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2. ACTIVITIES RELATED TO THE NGSP

y
(Grant No. NGL 36-008-093)

2.1	 Data Acquisition and Processing

The data of the WEST (West European Satellite Triangulation) and the ISAGEX
d

(International Satellite Geodesy Experiment) programs are at our disposal. The pur-

pose of this investigation is to utilize some or all of the above observations in order

to improve the values of some station coordinates on the European continent which

are presently included in the WN-14 solution and to assess the quality of the WN-14

solution with the help of the new data available. A detailed description of the data

is given in the previous Semiannual Status Report. The current status of acquisi-

tion and processing is given below.

2.11 WEST Data

There are two sets of optical data available. One set contains the direction

cosines of single fictitious images per plate including the standard deviations which

were derived from polynomial fitting. The other set contains the direction cosines of

seven fictitious images. All directions are given in the Greenwich Hour Angle

Declination system.

2.11.1 Single Image Data Processing

Since no program was available at OSU to process single image data, the

OSUGOP program (which was previously used to process BC-4 seven image data)
_	 1

was suitably modified by James P. Reilly. The subroutines READIN and ASD 360

had to 1.•i completely rewritten, while the subroutine FORMRN had to undergo only

minor changes.

Transformation of variances: The variances of the observations were given in

tte form of standard deviations along and across the satellite trail. The modified sub-

routines require as input the standard deviation of the Greenwich hour angle multiplied

with the cosine of the declination, the standard deviation of the declination and the

'	 covariance term. The variances were transformed as follows:
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Fig. 1 Transformation of Variances

C	
_	 ,

AL denotes length of the trail

8 A , b E denote declination of satellite (beginning and end of trail)
of denotes rotation angle.

The actual rotation is approximated by a rotation around the point A where the

satellite trail AB is taken to be a straight line..
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' Fig. 2 Rotation to GHA System 	
r

We obtain the relation' 	 'j
I

cGin(-co)( et

( X )Y - (-siOnS(--ci)' cos(-(x) )( x Y^^	 (1)

r	 where as is computed from the spherical relation

sin	 _
sine =	 (2)

I s in AL
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Using the given variance-covariance matrix

62

(02)sY

where b ,, is the variance along the trail and S y is the variance across the

trail, we obtain with relation (1) and the law for propagating the variances, the

transformed variance-covariance matrix

b X 6. Y 	 COS`(-ot)s i + sin2 	 21
(- cx )8c, sin(-a)cos(- a)(-^i +6c)

(8	 62 br	 sin2 ( - CY)8 i + cost (-ar)62

it should be noted that b ,, denotes b 0HA • cos 6 and that S Y denotes d 6;.

Some information about the observations stations: Station numbering

The whole set of observations contained 30 different tracking stations. They are

listed in Table 1 and their relative location can be seen from Figure	 Since the

numbering system for the WEST stations and WN-14 stations are independent, the

Same station number was assigned to different stations. In order to Avoid confusion

the WEST stations were in part renumbered with a four digit number. The complete

station number consists of four digits, where the first two digits were arbitrarily

chosen as 87 and the last two digits were the same as in the corresponding WEST station

number. In some cases even the second digit had to be changed. The following

r;	 table presents both numbers. Farther modification of the station numbers might
p-

become necessary.

t
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West Station Numbers
Name

Modified Original

1001 1001 GRA ZA
2001 2001 BRXOR
3001 3001 COPHN
5001 5001 MEUDN
5002 5002 STRBG
5003 5003 BRDUX
5004 5004 NICEM
5005 5005 GOULT
6004 6004 BRNSG
6005 6005 FRN FT
6010 6010 HOPBG
6012 6012 WSNDF
6110 6110 HOPBG
8004 8004 CATAN
8005 8005 OPICI

8006 8006 ORIAA
8007 8007 SRDIN
8008 9008 TANIA
8702 10002 MADRD
8703 10003 MADRI
8706 6006 KLSRH
8709 8009 CATNA
8712 11002 LOV CA
8721 12001 Z MWLD
8731 13001 EDNBG
8732 13002 MLVRN
8742 14002 TRMSO
8753 15001 REKVK
9001 9001 DELFT
9002 9002 DELFY

k #

I

s	 ^

I

1

Table 1 Summary of Observation Stations, WEST

Relative constraints for nearby stations: For the adjustment computations it

E is important to establish the exact relationship between nearby stations which can be

incr^^uced as relative constraints. In most cases the following information was

extracted from Circular Letters which were distributed by the International Assoc-

iation of Geodesy during the time of the WEST campaign. In some cases the relative 	 5
location of observation stations could be established from Cartesian coordinates

which are given in Ehrnsperger [4] The coordinates- are given up to millimeter
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and it seems reasonable to assume that they accurately render the relative position

of observation stations.	 (The actual distance between nearby stations usually amounts

to a few meters.) The details about some specific- stations and our observations and

conclusions are given below.

STATIONS 8702 (10002) MADRID - 8703 (10003) MADRI

Circular Letter No. 35: The new pillar 10003 MADRI (IGN camera) is 2.74m from

10002 MADRD. Ehrnsperger [41 gives the following coordinate differencesz 	 AX

- 0.065, Ay = 2.696, Az = 0.282.	 Check: the linear distance as computed from the

coordinate differences is 2.71m. 	 Conclusion: the above coordinate differences

seem to be correct.

STATIONS 9001 DELFT - 9002 DELFY

Ehrnsperi.;;er [4] gives the following coordinate differences: Lax = 3709.057, Ay

1053.539, Liz = 2925.820.	 Both stations are listed at the NASA Directory of Observation

Stati. n Locations.	 Their differences agree with the above values. +.

.	 STATIONS 6010 HOPBG - 6110 HOPBG

Circular Letter- No. 31 confirms that both stations are identical.	 The change of

the station numbers agrees with the convention during the WEST campaign that a
i

change of the camera should be indicated by a change in the third digit of the station

number. In this case station 6010 HOPBG was equipped with an IGN camera while

6110 HOPBG carried a BC-4 camera.

STATIONS 6004 BRNSG - 6012 WSNDF

Circular Letter No. '3: both stations are approximately 2m apart. Ehrnsperger
1 [4) gives the following coordinate differences: Ax = 1.785, Ay = -1.335, Az = - 0. 161.

Check: the linear distance as computed from the coordinate differences , is 2.23 M.

The coordinates of station 6004 BRNSG are listed in the NASA Directory of Observa-

tion Station Locations and agree with those used by Ehrnsperger. 	 Conclusion: the above

coordinate differences seem to be correct.

STATIONS 8008 TANIA - 8709 CATNA y

Ehrnsperger [4] gives the following coordinate differences: &x = 13333.95, Ay =

10080.89, Az = - 22966.80.

STATIONS 8004 CATAN - 8008 TANIA rx;

?	 Circular Letter No,. 37: the new station 8008 TANIA is approximately 12m south,r

7
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southesat of station 8004 CATAN. Ehrnsperger gives the following coordinate differ-

ences: Ax = -4.036, Ley = -8.238. pz = 7.882, Check: the distance as computed

from the coordinate differences is 12.06m and points in the expected direction.

Conclusion: the above coordinate differences seem to be correct.

OLD BC-4 SITE 6016 CATANIA

Circlular Letter No. 37: the old BC-4 site is 2.76m south of station 8004 CATAN.

This information made the computation of relative constraints possible (assuming that

both stations have the same heights): Ox = -1.67, Ay = 0. 00, Az = 2.17.

OLD BC-4 SITE 6065 HOHENPEISSENBERG

WEST observation station 6010 HOPBG is identical with station 8032 MUNICH

according to [6]. The following relative constraint between the WN-14 station, 6065

HOHENPEISSENBERG, and the WEST station, 6010 HOPBG, were derived from

geodetic coordinates given in [6]: Ax = 21.26, Ay = 54.46, Az = -24.52.

In order to compare or to combine the WN-14 and WEST systems, common

stations have to be identified. The following table of identical stations could be gathered:

WN-14 No. Name WEST No. Reference
6006 TROMSO 8742 [7] No. ,26

6016 CATANIA 8004* [7] No. 37

6065 HOPBG 6110, 6010* [6]

8009 DELFT 9001 [6]

8010 ZMDLD 8721 [6;

8011 MLVRN 8732 [6].

8019	 `, NICE 5004 [6]

8030 MEUDN 500.1 [6]

See the specific information given for the old BC-4 sites

-	 Table 2 Identical Stations for WN-14 and West

Preliminary Adjustment. Computations	 ='

Adjustment WEST No. 1

The purpose of the first adjustment was to find the adjusted variance of unit

weight and to get a first insight into the quality of the data. The following input data

8	 -
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and constraints were considered:

1) The transformed variance=covariance matrix was used as described

previously.

2) For all identical stations as given in Table 2, the approximate coor-

d inates of the WN-14 solution were used. All other station coordinates were trans-

formed from the European Datum EU-50 to the OSU (WN-14) datum using the following

parameters:

EU-50: A = 6378388. Om, 1/F = 297.0

OSU (WN-14): A = 6378155. Gm, 1/F 298.2494985

dx = -99.4, dy = -132. 0, d- _ -116.0, ds = 0.0675 ppm.

