional analysis had been performed. Therefore, all the

experiments were made with u and v specified at subsonic
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inflow boundaries. As we have seen in Section 3, this ,fives

rise to a non wellposed two--dimensional problem for transonic

speeds at the boundary. however, for the actual boundary data,

the condition (3.16) for a non wellposed problem was never

satisfied at any grid point. in this section we will present

results for another set of data, where condition (3.16) is ful-

filled for the whole subsonic boundary.

Figure 1 shows the computational domain and boundary data

initially. in the neighborhood of the transonic point B the

data were chosen in a way such that they were smcoth on the

whole line AC.

The boundary conditions on the line BC were

(5.1)	 v	 loJ - fJ

(5.2)	 -ano3po^uo^l- 2RVo j po j vo^ l +(c 2 )o lj po^ = q j .

The outgoing characteristic variable t (3) was defined at the

boundary by using linear extrapolation. At the upper

boundary the analogous formulas were used. On AB every

variable was specified, on EF linear extrapolation was used,

and on the symmetry line AF we used the conditions

uy=py=O,v-O. This set of boundary conditions will be denoted

by B.C.I.

The scheme was also run with the subsonic inflow

boundary condition (S.2) replaced by the condition uo^ l	h^
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and where pai l was defined by extrapolation. This set will be

denoted by B.C.2. In both cases the conditions

Iun+1-un) < 10-2AtIunl

(5. 3)	
IVn+l- V II

I < 10- 2AtIU"I

Ip n+l
-p n I < 10- 2AtIPni

were checked. For the Hopscotch E( eme an artificial vi;cosity

term approximating O.lAt((Ax)2yxx+(Ay)2yyy) was included in

the equation for p. 	 A 20x60 grid was used, and At=.019,

Re=80,625. Figure 2 shows the pressure p after 500 time

steps when conditions (5.3) were first fulfilled for B.C.1.

It is seven that the pressure is far from being a constant in

both cases; B.C.2 produces very large and oscillating p-values.

There are no oscillations for B.C.1. Figure 3 shows the

pressure after 1300 steps. B.C.1 gives a smooth and almost

constant pressure profile. Figure 4 shows the results from

B.C.2 after 1700 steps when the conditions (5.3) were first

satisfied, and also after 2800 steps. Oscillations are still

present in the whole subsonic region.
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APPENDIX

Proof of (3.4)

The eigenvector ^1 is found directl;

C(-u 1 = 0.

However, since we don't have the explicit

the derivation of 
'p2 

and i''3 will be more

^ 2 = (61162,63)T

and substitute it into

C( K 2 )V 2 = 0

to get with K=K2

2
( a+(1 -2R ) Kul 6 -2RVK8 2+ ----K6 3 = 0

and
2

-2Ruiw6 l+(a+Ku-2Rviw)6 2 + p iw d 3 = 0

Eliminating d 2 from the last two equations yields

i (a+(1-21Z) +u) (a+KU-2RViw) - 4R2uviwK}61

2	 2
+ ( K (C(+Ku - 2Rv-w ) + P 2RVKlw}6 3 = 0.

We use now (3 . 3) to get the exisession
2

c 2 ( K 2 - w 2 ) d l = cp K (CL+KU) 83

and therefore,

^ l = p (a +KU) , d 2 = PW (KU+a) , 6 3 = — (K 2 -w 2 ) .

I	 i
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det (V I I ^2 1q) 2 ) =

K
iwu	 p(a+K2u)

a W ( a+K 2U)

K
3 (a,

ip (a+K3u)

2 2
W -K32p2 (u 2 iw+va)	

012
-K.2

c

Expanding the determinant around the first

det (^V, 2'V3) = (K 2 -K 3 ) { (K 3 +r.. 2 ) [-2c2w2au+2

(Al)	 + (K3- K2)[- c2w2u2-a2c2+2Ru2(

- c 2u 2w 4 - a 2 c 2w 2 +2RCi 2 (viaw-u2

We use now the characteristic equation (3.

