General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
SCANNING SYSTEM, INFRARED
NOISE EQUIVALENT TEMPERATURE DIFFERENCE
MEASUREMENT PROCEDURE

Job Order 46-315

Prepared By
Lockheed Electronics Company, Inc.
Aerospace Systems Division
Houston, Texas
Contract NAS 9-12200
For
EXPERIMENTS SYSTEMS DIVISION

National Aeronautics and Space Administration
LYNDON B. JOHNSON SPACE CENTER
Houston, Texas
February 1975
Abstract

Procedure for determining Noise Equivalent Temperature Difference for Infrared Electro-Optical Instruments. Outlines instrumentation required, proper measurements and method of calculation for NEAT.
SCANNING SYSTEM, INFRARED
NOISE EQUIVALENT TEMPERATURE DIFFERENCE
MEASUREMENT PROCEDURE

Job Order 46-315

PREPARED BY

J. B. Cannon, Jr., Principal Engineer
Lockheed Electronics Company, Inc.

APPROVED BY

LEC NASA

J. S. Creamer, Jr., Supervisor Richard R. Richard, H e a d
Sensor Systems Engineering Section Infrared Section

Experiments Engineering Department T. K. Sampsel, Chief

J. Fitzpatrick Sensor Systems Development Branch

Prepared By
Lockheed Electronics Company, Inc.
for
Experiments Systems Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS

April 1975
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>GENERAL</td>
<td>1-1</td>
</tr>
<tr>
<td>2.0</td>
<td>DEFINITIONS</td>
<td>2-1</td>
</tr>
<tr>
<td>3.0</td>
<td>REFERENCE DOCUMENTS</td>
<td>3-1</td>
</tr>
<tr>
<td>4.0</td>
<td>EQUIPMENT REQUIRED</td>
<td>4-1</td>
</tr>
<tr>
<td>5.0</td>
<td>REQUIREMENTS</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1</td>
<td>Handling Requirements</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2</td>
<td>Power Requirements</td>
<td>5-1</td>
</tr>
<tr>
<td>6.0</td>
<td>PROCEDURE</td>
<td>6-1</td>
</tr>
<tr>
<td>7.0</td>
<td>NEAT CALCULATION</td>
<td>7-1</td>
</tr>
</tbody>
</table>
1.0 GENERAL

This document presents procedures for the measurements of the noise equivalent temperature (NEAT) of infrared scanning systems operating in the thermal region of the spectrum.

This document applies to the following instruments:

a. RS-18, Texas Instruments
b. Reconofax IV, HRB Singer
c. M^2S, Bendix.
2.0 DEFINITIONS

The noise equivalent temperature difference (NEAT) of an infrared scanning system is defined as the temperature difference, in degrees Centigrade (°C), between two adjacent targets which will produce a peak-to-peak electrical signal equal to the rms noise in said signal. Unless otherwise specified, these targets are close to ambient temperature. However, in order to enhance measurement accuracy, one target may be as much as 10° C above ambient. Also, unless otherwise specified, each target is large in relation to the size of the scanner aperture.
3.0 REFERENCE DOCUMENTS

The following documents will be referenced for additional information.

4.0 EQUIPMENT REQUIRED

This section presents the equipment required to perform an accurate NEAT measurement. The equipment includes the following:

a. Scanner under test
b. Oscilloscope
c. True -- rms voltmeter
d. Two water trays, both of which are at least twice the size of the system aperture at a distance of one foot or more from the aperture
e. Two laboratory thermometers calibrated in °C.
5.0 REQUIREMENTS

5.1 Handling Requirements

The RS-18, Reconofax IV, and M2S are delicate, high-precision electro-optical instruments. The following special requirements should be observed:

a. Prevent the instruments from receiving mechanical shock. In addition to obvious structural problems which could occur, the precision optical alignment of these instruments could be disturbed.

b. Use caution to keep contaminants away from the optical surface of these instruments. In no case should the optical surfaces be touched with the bare hand.

c. Observe all special precautionary measures outlined in the respective operations manuals (section 3.0).

5.2 Power Requirements

Each of the scanners covered by this procedure require different power input voltage. Care should be taken to provide power as outlined in the operating procedure (see section 3.0) which is free of extraneous noise which may effect proper operation. Care should also be used to avoid ground loops which may contribute to excessive noise on output signals.
6.0 NEAT PROCEDURE

Follow this procedure to obtain data for calculating NEAT in the laboratory. Required equipment is listed in section 4.0.

1. Set up the scanner on an appropriate stand such that the pans of water can be placed in the field-of-view of the scanner optics without obstruction. Connect the proper cabling and power to the scanner under test.

2. Connect both oscilloscope and true-rms voltmeter to the preamplifier output of the system under test. Refer to the appropriate manual listed in section 5.0 to determine where to make this connection.

3. Connect power to the system and operate per Operation Manual to verify that the system is operational.

4. Noise measurement – With the scanner energized and the scan mirror not rotating, or with the scan mirror rotating and the detector covered, measure the noise voltage at the preamplifier output with a Ballentine, or equivalent, true-rms meter.

5. Delta signal measurement – With two (2) pans of water of known temperature in the live-video field-of-view and the scanner mirror running, measure the peak-to-peak signal voltage difference in the signals with an oscilloscope. Record the voltage difference. The difference temperature of the water should be at least 2° C to 5° C differential. The voltage difference in the signals from the two (2) pans of water will be defined to be the
Delta signal. The water should be agitated sufficiently to eliminate thermal gradients. Carefully read the two thermometers, without removing the bulbs from the water. Record these readings.
7.0 NEΔT CALCULATION

System NEΔT (Noise Equivalent Delta Temperature) will be calculated from the following formula:

$$\text{NEΔT} = \frac{(T_2 - T_1) \cdot V_{n(rms)}}{AV_s}$$

where NEΔT is in degrees Kelvin,

T_2 and T_1 are temperatures of the pans of water in °C,

$V_{n(rms)}$ is the rms noise voltage and,

AV_s is the Delta signal from the oscilloscope reading.