3) All relative constraints which were previously described were

enforced by appropriate weighting. The weights are based on an assumed accuracy

for the geodetic survey of approximately 1:50,000.

4) The origin of the coo p dinate system was defined by Inner Adjustment.

5) The scale was introduced through the base line 6016 CATANIA

8742 TRONSO with an accuracy of l ppm.

Result of the adjustment:

a) A posteriori variance of unit weight: 35.5.
3

b) In all cases the adjusted coordinate differences of those stations which 	 3

were connected by relative constraints do not deviate from the the constrained values.

Adjustment WEST No. 2

The purpose of this adjustment is to combine the WN-14 system and the WEST

system. The adjustment is based on the following input:

1) All possible relative constraints.

2) Chord constraints between stations 6016 CATANIA and 8742 TRONMO:

3) The coordinates of all common stations between both systems

(Table 2) are constrained to the adjusted WN-14 values using weights which were

computed from corresponding variances.

4) The heights of all common stations are constrained to the values

given in [3], Table 3. 3-3.

Result of the adjustment: a) A posteriori variance of unit weight: 37.1.

b) Comparison of coordinates of identical stations:'

9



1

Station No. Ux WN -14 UyWN-14 Oyz WN -14

Ax AzWN-14 WEST (M ax WEST my (Ty WEST M Qz WEST

2.02 2.24 2.35
6065 -0.56 1.83 0.25 2.24 0.81 2.04

1 -0.06
1.81 2.19 2.24

6016 1.67 1.47 2.18 0.07 2.08

2.36 2.92 2.89
6006 8742 -0.35 2.16 3.03 2.58 -0.94 2.31

1-1.86
6.46 9.66 5.80

8030 5001 4.94 -14.51 7.77 0.79 2.40

4.12 7.91 4.31
8019 5004 0.69 3.50 -12.31 6.64 0.38 3.68

5.71 8.28 5.44
8010 8721 7.51 3.49 -9.90 5.02 -4..89 3.57

8.86 14.27 6.96
8011 8732 -6.70 3.61 36.81 5.31 4.48 3,84

8.48 10.07 6.86
8009 9001 5.69 4.28 -6.92 5.38 -0.07 4.10

Table 3 Adjusted WN-14 Coordinates Minus the
Coordinates of Adjusted West No. 2

C)	 In Tables 4 and 5 the results are given for a transformation of the

coordinates obtained from adjustment WEST 2 to the WN-14 system.

2.11.2 Seven Image Data Processing

The seven image data received on cards was first transferred onto tape.

This data gives direction cosines, event/stationwise. Some event numbers have

been duplicated and there are some image numbers from 8 to 14. A second program

read the data from the tape, transformed the direction cosines to right ascension

and declination, generated additional parameters (such as numbers of stations in each

event) required for input for the OSUGOP program and transferred the data in the

new form onto disk. A third program has been made to read the single image data

(for variances) from cards, match it with the modified seven image data (event and

stationwise) and output the merged observational data giving a, 6 and variances for

the seven images. A variational parameter has been added fo vary the variances

of images 1, 2, 3, 5, 6, 7 with respect to the variance of the 4th image- which is available`

in the single image data.
10



saturION-T-DR--3^ --TR'ANSt:ATIONi-l-SCAEE-*AND - 3'- RDTNTTON -'PARAMETERS------------------	 -------- - ----------- - -----
(USING VARIANCES ONLY)

Dx 	 DY	 Dz	 DELTA	 OMEGA	 PSI	 EPSILON
METERS METERS METERS (XI.D+6) SECONDS SECONDS SECONDS

!t 2 * 57	 2,12	 3.12	 1.05	 Oo52	 0*26	 0*67

VARIANCE" -- 'COVAR IANCE MATRIX
-------------------------

S02^

0*659D+01

0oI59D+01

Oo493D+01

-0*241D-07

-0*558D-05

Oo83OD-06
09578D-05

0.79

0o159D+01

0*451D+01

^O 92 2 4D+O 1

-0, 109D-05

-0,185D-05

0*660D-06

0,296D-05

0.493D+01

0.224D+01

0.975D+01

0. 219D-06

-0.576D-05

0. 142D-05

0.895D-05

-0,241D-07

-0.1090-05

0.219D-06

0.11ID-11

0. 179D-13

-0*185D-12

-018BOD-13

IEN TS-OF--CO
----------

-0,558D-05

-0.018.5D-0^5.

-0. 576D-0 5

0 * 179D-13
0.643D-11

-0. 140D.-1.1

-0.675D-11

RR*EL-ATI ON--

0,8300-06

__0.66.0.0.-0.6

0.142D-05

-0485D-12

-0.1400-11

.-Ool5^9D-J-1

00 177D-1 1

0,578D-05

_0,296D-05

01895D-05

-0188OD-13

-0,675D-1 1

_0.1770-11

0,105D-10

0 * 100D+01. Oo,292D+00 0.616D+00 -0.893D-02 -0,858D+nO 0,256D+00 0,695D+00

09292D+00 0.100D+01 0.338D+00 -0,486D+00 -0.343D+00 0 * 246D+00 0,431D+00

0 * 616D+00 0 * 338D+00 0.100D+01 0 * 668D-01 -0,7270+00 0 * 360D+00 0*884D+00

--Oi8930-02 -0.488D+00 0.668D-01 0.100D+01 0 * 671D-02 -0.132 9D+00 -0.258D-01

-0,858D+00 -0.343D+00 -0.727D+00 0.671D-02 0.100D+01 -0.437D+00 -0*822D+00

0,256D+00' 0.246D+00 0.560D+00 -0 * 139D+00 -Oo437D+00 0 * 100D+01 Oo432D+00

0,695D+00 0.431D+00 0,884D+00 -0 * 258D-01 -Oo822D+00 0.432D+00 0*1000+01
Table 4

K t STMA-ES--

-600-67
6016 1.6	 -2.1 -0.1
6065 01*7	 -1.o3 -0,8
8009 -6.9	 5.5 MQ.4
801-6- 16- -8	 -5 4_ -.5
8011, 4*7	 35 * 0 -5o6

-Oo7	 10aQ -1,0
8030 0*7	 12e7 -1.7

Table 5

Lf



After outputting the merged data onto a tape in a form compatible with the

input requirement of OSUGOP, experiments similar to the ones done with the single

image data will be performed.

a 2.12 ISAGEX Data

General Remarks

A detailed description of the ISAGEX data as obtained from the Centre National

d'Etudes Spatiales is given in the previous Semiannual Status Report on pages 4 - 10.

The data consist of laser ranges and optical observations.

It was already reported that no simultaneous laser range observations could

be found. Therefore, efforts were made to further process the optical observations

only. The preliminary results, which were already reported, indicated either a
a

very poor quality of the ISAGEX data or a blunder in processing. It was therefore

decided to completely re-examine the investigations done so far, startii.g with the
t."	 preprocessed data as provided by Wolf R,,!search and Development Corporation.

E`	 The data did not include observations of MIDAS 4 and PAGEOS. These data were
i

thus sent to W If Research and Development Corporation for preprocessing. However,

it was learnedluring a telephone conversation with Ms. Donna Walls of the Wolf

Corporation, that difficulties had arisen in obtaining the correct input data for pre-

processing. It was consequently decided not to use the MIDAS 4 and PAGEOS data

anymore for this investigation. 	 1k^

F^
Current Status of Processing he ISAGEX Optical Data

The preprocessed data were tested for simultaneity. Allowing a time gap of 0.2ms,

a total of 353 observations proved to be simultaneous, involving 13 different stations

which are exclusively located in Europe.

In the next step the quality of the observations was tested by forming the

normal equations using the OSUGOP program. As explained in the Reports of the

Department of Geodetic Science No. 190, page 12, a so-called test distance can be

t	 used to specify rejection criteria for each observation; or, conversely, by
fi looking at the computed test distance we can judge the quali±y of the observation.

x,

	

	 A large test distance indicates either bad quality )f observations or poor approxi-

mate station coordinates. In our computations we used first, station coordinates

12
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in the European system ED 50 as extracted from the NASA Directory of Observation

Station Locations and from various ISAGEX documents, and secondly, the approximate

coordinates which were used for the WN-14 solution. If no WN-14 coordinates were

available, approximately transformed coordinates were used. The coordinates of

station 1147 ONDREJOV were extracted from [5]. Both computations showed only

minor differences. In Figure 4 the distribution of the 13 remaining observation

stations is given. Also the number of observations on each line with a test distance

smaller than 15 arc sec are shown. It is important to note that only a few observa-

tions which qualify, exhibit such a large test distance, while the vast majority has

a,'test distance of 1 arc sec or even less. The remaining observations have in

most cases, test distances of several thousands arc sec, which probably indicates

an error in data reduction. A closer inspection of those lines shows that the

approximate coordinates do not cause such large test distances

The following,table lists the 13 qualifying stations: 	 {

ISAGEX No., Name

1055 UZHGOROD
1184 RIGA
1147 ONDREJOV
1181 POTSDAM
8009 HAUTE PROVENCE
8010 ZIMMERWALD
8011 MALVERN
8019 NICE
8031 EARLY POINT
8034 YPBURG
9004 SAN FE RNANDO
9030 DYONISOS
9120 SAN VITO

Table G ISAGEX Stations

Some Remarks on the Observation Stations: r
The two data sets, WEST and ISAGEX, are independent sets, but the observations

were made from common or nearby stations. It is, therefore, important to uniquely

identify the observation stations. This investigation, iz still in progress and the

following two tables are only of preliminary character;

1

13



ISAGEX No. WN-14 No. Name

9004 9004 SAN FERNANDO
8009 8015 HAUTE PROVENCE
8010 8010 ZIMMERWALD
8019 8019 NICE
8011 8011 MALVERN

Table 7 Apparently Common Stations between ISAGEX and WN-14

ISAGEX No. Name WEST No. Name

8031 EARLY POINT 8731 EDNBGI
8034 YPBURG 9002 YPBURG
8010 ZIMMERWALD 8721 ZIMMERWALD
8019 NICE 5004 NICEM
5005 GOULT _ ___ _ 8009 HAUTE PROVENCE

Table 8 Apparently Common Stations between ISAGEX and WEST

Preliminary Adjustment Computations:

In order to further test the observations, various adjustment computations were
-a

carried out. From Figure 4 it can be seen that the following four stations do not

form closed figures:

1055 UZHGOROD

1084 RIGA

9030 DYONISOS i
9120 SAN VITO

These stations have been neglected in subsequent computations.