get

(A2) K2+K3 = - 2u[(1 -R)a-2Rviw)/v

and

(A3) K 
2 
K 3 = (a 2 +c 2w 2 -2Rviwa)/v .
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After using (A2) and (113) in (Al) we get

det (^ V1 2 , ^ 3 ) = v(a 2 -w 2 u 2 ) 2c2 (K2-K3)

Derivation of inequality (3.16)

With r and a defined by (3.14) and (3.15) respectively,

we insert a = aiw + d and r = Kiw + E into (3.3). Dropping

terms of order d 2 , bE and E 2 , we obtain

0	 d
E _ _0+c2

+R (u2+U	 u I

where 0 = u 2 (l.-R) + a 2 - Rva. Since u > 0, E is negative

for b > 0 if and only if one of the inequalities 0 < 0 or

(M)	 0 > c2+R (u 2 +a 2 )

hold.With z = - v/(Rv) 2 , the inequality 0 < 0 is equivalent

to

V (	
z	

+	 1	 ) > (1-R) u 2 , 0 < z <

(1- 1+z 2 	1-

But since v < 0 and z > Y11—+z - 1, this inequality can never

be fulfilled.

The inequality (A4) is equivalent to

2(1-R) a - Rva + v > 0 ,
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which by the definition of a and z and after division by

-v	 (>0) can be written in the form

	

z (1-R) 2 +	 1	 - 1 > 0.
• (1±v"1+7 	 i±

After multiplying by (l! 31+z) 2 we obtain Rz + 1	 z

which gives the inequality

1-Rz	 22 	'
R

Using the definition of z, v and c 2 we get the inequality (3.16).

The case r 1 =K 2 for subsonic in f low, U, V specified.

Denoting the elemen^-, , of W1 by a l ,a 2" a 30 the last two

equations of (3.6) are

2
(A5) -2Ruia1-2Rvia2+ p ia 3 = + u2^

2
(A6) +a1+ia2- - 2R2 (uitv)^

c

For a l =a 2 = 0, (A6) implies =0 for u^0, and from (A5) we then

get a 3 =0, and there is no nontrivial solution.
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The case with V and R specified

With a-aiw + d and K =Kiw+e, we get from (3.3) dropping 62,

d E and E2 order terms

(^^)	
a	

u(1-R)K+a-Rv _ 6
u

K - (1-R) a+Rv

From (3.20) we have

a = 2Ru(Ruv(1-2R)* (1-2R) 2 R u 2v +vc )/c2

and the corresponding K from (3.18)

,.
(1-2R)uKa = - 2Ru 2 - a2.

Since jai < Rv and sign K = - sign a, the numer

is negative if v > 0 and a > 0. Therefore F- <

transonic point v = 0, and by continuity also i

hood.

The case with Characteristic Variable

With a defined by (3.22), the correspondir

by

(118 )	 K = K 2/ 1(v =	 va+ 	
2 + 

2Rvv
2Rv(u-a+)
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A	 A	 /

With a-6+aiw and K=e +Kiw wc. have (M). Since sign K sign

a = - sign v. it is sufficient to investigate the case v < 0.

For wellposedness we want to prove L>0 which is equivalent to

A	 A

-vK/u - (1-R)a + Rv	 0.

Using the cx - and K - values defined by (3.22) and (117) we get

(119)	 ( 1 - R) uIu - a+^ < (v^ + — a - I VI --

But it is easily seen that the subsonic condition is equivalent

to the condition (1-R)uju-a + 1 < M, and therefore (119) is al-

ways satisfic(:.

For K 1 =K 2 and with the notation ^=(al,a2'a3)T, we get.

from the condition.. V=4 (1)=0 on the boundary, that a 2=0 and

a 1 =	 2RU2 (ui'-v)^
c

3
c 2 a 3 =	 (u2pi + 4R2 (ui'v))C

c

The condition for a nontrivial solution satisfying (2)=0

on the boundary, becomes

2Rv	
2Ra-u	

4R2u22 (-a- +2Ru) _* (1- --2 +	 2 ) i = 0
c	 c	 c

and this cannot be sat. i sf i ed since al I terms ()f the imaginary

part have the same sign.
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