Adjustment: ISAGEX 1

The adjustment is based on the following information:

1) Number of stations: 9

2) Standard deviation of the observation: 1 arc sec

3) The origin of the coordinate system is defined by Inner Adjustment

4) All five stations given in Table 7 have be<an coias trained to the WN-14

coordinates where the weights were computed from the standard deviations given

in the Reports of the Department of Geodetic Science No. 199, pages 118-145, as

14
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it
Weight

Result:

a) Variance of unit weight: 4.0

b) Comparison of coordinates: WN-14 - ISAGEX.

Station No. Q x WN-14 Q yWN-14 QzWN-14Ax(m)
a% InAnE X

AY(m)
v	 A Az(m)

a,WN-14 ISAGEX
5.71 8.28 5.44

8010 8010 26.21 7.51 -17,64 5.36 -15.1 5.40
8.66 14.27 6.95

8011 8011 2.43 13.12 -60.88 14.65 -11.86 9.04
4.19 8.00 4.38

8015 8009 -28.01 1	 6.36	 - -21.47 5.91 25.31 6.87
4.12 7. 31 4.31

8019 1	 8019 - 20.02 6.31 44.15 10,74 -12.45 8.31

Table 9 WN-14 - Adjustment ISAGEX 1

2.13 Determination of Transformation Parameters and Network

Distortions

1

The Fourteenth and Fifteenth Semiannual Status Reports contain various

tables of transformation parameters and figures which give indications of network

distortions. Investigations have been made so far for the North American Geodetic

Datum NAD 27 and the Australian Geodetic Datum. Both reports also contain a

detailed description of the procedure used in this investigation. During the present 	 j

reporting period, computations have been carried out for the South American Datum

SAD 69 using Doppler stations which were provided by the Defense Mapping Agency

(Attachment 1), The results are given in Table 10 and Figures 5, 6, 7, 8, 9 and 10.

At this time the investigation regarding the transformation parameters and

network distortions using the previously mentioned procedure can be considered

complete. It is intended to publish all results and updated computer programs in

a final report.

16



NWL9 SAD69

& X (m) -77.8 f 2. 1
16y(m) -12.4 f 3.9

Az (m) -49.5 f 2.6

A(10 -6 ) -	 0.99+0.55

W (") 1. 18f 0.33

0.90	 0.13

E (") 0.161 0.10

(") 0.33± 0.10

(") - 0.481 0.10

77 (a) -	 1..37-1 0.35

Table 10 Datum Transformation Parameters
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Longitude Differences After Transforming SAD69to NWL9D (in Metres)
3 Transformation Parameters

^	 r
Du (m) = 80.4±2.6
AV (m)= - 0.3±2.6
Ow(m)=-40.3±2.6





0

Au (m)= 80.4+2.6

AV (m)= -0.3±2.6



a	 _

Height Differences After Transforming SAD69 to NWL9D (in Metres)
7 Transformation Parameters (NWL9D-SAD69)

MODEL
Molodenski i	 Veis

r (m)=-77.8 ±2.7	 u^(" )= 1.18±0.33	 a(")= 0.33±0.10
r: (m)=-12.4 ±3.9	 q(")=-0.90±0.13	 1:(")=-0.48±0.10

n (m)=-49.5 t2.6	 e(°)= 0.16tO.10	 1.37±0.35

(pPm) = -Q99±0.55

0



3, ACTIVITIES RELATED TO EOPAP
(Grant No. NGR 36-008-204)

3.1	 Sea Level Slopes Along the Continental Boundaries of the U.S.A.

The previous Semiannual Status Report sets out the statement of'the problem

and the conclusions reached in comparing the results of leveling as done by geodesists

and oceanographers. These computations have been refined by using Prey reduction i
instead of free air reduction for gravity values. These modified computations, (see

Attachment 2), do not change the conclusions reached earlier.
a

The subject was discussed in Washington, D. C. on June 16, 1975 at the

meeting of the American Geophysical Union by the Subcommittee on the Discrepancy

in the Geoids. The following points emerged from these discussions:

(i) The oceanographers indicated that further research effort in identi-

fying the cause for discrepancy could be concentrated on the region very near the
4	

ocean surface.

(ii) The oceanographers agreed to supply further details about their

method of work by giving detailed calculations at one of the stations.

(iii) The study could be extended to the continental coasts of both North

t	 and South America for which data is understood to be available.
k

The computations previously carried out were modified to depict the mean

sea level with respect to the origin of geodetic leveling. This has been shown in

Figure 11. This may be studied in reference to the previous Semiannual Status

Report, Figures 3.1-3 and 3. 1-5,

The graphics give no additional information. However, the agreement

about the direction of slope between oceanic and geodetic leveling is now less

obvious. Further investigations could be attempted after more data is received.

s
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j	 3.2	 Rotation of the Earth

1

The equations of motion of a rigid body about its center of muss are governed

by the well known Euler's equation. Under the assumption of absolute rigidity, the

relative positions of all mass particles constituting such bodies are constant, so the

external form as well as the moments of inertia are fixed and independent of time.

It appears clear now that the assumption of rigidity for the earth is incorrect

and a better modeling should be investigated. Because the mass distribution of the

earth is subject to variations with time (i, e. , tidal deformation, crustal motions, 	 j

etc.), producing changes in its inertia tensor, the rotational dynamics of the earth

are better studied by the Lagrange- Liouville equations.

The mathematical theory can be summarized in the following three equations,

expressed in matrix notation by

{L}	 [i] {w} + [i] {w} + { hI + [wl [I] {w} + [w] {h}	 (1)
where:	 j

{ (L) = vector of external torques

{w }	 rotation vector of the earth

{h} - relative angular momentum vector

i	 [I]	 earth's inertia tensor of the second order i
[w] = skew-symmetric matrix of the rotation vector.

All of the above vectors' components are referred to an arbitrary earth fixed system.

Significant simplifications will be introduced when we choose the principal moments of

inertia axis as the reference system. As usual, the derivatives respect to time are

represented by a dot.

Equation (1) can be solved for the general case of a deformable earth by

taking into consideration the variations of [I] and [h} • For example, it is

possible to write

[I] _ [lo] + [All P + IA,IR + [A1] T + [d1] E + other effects	 (2)

where

[1 0]	 initial value of the earth's tensor of inertia 	 1

[A1] P = contribution to [l0 ] due to crustal mass displacements (plate tectonics)

[A I] R	 contribution to [1 0 ] due to rotational deformation
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[aIJ T = contribution to [Iol due to tidal deformation

fail E _ contribution to [Io] due to large earthquake faulting.

Similarly,

[h}	 [ho} + f h } P + {hj R + [h} T + [h }E + other effects . 	 (3)

Each of the above contributions to [1 0] and (ho I is obtained after consideration

of the particular adopted earth model.

For example, one may express:
a

	

[ail P = E fail P	 (4)
1=1	 -!

where n is the number of tectonic plates constituting the earth crust.

Likewise,
m

	

fall T _ _ _ E [LEI] T	 (5)

where j 1, 2, • • • m refers to the moon, sun and planets producing tidal

deformations.

Thus, the solution [ w } of the differential equations (1) will provide the

changes in the earth rotation vector after consideration of the latest geophysical

theories.

The nature of these changes will depend on the hypothesis about the

distribution of masses and its time variations. Clearly, secular changes in

f w} ,_ if any, will be produced by [AI]p. Periodic changes will be caused by

[aIl T and sudden variations in [w } will be due to the effect of fa ll e .

The present intent is to answer the controversial question of secular drift

of the "mean pole. " The tectonic plate model given by [Solomon and Sleep] is used

in the investigation for the computation of [a I] P (see equation (4) ).

Analytical expressions for the obtention of fail P1 due to differential motion
z

of the plates have been developed as well as formulas for the computation of

[AI] P 1 and [h} 
P,

1

A computer program is being written in order to obtain the contribution

	

to [Io] of each independent plate [&I] P 1 .	 This program integrates over an

ellipsoid and assumes the Heiskanen theory of isostatic compensation for the

F	 crust. This hypothesis roughly agrees with the separation crust-mantle as

postulated by seismologists (i.e., Mohorovicic or M discontinuity).
s
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Also a computer program is under way in order to obtain good initial values

of the earth inertia tensor [10].

In the future, after the values of [I 0], [AI] P, [LEI] p, {h} P and {h} p are known,

1i	 the differential equations (1) will be solved numerically, thus answering the question

of a possible secular shift of the pole due to crustal unrest.
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DEFENSE MAPPING AGENCY
TOPOGRAPHIC CENTER

i	 WASHINGTON. O.C. 20315

REPLY TO
ATTENTION OF:

DMATC-G (52 321) 2 9 APR 1975

Mr. Alfred Leick
Department of Geodetic Science
Ohio State University
1958 Neil Avenue
Columbus, Ohio 43210

Dear Mr. Leick:

Reference is made to your letter to Dr. Kenneth I, Daugherty, dated
21 October 1974, requesting coordinates of Doppler stations in South
America and your telephone conversation with Mr. John Love of this
Center on 21 April 1975.

The attached data partially fulfill your request. Enclosed for your
retention are copies (front and back) of Geodetic Summary cards con-
taining South American datum (SAD) positional data and Doppler Receiver
Geodetic Summary sheets containing satellite derived positions for 	 a
the following stations:

	 j

i
STATION NO.	 STATION LOCATION

	

30009 (T-009)	 General Conesa, Rio Negro, Argentina

	

30010 (T-010)	 Villa Dolores, Argentina

	

*30011	 Tierra Del Fuego, Cerro Sombrero, Chile

	

30012	 Frutillar Alto, Chile
(Pre- and Post- Earthquake Values)

	

*30013	 Punta Arenas, Chile

	

30022	 Santiago, Chile

	

30023	 Arica, Chile

	

30120	 La Paz, Bolivia

	

30121	 Quito, Ecuador_

	

30196	 Coromoto, Venezuela

	

30209	 E1 Callao/Tumeremo, Venezuela

*1963 Provisional South Chile datum, not yet related to SAD.

Authorization from the governments concerned has been obtained to
release the coordinates of the Doppler stations for your use at Ohio
State University; publication of the coordinates would require further
authorization.
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DMATC-G(52321)	 2 9 APR 1975
Ohio State University

Positional data for Station No. 30122, Asuncion, Paraguay, are not
furnished because authorization for its release has not been obtained.
TTnnn roe- pint of anthnri 2ati nn frnm tha rn[707-nmPnt of Paraotiw _ A!2tn fn►-
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DOES MEAN SEA LEVEL SLOPE UP OR DOWN TOWARD NORTH?

Comments on the article of the same title by Irene Fischer [1975]

by

M. G. Arur and Ivan I. Mueller
Department of .Geodetic Science

The Ohio State University, Columbus

1. • Introduction

Geodesists and oceanographers have disagreed on the direction and

magnitude of the North-South sea level slopes along the East and West

Coasts of the United States. j

There was some room to doubt the validity of the comparisons between

the results of the geodesists and the oceanographerssince they use different

methods and different reference surfaces for the determination of these

slopes[ Fischer, 1975] .

An attempt has now been made to compare the results of the ocean-

ographers and geodesists by .reducing them to the same terms.

2. Method of Calculation

The rekilts of both geodetic and oceanic leveling have been reduced to

the following compatible quantities for comparison at several stations along

the two coasts (see Fig. 1):'

(i).	Geopotential differences between the mean sea level and the deep sea

isobaric surface used as a reference surface in oceanic leveling.

(ii) Orthometric heights between the mean sea level and the,same deep sea

isobaric surface.
4
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Values at the various stations for the anomalous geopotentials converted to

dynamic heights of the mean sea level with respect to the standard ocean surface

(0-decibar) of reference have been taken from the graphs of Sturges [197], Values

at these stations for the orthometric height differences between the mean sea level

and the reference geopotential surface used in geodetic leveling have been taken

a	 from &. graphs of Balazs [1973].

Computations have been carriedd out for 21 stations along the U.S. East

Coast and for 8 stations along the West Coast. The following assumptions

have been made:

(i) The deep sea isobaric surface used as a reference in oceanic

leveling is an equipotential surface.

(ii) Oceanic and geodetic leveling is in perfect agreement at Neah

Bay on the West Coast and Port Maine on the East Coast, both

having been used as references (origins) in geodetic leveling

along the West and East Coasts respectively.
I
{	 (iii)	 The gravity field of the earth is well described by the normal

gravity field in the areas under investigation and gravity varies

linearly with height/depth up to 2 km.

None of these assumptions will effect adversely the conclusions to be drawn. i

3
2.1 Calculation of Geopotential Differences

2.11 Oceanic Leveling

In accordance with the notation in Fig. 1, the difference in the geopo-

tential between the deep isobaric surface and the mean sea level as deter-

mined from oceanic leveling at an arbitrary station i , is

a WO. AWS + M
O. gm. x Hs. + hD x 1000	 (1)

1	 1	 1	 1	 i	 a

where

G.	 A Ws is the standard geopotential difference between the deep sea iso-

r
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baric surface and the standard ocean (0-db) surface. The value for

this is 97 04. 032 m2 s-2 for 1000-db surface used as a reference on

the West Coast [Montgomery, 19731; and 19364.2m s 2 for

2000-db surface used as a reference, on the East Coast [Bjerlmes

and Sandstrom, 1910] .

dWOi is the anomalous geopotential at station i, as determined by ocean-

ographers.

hDi is the dynamic height at station i from the graphs of Sturges [1974]

and is to be interpreted as per equation (1) above, 1000 being the

constant value of gravity (in gals)used by Sturges to convert his original

dWOi potential anomalies into metric units.

Hsi is the orthometric height difference at station I corresponding to the

standard geopotential difference 6Ws.

gm, is the average normal gravity between the mean sea level and the deep

sea isobaric surface at station I (in gals) based on the Geodetic Reference

System.1967 It is computed from

gmi = 978.03185 (1 + 0.005278895 sin2cp i +

H
Oi

+ 0.000023462 sin4cp i - 0.000000 227 7	 ) cm s 2	 (2)j	 2

where p i is the latitude and HOi is the orthometric height between the

deep sea isobaric surface and the mean sea level (in meters). The constant

0.0000002277 (x 978) is the normal vertical gradient of gravity in water.

With the above notation AWpi can also be computed from

AWOi = gm x HOi .	 (3)	 1ly

The quantities -gmi and Hpi are.to be determined iteratively until equations

(1), (2) and (3) are mutually satisfied.

3



2.12 Geodetic Leveling

The geopotential difference at the station i between the deep sea 15abaric

surface and the mean sea level may also be computed from the results of

geodetic leveling as follows: i

4WO	 AW - dW	 (4)
(:	 i	 gi

where

AW is the geopotential difference between the deep sea isobaric surface

and tine reference geopotential surface along which. the geodetic

leveling is assumed to take place, and computed at the reference

station (origin of leveling) in accordance with section 2. 11.

dWi s the difference of geopotential between the reference geopotential

i surface of geodetic leveling and the mean sea level at the computation

station, or

dW	 e! h x g	 ,	 (5)
gi	 gi	 si

where hg, is the orthometric height at the computation station

between the reference geopotential surface and the mean sea level,

obtained from the graphs of Balazs [1973], and gs i is the average

gravity along hgi obtained approximately by inserting HO i 0

in equation (2) .

2.2 Results
i	 ^	

l

Figures 2 and 3 show the orthometric heights HOi , i.e., the position

of the mean sea level with respect to the deep isobaric surface as determined

through oceanographic and geodetic leveling. The heights from oceanographic

leveling were computed in ac jokdance with section 2, 11, i.e., through an

iterative. procedure to simultaneously fulfill equations (1), (2) and (3). The

heights from geodetic leveling were computed from



i

.HOi = H i - hgi	(6)

where Hi was also computed iteratively as HOi from oceanographic

leveling, except using the potential difference A W instead of & WOi

The differences between these two types of heights (oceanographic

minus geodetic) near the mean _sea level in terms of geopotential

are shown in Figures 4 and 5..

3. Conclusions and Comments on the Paper by Fischer [19751

M The results of oceanic and geodetic leveling are comparable.

In terms of magnitude, the discrepancies as pointed out by oceanographers,

between oceanic and geodetic. leveling, unfortunately do exist.

(ii) If the deep sea isobaric surface is taken as the equipotential

surface of reference, the results of both oceanic and geodetic leveling

indicate that the ocean is sloping down from South to North along both the

U.S. East and West Coasts.

(iii) The discrepancies are greater along the West Coast where the

deep sea isobaric surface of reference is 1000-db, as compared to the

East Coast where the reference surface is 2000-db. The geopotential

discrepancy is predominantly negative and increases with the distance from

the reference station. 	 s

(iv) Factors of some importance in the above comparisons are the	 j

lack of actual gravity data which made the use of normal gravity a necessity and

the choice of deep sea isobaric surface. Both are likely to account for a very small
a

part of the discrepancy in magnitude. The discrepancy about the direction

of the slope seems to have been resolved.

(v) Some of the above conclusions are unfortunately at variance with

the findings of Fischer [19751. ' The following comments are offered.

In preparing her graphs (Figures 2, 3 and 4 of Fischer's article), she

has computed normal orthometric corrections (Ob) in ten-degree meridional

J
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sections from Helmert's formula, multiplied by scale'factors (k) so chosen

that the sum of the corrections from the pole would yield an equatorial bulge

of 2m, 1.6m and 1.8m, respectively, to match Sturges's profiles. According

to Helmert's formula the equatorial bulge for 100 m separation at the pole is

53 cm, thus equipotential surfaces about 300 m apart at the pole will have a

bulge of 1.6m at the equator, which is the equivalent of a k factor of 3.019.

Let us take the case of the West Coast and study the implication of cons id-

ering 1.6m as the equatorial bulge as represented in Figure 3 in Fischer's

article. This bulge and the use of the corresponding k factor (3.019) implies

that she was in fact dealing with two equipotential surfaces which have an ortho-

metric separation of about 301.9m at the poles and 303.5m at the equator. The

upper surface is represented by the curve G in her graph and is thus referenced

to the lower surface (let us call it 0), taken as a straight line about 300m below

the ocean surface. Such a surface has no real meaning in the oceanographic or

geodetic sense. It is too low to be considered as the theoretical 0-db surface

(to which Sturge's profiles are referenced) and too high to be considered as the

1000-db surface (which is about 990m below the ocean surface). Since Fischer's

G profile in fact refers to this 0 surface and Sturges Is profile to the 0-db surface,

the convergence of these two surfaces needs to be considered, i.e., when com-

paring the two profiles the convergence needs to be computed and added to Sturges's

values to refer them also to the 0 surface.

Alternately, Sturges's values can be plotted with respect to a correctly

depicted theoretical 0-db surface which would show _a curvature with respect

to 0, and in fact would be practically parallel to the G surface, being within a

few meters from it.

If the plotting world have been done correctly as indicated above, it would

have been obvious that the magnitude of the discrepancies between the ocean-

ographic and geodetic leveling persists, and that the results of oceanographic

and geodetic leveling have been correctly compared in the past.
	 ,s

The main point thus is that geodetic leveling is done with respect to an

6
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identifiable reference geopotential surface passing through the origin of

leveling. Oceanic leveling provides dynamic heights with respect to the

theoretical 0-db surface, These two equipotential surfaces, being within

a few meters from each other, are practically parallel and they have a

varying separation with respect to the deep ocean equipotential surface

(such as the 1000-db surface) used as a reference in oceanic leveling. This

varying separation is taken into account in the process of pceanic leveling.

Thus for practical comparisons, geodetic and oceanic leveling provide values

with respect to two parallel surfaces separated by the dynamic height of mean

sea level at the reference station (origin) for geodetic leveling.
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1.	 Statement of Work

Perform an error analysis, based on assumed sets of satellite borne

transmitting equipment and ground receivers, to determine the optimum use of

such systems in connection with the science that can be obtained from CLOGEOS

i
measurements.

2.	 Available Computer Programs

jToachieve the goals vide para. 1, main computer programs available at

The Ohio State University are briefly described below.

2. 1 Goddard Trajectory Determining System (GTDS)

! The Program GTDS, acquired recently at OSU from Goddard Space Flight

Center, is extremely versatile and has numerous operating modes and; capabilities

[COSMIC, 741.
i

Space craft dynamics used in the program includes gravitational acceler-

ation for Sun, Earth (up to 15 x 15 non-spherical field), Moon (up to 4 x 4 non-

spherical field) and all the planets, drag acceleration and solar radiation model

with shadow effect and variations depending on distance from sun LWagner, et. al.,

1972].

In this project, this program was irla.inly used for ephemeris generation.

2.2 The Ohio State University Geomet-ric and Orbital (Adjustment)
Program (OSUGOP)

The program OSUGOP performs basically as an adjustment program, using
ioptical or range observations, in geometric/orbital mode [Reilly, et. al.. 1972] .

One important feature of the program is its capability to apply and obtain different

constrainedsolutions, including 'inner' constraints LBlaha, 19711.

As the current error analysis was to be based on the 'estimable' quantities

e.g. , chords and angles between the locations of ground stations, a new subroutine

'CHECK' has been added to the program.

1 9,



2.3 Short Arc Geodetic Adjustment Program (SAGA)

The latest version of this program, as developed by Duane Brown Associates,

was obtained at OSU from Air Force Cambridge Research Laboratories [Brown

and Trotter, 19731.

The program employs a power series solution using partitioned regression

technique. Inner constraints capability has also been added in the present program.

2.4 Range Generation-Geometric - with 7 Records in Mode B
Program (RGGR7-B)

The computer program RGGR7-B generates ranges from the short arcs on

tape as generated by GTDS and given station locations. Time interval between the

ranges, cut off angle or maximum zenith angle as well as the station locations and

the model in which they observe the satellite per pass can be specified outside the

program. The program has the capability to superimpose white noise of any

standard, deviation on the ranges Thexanges are written on tape in the GEOS

range format as required for the input to the computer program OSUGOP.

3.	 Data Generation

3.1 Satellite Orbits

During the orientation meeting for CLOGEOS at Huntsville, Alabama on

February 6, 1975, it was agreed upon that the possible approximate altitudes for

investigation are 350 km, 600 km and 1000 km. However, during the period under	 3

report some alterations were made in the designated orbits.

The orbit generation was carried out in two steps - first a long arc for
+i

126 hours was generated in inertial system and then taking the suitable orbit 	 j

points several short arcs in the body fixed system were generated over the area

under investigation.

The details about orbit delineation and the 'computer expenditure involved

are given in Tables 3. 1-1 to 3. 1 -5 .

3.2 Range Generation

The computer program RGGR7-B and the short arcs (vide para. 3. 1) were

then used to generate ranges in geometric triode with Gaussian standard deviation
i

2
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of 10cm. During the range generation the density of orbit points was suitably

altered between lower, middle and upper orbit to keep the number of ranges the

same for each orbit.

During the range generation a new variable was introduced as under (Fig. 1)

Case A	 When all the observing stations were located on the ellipsoid

(h=0).

Case B	 When some of the observation stations were raised from the

ellipsoid to a maximum height of 100 meters,

Case C - Same as Case B except maximum height was made up to

1000 meters

The station layout, orbital parameters, span of observations. general dis-

tribution, etc. are given in Fig. 2 and Fig. 3. For details of data generated and

the computer expenses see Table 3.2-1.

The ranges were generated on three tapes RNGE01, RNGE02, and CSTPOI

and the contents of files on these tapes are given in Tables 3.2-2, 3..2-3 and 3.2-4.

Tape Format

DCB=(RECFM=VBS, LRECL=40, BLKSIZE=12004)

Record Format

NN, IYMD, IH, IM, IS, RR, SIGR

where

	

	 a

NN Station identification number

IYMD = Year, month and date of observation in packed format

IH = Hour
1

IM = Minute	 of observation

lS	 Seconds 104

RR = Range in meters

SIGR Standard deviation of range in meters.

3	 }
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4. Simulated Solutions

The CLOGEOS error analysis was decided to be carried out ,in two main

section viz., geometric and short arc modes. During the period under report,

the investigations were made only in geometric mode. Thirty-seven simulated

solutions were computed as detailed in Tables 4-1 to 4-3.

5. Analysis and Conclusions (Preliminary)

In an error analysis of the type under consideration it is more realistic

to analyze the estimable quantities. As the station coordinates fall, under non -

estimableestimable quantities, error analysis for them would have been significantly

dependent'on the origin and the error propagating outwardly from it. Distances

and angles are the only estimable quantities in the present error analysis and
3
q

are defined as under: i

chord R !, t
	 f	 (5.1)	 a

	

cos	 (xi-xj)(Xk -Xj) - ( Yi-Yj)(Yk-Yj)+(zl:Zj)(Zk-zI
;a	

)	
(5.2)ngleOf Qk -	 i

(Xi -x' P+ ( Y2 - Y' P+( z ! -Z J f (Xk -Xj 1 +( ^i _ YJ P+(Zk-zj

where x j , y1 , Z S are the rectangular coordinates of the ith points. The current

investigation deals with the distance analysis and the results have been broadly

grouped as under,

5. 1 Effect of Orbit And/Or Station Separation

G

	

	 Six solutions were run for 500 events each for cases A, B and C and the

standard deviations for the best case ar (where r;1 , denotes the !distance between
72

station numbers i and j) and for the worst case '6 r were plotted (Figures 4 and 5).
19

The or - s show significant improvement either introducing station
1J

separation as in Case C or by introducing mixed satellite altitudes through

eccentric or multiple arcs
a

4
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5.2 Effect of Orbital Height

Figures 6 (for a ) and 7 (for a ) show that the height of the orbitr	 r
l'	 cannot improve solutions when observing stations have a 'near' critical configu-

ration.

5
.3 Effect of Number of Events 	 -

Figures 8 (for a ) and 9 (for a ) show that the number of events
r 1	 r19

included in any solution had a significant influence. However, in any given

station configuration, the less critical is the configuration the smaller the number

of events needed to obtain a specified accuracy.

6. Personnel

Ivan I. Mueller, Project Supervisor, part time.

Muneendra Kumar, Graduate Research Associate, part time.

::. Boudewijn H. W. Van Gelder, Graduate Research Associate, part time.;

Michelle Neff, Administrative Assistant, part time.

7. Travel

1 Project meetings at MS FC , Huntsville, Alabama.

December 17, 1974 (Mueller and Van Gelder).

February 6, 1975 (Mueller, Van Gelder and Kumar).

See material distributed in Appendix A.

April 17, 1975 (Mueller)

Material presented at this meeting is identical

'to the one in this report.

2.	 January 30 - Feb. 2, 1975, New York City, (Mueller)

To attend the AAAS meeting.

E	 3.	 April 2-5, 1975, Siena, Italy, (Mueller)_'

Mathematical Geodesy (Partial support). For a

report on this meeting seeAppendix B.
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Satellite
Height
(km )

Orbit
Type

Time of Data
Generation

(Hrs)

Computer Expenses
$

150 Polar 126 100.00

392 -do- 126 120.00

657 -do- 126 130.00

1007 -do- 126 150.00

500.00

Table 3.1-5

Short Arcs

Satellite
Height
(km)

No. of
Passes

Length of each
Pass in Time

Density of
Satellite points

Computer Expenses
$

9 30 10 sec 10/sec 300.00

392 35 8 min 10/sec 1050.00

657 22 10 min 10/sec 770.00

1007 30 12 min 10/sec 1200.00

3320.00



Satellite No. of Case MaximumMaximum Computer .Expenditure
Height Passes Type Data Points $

(km) Generated

A 3000 80.00

9 30 B 1500 60.00

C 1500 60.00

A 5000 180.00

392 35 B 500 30.00

C	 I 500 30.00

A 500 30.00

657 22 B 500 30.00

C	 (
i

500 30.00

A	 )	 5000 180.00

1007 30 B	 5000 180.00

C	 500 30.00

$920.00

I
a

i
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TAPE RNGEO1	 M055	
Table 3.2-2
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6 t0 U I1 50
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0 20 UOOCa CSUAoI 1-9 18 - 0.1 - -

to U q O 20 0000 CSUAC2 1-6 12 _ 0.1
„ to L 6 281 O 10 Lo1 ►" ^corcos 1-10 20 0.1

9 to L 5 O to L011 6 c_Lc.,,s2.9 1-7 IS - 0.1 - -
to „ to M 14 214 0 20 no11 c5tiAol % -11 22 - o,l - -
11 „ 10 L 6 186 O 15 LooE; `' "coos Ho Zo
11. „ l0 L 5 t o IS Looa^ clei.zq 1-7 15 - 0.1 - -
13 „ 10 M 14 181 O 30 Moog Cstinoi 1 - 11 22 - 0.1 - -
1 44 „ 10 U 11 170 1

7
O 60 uOoQ-,CSURO1 I-q 18 - 0.1 - -

15 10 L) 9 O 60 UOOS Lj ICSUR02. 1-6 12 - 0.1 - -
16 10 u I I y6 f Iwo 240 Uoie csTpo1 3 11 50 20 000-41 c5uso1, gF,IaP

1-1 b 10 U 9 t Il?00 210 U015 1D CSTPO, j) C^ 20 Uoo^1° CSUAp2,6F,12P
15 „ to M Iti t45 1000 120 MOOS' csTPOI 5 Iy 546 10 Moo4 CSMAO1,11F12zP

19 „ 10 L 6 y2
1 1000

1000 6o Lols' C5TPo1
I CSTilol

6 6 558 5 Look°' GOrcos,10F,20P
20 „ 10 L 5 EEO LOt5' 1 5 5 LOo7b CL6529,-IF,2OP
21 10 U 11 O 2 Uozs°jcsuAal 1- to - 0.1 - -
22

„
to to u q

50 5I
0 2 Uozs'° cbuAyl 1-^ 12 - 0.1 - -

23 „ 10 L 55 2 O .5 I. o16° cosecs 1-10 2.0 - 0.1 - -
2ti if 10 L 5 o .5 L0166 CLGbZ9 0.1 - -
2.5 to 10 LL I'l " 0 .I5 LL004 ^CSTPdl 26 14 IL135 .05 LLOO1 CLL1AOI,ISF,1SP

26 Is 10 LL 14 413 too AS LL0o5 CSTPOI 27 I ti 1419 .05 LLOO1 CLLR	 1, ISF,ISP

21 „ 10 LL 13 till 1000 ,15 LL006 CSTPOI 2S 13 WA .0S LL003 C"A01,15F,1SP
2R „ 10 LL 14 54 O 1.35 LLOD7 CSTPOI 26 Vi 1435 .05 LLOOI G.LA 	 1,1 5F^15P

29 ,, 10 LL 14 53 loo 1.35 LLOoS CSmI 27 W 144 . os L.LOo2 CLLRLI,I s r-,tsP
30 „ to LL 13 47 100o 1.3s LL009- Cs6WV 213 13 1161 .05 Ll.003 CLLAO1,tSP,15P



TAPE RN6E 02 N281
Table 3.2-3

FILE ZRZR S.D.
tern ORE pnss-z EWR 14F

at
s«. CASE

F R O M
TA?E(sl FILE Mses,^_Vv s AF,.,cc CSSE	 F R O 11

1 RR;A-Es 10 L 6 55g ( 100 5 LOo6° CocE05 1-10 20 - 0.1 - -
2 I# to L 5 1 loci, 5

I

Loo6b urszq t-7 1s - al -
3 It to M 1 4 546 wo 10 moos cSM0 1 1- 11 22 - 0.1 - --
ii „ 10 U 1 1 507 100 20 000s° c5ua01 1-q 112 - O1 - -
5 „ 10 U 9

2
too 20 00056 St.)Ag 1-6 12 - 0.1 - -

6 to L 281 
j

100 to Late COG-Ds 1-10 2-0 - 0.1 — -
„ to L S l( too to L0126 16529 1-7 15 - 0.1

10 M 14 274 100 20 M012 0611901 1-11 22 - 0.1
qq 10 L 186 too I5 L009 core	 s 1-10 20 - 0.1
Id „ 1 0 L 5 IOo 15 LOog6 cl.0szq 1-7 15 - ai - -
I'i to M Iy 18i too 3o nooq csng ol 1 -11 22 - 0.1 -
12. to to U It

170 1
too 6o Uco96c ^.,ziml 1-9 113 - o.I - -

Vs to u 9 too 60 0009 cst)nol 1-6 12 - 0.1 - -
W „ to U 11

7
50 5 100 2 Uo02° CWA01 1-9 le - 0.1 - -

IS 10 U 100 2 U0o26iallgOL 1 -6 12 - 0.1 - -
16 to to U 1 2538 0 '4 tLa^GE^ i 21 11 5075 2 UO2.s , cwg01, q F,18P
1 10 U 4 0 4 Uoz6 C umceml 22 g 2 W?166 CSUA02,GF, 12P

t0 U 11 10161
O 10 UO2^b RNC^0i 2 1 1 1 5015 2. Uozs

b

cwtioI,gF:'18P

tq ,. to u I
L o 1a Uoi7 (tNSSOI 27 q j 2 uozs csuq^2,^F,I2P

20 to u 509 0 20 OUR"' RNGE01 21 11 5075 2 UO2S" CSt1,c^F,113^'^
21 to U 9 O 20 Uo-ab Powl s1:cb1 22 q Z UO25 cSl)1;{t2,0F,12P

22 IU U I 1 52 LC
O 200 ^UO24" RNGE0 1 21 11 50 5{ 2 l)02s4 0g0159F,18p

23 16 u q O Zoo 0029 RNGEOI 22 C^ ( 27 Uozs^ Gsu>i0-L,6F,12P
Z4 10 L 27e6 o I L ovi"14)6eQ 23 6 5572 0.5 Lo16" CoC=Eos toy yop
25 10 L 5 o 1 Lolj b Rt^GEP1 2y 5 0.5 Lo%k' C"`A,^ 0sp
26 to L 6 1115 O 2.5 LOtsb ROGE01 23 6

5572t
O.G LOIG' coc-Eos,toF,zop

27 „ 10 L S O 2.5 L018 I NGE0 1 2y 5 05 LoIG6 cL052,7F,ts
-2s Its L ( 556 0 5 L.019' Rw6E 0 1 23 6 55 2 os Lot6A C06EO5,10F,20t
2q ,. 10 L S O S 1_019" RNGE01 N S O.S Lot 6 b G GS2q, 7r--,tsP
30 „ 10 L 6 5	

l7
0 50 LOW' RNGE01 23 6 55

7
- 2 0.S Lo1GA Ct^EOs,I oF,2r'P

31 10 L S l 0 50 Lo&0 RMC,-01 211 5 0.5 Lo%66 CL..Gt.Zg,



TAPE- C ST P O I	 C 5A	
Table 3.2-4

FILE ^ATq S 'Dci., QR°1 P115 5 ':^^ HF at
uc.

CRSE F R O M
APEW I- 1LE POSbEs VOM A,5« CR5 E F R O M

Rg NSEs 10 u I1 202 9
1000 S u ooz°- csUR01 1-9 t8 - 0.1 - -

2 of l0 u 9 l 5 Uoo36 CSu 1-6 12 - 0.1 -

3 it to U 1 t 507 l oo0 20 uooti°' csunol 1-9 IS - 0.1 - --
14 to u 9 1000 2D uooL, 6 CsuwP2 1-6 12 - 0:1 - -
5

„
„ 10 M 14 546 loco 10 M004 CSnAPI I - 11 22 - 0.1 - -

6 „ 10 L 6 558 (Coo 5 Loot" coeos 1-10 20 - 0.1 - -
7 so 10 L 5 l000 S Loopy 6529 1-7 IS - at

„ 10 L 6 2S1 1000 10 1-013" Co6Sos 1-lo Zo - 0.1
C1 „ to L 5 IM* 10 LO136 }C1.6S2q I-1 15 - 0.1 - -
to ,, t0 M 14 I000 20 Mol3 tCbHAol 1-11 22 0.1 - -
i	 1 of O L 6 SSQ loon 5 1-0 1,40' Coos 1-10 20

-
0.1 - -

12 #1 o L 5 loo0 5 Lo146 cLrQs. ,Zg 1-1 %S - 0.1 - -
13 to to L 6 IBb low IS Low" c.OGem 1-10 2D - 0.1 - -
14 ,, to L 5 1000 15 LoIob CL6529 1 -7 15 - 0.1 - -
IS of to M 14 1& 1 1000 30 MOIO CSt1tleol 1 -11 7_2 - 0.1 - -
16 „ 10 u It 1-^p low 60 We

U010L
csuAol I-z le 0.1 - -

17
1$

10 u 9 Iron 60
0021°

CsuRoz
RWIEM

1-
14

12 - 0.1 -
Uooz°`of 10 u t1 rp 100 20 I t 50 5 2 c5oAai, g F,1@P

19 Is 10 u 9 too 20 UO21 c IPIW.EOz IS 9 2 Uoo2b csuAQ1,6F,12P

20 of u t I 52 too 200 uo22A ^tLU1 14 It 50 5 2 0002" csu^a^l,gF,18P
21 to u 9 too 2.00 uozzl';^m Is 9 2 uoo2a csUa4s3 , (̂ F,12P

22 „ 10 u i t 25 loo '1 UO23 `VLV0 (^2 l ei I t 50 5 2 Uvo2`` CSUKi(r51,C}F,i$P
23 „ to u 9 too '1 Uo236 IPNW92 is 9 2 13oa2t' CSUI^o+ 2, F,1z P

24 10 V 11 1016 100 10 Uo24^1P,&IW02 I4 11 50 5 2 uvoe CSUaaI, gF,IBP

25 ., to u 9 too to uozu I**F-0 Is 9 2 uccz csua^6F,12w
2.6 10 LL 14 141S O .OS LLOol CL.LAPI 15 - 105 - -
27 ,, 10 LL 14 1419 100 .05 LLoo2 CLU101 11 -51( I5 - .05 -
2$ to LL 13 1261 1040 .05 LLOo3 CLAOI t1-31( 15 - .05 - -
29 to LL 27 2853 0 .05 LLOIc CUA OI 11 -115 ,19 - .05 - -

1€



Satellite Orbits Varied

Case
Type

No. /Type
of orbit
used

No. of events
per orbit

Total
Events

No. of
Simulated
Solutions

Computer Expenses
$

1(low-low) 500 500 3
A,B

1(lower) 500 500. 3
and C

l(middle) 500 500 3
18 x 50.00 = $900.00

1(upper) 500 500 3

2(lower+ 250 500 3
middle)

3(lower+ 133 500 3
middle+upper)

a

Table 4-1

e

1	 1	 r



Table 4-2

No. of Events Varied
t

{

Case Type of No. of events included in the Total* Computer
Type Orbit Used Simulated Solution number of Expenses

Solutions $

low-low 50 500- - 11500 - ! 30001	 -
i

3 120.00

lower 50 500 1000 - 2500	 -	 1 5000 4 400.00

A middle 50 500 1000 - 2500	 -	 15000 4 400.00

upper 50 500 1000 - 25001
4	-
	 5000 4

4

400.00

B & C low-low 50 500 - 1500 -	 -	 -
1	 I

80.00

$1400.00



1

0.06102 ►

500

2.qo
i

0.54 11.14
I

0.0610.13

1	 1
0.03 10.12	 I

1000	 2500	 5000

2,05 1311.	 1.3012.32	 0.9111.63

I	 1	 1

0.3810.81	 0.2410.51	 0-0 10. 3%,I
O.O y io.09	 I	 I	 I

f
3

Table 1.3

A STRNDRR'D 9EVIHTWAN , (M) OF R%-L RHO R%g
S
E

EVENTS -}► 5' O Soo ISOO 3000
U-R k% TR

A un Iq•s8 2^^	 6.64 1.58 I3.@I 1. ►5I 2^2
LOW- Low	 1 1

P, I.SS 1 530	 65011-75	 0a8 1 1.00	 1

	

q KM	 I
c 0.18 1 0.159

50

A q.is 16156
	f OWER	 1

6 1.7 713.75

	

392 04	 1
CIO-?010.41

MIDDLE

6SJ Kf4

UPPER

tool KM

A	

i

6 i.y t 13.93
1

C 0.16 IO.a2

4 T40 17.06

B 1.23 13.12.

G 0.l y I0-y4

2.4q 1 5 .17

0,43 1 1.18
I

O.Os 10.13

2 38 5.51
1

o.3q 1 1.18

i

0.04 1 0.13

0.3010.62
1

0.0310.09

1.61 3.qc

0,21 1 0.84

1

0.0310.09

OJ7 10.52

1

1.0^ 12.46

0.17 10-53
I

i

0.13 10.37
1
1

0.151 ► .73
1

0.12 1 0-37
_I
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CONTRACT NqSS-31195	 SCIEN CE
MR. H.R. HOPI:	 MR. N.C.COSTES
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REGERRCH FOUNZRTIOt4	 ZF-PT. OF G EMETIC 5CIi=N
PRO JSCT 4105 -R 1	 SC I ENCE

f
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IC L O G E Q S
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A. RELATIVE POSITION OF POINTS

LACus f :DOE S NOT NEED 0009,:DINATE

SYSTEM Il4F0;ZtlnTjoM EXCEPT 'FO2

A ClUORDINSTE S`(STEM a)ETERt11MF..

BY 'THOSE POINTS I.E. LocgL-

CMR:DINRTE SYSTEM

SYSTEM 15, RFRNK MEPIC1 ENT S%(

i

Us%N G 'CHE SSN-9%RUZSD 1NVF,RSF-

SOLUTION C1NNEtZ CON6TRAItJT

COOR^INF^TES	 ^I^,T^^G^S
_ MAPPING	 ^"i 1^ G L. S

Nota esTIf`IAGLE	 EST MWt3tE
QU^1NT1"r'1E5	 ^i"t»1NT 1'TIE S

THE OHIO STATE UNIVERSITY
DEPARTMENT OF GEODETIC SCIENCE
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TIME TABLE
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REPLI SBLICA ITALIANA

dOMMISSIONE GEODETICA 1TALIANA
IL PRESIDENTS

p

Trieste, February 18, 1975

6th SYMPOSIUiQ ON MATMYTATICAL GEODESY
(3rd Hotine Symposium)

Siena, April 2-5, 1975

Dear Colleague,

Following to my letter of January 8 2 I am sending the
Second (and last) Circular Letter concerning the 6th Symposium
on Mathematical Geodesy Ord Hotine Symposium) organized - by
the Italian Geodetic Commission under the aegis of S.S.G.  No .
4.31 "Mathematical Techniques in Physical Geodesy

The open rg of the Symposium will take place at 9030
A. M. of April

The participation to the Symposium is not bound to any
foxTiality or payment of a registration fee. You are only re-
quired to f i ll i n the enclosed reservation form, and send it
directly to the '-.zienda Autonoma Turismo, Siena, as indicated.
I recommend hotels Minerva, Continental, Toscana, Chiusarelli
and Pension Rayizza, that are close to the University in which
the Symposium will take place (Via Banchi di Sotto 57, 1st floor)

The dead line for the hotel reser rrttion is March 10; an
earlier application will be highly appreciated.

In line with the former Hotine Symposia, no preliminary
presentation of papers is required; however I will appreciate
receiving the title of your contribution. The main accent will
be on oral presentations and discussions on unusual aspects of
Geodesy. The publication of the Proceedings of the Symposium is
foreseen.	 3

Looking forws.rd to seeing you in Siena, and with my
heartiest regards and wishes,

h
Fours very sincerely,i

Prof-,.Antonio ' Pi.arussi

43

PRESSO L'`ISf1rwio DI GEODESIA E GLOFI iGA D(?LL'UNIVERSITA Drw i 5'fUt51 DI TRIPi;T,S

3410 1, TRIE ,TE • VIA DELL' UNIVHRSITA 7 TELiF. ^"'^'S3' 	 C • TELEX 46314 PHYSICA TRIES F.
6 .4-563 1 31-U36	 t
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Appendix B. - 2

P.IarCh 17, 19765

'_professor Antonio 1.Iarussi
Direttore dell'3stituto di Geodesia a Geofisica
Dell'Univers i t^L di Trieste
Via: dell°Uniti^-rs,ita 7
'34100 it ies ta-
It-al y

Dear Professor M`aru531:

This is just a s' oat note to let you'kno-w ghat I will be present a
the liotine Sys siunna in Siena. I do not plan to present a formal
Pape,, but I woi ld Me to have sorLe private discussions on the
unusual aspects at the Close Grid Geodynamics Satellite lalea.sure-
mdnt Sys tem (CLOG OS). ibis proposed system consists of a
number of satslii;e-borne lasers and clooely spaced ro2--ctors
on the ground for the  pi imary purpose of monitoring fault motions,
ems:.

I am looking forword to seeing you amain. S i h m. y best w .2es
to you and Mrs. 'arussi

Sincerely yours,
A

cn

44'
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6th SYMPOSIUM ON MATHEMATICAL GEODESY

(3rd Hotine Symposium)

Siena, April 2-5, 1975

PROGRAM

Wednesday- April 2, 1975, 	 15-17
Chairman: I. Mueller, Columbus/U.S.A.

1. Cartan and the holonomity problem I
A.	 Marussi, University of Triests, Trieste/Italy

2. Cartan and the holonomity problem II
N. Grossman, University of California at Los Angeles

(UCLA), Los Angeles/U. S. A.

3. Cartan and the holonomity problem III
F. Berchio, University of Triests, Trieste/Italy 	

a

Al

4. Cartan and the holonomity problem IV
E. Grafarend, University of Bonn, Bonn/W-Germany

51 Cartan and the holonomity problem V
j:. G. Leclerc,, University of Stockholm, Stockholm/Sweden

and Quebec/Canada

45
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Thursday, April 3, 1975, 9-12h

Chairman: T. Krarup, Copenhagen/Denmark

1.

	

	 Utilization del documents cartographiques existants (anomalies de Bouguer,
cartes d'altitude) pour une definition precise du potentiel dans i'espace
exterieur au geoide vrai

H. M. Dufour, IGN Paris/France

2	 On the determination and application of gravity gradients in geodetic systems

E. Groten, Technical University of Darmstadt, Darmstadt/Germany
1.

=	 3.	 Approximation of certain solutions of the exterior oblique derivative problem
for the Laplace equation

K.J. Witsch, University of Bonn, Bonn/W-Germany

4. Boundary problems for the sphere

E. Ecker, Technical University of Berlin, Berlin/W -Germany

5. Analytical continuation of a function from the length's surface upwards

M. Pick, Academy of Science, Prag/CSSR

Thursday, April 3, 1975, 14-17h

Chairman: E. Grafarend, Bonn/Germany

I.	 Reflexive predictions

A. Bjerhammar, University of Stockholm, Stockholm/Sweden

2.	 Determination of datum-shift' parameters using least-squares collocation_lam	g	 q
and

A mass density covariance function consistent with the covariance function.S 	 r
of the anomalous potential

C. Tscherning, Geodetic Institute Copenhagen/Denmark x.

4
6
	 >.
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Appendix B - 5

3. A spherical harmonicexpansion of the isostatic reducti/:n potential

G. Lachapelle, Geodetic Survey of Canada, Ottawa/Canada

4. Least squares collocation for large systems

K. P. Schwarz, Technical University at Graz, Graz/Austria

Friday, April 4, 1975, 9-12h

Chairman: A. Bjerhammar, Stockholm/Sweden

1. Unusual aspects at the close grid geodynamics satellite measurement system
(C LOGEOS )

I. Mueller, The Ohio State University, Columbus/U.S.A.

2, Free adjustment of a torsion balance net

G. Hein, Technical University of Darmstadt, Darmstadt/Germany

3. The nature of space near the earth

N. Grossman, University of California. at Los Angeles (UCLA),
Los Angeles, U.S.A.

Ai

4• . A general method for the computation of mmimax-errors
1

y

G. Heindl and F. Reinhart, Technical University of Munich, Munich/Germany

£-

,

Friday, April 	 1975	 14-17hy,	 p	y

2

Chairman: H.M. Dufour, Paris/France ,;	 a

1. 3-d Mapping and mapping of the gravitational field
A

A	 Marussi, University of Trieste, Trieste/Italy
-

2. On a general potential-invariante representation of the geopotential field and
j

applications, u

F. Bocchio, University of Trieste/Italy

T
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This project is under the supervision of Professor Ivan I. Mueller, Department

of Geodetic Science, The Ohio State University and is under the technical direction of
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1.	 Statement of Work
• 1

Perform an error analysis based on assumed set of satellite borne transmitting

equipment and ground receivers to determine the optimum use of such systems in

connection with the science that can be obtained from C LOGEOS measurements.

2.	 Data Generation

' 2.1	 Range Generation

The computer program RGGR 7-B (as used for geometric mode) was suitably
z

modified to generate ranges for analysis in short are mode. 	 Using the short arcs

(see paragraph 3.1 of First Quarterly Status Report), ranges were generated with 1

a Gaussian standard deviation of 10cm. One set of errorless ranges was also

generated.

For details of data generated and the computer expenses see Tables 2.1-1,

2.1-2 and 2.1-3.

3.	 Simulated Solutions

During the reporting period the investigations were mainly made in short arc
9

mode. Thirty-one simulated solutions were computed as detailed in Table-3-2.

In addition, twelve simulated solutions (Table 3-3) were also computed in '±

geometric mode. Computer expenses for simulated solutions are given in Table j

F

4.	 Analysis andConclusions (Preliminary)

.
E

4.1	 Geometric Mode

'Report,Reference to equations 5. 1 and 5.2 of the First Quarterly Status

3 some further graphical analysis was performed to study the effect

-2-
rf
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s	
,

F

t	 ,
of orbit, station separation and number of events. Only the "typical" angles aIJI,

and the distances- r1j were used in this analysis.

The above graphical analysis gave the same conclusion for the geometric mode

as reported in the First Quarterly Status Report.	 However, the details will be included

in the final report.

4.2	 Short Arc Mode

4.2.1	 Effect of Fundamental (LAGEOS) Stations Per Pass

Figure 4.2.1-1 shows the effect of inclusion of fundamental (LAGEOS) stations

in short arcs. The reduction of LAGEOS stations to two per pass adversely effects

the solution and for the directional stability, each pass must have at least two funda-

mental stations.

4.2.2	 Effect of Grid (CLOGEOS) Stations Per Pass

Figure 4.2.2-1 and Tables 4.2.2-1 and 4.2.2-2 show the effect on recovery of

relative position of grid (CLOGEOS) stations as the number of such stations varies in

any satellite pass

4.2.3	 Effect of Orbital Height

Table 4.2. 3-1 and Figures 4.2.3-1 and 4.2.3-2 show the effect of varying orbital

height of the satellite.	 Even though the residuals in coordinates for the lower orbit

(Table 4.2.3-1) are larger compared to upper orbit case, the overall recovery (Figures

4.2 3-1 and 4.2.3- •2) is quite compatible in both cases,

4.2.4	 Effect of Number of Events

Table 4.2.4-1 and Figures 4.2.4-1 and 4.2.4-2 show the effect of different
x•

number of events in a simulated solution. 	 The results- show that variations arenot $s

significant. k

-3_



4.2.5	 Effect of Observational Mode

Figure 4.2.5-1 shows the effect of simultaneous (grouped) versus the sequential

observational mode in the short arc mode. The recovery is more or less the same in

each case.

4.3	 Geometric Mode vs. Short Arc Mode

Figures 4. 3-1 and 4.3-2 show the comparative recovery in residuals in geometric

(with 9 stations) and short arc mode (with 12 stations) for cases A and C.

In case A, the residuals for geometric mode are in meters, while all other residuals

are in centimeters.

Figure 4.3-3 and Table 4.3-4 show the comparative recovery in residuals where one/

three LAGEOS stations have been added in the geometric mode also.

5. Personnel

Ivan I. Mueller, Project Supervisor, part time

Muneendra Kumar, Graduate Research Associate, part time

Boudewijn H. W. VanGelder, Graduate Research Associate, part time
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Satellite
Height
(kin)

Oribt
Type

Time of Data
Generation

(hrs)

Computer Expenses
$

392 Polar 126 120.00

657 -do- 126 130.00

1007 -do- 126 150.00

500.00

Satellite
Height
(km)

No. of
Passes

Length of each
Pass in Time

Density of
Satellite points

Computer Expenses
$

392 26 8 min 1/sec 540.00

657 31 10 min 1/sec 775.00

1007 30 12 min 1/sec 900.00

2,215.00



Mode No. of
Solutions

Computer Expenses
$

Short Arc 31 3,100.00

Geometric 12 720.00

3,820.00

Satellite No. of Case Maximum Computer Expenditure
Height Passes Type Data Points $

(km) Generated

A 5000 300.00
392 26

C .500 50.00.

A 5000 380.00
1007 30

C 500 50.00

700.00
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